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a b s t r a c t

Algorithms for preprocessing databases with incomplete and imprecise data are seldom
studied. For the most part, we lack numerical tools to quantify the mutual information
between fuzzy random variables. Therefore, these algorithms (discretization, instance
selection, feature selection, etc.) have to use crisp estimations of the interdependency
between continuous variables, whose application to vague datasets is arguable.

In particular, when we select features for being used in fuzzy rule-based classifiers, we
often use a mutual information-based ranking of the relevance of inputs. But, either with
crisp or fuzzy data, fuzzy rule-based systems route the input through a fuzzification inter-
face. The fuzzification process may alter this ranking, as the partition of the input data does
not need to be optimal. In our opinion, to discover the most important variables for a fuzzy
rule-based system, we want to compute the mutual information between the fuzzified vari-
ables, and we should not assume that the ranking between the crisp variables is the best one.

In this paper we address these problems, and propose an extended definition of the
mutual information between two fuzzified continuous variables. We also introduce a numer-
ical algorithm for estimating the mutual information from a sample of vague data. We will
show that this estimation can be included in a feature selection algorithm, and also that, in
combination with a genetic optimization, the same definition can be used to obtain the most
informative fuzzy partition for the data. Both applications will be exemplified with the help
of some benchmark problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Although fuzzy rule-based systems are intended for using vague data, most learning algorithms can only use precise
information. Extracting fuzzy rules from imprecise examples is an open problem [11,12]. Initial works were based in a ran-
dom sets-based representation, where each piece of data was described by a crisp value and a confidence interval defining its
tolerance [23]. Conversely, recent works in fuzzy random variables prop up using a fuzzy representation when the data is
known through more than one confidence interval [4]. In this respect, for quantifying the fitting between a model and data
described in this manner, a fuzzy-valued measure of accuracy arises in a natural way [30].

Recent fuzzy rule learning algorithms also balance accuracy and linguistic quality [7]. When the data is vague, the linguis-
tic quality can still be quantified by a real number [1], but the accuracy is fuzzy-valued. Therefore, the learning algorithm
involves the joint optimization of a mix of crisp and fuzzy objectives. This last problem can be solved by means of multicri-
teria genetic algorithms [27] or metaheuristics [31]. In turn, both approaches are related to previous studies about the use of
fuzzy fitness functions [18] and precedence operators between imprecise values [19,35].
. All rights reserved.
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This use of a fuzzy-valued fitness function to obtain fuzzy rules from vague data defines a new branch of genetic fuzzy
systems (GFS), as proposed in [30]. According to [12], there are four paradigms of GFS (Pittsburgh, Michigan, iterative rule
learning (IRL) and genetic cooperative-competitive learning (GCCL)), and all these types are susceptible of being extended to
vague data. A Pittsburgh approach for extracting fuzzy rules from interval and fuzzy-valued data in classification was pro-
posed in [25,27] and applied to regression problems in [28]. In [26], backfitting and boosting (in the context of the IRL ap-
proach [15,24]) were extended to vague data, and in [32] a GCCL-type algorithm was introduced.

1.1. Preprocessing of vague data

However, the preprocessing of imprecise databases is seldom studied. There are many recent works dealing with feature
selection procedures that use fuzzy techniques [14,34,36,37] or are designed to be used in combination with fuzzy systems
[10,33,38,39], but we are not aware of any feature selection algorithms that can be applied to interval-valued or fuzzy data.
In particular, to our knowledge, although there are some studies regarding the information a fuzzy model carries about crisp
data [23,33], a definition of the mutual information between fuzzy random variables has not been explicitly proposed yet. In
this work we will propose such a definition, based in a procedure defined by [16]. We have applied a similar method before
[4,5], to analyze other properties of a fuzzy random variable.

Said definition would also solve a secondary problem: there is a loss of information in the linguistic discretization of the
variables. Depending on the membership functions of the linguistic variables, this loss will be different for each input. Since
we lack measures of mutual information between fuzzy data, the interdependency between variables is estimated before
they are fuzzified, without taking into account the shape of the membership functions in the antecedents of the rules.
But, it might happen that an apparently informative variable is rendered useless when it is rewritten in linguistical terms.
We want to measure the amount of information that a variable carries after it passes through the fuzzification interface. In
this paper we will show that the set of variables that a feature selection algorithm produces depends on these membership
functions, and also that taking this factor into account causes significant improvements in the accuracy of fuzzy classifiers.

In particular, we will address a rather common situation in real world problems. We are faced with a mix of crisp and
vague data, being represented as a fuzzy subset of a finite set of linguistic labels, which in turn are associated to a Ruspini
fuzzy partition [22]. Let us illustrate this situation with the help of a numerical example. A fuzzification stage converts a crisp
value of 45� into a fuzzy subset f0:0=COLDþ 0:2=WARMþ 0:8=HOTg, say. Being elements a Ruspini’s partition, the sum of
the memberships of a crisp measurement is 1. Nonetheless, a vague measurement of the temperature could be represented
by a fuzzy subset f0:1=COLDþ 0:3=WARMþ 0:9=HOTg. A missing value, by the set f1=COLDþ 1=WARMþ 1=HOTg. Note
that the last two fuzzy subsets do not match any crisp value. We want to define a method that can process the three cases,
which are of practical interest, but not often homogeneously studied in learning fuzzy classifiers.

Summarizing, in this work we will propose a new definition of the mutual information between fuzzy random variables,
and a numerical algorithm for computing it from vague or fuzzified data. In addition, we will show that

� this mutual information can be optimized by means of a multi-objective genetic algorithm, and be used to find the fuzzy
partition that carries the most information about the class of the object, thus providing us with the best linguistic partition
of the data for a given number of terms, and

� it can be included in a filter type feature selection procedure, so it can take into account the shapes of the membership
functions in the linguistic variables for choosing the most relevant features.

This paper is organized as follows: in the second section, we give a short introduction to the learning of fuzzy rules from
vague data, and present the state of the art in the topic. In the third section, we introduce our definition of mutual informa-
tion and detail how to estimate it from vague data. In the fourth section we will give some details about the genetic opti-
mization of the mutual information, and the fifth section introduces an MIFS-like algorithm [2] that uses the new
definition to select the most relevant features. The paper finishes with concluding remarks and future work.

2. Mutual information between a random variable and a fuzzy random variable

A fuzzy random variable can be regarded (see [3]) as a nested family of random sets, ðKaÞa2ð0;1Þ, each one associated to a
confidence level 1� a. A random set is a mapping where the images of the outcomes of the random experiment are crisp
sets. A random variable X is a selection of a random set C when the image of any outcome by X is contained in the image
of the same outcome by C. This is to say, for a random variable X : X! R and a random set C : X! PðRÞ, X is a selection of C
(and we write X 2 SðCÞ) when
XðxÞ 2 CðxÞ for all x 2 X: ð1Þ
In turn, a random set can be viewed as a family of random variables (its selections).
In previous works [29] we have defined the mutual information between a random variable X and a random set C as the set
of all the values of mutual information between the variable X and each one of the selections of C:
MIðX;CÞ ¼ fMIðX; TÞjT 2 SðCÞg: ð2Þ
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Generalizing this concept to fuzzy random variables is immediate, according to a general procedure proposed in [16]. We
define the mutual information between a random variable X and a fuzzy random variable K as the fuzzy set defined by
the membership function:
fMIðX;KÞðtÞ ¼ supfajt 2MIðX;KaÞg: ð3Þ
2.1. Computer algorithm

In this section we show, by means of an example, how to estimate the mutual information between a fuzzy random var-
iable and a crisp random variable.

Let us first suppose that we are given two paired samples ðX1;X2; . . . ;XNÞ and ðY1; Y2; . . . ;YNÞ from two (standard) random
variables X and Y . We will assume that both universes of discourse are finite. Let p1; p2; . . . ; pn and q1; q2; . . . ; qm are the rel-
ative frequencies of the values of the samples of X and Y , respectively, and let r1; r2; . . . ; rs be the frequencies of the values of
the joint sample X � Y . The mutual information between the variables X and Y is estimated as follows:
MIððX1; . . . ;XNÞ; ðY1; . . . ;YNÞÞ ¼ �
Xn

i¼1

pi log pi �
Xm

i¼1

qi log qi þ
Xs

i¼1

ri log ri: ð4Þ
Let us now suppose that we are given two paired samples ðX1;X2; . . . ;XNÞ and ðK1;K2; . . . ;KNÞ of a crisp random variable X
and a fuzzy random variable K.

We will estimate the mutual information between X and K by the fuzzy set
cMIððX1; . . . ;XNÞ; ðK1; . . . ;KNÞÞðtÞ ¼ supfajt 2 fMIððX1; . . . ;XNÞ; ðY1; . . . ;YNÞÞjðY1; . . . ; YNÞ 2 SððK1; . . . ;KNÞa; Þgg: ð5Þ
Example. Consider the following samples of size 3 of the variables K and X:

We want to estimate the mutual information between X and K. Firstly, we generate the set of samples Y1; . . . ;Y4 with
non-null membership, which is computed as follows:
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Now, we compute the estimates MIðY1;XÞ; . . . ;MIðY4;XÞ:

Lastly, we estimate the mutual information between K and X as the fuzzy set
cMI ¼ 0:4=0:5441þ 0:6=1:2108;
defined by assigning to each value of MI its maximum membership.
Notice that the number of samples Y with non-null membership grows ith the number of labels raised to the volume of

the sample. Enumerating all of them only is feasible in very small problems, therefore this definition only has theoretical
interest. In the following sections we propose an alternative definition that is better suited for an approximate algorithm,
that will be introduced later (see Section 2.4.)
2.2. Alternative interpretation of a fuzzy membership

The fuzzy representation we mentioned in the introduction can also be interpreted as a set of bounds for the probability
of the result of the experiment [8]. For example, the fuzzy set f0:0=COLDþ 0:2=WARMþ 0:9=HOTg means that the proba-
bility of the temperature being ‘COLD’ is 0, the probability of ‘WARM’ is not greater than 0.2 and the probability of ‘HOT’
is not greater than 0.9.

The corresponding lower bounds are implicit. For instance, pðWARMÞP 1� ðp�ðCOLDÞ þ p�ðHOTÞÞ ¼ 0:1. Observe that,
with this interpretation, the set f1=COLDþ 1=WARMþ 1=HOTg, mentioned in the introduction, represents the total absence
of knowledge about the input value.

We can also use sets as f0:5=COLDþ 0:5=WARMþ 0:5=HOTg, that does not signal a preference for either of the linguistic
values, but states that their probabilities are not higher than 0.5. Observe also that the fuzzy set f0:0=COLDþ
0:2=WARMþ 0:8=HOTg provides us with precise information about the probability distribution, because 0:0þ 0:2þ
0:8 ¼ 1. This kind of fuzzy sets occur when a precise numerical value is passed though a fuzzification interface based on
a Ruspini partition. Lastly, observe that a set like f0:0=COLDþ 0:2=WARMþ 0:4=HOTg (where 0:0þ 0:2þ 0:4 < 1) can not
be used with this interpretation.
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2.3. Alternative definition of mutual information

Let us interpret the acceptability of a fuzzy random variable [16] as an upper bound of an otherwise unknown probability
distribution pK defined on the class of the random variables from X to R:
p�KðYÞ ¼ supfajY 2 Kag: ð6Þ
pK induces a probability distribution on the values of the mutual information:
pðMIðX;KÞ ¼ tÞ ¼
X

YjMIðX;YÞ¼t

pKðYÞ: ð7Þ
We can estimate upper and lower bounds of pðMIðX;KÞÞ from estimations of the bounds p�KðYÞ and pK�ðYÞ, and estimate in
turn the expected value of MI, as shown in the next subsection.

2.4. Computer algorithm for the alternative definition

Let us suppose that we are given two paired samples of X and K, as in the first algorithm in this section.
The probability of a sample of any crisp random variable Y is the product of all the probabilities of the asserts ‘‘Yi is the

true image of the experiment,” under the model given by Ki:
pKððY1;Y2; . . . ;YNÞÞ ¼
YN

i¼1

pKi
ðYiÞ; ð8Þ
and the estimation of the mutual information is defined by the probability distribution
pðcMIððX1; . . . ;XNÞ; ðK1; . . . ;KNÞÞ ¼ tÞ ¼
X

MIððX1 ;...;XNÞ;ðY1 ;...;YNÞÞ¼t
pKððY1; . . . ;YNÞÞg: ð9Þ
We can compute approximate bounds for this probability and for the expectation of MI, as shown in the next example.

Example. Suppose we are given samples of size 3 of the variables K and X:
We wish to estimate the mutual information between X and K. Firstly, we enumerate the set of samples whose proba-
bility is not null, and compute bounds of these probabilities. Let Y1; . . . ;Y4 be these samples:
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In the second step, we compute the mutual information MIðX;Y1Þ; . . . ;MIðX;Y4Þ of these samples:

In the last step, we estimate the mean value of the MI between K and X, which is the range of values of the expression:
EðcMIÞ ¼ p1 � 0:5441þ p2 � 1:2108;
subject to the constraints p1 þ p2 ¼ 1, 0:42 6 p1 6 0:56, 0:48 6 p2 6 0:54, therefore
EðcMIÞ ¼ ½0:87; 0:89�:
Since the number of samples with non-null probability is the same as the number of samples of non-null membership in
Section 2.1, this algorithm still can not be applied to practical problems, but now we can select a small subsample and obtain
an approximate solution. Let us suppose that our subsample comprises two elements:

The expectation of MI is the range of
EðcMIÞ ¼ q1 � 0:5441þ q2 � 1:2108
q1 þ q2
constrained by 0:32 6 q1 6 0:36, 0:48 6 q2 6 0:54. This problem of non-linear optimization can be, in turn, too hard to be
solved in a short time, thus we propose the following approximate solution:

(1) Firstly, we approximate the unknown mean with the centers of the probability intervals:
E1ðcMIÞ ¼ 0:5441 � 0:34þ 1:2108 � 0:51
0:34þ 0:51

¼ 0:9441:
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(2) The upper bound of the probability is computed by assigning the upper probability to each sample whose MI is greater
than the approximate mean, and the lower probability to the remaining ones:
E�ðcMIÞ ¼ 0:5441 � 0:32þ 1:2108 � 0:54
0:32þ 0:54

¼ 0:9627:
(3) The lower bound is computed with the reciprocal values:
E�ðcMIÞ ¼ 0:5441 � 0:36þ 1:2108 � 0:48
0:36þ 0:48

¼ 0:9251:
Therefore, the approximated value is
EðcMIÞ ¼ ½0:9251;0:9627�:
It is worth mentioning that, following the interpretation described in Section 2.2, when all the fuzzified inputs originate from
crisp numerical values, the algorithm in this section produces a crisp value. On the other hand, if there are some imprecise
examples, this algorithm produces an interval.

3. Application I: estimation of the most informative fuzzy partition

The best fuzzy discretization of an input variable in a fuzzy rule-based system, from the point of view of the mutual infor-
mation, is the one that maximizes the dependence between the fuzzified input and the output variable, i.e., the partition that
loses the least information in the discretization. It is assumed that a rule learning algorithm that uses such a partition will
produce the most accurate knowledge bases, as we will show later.

As an example, in Fig. 1 we have plotted the decision surfaces obtained by the fuzzy Adaboost algorithm [15], for the
‘‘Gauss” dataset (that will be described in Section 3.2) and different fuzzy partitions. The values produced by our estimation
of the MI are displayed for each partition. Observe that, even though the error rate of the classifier is not being optimized by
our procedure, the best classifier was indeed obtained by the most informative fuzzy partition.

Finding the fuzzy partition that loses the least information in crisp problems is a problem that can be solved with many
numerical optimization algorithms, because the MI is also a crisp value. Yet, when the input data is vague or there are miss-
ing values in the dataset, the MI is an interval, as we have mentioned. In this case, obtaining the best fuzzy partition involves
finding the minimum of an interval-valued function, which is not intuitive. We propose to use genetic algorithms to solve
this problem, as we detail in the next subsection.

3.1. Genetic search of the most informative fuzzy partition for vague data

Finding the minimum of an interval-valued function is not feasible but in particular cases. For the most part, we can
only compare intervals that do not intersect. For instance, imagine that we are given the list of values of MI {[1,3], [2,4],
[5,7], [6,8]}. We know that the values [1,3] and [2,4] are not the best, but we can not decide whether [5,7] is better than
[6,8].

In previous works [25], we have proposed that finding the minimum of an interval-valued function is a problem that can
be assimilated to those addressed by multi-objective genetic algorithms (MOGA). A MOGA solves a problem that is similar to
that of finding the set of minimal elements in a partial order. There are few changes that must be effected to a MOGA in order
to solve those problems where the objective function is not defined by an array of real numbers, but a generic object like an
interval or a fuzzy set. In this paper, we will be using an extension of the NSGA-II algorithm, as described in the preceding
references. Our implementation is based on alternate precedence operators, and suitable algorithms for performing the non-
dominated sorting and also for computing the crowding distance [27].

3.1.1. Coding scheme and genetic operators
We are interested in fuzzification interfaces defined by Ruspini’s partitions, as mentioned. Furthermore, we will restrict

ourselves to triangular membership functions and fixed-size linguistic partitions. In this particular case, a fuzzy partition
comprising N linguistic terms can be codified with an array of N real numbers. A chromosome comprises so many partitions
as input variables. For simplifying the genetic operators, each partition is represented by the minimum value of the variable,
together with a list of positive values. These values are the distances between the coordinates of the modal points of the
fuzzy sets, and those of their predecessors (see Fig. 2). We have used real coding and arithmetic crossover and mutation [20].

3.1.2. Fitness function
The training data is fuzzified according to the partition represented in the chromosome, and the mutual information be-

tween the class and the joint input is computed, using the numerical approximation of the MI defined in Section 2.4. A sen-
sible subsample size is selected for limiting the execution time (between 1000 and 10,000 terms, depending on the problem
at hand).
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Fig. 1. Decision surfaces obtained by a learning algorithm (fuzzy Adaboost [15]) and expected values of MI for the same number of fuzzy rules and linguistic
terms, but different, non-homogeneous, fuzzy partitions. The partition which keeps the highest amount of information, according to our estimator, is
labeled ‘D’. The dotted ellipse is the optimal Bayesian classifier for this problem.
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3.1.3. Genetic scheme
As described in [25,27], we have used a generational approach with the multi-objective NSGA-II [9] replacement strategy,

binary tournament selection based on rank and crowding distance, and a precedence operator that assumes a uniform prior.
The non-dominated sorting depends on the product of the so-obtained probabilities of precedence. Lastly, the crowding is
based on the Hausdorff distance.

3.2. Numerical results

Thirteen different fuzzy rule learning algorithms have been considered, both heuristic and genetic algorithms-based. In all
cases, the number of linguistic terms in each partition is set beforehand, and not optimized by the learning algorithm. The
experiments have been repeated ten times for different permutations of the datasets (10cv experimental setup). We have
decided not to include the p-values of the statistical tests assessing the differences between the classifiers, but a selection
of boxplots that show the relevance of the differences more visually.

The heuristic classifiers, according to the definitions in [13], use weighted fuzzy rules: the antecedent is always a conjunc-
tion of linguistic terms, and the consequent is the class mark. The weights of the rules are assigned as follows: always 1
(HEU1), same weight as the confidence (HEU2), differences between the confidences (HEU3, HEU4, HEU5), weights tuned
by reward-punishment (REWP) and analytical learning (ANAL). Four of the genetic fuzzy classifiers are defined in the same
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reference [13]: genetic selection of rules taken from HEU3 (GENS), Michigan learning (MICH) – with population size 25 and
1000 generations, – Pittsburgh learning (PITT) – with population size 50, 25 rules each individual and 50 generations, – and
hybrid learning (HYBR) – same parameters as PITT, macromutation with probability 0.8. These are based on the same kind of
rules as the heuristic classifiers. To complete the study, two GFS of the Iterative Rule Learning type are added: fuzzy ababoost
(ADAB) – less than 25 rules with a single consequent, fuzzy inference by sum of votes – [15] and Fuzzy Logitboost (LOGI) –l
ess of 10 rules with multiple consequents, fuzzy inference by sum of votes – [21].

Eight crisp datasets taken from the UCI repository, and four imprecise datasets of our own have been used to assess the
definition of the estimator and its use in the design of fuzzy partitions (see Tables 1 and 2). The imprecise datasets were
designed for this paper, because we have not found similar problems in the literature. In the first place, we defined a fuzzy
knowledge base comprising the following nine rules:

if X is SMALL and Y is SMALL then CLASS is A

if X is SMALL and Y is MEDIUM then CLASS is B

if X is SMALL and Y is LARGE then CLASS is A

if X is MEDIUM and Y is SMALL then CLASS is B

if X is MEDIUM and Y is MEDIUM then CLASS is A

if X is MEDIUM and Y is LARGE then CLASS is B

if X is LARGE and Y is SMALL then CLASS is A

if X is LARGE and Y is MEDIUM then CLASS is B

if X is LARGE and Y is LARGE then CLASS is A

The fuzzy partitions defining the meaning of the terms ‘‘SMALL”, ‘‘MEDIUM” and ‘‘LARGE” are of the same type depicted in
Fig. 2, with modal points {0.1,0.2,0.9} and {0.1,0.8,0.9} for the input variables X and Y , respectively. Secondly, we generated
1000 pairs of random values between 0 and 1, and built a noiseless dataset by joining each pair with its corresponding class,
according to the fuzzy knowledge base defined before. Lastly, we corrupted the noiseless dataset, simulating the measure-
ment of the input values with a digital scale that rounds to the first decimal, in different conditions. These conditions are:



Table 1
Test error of different fuzzy rule-based classifiers over uniform partitions and MI-optimized partitions

HEU1 HEU2 HEU3 HEU4 HEU5 REWP ANAL GENS MICH PITT HYBR ADAB LOGI

Iris uniform 0.027 0.033 0.060 0.067 0.067 0.047 0.033 0.067 0.047 0.060 0.047 0.047 0.040
Iris MI 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.060 0.040 0.047 0.060 0.040 0.047
Pima uniform 0.28 0.27 0.25 0.25 0.25 0.26 0.28 0.26 0.35 0.28 0.27 0.25 0.23
Pima MI 0.26 0.25 0.25 0.25 0.25 0.27 0.27 0.26 0.35 0.28 0.28 0.26 0.24
Gauss uniform 0.45 0.43 0.27 0.27 0.27 0.30 0.20 0.21 0.31 0.31 0.27 0.21 0.20
Gauss MI 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.22 0.22 0.22 0.23 0.22
Gauss-5 uniform 0.55 0.52 0.49 0.45 0.39 0.44 0.31 0.41 0.57 0.54 0.52 0.32 0.32
Gauss-5 MI 0.33 0.33 0.33 0.33 0.32 0.33 0.31 0.32 0.32 0.32 0.32 0.32 0.32
Glass uniform 0.38 0.37 0.37 0.36 0.35 0.37 0.37 0.36 0.49 0.37 0.43 0.34 0.32
Glass MI 0.36 0.33 0.34 0.34 0.33 0.33 0.34 0.34 0.42 0.34 0.39 0.33 0.36
Cancer uniform 0.040 0.039 0.037 0.037 0.037 0.087 0.081 0.046 0.043 0.077 0.036 0.205 0.033
Cancer MI 0.030 0.031 0.031 0.031 0.031 0.039 0.040 0.029 0.062 0.037 0.039 0.102 0.027
Skulls uniform 0.85 0.86 0.84 0.83 0.81 0.86 0.81 0.81 0.83 0.81 0.81 0.75 0.75
Skulls MI 0.79 0.79 0.79 0.78 0.73 0.79 0.75 0.71 0.84 0.77 0.84 0.74 0.71

Crisp data.

Table 2
Test error of different fuzzy rule-based classifiers over uniform partitions and MI-optimized partitions

HEU1 HEU2 HEU3 HEU4 HEU5 REWP ANAL GENS MICH PITT HYBR ADAB LOGI

Weight-c uniform 0.47 0.45 0.36 0.36 0.36 0.31 0.29 0.29 0.48 0.43 0.43 0.12 0.20
Weight-c MI 0.30 0.30 0.30 0.30 0.30 0.29 0.29 0.32 0.30 0.30 0.30 0.35 0.28
Weight-uc uniform 0.45 0.45 0.39 0.39 0.39 0.38 0.33 0.29 0.46 0.41 0.42 0.24 0.23
Weight-uc MI 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.39 0.29
Weight-2uc uniform 0.47 0.47 0.36 0.36 0.36 0.31 0.34 0.26 0.46 0.42 0.43 0.21 0.20
Weight-2uc MI 0.34 0.34 0.34 0.34 0.34 0.35 0.34 0.37 0.36 0.37 0.37 0.38 0.31
Weight-mv uniform 0.45 0.43 0.34 0.34 0.34 0.36 0.27 0.32 0.48 0.43 0.44 0.31 0.23
Weight-mv MI 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.30 0.25 0.25 0.26 0.31 0.20

Interval data.
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(1) A well calibrated scale (dataset ‘‘weight-c”: values between x� 0:05 and xþ 0:05 are mapped to the value x).
(2) An uncalibrated scale (‘‘weight-uc”: values between x� 0:01 and xþ 0:09 are mapped to the value x).
(3) A random selection between the preceding two scales (‘‘weight-2uc”).
(4) Precise inputs, but 5% of missing values at either coordinate are missing (‘‘weight-mv”).

The results in Tables 1 and 2 show the error rate of different fuzzy classifiers, when the fuzzy partition is uniform of size 3,
and when the fuzzy partition is the result of a genetic optimization guided by our definition of Mutual Information. The
improvements are almost universal, as expected. For crisp datasets, the theoretical problems Gauss and Gauss-5 were the
most benefited from the optimized partitions. All classifiers, heuristic and GFS, are very near the optimum. Real-world prob-
lems achieved less unequivocal results, but the coherence of the measure of information is clear. In vague datasets, the gain
is also very noticeable, but the true fuzzy partitions were not always found. It is remarked the positive influence of the opti-
mization of the partition in the dataset ‘‘weight-mv”, with missing values.

4. Application II: an MIFS-like feature selection algorithm for fuzzy rule learning algorithms

As we have mentioned in the introduction, the use of fuzzified data has theoretical advantages when selecting features to
be used in fuzzy rule-based systems. An example is shown in Fig. 3. If we compute the mutual information between the class
(black or white) and the input variables X and Y , we will obtain that the most informative variable is X. But, if our linguistic
variables have the values ‘LOW’ and ‘HIGH’ with the membership functions shown in Fig. 3, most of the information about
the class is lost for the variable eX . That is to say, the mutual information between the linguistic variable eX and the class is
lower than the mutual information between the linguistic variable eY and the class. The opposite happens with the crisp vari-
ables X and Y . In this example, an estimation of the mutual information that does not take the memberships of the linguistic
terms ‘LOW’ and ‘HIGH’ into account would produce incorrect results.

When the input data is crisp, our estimator of the mutual information can be used in combination with any filter-type
feature selection algorithm which is based on the mutual information, because our mutual information will also take crisp
values. Otherwise (vague data or missing values) our estimation produces an interval and some modifications are needed. As
an example, the pseudocode of the MIFS algorithm [2] is adapted as follows, so that it can use the interval-valued mutual
information:



LOW HIGH

LO
W

H
IG

H
X

Y

Fig. 3. Example of the theoretical advantages of the proposed estimator in the design of fuzzy rule-based systems. The mutual information between the
variable X and the class (black or white) is higher than that of Y . However, choosing the variable X is the worst decision when designing a fuzzy rule-based
classification system depending on the fuzzy variables eX and eY , which take the linguistic values ‘‘LOW” and ‘‘HIGH,” whose memberships are shown in the
figure. The estimator of the mutual information defined in this paper assigns a higher value to the variable eY , as desired.
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F = initial set of n features; S ¼ f;g
For each feature f 2 F compute MI(f,C)
Perform a non-dominated sorting of the values of MI

Select the first element and set F ¼ F n ffg, S ¼ S [ ffg
Repeat until j S j¼ k
For all couples of values (f,s) with f 2 F
and s 2 S, compute MI(f,s)

Perform a non-dominated sorting of the values

MIðf ;CÞ � b�s2SMIðf ; sÞ
Select the first element and set F ¼ F n ffg, S ¼ S [ ffg Output the set S

This algorithm will be called ‘FMIFS’ in the remainder of the paper. The non-dominated sorting of the interval-valued esti-
mation of the Mutual Information can be performed by any of the methods proposed in reference [27]. In particular, in this
paper we have assumed an uniform prior distribution on the intervals MIðf ;CÞ � b�s2SMIðf ; sÞ, and sorted them according to
their probability of containing the highest value. That is to say, for sorting a set of intervals we will define first how to com-
pare two of them: Let two intervals be I1 ¼ ½a; b� and I2 ¼ ½c; d�. If we assume that there are two random variables X ! Uða; bÞ
and Y ! Uðc; dÞ, then we can define
pðIi > I2Þ ¼ pðX > YÞ ¼
Z Z

ða;bÞ�ðc;dÞ\fðx;yÞ:x>yg

dxdy
ðb� aÞðd� cÞ : ð10Þ
Hence, if we are given n intervals I1; . . . ; In, the probability of Ii containing the maximum value is
pi ¼
Y

i–j
16i6n

pðIi > IjÞ; ð11Þ
and lastly we can sort the values of Ii in the same order as the values pi.

4.1. Numerical results

We have selected, with different methods, the five most relevant features in five crisp datasets from UCI (German, Ion,
Pima, Sonar and Wine), and used the reduced datasets to train the 13 fuzzy rule-based classifiers introduced in Section
3.2. None of the classifiers evolves the definition of the partitions, which are uniform and of size 3. The use of a coarse fuzzy
partition is intended to show the advantages of our approach. Finer partitions are less prone to loss information, and FMIFS
would tend to be the same as MIFS.

According to Table 3, the algorithm FMIFS was not different from the best one in 47 of the 65 cases. SSGA [6] was the best
choice in 30, RELIEF [17] in 8 and the crisp version of MIFS was the best in six. Boxplots with the dispersion of the test error
for all the problems are shown in Fig. 4. It can be seen that there are relevant differences for both genetic fuzzy systems and
heuristic methods, and also that the improvement depends on the dataset. The gain is more evident in datasets as SONAR,
with a high number of input variables. In datasets with a high dimension, there are potentially many subsets of variables



Table 3
10-Fold cross validation-based test error of different fuzzy rule-based classifiers after a feature selection was performed

HEU1 HEU2 HEU3 HEU4 HEU5 REWP ANAL GENS MICH PITT HYBR ADAB LOGI best

GERMAN – RELIEF 0.295 0.285 0.275 0.275 0.275 0.280 0.275 0.270 0.295 0.285 0.295 0.290 0.260 1
GERMAN – SSGA 0.265 0.255 0.250 0.255 0.255 0.250 0.260 0.255 0.295 0.275 0.255 0.260 0.255 9
GERMAN – MIFS 0.280 0.265 0.265 0.265 0.265 0.265 0.260 0.265 0.295 0.275 0.285 0.265 0.250 3
GERMAN – FMIFS 0.255 0.255 0.255 0.255 0.255 0.260 0.245 0.250 0.305 0.275 0.255 0.265 0.270 8
ION – RELIEF 0.328 0.314 0.285 0.285 0.285 0.200 0.257 0.157 0.428 0.228 0.214 0.114 0.142 1
ION – SSGA 0.200 0.185 0.157 0.157 0.157 0.142 0.157 0.128 0.328 0.114 0.114 0.514 0.100 3
ION – MIFS 0.200 0.200 0.200 0.200 0.200 0.185 0.185 0.185 0.357 0.157 0.142 0.514 0.171 0
ION – FMIFS 0.185 0.142 0.128 0.128 0.128 0.128 0.171 0.100 0.200 0.114 0.128 0.514 0.085 10
PIMA – RELIEF 0.289 0.289 0.276 0.276 0.276 0.269 0.269 0.263 0.355 0.230 0.256 0.243 0.250 2
PIMA – SSGA 0.302 0.289 0.263 0.263 0.263 0.263 0.263 0.263 0.355 0.243 0.243 0.217 0.217 9
PIMA – MIFS 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.269 0.355 0.256 0.276 0.223 0.243 3
PIMA – FMIFS 0.302 0.289 0.263 0.263 0.263 0.263 0.263 0.243 0.355 0.250 0.276 0.217 0.217 9
SONAR – RELIEF 0.300 0.275 0.250 0.250 0.250 0.275 0.375 0.300 0.300 0.275 0.325 0.300 0.250 2
SONAR – SSGA 0.300 0.325 0.250 0.250 0.250 0.300 0.325 0.250 0.300 0.300 0.250 0.250 0.250 1
SONAR – MIFS 0.350 0.325 0.300 0.300 0.300 0.350 0.350 0.250 0.350 0.325 0.350 0.350 0.325 0
SONAR – FMIFS 0.225 0.200 0.175 0.175 0.175 0.200 0.225 0.175 0.300 0.275 0.225 0.150 0.200 13
WINE – RELIEF 0.500 0.411 0.235 0.205 0.176 0.088 0.235 0.029 0.647 0.205 0.029 0.058 0.058 2
WINE – SSGA 0.176 0.176 0.147 0.235 0.147 0.058 0.088 0.147 0.147 0.058 0.029 0.000 0.029 8
WINE – MIFS 0.323 0.323 0.264 0.205 0.176 0.117 0.235 0.176 0.617 0.058 0.176 0.058 0.058 0
WINE – FMIFS 0.176 0.147 0.117 0.176 0.147 0.058 0.147 0.117 0.176 0.029 0.088 0.058 0.058 7

The number of times each algorithm was the best is shown in the last column. FMIFS, SSGA, RELIEF and MIFS were the best 47, 30, 8 and 6 times,
respectively. Five input variables and three linguistic labels were used for each variable.
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with similar information about the class. Using information about the fuzzy partition allows us to further distinguish be-
tween them, and discard those that are more affected by a coarse partition.

We can conclude that the best overall selection of variables was produced by FMIFS, and also that the worst algorithm is
MIFS, which incidentally uses the same algorithm as FMIFS, as mentioned. This result makes us to believe that generalizing a
wrapper algorithm, like SSGA, so that it can use fuzzy data, is likely to improve the results shown here. It is worth pointing
that we do not claim that the use of the fuzzy mutual information universally improves the performance of fuzzy classifiers,
since it depends on the linguistic partition. We claim that there exist cases where the linguistic partition has to be taken into
account, and that those cases are not pathological: we have used uniform partitions, which are the most common in practical
situations. In case the fuzzy partition is optimal (for instance, if we used a partition optimized as shown in the first appli-
cation described in this paper) the gain is no longer relevant.

To prove that the improvement is sound not only in trivial partitions, but also in the average case, we have conducted a
new study on how often our method will produce significant improvements. We have generated 100 random fuzzy parti-
tions of size three. For each of them, we have learned a heuristic fuzzy classifier (type HEUR2) and estimated its test error
with 10-fold cross validation, for the following four scenarios:

(1) Feature selection with RELIEF.
(2) Feature selection with SSGA.
(3) Feature selection with MIFS.
(4) Feature selection with FMIFS.

The first three scenarios use the same set of features (since these algorithms do not depend on the linguistic partition) and
FMIFS uses a custom set of variables for each partition. In Fig. 5 and Table 4 the histograms of the test error and the mean
values are, respectively displayed. The FMIFS algorithm was significantly better in three of five datasets, not different than
the best in one case and worse than the best in one case. The histograms in Fig. 5 make it clear that the mode of the distri-
bution is skewed to the left in all cases but one, showing that the FMIFS algorithm and therefore our definition of fuzzy mu-
tual information captures better the dependency between the variables than the crisp version.

5. Concluding remarks and future work

There are hardly any references to the preprocessing of databases with imprecise data in the literature. In this paper we
have proposed a numerical algorithm to compute the degree of dependence between two fuzzy variables, and have shown
how to apply it to the design of the fuzzification interface of a rule-based system and also to select the most relevant features
when the input data is vague.

The results shown in the field of feature selection are preliminary, but promising. We have shown that there exist prob-
lems where we obtain a consistent improvement for the whole catalog of fuzzy systems that were tested, but we have also
found problems for which the new algorithm produces similar results to the crisp version. Intuitively, the method proposed
here should be applied in those situations exemplified in Fig. 3, but further work is needed to characterize this family of
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Fig. 4. Boxplots of the test errors of different fuzzy rule-based classifiers with the original MIFS algorithm and the modified version proposed in this paper.
From top to bottom: WINE, ION, SONAR, PIMA, GERMAN datasets. The columns are displayed in the order RELIEF, SSGA, MIFS, FMIFS.
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problems. Lastly, much work remains to be done to perform feature selection with vague data. A set of benchmark problems
that include vague data is needed, and also some criteria to compare the efficiency of the new algorithms with that of the
crisp ones over the new set of problems.
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Table 4
Mean of the test error, 1000 runs of HEUR2 (10cv� 100 random partitions)

RELIEF SSGA MIFS FMIFS

GERMAN 0.290 0.269 0.269 0.275
ION 0.292 0.265 0.260 0.171
PIMA 0.279 0.283 0.284 0.278
WINE 0.217 0.180 0.199 0.152
SONAR 0.281 0.328 0.323 0.276

The FMIFS algorithm is significantly better in three of five datasets, not different than the best in one case and worse than the best in other case. We
conclude that there is an overall benefit if the feature selection algorithm knows about the fuzzy partitions.
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