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Abstract. We present nondeterministic hypotheses learned from an or-
dinal regression task. They try to predict the true rank for an entry,
but when the classification is uncertain the hypotheses predict a set of
consecutive ranks (an interval). The aim is to keep the set of ranks as
small as possible, while still containing the true rank. The justification
for learning such a hypothesis is based on a real world problem arisen in
breeding beef cattle. After defining a family of loss functions inspired in
Information Retrieval, we derive an algorithm for minimizing them. The
algorithm is based on posterior probabilities of ranks given an entry. A
couple of implementations are compared: one based on a multiclass SVM
and other based on Gaussian processes designed to minimize the linear
loss in ordinal regression tasks.

1 Introduction

In the last few years, ordinal regression has become an important issue in Ma-
chine Learning research. See [1] and [2] for a state of the art introduction. The
aim of ordinal regression is to find hypotheses able to predict classes or ranks
that belong to a finite ordered set. Applications include Information Retrieval
[3], Natural Language Processing [4], collaborative filtering [5], finances [6], and
user preferences [7].

The approach presented in this paper explores a new kind of predictions in
ordinal regression. We shall build hypotheses that try to predict the true rank
for an entry, but when the classification is uncertain the hypotheses predict an
interval of ranks. The aim is to return a set of consecutive ranks, such that the
set is as small as possible, while still containing the true rank. As we shall learn
hypotheses for ordinal regression tasks with multiple outcomes, like nondeter-
ministic automata, we shall call them nondeterministic ordinal regressors. From
another point of view, these hypothesis could be called set-valued predictors.

Predictors of more than one class are not completely new. Given an error ε,
the so called confidence machines, make conformal predictions [8]: they produce
a set of labels containing the true class with probability greater than 1−ε. Other
approaches arose in the context of hierarchical organization of biological objects:
predicting gene functions [9], or mapping biological entities into ontologies [10].



In the next Section we shall show the usefulness of these nondeterministic
hypotheses in a real world application context: the assessment of muscle propor-
tion in carcasses of beef cattle. This is an important question in cattle breeding
since this proportion determines, on the one hand, the prices to be obtained by
carcasses, and on the other hand, the genetic value of animals to select studs for
the next generation.

We formalize the problem of nondeterministic predictions as a special kind of
Information Retrieval. Thus, we define a family of loss functions Fβ and derive
an algorithm for minimizing this loss. The algorithm needs the estimation of
posterior probabilities of ranks given the entries. Then, we compare a couple of
implementations built on the estimations provided by a SVM [11], and by the
Gaussian approach of [1] devised for ordinal regression tasks.

The last Section of the paper presents an exhaustive set of experiments car-
ried out in order to test the performance of the nondeterministic approach. Thus,
in addition to the beef cattle learning task, we shall use 24 datasets publicly
available that were previously used in ordinal regression tasks [1, 12].

2 The Round Profile of Bovines

The problem that motivated the research reported in this paper arose when
we were trying to make reliable predictions of the value of the carcasses of
beef cattle. This learning task was proposed by ASEAVA, the Association of
Breeders of a beef breed of the North of Spain, Asturiana de los Valles. This
is a specialized breed with many double-muscled individuals; their carcass have
dressing percentages over 60%, with muscle content over 75%, and with a low
(8%) percentage of fat [13]. The market target of these carcasses is made up of
those consumers that prefer lean meat without any marbling [14, 7, 15]

Even if the animals are not going to be slaughtered, the prediction of car-
cass value of a beef cattle is interesting since it can be considered as a kind
of assessment that is useful for breeders to select the progenitors of the next
generation. Thus, the ICAR (International Committee for Animal Recording)
acknowledges as a good practice the recording of live animal assessments; since
these assessments are a description of an animal’s morphology that reveals part
of its economic value.

The records so obtained can be used for the evaluation of programs of genetic
selection of dairy, dual purpose and specialized beef breeds. The growth of the
scores over years of selection for specific goals can be seen as a measure of the
success of the selection policy. On the other hand, when the assessed traits are
heritable, the scores can be directly used for selection purposes given that they
are capturing part of animal’s genetic value.

Traditionally, the assessment procedures were based on visual appreciations
of well trained technicians that had to rank a number of morphological char-
acteristics that include linear lengths of significant parts of animals’ bodies.
Although this process has been used successfully, it is clear that there is a prob-
lem with the repeatability of the assessments; not only between assessors, but
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Fig. 1. The assessment of the round profile of a beef cattle is a measurement of the
roundness of the lines drawn in the pictures. Thus, the leftmost cow in the top row is
a paradigm of the animals which have rank 1, while the following are representative
examples of ranks 2, 3 and 4 respectively

even within assessors scoring the same animal in different times. In order to
overcome these difficulties, we developed a new assessment method described
in [16] that is almost completely repeatable and can be carried out using just
3 lengths (in centimeters) plus the appreciation of the curvature of the round
profile (see the curves in Figure 1). For this learning task we used a kernel based
method described in [17].

The aim of the assessment of round profiles is to rank the muscularity of
animals. Therefore, it is a very important attribute for describing beef cattle.
However, the curvature of the round profile is assessed by visual appreciations
of experts. But visual appreciations is a source of problems. Thus, for instance,
in [18], the authors describe an experiment in which a set of expert graders were
asked to rank a collection of mushrooms into three major and eight subclasses of
commercial quality. Grader consistency was assessed by repeated classification
(four repetitions) of two 100-mushroom sets. Grader repeatability ranged from
6% to 15% misclassification.

Therefore, returning to beef cattle, to ensure the repeatability of the whole
process, we should skip the subjective appreciation of the rank of round profiles.
Thus, a new learning task arises: to estimate this rank from repeatable live
animal descriptions. For this purpose, we built a dataset with 891 pairs of animal
descriptions (6 lengths in centimeters of their bodies, live weight, and sex) and



ranks (in a scale of 1-4). To ensure a uniform criterion, the first author of this
paper measured and ranked the round profile of the 891 live animals.

But this is a difficult learning task. The classification accuracy achieved by
a multiclass SVM was 77%; the implementation used was a probabilistic libsvm
[11]. These results are not improved when using a learner specially devised for
ordinal regression tasks. Thus, using the MAP approach of [1], the accuracy was
76%. The details about how we obtained these scores are included in the last
section devoted to report a number of experimental results. On the other hand,
we shall prove that a nondeterministic hypothesis contains the true class more
than 84% of cases, while the average number of ranks predicted is just 1.21 or
1.30 depending of the learner used.

Moreover, the nondeterministic approach is more useful than the plain deter-
ministic one in this problem for several reasons. First, the reliability of hypothesis
predictions is higher than in the deterministic case. Therefore, when the hypoth-
esis predicts only one rank, the estimation of the rank is very probably the true
one. Second, when the prediction is an interval of more than one rank, we can
appeal to a more expensive procedure to finally decide the true class. In this
case, we may turn to an actual expert, or we can wait until the natural growth
of the animal make the classification more clear.

However, sometimes even a nondeterministic prediction may be useful to
discard an animal as stud for the next generation: a prediction of [1, 2] must
imply a poor genetic value as meat producer, provided that the hypothesis is
sufficiently reliable.

3 Formal Framework

Let X be an input space, and Y a finite set of ordered ranks. Without any loss
of generality, we can assume that Y = {1, . . . , k} for a given k. We shall consider
an ordinal regression task given by a training set S = {(x1, y1), . . . , (xn, yn)}
drawn from an unknown distribution Pr(X,Y ) from the product X ×Y. Within
this context, we propose the following

Definition 1. A nondeterministic hypothesis is a function h from the input
space to the set of non-empty intervals (subsets of consecutive ranks) of Y; in
symbols,

h : X −→ Intervals(Y). (1)

The aim of such a learning task is to find a nondeterministic hypothesis h
from a space H that optimizes the expected prediction performance (or risk) on
samples S′ independently and identically distributed (i.i.d.) according to the
distribution Pr(X,Y ):

R∆(h) =
∫
∆(h(x), y) d(Pr(x, y)), (2)

where ∆(h(x), y) is a loss function that measures the penalty due to the predic-
tion h(x) when the true value is y.



In nondeterministic ordinal regression, we would like to favor those decisions
of h that contain the true ranks, and a smaller rather than a larger number of
ranks. In other words, we interpret the output h(x) as an imprecise answer to
a query about the right rank of an entry x ∈ X . Thus, the nondeterministic
ordinal regression can be seen as a kind of Information Retrieval task for each
entry.

In Information Retrieval, performance is compared using different measures
in order to consider different perspectives. The most frequently used are the
Recall (proportion of all relevant documents that are found by a search) and
Precision (proportion of retrieved documents that are relevant). The harmonic
average of the two amounts is used to capture the goodness of a hypothesis in
a single measure. In the weighted case, the measure is called Fβ . The idea is to
measure a tradeoff between Recall and Precision.

For further references, let us recall the formal definitions of these Information
Retrieval measures. Thus, for a prediction of a nondeterministic hypothesis h(x)
with x ∈ X , and a rank y ∈ Y, we can compute the following contingency
matrix, where z ∈ Y,

y = z y 6= z
z ∈ h(x) a b
z /∈ h(x) c d

(3)

where each entry (a, b, c, d) is the number of times that happens the correspond-
ing combination of memberships. Thus, notice that a can only be 1 or 0, de-
pending on whether the rank y is in the prediction h(x) or not; b is the number
of ranks different from y included in h(x); c = 1 − a; and d is the number of
ranks different from y that are not in h(x).

According to the matrix (Eq. 3), if h is a nondeterministic hypothesis, and
(x, y) ∈ X × Y, we have the next definitions.

Definition 2. The Recall in a query (i.e. an entry x) is defined as the propor-
tion of relevant ranks (y) included in h(x):

R(h(x), y) =
a

a+ c
= a = 1y∈h(x). (4)

Definition 3. The Precision is defined as the proportion of retrieved ranks in
h(x) that are relevant (y):

P (h(x), y) =
a

a+ b
=

1y∈h(x)

|h(x)|
. (5)

In other words, given an hypothesis h, the Precision for an entry x, that is
P (h(x), y), is the probability of finding the true rank (y) of the entry (x) by
randomly choosing one of the ranks of h(x).

Finally, the tradeoff is formalized by

Definition 4. The Fβ, in general is defined by

Fβ(h(x), y) =
(1 + β2)a

(1 + β2)a+ b+ β2c
. (6)



Table 1. For an entry x with rank 1, (y = 1), Precision, Recall, F1, and F2 for different
predictions of a nondeterministic classifier h

h(x) Precision Recall F1 F2

[1, 2, 3] 0.33 1 0.50 0.71
[1, 2] 0.50 1 0.67 0.83
[1] 1 1 1 1

[2, 3, 4] 0 0 0 0

Thus, for a nondeterministic classifier h and a pair (x, y),

Fβ(h(x), y) =

{
1+β2

β2+|h(x)| if y ∈ h(x)
0 otherwise.

(7)

The most frequently used F-measure is F1. For ease of reference, let us state
that

F1(h(x), y) =
2y∈h(x)

1 + |h(x)|
. (8)

To illustrate the use of F-measures of an entry, let us consider an example.
If we assume that the true rank of an entry x is 1, (y = 1), then, depending on
the value of h(x), Table 1 reports the Recall, Precision, F1, and F2. We observe
that the reward attached to a prediction containing the true rank with another
extra rank ranges from 0.667 for F1 to 0.833 for F2; while the amounts are lower
when the prediction includes 2 extra ranks.

Once we have the definition of Fβ for individual entries, it is straightforward
to extend it to a test set. So, when S′ is a test set of size n, the average loss on
it will be computed by

R∆(h, S′) =
1
n

n∑
j=1

∆(h(x′
j), y′j) =

1
n

n∑
j=1

(
1− Fβ(h(x′

j), y′j)
)

(9)

=
1
n

n∑
j=1

(
1− 1 + β2

β2 + |h(x′
j)|

1y′
j∈h(x

′
j)

)
.

It is important to realize that for a deterministic hypothesis h this amount
is the average ”0/1” loss, since all predictions are singletons, |h(x)| = 1. Thus,
the nondeterministic loss used here is a generalization of the error rate of deter-
ministic classifiers. Furthermore, the average Recall and Precision on test sets
can be similarly defined. In this case, the Recall on a test set is the proportion
of times that h(x′) includes y′, and is thus a generalization of the deterministic
accuracy.



Algorithm 1 The nondeterministic ordinal regressor nd •, an algorithm for
computing the prediction with one or more ranks for an entry x provided that
the posterior probabilities of ranks are given

Input: object description x
Input: {Pr(j|x) : j = 1, .., k}
for i =1 to k do

[Start+(i), P r Inter+(i)] = max
nPj+i−1

t=j Pr(t|x) : j = 1, . . . , k − i + 1
o

/* Pr Inter+(i) is the highest probability of the intervals of length i */
/* This interval starts at class Start+(i) */

end for
Min = argmin

n
1− 1+β2

β2+i
Pr Inter+(i) : i = 1, . . . k

o
return

ˆ
Start+(Min), Start+(Min) + Min− 1

˜

4 How to Learn Intervals of Ranks with Posterior
Probabilities

In the general ordinal regression setting presented in Section 3, let x be an
entry of the input space X , and let us now assume that we know the conditional
probabilities of ranks given the entry, Pr(rank = j|x) for j ∈ {1, . . . , k}. In this
context, we wish to define

h(x) = Z ∈ Intervals{1, . . . , k} (10)

that minimizes the risk defined in (Eq. 2) when we use the nondeterministic loss
given by Fβ (Eqs. 6, 7, and 9). We shall prove that such h(x) can be computed
by Algorithm 1.

Proposition 1. (Correctness) If the conditional probabilities Pr(j|x) are known,
Algorithm 1 returns the nondeterministic prediction h(x) that minimizes the risk
given by the loss 1− Fβ.

Proof. To minimize the risk (Eq. 2), it suffices to compute

∆x(Z) =
∑
y∈Y

∆(Z, y)Pr(y|x) =
∑
y∈Y

(1− Fβ(Z, y))Pr(y|x), (11)

with Z ∈ Intervals{1, . . . , k}. Then, we only have to define

h(x) = argmin{∆x(Z) : Z ∈ Intervals{1, . . . , k}}. (12)

First we shall prove that when Z is an interval of length i, say Z = [s, s+i−1],
given x, the value of Equation (11) can be expressed in function of i and the
probability of the interval. In fact, with a probability of 1−Pr(Z|x), we expect
a loss of 1: the true rank will not be one of the interval Z. On the other hand,
with the probability of Z, the true rank will be in h(x), and therefore the loss



will be 1 minus the Fβ of the prediction h(x) = Z = [s, s+ i− 1]. In symbols,

∆x(Z) = ∆x ([s, s+ i− 1])

=

1−
s+i−1∑
j=s

Pr(j|x)

 1 +

s+i−1∑
j=s

Pr(j|x)

(1− 1 + β2

β2 + i

)

= 1− 1 + β2

β2 + i

s+i−1∑
j=s

Pr(j|x). (13)

Therefore, the interval of length i with lower loss starts at Start+(i) according
to the Algorithm 1; moreover, its loss is

1− 1 + β2

β2 + i
Pr Inter+(i). (14)

Thus if Min is the length that gives rise to the lowest loss, the output of the
Algorithm is the value of Equation 12 as we wanted to prove.

In practice, posterior probabilities are not known: they are estimated by algo-
rithms that frequently try to optimize the classification accuracy of a hypothesis
that returns the class with the highest probability. In other words, probabilities
are discriminant values instead of thorough descriptions of the distribution of
classes in a learning task. Therefore, the actual role of β in Algorithm 1 is that of
a parameter that fixes the thresholds to decide the number of ranks to predict.
Hence, like other parameters, β should be tuned in order to achieve optimal
results. Thus, depending of the learning task and the probabilistic learner, to
reach the highest F1 scores, it might be necessary to use in Algorithm 1 a value
of β different from 1.

5 Experimental Results

In this section we report the results of a set of experiments designed to evaluate
the nondeterministic learners proposed in this paper. The aim is to compare,
on the one hand, the F1 scores of well known deterministic learners and their
nondeterministic counterparts. It may be argued that these comparisons are not
completely fair since the F1 score tolerates predictions of more than one rank,
where it is easier to include the true one. In any case, we report these comparisons
in order to test the capabilities of nondeterministic versions to achieve slightly
better F1 scores than their deterministic counterparts. On the other hand, we
shall compare the Recall and size of predictions attained by nondeterministic
learners.

Additionally, since we are dealing with ordinal regression tasks, we check
the performance of nondeterministic algorithms in linear loss (sometimes called
MAD, mean absolute deviation, or MAE, mean absolute error). For this purpose,
we must assume singleton predictions; thus, we shall consider the center of each



Table 2. Description of the datasets used in the experiments. The classes are real
numbers, and they were discretized in 5 or 10 equal-frequency bins. The splits in
train/test were suggested by the experiments reported in [1]

Dataset #Attributes #Train #Test

pyrimidines 27 50 24
triazines 60 100 86
Wisconsin bc 32 150 44
machine cpu 6 150 59
auto mpg 7 200 192
stock 9 300 650
Boston 13 300 206
abalone 8 300 3877
bank 32 300 7892
computer 21 300 7892
California 8 300 20340
census 16 300 22484

interval as the prediction attached to every interval h(x). The idea is to consider
that each rank r can be interpreted as the interval [r − 0.5, r + 0.5] in the real
line; thus, a prediction of, say, [3, 4] represents the real interval [2.5, 4.5], and the
center point is 3.5.

We used two kinds of learning tasks. In addition to the dataset of beef cattle
profiles explained in Section 2, we used a collection of 12 benchmarks (Table 2)
that were originally used for metric regression learning tasks. They are publicly
available at Lúıs Torgo’s repository1. When they were used for ordinal regres-
sion in papers like [1, 12], the continuous class values were discretized. We used
versions with five and ten bins with the same frequency of training examples.
The resulting rank values were ordered according to the original metric classes.

To compare the performance of different approaches, we randomly split each
data set into training/test partitions. Table 2 reports the characteristics of these
datasets and the sizes of splits. The partition was repeated 20 times indepen-
dently.

Since the nondeterministic approach proposed in this paper is based on the
estimation of posterior probabilities of ranks, we used two alternative methods
for this stage. First, we used a multiclass SVM that estimates the probability of
each class given an entry; the implementation used was libsvm [11]. The non-
deterministic version built from it, following Algorithm 1, was called nd SVM.
Second, we used the MAP approach of [1] that was devised for ordinal regression
tasks. It provides estimations of posterior probabilities using Gaussian processes.
The nondeterministic counterpart was called nd MAP. The use of MAP in the
experiments required reduced sizes of training sets (Table 2) similar to those

1 http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html



used in [1]. Nevertheless, the computational requirements of SVM would allow
us to use nd SVM in tasks of bigger sizes.

Parameter setting. With the SVM we used a rbf kernel. To set the regularization
parameter C and the rbf kernel parameter σ, we performed a grid search using
a 2-fold cross validation repeated 5 times. The initial search was done with
C ∈ {10−3, . . . , 103} (respectively σ ∈ {10−3, . . . , 102}) varying the exponent
in steps of 1. Let C ′ and σ′ be the best parameters found; then followed a fine
search from C ′ − 0.8 (respectively σ′ − 0.8) to C ′ + 0.8 (respectively σ′ + 0.8)
with a step of 0.2. Additionally, for nd SVM we searched within β ∈ {0.5, 1, 1.5},
while the fine search explored the best β−0.2, and the best β+0.2. We looked for
a β, instead of simply using β = 1, since we wished to compensate any possible
inaccuracy in the estimation of probabilities.

The MAP learner was used with its default parameters, and no additional
tuning was required. The nondeterministic version nd MAP used the search for
β of the nd SVM.

The scores achieved in F1 are shown in Table 3. The nondeterministic learner
based on MAP bears favorable comparison with the learner based on SVM. Thus,
nd MAP wins in 18 out of 24 datasets, while nd SVM only wins 3 times out of
24; most of these victories are statistically significant using a Wilcoxon rank sum
test of 1-tail over the 20 trials. Comparing the performance over the 24 datasets,
we also appreciate significant differences (using a Wilcoxon test with p < 0.01) in
favor of nd MAP. Therefore, the nondeterministic version of MAP outperforms
the version based on SVM in F1 when we are using sizes of training sets similar
to those showed in Table 2. In the comparison of deterministic versus nondeter-
ministic, in all cases the nondeterministic version outperforms its deterministic
counterpart; all but one cases are statistically significant with p < 0.01.

The scores in Recall are reported in Table 4. Again nd MAP wins in 17 out
of 24 datasets, while nd SVM only wins 4 times out of 24; however, now the
differences are not so frequently significant. To compare Recall scores with those
achieved by the deterministic versions, let us remember that for deterministic
algorithms, the proportion of successful predictions (accuracy) is also the F1 and
the Recall. Therefore, comparing the last two columns of Table 3 and the Recall
columns of Table 4, we appreciate that the nondeterministic learners outperform
the deterministic versions. Thus, in 5 bins datasets, the differences are about
0.24, while in 10 bins datasets the differences are even higher: about 0.31. These
results are logical since nondeterministic predictions have more opportunities to
include the true ranks.

The average sizes of predictions are shown in the last two columns of Table 4.
Here we observe that in the learning tasks of 5 bins these sizes in average are
below 2, while with 10 bins, the predictions used more than 3 ranks in average.

The explanation for these facts is straightforward. The nondeterministic al-
gorithms tend to accumulate as many ranks as they are allowed by the F1; thus,
in tasks in which the deterministic learners have a poor performance, the corre-
sponding nondeterministic learner may include more ranks in their predictions



Table 3. F1 scores of the two nondeterministic algorithms and their deterministic
counterparts. The results are the averages over 20 trials. In bold face we emphasize the
highest score of each dataset. Additionally we test the statistical significance of some
interesting differences: between nd MAP and nd SVM (see the first column labeled by
si.), nd MAP versus MAP (second si. column), and nd SVM versus SVM (last si. col-
umn). The symbols † (respectively ‡) show that differences are statistically significant
using a threshold of 0.05 (respectively 0.01) in a Wilcoxon rank sum test

# Bins Dataset nd MAP (si.) nd SVM MAP (si.) SVM (si.)
5 pyrimidines 0.58 ‡ 0.52 0.57 0.45 ‡

triazines 0.40 0.39 0.34 ‡ 0.30 ‡
Wisconsin bc 0.38 ‡ 0.34 0.29 ‡ 0.26 ‡
machine cpu 0.66 ‡ 0.64 0.60 ‡ 0.59 ‡
auto mpg 0.73 ‡ 0.69 0.72 ‡ 0.67 ‡
stock 0.86 † 0.87 0.86 ‡ 0.86 ‡
Boston 0.71 ‡ 0.68 0.68 ‡ 0.66 ‡
abalone 0.53 0.53 0.47 ‡ 0.47 ‡
bank 0.50 ‡ 0.47 0.44 ‡ 0.40 ‡
computer 0.71 ‡ 0.71 0.69 ‡ 0.68 ‡
California 0.57 0.57 0.52 ‡ 0.52 ‡
census 0.53 ‡ 0.51 0.48 ‡ 0.46 ‡
Average (5 b) 0.597 0.576 0.555 0.527

10 pyrimidines 0.35 ‡ 0.27 0.28 ‡ 0.19 ‡
triazines 0.23 0.23 0.16 ‡ 0.16 ‡
Wisconsin bc 0.21 ‡ 0.19 0.15 ‡ 0.13 ‡
machine cpu 0.46 0.45 0.36 ‡ 0.37 ‡
auto mpg 0.51 ‡ 0.47 0.44 ‡ 0.35 ‡
stock 0.73 ‡ 0.76 0.70 ‡ 0.74 ‡
Boston 0.47 † 0.48 0.41 ‡ 0.42 ‡
abalone 0.35 ‡ 0.34 0.28 ‡ 0.27 ‡
bank 0.31 ‡ 0.28 0.24 ‡ 0.20 ‡
computer 0.53 ‡ 0.51 0.48 ‡ 0.45 ‡
California 0.39 ‡ 0.37 0.32 ‡ 0.30 ‡
census 0.34 ‡ 0.32 0.27 ‡ 0.25 ‡
Average (10 b) 0.407 0.388 0.342 0.320
Average all 0.502 0.482 0.449 0.423

than in easier tasks. And it is clear that the learning tasks with 5 bins are easier
than versions with 10 bins.

Considering the performance over all datasets, we can only find significant
differences in Recall with p < 0.06; while the differences in size of predictions are
definitively not significant.

Finally, Table 5 shows the scores achieved in linear loss. This is a relevant
measure since we are dealing with ordinal regression learning tasks. Although
the nondeterministic algorithms were not designed to improve the linear loss, we
observe a good performance. Let us recall here that MAP is a state of the art
learner for these tasks. In datasets of 5 bins, MAP wins nd MAP 8 times out
of 12, with only 2 times out of 12 victories for nd MAP. While nd MAP wins 7
times out of 12, against 4 wins out of 12 for MAP. The result is that differences
over the 24 datasets are not statistically significant.



Table 4. Scores of Recall and average size of predictions (|h(x)|) for nondeterministic
algorithms. Notice that for deterministic algorithms, the proportion of successful pre-
dictions (accuracy) is also the F1 and the Recall (see Table 3). The best scores for each
dataset are in bold. When the differences are statistically significant in a Wilcoxon
rank sum test, they are marked with † (threshold of 0.05) or ‡ (0.01)

Recall aver. |h(x)|
# Bins Dataset nd MAP (si.) nd SVM nd MAP (si.) nd SVM

5 pyrimidines 0.71 0.73 1.53 ‡ 1.95
triazines 0.78 † 0.71 3.04 2.75
Wisconsin bc 0.79 † 0.83 3.21 ‡ 3.84
machine cpu 0.84 † 0.80 1.67 1.61
auto mpg 0.80 0.80 1.22 ‡ 1.34
stock 0.92 † 0.91 1.16 ‡ 1.12
Boston 0.80 0.78 1.30 1.35
abalone 0.75 ‡ 0.70 2.02 ‡ 1.80
bank 0.74 † 0.77 2.08 ‡ 2.45
computer 0.82 0.81 1.35 1.34
California 0.78 0.75 1.83 † 1.74
census 0.74 0.73 1.93 1.89
Average (5 b) 0.788 0.777 1.862 1.931

10 pyrimidines 0.73 0.71 3.32 ‡ 4.74
triazines 0.73 0.68 5.80 5.17
Wisconsin bc 0.68 ‡ 0.86 5.42 ‡ 8.18
machine cpu 0.80 0.77 2.75 2.69
auto mpg 0.76 0.76 2.04 ‡ 2.29
stock 0.83 0.82 1.33 ‡ 1.21
Boston 0.66 0.72 1.92 ‡ 2.20
abalone 0.68 † 0.64 3.35 ‡ 3.06
bank 0.70 0.69 3.85 ‡ 4.33
computer 0.74 † 0.72 1.95 1.97
California 0.69 0.67 2.92 2.84
census 0.66 0.66 3.17 3.23
Average (10 b) 0.721 0.725 3.151 3.492
Average all 0.755 0.751 2.507 2.712

On the other hand, in linear loss, nd MAP outperform nd SVM in most of the
datasets with differences statistically significant, see Table 5. The performance
over all datasets is again statistically significant with p < 0.01. Finally, let us
point out that the nondeterministic nd SVM outperforms (significantly with
p < 0.01) SVM.

Profiles. Tables 6 summarize the scores achieved in the learning task described
in Section 2. We used two datasets of sizes 300 and 500. The scores are quite
similar for both sizes. Almost always, nd SVM outperforms nd MAP significantly
(p < 0.01) in F1 and linear loss, although the scores are quite similar. On the
other hand, nd MAP is superior to nd SVM in Recall, but again the scores are
similar and the significance is only achieved with p < 0.1 in one of the datasets.
The differences are clearly significant (p < 0.01) in the size of the predictions;



Table 5. Linear loss scores of the two nondeterministic algorithms and their deter-
ministic counterparts. The lowest scores for each dataset are highlighted in bold. When
the differences are statistically significant in a Wilcoxon rank sum test, they are marked
with † (threshold of 0.05) or ‡ (0.01)

# Bins Dataset nd MAP (si.) nd SVM MAP (si.) SVM (si.)
5 pyrimidines 0.55 ‡ 0.65 0.52 † 0.77 ‡

triazines 1.07 1.10 1.18 ‡ 1.34 ‡
Wisconsin bc 1.12 ‡ 1.19 1.36 ‡ 1.44 ‡
machine cpu 0.48 0.48 0.45 ‡ 0.46 †
auto mpg 0.32 ‡ 0.37 0.30 ‡ 0.35 ‡
stock 0.16 ‡ 0.15 0.14 ‡ 0.14 ‡
Boston 0.36 ‡ 0.41 0.34 ‡ 0.40 †
abalone 0.72 † 0.73 0.72 0.75 ‡
bank 0.76 ‡ 0.83 0.76 0.90 ‡
computer 0.37 0.38 0.34 ‡ 0.36 ‡
California 0.63 † 0.62 0.59 ‡ 0.60 ‡
census 0.73 ‡ 0.77 0.71 ‡ 0.79 †
Average (5 b) 0.607 0.640 0.618 0.692

10 pyrimidines 1.24 ‡ 1.88 1.31 † 2.25 ‡
triazines 2.23 2.21 2.79 ‡ 2.58 ‡
Wisconsin bc 2.44 2.48 3.08 ‡ 3.14 ‡
machine cpu 0.95 0.96 0.95 1.04 ‡
auto mpg 0.74 ‡ 0.80 0.69 ‡ 1.38 †
stock 0.34 ‡ 0.30 0.31 ‡ 0.28 ‡
Boston 1.06 ‡ 0.87 1.04 ‡ 0.89 ‡
abalone 1.47 ‡ 1.53 1.57 ‡ 1.71 ‡
bank 1.55 ‡ 1.76 1.65 ‡ 2.11 ‡
computer 0.75 ‡ 0.76 0.72 ‡ 0.80 ‡
California 1.22 ‡ 1.26 1.26 ‡ 1.36 ‡
census 1.49 ‡ 1.58 1.58 ‡ 1.71 ‡
Average (10 b) 1.289 1.365 1.413 1.603
Average all 0.948 1.002 1.015 1.147

nd SVM only requires an average of 1.21 or 1.22 ranks to reach a proportion of
85% of predictions that contain the true rank.

6 Conclusions

We have presented a new kind of ordinal regressors: they are able to predict a
variable number of consecutive ranks (an interval of ranks) for each entry. We
call such set-valued hypotheses nondeterministic regressors. Roughly speaking,
the approach presented in this paper addresses the problem of deciding what
to predict when it is possible to envision that the label returned by a learning
algorithm is uncertain. The utility of these predictions was illustrated in the
context of a real world application: the assessment of muscle proportion in beef
cattle carcasses.

After presenting the formal framework as a kind of Information Retrieval, we
proposed a family of loss functions for nondeterministic ordinal regression: the
complementary of Fβ measures. Next we derived an algorithm to minimize such



Table 6. Profiles (see Section 2). Dataset characterizations, and scores achieved by
deterministic and nondeterministic algorithms. All differences are statically significant
(p < 0.01) but those achieved in Recall (p < 0.1)

Dataset #Attributes #Train #Test

Profiles 500 8 500 391
Profiles 300 8 300 591

Dataset nd MAP (si.) nd SVM MAP (si.) SVM (si.)

F1 Profiles 500 0.78 ‡ 0.79 0.76 ‡ 0.77 ‡
Profiles 300 0.77 ‡ 0.78 0.76 ‡ 0.77 ‡

Linear Profiles 500 0.28 † 0.28 0.29 † 0.27
loss Profiles 300 0.29 ‡ 0.28 0.30 ‡ 0.27 ‡

Recall aver. |h(x)|
Dataset nd MAP (si) nd SVM nd MAP (si.) nd SVM

Profiles 500 0.85 0.84 1.28 ‡ 1.21
Profiles 300 0.85 0.84 1.30 ‡ 1.22

loss functions provided we know the posterior probabilities of each rank given
the entry to be ranked. To check the influence of the estimation of conditional
probabilities we compared two implementations. The first one, nd SVM is based
on a probabilistic SVM, while the second (nd MAP) is built on MAP, a learner
specialized in ordinal regression learning tasks that uses Gaussian processes to
estimate posterior probabilities.

The experiments reported in the previous Section show that nd MAP out-
performs nd SVM in almost all measures of performance. Therefore, it is clear
the importance of having good probability estimations. However, MAP is slower
than SVM, and it is not possible to handle datasets of medium or large size with
the approach based on Gaussian processes.

We think that the main goal of nondeterministic ordinal regressors is not to
achieve similar (in fact better) Fβ than their deterministic counterpart. We would
like to emphasize the dramatic improvement in the proportion of predictions that
include the true rank, when the price to be paid for that increase is usually a
tiny proportion of predictions with more than one rank.
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