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Ultracold spherical horizons in gauged N = 1, d = 4 supergravity
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We show that the near-horizon limit of ultracold magnetic Reissner–Nordström–De Sitter black holes,
whose geometry is the direct product of 2-dimensional Minkowski spacetime and a 2-sphere, preserves
half of the supersymmetries of minimal R-gauged N = 1, d = 4 supergravity.

© 2010 Elsevier B.V. All rights reserved.
The supersymmetric black-hole solutions of 4-dimensional su-
pergravity theories can often be understood as solitons interpolat-
ing between two maximally supersymmetric vacua of the theory
to which they approach in the far-field and near-horizon (NH) re-
gions. The NH geometry (the product space aDS2 × S2, known as
Bertotti–Robinson solution, in the typical asymptotically-flat cases)
contains a great deal of information about the constituents of the
original solution and is amenable to a dual description by a gauge
theory living in the boundary of the aDS2 space. In particular, the
radius of the S2 factor of the NH geometry, which corresponds to a
horizon with the same topology, is directly related to the entropy.
The sufficiency of the NH description to describe the black-hole
entropy, independently of the asymptotic behavior of the solution,
is a consequence of the attractor mechanism [1].

The topology of the spatial factor of the NH solution (S2 in the
above example) coincides with that of the spatial sections of the
black-hole horizon. In the 4-dimensional, asymptotically flat (van-
ishing cosmological constant) case, a classical theorem by Hawk-
ing [2]1 and the “topological censorship theorem” of Ref. [4] con-
strain that topology to be that of S2. However, black holes with
event horizons topologically inequivalent to S2 have been discov-
ered in dimensions higher than four [5,6]2; in four dimensions and
in presence of a negative cosmological constant topological black
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holes with horizons which are Riemann surfaces or arbitrary genus
have also been constructed [8].

The requirement of unbroken supersymmetry of the NH so-
lution strongly constrains the possible NH geometries and hori-
zon topologies. In Ref. [9] Reall showed that, in 5-dimensional
supergravity, supersymmetry only allows three possible horizon
topologies: T 3, S1 × S2 (the topology of the supersymmetric black
ring of Ref. [6]) and (possibly a quotient of) a homogeneously
squashed S3. On the other hand, in Ref. [10] it was shown that
only the genus bigger than one horizons may have unbroken su-
persymmetry in minimal gauged N = 2, d = 4 supergravity.

In a recent paper [11] Gutowski and Papadopoulos have studied
possible topologies of supersymmetric horizons of black hole solu-
tions of N = 1, d = 4 supergravity finding that, regardless of the
supersymmetry properties of the complete black-hole solution,3 if
the horizon is compact and supersymmetric (i.e. if the NH geom-
etry is), then its constant time sections have to be, topologically,
tori. Our purpose in this note is to investigate possible simple
realizations of these NH geometries in simple N = 1, d = 4 su-
pergravity theories.

Since, in order to have topological black hole solutions, we need
a negative cosmological constant, we should consider a N = 1, d =
4 theory providing a minimal supersymmetric embedding of the
cosmological Einstein–Maxwell (EM-Λ) theory

S =
∫

dx4
√|g|{R − F 2 − Λ

}
, (1)

3 There are no supersymmetric asymptotically flat black-hole solutions in N = 1,
d = 4 supergravities [12,13]. No supersymmetric black holes with other asymptotic
behaviors are known, either.
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for negative (aDS) cosmological constant Λ. However, just to be
general (which will prove fortunate in he end), we are also going
to consider another N = 1, d = 4 supergravity theory providing a
supersymmetric embedding of EM-Λ for positive (DS) cosmological
constant.

The bosonic equations of motion of these two theories take the
common form

Rμν = Λ

2
gμν + 2

[
Fμ

ρ Fνρ − 1

4
gμν F 2

]
, (2)

d � F = 0. (3)

The two theories that we are going to consider have the same mat-
ter content: an Abelian vector supermultiplet {Aμ,λ} coupled to
the N = 1, d = 4 supergravity multiplet {ea

μ,ψμ}. The first theory,
constructed by Townsend in Ref. [16], has, in more modern par-
lance, a constant superpotential W = g/2 which gives a negative
cosmological constant Λ = −8g2 and possesses a maximally su-
persymmetric aDS4 solution. In the second theory, constructed by
Freedman in Ref. [17], the Abelian vector field is used to gauge the
global U (1) R-symmetry via a Fayet–Iliopoulos term which gives a
positive cosmological constant Λ = +g2/2 where g is the gauge
coupling constant. These two possibilities cannot be combined be-
cause the constant superpotential breaks R-symmetry.

Although the bosonic sectors of these two theories are identical,
up to the sign of the cosmological constant, the couplings of the
fermionic sectors and the supersymmetry transformations are sub-
stantially different, which results in very different supersymmetric
configurations even though all the Killing spinors of the supersym-
metric configurations of any N = 1, d = 4 supergravity must satisfy
the condition [12,13]

γ uε = 0, (4)

where u is a null coordinate, or, equivalently

γ 01ε = ±ε. (5)

1. Supersymmetry of Plebański–Hacyan geometries

We are going to consider configurations whose metric is the di-
rect product of two 2-dimensional subspaces of constant curvature,
the first one parametrized by the first two (timelike and space-
like) coordinates and the second one parametrized by the last two
(spacelike) coordinates. This generic class of solutions to EM-Λ
was first obtained by Plebański and Hacyan in Ref. [14], and in-
cludes as special cases the Bertotti–Robinson solution (aDS2 × S2)
and the Nariai universe (DS2 × S2) [15], whose discovery predates
the work [14].

The geometry of the purely spacelike 2-dimensional subspace
is expected to correspond to that of the constant-time sections of
a black-hole horizon. The Maxwell field will have non-vanishing
components F01 = α and F23 = β , where α and β are real con-
stants (that is: the components of the Maxwell field are propor-
tional to the volume 2-forms of the two subspaces). We will make
this more precise Ansatz later on.

1.1. N = 1, d = 4 supergravity with constant superpotential

As was mentioned before, the minimal version of this theory
was constructed by Townsend in Ref. [16] and when coupled to a
vector multiplet corresponds to a supersymmetric version of the
EM-Λ theory with the cosmological constant Λ = −8g2 being of
the anti-De Sitter kind. The supersymmetry transformations of the
fermions for vanishing fermions are4

0 = δεψμ = ∇με + i

2
gγμε∗, (6)

0 = 2δελ = /F +ε, (7)

where ∇ is the general and Lorentz-covariant derivative.
That this theory does not admit supersymmetric solution of the

type we are after is easily deduced by calculating the integrability
condition for Eq. (6):

[
/Rμν + g2γμν

]
ε = 0. (8)

The split into 2-dimensional spaces of constant curvature, implies
that e.g. /R02 = 0, which immediately implies that ε = 0, whence
no supersymmetric PH solutions exist.

1.2. Minimal gauged N = 1, d = 4 supergravity

This N = 1, d = 4 theory was constructed by Freedman in
Ref. [17] and has the curiosity that it corresponds to supergravity
theory with a De Sitter-like cosmological constant (Λ = g2/2). The
relevant supersymmetry transformations for vanishing fermions
are

0 = δεψμ =
[
∇μ + i

2
g Aμ

]
ε, (9)

0 = δελ =
[
/F + − i

2
g

]
ε. (10)

De Sitter spacetime is a solution of the theory but breaks all
supersymmetries.

The Killing spinor equation (10) only admits solutions for our
Ansatz if α = 0 and

β = ±g/2 and
[
1 ± iγ 23]ε = 0, (11)

so that we are dealing with a purely magnetic configuration.
The integrability condition of the Killing spinor equation (9)

reads

[/Rμν − ig Fμν ]ε = 0. (12)

The product structure of the metric that we have assumed indi-
cates that the first factor must be flat 2-dimensional Minkowski
spacetime and the second a 2-sphere whose curvature is related
to β and, therefore, to g .

At this point a more precise form for the Ansatz becomes nec-
essary: using standard spherical coordinates for the 2-sphere we
write

ds2 = dt2 − dx2 − R2(dθ2 + sin2 θ dφ2),
Aφ = −βR2 cos θ. (13)

The non-vanishing components of the Ricci and Maxwell field
strength tensors are, in the obvious tetrad basis

R22 = R33 = − 1

R2
, F23 = β. (14)

The Maxwell equations are automatically solved as the field
strength is an invariant 2-form on a symmetric space; the Einstein
equations are solved if

4 For clarity’s sake we mention that we are using a normalized version of the

slash, i.e. for the 2-form F we have 2/F ≡ Fabγ
ab .
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Fig. 1. A plot of the values of M and Z for which the RNDS black holes exist. The
straight line are the extreme bh’s, i.e. the ones for which M2 = Z 2.

R2 = g2

4
+ β2, (15)

which due to Eq. (11) implies:

R = √
2/g. (16)

In order to finish the analysis we need to solve the Killing
spinor equations (9); the 0, 1, 2 components are trivial and are
solved for any t , x and θ independent spinor. The last component is
also trivially satisfied once we take into account the following rela-
tion between the spin and the gauge connections A3 = ±g−1ω323
and use the projection in Eq. (11).

In conclusion we found a half-BPS solution to Freedman’s
gauged N = 1, d = 4 supergravity that is purely magnetic and
whose geometry is R

1,1 × S2. The obvious question then is: can
this geometry be the NH limit of a black hole? A first naive wor-
risome point is about the occurrence of the R

1,1 factor in the NH
geometry, as the usual one of supersymmetric black holes would
not give rise to R

1,1 but rather to aDS2. But, as said, this is a
naive preoccupation as, following Gutowski and Papadopoulos, we
are asking for the NH-geometry to be supersymmetric and not the
complete solution. If we then couple this to the fact that the NH
geometry of black holes with non-vanishing temperature, such a
Schwarzschild’s, leads to a 2-dimensional Rindler space which is
locally isometric to R

1,1, the preoccupation should cease to exist.
So in order to find the candidate black hole whose NH-limit gives
rise to the supersymmetric solution, we should analyze the NH-
limits of magnetically-charged black holes with spherical topology
in De Sitter spaces.

2. Reissner–Nordström–De Sitter black holes

The Reissner–Nordström–De Sitter (RNDS) black holes can be
written in standard coordinates as

ds2 = f dt2 − f −1 dr2 − r2 dS2[θ,ϕ], (17)

A = Q

r
dt − P cos θ dϕ, (18)

where dS2[θ,ϕ] stands for the round metric on S2 with coordinates
θ and ϕ , and the function f = f (r) is given by

f = −Λ
r2 + 1 − 2M + Z 2

2
, with Z 2 ≡ Q 2 + P 2. (19)
6 r r
As is well known, De Sitter black holes need not exist for all
values of the mass, M , and the electro-magnetic charge, Z ; a plot
of the pairs (M, Z) that can give rise to black holes are indicated
in Fig. 1 by the grey area and its boundary. As is paramount from
the figure M and |Z | are bounded by maximal values that in our
normalization of Λ are given by

Mcrit = 2

3
√

Λ
= 2

√
2

3g
and Z 2

crit = 1

2Λ
= 1

g2
. (20)

A point in the grey area corresponds to a black hole with three
horizons, namely an inner one at r = ri , an outer one at r = ro

and a cosmological horizon at r = rc , the nomenclature deriving
from the fact that 0 < ri < ro < rc . Furthermore, all these horizons
are warm in the sense that they correspond to single zeroes of f ,
whence one can associate a temperature to at least the outer and
the cosmological horizon.5

The left boundary corresponds to those black holes for which
the inner and the outer horizon coincide 0 < ri = ro < rc , imply-
ing that this coincident horizon, but not the cosmological horizon,
has zero temperature: these black holes are called cold black holes.
The right boundary corresponds to the situation where the outer
and the cosmological horizons coincide 0 < ri < ro = rc and are
also cold black holes; they receive the name Nariai black holes.
The intersection of these two boundaries, corresponding to the
pair (Mcrit, Zcrit), for which all three horizons coincide, goes by the
name ultracold black hole [18].

This small discussion then brings us to the question: How are
we to identify the RNDS black-hole solution whose NH limit gives
us the supersymmetric Plebański–Hacyan solution? The answer is
simple: by looking at the NH limit of the gauge field! First of all, a
non-zero Q would lead to a non-zero F01 so we will take Q = 0.
The NH limit of the vector field strength for a horizon located at
r = rH is

F = d(−P cos θ dϕ) = P dθ ∧ sin θ dϕ → P

r2
H

e2 ∧ e3, (21)

and leads to the identification that P = βr2
H . Seeing that the value

of β for the supersymmetric solution is given in Eq. (11) and that
rH is effectively the radius of the 2-sphere in the NH limit, Eq. (16),
we can deduce that our candidate black hole must have

P = βr2
H = ± g

2

(√
2

g

)2

= ±1/g, (22)

implying that our candidate black hole is none other than the ul-
tracold black hole.

This poses, however, an immediate problem, one already
pointed out by Romans [18]: as the horizon of the ultracold black
hole corresponds to a triple zero of the function f in Eq. (19), the
naive NH limit does not give as NH geometry Rindler spacetimes
S2 but a different one, one that is not even a solution to the equa-
tions of motion: the reason for this is that in this case the usual
procedure of zooming in does not conform to Geroch’s criteria of
limiting spaces [19].

There is an alternative limiting procedure that does give rise
to the desired result [20,21] which basically consists in going first
to the cold limit in which f (r) has a double zero and then taking
the NH limit simultaneously with the ultracold limit in a particular

5 As is well known, by expanding f in Eq. (19) around the horizon location r = rH

as f = (r − rH ) h(r) with h being regular at rH , one finds that the NH geometry
is that of a Rindler space of temperature T = h(rH )/(4π) times a 2-sphere of ra-
dius rH .
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way. The result is the supersymmetric Plebański–Hacyan solution6

which can, therefore, be identified as the NH limit of the ultracold,
purely magnetic, RNDS black hole.

3. Conclusions

In this Letter we have tried to find simple examples of super-
symmetric horizons in N = 1, d = 4 supergravity theories moti-
vated by the prediction made in Ref. [11] that, if any, their spatial
sections would always be topologically equivalent to tori. We have
focused on two N = 1, d = 4 theories (Freedman’s and Townsend’s)
whose bosonic sector is the cosmological Einstein–Maxwell theory
with positive and negative cosmological constant, respectively, and
on candidate near-horizon geometries which are the direct product
of two 2-dimensional spaces of constant curvature. We have shown
that none of our candidates is supersymmetric in Townsend’s the-
ory (Λ < 0) but we have also shown that one of them, with the
geometry Minkowski2 × S2 is actually supersymmetric in Freed-
man’s (Λ > 0). Then we have shown that this supersymmetric
solution is the NH limit of the ultracold RNDS black-hole solution
when the NH limit is correctly computed, which means that, even
though no RNDS black-hole solution is supersymmetric, the hori-
zon of the ultracold one, which has the topology of S2, is. We can
also say that the non-supersymmetric ultracold RNDS black hole
solution interpolates between non-supersymmetric DS spacetime
at infinity and a half-supersymmetric Plebański–Hacyan solution
at the horizon.

This result is a clear counterexample for the generic prediction
of Ref. [11]. The reason why our spherically-symmetric NH geom-
etry was missed is, as far as we can see, that the analysis made in
that reference is based on a gravitino Killing spinor equation that
is not general enough, and in particular does not include Freed-
man’s theory.

Of course, our results do not imply that these are the only
possible supersymmetric NH geometries nor that Freedman’s the-
ory and its generalizations are the only possible N = 1, d = 4
supergravities in which supersymmetric NH geometries can be
found.

At this moment we do not have a clear physical interpretation
of this result. We can only stress the fact that the supersymmetric
solution has mass and magnetic charge which are extremized for
a given value of the cosmological/coupling constant. Furthermore,
we would like to point out that, while Townsend’s theory is some-
times called N = 1, d = 4, aDS supergravity, Freedman’s (studied,
for instance, in Refs. [22,23]) is very different from a naive (and
inconsistent) N = 1, d = 4, DS supergravity and can be embedded
in string theory [24].

As a final comment let us point out that a fake version of Freed-
man’s gauged supergravity can be constructed and the existence of
fake-supersymmetric NH-geometries can be studied, which shows
that indeed there is a fake-supersymmetric aDS2 × Σ2

g>1 solution.

6 Notice that we can arrive at the same result in a more pedestrian way by tak-
ing the NH limit of a warm or a cold horizon in a first step and then taking the
ultracold limit in a second step. In the first case, we arrive at the NH geometry
Rindler2 × S2 in the first step and then adjust the physical parameters to those of
the supersymmetric PH solution in the second. In the second case, we arrive to the
NH geometry aDS2 × S2 in the first step while the second step flattens out the aDS2

factor because the ultracold limit is the limit of infinite aDS radius. We get the same
result in all cases.
One can then also show that there is no aDS-black hole which has
this NH-geometry.
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