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Streptomyces species produce many clinically important
secondary metabolites, including antibiotics and antitu-
morals. They have a complex developmental cycle, in-
cluding programmed cell death phenomena, that makes
this bacterium a multicellular prokaryotic model. There
are two differentiated mycelial stages: an early compart-
mentalized vegetative mycelium (first mycelium) and a
multinucleated reproductive mycelium (second mycelium)
arising after programmed cell death processes. In the
present study, we made a detailed proteomics analysis of
the distinct developmental stages of solid confluent
Streptomyces coelicolor cultures using iTRAQ (isobaric
tags for relative and absolute quantitation) labeling and
LC-MS/MS. A new experimental approach was developed
to obtain homogeneous samples at each developmental
stage (temporal protein analysis) and also to obtain mem-
brane and cytosolic protein fractions (spatial protein anal-
ysis). A total of 345 proteins were quantified in two bio-
logical replicates. Comparative bioinformatics analyses
revealed the switch from primary to secondary metabo-
lism between the initial compartmentalized mycelium and
the multinucleated hyphae. Molecular & Cellular Pro-
teomics 9:1423-1436, 2010.

Streptomyces is a Gram-positive bacterium characterized
by a complex development cycle. Detailed biochemical and
confocal laser microscopy analyses of the Streptomyces de-
velopmental cycle recently performed by our group demon-
strated novel aspects of the differentiation processes of this
bacterium (1-7). A previously unidentified compartmentalized

mycelium (MI)! initiates the developmental cycle and then
undergoes a PCD in a highly ordered morphological and
biochemical sequence of events (1, 2, 4). This PCD is a lytic
process that substantially differs from eukaryotic PCD (apo-
ptosis) (3, 4). Viable segments of the first compartmentalized
hyphae begin to enlarge as a multinucleated mycelium (Mll)
that grows in successive waves that determine the character-
istic complex growth curves of this microorganism. Two types
of second mycelium were defined based on the absence (in
early development) or presence (in late development) of the
hydrophobic layers distinctive of aerial hyphae (5). The tradi-
tionally denominated substrate (vegetative) mycelium corre-
sponds to the early second multinucleated mycelium (5). It
has been proposed that the first compartmentalized mycelium
fulfills the true vegetative role in Streptomyces development in
soil (6). In this view, the second early and the late multinucle-
ated mycelia could be considered as a single stage of the
reproductive phase because they are destined to sporulate
(6).

Streptomyces is an extremely important bacterium in bio-
technology because approximately two-thirds of industrial
antibiotics are synthesized by members of this genus (8).
Streptomycetes also produce large numbers of eukaryotic cell
differentiation regulators, including apoptosis inhibitors and
inducers (9-11). Some researchers hypothesize that bacteria
with complex life cycles (streptomycetes, cyanobacteria, etc.)
represent the evolutionary origin of some of the protein do-
mains involved in PCD processes, including eukaryotic apo-
ptosis: apoptotic (AP) ATPases, cysteine-aspartic acid pro-
teases (caspases and effector and regulatory apoptotic
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proteases), Toll/IL-1 receptor (TIR) domains (eukaryotic PCD
adaptor molecules), Ser/Thr kinases, etc. (12-17). In silico
analysis of the Streptomyces coelicolor genome predicted the
occurrence of 40 eukaryotic-type Ser/Thr kinases (16), one
caspase (15), and several AP ATPases and proteins harboring
TIR domains (15); S. coelicolor is one of the bacteria with the
greatest numbers of these types of eukaryotic-like molecules.
The biological function of most of these proteins remains
unknown in bacteria.

Streptomyces biology has been studied using proteomics
approaches in various cellular contexts, including pro-
grammed cell death (8), germination (17, 18), mutant analysis
(bald A mutant) (19-21), phosphate limitation (22), and the
diauxic lag phase (23). Most of these experiments only gave
qualitative information, using mainly two-dimensional gel
electrophoresis for protein separation followed by mass spec-
trometry for protein identification. Recently, two independent
transcriptomics analyses about Streptomyces differentiation
in submerged cultures were performed (24, 25), and in one of
them a quantitative proteomics study using stable isotope
labeling and LC-MS/MS was performed in combination with
transcriptomics to analyze genes and proteins with divergent
mRNA-protein dynamics in submerged cultures of this bac-
terium (24).

In the present work, we performed a detailed quantitative
proteomics analysis of S. coelicolor A3(2) solid cultures in
which Streptomyces carried out a complete developmental
cycle (5, 26). Using iTRAQ and LC-MS/MS, we aimed to
reveal differences in the Streptomyces proteome along the
developmental mycelial stages, including also the study of
membrane and cytosolic protein fractions. In the course of
this process, we created a database of protein expression
profiles during the Streptomyces developmental phases
that will facilitate further analysis of the regulation of these
complex events.

EXPERIMENTAL PROCEDURES

Strain and Medium—S. coelicolor M145 was used in this study.
Petri dishes (8.5 cm) with 25 ml of solid glucose, yeast/malt extract
medium (4) were covered with cellophane disks, inoculated with 100
wl of a spore suspension (1 X 107 viable spores/ml), and incubated at
30 °C. This medium promotes the rapid development of a lawn that
readily differentiates and yields abundant sporulation.

Sampling and Fractionation of S. coelicolor Cells throughout Dif-
ferentiation Cycle—Mpycelium was scraped off from plates at different
time points (12, 24, and 72 h) using a plain spatula (see Figs. 1 and 2).
Two independent series of cultures were prepared and processed
(biological replicates) with the same batch of spores and medium and
developed simultaneously in the same incubator. At 12 h, the first
compartmentalized mycelium was separated from the non-septate
mycelium by conversion of the cell compartments to protoplast forms
as described previously (3). Cell-free extracts were obtained by os-
motic shock in buffer A (50 mm Tris-HCI, pH 7, 150 mm NaCl, 10 mm
MgCl,, 1 mm EDTA, 7 mm B-mercaptoethanol, and 0.5 mm PMSF) and
sonication on ice. Samples of second mycelium were obtained at the
phases in which the first compartmentalized mycelium has died (24
and 72 h) (1, 2). Mycelial pellets were mechanically disaggregated

(strong vortexing for 1 min) in buffer A (2.5 g of mycelium in 10 ml; 12
Petri dishes at 24 h and 10 plates at 72 h) precooled at 0 °C and
centrifuged for 10 min at 5000 X g at 4 °C. Mechanical disaggregation
and washing steps were repeated eight times. Cells were broken up
in an MSE Soniprep 150 in four cycles of 10 s on ice. The unbroken
cells and cellular debris were eliminated by centrifugation (7740 X g)
at 4 °C for 15 min.

Subcellular fractionation was performed simultaneously in the two
biological replicates using the same reagents and under the same
experimental conditions. Cytosolic and membrane fractions were
obtained according to Quirds et al. (27) by ultracentrifugation at
100,000 X g in a Beckman LB-70 M ultracentrifuge. Membranes were
resuspended in buffer A and incubated at 0 °C for 30 min with
periodical vortex shaking. Membranes were subsequently ultracen-
trifuged again at 100,000 X g. This process was repeated three times,
discarding the supernatants. Membranes were later resuspended in
100 mm Na,COj; (pH 11) and washed two more times. These three
supernatants were collected and corresponded to the extrinsic mem-
brane proteins. Finally, the membranes were washed two times with
buffer A without salt. These membranous pellets corresponded to the
intrinsic membrane proteins that were not delipidated. Supernatants
of the washing steps in Na,CO; (extrinsic membrane proteins) were
collected and dialyzed (Sigma D7884 benzoylated cellulose tubing)
against buffer A at 4 °C for 1 h with four buffer changes. Membrane
fractions were stored at —80 °C.

Viability Staining—The permeability assay described previously for
Streptomyces was used to stain the cultures (12). The samples were
observed under a Leica TCS-SP2-AOBS confocal laser-scanning
microscope at a wavelength of 488- and 568-nm excitation and 530-
(green) or 640-nm (red) emissions.

Protein Separation, Digestion, and iTRAQ Labeling of Peptides—
Protein quantification was performed using the Bradford (28) and
Lowry (29) assays using bovine serum albumin as a standard (Sigma).
Proteins, 50 pg/lane, were separated by SDS-PAGE using precast
PAGEr® 4-20% Tris-glycine gels (Lonza) and stained with Coomassie
Blue (Coomassie Brilliant Blue G-250). When necessary, samples
were concentrated by filtration using Vivaspin 20 (10,000 molecular
weight cutoff, Sartorius). For intrinsic membrane proteins, mem-
branes containing 50 ng of protein were boiled in the SDS loading
buffer for 5 min and run directly in the gel. The three samples (MI/12h,
MIl/24h, and MII/72h) of each subcellular fraction and the two biolog-
ical replicates were loaded in six different gels, which were used for
six independent iTRAQ triplex experiments: cytosolic, membrane in-
trinsic, and membrane extrinsic proteins from two biological repli-
cates. Each gel lane was divided into six slices with a scalpel. Gel
slices were cut into small pieces, washed with distilled water, and
shrunk with acetonitrile. Cys residues were reduced with DTT and
S-alkylated with iodoacetamide; swelled with a solution of 10 ng/ul
trypsin (Promega), 50 mm triethylammonium bicarbonate digestion
buffer; and incubated overnight at 37 °C. After digestion, superna-
tants were recovered, and remaining peptide extractions from gel
fragments were performed with a volume of 5% formic acid for 30 min
after which an equal volume of pure acetonitrile was added, and the
samples were incubated for an additional 30 min at room tempera-
ture. Extracts were vacuum-dried. Peptides were labeled with iTRAQ
eightplex reagent (Applied Biosystems, Foster City, CA) according to
our previously reported protocol (30): 113, 114, and 115 iTRAQ tags
were used for the 12-, 24-, and 72-h samples, respectively. After
labeling for 2 h at room temperature, samples were combined (six
samples corresponding to the original gel pieces). The concentration
of organic solvent was reduced using a vacuum concentrator, and
peptide desalting was performed using GELoader micropipette tips
(Eppendorf) prepared with C,4 (Empore extraction disks, 3M) and R3
material (see Fig. 2).
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Analysis of iTRAQ-labeled Peptides by Nano-LC-Tandem Mass
Spectrometry—Tryptic peptides were separated using a NanoAcquity
UPLC system (Waters) modified with a 2.6-ul PEEKsil sample loop
(SGE Analytical Science, Darmstadt, Germany). Mobile phase A was
0.1% formic acid in double distilled H,O, and mobile phase B was
0.1% formic acid in 90% acetonitrile (Fisher Scientific). A 2.5-ul
sample was injected and loaded into the Bridged ethyl hybrid C,q
column (1.7 um, 15-cm X 75-um analytical reversed phase column,
Waters) in direct injection mode with 3% B for 10 min at 400 nl/min.
Peptides were eluted from the column with a linear gradient of 3-7%
B for 4 min, 7-30% B for 60 min, 30-60% B for 15 min, and 60-90%
for 5 min at a flow rate of 300 nl/min. The column was washed with
90% B for 10 min followed by equilibration for 14 min at a flow rate of
400 nl/min. The column temperature was kept at 36 °C. The lock mass
solution for MS and MS/MS comprised 500 fmol/ul [Glu'lfibrinopeptide
B (Sigma) and was delivered by the auxiliary pump of the NanoAcquity
at a constant flow rate of 500 nl/min to the reference sprayer of the
NanoLockSpray source of the mass spectrometer.

The UPLC system was interfaced to a Q-TOF tandem mass spec-
trometer (SYNAPT, Waters). The mass spectrometer was operated in
positive ion mode at a mass resolution of ~10,000 full width at
half-maximum. The TOF analyzer (v-mode) of the mass spectrometer
was externally calibrated with [Glu'lfibrinopeptide B fragment ions
from m/z 50 to 1500. Acquired data were postcalibrated using the
doubly protonated precursor ion of [Glu']fibrinopeptide B. The refer-
ence sprayer was sampled every 120 s. LC-MS/MS data were ob-
tained using a data-dependent acquisition method. MS survey anal-
ysis was performed for 0.48 s with an interscan delay of 0.02 s
followed by two MS/MS cycles. The fragment ions from the two most
abundant multiply charged precursor ions (2+, 3+, and 4+) were
detected at an integration rate of 0.48 s with a 0.02-s interscan delay.
The collision energy was ramped from 20 to 45 eV. The dynamic
exclusion of precursors was set to 60 s. Each sample was analyzed
twice; the second LC-MS/MS analysis was performed with the ex-
clusion list from the precursor m/z values selected for the first LC-
MS/MS analysis.

LC-MS/MS Data Analysis—ProteinLynx Global server (PLGS) pro-
gram version 2.3 was used to convert LC-MS/MS raw data into pkl
files. pkl files were submitted for search by the MASCOT search
engine (version 2.2) against the NCBInr database with taxonomy
limited to S. coelicolor (January 22, 2009, 8537 entries). The following
MASCOT search parameters were used: peptide mass tolerance, 10
ppm; fragment mass tolerance, 0.1 Da; trypsin cleavage with a max-
imum of two missed cleavages; fixed modifications, S-carbamido-
methyl on cysteine and iTRAQ on lysine residues and N termini of
peptides; variable modification, oxidation on methionine. Example
spectra are shown in supplemental Fig. 1. Peptide false positive rates
were calculated using the decoy option provided by MASCOT (with
the combined pkl file) resulting in 1.33-1.36% false positives for the
first biological replicate and 1.06-1.08% for the second biological
replicate (identity and homology thresholds, respectively; significance
threshold, 0.016).

Relative quantification was performed using PLGS (Waters) with
automatic normalization. The PLGS quantification algorithm uses
Bayesian Markov chain Monte Carlo methods to explore the posterior
probability and takes the different scores of individual peptides from
a protein into account to quantify expression changes. Results ob-
tained from PLGS were exported into Microsoft Excel for further
computational and bioinformatics data analysis. Proteins that were
not represented by any peptide above the MASCOT homology
threshold were discarded. When a protein was detected in more than
one of the six gel slides processed, the protein with the highest
MASCOT score was retained. The three samples (MI/12h, MIl/24h,
and MII/72h) of each subcellular fraction and each biological replicate

were processed independently. Consequently, we performed six in-
dependent iTRAQ triplex experiments: cytosolic, membrane intrinsic,
and membrane extrinsic proteins from two biological replicates. We
also performed six independent relative quantifications using PLGS,
and we estimated the relative abundance values between the three
developmental stages analyzed for the proteins from the same sub-
cellular fraction and biological replicate.

Technical variability was tested by running one sample (cytosolic
fraction, 24 h) in identical portions (duplicate) in the same gel followed
by labeling with two iTRAQ reagents (113 and 114 m/z) and LC-
MS/MS analysis. Biological variability was tested by means of parallel
analysis of two independent biological replicates in one gel, labeling
them with the same iTRAQ reagent and analyzing them in two inde-
pendent LC-MS/MS experiments. For proteins identified in both bio-
logical replicates, iTRAQ ratios were considered significant if their
average in both replicates (+=S.D.) were greater or lower than unity.
With respect to the remaining proteins, iTRAQ ratios values were
considered significant if their coefficient of variation (CV) was less
than 0.25. Consequently, we kept protein abundance values with
good reproducibility between biological replicates (CV < 0.25) as
well as those with CVs higher than 0.25 but with averaged iTRAQ
ratios that varied significantly between mycelial stages (average
iTRAQ ratios = S.D. above or below unity); we discarded the
remaining proteins (protein abundance values without good repro-
ducibility between biological replicates). All identified proteins that
satisfied these strict criteria were considered for further analysis
(supplemental Tables 1-4) and were included in the results and
figures reported in this study (see below). Spectra of peptides from
proteins identified with a single peptide are shown in sup-
plemental Fig. 3.

ProteinCenter 2.0 (Proxeon) was used to conduct the computa-
tional and bioinformatics data analyses and protein classification.
Proteins were classified into functional categories according to their
annotated functions in GenBank™ and by homology/functions ac-
cording to the gene ontology, the conserved domain, and the KEGG
pathway databases.

Cluster Analysis of Protein Expression Profiles—The averaged
iTRAQ values obtained in two biological replicates for each protein at
all three time points (12, 24, and 72 h) were log,-transformed. Data
were normalized to obtain a mean value of 0 and a standard deviation
of 1, ensuring that proteins with similar expression patterns could be
easily compared without taking into account their absolute values. For
clustering, we used the fuzzy c-means algorithm with a Euclidean
distance matrix (31). This method groups the data into ¢ protein
clusters with the most similar patterns by minimizing an objective
function. The results provide ¢ membership values for each protein. A
membership value gives a measure in the range (0, 1) of how strongly
the expression pattern of a protein follows the one of the cluster
center. We associated each protein to the cluster for which it had the
largest membership value. Changes in the input parameter m, the
so-called “fuzziness,” did not give different results within the param-
eter range m = 1.1-2. We therefore defined m = 1.2. The optimum
value for the other parameter, the number of clusters (c), was deter-
mined by comparing the Xie-Beni index (32) calculated from the
corresponding results.

RESULTS

Fractionation of Specific Mycelial Stages in S. coeli-
color—At any specific developmental time point, different
mycelial stages coexist with PCD phenomena (3). We have
previously reported a method by means of which dead and
live cell samples are enriched on the basis of protoplast
formation from the first compartmentalized mycelium under-
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panel, cell cycle features of Streptomyces first mycelium ’£|2h mycelium *2 4hl with hg:\::rshﬂhic — fw ers
development. Mycelial structures (MI, first T 72h

Second death
Mil round
Spores

24h 72h

compartmentalized mycelium; MIl, sec-
ond early and late multinucleated myce-
lia), cell death processes, and traditional
denomination (“substrate” and “aerial”)
are indicated. Developmental time points
at which samples were collected are indi-
cated by an asterisk. a-d, confocal laser-
scanning fluorescence microscopy analy-
sis of horizontal sections of cultures at the
phases collected for proteomics analy-
ses. Developmental time points are indi-
cated. Samples were stained with SYTO 9
and propidium iodide (see “Experimental
Procedures”). e-i, confocal laser fluores-
cence micrographs of the different myce-
lia after processing (see “Experimental
Procedures”). Mycelial types and devel-
opmental time points are indicated. See
text for details.

going early PCD (4). In the present study, we refined this
methodology and applied it to obtain protein extracts of the
different mycelial types: first compartmentalized mycelium
(MI, 12 h); second early multinucleated mycelium (lacking the
hydrophobic covers; Mil, 24 h), and second late mycelium
with hydrophobic layers (sporulating mycelium; Mll, 72 h) (Fig.
1) (6). The MI was fractionated from the MIl by obtaining
protoplasts; protoplasts from multinucleated mycelium are
too large to be stable. Samples of the MIlI can be readily
obtained during the phases in which the MI has died (1, 2).
Mechanical disaggregation of mycelial pellets and intensive
washing removed the proteins released by the lysis of the Ml
(Fig. 1 and “Experimental Procedures”). Mycelial samples ob-
tained in this way were further fractionated into three distinct
subcellular fractions: cytosolic, intrinsic membrane, and ex-
trinsic membrane proteins (Fig. 2 and supplemental Fig. 4).
Identification and Quantification of Streptomyces Pro-
teins—The number of proteins identified and quantified in two
biological replicates is reported in Fig. 3A. A total of 626
proteins were identified from peptide MS/MS spectra that
scored above the peptide MASCOT homology threshold value
(see “Experimental Procedures”). This represents 8% of the
predicted S. coelicolor proteome. False positive peptide iden-
tification rates of 1.36 and 1.08%, respectively, were deter-
mined for the two biological replicates. A total of 359 proteins
(57.3% of all the identified proteins) were detected in both
biological replicates (Fig. 3A), and of them, 345 proteins were
quantified in at least one of the developmental phases ana-
lyzed according to the criteria described in “Experimental
Procedures.” These 345 proteins were used in the following

MIl (24h)

Mycelium
(12,24, 72h)
|
- Membrane | | Membrane
_C tosolic s .
y (Intrinsic) (Extrinsic)
T 1 1
12h 24h 72h 12h  24h 72h 12h 24h 72h
[ SDS PAGE ]
| In gel digestion (6 slices per lane) |
12h 24h 72h 12h  24h 72h 12h 24h 72h
0010 11 1 W JU L
113 114 115 113 114 115 113 114 115
iTRAQ iTRAQ iTRAQ

] Il Il
LC-MS-MS | [LC-MS-MS | | LC-MS-MS

Fic. 2. Overview of iTRAQ reagent methodology used for mul-
tiplexed comparative analysis of Streptomyces proteins isolated
by SDS-PAGE during development. The six steps performed in
parallel for the six gel slides are indicated by arrows. Developmental
time points and subcellular fractions are indicated.

figures, tables, and Discussion. Some proteins were identified
in a single distinct cellular fraction (cytosolic, intrinsic mem-
brane, or extrinsic membrane), whereas other proteins were
detected in multiple fractions (Fig. 3B). The intrinsic/extrinsic
membrane fractions were enriched with proteins containing at
least one putative transmembrane domain or signal peptide
sequences (Fig. 3C), demonstrating the efficiency of the frac-
tionation strategy.
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Fic. 3. Number of identified proteins, location in subcellular fractions, and distribution in functional categories. A, Venn diagram
showing overlap of proteins identified in each of the two biological experiments. The number of proteins significantly quantified at least in one
of the developmental phases analyzed and according to criteria described under “Experimental Procedures” is indicated. B, Venn diagram of
protein distribution in the subcellular fractions. These proteins correspond to those detected in both biological replicates. C, amount of proteins
in cytosol or membrane without transmembrane domain (0), with at least one transmembrane domain (TM), and with signal peptide (S). D,
number of proteins for each functional category (C, cytosolic; /, membrane intrinsic; E, membrane extrinsic). Primary metabolism (DNA/RNA
replication, aerobic and anaerobic energy production, glycolysis and glyconeogenesis, pentose phosphate pathway, amino acid metabolism,
nucleotide metabolism, translation, protein folding, RNA/protein processing, and nucleases/restriction modification methylases), secondary
metabolism (secondary metabolite synthesis, lipid metabolism, DNA competence, TTA BIdA targets, and Bld Whi proteins), transporters (ABC
transporters, transporters, and secreted proteins), regulatory proteins (transcriptional regulators, kinases, phosphatases, and other regulatory
proteins), catabolism/proteases, and stress and defense are the categories shown.

Proteins were grouped according to their putative functions
(Fig. 3D and supplemental Fig. 2). Most of the identified pro-
teins were those involved in primary metabolism (36% of the
total) and were mainly found in the cytosolic and the intrinsic
membrane fractions (Fig. 3D and supplemental Fig. 2). Pro-
teins related to stress (oxidative stress, chaperones, etc.),
transport, and secretion processes as well as kinases were
mainly found in membranes (supplemental Fig. 2).

A comparison between methodological and biological rep-
licates of cytosolic fractions is shown in Fig. 4, A and B. The
dispersion of the iTRAQ ratios of the quantified proteins was
similar in the methodological and biological replicates (Fig.
4A). The specific iTRAQ ratio values for each protein (average

of two biological replicates; see “Experimental Procedures”)
in a methodological replicate (Fig. 4B, green line) were within
an interval of 0.1 (log,o iTRAQ ratio) (Fig. 4B, dashed lines),
which was clearly lower than iTRAQ ratio values from biolog-
ical replicates (Fig. 4B, blue and red lines). The correlation of
the iTRAQ ratio values of all the proteins quantified in the two
biological replicates (cytosolic and membrane proteins
pooled together) (Fig. 4C) was similar to those detected for
the cytosolic proteins (Fig. 4, compare A with C). The varia-
tions in logarithm of average iTRAQ ratios (from two biological
replicates) for each individual protein were also similar to
those for cytosolic proteins (Fig. 4, compare A with D). Vari-
ation in the iTRAQ ratios of proteins in the 72-h sample (Mll)
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Fic. 4. Quantitative proteomic data analysis. Upper panels, comparison between methodological and biological replicates. Data from
cytosolic fractions correspond to protein relative quantitation values meeting the criteria indicated under “Experimental Procedures.” A,
correlation of the values for biological replicates (blue) and methodological replicates (green). B, variation of iTRAQ ratios (averages from two
biological replicates) in different developmental phases (blue and red) with respect to methodological variation (green); proteins significantly
quantified in both conditions analyzed are shown (55 proteins). iTRAQ ratio values are sorted in increasing order. Lower panels, comparison
between all the quantified proteins present in biological replicates. Cytosolic, intrinsic membrane, and extrinsic proteins were combined. C,
correlation of the values for biological replicates: MIl/24h with respect to MI/12h (blue) and MII/72h with respect to MI/12h (red). D, iTRAQ ratio
values (averages from two biological replicates) for each protein in increasing order (108 proteins).

was greater than in the 24-h (MIll) mycelial samples in both
cases with respect to the 12-h sample (MI) (Fig. 4D).
Proteins Detected in Greater Abundance in First Compart-
mentalized Mycelium (MI/12h)—It is obvious from Fig. 5 (clus-
ters 6-8) that the most abundant proteins in MI compared
with the MIl were those involved in primary metabolism (Table
I). When proteins were grouped into functional categories (Fig.
6), this aspect is even clearer (Fig. 6, green colors). Examples
of these proteins were ribosomal proteins (SCO4653,
SCO4711, and SCO3124), glycolytic and tricarboxylic acid
cycle enzymes (SC0O5423, SCO02951, SCO04809, and
SCO4855), enzymes involved in amino acid metabolism
(8C0O2504, SCO1773, and SCO3304), etc. (Table I).

Some regulatory proteins were detected in greater abun-
dance in the MI (Table Il). One of the most interesting proteins
was SCO1691, a putative TetR transcriptional regulator of
unknown function, that was detected exclusively in the Ml
(Table 1l). Other putative regulatory proteins with greater
abundance in the Ml were SCO3907, a hypothetical protein
belonging to the single-stranded DNA-binding proteins with
“oligonucleotide/oligosaccharide binding folds” (SSB_OBF
family); SC0O5537, a Ras-like GTPase; SC0O3404, an FtsH
homolog belonging to the “ATPase associated with a variety
of cellular activities” protein family (AAA ATPases); and
SC02592, a RfaG glycosyliransferase (Table Il). BldkB
(SCO5113) and BIdkD (SCO5115), two components of the
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Fic. 5. Clusters of proteins detected in only one subcellular fraction (cytosolic or membrane proteins) with similar expression
patterns along developmental time points. A, proteins in greater abundance in MIl/24h and MII/72h with respect to the MI (12 h). B, clusters
of proteins in lower abundance in Mll/24h and MII/72h with respect to MI. Numbers of proteins for each functional category are indicated.
Primary metabolism (DNA/RNA replication, aerobic and anaerobic energy production, glycolysis and glyconeogenesis, pentose phosphate
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memb, membrane.

BIdK ABC transporter complex (Table Il), were also more
abundant in the MI.

Proteins Detected in Greater Abundance in Second
Multinucleated Mycelia (MIl/24h and MIl/72h)—Almost all the
proteins involved in secondary metabolism were detected in
greater abundance during the MIl stages (MIl/24h and MII/
72h) than in MI (protein clusters 1-5 in Fig. 5A and Fig. 6): for
instance, ActVA (SCO5077), ActVA4 (SCO5079), and hy-
droxyacyl-CoA dehydrogenase (SC0O5072), all involved in the
synthesis of actinorhodin, and a transketolase involved in the
biosynthesis of ansamycins (SC0O6663) (Table I). With a few
exceptions, the absolute iTRAQ ratio values for each protein
were greater at 72 h than at 24 h (Fig. 6). For example, the
ratios for ActVA (SCO5077) were 8.4-fold in MIl/72h and only
2.3-fold in MIl/24h (Table I). Several regulatory proteins were
also more abundant in MIl/24h and MII/72h than in the MI
(Table 1I). BIdG (SC03549), a transcriptional regulator that
constitutes one of the latter steps of the bald cascade that is
involved in S. coelicolor sporulation (33), was more abundant
in the intrinsic membrane fraction of both MIl stages (4-fold).

In contrast, its abundance in the cytosol was the same in the
MI and MII/24h, but its abundance was lesser in the MIl/72h
(Table Il and Fig. 7). Other putative regulatory proteins de-
tected in greater abundance in the Mll/24h and MII/72h than
in Ml were SCO1793, SpoOM-homologous protein; SCO6005,
a putative ABC transporter; PspA (SC02168), phage shock
protein regulating transcription; and SC0O2567, ComE homo-
log (protein involved in the uptake of transforming DNA in
Gram-positive bacteria).

Several regulatory proteins were detected in greater relative
abundance in the MIl/24h: SCO0168, possible cyclic nucle-
otide-binding transcriptional regulator; SigH (SC05243); BldH
(8C02792); SCO2110, eukaryotic-type serine/threonine ki-
nase; and SCO7399, putative ABC transporter (Table II).

Proteins involved in the aerobic energy production (ATP
synthase chain, SCO5368) and in the glycerolipid metabolism
(glycerol kinase, SCO1660) were detected in greater abun-
dance in the MII/72h samples compared with the rest of the
mycelial stages (Table I). SC0O2380, a putative B-lactamase,
was also more abundant in the MII/72h. Several regulatory

Molecular & Cellular Proteomics 9.7 1429
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A

Fic. 6. iTRAQ ratios values for pro-
teins grouped into functional catego-
ries. A, scheme of Streptomyces devel-
opmental cycle. Different mycelial phases
and developmental time points are
schematically represented. M, first com-
partmentalized mycelium. MIl, second
multinucleated mycelia (early and late

Mil

with hydrophobic
covers

Ml 12h

\

Mil

24 h

phases). B, iTRAQ ratios for proteins sig- B Primary metabolism

nificantly quantified in both Mll/24h and T T 72:12h

MII/72h of Streptomyces development PR PP LT T T PR 24:120

with respect to Ml grouped into the func- Secondary metabolism Transporters Stress!defense [10-20)

tional categories indicated in Fig. 5. The Notslﬁl | | | | | | ” | | 23% ’_H_HU ‘ ‘ ‘ ‘ H_H H_H FH lIl H ‘ ‘ ‘ H_I?2:12h [5-10]

total number of proteins is indicated on 13 3 24:12h Lyl

the left of the .panels. Cytosolic and Regulatory Catabolism membélerl!le“g;thesis {;éﬂ

membrane proteins are pooled together. | nknown proteins proteases septation [05-0.6]
23] ] Nog Nog 72:12h [0.2-0.5]
23 | H:H ]_H:H:H lEH:”_I:H 5 24:12h [0.050.2]

proteins were detected in greater abundance at 72 h:
SCO5046, a WhiB family o factor; SCO5580, FtsY docking
protein; SCO1630 and SCO4677, histidine kinases;
SCO04920, transcriptional regulator; SCO3571 and SCO1648,
ARC AAA ATPases; SC05249, a CAP family transcriptional
regulator; and SCO5466, a putative autolytic lysozyme that
could have a role during sporulation (Table ).

Abundance of Proteins Detected in More Than One Sub-
cellular Fraction—One hundred and forty proteins were de-
tected in more than one subcellular fraction (supple-
mental Table 4 and Fig. 7). As in the case of proteins detected
only in one subcellular fraction (Fig. 6), with few exceptions,
the proteins more abundant in Mll/24h were also more abun-
dant in MII/72h (relative to MI/12h), and the same was found
for the less abundant proteins (supplemental Table 4). Some
of these proteins showed different iTRAQ ratios among cel-
lular compartments, suggesting a change of subcellular loca-
tion during Streptomyces differentiation (Fig. 7). Some exam-
ples of these proteins were SCO1965, a putative stress
protein (without transmembrane domains); SC0O4296, chap-
eronin GroEL (two transmembrane domains); SC0O2231 (one
signal peptide), a putative bacterial transport protein; and
SCO03549, BIdG (see above; MIl proteins).

DISCUSSION

Experimental initiatives to perform proteomics and tran-
scriptomics analyses in Streptomyces have been hampered
because of the lack of a reliable developmental model in this
bacterium. One of the main drawbacks has been the use of
samples in which different mycelial structures and phases
coexist. In the present work, we overcame the problem by
means of sample fractionation based on the different devel-
opmental phases and types of mycelium recently described
for Streptomyces (MI/12h, Mll/24h, and MII/72h) (1-6) (Fig. 1).
By using iTRAQ labeling and LC-MS/MS, we were able to
identify a total of 626 proteins (8% of S. coelicolor proteome)
in at least one of the two biological replicates analyzed. Three

hundred and fifty-nine of these proteins were detected in both
biological replicates (4.6% of the proteome), and 345 (4.4% of
the proteome) were quantified with high confidence (Fig. 3).
The MI proteome was particularly rich in primary metabolism
proteins, whereas the MIl proteome was enriched in proteins
involved in secondary metabolism, stress, defense, and trans-
port (Table | and Figs. 5 and 6). Overall, the switching on of
secondary metabolism correlates with hypha differentiation.
Knowledge of the mycelial stage involved in secondary me-
tabolism is an important aspect of Streptomyces biology that
will open new perspectives in the experimentation with this
bacterium, including submerged cultures in which there is no
sporulation, but the MIl stage exists (7). These aspects will
have repercussions in industrial fermentations where condi-
tions that allow hypha differentiation have been largely ig-
nored (7).

S. coelicolor A3(2) developmental mutants have been useful
for the genetic and biochemical analysis of the differentiation
cycles. The so-called “bald” (bld) mutants (considered defec-
tive in aerial growth) (34, 35) and “white” (whi) mutants (de-
fective in the formation of mature gray spores on the fluffy
aerial mycelium) (36, 37) fail to complete normal development.
The bld genes control the onset of aerial hypha formation by
regulating the expression of genes involved in the production
of SapB (38-41), rodlins (42), and chaplins (43). In this work,
proteins encoded by these genes were identified and quanti-
fied. The BIdK complex, implicated in the initiation of the bald
signaling network, is a well known oligopeptide transporter
that acts as a differentiation signal for S. coelicolor (44, 45).
Two components of the Bldk ABC transporter complex (BldkB
and BIdkD) were quantified in lesser abundance in the Ml
than in the MI (Table Il), consistent with a role in the early
development. ¢ factor H (SC05243) is another well charac-
terized regulatory protein whose gene expression has been
described coinciding with the onset of aerial mycelium forma-
tion (47). SigH was more abundant in the cytosolic fraction of
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Fic. 7. Proteins detected in more than one subcellular fraction. A, iTRAQ ratios for proteins identified in more than one subcellular
fraction. Values are the average of the two biological replicates analyzed meeting the reproducibility criteria described under “Experimental
Procedures.” C, cytosolic; I, membrane intrinsic; E, membrane extrinsic. B, proteins with different abundance values between subcellular

fractions. Error bars correspond to the S.D. See text for details.

the MII/24h, indicating that this mycelium was already in-
volved in a differentiation process. This result was consistent
with some reports describing an “ectopic expression” of the
sigH gene in the substrate mycelium of b/dD mutant strains
(48). BldH (AdpA, SC0O2792) is an AraC-like protein consid-
ered a “master regulator” through which bldA exerts its ef-
fects on differentiation and secondary metabolism (for a re-
view, see Ref. 46). It was more abundant (1.84-fold; Table Il)
in the MIl/24h with respect to the rest of the mycelial types,
confirming its role in the developmental phases preceding the
formation of hydrophobic covers (19). BIdG (SCO3549) is a
transcriptional regulator involved in one of the latter steps of
the bald cascade and S. coelicolor sporulation (33). lts ex-
pression was similar in MIl/24h and MII/72h (Table Il), sup-
porting that these mycelial types share similar differentiation

processes. SCO5046 is a WhiB family o factor regulating the
final sporulation steps (26, 37). This protein was more abun-
dant (2.02-fold; Table Il) in MIl/72 than in MI and MII/24h,
consistent with its role in sporulation and hydrophobic cover
formation. In short, the expression pattern of all these devel-
opmental proteins confirmed that MIl/24h is already involved
in a differentiation process and is functionally distinct from MI.
The main differences between the second mycelial types
resided in the proteins involved in hydrophobic cover forma-
tion and the final stages of sporulation (AdpA, BIdK, and
WhiB) but not in the proteins regulating physiology and early
stages of sporulation (BIdG and SigH transcriptional
regulators).

SCO1230 (putative tripeptidyl aminopeptidase; 28-fold),
SCO3834 (lipid metabolism; 13-fold), SCO5385 (lipid metab-
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olism; 5-fold), SCO5368 (ATP synthase C chain; 5-fold), and
SCO5466 (putative autolytic lysozyme; 15-fold) were detected
in greatest abundances in the MII/72h with respect to the
other developmental stages. SC01230, SC03834, and
SCO5385 are degradative proteins, which could be involved
in an extensive degradation of some cellular constituents
(proteins and lipids) accompanying antibiotic production. The
overexpression of the ATP synthase (SC0O5368) might indi-
cate that several reduced cofactors are being produced and
thus that somehow central metabolism is likely to be very
active. SCO5466 shows homologies with Clostridium auto-
lytic lysozymes and could be involved in the reorganization of
the cell wall accompanying hypha fragmentation into spores.
In addition, several uncharacterized regulatory proteins were
detected as being differentially expressed during the Strep-
tomyces hypha differentiation process (Table Il). The biologi-
cal functions of many of these proteins are not characterized
in Streptomyces, and further work will be necessary to deter-
mine their role in differentiation.

Some proteins were detected in more than one subcellular
fraction (supplemental Table 4 and Fig. 7), which might be
explained by cross-contamination. However, the fact that
these proteins are a minority (38% of all the identified pro-
teins) (Fig. 3), that their relative abundances were similar in
both MIl stages and different in MI, and that some of them
showed different iTRAQ ratios among cellular compartments
suggested that this is not the case (Fig. 7). Moreover, some of
these proteins have been described in other organisms as
present in more than one subcellular fraction. For instance,
SCO1965 belongs to the TerD family of proteins, which may
be associated with protein export systems (49); SC0O4296
belongs to the GroEL type chaperonins, which are present in
the cytosol but also interact with membranes (50).

In summary, the highly detailed and comprehensive quan-
titative proteomic analysis of the S. coelicolor M145 differen-
tiation stages presented here constitutes the most complete
database of protein profiles during Streptomyces develop-
ment in solid cultures described to date. Several proteins
were detected as being differentially expressed during devel-
opment, and their detailed genetic and biochemical analyses
will undoubtedly provide valuable information on Streptomy-
ces differentiation processes in the future.
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