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A linear regression model with imprecise response and p real explanatory variables is ana-
lyzed. The imprecision of the response variable is functionally described by means of cer-
tain kinds of fuzzy sets, the LR fuzzy sets. The LR fuzzy random variables are introduced to
model usual random experiments when the characteristic observed on each result can be
described with fuzzy numbers of a particular class, determined by 3 random values: the
center, the left spread and the right spread. In fact, these constitute a natural generalization
of the interval data. To deal with the estimation problem the space of the LR fuzzy numbers
is proved to be isometric to a closed and convex cone of R3 with respect to a generalization
of the most used metric for LR fuzzy numbers. The expression of the estimators in terms of
moments is established, their limit distribution and asymptotic properties are analyzed
and applied to the determination of confidence regions and hypothesis testing procedures.
The results are illustrated by means of some case-studies.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Different elements of a statistical problem may be imprecisely observed or defined. This has led to the development of
various theories able to cope with an uncertainty which is not necessarily due to randomness: e.g. the methods based on
imprecise probabilities (see, for instance, [37]), subjective probabilities (see, for instance, [34]) belief functions (see, for in-
stance, [29]) or diverse approaches for fuzzy statistical analysis (see, for instance, [3,5] or [7]). In this paper we will consider a
regression problem for a random experiment in which a fuzzy response and real-valued explanatory variables are observed.
Actually, in many practical applications in public health, medical science, ecology, social or economic problems, many useful
variables are vague, and the researchers find it easier to reflect the vagueness through fuzzy data than to discard it and obtain
precise data. In addition, it is often less expensive to obtain an imprecise observation than to look for precise measurements
of the variable of interest (see, for instance, [16]). Formally, any [0,1]-valued function determines a fuzzy set. However, in
practice, the usual membership functions belong to some specific classes easier to fix and handle. In particular, the class
of fuzzy numbers consisting of upper semi-continuous [0,1]-valued functions with compact support is rich enough to cover
most of the applications (see, for instance [24] or [9]). However, this class is still very general, and many practitioners prefer
to use simple shapes, as triangular or, slightly more general ones, as LR-fuzzy numbers, which are considered flexible enough
to represent accurately their real-life data. For example, in agriculture quantitative soil data are unavailable over vast areas
and imprecise measures, that can be modelled through LR fuzzy sets, are used (see [22]). Also in medical science symptoms,
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diagnosis and phenomena of disease may often lead to LR data (see, for instance, [6]). LR-type fuzzy data may also arise in
other contexts, like image processing or artificial intelligence (see, for instance, [32,33]).

LR fuzzy sets are a generalization of intervals. Epidemiological research often entails the analysis of failure times subject
to grouping, and the analysis with interval-grouped data is numerically simple and statistically meaningful (see [30,13,2]).

There are two different main lines concerning fuzzy regression problems in the literature; namely, the so-called fuzzy or
possibilistic regression introduced by Tanaka [35] and widely analyzed since then (see, for instance, [36,25] and references
therein) and the so-called least squares problems involving fuzzy data, also widely studied by Diamond [8], Näther [27],
Krätschmer [20], González-Rodríguez et al. [15] and references therein. When the first one involves fuzzy data, an imprecise
model focused on inclusion relations between actual and estimated outputs to explain the relationship is searched (see, for
instance, [36]). In contrast, in the second approach, classical least squares fitting or statistical estimation problems for stan-
dard models involving fuzzy random variables are taken into consideration. Modelling this situation might be viewed as an
extension of the classical error in variables models admitting measurement errors which are of nonrandom nature. From
another point of view, this problem can be managed in a standard framework by means of an appropriate metric and through
the concepts coherent with the space structure. Many of the above-mentioned fuzzy regression analyses have mainly fo-
cused on non probabilistic models. The only source of uncertainty accounted for in this case was the vagueness/imprecision
of the data and/or of the regression parameters, and appropriate techniques of fuzzy/possibilistic analysis were utilized in
this respect. Only a few papers have been devoted to regression methods able to cope with both imprecision and randomness
(due to the data generation process). Among these we mention González-Rodríguez et al. [15], Näther [27] and Körner
[18,19]. The present work is framed in the latter context. Specifically, a generalization of the work of Coppi et al. [4] is
considered.

Coppi et al. [4] have proposed a linear regression model with crisp inputs and LR fuzzy response. The basic idea consists in
modelling the centers of the response variable by means of a classical regression model, and simultaneously modelling the
left and the right spread of the response through simple linear regressions on its estimated center. The study in Coppi et al.
[4] is mainly descriptive, and the authors impose a non-negativity condition to the numerical minimization problem to avoid
negative estimated spreads. In this work we propose an alternative model to overcome the non-negativity condition, be-
cause the inferences for models with non-negativity restrictions are more complex and less efficient (see, for instance,
[23,12]).

The model may be looked at in the context of a multivariate regression problem. From a semantic viewpoint, it differs
from the classical econometric models. In fact the equations related to the centers and the spreads jointly refer to a unique
fuzzy variable, and therefore to a unique phenomenon which may be jointly affected by several (crisp) variables. Conse-
quently, the approach we propose allows us to express and analyze the model within the context of classical multiple
and multivariate regression models (see, for instance, [28]). Furthermore, unlike the model proposed by Coppi et al., in
the proposed model the left and the right spread of the response are not modelled through simple linear regressions on
its estimated center but by means of simple linear regressions on the explanatory variables. In this way, the parameter iden-
tification problem is avoided.

The rest of the paper is organized as follows. In Section 2 the way of modelling the imprecise response through LR fuzzy
random variables is formalized. In Section 3 the variance of an LR fuzzy random variable is defined and some properties are
proved. In Section 4 the new linear regression model is introduced, and the least squares estimators of the parameters are
found and analyzed. Section 5 deals with asymptotic confidence regions and asymptotic hypothesis tests for the regression
parameters. In Section 6 a real-life example with LR fuzzy data and another with interval data are illustrated. Finally, Sec-
tion 7 contains some remarks and future directions.

2. Modelling the imprecise data

2.1. Fuzzy sets

A fuzzy set A of R may be simply defined as a mapping A : R! ½0;1� verifying some conditions (see, for instance, Zadeh
[39]). In practice there are some experiments whose results can be described by means of fuzzy sets of a particular class,
determined by 3 values: the center, the left spread and the right spread. This type of fuzzy datum is called LR fuzzy number
and is defined in the following way (see Fig. 1)
A(x) A(x) A(x)
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Fig. 1. Examples of LR membership functions.
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where Am 2 R is the center, Al, Ar P 0 are, respectively, the left and the right spread. L;R : R! ½0;1� are convex upper semi-
continuous functions so that L(0) = R(0) = 1 and L(z) = R(z) = 0, for all z 2 R n ½0;1�, and 1I is the indicator function of a set I.

Remark 1. An interval I is a particular kind of LR fuzzy set where the membership function is the characteristic function 1I,
that is equal to 1, for all x 2 I, and 0 otherwise (L = R = I[0, 1], Am = (infI + supI)/2 and Al = Ar = (supI � infI)/2).

Let FLR be the class of LR fuzzy numbers. Since any A 2FLR can be represented by means of a 3-tuple (Am, Al, Ar), we de-
fine the mapping s : FLR ! R3 such that s(A) = sA = (Am, Al, Ar).

In what follows we use without distinction A 2FLR or its s-representation (Am, Al, Ar).
The natural sum and the product by a scalar in FLR extend the Minkowski sum and the product by a positive scalar for

intervals, that is, A + cB, for c > 0, is the fuzzy set in FLR such that
ðAm
;Al
;ArÞ þ cðBm;Bl;BrÞ ¼ ðAm þ cBm;Al þ cBl;Ar þ cBrÞ:
The function s is obviously semi-linear, because s(A) + s(B) = s(A + B) and cs(A) = s(cA), if c > 0.
Yang and Ko [38] have defined a distance D2

LR between two LR fuzzy numbers A;B 2FLR as follows:
D2
LRðA;BÞ ¼ ðA

m � BmÞ2 þ ððAm � kAlÞ � ðBm � kBlÞÞ2 þ ððAm þ qArÞ � ðBm þ qBrÞÞ2

¼ 3ðAm � BmÞ2 þ k2ðAl � BlÞ þ q2ðAr � BrÞ2 � 2kðAm � BmÞðAl � BlÞ þ 2qðAm � BmÞðAr � BrÞ; ð1Þ
where k ¼
R 1

0 L�1ðxÞdx and q ¼
R 1

0 R�1ðxÞdx represent the influence of the shape of the membership function on the dis-
tance. As a result ðFLR;D

2
LRÞ is a metric space.

Remark 2. In the space of LR fuzzy numbers FLR the d2
2-distance (see, for details, [27]) and D2

LR only differ from each others
for multiplicative constants. To be more precise, the d2

2-distance is given by
d2ðX;YÞ ¼ p
Z 1

0

Z
Sp�1
ðsuppXðu;aÞ � suppYðu;aÞÞ

2dlðuÞda
� �1=2

;

where supp is a mapping that generalizes level-wise the support function. In the case of two LR fuzzy numbers A, B 2FLR it is
defined as follows:
d2
2ðA;BÞ ¼ ðA

m � BmÞ2 þ 1
2

L2ðAl � BlÞ2 þ 1
2

R2ðAl � BlÞ2 � L1ðAm � BmÞðAl � BlÞ þ R1ðAm � BmÞðAr � BrÞ;
where L2 ¼
R 1

0 ðL
�1Þ2ðxÞdx;R2 ¼

R 1
0 ðR

�1Þ2ðxÞdx, L1 ¼
R 1

0 L�1ðxÞdx and R1 ¼
R 1

0 R�1ðxÞdx.

The space FLR can be embedded into R3 endowed with a generalization of the Yang and Ko distance, Dkq, by preserving
the metric. Furthermore, FLR is isometric to a closed convex cone of the Hilbert space ðR3; h�; �ikqÞ, where h�, �ikq is the inner
product related to Dkq.

From now on, we will consider the operation hA,BiLR = hsA,sBiLR, which is not exactly an inner product due to the lack of
linearity, but it has interesting properties.

2.2. Fuzzy random variables

Kwakernaak [21], Puri & Ralescu [31] and Klement et al. [17] have introduced the concept of Fuzzy Random Variable (FRV)
as an extension of both, random variables and random sets.

Let ðX;A; PÞ be a probability space. In this context, a mapping X : X!FLR is an FRV if the s-representation of
X; ðXm;Xl;XrÞ : X! R� Rþ � Rþ is a random vector (see [31]). It should be noted that in our approach X is not an ill-mea-
sured real random variable but a random element assuming ‘‘purely” fuzzy values (see, also [14]).

Example 1. An example of FRVs is introduced in Colubi [3]. In a recent study about the reforestation in a given area of
Asturias (Spain), carried out in the INDUROT institute (University of Oviedo), the quality of the trees has been analyzed. This
characteristic has not been assigned on the basis of an underlying real-valued magnitude, but rather on the basis of
subjective judgements/perceptions, through the observation of the leaf structure, the root system, the relationship height/
diameter, and so on. The experts used a fuzzy-valued scale to represent their perceptions, besides linguistic labels, because
the usual categorical scale (very low, low, medium, high, very high) was not able to capture the perceptions. The considered
support goes from 0 (absence of quality) to 100 (perfect quality). It is possible to have different values for the same linguistic
label. Some possible fuzzy values are represented in Fig. 2. This variable has been observed on 238 trees. Thus X = {sets of
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Fig. 2. Values of the ‘‘quality” of three different trees.
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trees in a given area of Asturias} endowed with the Borel r-field. Since the observations were randomly chosen, P is the
uniform distribution over X. For any i 2X, several characteristics are to be observed. Here we have considered the quality as
an LR triangular fuzzy random variable (k = q = 1/2) (see Table 1).

The expected value of an FRV is defined by means of the generalized Aumann integral [1], that is, the expected value of
the FRV X is the unique fuzzy set E(X) in FLR, if EkXk2

LR <1 (see [31]). Equivalently, E(X) is the fuzzy set in FLR whose s-rep-
resentation is equal to (EXm, EXl, EXr).

3. The variance

The notion of variance for FRVs has been previously established in terms of several metrics (see [18,26]). By following the
same ideas, we can also consider it in the sense of the DLR metric.

Definition 1. The variance of an LR fuzzy random variable X = (Xm, Xl, Xr) with EkXk2
LR <1 is defined by VarðXÞ ¼

ED2
LRðX; EXÞ ¼ EhsX � sEX ; sX � sEXiLR.
It can be easily checked that
VarðXÞ ¼ E 3ðXm � EXmÞ2 þ k2ðXl � EXlÞ2 þ q2ðXr � EXrÞ2
h i

þ E �2kðXm � EXmÞðXl � EXlÞ þ 2qðXm � EXmÞðXr � EXrÞ
h i

¼ 3VarðXmÞ þ k2VarðXlÞ þ q2VarðXrÞ � 2kCovðXm;XlÞ þ 2qCovðXm;XrÞ:
This notion of variance satisfies the same suitable properties of the usual variance in R. In particular, it verifies the Fréchet
principle (see [11]) because E½D2

LRðX;AÞ� is minimized for A = EX, which makes coherent the application of least squares tech-
niques in regression problems.

4. Least squares estimators

Consider a random experiment in which an LR fuzzy response variable Y and p real explanatory variables X1, X2, . . ., Xp

are observed on n statistical units, {Yi, Xi}i=1, . . ., n, where Xi = (X1i, X2i, . . ., Xpi)
0
, or in a compact form (Y, X). Since Y is determined

by (Ym, Yl, Yr), the proposed regression model concerns the real-valued random variables in this tuple. The center Ym can be
related to the explanatory variables X1, X2, . . ., Xp through a classical regression model. However, the restriction of non-neg-
ativity satisfied by Yl and Yr entails some difficulties (see [4]). One solution is to consider a model with the restriction of non-
negativity but, when a variable has this kind of restrictions, the errors of the model may be dependent on the explanatory
variable, and the classical methods are not efficient (see, for instance, [23,12]). In addition, in presence of non-negativity
restrictions most of the works in the literature are numerical procedures while in this paper the idea is to formalize a realistic
theoretical model and to obtain a complete analytical solution.

We propose modelling a transformation of the left spread and a transformation of the right spread of the response
through simple linear regressions (on the explanatory variables X1, X2, . . ., Xp). The same explanatory variables have been con-
sidered for the three simultaneous equations because of the nature of the problem we have considered. Namely, to analyze
how the fuzzy response variable depends on the crisp explanatory variables X1, X2, . . ., Xp. This can be represented in the fol-
lowing way, letting g : ð0;þ1Þ ! R and h : ð0;þ1Þ ! R be invertible:
Ym ¼ X0 am þ bm þ em;

gðYlÞ ¼ X 0 al þ bl þ el;

hðYrÞ ¼ X0 ar þ br þ er;

8><
>: ð2Þ
where em,el and er are real-valued random variables with E(emjX) = E(eljX) = E(erjX) = 0, am = (am1, . . . ,amp)
0
, al = (al1, . . .,alp)

0

and ar = (ar1, . . .,arp)
0

are the (p � 1)-vectors of the parameters related to the vector X. The covariance matrix of the vector
of explanatory variables X will be denoted by RX and R will stand for the covariance matrix of (em,el,er), whose variances,
r2

em
;r2

el
and r2

er
, are strictly positive and finite. Since the expected values of em,el and er given X are equal to 0 it results that

em,el and er are uncorrelated with the explanatory variables.
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Remark 3. The original model in Coppi et al. [4] may be stated in a general case in terms of a simultaneous equation model
in the form
Table 1
Quality

Ym (c

45
25
17.5
20
55
23.7
56.2
13.7
26.2
62.5
75
67.5
32.5
40
52.5
55
77.5
85
50
. . .
BZ ¼ CX þ U;
where B and C are suitable matrices of coefficients and U is a matrix of ‘‘residual” variables, and the parameter identification
problem would arise (see, for instance, [28]). However, model (2) in this formulation implies that Z = (Ym, g(Yl), h(Yr)) and
B = I, and then this problem is overcome.
Example 2. We consider a simplification of the data introduced in Colubi [3] (see Table 1). We use the new linear regression
model to analyze the part of the quality, Y, of 238 trees explained by the height, X.

In presence of constrained variables, a common approach consists in transforming the constrained variable into an
unconstrained one by means of the logarithmic transformation (that is g=h=ln). We will use this approach in this example to
transform the spreads into real variables without the restriction of non-negativity.

In Proposition 1 we show that the population parameters can be expressed, as usual, in terms of some moments involving
the considered random variables.

Proposition 1. Let Y be an LR fuzzy random variable and X the vector of p real random variables satisfying the linear model (2),
then we have that
am ¼ RX
� 	�1E ðX � EXÞðYm � EYmÞ½ �;

al ¼ RX
� 	�1E ðX � EXÞðgðYlÞ � EgðYlÞÞ

h i
;

ar ¼ RX
� 	�1E ðX � EXÞðhðYrÞ � EhðYrÞÞ½ �;

bm ¼ EðYmjXÞ � EX0 RX
� 	�1E ðX � EXÞðYm � EYmÞ½ �;

bl ¼ EðgðYlÞjXÞ � EX 0 RX
� 	�1E ðX � EXÞðgðYlÞ � EgðYlÞÞ

h i
;

br ¼ EðhðYrÞjXÞ � EX0 RX
� 	�1E ðX � EXÞðhðYrÞ � EhðYrÞÞ½ �;
where RX = E[(X � EX)(X � EX)
0
].

The estimators of the population parameters will be based on the Least Squares (LS) criterion. As mentioned above, the
use of this criterion is justified by the properties of the variance, among which we find the Fréchet principle. In addition, it
should be remarked that the lack of realistic parametric models for the distribution of FRVs prevents us from using other
approaches, as maximum likelihood. In this case, using the generalized Yang-Ko metric D2

kq written in vector terms, the
LS problem consists in looking for âm; âl; âr ; b̂m; b̂l and b̂r solutions of the following problem:
min D2
kq ¼ min D2

kqððYm; gðYlÞ;hðYrÞÞ; ððYmÞ�; g�ðYlÞ;h�ðYrÞÞÞ; ð3Þ
where (Ym)* = Xam + 1bm, g*(Yl) = Xal + 1bl and h*(Yr) = Xar + 1br are the (n � 1)-vectors of the predicted values.
(Ym, Yl, Y r) and Height (X) of 238 trees in Asturias.

enter) Yl (left spread) Yr (right spread) X (cm)

12.5 15 170
15 12.5 245
7.5 12.5 190
11.25 15 130
15 12.5 230

5 11.25 18.75 90
5 18.75 13.75 195
5 8.75 8.75 75
5 13.75 8.75 184

10 7.5 215
12.5 10 245
12.5 12.5 220
22.5 10 195
15 10 160
12.5 17.5 213
15 17.5 215
12.5 12.5 370
5 5 230
20 20 234
. . . . . . . . .
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The function to minimize
D2
kq ¼ Ym � ðYmÞ�k k2 þ Ym � kgðYlÞ

� �
� ðYmÞ� � kg�ðYlÞ
� �

 

2 þ Ym þ qhðYrÞð Þ � ðYmÞ� þ qh�ðYrÞð Þk k2
becomes
D2
kq ¼ 3 Ym � Xam � 1bmð Þ0 Ym � Xam � 1bmð Þ þ k2 gðYlÞ � Xal � 1bl

� �0
gðYlÞ � Xal � 1bl

� �
þ q2 hðYrÞ � Xar � 1brð Þ0 hðYrÞ � Xar � 1brð Þ � 2k Ym � Xam � 1bmð Þ0 gðYlÞ � Xal � 1bl

� �
þ 2q Ym � Xam � 1bmð Þ0 hðYrÞ � Xar � 1brð Þ: ð4Þ
Proposition 2. Under the assumptions of model (2), the solutions of the LS problem are
bam ¼ ðeX0 eXÞ�1 eX0fYm ;

bal ¼ ðeX0 eXÞ�1 eX0 ggðYlÞ;
bar ¼ ðeX0 eXÞ�1 eX0 ghðYrÞ;
b̂m ¼ Ym � X0 âm;

b̂l ¼ gðYlÞ � X0 âl;

b̂r ¼ hðYrÞ � X0 âr;
where, as usual, Ym; gðYlÞ;hðYrÞ and X are, respectively, the sample means of Ym, g(Yl), h(Yr) and X,
fYm ¼ Ym � 1Ym;

ggðYlÞ ¼ gðYlÞ � 1gðYlÞ;ghðYrÞ ¼ hðYrÞ � 1hðYrÞ
are the centered values of the response and
eX ¼ X� 1X0;
the centered matrix of the explanatory variables.
Proposition 3. Under the assumptions of model (2), the estimators bam; bal; bar ;
bbm;

bbl and bbr are unbiased and strongly consistent.

For inferential purposes it is useful to provide an approximation to the distribution of the estimators. The above-men-
tioned lack of realistic parametric models for the distribution of the FRVs makes it worth to look for the asymptotic distri-
bution of the estimators.

Proposition 4. Under the assumptions of model (2), as n ?1,
ffiffiffi
n
p

bam � ambal � albar � ar

0
B@

1
CA!D N 0;

RX
� ��1r2

em

RX
� ��1r2

el

RX
� ��1r2

er

0
BBB@

1
CCCA: ð5Þ
Since the probability distribution function that has generated the data set is unknown, in practice we propose to use a
bootstrap procedure to evaluate the accuracy of the estimators, by means of the estimates of the standard errors (see [10]).
5. Confidence regions and hypothesis testing on the regression parameters

In addition to the estimation of the regression parameters, the confidence regions and the hypothesis testing procedures
are introduced. Starting from the asymptotic distribution (5) it is easily obtained the following 100(1 � a) confidence region
for the parameters (am, al, ar)

0

bambalbar

0
B@

1
CA� ca=2ffiffiffi

n
p ;

bambalbar

0
B@

1
CAþ ca=2ffiffiffi

n
p

2
64

3
75;
where ca/2 is a a/2-quantile of a N 0;
ðRXÞ�1r2

em

ðRXÞ�1r2
el

ðRXÞ�1r2
er

0
B@

1
CA.
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In order to test the null hypothesis H0: (am, al, ar)
0
= (km, kl, kr)

0
against the alternative H1: (am, al, ar)

0
– (km, kl, kr)

0
, where

km, kl, and kr are vectors of constant values in R, the test statistic Tn ¼ V 0nVn, where
Fig. 3.
Vn ¼
ffiffiffi
n
p

bam � kmbal � klbar � kr

0
B@

1
CA;
can be used. It is possible to define a rejection region for the null hypothesis, that is:

Proposition 5. In testing the above-defined null hypothesis at the nominal significance level a, H0 should be rejected if Tn > ca,

where ca is a a-quantile of the asymptotic distribution of Tn, that is f1ðVÞðV � N 0;
ðRXÞ�1r2

em

ðRXÞ�1r2
el

ðRXÞ�1r2
er

0
B@

1
CA and f1(A) = A

0
A).

The unknown population variance can be approximated by means of the sample one and Slutzky’s theorem guarantees
the asymptotic convergence of the standardized statistic to a normal distribution.

6. Empirical results

To illustrate the application of the regression model introduced in this work we consider the following examples.

Example 3. We consider the data of Example 1. For analyzing the part of the quality explained by the height of the trees we
use the new regression model and we obtain the following estimated models
cYm ¼ 0:1558X þ 18:7497;bYl ¼ expð�0:00017X þ 2:5780Þ;cYr ¼ expð�0:00067X þ 2:6489Þ:

8>><
>>: ð6Þ
The value of the estimated parameter âm equal to 0.1558 represents a positive linear relationship between the response
and the explanatory variable. In particular, the quality is expected to increase of about 0.16 for any additional cm of the
height.

The estimated spreads of the response variable, cYl and cYr , represent the imprecision of the quality estimated by the new
model. In Fig. 3 the extreme values of the 0-level and the single-value of the 1-level of the quality by the height are indicated,
respectively, by means of the vertical segments and the dots, while the estimated centers and the estimated spreads are
represented by the solid line and the dashed line.

To evaluate the accuracy of these estimates we drew 800 bootstrap samples of size n = 238 with replacement from our
data set. For each bootstrap replication we calculated the estimate of the parameters of the linear regression model. By
means of the 800 replications of the estimation procedure we compute the estimate of the standard errors bse of the
parameters and we obtained
0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Height

Q
ua

lit
y

The observed extreme values of the 0-level and the single-value of the quality by the height of the trees, and the estimated linear regression models.
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bseðâmÞ ¼ 0:0210; bseðâlÞ ¼ 0:0004; bseðârÞ ¼ 0:0004;

bseðb̂mÞ ¼ 3:9745; bseðb̂lÞ ¼ 0:0821; bseðb̂rÞ ¼ 0:0839:
Hence two kinds of uncertainty have been taken into account: the imprecision of the estimated quality and the stochastic
uncertainty of the regression model represented by the above values.

To construct a confidence band for the vector of parameters (am, al, ar), the covariance matrix of the vector (em, el, er) was

replaced by the covariance matrix of the residuals cemi ¼ cYm
i � Ym

i ;celi ¼
dgðYl

iÞ � gðYl
iÞ;ceri ¼ dhðYr

i Þ � hðYr
i Þ, and the variance of

the explanatory variable, r2
X , has been estimated by means of the sample variance crX

2 ¼ 3715:9. A confidence band of
approximate level a = 0.05 has been found, that is,
�28:9355
�0:0133
�0:0122

0
B@

1
CA; 29:2470

0:0130
0:0109

0
B@

1
CA

2
64

3
75:
When testing if the vector of regression parameters (am, al, ar)
0
is equal to (0, 0, 0)

0
, a p-value equal to 0 is obtained. Hence this

hypothesis (related to the linear independence) should be rejected.
Example 4. In this example we are interested in analyzing the dependence relationship of the Retail Trade Sales (in millions
of dollars) of the U.S. in 2002 by kind of business on the number of employees (see http://www.census.gov/econ/www/). The
Retail Trade Sales are intervals in the period: January 2002 through December 2002 (see Table 2). For each interval we con-
sider the center and the spreads and we apply the new regression model in order to evaluate the dependence relationship. As
in Example 3 we transformed the spreads by means of the logarithmic transformation.

By means of the least squares estimation we obtained the following predicted values
cYm ¼ 0:0181X � 672:731;bYl ¼ expð0:000002482X þ 5:9244Þ;cYr ¼ expð0:000002482X þ 5:9244Þ:

8>><
>>:
The value 0.0181 indicates the strength of the relationship between the response and the explanatory variable, in particular,
the retail trade sales are expected to increase of about 18100 dollars for any additional employee.

Also in this case we evaluate the accuracy of the estimators by means of a bootstrap procedure with 800 replications. It is
easy to check that
bseðâmÞ ¼ 0:0015; bseðâlÞ ¼ 0:0000; bseðârÞ ¼ 0:0000;

bseðb̂mÞ ¼ 412:0407; bseðb̂lÞ ¼ 0:2151; bseðb̂rÞ ¼ 0:2151:
ail trade sales and the number of employees of 22 kinds of business in the U.S. in 2002.

of business Retail trade sales Number of employees

motive parts, acc., and tire stores 4638–5795 453,468
iture stores 4054–4685 249,807
e furnishings stores 2983–5032 285,222

sehold appliance stores 1035–1387 69,168
puter and software stores 1301–1860 73,935
ing mat. and supplies dealers 14508–20727 988,707
ware stores 1097–1691 142,881
, wine, and liquor stores 2121–3507 133,035
macies and drug stores 11964–14741 783,392
line stations 16763–23122 926,792
’s clothing stores 532–1120 62,223
ily clothing stores 3596–9391 522,164

stores 1464–2485 205,067
lry stores 1304–5810 148,752
ting goods stores 1748–3404 188,091

stores 968–1973 133,484
ount dept. stores 9226–17001 762,309
rtment stores 5310–14057 668,459

ehouse clubs and superstores 13162–22089 830,845
ther gen. merchandize stores 2376–4435 263,116
ellaneous store retailers 7862–10975 792,361
dealers 1306–3145 98,574

http://www.census.gov/econ/www/


0 1 2 3 4 5 6 7 8 9 10

x 105

0

0.5

1

1.5

2

2.5
x 104

Number of Employees

R
et

ai
l T

ra
de

 S
al

es

Fig. 4. The observed interval retail trade sales by number of employees and the estimated linear regression models.
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The intercept term b̂m is affected by a high degree of uncertainty, while the uncertainty of âl and âr, which represent the rela-
tionship between the explanatory variable and the logarithmic transformation of the spreads of the response, is practically
equal to 0.

As Fig. 4 shows, the predicted values of the spreads grow as the number of employees increases. Also in this case the null
hypothesis that all the regression parameters are equal to 0 should be rejected.
7. Concluding remarks

The main objective of the present work was to provide the researcher with a viable means for analyzing regression rela-
tionships when vagueness/imprecision and randomness act jointly on the observed data.

When modelling statistical relationships between imprecise and real elements by means of classical techniques, one of
the main difficulties is related to the condition of non-negativity of the spreads. In this paper by means of the introduction
of the functions g and h which transform the spreads into real numbers and through an appropriate metric, we have obtained
a simple solution, expressed as a function of the sample moments, which furthermore is unbiased, consistent and useful in
practice.

Based on an asymptotic distribution of the parameters, confidence regions have been constructed and hypothesis testing
procedures have been analyzed. We propose bootstrapping for estimating the standard errors of the estimators. Further
bootstraps procedures could be also considered for interval estimation and hypothesis testing.

This new linear regression model can be used for all kinds of LR functional data and in particular for interval-grouped
data.

The linear regression model proposed in this paper can be generalized to other useful types of random sets, e.g. trapezoi-
dal fuzzy sets, or considering nonlinear regression.

A further field of research consists in the study of appropriate functions g and h that can be used for a wide class of prac-
tical problems, by considering the model, for instance, in a semiparametric setting.
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Appendix A

Proof of Proposition 1. Under the assumptions in this theorem, it can be simply checked that
E ðX � EXÞðYm � EYmÞ½ � ¼ E ðX � EXÞ X0 am þ bm þ em � EX 0 am þ bm þ Eemð Þ½ �
¼ E ðX � EXÞðX � EXÞ0am þ ðX � EXÞðem � EemÞ

� 

¼ E ðX � EXÞðX � EXÞ0am

� 

þ E ðX � EXÞðem � EemÞ½ �:
Since em is uncorrelated with the vector of explanatory variables X, it results that
am ¼ RX
� 	�1E ðX � EXÞðYm � EYmÞ½ �
and
bm ¼ EðYmjXÞ � EX0 RX
� 	�1E ðX � EXÞðYm � EYmÞ½ �:
Analogously, following the same reasoning we obtain the remaining expressions.
Proof of Proposition 2. In case of symmetric LR fuzzy variables, the least squares problem can be obviously divided into two
independent parts. In general, even if in the minimization problem there are terms that consider the interaction between the
center and the spreads of the response variable, by means of simple calculations, the least squares problem can be divided
into three independent parts.
Proof of Proposition 3. To prove the unbiasedness of the estimators we have to analyze their expected values. Starting from
âm we have
E bamjX
� �

¼ E ðeX0 eXÞ�1 eX0fYm jX
h i

:

Since fYm ¼ eXam þ eem, where eem is the (n � 1)-vector of the centered errors, we obtain
E bamjX
� �

¼ E ðeX0 eXÞ�1 eX0 eXam þ eem

� �
jX

h i
¼ E ðeX0 eXÞ�1 eX0 eXamjX

h i
þ E ðeX0 eXÞ�1 eX0eemjX
h i
and, taking into account that the errors are uncorrelated with the explanatory variables, the thesis is proved, that is,
E bam
� �

¼ E E bamjX
� �� 


¼ am:
Analogously, it is possible to check that EðbalÞ ¼ al and EðbarÞ ¼ ar .
Furthermore
E bbmjX
� �

¼ E YmjX
� �

� E X0 âmjX
� �
and since the sample means are unbiased estimators of the expectations, it is checked that EðbbmjXÞ ¼ bm, hence
EðbbmÞ ¼ E ½EðbbmjXÞ� ¼ bm and, by means of similar reasoning, it is checked the unbiasedness of bbl and bbr .

The consistency is easily deduced from the expressions of the estimators and from the properties of population moments.
Proof of Proposition 4. Starting from the expression of bam, bal and bar in terms of sample moments
bam

bal

bar

0
BBB@

1
CCCA ¼

ðeX0 eXÞ�1 eX0fYm

ðeX0 eXÞ�1 eX0 ggðYlÞ

ðeX0 eXÞ�1 eX0 ghðYrÞ

0
BBBB@

1
CCCCA
and taking into account that fYm ¼ eXam þ eem;
ggðYlÞ ¼ eXal þ eel and ghðYrÞ ¼ eXar þ eer , it is easy to check that
bam

bal

bar

0
BBB@

1
CCCA ¼

am þ ðeX0 eXÞ�1 eX0eem

al þ ðeX0 eXÞ�1 eX0eel

ar þ ðeX0 eXÞ�1 eX0eer

0
BBBB@

1
CCCCA:
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In this way, we have that
ffiffiffi
n
p

bam � ambal � albar � ar

0
B@

1
CA ¼ ð101Þ�1 eX0 eX� ��1

ð101Þ�1=2

eX0eemeX0eeleX0eer

0
BB@

1
CCA
and then,
ð101Þ�1=2

eX0eemeX0ee leX0eer

0
BB@

1
CCA ¼ ð101Þ�1=2

ðX0 � ð1EX 0Þ0Þem

ðX0 � ð1EX 0Þ0Þel

ðX0 � ð1EX 0Þ0Þem

0
B@

1
CA

þ ð101Þ�1=2
ðð1EX 0Þ0 � ð1X 0Þ0Þem

ðð1EX 0Þ0 � ð1X 0Þ0Þel

ðð1EX 0Þ0 � ð1X 0Þ0Þem

0
B@

1
CA

� ð101Þ�1=2
ðX0 � ð1EX 0Þ0Þ1em

ðX0 � ð1EX 0Þ0Þ1el

ðX0 � ð1EX 0Þ0Þ1er

0
B@

1
CA

� ð101Þ�1=2
ðð1EX 0Þ0 � ð1X 0Þ0Þ1em

ðð1EX 0Þ0 � ð1X 0Þ0Þ1el

ðð1EX 0Þ0 � ð1X 0Þ0Þ1er

0
B@

1
CA:
Furthermore, as n ?1, the last three terms of the sum tend almost surely to 0 ((3p � 1)-null vector) and
ðX0 � ð1EX0Þ0Þem

ðX0 � ð1EX0Þ0Þel

ðX0 � ð1EX0Þ0Þer

0
B@

1
CA

8><
>:

9>=
>;
is a sequence of random vectors i.i.d., centered at 0, whose covariance matrix is RXR, so applying the Central Limit Theorem it
results that
ð101Þ�1=2
ðX0 � ð1EX0Þ0Þem

ðX0 � ð1EX0Þ0Þel

ðX0 � ð1EX0Þ0Þer

0
B@

1
CA!D N 0;

RXr2
em

RXr2
el

RXr2
er

0
BB@

1
CCA:
Hence
ffiffiffi
n
p

bam � ambal � albar � ar

0
B@

1
CA!D N 0;

RX
� ��1r2

em

RX
� ��1r2

el

RX
� ��1r2

er

0
BBB@

1
CCCA:
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