
UNIVERSIDAD DE OVIEDO

Departamento de Informática

TESIS DOCTORAL

Un modelo dinámico de toma de decisiones para sistemas

de Inteligencia Artificial en videojuegos adaptado al estilo

del jugador

Presentada por:

Sergio Ocio Barriales

para la obtención del título de Doctor en Informática

Dirigida por:

Doctor D. José Antonio López Brugos

Doctor D. Chris Jenner

Gijón, Diciembre de 2010

Agradecimientos

Cuando somos niños, es común escuchar la pregunta “¿qué quieres ser de mayor?”.

Aunque puede variar con el tiempo, llega un momento en el que en nuestra cabeza

va tomando forma una respuesta clara a esta pregunta. A partir de ese momento,

enfocamos nuestros esfuerzos en conseguir cumplir estos sueños de infancia;

aunque no todos lo logramos, yo he tenido el privilegio de cumplirlos. Esta Tesis es

el resultado de todos estos años de trabajo, en los que han sido muchas las

personas las que me han ayudado a estar donde hoy me encuentro.

En primer lugar, he de agradecer a mis padres y mi hermana, por haber alimentado

mis ilusiones, así como a mi prometida por haber estado siempre a mi lado aunque

éstas nos hayan hecho estar lejos de nuestras familias, incluso en tiempos difíciles.

También debo agradecer a mi director, Don José Antonio López Brugos, por

animarme y llevarme a terminar esta Tesis; gran parte de la misma está apoyada

en mi experiencia profesional, la cual no hubiera sido posible sin la confianza

depositada en mí tanto por mi co-director, Chris Jenner, como por Chris Preston,

quienes me dieron la oportunidad de trabajar como ingeniero de IA en

videojuegos. Agradezco igualmente los comentarios y opiniones de Tom Sarkanen.

Tampoco puedo olvidar la inestimable ayuda de mi amigo Richard Pearce, quien

me ha ayudado a que este documento esté redactado correctamente en un idioma

diferente a mi lengua materna, ni a Luis Cascante, que me ayudó a mejorar partes

de este libro, así como de los artículos publicados como parte de esta investigación.

Por último, no puedo dejar de recordar a mis abuelos Roberto Barriales Ardura,

que siempre supo que llegaría donde yo quisiera, y Jesús Ocio Achaerandio, quien,

incluso en su enfermedad, se preocupó por mí y mis estudios; siempre estaréis en

mi corazón.

Acknowledgements

When we are kids, it is common to be asked “what do you want to be when you

grow up?” Even though the answer can vary as time passes, there is a moment, in

our minds, when we have a clear answer to that question. From that moment, we

focus our efforts on achieving our childhood dreams. Not everyone is able to

realise their dreams, but I have been lucky enough to be able to do so. This Thesis

is the outcome of years of hard work, and a lot of people have helped me get where

I am today.

First of all, I must be grateful to my parents and my sister for having cherished my

dreams, as well as to my fiancée for having stood by me all this time, away from

our families, even in hard times.

I must also be grateful to my supervisor, José Antonio López Brugos, for

encouraging me to finish this Thesis; much of it is based on my professional

experience, which I would not have been able to get without the trust my co-

supervisor, Chris Jenner, as well as Chris Preston put in me two years ago, when

they gave me the opportunity to work as a game AI engineer. I thank Tom

Sarkanen for his comments and tips too.

I also cannot forget to thank my friend Richard Pearce for helping me to proofread

this document, and Luis Cascante, who helped me to improve parts of this book, as

well as the papers published as part of this research.

Lastly, I must remember my grandparents Roberto Barriales Ardura, who always

knew I could get wherever I wanted to, and Jesús Ocio Achaerandio, who, even

during his illness worried about me and my studies; you will always be in my

heart.

Resumen

En los últimos años, el videojuego se ha convertido en la industria más exitosa del

negocio del entretenimiento. El desarrollo de un gran juego ya no es algo que

pueda ser llevado a cabo por una única persona trabajando desde su habitación,

sino una enorme tarea donde cientos de personas trabajan juntas para construir

un producto sobresaliente.

Hoy en día, los desarrolladores buscan una característica distintiva que pueda

hacer que sus juegos destaquen entre la competencia. Tradicionalmente, gran

parte del trabajo se dedicaba a conseguir mejores y más deslumbrantes gráficos,

pero, en un momento en el que muchos juegos comparten la misma tecnología

(como Unreal Engine o Anvil), la inteligencia artificial juega un papel fundamental.

Construir comportamientos creíbles y que presenten un desafío puede realmente

marcar la diferencia.

El objetivo esencial de todo juego es ser divertido. Sin embargo, encontrar una

buena definición de “diversión” no es una tarea trivial; cada jugador tiene sus

preferencias, y diseñar una experiencia que todo el mundo pueda disfrutar no es

siempre posible. La mayoría de los sistemas de IA en juegos tratan de mitigar este

problema ofreciendo un tosco método de adaptación, los niveles de dificultad, en

lugar de implementar sistemas completamente adaptativos. Dichos sistemas

deberían ser capaces de identificar diferentes clases de jugadores, y adecuar los

comportamientos de la IA apropiadamente, intentando maximizar la diversión.

La colaboración entre diferentes equipos es también esencial, y permitir que

nuevas ideas puedan ser estudiadas y probadas rápidamente es fundamental.

Son varias las técnicas de IA que se han aplicado a juegos comerciales hasta el

momento, pero ninguna es lo suficientemente completa para ofrecer la posibilidad

de crear prototipos ágil y fácilmente, o modificar los existentes dinámicamente.

Con esta tesis, nuestro objetivo es construir una técnica multi-nivel que nos

permita generar IAs autónomas, ofreciendo, a su vez, un sistema para modificar

sus comportamientos añadiendo o eliminando capas de lógica de más alto nivel de

forma dinámica. También intentamos producir un sistema que pueda ser utilizado

por cualquier miembro del equipo, evitando costosos trabajos adicionales de

ingeniería, a la vez que los juegos se benefician de la capacidad de probar nuevas

ideas velozmente.

Intención y objetivos

Esta tesis surge de la experiencia profesional del autor, y de la necesidad de

mejorar ciertos procesos, así como la comunicación entre ingenieros y otros

equipos para construir la mejor IA posible.

Nuestra intención es construir una IA adaptativa que pueda sorprender a los

jugadores, presentando diferentes desafíos para conseguir que los juegos sean tan

divertidos como sea posible. Sin embargo, tras nuestra investigación inicial, hemos

llegado a la conclusión de que no existe un sistema que pueda utilizarse con este

propósito de forma sencilla. Por tanto, hemos decidido separar el trabajo en dos

fases, siendo la primera la presentada en este trabajo, y que está centrada en

desarrollar una técnica que:

• Permita crear IAs autónomas y que no necesiten ninguna orden externa

para mostrar una conducta inteligente.

• Es lo suficientemente abstracta como para poder ser utilizada en diferentes

tipos de juegos.

• Siga un enfoque guiado por datos, lo cual nos permitiría construir

herramientas para controlar y generar nuevo contenido sin la necesidad de

ningún trabajo adicional de ingeniería.

La segunda fase de esta investigación estaría orientada al estudio de cómo este

nuevo sistema puede ser utilizado para adaptar comportamientos de inteligencia

artificial al estilo de cada jugador.

Aporte de este trabajo

Para alcanzar las metas presentadas en el punto anterior, hemos desarrollado una

técnica novedosa, basada en pilas de árboles de comportamiento que son

ejecutados de forma concurrente para producir nuevos resultados. Hemos

denominado a esta técnica Árboles de Comportamiento con ejecución basada en

sugerencias (Hinted-execution Behaviour Trees, HeBT). En esta estructura

jerárquica, los niveles superiores pueden sugerir a los inferiores qué deberían

hacer en cada momento.

Las principales contribuciones de los HeBT son:

• Permiten añadir nueva lógica a la IA dinámicamente. Los árboles de alto

nivel funcionan como plug-ins, que pueden ser activados o desactivados

para modificar el resultado final. Esto puede ser utilizado para adecuar la

experiencia de juego a cada momento.

• El sistema puede implementarse como una librería abstracta, de tal forma

que no esté atado a un determinado tipo de juego. Esto permite que una

gran parte del código de IA pueda compartirse entre diferentes proyectos,

disminuyendo la carga de trabajo y reduciendo riesgos, ya que la lógica

habría sido probada a fondo.

• Una vez que las acciones y condiciones creadas específicamente para un

juego hayan sido codificadas, la IA puede ser controlada por completo

utilizando una herramienta. Este editor de HeBTs puede ser utilizado por

diferentes equipos, permitiendo a todo el mundo contribuir a la IA final

mostrada por el juego.

Como parte de esta tesis, hemos desarrollado un sistema de HeBT completamente

funcional, un editor de árboles, un prototipo de juego y un completo ejemplo, de

modo que podamos evaluar qué es lo que nuestra solución aporta a los

desarrolladores de juegos.

Palabras clave

Videojuegos, Inteligencia Artificial, IA, modelado de comportamientos, árbol de

comportamientos, máquinas de estados, arquitecturas multi-nivel, sugerencias

Abstract

In the last few years, the videogame industry has become one of the big players in

the entertainment business. Developing a big game is no longer something a single

person can do operating out of their bedrooms, but a massive project where

hundreds of people work together to build an outstanding experience.

Nowadays, developers look for a distinctive characteristic that can make their

games stand out. Efforts have traditionally been put into building better and

shinier graphics, but, in a time where many games share the same technology

(such as Unreal Engine or Anvil), AI plays a fundamental role. We think creating

believable and challenging behaviours can really make a difference.

The main objective of every game is to be fun, but defining what “fun” means is not

trivial; every player has their own preferences, and designing an experience that

everyone can enjoy is not always possible. Most game AIs try to mitigate this

problem by offering a coarse adaptation method, difficulty levels, rather than

implementing fully adaptive systems. Such systems should be able to identify

different classes of players and tailor their behaviours accordingly, trying to

maximise the fun.

Also, collaboration between different teams is very important, and allowing new

ideas to be prototyped and tested quickly is essential.

Several AI techniques have been applied to games so far, but none of them is

complete enough to offer swift prototyping and ease of use to build new

behaviours or modify existing ones dynamically.

With this thesis, our objective is to build a multi-layered technique that allows us

to generate autonomous AIs, yet offering a system to modify their behaviours

adding or removing higher-level layers of logic dynamically. We also aim to

produce a system that can be used by any member of the team, thus removing any

additional –and costly– engineering work, while games benefit from a quicker

turnaround of new ideas.

Aims and objectives

This thesis emerges from the professional experience of the author, and the need

of improving processes and communication between engineers and other teams to

build the best possible AI.

Our aim is to build an adaptive AI that can surprise players, presenting different

challenges to make games as fun as they can be. However, after our initial research

we noticed there is no system that can be used for this purpose easily. Thus, we

decided to split this work into two different phases, being the first the one

presented in this thesis, which is focused on developing a system that:

• Allows us to create autonomous AIs that do not need any external input to

behave intelligently.

• Allows behaviours to be modified dynamically, so we can create new ones

just by adding additional layers of logic. These layers must be easily

understandable and modifiable by non-technical staff.

• Is abstract enough that it can be used in different types of games.

• Uses a data-driven approach, so we can build tools to control and generate

new content without requiring any additional engineering work.

The second phase will be aimed at studying how this new system can be applied to

adapt AI behaviours depending on the style of each particular player.

Novel aspects of this work

In order to achieve the goals discussed in the previous point, we have developed a

novel technique, based on stacks of behaviour trees that are run concurrently to

produce new results; we have called them Hinted-execution Behaviour Trees.

In this hierarchical structure, higher-levels are able to communicate with lower

ones by passing hints as to what they should be doing. The main advantages of

HeBTs are:

• They allow new logic to be added to the AI dynamically. Higher-level trees

work as plug-ins that can be enabled or disabled to modify the final output.

This can be use to adapt the experience properly at any given moment.

• The system can be implemented as an abstract library, so it is not tied to a

specific type of game. This also allows for a big part of the AI code to be

shared among different projects, reducing the workload, and reduces some

risks, as the logic would already have been tested.

• Once the different game-specific actions and conditions have been coded,

the AI can be entirely controlled using a tool. This HeBT editor can be used

by different teams, so everyone can contribute to the final AI.

As part of this thesis, we have developed a fully functional HeBT system, an editor,

a game prototype, and a complete example, so we can evaluate what our solution

can offer to game developers.

Keywords

Videogames, AI, behaviour modelling, behaviour tree, state machines, multi-level

architecture, hint, HeBT, BT

 16

TABLE OF CONTENTS

TABLE OF CONTENTS ..16

TABLE OF FIGURES ...21

TABLE OF TABLES ..28

CHAPTER 1. INTRODUCTION ..30

1.1. AI IN VIDEOGAMES ...30

1.2. GAME DESIGN AND AI ...32

1.3. BEHAVIOUR MODELLING ..34

1.4. ADAPTATION ..36

CHAPTER 2. OBJECTIVES ..37

CHAPTER 3. ORGANISATION ...41

3.1. STATE OF THE ART ...41

3.2. PROBLEM AND SOLUTION ..41

3.3. APPLYING HEBTS TO A REAL-WORLD EXAMPLE ...42

STATE OF THE ART ..43

CHAPTER 4. REACTIVE SOLUTIONS ..44

4.1. FINITE-STATE MACHINES ..44

4.2. FSM WITH EXTENDED STATES ..45

4.3. STACK-BASED FINITE-STATE MACHINES ...46

4.4. HIERARCHICAL FINITE-STATE MACHINES ...48

4.5. CONCURRENCY IN STATE MACHINES..49

4.6. CONCURRENT, HIERARCHICAL FINITE-STATE MACHINES ..50

4.7. PETRI NETS ...51

CHAPTER 5. AUTOMATIC PLANNING ...54

5.1. GOAP ..54

5.2. HTN ..58

CHAPTER 6. REACTIVE PLANNING ..64

 17

6.1. BELIEF-DESIRE-INTENTION ...64

6.2. BEHAVIOUR TREES ...66

6.2.1. BEHAVIOUR SELECTION AND INTERRUPTION HANDLING .. 68

HINTED-EXECUTION BEHAVIOUR TREES ..70

CHAPTER 7. DEFINING THE PROBLEM ..71

7.1. COMPARING BEHAVIOUR MODELLING TECHNIQUES ..71

7.2. OBJECTIVE ...74

7.3. HOW ARE BTS USED IN REAL GAMES? ..76

7.4. IMPROVING PROTOTYPING ..77

7.4.1. PERSONALITIES .. 77

7.4.2. HINTS ... 78

7.4.3. ADDING NEW LOGIC ... 80

CHAPTER 8. OVERVIEW OF THE SYSTEM ...83

8.1. COMPONENTS ...83

8.1.1. HINTED-EXECUTION BEHAVIOUR TREE LIBRARY .. 83

8.1.2. HEBT EDITOR .. 84

8.1.3. GAME PROTOTYPE ... 84

8.2. HIGH-LEVEL ARCHITECTURE ...85

CHAPTER 9. BUILDING A BEHAVIOUR TREE SYSTEM ..86

9.1. MANAGER AND INSTANCES ..86

9.1.1. AI MANAGER .. 87

9.1.2. INSTANCE .. 87

9.2. DEFINING A TREE ..88

9.3. COMPOSITE NODES ...89

9.3.1. SEQUENCE ... 90

9.3.2. PARALLEL .. 91

9.3.3. SELECTOR .. 93

9.4. LEAVES ..95

9.4.1. CONDITIONS .. 95

9.4.2. ACTIONS .. 99

9.5. FILTERS ...99

9.5.1. LOOPS ... 100

9.5.2. CONDITIONAL EXECUTION ... 103

 18

9.5.3. RESULT MODIFIERS... 103

9.6. RUNNING A BEHAVIOUR .. 104

CHAPTER 10. EXPANDING OUR BT: HINTS ... 107

10.1. THE CONCEPT OF HINT ... 107

10.2. EXECUTION FLOW IN BEHAVIOUR TREES ... 108

10.3. IMPLEMENTING A HINT SYSTEM ... 108

10.3.1. UPDATING HINTS .. 109

10.3.2. REORDERING BRANCHES ... 110

10.4. HINTS AND CONDITIONS ... 114

10.4.1. HINT CONDITION .. 116

CHAPTER 11. MULTI-LEVEL ARCHITECTURE... 118

11.1. BEHAVIOUR CONTROLLERS .. 118

11.1.1. RUNNING AN HEBT ... 121

11.2. EXPOSING HINTS TO HIGHER-LEVELS .. 123

11.3. HINT NODES .. 126

11.3.1. PARALLELS AND HINT NODES... 126

11.4. WHY ALLOW MORE THAN TWO LEVELS? ... 127

CHAPTER 12. APPLYING HEBTS TO A GAME .. 129

12.1. CHOOSING A GAME .. 129

12.1.1. HALF-LIFE AND THE SOURCE ENGINE .. 130

12.2. REPLACING HALF-LIFE’S AI SYSTEM ... 131

12.2.1. CREATING CUSTOM NODES ... 132

12.3. BUILDING AND USING HEBTS .. 135

12.3.1. EXPORTING A SIMPLE BT .. 138

12.3.2. EXPORTING CONDITION TREES .. 141

12.3.3. BUILDING AN HEBT ... 143

12.4. SETTING BEHAVIOURS .. 150

12.4.1. LEVEL CREATION .. 151

12.4.2. DYNAMIC CHANGES .. 153

CHAPTER 13. VISUAL EDITING .. 155

13.1. FUNCTIONALITY .. 155

13.2. MAIN WINDOW .. 156

 19

13.3. ARCHITECTURE ... 157

13.3.1. DOCUMENTS .. 157

13.3.2. BEHAVIOUR TREES ... 159

13.3.3. NODE LIBRARIES .. 162

13.3.4. CONDITION TREES .. 165

13.4. CREATING A NEW TREE ... 166

13.4.1. LOW-LEVEL TREES ... 167

13.4.2. HIGH-LEVEL TREES .. 169

13.5. GAME COMMUNICATION ... 170

13.6. FUTURE WORK .. 174

CHAPTER 14. WHY HEBTS ARE GOOD FOR AI PROGRAMMING: A PRACTICAL

EXAMPLE 176

14.1. PROTOTYPING NEW IDEAS ... 176

14.2. BASE BEHAVIOUR .. 177

14.2.1. COVER BRANCH... 178

14.2.2. PATROL BRANCH .. 180

14.2.3. ATTACK BRANCH .. 181

14.3. HIGH-LEVEL TREES ... 183

14.3.1. MODIFYING AIS KNOWLEDGE .. 184

14.3.2. BUILDING OUR HIGH-LEVEL LOGIC .. 186

CHAPTER 15. CONCLUSIONS AND FUTURE LINES OF RESEARCH 190

15.1. RESULTS .. 190

15.2. FUTURE RESEARCH ... 192

15.2.1. ADAPTATION TO PLAYERS .. 192

15.2.2. GROUP BEHAVIOURS .. 194

15.2.3. MOVING TO A PRODUCTION ENVIRONMENT .. 196

REFERENCES .. 197

 20

 21

TABLE OF FIGURES

Figure 1. Structure of a game AI system .. 31

Figure 2. The autonomous AI system is controllable, in most games, via a high-level

interface. ... 33

Figure 3. This multi-layered structure allows a higher-level tree to indicate the

layer below how it should behave .. 38

Figure 4. Basic finite-state machine to control a guard NPC .. 45

Figure 5. Each state in an FSM with extended states works as a small FSM with

three states .. 46

Figure 6. Adding a new state to an FSM can start causing some design problems . 47

Figure 7. A stack-based FSM, showing the state of its stack when ‘Suspicious’ is the

active state ... 48

Figure 8. HFSM, where the state 'suspicious' has been expanded to a new FSM 49

Figure 9. A Petri net that models our simple concurrent behaviour 52

Figure 10. Our Petri net once one of the AIs takes control over the mounted gun . 52

Figure 11. Different plans can be created depending on the costs of the actions

used .. 57

Figure 12. Task network used in our example .. 62

Figure 13. Simple BDI representation of our guard AI ... 65

Figure 14. Simple behaviour tree describing a 'Melee attack' ... 67

Figure 15. Development process with regular Behaviour Trees 75

Figure 16. A good system should be able to let both designers and engineers

modify and prototype behaviours .. 76

 22

Figure 17. The usage of personality traits can help us modify the normal execution

of a tree ... 78

Figure 18. A simplified vision of our guard's AI .. 79

Figure 19. When a selector receives a hint, it reorders its branches 80

Figure 20. A simple tree can be used to modify a main behaviour 81

Figure 21. If the AI is not suspicious, or not enough time has passed, then we

reorder the selector so attack is the last available option .. 82

Figure 22. High-level architecture of the system ... 85

Figure 23. We represent each agent as an AIInstance, being those controlled by the

AIManager ... 86

Figure 24. Relations of the manager with the rest of the library 87

Figure 25. Connections of an AIInstance to the rest of the library 88

Figure 26. A view of the main classes in charge of defining a behaviour tree 89

Figure 27. An example sequence .. 91

Figure 28. Example of a parallel node ... 92

Figure 29. A simple selection allows the AI to choose whether it has to reload its

weapon .. 94

Figure 30. Design of a condition tree .. 96

Figure 31. An example of a complex condition ... 97

Figure 32. Example of a precondition ... 98

Figure 33. Example of an assertion .. 98

Figure 34. Filters that are available in the library ... 100

Figure 35. A filter working in a real-world example ... 100

Figure 36. Process involved in the creation and initialisation of an AI 105

 23

Figure 37. A BT is always executed starting from its root. The execution flow is

determined by the type of nodes used to build the tree .. 105

Figure 38. Structure of our improved selectors .. 109

Figure 39. Hints are sent to BTs, which then notify all the selectors 110

Figure 40. A behaviour tree can be seen as a structure made up of sequences which

are run by selectors ... 114

Figure 41. Basic sequence structure, where actions are preceded by a collection of

preconditions ... 115

Figure 42. A bad design can lead to useless hints .. 116

Figure 43. Using hint conditions we can overcome problems caused by

preconditions ... 117

Figure 44. Behaviour controllers maintain a hierarchy of behaviour trees that will

be run concurrently ... 119

Figure 45. Structure of a Hinted-execution Behaviour Tree .. 121

Figure 46. HeBTs are run from the top-down. This means low-level trees have been

modified by the time they get executed ... 122

Figure 47. Depending on the order the children of a parallel get run, different hints

would be sent to a lower-level tree, so we would get different results from the final

behaviour ... 127

Figure 48. A simple BT that will make an AI face the player indefinitely 134

Figure 49. Our first BT will make entities face us, but they will maintain their

positions ... 134

Figure 50. Condition tree we will export to Lua ... 141

Figure 51. A complex behaviour tree that will make our agents behave

autonomously ... 144

Figure 52. High-level tree that will make our AI be a kamikaze 148

 24

Figure 53. After receiving a 'do not cover' hint, our tree moves its cover branch to

the last, and least priority, position ... 149

Figure 54. High-level tree that will make our AI be a coward 150

Figure 55. Precondition used by our "cover" branch.. 150

Figure 56. Adding an npc_thesis to a level in Hammer .. 152

Figure 57. Main window of HeBT Editor ... 156

Figure 58. Options present in the main menu ... 157

Figure 59. Structure of a document ... 158

Figure 60. New nodes can be added to a BT just by drag-and-dropping them from

the library .. 158

Figure 61. Structure of a behaviour tree in the editor.. 159

Figure 62. Simple tree we will serialise ... 161

Figure 63. Example node library ... 164

Figure 64. Some nodes expect some parameters (properties) that can be defined

via the editor ... 165

Figure 65. Structure of a condition tree in the editor ... 165

Figure 66. Interface of the condition tree editor .. 166

Figure 67. The editor allows us to create low-level or high-level trees 167

Figure 68. A simple selector, as shown by the editor ... 167

Figure 69. Naming a selector's branch will expose a new hint to higher-levels 167

Figure 70. Branches that have exposed a new hint are marked in a different colour

in the editor ... 168

Figure 71. Exposing new hints using hint conditions is as simple as adding one of

these nodes to a condition tree and defining the hint we want to check 168

 25

Figure 72. We must define which hint a condition hint will check 169

Figure 73. Once a hint is defined, the editor will reflect the change 169

Figure 74. The node library our high-level tree would use. The hints exposed in the

base tree are automatically added to the library ... 169

Figure 75. Hint nodes can send different states of a hint .. 170

Figure 76. Structure of our communication server ... 170

Figure 77. Debugging a tree in the editor .. 174

Figure 78. Base behaviour tree used in our example ... 178

Figure 79. Precondition that will decide whether to make the AI run to a cover

position ... 179

Figure 80. Precondition to prevent AIs from looking for cover positions when they

are already hidden .. 179

Figure 81. AI running away while trying to cover ... 179

Figure 82. We have modified our main selector so it is able to receive COVER hints

from higher-levels .. 180

Figure 83. Patrol branch... 180

Figure 84. Assertion used by our patrol branch ... 181

Figure 85. Still unaware of our presence, this agent is just following its patrol route

 .. 181

Figure 86. Our attack branch .. 182

Figure 87. Assertion controlling the execution of the attack branch 183

Figure 88. An AI trying to find a cover position, but still facing us. We can also see

another AI at the back, ready to start its attack behaviour, as it has just spotted us

 .. 183

Figure 89. Basic idea behind the disguise system .. 186

 26

Figure 90. Our first complex high-level tree .. 187

Figure 91. An AI ignoring us after being hinted to PATROL .. 188

Figure 92. Final high-level tree that models the new feature .. 189

Figure 93. Condition that will decide whether to clear the PLAYER_DISGUISED flag

 .. 189

Figure 94. Base BTs controlling the different classes of AI in our army 195

Figure 95. Tyrant high-level AI that never allows individuals to retreat 195

 27

 28

TABLE OF TABLES

Table 1. Actions defining the AI controlling our guard .. 56

Table 2. Plans created by SHOP for our problem ... 62

Table 3. Comparison of the different behaviour-modelling techniques studied 72

Table 4. Possible results of the example sequence .. 91

Table 5. Execution of our sample parallel node .. 93

Table 6. Possible results of our selector example .. 94

Table 7. Results obtained using the different operation modes of condition nodes

 .. 99

Table 8. Possible results of a basic loop node .. 101

Table 9. Possible results of a conditional loop node ... 102

Table 10. Possible results of a "Run until succeeded" node ... 102

Table 11. Possible results of a "conditional execution" node .. 103

Table 12. Possible results of a "Not" filter ... 104

Table 13. Possible results of an "Ignore failure" filter .. 104

Table 14. Some examples of how a list of branches is split into two lists, depending

on priority .. 111

Table 15. Process followed to build a tree from a Lua script... 140

Table 16. HeBTs get the highest score in our study, mainly for the very good

extensibility they offer .. 191

Table 17. Scores obtained by our base behaviours for the different classes of

players ... 193

 29

 30

Chapter 1. INTRODUCTION

The Oxford Dictionary defines ‘game’ as “an activity engaged in for amusement” or

“a form of competitive activity or sport played according to rules”. Game, a

fundamental part of human experience, has been present in every culture, since

the very beginning. Maybe because of that, the birth of technology caused the

creation of new ways to play: videogames.

Early videogames were first created in the 1970s. Since then, their industry has

been experiencing an exponential growth, far outpacing movies and music

(Wallop, 2009; Bangeman, 2008) in the last years.

Complexity has increased in a similar manner. From games such as SpaceWar!

(Russell et al., 1962) or Pong (Atari, 1972), to the massive universes presented in

recent games such as Red Dead Redemption (Rockstar, 2010) or Assassin’s Creed 2

(Ubisoft, 2009), the evolution of computers has provided creative teams with new

tools to achieve their visions.

Over many years, most of the technical advances were used to produce better and

more realistic graphics, but we have got to a situation in which improvements in

graphics are not that significant from one year to the next. Games today really need

an outstanding characteristic to lead them to success, and AI is the perfect

candidate to achieve this (Nareyek, 2004).

1.1. AI in videogames

Game AI systems differ from traditional, academic ones in the objective they are

trying to achieve (Baekkelund, 2006). Academic research usually looks for

problem solvers, the so-called Good Old-Fashioned Artificial Intelligence (GOFAI)

(Haugeland, 1985), while in games we are trying to build an apparent intelligence

(Bryant, 2006). Games need to create the illusion of human behaviour (Spronck,

2005), that is, present an agent which appears to behave intelligently when seen

from the player's point of view.

 31

In the end, we are trying to simulate different behaviours and the way agents

decide how to respond to different stimuli appropriately, providing a rich gaming

experience.

So, as AI is a fundamental part of gameplay, what AI engineers are trying to build is

not a generic solution to abstract problems, but something focused on playing a

very specific role in a particular game. That said, although the problem that AI is

trying to solve is very dependent on the game it is being built for, some systems

share a basic common structure, as shown in Figure 1.

Figure 1. Structure of a game AI system

 32

In the average real-time videogame we normally have a set of agents/NPCs1 that

interact with the world of the game. These agents:

• Learn facts about the state of the game. This is usually called a sensory

system.

• Show complex behaviours and decide what should be done in every

moment. These actions will modify the state of the world and use the

functionality provided by other lower level components, such as:

o Moving from one position to another, intelligently avoiding obstacles

and using near-optimal paths in the worst scenario. This navigation

system can be broken down into different parts, such as a pathfinder

or a locomotion system.

o Communicating and sharing information with other agents, so co-

ordinated behaviours can take place.

• Play different animations to transmit information about their state to

players.

As a separate, higher-level layer, we also find an interface with scripts and

designers. Whether or not an AI is going to provide a fun experience depends, to a

great extent, on them.

1.2. Game design and AI

Videogames are a type of software that benefits from changes, and prototyping is

necessary to develop fun. Building a sophisticated and fun AI that is capable of

being the outstanding characteristic we are looking for requires collaboration

between programmers and designers (Orkin, 2002). Also, many different ideas

should be tried, and the best ones should be kept for the final product. The

question is: how can we optimise this process?

1 Non-Playable Character, a common name for autonomous entities in videogames.

 33

Almost every game requires this kind of communication that basically converts the

AI into an intelligent black box, as shown in Figure 2, which designers can control

to build the game experience they are looking for.

Figure 2. The autonomous AI system is controllable, in most games, via a high-level

interface.

Depending on the grade of control offered to designers (Snavely, 2006), we can

classify systems as:

• Brute-force systems, where every action and reaction the AI undertakes is

hard-coded in the game.

• Data-driven systems, where non-engineers take an active part in the

creation of the AI, not only providing programmers with feedback, but also

modifying systems themselves. Data-driven systems are often referred to as

scripted systems.

Videogames are very complex systems, and changes in an advanced stage of their

development are very risky –and can be very costly-, but sometimes they are

necessary in order to improve the game experience. While brute-force systems

would require potentially dangerous changes in the code base, data-driven

systems by-pass this problem, and allow a better usage of resources.

 34

A second classification can be focused on analysing the amount of functionality

exposed to scripts (Rabin, 2004). In this case we can speak of:

• Level 0, where everything is hard-coded in the source language. It is the

equivalent to the brute-force systems.

• Level 1, where data in files specify stats (such as personality traits) and

locations of agents.

• Level 2, where the AI is completely controlled by scripts during cutscenes.

• Level 3, where tools or scripts describe lightweight logic.

• Level 4, where heavy logic resides in scripts that rely on core functions

written in the source language.

• Level 5, where everything is coded in scripts.

In order to optimise the process of creating an AI system, we must decide how to

divide responsibilities, as well as take into account the strengths of each

component in the team. Exposing too much functionality can overwhelm designers,

affect performance and produce static (or too predictable) behaviours (Laird,

2002), whilst not exposing anything at all could require a lot of changes, longer

iteration times and increasing risks.

The ideal solution should offer autonomous AIs that can behave smartly without

any external feedback, but that can also obey the designer’s orders (Tozour, 2002).

1.3. Behaviour modelling

From a high level, we could consider a game AI as a collection of NPCs, or AI

instances, that interact among them and with players to give the illusion of being

alive. These actions performed by agents in a logical way are known as behaviours.

 Behaviours work as managers of the resources available to the AI. They get

information from other subsystems, process it, and decide how to act.

Many AI techniques have been used in commercial videogames to model and

control behaviours. Among them, we can find solutions as diverse as Finite-State

 35

Machines (FSM) (Buckland, 2005; LaMothe, 2002), Behaviour Trees (Isla, 2005), or

automatic planners such as GOAP, (Yue & de-Byl, 2006). Each solution has its

strengths and weaknesses, and not all of them are suitable for every type of game.

Another possible classification of behaviours can come from their level of

predictability; that is how good they are at surprising the player with unexpected

actions. We can say a behaviour is static if it always produces the same set of

actions. On the other hand, a dynamic behaviour is not as foreseeable, as it might

choose to resolve the very same problem in many different ways.

While dynamic behaviour may appear to be desirable, it might not be as good for

linear games, or those that need to follow a very strict sequence of events: in these

cases, a more predictable behaviour could offer a better experience. However, how

predictable must behaviours be?

To fully understand this, we must study the problem from two different points of

view. Let us use a simple example of a situation we can encounter in a hypothetical

game. In this game, our AI controls guards that try to stop the player from stealing

a valuable object.

From the players’ point of view, our guard is an obstacle to get its objective, so they

expect the guard to confront them. They have faced a guard previously in the game,

and they know they will be attacked. So, armed to the teeth, they decide to step

forward and kill him.

Let us stop at this point and analyse the situation. Our agent has just perceived the

threat, and must decide what to do:

• As designers, we want the AI to be an obstruction: something players must

beat in order to continue playing. This means the behaviour must be

predictable, because the agent cannot just run away, as it would ruin the

game experience.

• As players, however, we would like the AI not only to be a hurdle, but we

want to have fun. Players would like to face an intelligent enemy, whose

actions were not seen before, and thus shows an unpredictable behaviour.

 36

How can we get a behaviour that is predictable enough for designers, yet dynamic

and fun for players? In fact, this is the problem every game AI should always try to

solve.

1.4. Adaptation

AI is a key part of many games, where their challenge comes from trying to beat

the AI. Games are not a static activity, but an interactive one, which requires

players to be profoundly involved in them. Ultimately, the consequence of this is

that even if two players enjoy the same type of games, depending on other factors,

such as how challenging a game is, they can be more or less attracted to the same

product.

This is something that has been known since the very beginning of gaming, which

rapidly spread a coarse or manual method of adaptation: difficulty levels. These

can be implemented in many different ways. For example, we could make a game

easier by reducing the amount of damage AIs can tolerate or by giving players

more powerful weapons.

Building a groundbreaking AI requires a much more sophisticated approach;

players can find a game much more appealing if they become part of it, and really

think they have mastered it; so, rather than modifying values artificially, we could

adapt our AIs’ behaviours and tailor them to the individual requirements and

preferences of each player.

This would also allow our AI to evolve as the game progresses, learning and

improving itself (Charles & Black, 2004), presenting a better challenge and

improving gaming experiences.

The question is, how can be create dynamic, adapted AI systems?

 37

Chapter 2. OBJECTIVES

This thesis emerges from the need to answer the questions presented in the

previous chapter, which came from professional experience and months of

research.

Our initial objective was to build AI systems that can be adapted to players. We

started our research looking for ways to model players and gather information so

behaviours can be enhanced using this information, just to realise there was plenty

of research about the topic (for example, Drachen et al., 2009; Houlette, 2004), but

there was not an easy method to make AI systems use all this data.

So, at an early stage, we decided the best way to approach this work was to

separate the research into two different phases, which were creating a behaviour

modelling technique that allows dynamic changes to behaviours, and a player

modelling system that makes use of these capabilities to produce final, adapted AI

behaviours. Due to the massive amount of work this would require, we decided to

focus this thesis on the former, and build a behaviour modelling and control

system that would allow us to continue our research on player adaptation in the

near future.

Our system is built around a simple, manual adaptation method: we do not look to

adapt behaviours to players, but to allow development teams to improve AI

behaviours dynamically, so they are better suited to create the best possible

experience.

Our main objective is to develop a behaviour modelling technique that:

• Is capable of producing dynamic behaviours, but that can be easily

controlled to produce more predictable results, if the game requires it.

• Allows prototyping, and provides enough tools to modify or create new

behaviours without the need of any additional programming work.

The solution chosen, Hinted-execution Behaviour Trees (HeBTs), is a novel

evolution of regular behaviour trees. In this case, we have opted to use multiple

 38

layers of them, which interact to allow higher-level trees to modify the normal

execution of the tree immediately below in the hierarchy, as shown in Figure 3.

Figure 3. This multi-layered structure allows a higher-level tree to indicate the layer below

how it should behave

This kind of structure would allow us to study different options to adapt the game

to its players, as we will study in detail later in Chapter 15. The basic idea behind it

is that we could try to adapt our behaviours using our player model just by

building a new higher-level layer.

We aim to fulfil the following objectives, which come from the need to support

adaptation, as well as meet the requirements of commercial game development:

1. Autonomy:

1.1. AIs controlled by the system are fully autonomous. This means they will be

able to respond to external stimuli appropriately.

1.2. AIs will, at the same time, be able to accept orders from design, so the

gameplay experience can be enhanced.

 39

2. Extensibility and reusability:

2.1. The system must allow designers and programmers to create new

behaviours based on existing ones.

2.2. Behaviours must be easily modifiable, so changes in the game design can be

translated to them quickly.

2.3. The system must provide its users with a set of building blocks that can be

shared between behaviours.

2.4. New functionality can be added by creating new building blocks.

3. Ease of use

3.1. Behaviours must be easily understandable by both technical and non-

technical members of the team.

3.2. Behaviours must be visually debuggable, so errors in the logic can be

spotted swiftly.

3.3. Designers must be able to prototype and try new ideas easily and without

requiring any additional programming work, which can be costly and risky.

This will enable a more effective methodology, as final users are also involved

in the development of the system.

4. Abstraction

4.1. The system must be able to, potentially, control any entity in any type of

game.

4.2. Most of the functionality must be game-independent, and work as a

separate library.

Due to the highly practical nature of this study, a big part of the work and research

presented in this thesis comes from the experience and knowledge gained during

the development of a prototype of the system. Creating a whole game from scratch

is not a trivial task, so the prototype is built on top of Half-Life 2’s public SDK and

tools. The game’s original AI was replaced by our own implementation of an HeBT

 40

system. A complete editor (which is able to communicate directly with the game)

was also implemented.

 41

Chapter 3. ORGANISATION

In this chapter, we present an overview of the organisation of this book, which

shows what kind of research and work has been done to support this thesis. We

also present what steps were taken to produce it, from its design to building a

fully-functional prototype.

3.1. State of the art

This work is the result of several years of research in the field of multi-agent

systems, always focusing on game AI, and, particularly, how it can be improved

moulding behaviours to offer better experiences.

Producing adaptive behaviours required finding a system that was easy to use and

extend, so we started our research studying different solutions that have been

used in commercial games.

We have classified them into three groups, and dedicated a chapter for each of

them: “Chapter 4. Reactive solutions”, “Chapter 5. Automatic planning” and “Chapter

6. Reactive planning”.

3.2. Problem and solution

After studying the different options that were available, we tried to determine

whether they were suitable for what we were trying to achieve or not. We then

decided Behaviour Trees were almost what we needed, but they still presented

some problems. We study this in “Chapter 7. Defining the problem”.

Then, we needed to propose a high-level design for the solution, which is

presented in “Chapter 8. Overview of the System”, which served as a starting point

for the system we were going to implement. As HeBTs are based on regular

behaviour trees, we decided the best way to approach the problem was to build

our own implementation of a BT system, which we study in “Chapter 9. Building a

Behaviour Tree system”. Then, we expanded it with our new ideas in “Chapter 10.

Expanding our BT: Hints” and “Chapter 11. Multi-level architecture”.

 42

3.3. Applying HeBTs to a real-world example

Once we had defined the foundations of a Hinted-execution Behaviour Tree

system, we needed to check whether commercial games would be able to use it. To

do so, we implemented a game prototype, which we present in “Chapter 12.

Applying HeBT’s to a game”.

One of the objectives of this thesis is to build a system anyone can use, so designers

and scripters can contribute to the final AI. In order to fulfil this point, we built a

fully functional editor, studied in “Chapter 13. Visual editing”.

We also implemented a complete example, so we could study what HeBTs would

contribute to games, as shown in “Chapter 14: Why HeBTs are good to AI

programming: A practical example”.

Lastly, we present a final chapter, “Chapter 15. Conclusions and future research

lines”, where we summarise what the advantages of our new system are, as well as

we look at the future of this new technology, and how we could improve it.

 43

SSSSTATE OF THE TATE OF THE TATE OF THE TATE OF THE AAAARTRTRTRT

In this section, we will study different solutions that have been used in games to

model and control behaviours, so we provide readers with a complete view of the

current state of the art in the field of this research.

 44

Chapter 4. REACTIVE SOLUTIONS

Reactive solutions are the techniques that are the most commonly used in games.

They allow behaviours to be described as a series of states that can be reached

through different transitions, and can also be known as state-based solutions.

Their key characteristic is that they cannot look into the future to try and achieve a

goal; instead, their execution is tied to the present, and they only modify their state

to respond to changes in the environment (i.e., they work reactively).

4.1. Finite-State Machines

Many games implement AI agents as Finite-State Machines, as they are an easy way

to represent how an object can change its state over time to respond to external

events.

Formally (Hopcroft & Ullman, 1979), an FSM is defined as a five-tuple

(Σ,S,s0,δ,F)

where:

Σ is a finite set of symbols denoting possible inputs;

S is a finite set of symbols denoting states;

s0 ∈ S is the initial state;

δ is the state-transition function: δ : SxΣ →P(S) ;

F ⊂ S is a set of final states. It can be the empty set.

We then define an FSM as a set of states and transitions between them, and they

can be easily represented as directed graphs called state transition diagrams. The

machine starts in the initial s0 and depending on the inputs received and the

transitions that had been defined, it will move to new states, until a state f ∈ F is

achieved. So, because of this structure, it is clear that only one state can be active at

any time.

 45

In order to create a new behaviour, game designers and programmers have to

break down what they expect the AI to do into these elements.

For instance, let us say we would like to model a guard. We want our guard to keep

his position, unless he is suspicious. In that moment he should look for threats and,

in the event that they are found, eliminate them. This will produce 3 states; ’Idle’,

’Suspicious’ and ’Eliminate’. From ‘Idle’, our agent can become ‘Suspicious’ in case

he hears/sees something), and he can get back to ‘Idle’ if he decides there is no

threat. He can also decide there is a threat to eliminate, so we have two possible

transitions from the ‘Suspicious’ state. If the agent was eliminating a threat and he

accomplishes his goal, it will get back to ‘Idle’. So we will end up with an FSM

similar to that shown in Figure 4. As long as our agent stays in a certain state, it

will execute the actions encoded in it.

Figure 4. Basic finite-state machine to control a guard NPC

Finite-state machines set the basis for every other state-based technique, which

are improvements to this basic system used widely in computer engineering.

While they are easily understandable and very powerful, they do not really scale

well (Diller et al., 2004). Working with large machines is complicated, as adding or

removing states or transitions can affect many parts in the machine (depending on

the existing connections among them).

4.2. FSM with extended states

An FSM, by definition, will keep executing its active state until a transition is

triggered, which would make the machine run a new state, and so on. Sometimes it

 46

is desirable to execute some actions just when accessing the state, and others

when the FSM is leaving it (Fu & Houlette, 2004).

In effect, each state works as a little FSM with three states: ‘On enter’, ‘On exit’ and

‘Running’, as shown in Figure 5. This could be viewed as a special case of

Hierarchical-State machines, studied later in this chapter.

Figure 5. Each state in an FSM with extended states works as a small FSM with three states

4.3. Stack-Based Finite-State Machines

One of the problems FSM present, particularly a non-deterministic one (i.e. an FSM

where two or more states offered transitions to get to a common one), is the

impossibility to create a valid transition that guides the execution back to its

previous state. Continuing with the example of a ‘guard AI, we could face this

problem if we added a new ‘Patrol’, just as we illustrate in Figure 6.

 47

Figure 6. Adding a new state to an FSM can start causing some design problems

In this case, adding transitions to decide what to do after ‘Eliminate’ or when the

‘Suspicious’ state does not lead to ‘Eliminate’ is not trivial anymore: some sort of

memory is needed.

Adding a state stack solves the problem. In a stack-based FSM, transitions do not

necessarily have to produce an immediate change of state. Instead, we find three

different possibilities (Tozour, 2004):

• The target state is pushed onto the top of the stack.

• The current state is popped off the stack.

• The current state is popped off the stack and immediately replaced by the

target one. A stack-based FSM providing only these transitions would

behave as a regular state machine.

With this new set of rules, the guard’s behaviour can be modelled as shown in

Figure 7.

 48

Figure 7. A stack-based FSM, showing the state of its stack when ‘Suspicious’ is the active

state

4.4. Hierarchical Finite-State Machines

As stated before, while FSMs are a very powerful tool, their biggest disadvantage is

that they do not scale well. Complex behaviours require state machines that grow

rapidly, using a lot of states and even more transitions.

Hierarchical Finite-State Machines (HFSM), first presented as statecharts (Harel,

1987), try to deal with this complexity problem grouping states, so some

transitions can be shared (generalised transitions). They were designed as a

solution to manage complex systems via a graphical interface that allowed

zooming in and out of groups of states (super-states).

Expanding this idea, behaviours can be broken down into a set of main states,

which are then recursively subdivided into their own FSMs (see Figure 8). The

biggest advantage resides in the separation of the logic of the different states that

can deal with their own data now. These improved HFSMs are also known as

Behavioural Transition Networks (BTNs).

 49

Figure 8. HFSM, where the state 'suspicious' has been expanded to a new FSM

BTNs are made of nodes (actions the agent can perform) and a set of transitions

(Houlette et al., 2001). There is an initial node and, as with the rest of the state-

based solutions presented so far, only one action can be active at a time. Each

transition defines a decision process as a logical function, whose activation results

in a change of node. As they are hierarchical, any node can be described as a new

BTN.

The use of the hierarchy allows different team-members to focus on different parts

of the behaviour, so these parts can be tweaked individually. Any change to

enhance a sub-behaviour only affects that particular sub-FSM, and will not require

any change in higher levels. Also, complex states can be re-used among different

state machines, so creating new behaviours is highly simplified.

4.5. Concurrency in state machines

When it comes to modelling a problem using a reactive solution, sometimes we

could find we need to have different components working together to achieve our

 50

goal. This concurrency means allowing some form of communication between

different machines, so they can be synchronised (Alur et al. 1999).

Traditional FSM are not prepared to support this communication, so extensions to

the model have to be used. The simplest of them consists of building a message

system, so states can send and receive events (Rabin, 2002).

The biggest challenge is to synchronise access to shared resources correctly

(Champandard, 2010-1; 2010-2). To do so, we could use traditional

synchronisation primitives, such as semaphores (Downey, 2005).

4.6. Concurrent, Hierarchical Finite-State Machines

HFSMs try to simplify regular FSMs adding the possibility to group states into

super-states. However, they are not very well suited for situations where we need

to take into account various different aspects of the environment. HCSMs (Cremer

et al., 1995) try to solve this problem presenting hierarchies of concurrent state

machines.

HCSMs drop the concept of state, and make an HCSM the basic element to build

more complex machines. Each HCSM is basically defined by a list of child machines,

a set of transitions, an activity and a pre-activity function, a set of input variables, a

set of outputs, and a set of variables (also called control panel).

A leaf HCSM is the basic one, and it does not have any children or transitions. Apart

from this, we can also have sequential HCSMs, where only one machine is active at

a time and execution is transferred between machines via transitions, and

concurrent machines, where all of them are run at the same time, and there is no

transfer of execution.

One of the differences between an HCSM and a standard FSM is the usage of

activity functions. These functions are in charge of producing some output values

for the machine. If we are using a sequential machine, the output will normally be

the one from the active child; on the other hand, a concurrent machine would have

to combine the outputs of its children. Pre-activity functions are in charge of

converting the parent machine’s input and pass it to its children.

 51

HCSMs also have a control panel, which is a set of variables that can be modified

dynamically to obtain different outputs. For example, machines can send messages

to one another and modify these values.

The algorithm to run an HCSM is shown below:

ExecuteHCSM(hcsm) 1

{ 2

 ExecutePreActivity(hcsm.pre_activity_function); 3

 transition_to_fire := SelectTransitionToFire(hcsm); 4

 if (transition_to_fire) then 5

 hcsm.active := transition_to_fire.to_state; 6

 ActivateState(hcsm.active); 7

 8

 for each active child m of hcsm do 9

 ExecuteHCSM(m); 10

 11

 return(ExecuteActivity(hcsm.activity_function)); 12

}13

HCSM are more indicated to control behaviour in a simulation environment, rather

than defining agent behaviours. For instance, they were used in Valve’s Left 4 Dead

(Valve, 2008), as part of their AI Director. This system allowed orchestrating the

gameplay, generating different situations, depending on the state of the game, to

make it more fun and interesting.

4.7. Petri nets

Petri nets are another possibility, when it comes to modelling these complex

systems. A Petri net is an abstract, formal model of information flow (Peterson,

1977). They can be represented using graphs, which contain two types of nodes

called places and transitions. Nodes are connected using directed arcs, and there is

a restriction that only allows places to be connected to transitions, and transitions

to places, but no node can be connected to another of the same type.

The execution of a Petri net is controlled by the position and movement of tokens

(D’Angelo, 1983). These markers reside in the places of the net, and are moved

around it by transitions. These can only be fired if they are enabled. In order for a

transition to be enabled, it needs that all its inputs, that is, all the places that are

connected to it, have a token on them. This way we can model concurrent

behaviours which are synchronised.

 52

For example, let us add a simple concurrent behaviour to our guards. We want

them to be able to attack using a mounted gun, but only one is available: we are

facing a mutual exclusion problem. We can solve this by using P/V operations, and

model it using the Petri net as shown in Figure 9.

Figure 9. A Petri net that models our simple concurrent behaviour

This net is quite simple. In our initial state, both AIs decide to use the mounted

gun. This is represented by the tokens present in “use_gun_1” and “use_gun_2”. The

mounted gun is free, and we represent this as a token in “gun in use?”. At this point,

both t1 and t2 are enabled (all their inputs have a token on them), so we can fire

either. Let us say t1 is the chosen one: after it is executed, our net will look like that

shown in Figure 10.

Figure 10. Our Petri net once one of the AIs takes control over the mounted gun

 53

We can see tokens in “use_gun_1” and “gun in use?” have been removed, while a

new one has been created on “using_gun_1”, indicating our first AI has taken

control over the gun. Because of these changes, only t3 and t4 are available: t2 is no

longer enabled and thus our second AI cannot use the mounted gun. When the first

AI decides it wants to release the gun, we will get back to the initial net (Figure 9),

and both can compete for the resource once again.

 54

Chapter 5. AUTOMATIC PLANNING

While state-based solutions represent a very good way to organise, describe and

maintain behaviours, these can become predictable, because their logic remains

static. This can be disguised as long as multiple choices are provided to AIs, but it

would represent a lot of design (and possibly programming) work, as all the

possible variations of a behaviour should be taken into account beforehand (Young

et al., 2004).

On the other hand, goal-driven NPCs, and more precisely, those using automatic

planners to achieve their goals, present much more dynamic behaviours with less

input from designers (Wallace, 2004). If we define a goal as a condition an agent

wants to satisfy (Orkin, 2004-1), planners will build a list of actions to take in

order to transform the AIs perception of the state of the world from A to B. This

means planning will not just decide what to do, but how to do it (Champandard et

al., 2009).

5.1. GOAP

Goal-Oriented Action Planning (GOAP) is a decision making architecture that

defines the conditions necessary to satisfy a goal, as well as the steps required to

accomplish it in real time. This technique was first used by “F.E.A.R.” (Monolith,

2005; Orkin, 2006), and several other games, such as “S.T.A.L.K.E.R.” (GSC, 2007),

“Fallout 3” (Bethesda, 2008), “Empire: Total War” (Creative Assembly, 2009) or

“Just Cause 2” (Avalanche, 2010) followed.

GOAP is similar to STRIPS, an automatic planner developed at Stanford University

in the 70’s (Nilsson & Fikes, 1971). STRIPS is made of two components: goals and

actions. It uses a symbolic representation of the world, so it is capable of achieving

a desired state of the world (goal) by applying the correct actions. These are

defined as preconditions, an ‘Add’ list and a ‘Delete’ list. These two lists represent

the modifications the action applies to the world, first deleting what is in its

‘Delete’ list and then adding the knowledge present in its ‘Add’ one.

 55

As with any architecture implying planners, GOAP requires a different way to

approach the decomposition of behaviours, as solutions are not built by

programmers, but generated automatically from the declaration of the different

actions that will help to transform the world state.

To illustrate this, and continuing with the example presented in previous sections,

we could model the behaviour of our guard using a top-down approach:

• First, the goal of the agent must be described. In this case, the guard’s goal is

to maintain that there are no threats in sight. It can be expressed as:

o Not Present(Y), where Y is the threat we are trying to eliminate.

• Now, we just have to declare some actions, as many different possibilities as

we want to provide the AI with. So, in order to eliminate a threat, the agent

can either kill it or frighten it away.

• We must now provide our guard with more actions to break down the ones

presented in the previous point. So, for instance, a threat can be killed if the

agent has a weapon, or it could be scared away by switching the alarms on,

and so on.

This process will produce the set of actions shown in Table 1.

 56

Action Preconditions Effects

Kill threat(X,Y) –

Makes X kill the

threat Y

WeaponAimed(X, Y) Not Present(Y), Not WeaponAimed(X,

Y)

Frighten threat

away(X,Y) – Makes

X frighten Y away

Present(Y) Not Present(Y)

Aim weapon(X,Y) –

Makes X aim its

weapon at Y

Present(Y) WeaponAimed(X, Y)

Investigate

threat(X,Y) – Makes

X search and find

threat Y

Suspicious(X,Y), Detected (Y) Present(Y), Not Suspicious(X,Y), Not

Detected(Y)

Become

suspicious(X,Y) –

Makes X become

suspicious of threat

Y

Not Suspicious(X,Y),Detected(Y) Suspicious(X,Y)

Table 1. Actions defining the AI controlling our guard

Plan formulation is the key to get a more emergent behaviour (Wallace, 2006),

which is less predictable, and works autonomously, without any additional

programming work. It, in fact, consists of a search through a search space of

different states of the world, which are a result of applying the different actions

available. Actions can be assigned different costs (O’Brien, 2002), so the actual

plan varies depending on those values. Figure 11 shows how two different plans

can be achieved, depending on the aggressiveness of the agent, providing the initial

state of the world is ‘Detected(Threat), Not Suspicious(Guard)’.

 57

Figure 11. Different plans can be created depending on the costs of the actions used

We can obtain different plans, all of them valid to satisfy the AIs goal, as long as we

define a valid initial state of the world. Once it is defined, the search consists of

creating a tree in which each node represents a state of the world. Each node will

be expanded using every action that is applicable, with the knowledge we have at

that point, and this process will carry on until the goal state is found.

The true power of automatic planners is not very clear in the example we have

been using in this thesis, because of its simplicity. However, this is very noticeable

when complex behaviours are built, or new conditions or functionalities need to be

added to them.

Let us expand the example of our guard. Until now, we have been working knowing

that our agent will always have a weapon. Let us say he has not, but he has to get

one from the world to attack his threat. In a state-based solution, we would have to

modify the actual structure of our FSM-like model to reflect this: this means, new

nodes and transitions would have to be added. Using GOAP, we would only have to

add new actions and modify some preconditions to make it work. Let us say now

that we are in a late stage of the project, and designers have decided our guard can

also use melee attacks, which do not need weapons, but just some proximity to the

target. Again, our structures would have to be modified and tested, whereas GOAP

could use the new attack method in its plans simply by defining the appropriate

 58

actions. Not happy with this, our designers decide to add a mounted gun near our

post, and they want our guard to be able to use it. Just by adding some more

actions, the new gun would be available to be used in plans, whereas an FSM at this

point would start to become hard to maintain and debug.

Although this architecture leads to very desirable behaviours (as they are quite

dynamic, and AIs can perform actions they were not directly programmed to do), it

also has some drawbacks:

• Planning could become bottlenecked (Kelly et al., 2008), depending on the

frequency with which agents decide to re-plan. Depending on the number of

actions, the search space can grow very quickly, leading to combinatorial

explosion. Algorithms like A* (Hart et al., 1968) can help pruning the tree of

different possibilities.

• Sometimes, it could be possible that an agent cannot satisfy its goal. With

the information provided in the example presented, the agent’s goal should

always be to not have any threat in sight… but what should it do if it does

not detect any threat at all? Using an FSM, the NPC would simply be in an

‘Idle’ state, but behaviours like these can be harder to describe using GOAP.

5.2. HTN

Hierarchical Task Networks (HTN) are another form of planning, where relations

between actions can be expressed as task networks.

A task network is composed of tasks, where each one is described by a name and a

list of arguments, and a set of constraints. Tasks can be of three different types:

• Goals, which are desired states of the world.

• Primitive, which represent concrete actions, and thus can be performed

directly.

• Compound, which need to be subdivided, and represent changes that cannot

be expressed by simpler tasks.

 59

The input of an HTN planner is a triple P={d, I, D}, where d is a task network, I

represents the initial state of the world and D, planning domain is a pair D={Op,

Me}, where Op are operators, which denote the effects of primitive tasks, and Me is

a set of methods, which indicate how compound tasks must be solved. Methods

allow us to decompose complex tasks into their own task network, so a method

M(α, d), where α is a compound task and d is a task network expresses that in

order to achieve α, d must be achieved.

HTN planning is done by reduction. This means, that the planner will try to

decompose all the compound tasks into primitive ones using the available

methods, and then execute each of these using the required operators (Erol et al.,

1994). A plan will thus be a list of actions to satisfy the task network, providing we

are at the initial state.

Let us express the example used in previous sections as an HTN network. In this

case, our initial network would be composed by just one task ‘Eliminate Threat(X)’.

As it is a compound task, we need to define some methods to decompose it.

To define our example, we will use the notation (based on Lisp’s S-Expressions)

used by SHOP (Simple Hierarchical Ordered Planner) (Nau et al., 1999), which is a

domain-independent, total-order HTN planning system. This representation

follows the standardisation of planning languages called PDDL, Planning Domain

Definition Language (Ghallab et al., 1998).

In SHOP, we can define knowledge using Horn clauses with a Lisp-like syntax. This

knowledge includes states, which are atomic expressions or axioms, which have

the form (:- head tail1 tail2 … tailn). Axioms express that head is true if any of its

tails are true. Let us express the knowledge of being suspicious (that is an axiom),

as we know our guard will be suspicious if he hears a sound or perceives

movement.

(:- (suspicious ?x)

((in-sight ?x ?y) (heard ?x ?y)))

We can also create an axiom to determine when a threat can be frightened away,

and whether an agent is aiming his/her weapon at a target.

 60

(:- (can-frighten-away ?x)

((< (height ?x) 150)))

(:- (is-weapon-aimed ?x ?y)

((< (distance-to ?x ?y) < 100) (< (angle (create- vector ?x ?y)

(heading ?x)) 5)))

A method is defined as (:method h C T), where h is the compound task the method

decomposes, C is a set of preconditions and T is a task list. A method expresses that

if the preconditions in C are met, then h can be accomplished executing tasks in T

in order.

In our example, we can subdivide our main task, ‘Eliminate threat’, into two

different ones: ‘Kill threat’ and ‘Frighten threat away’, so we would have two

different methods to satisfy our main task.

(:method (eliminate-threat ?y)

 ()

 ‘((prepare-weapon ?x) (!shoot ?x ?y)))

(:method (eliminate-threat ?y)

 ((can-frighten-away ?y))

 ‘((!frighten-away ?x ?y)))

To clarify the syntax of a method, we can express the first method shown above, as

a method to solve a compound task called ‘eliminate-threat’, which has no

preconditions (), and which has two child tasks that must be executed to resolve

the problem: ‘prepare-weapon’ and ‘shoot’. Primitive tasks are preceded by a ‘!’.

‘Prepare-weapon’ is a compound one, and we will have to define a method to

satisfy it. The ‘ operator preceding the list of tasks to be executed expresses that

the lisp interpreter shall not evaluate the expressions.

SHOP’s syntax allows methods to define various branches (i.e. condition + tail). We

will use this to define our third method:

(:method (prepare-weapon ?x)

 ((not (is-weapon-aimed? ?x ?y)))

 ((!aim ?x ?y))

 (is-weapon-aimed? ?x ?y))

 ())

 61

This method, more complex than the rest of the examples, expresses that it is

defined to solve the task ‘prepare-weapon’ and that has two branches (that is why

we have four blocks of expressions). Blocks are grouped in pairs, so the first block

indicates preconditions, and the second is a list of actions. This means the method

above will either aim the weapon (!aim) if it was not aimed or do nothing () if it

was already aimed.

An operator is defined as (:operator h D A), where h is the primitive task it

defines, and D and A are deletion and additions of symbols contained in h. It is

similar to an action in STRIPS, as its meaning is that in order to achieve the task,

the atoms in D must be removed from the state of the world, and those in A must

be added. Let us, then, define operators for our primitive tasks:

(:operator (!frighten-away ?agent ?target)

((suspicious ?agent) (heard ?agent ?target) (in-si ght ?agent

?target))

((alarm ?on)))

Just to make things clearer, the operator above expresses that it is defining the

actions to execute for the primitive task named ‘!frighten-away’. The following

block of expressions is a list of knowledge to delete from the state of the world (in

this case, our agent will stop being suspicious and will no longer have any auditory

or visual stimulus. The last block is a list of knowledge to add, so it will trigger the

alarm.

(:operator (!shoot ?agent ?target)

((suspicious ?agent) (heard ?agent ?target) (in-si ght ?agent

?target))

())

(:operator (!aim ?agent ?target)

()

(point-weapon-at(?agent ?target)))

With this information, our problem would be defined. The expanded task network

the planner would use is shown in Figure 12.

 62

Figure 12. Task network used in our example

Depending on what the initial state of the world is, the planner would provide us

with different plans. Table 2 shows some of these plans:

Initial state Plans

((height ?threat ‘130) (heard ?agent

?threat))

((!frighten-away ?agent ?threat))

((!aim ?agent ?threat) (!shoot ?agent

?threat))

((height ?threat ‘190) (in-sight ?agent

?threat))

((!aim ?agent ?threat) (!shoot ?agent

?threat))

((height ?threat ‘190) (in-sight ?agent

?threat) (is-weapon-aimed ?agent ?threat)

)

((!shoot ?agent ?threat))

Table 2. Plans created by SHOP for our problem

The main difference between GOAP and HTNs is that the former is focused on

actions, whilst the latter are centred in tasks, which means that Task Networks

work trying to choose a strategy rather than the actions needed to satisfy it (Hoang

et al., 2005).

 63

Another advantage of HTNs is that they can work with more complex conditions.

GOAP requires the state of the world to be expressed as atomic pieces of

knowledge (Orkin, 2004-2). This means GOAP uses a large bit array, where each

situation can be present or not present. For HTNs, however, we can have complex

conditions : they use an infinite set of symbols, while STRIPS-like planners have a

finite plan-space (Lekavý & Návrat, 2007).

 64

Chapter 6. REACTIVE PLANNING

Automatic planners also have some drawbacks. They only produce plans that are

valid on their creation, but do not care about their execution or considering

possible invalidations over time. A possible solution to this problem would be to

re-run the planner every time a plan fails, or even periodically, so we get better

solutions over time (Beaudry et al., 2005), but this is not very appropriate in terms

of performance.

On the other hand, reactive planners build or change their plans in response to the

shifting situations at run time (Firby, 1987; Wilkins et al., 1995). This is much

better suited for the kind of problems we have to face in game development.

6.1. Belief-desire-intention

The BDI is based on two philosophical theories about human reasoning:

Intentional Systems (Dennett, 1987), and Practical Reasoning (Bratman, 1987).

They describe entities as rational selves with their beliefs and desires that behave

following intentions, conceived as partial plans (Georgeff & Lansky, 1987). It has

become a very important model for implementing practical reasoning agents (Rao

& Georgeff, 1991; Rao & Georgeff, 1995; Georgeff et al., 1999; Hardland et al., 2002;

Ambroszkiewicz & Komar, 2006).

In fact, we can match the concepts used in a classic planning problem to those used

by BDI models, where:

• A belief represents information about the state of the world.

• A desire is a goal the AI must achieve.

• Intentions are the plans that have been calculated, and which the agent has

committed to follow.

Apart from these components, a BDI system, or reactive planner, will also have a

library of plans (Bratman et al., 1988), which describe how to satisfy desires

depending on some preconditions.

 65

When a BDI system decides to fulfil a goal, it selects a plan rule from the library,

and puts it in its database of intentions. The execution of this plan can lead to new

goals, or to the choosing of alternative plans to satisfy its desires, if its current

plans fail at any time. This process is repeated until a plan succeeds completely or

there is nothing else the agent can do (Sardina & Padgham, 2007).

The main difference with automatic planners is that, in this case, we are not

building a full plan beforehand, but we are selecting smaller objectives or choosing

alternative solutions as we execute our overall plan (intention).

Let us represent the example we have been using so far built as a BDI system (see

Figure 13):

• Our list of beliefs represents the state of the world as we currently perceive

it. For example, we know there is an enemy on sight, we have a weapon, our

current health level is optimal or we have ten bullets left.

• Our internal desire is to not be threatened.

• Providing our desire and beliefs, our agent’s intention is to eliminate its

enemy.

Figure 13. Simple BDI representation of our guard AI

If we start running our current intention, we can choose a plan from our library,

such as “fire at enemy”. We can break this up into smaller tasks; for example “get in

range”, “aim at enemy” and “pull the trigger”. Let us say now we have run this plan

a couple of times, our enemy is still alive, and we have run out of ammunition; this

 66

would make us choose a new plan to “reload” our weapon, which we would

execute, and, once it has been completed, we will keep attacking our enemy until

we have killed it. So, our long-term goal is fixed, but our plan varies over time,

reacting to new situations.

Although the initial framework presented is good to model basic human behaviour,

it has been subject to various modifications and extensions to enhance it (Norling,

2004; Castelfranchi et al., 2006; Guerra- Hernández et al., 2004). Black & White

(Lionhead, 2001) presented one of the most advanced game AIs to date, and it was

based in a BDI architecture, with some extensions, such as the use of

reinforcement learning (Evans, 2002).

6.2. Behaviour trees

While hierarchical, state-based techniques are good solutions, their semantics are

not as powerful as they could be. Important constructions such as selections or

sequences of actions produce many sub-FSMs, states and transitions. Behaviours

presented in some current games imply working with very complex systems that

can become hard to maintain or modify (Isla, 2008). Also, changes in design could

require extensive programming work.

Behaviour trees (BT) are a means to avoid this kind of problems, providing a

means to describe sophisticated behaviours through a simple hierarchical

decomposition using basic building blocks (Champandard, 2008), like the one

shown in Figure 14. This offers development teams several advantages:

• Transitions are not explicitly declared, but are controlled by special nodes

in the tree (meta-nodes) like sequences, selectors or parallels. This makes

these structures much clearer and understandable.

• Trees can be easily extended as needed, just implementing new blocks, and

without the need to modify any other part of the code.

• Trees, or sub-trees can be easily reused, allowing developers to swiftly

create variations of behaviours.

 67

• Designers can be provided with tools to create, modify or experiment with

behaviours with no programming work involved.

• Tree design is flexible enough to allow all logic to be data driven.

• Unlike FSMs and HFSMs, behaviour trees allow two states to be running

concurrently.

Figure 14. Simple behaviour tree describing a 'Melee attack'

BTs have become a widely used technique, and they are present in many

commercial games like Halo (Bungie, 2001), Spore (Maxis, 2008) or Prototype

(Radical, 2009), so their usefulness has been proved in real products.

Some games create special branches controlled by scripts (Garces & Champandard,

2009) or allow designers to modify the order of execution of their trees, letting

them choose what branch must be active at any given moment.

Behaviour trees can also allow multi-level architectures to be created. If we change

the granularity of the structure, we can start considering complete branches as

sub-behaviours. These sub-trees can be separated from the main one and become

leaf nodes: we could have different views of the behaviours at different granularity

levels. This way, we could create a system where AI engineers are in charge of

maintaining and generating a library of complex sub-behaviours, and designers

use those to easily create new full behaviours for their AI characters.

This thesis presents a new technique that is based on behaviour trees, so we study

them in more detail in Chapter 9.

 68

6.2.1. Behaviour selection and interruption handling

These structures can be used to model and select behaviours, so effectively, we

have a behaviour tree where its branches are trees as well. The root of our tree is

usually a selector that chooses the best sub-behaviour among its children. The

problem with this architecture is related to behaviour interruption and resuming,

as, plain behaviour trees do not support it.

Some solutions have been presented to solve this problem, among them we find

MARPO (Laming, 2009). This technique, used in GTA: Chinatown Wars, uses a

three-stack approach, where the stacks hold information about “long term”,

“reactive” and “immediate” behaviours; only one stack is executed at each moment,

but, if the behaviour is interrupted by a higher-priority one, the stack is unloaded

(just keeping a reference to the root of the behaviour that was being run) and

replaced by the new behaviour. After the new tree has been run, the previous,

lower-level behaviour is restarted.

A similar, although more sophisticated, approach is used by Behaviour Multi-

queues (Cutumisu & Szafron, 2009), where three sets of queues are used. In this

case, behaviours are marked at initialisation time as “independent” or

“collaborative”, which indicate whether more than one agent is required to

perform the action. They are also classified as “proactive”, which are started by an

NPC spontaneously, when the agent has no active behaviours; “latent”, which are

run when an even cue is fired; “reactive”, which are run when the agent discovers

another NPC he can collaborate with.

When a behaviour is created, it is placed on the appropriate queue; there is one

queue for proactive independent behaviours, and an arbitrary number of them for

collaborative (proactive or reactive) and latent (independent, collaborative or

reactive) behaviours. Different types of behaviours have different priorities (which

are known by the queues), so some can interrupt others. The main difference with

MARPO is that while the approach used in that case forced to restart our previous

behaviour, once we decided to resume it, behaviour multi-queues can continue it

in the point where it was left at.

 69

As we will show later, we have opted for a behaviour restart approach in our

solution (see 11.1.1).

 70

HHHHINTEDINTEDINTEDINTED----EXECUTION EXECUTION EXECUTION EXECUTION BBBBEHAVIOUR EHAVIOUR EHAVIOUR EHAVIOUR

TTTTREESREESREESREES

In this section, we will study our novel solution to in detail, from its design to its

final implementation. We will also present how it can be applied to real games, and

what benefits it offers.

 71

Chapter 7. DEFINING THE PROBLEM

In previous chapters we studied of the different systems used by videogames to

model and control their AI behaviours. Each of the techniques presented so far

have different characteristics, and thus some are better at solving some problems,

but worse at others. We classified these algorithms and structures into two big

groups, plus a third one which represented mixed solutions.

Recalling what the goal we set in the first chapters of this thesis was, we are trying

to achieve is a system that, in short:

• Produces dynamic, but controllable (and fun), behaviours, which will allow

us to tailor the experience to different classes of players.

• Can make prototyping and team collaboration easier.

In this chapter we will analyse the information gathered during our research and

present a new technique that allows us to achieve our objectives.

7.1. Comparing behaviour modelling techniques

The main question we must answer is: can the solutions presented so far provide

us with enough flexibility to fulfil our goals?

In order to do so, we have chosen a range of characteristics where a comparison is

useful for our objective of building complex autonomous, yet controllable

behaviours. The different aspects studied are:

• Simplicity, or how easy to implement the system is.

• The degree of control designers have over the system, with no need for

programming work.

• How well the system scales when the problem grows.

• Whether or not aspects of the system will be re-usable.

• The unpredictability of the behaviours modelled by the system.

 72

• How easily behaviours can be extended or modified to generate new

behaviours or adapt existing ones to different situations.

Each characteristic is scored with a value in the range [0…5], and an overall (total)

result is also provided. We have filled in the scores using our own expert

judgement, and drawn up Table 3.

Technique
Simplicity

(programming)

Modifiable

by

designers?

(no coding

involved)

Scalability Re-usability
Behaviour

unpredictability

Behaviour

extensibility

Overall

result

(total)

FSM 5 1 0 0 0 0 6

Stack-

based

FSM

4 1 2 0 0 0 7

HFSM 3 2 2 2 2 1 12

HCSM 2 3 2 2 4 1 14

Petri nets 4 2 1 0 0 0 7

GOAP 2 3 3 3 4 2 17

HTN 1 2 4 4 4 2 17

BDI 2 2 3 3 4 3 17

BT 3 4 3 4 3 3 20

Table 3. Comparison of the different behaviour-modelling techniques studied

From the results we can extrapolate the following conclusions:

• FSMs are the easiest architectures to implement, but they do not scale well,

are difficult to modify by designers, and offer no re-usability. The

complexity of their notation is very low, so they are easy to understand,

even for non-technical members of the team, and while there is a small

chance of producing bad emergent behaviours, this implies that they are

usually very predictable. They are not very powerful, because, although

they can solve almost any problem, creating complex behaviours, or

extending existing ones, would require a lot of modelling work.

 73

• Stack-based FSMs are quite similar to FSMs, but slightly more difficult.

They are more powerful, as they allow for more complex solutions to be

created more easily. As with regular FSMs, they produce very predictable

behaviours and extending existing ones is not a trivial task.

• HFSMs are the best option when it comes to using an FSM-based solution.

They have medium-complexity; their behaviours are a little less predictable

and scale better. They also allow some re-usability and extending existing

behaviours is easier, as we do not have to add as many transitions (most of

them could be hidden inside a super-state). Mainly, their results in the

study indicate they are a good technology to use.

• HCSMs are harder to implement. They are more modifiable by designers, as

they could set different values in their control panels. They are similar to

HFSMs, but their behaviours are more unpredictable, as they use activity

functions to generate output, which have results that can be more difficult

to predict. HCSMs are normally used as directors, to help and orchestrate

complex situations.

• Petri nets are a good way to represent concurrent behaviours. They are not

very hard to implement, as long as we just use their simplest version, but

they suffer from the same problems as FSMs, so they get a very similar

overall score.

• GOAP and HTNs are a big step in terms of unpredictability, although they

can also lead to undesirable behaviours. Their complexity is greater, but

they scale quite well. They are both very powerful, but they require

extensive work to deal with dynamic changes (they need to re-plan when

their solutions are no longer valid). Designers could modify behaviours

through high-level interfaces that allow for things such as choosing what

actions are available for a certain type of NPC, but any important change

would require programming work.

• Belief-Desire-Intention architectures can be hard to program. They can

receive some input from designers, but they produce pretty unpredictable

 74

behaviours. They could be compared to automatic planners, but deal with

dynamic changes better.

• BTs are not very hard to implement. They are easy to understand, and

designers could even create new behaviours, if they are provided with some

tools. They deal with dynamic events very well, if they are correctly

implemented. They scale well, and allow for a high degree of re-usability,

although their solutions are predictable unless a lot of time is spent creating

their structures. Extending existing behaviours is easier in this case, as we

would only have to add or remove nodes or branches in our tree, which can

be done using a tool; however, this could introduce new bugs, increasing

the risks, as we could be adding new unpredicted situations, or making ones

that worked correctly before stop doing so.

In general, BT’s are the best technology for our purpose: building autonomous, yet

controllable behaviours. However, there are still some points where they can be

enhanced. For example, automated planners produce more unpredictable

solutions with less tuning work. Also, although designers can create and modify

BT’s at will, this is not always the best approach. Wrongly designed trees can lead

to strange situations, such as our guard fleeing even though it has full health and a

very powerful weapon, so testing new ideas is not always easy.

7.2. Objective

From the conclusions outlined in the previous point, we can say Behaviour Trees

seem to be closest to what we are looking for. They are also quite understandable

(provided we have the right tools to visualise them), and extendable, as new

behaviours can be created from other ones or expanded adding new building

blocks.

Although they look like a good solution, the biggest problem with Behaviour Trees

is that they can become too bloated to be controlled by non-technical staff.

Modifying a BT without the appropriate knowledge can cause odd bugs and

situations. What we would normally want is to have an engineer who can look

after the behaviours, and improve or change them based on the requests that come

 75

from the design team. This, however, adds some problems to the development

process. Figure 15 shows how the information flows in this scenario.

Figure 15. Development process with regular Behaviour Trees

In this case, every new feature designers would like to have, or try, must be

requested from an engineer. That is where the first problem is: designers do not

have direct control over the system, but they delegate the work to engineers. They

will then implement the changes, put them in the game, and, after some time, they

will be able to check the results. Finally, whether the feature should be kept, needs

polishing or should be discarded will be decided. Let us say the feature was

correct, but it needed some changes. In that situation, a new request would be

created, and the cycle would start over and over again. There is a clear waste of

time in our workflow.

Allowing prototyping is the key here. A good system should let designers modify

behaviours directly, as shown in Figure 16, but in a safe way. That is, we do not

really want correct and fully tested trees to be modified directly, as it is too risky;

instead, we want a way to alter the execution of those trees, in this way we can be

adding new, evolved behaviours.

 76

Figure 16. A good system should be able to let both designers and engineers modify and

prototype behaviours

7.3. How are BTs used in real games?

Behaviour trees can be used in various ways. AI programming, like any other

engineering work, is an art, and so different engineers can come up with different

solutions, even when they are using the same tools. Some games use BTs just as

decision makers, whereas others, such as Driver: San Francisco (Ubisoft, 2011),

also use them as a tool to describe behaviours.

This thesis is focused on producing a solution that allows new behaviours to be

easily developed and tested, without breaking the existing system. Before we can

define a way to do that, we must analyse how a BT works in a real game, and what

a modification might suppose.

To illustrate the process, we will expand the example we have been using so far:

our guard’s AI. Just as a reminder, this type of entity is, basically, an agent that can

patrol while it is idle, but it can also inspect things when it is suspicious. If it

detects an enemy it will attack it, but it will also try to take cover if it is in danger.

Let us say our project is just a few months away from being released; however, at

this point, some tests have shown that the game is too simple and not great fun, so

the design team comes up with a new idea: they want players to be able to take on

 77

the aspect of the enemies they eliminate, so other foes will not recognise them as

threats straight away.

A game based on BTs will require us to modify the trees to add this new logic. Even

if it seems like a pretty straightforward change, this can end up creating new bugs,

and making things stop working as they used to do: our original behaviour tree can

be quite complex (depending on its size), and choosing the right places to add the

new logic could not be so trivial anymore. Also, normally this will require an

engineer to be in charge of the changes; they will even probably be the ones to

implement the actual modifications.

On top of that, we must bear in mind that after adding the new behaviour,

designers might decide the idea is not good enough, and that it does not work (in

terms of gameplay values), so we could, potentially, be wasting many hours of

engineering, which is quite inconvenient for the project itself. So, how do we

enhance the process?

7.4. Improving prototyping

Looking at our problem, we can notice the solution comes by leaving our trees

intact, as we know they have been tested and tweaked thoroughly, and

modifications are dangerous. But, not modifying our trees means the behaviour

will not change… unless we can re-arrange the way the tree is executed.

7.4.1. Personalities

A simple way of changing the normal flow of execution on a tree is the inclusion of

a set of parameters (Ellinger, 2008) that can be modified, so selectors and/or

conditions in our tree behave differently. We will call them ‘personality traits’ as

we would be able to generate different personalities just by having different sets of

values for them. A good example of this could be an aggressiveness trait, such as the

one presented previously in 5.1. In this case, it could just be a boolean value, where

‘true’ means the AI must be aggressive towards enemies, while ‘false’ indicates the

agent is just coward, and it must try to hide at all cost. Figure 17 shows an example

of this.

 78

Figure 17. The usage of personality traits can help us modify the normal execution of a tree

This is the kind of structure we would be looking for, if we were allowed to modify

our original tree. It just does not provide us with enough power in our case,

though, due to the restriction we have imposed at the beginning of this section,

that is, the invariability of the trees. So, using traits or values we cannot add new

logic.

7.4.2. Hints

Let us think differently. How can we alter the results without changing the

structure or a tree? The answer is, by means of messages. We will call these

messages hints.

As introduced in 6.2, a behaviour tree is just the organised sum of several building

blocks, one of which are selectors. A simple selector will execute its branches in

order, until one of them succeeds (or all of them fail). So, priority, and thus,

execution flow, comes from this order.

Back to our guard’s AI, we can simplify its behaviour, so a big selector basically

forms it, choosing among different sub-behaviours, which are, as we have just said,

prioritised. Figure 18 illustrates this.

 79

Figure 18. A simplified vision of our guard's AI

In the figure, we can see our AI will first check if it has to cover, then it will try to

attack, but if it does not have a target, it will try to look for one. If no threat is

visible, then it can just be idle.

Selectors are really the key to modify the behaviour of an AI, as they are the

‘intelligent bits’ inside a BT. Just like in real life, making a decision requires

inspecting different options and checking the pros and the cons of them… but just

as in the real world, a decision can also be affected by other people’s opinions or

thoughts, which may bias our verdict towards a particular choice.

That is exactly what a hint represents: a way to let the selector know what a

higher-level entity thinks about what it should do. But, as in real life, hints are not

always positive, that is, we are not always told what to do, but what not to do.

A simple example could be recreating our ‘aggressiveness’ trait without modifying

our tree. Let us say we did not think about the possibility of having two AIs that

only differ in this parameter, and we want to test if this provides players with a

greater variety of situations. We want to create a kamikaze AI, which never tries to

hide; to do so we are going to pass our selector a ‘DO NOT COVER’ hint. This is

letting the selector know it should really avoid covering and it should attack its

target, rather than being a coward.

However we still want our AI to be able to respond properly to other events, that

is, if we want it to keep being autonomous: we only need to be able to affect its

priorities. Effectively, this means we are reordering its branches, as shown in

Figure 19.

 80

Figure 19. When a selector receives a hint, it reorders its branches

The effects of these new priorities are that, no matter how low its health is,

covering will be our AI’s last resource.

As we said before, we still want our AI to be independent, and this is a very good

example to illustrate that. If, for any reason, our AI cannot attack (e.g. it has run out

of ammunition), the logical choice will be to cover: we have transformed our

coward AI, whose first option was to flee, into a guard that will always try to

eradicate its enemies, no matter how tough they look.

It is important to note that we have not really touched the main tree at all, and that

going back to the original behaviour is as easy as taking the hint away. This means

this solution satisfies our first condition.

7.4.3. Adding new logic

To some extent, this example is adding new logic, although it is not anything we

could not have added with a simpler system, such as a set or personality traits.

This kind of systems does not work when the new logic is more complex, such as

adding the disguise system.

Now, if we remember the way a BT is built, we can get to a solution to this. Why do

we just not create a simplified tree where the leaf nodes send hints to our main

tree? Just by implement this new building block, and replacing the action nodes in

our main tree with these new hint nodes, we could overcome this limitation.

 81

So, continuing with the example, let us define the new feature. Basically, what we

want to do is prevent AIs from attacking us, in case we are disguised; also, we want

AIs to start attacking us if we have been near them for too long. Analysing the

problem with our hint system in mind, we can see that what we want is to build a

tree with two branches: “do not attack” and “we have an intruder, just attack”.

In order to describe what we want our AI to do first, which is to avoid attacking at

all cost, we again use a negative hint: that is “do NOT attack”. On the other hand, if

what we want is just to get back to the normal behaviour, we have to stop sending

hints, which we have represented as ‘CLEAR HINTS’ in Figure 20. As a second

option, we could also want to make our AI more aggressive sending a positive hint:

“attack”.

Figure 20. A simple tree can be used to modify a main behaviour

Providing the AI with a higher-level tree like this, we will make the main selector

reorder its branches as shown in Figure 21, in case the AI has not discovered the

deception. In that case, attacking will be the AI’s last option. The tree will go back

to normal as soon as the conditions in the first branch are met.

 82

Figure 21. If the AI is not suspicious, or not enough time has passed, then we reorder the

selector so attack is the last available option

The key to these simplified trees is that they are very easy to understand and, as

we are not changing the original behaviour, we can build or modify them very

quickly. In fact, just with a little training, any member of the team can create their

own trees and start experimenting with new ideas, which is the core work of this

thesis.

So far we have just presented the basic idea behind Hinted-execution Behaviour

Trees (HeBTs). A fully functional prototype has been developed as a fundamental

part of this thesis and, in the following chapters, we will study, based on the

experience gained during its implementation, how an HeBT system works, and

how this technique provides game studios with a good solution, that will allow

them to produce fun AIs maximising the use of resources.

 83

Chapter 8. OVERVIEW OF THE SYSTEM

In the previous chapter, we presented our novel solution, Hinted-Execution

Behaviour Trees, to tackle problems derived from the complexity and dynamic

nature of videogames.

Game programming is an agile process, and needs practical solutions, rather than

theoretical ones, so we decided, in the earliest stages of this research, that we had

to take a pragmatic approach, and base our study on experimenting with a real

game AI.

In this chapter, we will present an overview of the prototype developed as part of

this work, from a high-level point of view, showing how the different components

of the system work together to satisfy the goals of this thesis.

8.1. Components

Our system is made up of three main parts or components: an HeBT library, a tree

editor, and a game prototype, built on top of Half-Life 2’s public SDK. We will

describe them roughly in this section, and explain each of them in detail in the

following chapters.

8.1.1. Hinted-execution Behaviour Tree library

One of the objectives presented in Chapter 2 was that our system has to be

abstract enough to support any kind of game. Because of this, the library is highly

templatised, written in C++, and it contains all the elements that can be common to

different games; this way, we can just re-use the library, implementing only game-

specific objects, such as action nodes.

We use a Lua interpreter to import and build trees easily, and we have also added

a communication layer, based on sockets, that can be used to control our AIs from

the tree editor, as we will see later in this thesis.

 84

8.1.2. HeBT Editor

Another important goal of this work is to generate a solution that is easy to use.

Without such an editor, it would not be possible for non-technical staff to generate

new behaviours, and the technique itself would lose most of its power. Because of

this, an editor has been created in parallel to the HeBT library.

The tool has been implemented using C# and WPF. It can be personalised using

different configuration files, based on XML, so it can be reused in different games.

These configuration files allow us to generate libraries of conditions and actions to

be used by our behaviours.

Also, the editor is capable of communicating directly with the game, so behaviours

can be changed on-the-fly. This eases the work, as changes can be tested just by

clicking a button.

Finally, the editor is also capable of showing, in real time, how the tree is working,

so it can be debugged effortlessly. To do so, the editor will show the whole tree and

highlight the nodes that are currently running. This is especially important when

we start using hints, as it allows us to see how our higher-level logic is affecting the

execution of the original tree.

8.1.3. Game prototype

In order to get some valid results, we decided it was important to apply our new

technique to a real game. Building a game from scratch is getting more and more

complicated, even more when we are talking about 3D environments, and it would

have required quite a long time. Instead, we opted to implement a modification for

a commercial game. In our case, we chose Half-Life 2, as all its AI is written in C++,

and it was relatively easy to replace their systems with our own.

As the system has been designed to be game-independent, we have only had to

create some functionality that is specific to Half-Life, and the kind of game we were

trying to create. Specifically, we have implemented some actions, conditions, and

some communication commands, so we are able to instantiate these new objects.

 85

8.2. High-level architecture

Although we have subdivided the system into three components, we can

differentiate between two main parts: the game side (library and game prototype)

and the tools side (editor). Figure 22 shows a high-level idea of the structure of the

system.

Figure 22. High-level architecture of the system

Our system is data-driven; this means, the data generated by the editor is used by

the game to produce the final behaviours. The library holds most of the logic, and

exposes some interfaces so any game that uses it can implement specific logic that

cannot be shared. These specific implementations are held inside the game. The

game side can also send debug information to the editor if it is required.

We will study each of these components, and their relations, in the following

chapters.

 86

Chapter 9. BUILDING A BEHAVIOUR TREE SYSTEM

Hinted-execution Behaviour Trees are an extension of the regular BTs. With this in

mind, the first logical step was building a behaviour tree system we could then

upgrade. Our BT library has been built trying to keep every component as abstract

as possible, as one of the objectives of this thesis is to generate a game-

independent solution.

In this chapter, we will study this part of the library in detail: what main

components it offers, what type of nodes are available, etc.

9.1. Manager and instances

When building an AI library, the first thing that has to be defined is how each AI

instance will be represented, and how we are going to manage those AIs. In the end

we do nothing but control these entities, so we must be able to keep track of them

and provide some functionality to set or change their behaviours. All of this is

centralised in two objects, shown in Figure 23: AIManager and AIInstance.

AIManager

NativeAI

AIInstance

NativeAI

1

*

Figure 23. We represent each agent as an AIInstance, being those controlled by the

AIManager

Our AIInstances work, to some extent, as wrappers of the native AI type of the final

game2. This means we could potentially apply our system to any existing

application.

2 For the sake of simplicity, we will avoid marking classes as templates in the rest of the figures provided.

 87

9.1.1. AI Manager

The manager acts as a hub for the rest of the library. It contains other smaller

managers –Lua and communications– and provides us with basic functionality to

create, delete and get AI instances. Figure 24 shows how the manager is connected

to other components of the system.

+StartAI() : bool

+StopAI() : bool

+GetAI() : AIInstance

AIManager

AIInstance

1

*

lua::LuaManager

communication::Server

1 1

1

1

Figure 24. Relations of the manager with the rest of the library

9.1.2. Instance

As we have already said, each AI instance represents an agent in the world, and

because of the design we have used, it acts as a wrapper of a native entity.

Instances keep a pointer to this game entity, as well as a pointer to the behaviour

tree that is controlling it. Finally, it contains a blackboard, which we have built as a

list of pairs key/value, and that acts as a simple memory, allowing the AI to store

and access small pieces of data that can be useful for their behaviours. Figure 25

shows how an instance fits in the library.

 88

Figure 25. Connections of an AIInstance to the rest of the library

As we can see in the figure, we do not really reference a behaviour tree directly.

Instead, we use a BehaviourController, which is one of the keys of the hint system,

and will be studied in depth in 11.1, but, for now, we can say it contains a list of

trees that are being executed simultaneously to build the final behaviour.

Instances are our interface with our agents, and thus they provide methods to set

their behaviours. Now, we must study how these behaviours are created.

9.2. Defining a tree

A behaviour tree is just a structure where each node can have 0..n children.

Execution of these trees begins at their root at every step. This root node will then

run its logic and execute one, or several, of its children, and so on.

Because of the latent execution present in BTs, we can say each node has two

possible states: STOPPED and RUNNING. We have added two additional methods to

our nodes, so we can execute some logic that is only run when it is started or

stopped.

A node will be stepped only if it is running. When a node is run, it must return its

state after being updated. A node can SUCCEED, FAIL, report it is still IN PROGRESS

or abort its execution because of a serious ERROR.

 89

From these initial requirements, a Composite pattern (Gamma et al., 1994) seems

appropriate. This way, every node will have a common interface. We will also

implement a Visitor pattern, as it will allow us to process our tree in different ways

without the need of modifying the structure itself.

Several nodes inherit from this abstract node. Some of them are strict composite

nodes, such as selectors, sequences and parallels, others are leaf nodes (i.e. nodes

with no children), and finally we have decorators or filters, which are nodes that

following a Decorator pattern, modify the standard behaviour of a node. Figure 26

shows the basic structure of this part of the library.

Figure 26. A view of the main classes in charge of defining a behaviour tree

We will detail how each node works in the following sections.

9.3. Composite nodes

Composite nodes are those that have 1..n children. Note the range starts at 1,

indicating these nodes cannot be used as leafs in the tree. They control the

execution flow in the tree, and we will call them metanodes, as they basically allow

us to create more complex structures.

 90

9.3.1. Sequence

Sequences are the simplest of the composite nodes. As their name indicates, they

allow sequential execution to be added to a tree. They will execute their child

branches in order, bailing out prematurely if one of the tasks fails. Translating this

to actual code, sequences look like this:

template < class AIInstance > 1

ENodeResult Sequence < AIInstance >:: Step () 2

{ 3

 ENodeResult eResult = NR_IN_PROGRESS; 4

 5

 ASSERT_STR(m_currentSubtask != m_children . end (), 6

 L"Trying to update an invalid subtask"); 7

 8

 eResult = (* m_currentSubtask)-> Step (); 9

 if (eResult == NR_SUCCEEDED) 10

 { 11

 // Stop current task 12

 (* m_currentSubtask)-> Stop (); 13

 14

 // Jump to next task 15

 ++ m_currentSubtask ; 16

 if (m_currentSubtask != m_children . end ()) 17

 { 18

 // Start new task and return that we're in progress 19

 if ((* m_currentSubtask)-> Start ()) 20

 { 21

 eResult = NR_IN_PROGRESS; 22

 } 23

 else 24

 { 25

 eResult = NR_ERROR; 26

 } 27

 } 28

 else 29

 { 30

 // Succeeded 31

 m_currentSubtask = m_children . end (); 32

 eResult = NR_SUCCEEDED; 33

 } 34

 } 35

 36

 return eResult ; 37

} 38

Let us analyse this snippet. We have already said composite nodes cannot work as

leaf nodes, so the first thing a sequence is checking (in this case, it is asserting it in

lines 6-7) is that we actually have some children. We keep an iterator to the

current subtask, and we initialise it when we start the node, so, in case we are

running the node, the iterator should be valid.

After this first check, we are updating the current branch (line 9). The result is

stored in eResult, so in case the child node fails (or is erroneous), the sequence will

return that failure to its parent and bail out. Otherwise we stop the task that has

 91

just finished (line 13) and increment the iterator (line 16). If we have not

processed all our children, we will start the new one (line 20). On the other hand, if

we have already executed all of them, it means the sequence has succeeded (lines

32-33), and the sequence will end.

Let us examine a real-world example (Figure 27).

Figure 27. An example sequence

In this case, we are trying to model a simple “cover” behaviour, in which we want

our AI to stop moving, then find a cover and, finally, run to the cover it has just

found. Table 4 shows the results of the execution of this behaviour, depending on

the results returned by each of the branches of the tree.

Stop moving Find cover Run path Sequence result

Succeeded Succeeded Succeeded Succeeded

Succeeded Succeeded Failed Failed

Succeeded Failed - Failed

Failed - - Failed

Table 4. Possible results of the example sequence

9.3.2. Parallel

Parallels allow the concurrent execution of their children. A parallel node will

update all its children in each step, and it will only bail out if any of them fail or

succeed.

Although concurrency could be real (i.e. each child would be run on a different

thread), we have opted for a simpler solution. In this case, the execution will be

similar to that of a sequence node, but all the branches will be run in the same step.

1

 92

template < class AIInstance > 1

ENodeResult Parallel < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(! m_children . empty (), 4

 L"Trying to update an invalid subtask"); 5

 6

 // Update the nodes. Stop as soon as one ends 7

 NodeVector :: iterator it = m_children . begin (); 8

 NodeVector :: iterator end = m_children . end (); 9

 for (; it != end ; ++ it) 10

 { 11

 AbstractNode < AIInstance >* pNode = * it ; 12

 ENodeResult eResult = pNode-> Step (); 13

 if (eResult != NR_IN_PROGRESS) 14

 { 15

 return eResult ; 16

 } 17

 } 18

 19

 return NR_IN_PROGRESS; 20

} 21

Examining this code, we can tell we are iterating through all the child nodes (line

10) and we bail out as soon as one of them is not in progress anymore (lines 14,

16).

We can use parallels to create assertions, that is, conditions that we want to check

on every step and that are mandatory for a sub-tree to be executed (we will talk

about them in 9.4.1.2). Following the example presented to explain how sequences

work, we can extend it. Let us say that if we want to cover, we need to have an

enemy we want to hide from. Figure 28 shows how this would work.

Figure 28. Example of a parallel node

We illustrate how this parallel works in Table 5.

 93

Has enemy? Right branch Parallel result

TRUE In progress In progress

TRUE Failed Failed

TRUE Succeeded Succeeded

FALSE - Succeeded

Table 5. Execution of our sample parallel node

9.3.3. Selector

Selectors are the most powerful metanodes. They add a way for AIs to decide what

to do, based on the state of the world.

Different types of selectors can be built. The easiest of them relies on the order of

its sub-branches: it will start choosing the leftmost one, so effectively the priorities

decrease as we move to the right. These are also called ’static selectors’, as

designers have to keep this in mind when they define the structure of the tree, and

decide what the best configuration is, because the node will always execute

subtasks in the given order (Champandard, 2009-1; Champandard, 2009-2;

Champandard, 2009-3); it is also the one we have implemented in our library, as

we show below:

template < class AIInstance > 1

ENodeResult Selector < AIInstance >:: Step () 2

{ 3

 ENodeResult eResult = NR_ERROR; 4

 5

 ASSERT_STR(m_currentSubtask != m_children . end (), 6

 L"Trying to update an invalid subtask"); 7

 8

 eResult = (* m_currentSubtask)-> Step (); 9

 if (eResult == NR_SUCCEEDED) 10

 { 11

 // Succeeded 12

 m_currentSubtask = m_children . end (); 13

 eResult = NR_SUCCEEDED; 14

 } 15

 else if (eResult == NR_FAILED) 16

 { 17

 // Stop current task 18

 (* m_currentSubtask)-> Stop (); 19

 20

 // Jump to next task 21

 ++ m_currentSubtask ; 22

 if (m_currentSubtask != m_children . end ()) 23

 { 24

 // Start new task and return that we're in progress 25

 if ((* m_currentSubtask)-> Start ()) 26

 { 27

 94

 eResult = NR_IN_PROGRESS; 28

 } 29

 else 30

 { 31

 eResult = NR_ERROR; 32

 } 33

 } 34

 else 35

 { 36

 // Failed, as no further task was found 37

 m_currentSubtask = m_children . end (); 38

 eResult = NR_FAILED; 39

 } 40

 } 41

 42

 return eResult ; 43

} 44

The way our selector works is pretty simple. We first update the current child (line

9) and, if it succeeds, then the selector bails out and succeeds. Otherwise, we will

move to the next child (line 22), start it (line 26) and return we are still in

progress, if everything goes fine (line 28). When we reach the end of our list of

children, our selector fails.

A real-world example of a selector is shown in Figure 29. In this case, we want our

AI to reload its weapon if it is necessary. The left branch executes a condition to

check this. If the condition fails, then the selector will choose to attack.

Figure 29. A simple selection allows the AI to choose whether it has to reload its weapon

Again, Table 6 shows how this selector would work.

Left branch Right branch Selector result

Succeeded - Succeeded

 Failed Succeeded Succeeded

Failed Failed Failed

Table 6. Possible results of our selector example

 95

The node presented in this section is just a first, simple version of a selector. Our

Hinted-execution Behaviour Trees work thanks to an advanced selector, that is

able to reorder its branches depending on the external hints it receives. It will be

shown in detail in Chapter 10.

9.4. Leaves

Once we have defined our metanodes, we need to create some leaves for our tree.

These atomic nodes are the ones that actually perform actions by themselves,

rather than just be there to provide structure to the trees.

We have only defined two types of leaf nodes in the library: conditions and actions.

A third type, hints, will be studied in Chapter 10.

9.4.1. Conditions

A condition is a piece of logic that checks the state of the world, returning a

boolean result. Most of the decision making in BTs come from them.

It is easy to see that, because conditions are checking the environment of our

agents, they are closely tied to the game itself, so we have only defined the abstract

logic that makes conditions work in our library.

To make conditions more flexible, we have opted to use condition trees instead of

plain, normal ones. This allows us to reuse our conditions in different situations,

and treat their values in different ways. The editor is capable of building these

trees visually, just as it does with our HeBTs, as we will see in Chapter 13.

9.4.1.1. Condition trees

The structure of our condition trees is similar to that of our BTs. They are also built

using a composite pattern, so we have a basic interface for nodes, which can be

atomic or complex. Figure 30 shows the classes that are part of condition trees.

 96

Figure 30. Design of a condition tree

“And” and “Or” conditions are simply a list of conditions which results are logically

combined.

bool AndCondition :: Evaluate () const 1

{ 2

 ASSERT_STR(! m_children . empty (), L"Evaluating an empty AND condition"); 3

 bool bResult = true ; 4

 5

 ConditionVector :: const_iterator it = m_children . begin (); 6

 ConditionVector :: const_iterator end = m_children . end (); 7

 for (; it != end ; ++ it) 8

 { 9

 const ICondition * pCondition = * it ; 10

 bResult &= pCondition -> Evaluate (); 11

 if (! bResult) 12

 { 13

 //shortcut 14

 break ; 15

 } 16

 } 17

 18

 return bResult ; 19

} 20

 21

bool OrCondition :: Evaluate () const 22

{ 23

 ASSERT_STR(! m_children . empty (), L"Evaluating an empty OR condition"); 24

 bool bResult = false ; 25

 26

 ConditionVector :: const_iterator it = m_children . begin (); 27

 ConditionVector :: const_iterator end = m_children . end (); 28

 for (; it != end ; ++ it) 29

 { 30

 const ICondition * pCondition = * it ; 31

 bResult |= pCondition -> Evaluate (); 32

 if (bResult) 33

 { 34

 //shortcut 35

 break ; 36

 } 37

 } 38

 39

 return bResult ; 40

} 41

 97

“Not” conditions work is a pretty similar way, just negating the result of their

underlying condition.

bool NotCondition :: Evaluate () const 1

{ 2

 ASSERT_STR(m_pDecoratedCondition != NULL, L"Evaluating a NULL condition 3

(NOT)"); 4

 return ! m_pDecoratedCondition -> Evaluate (); 5

}6

On the other hand, “Leaf” conditions are those that are atomic and do not base

their result in those of others. Our library only provides an abstract class as a base

point for actual conditions to be defined in the game code. We will see some of

these in Chapter 12.

Finally, “Hint” conditions are used by our novel extension of BTs, and will be

studied in Chapter 10.

Figure 31 shows an example of a pretty complex condition, which can be read as:

“We have an enemy and low ammunition, or our health is low”.

Figure 31. An example of a complex condition

9.4.1.2. Using conditions in a behaviour tree

Now that we have defined our condition trees, we have to find a way to use them in

behaviour trees. BTs are just a collection of nodes, so we have to create a new node

to hold these conditions. From our experience, we have noted that we need to

evaluate conditions in two different ways:

• Instantaneous checks, so we can decide whether to run a branch. We call

these preconditions. Figure 32 shows an example of a precondition. In this

case, we want to check if we need to reload our weapon before we trigger

the action.

 98

Figure 32. Example of a precondition

• Evaluation of a condition over a period of time, so we can get a failure if it is

no longer met. We call these assertions. These nodes are more useful if

they are combined with a parallel, as we show in Figure 33. Let us think

attacking an enemy is not an instantaneous action; let us also say an enemy

is required, if we want to run the action. Using this structure, if the

condition fails at any time, the tree will bail out returning the failure.

Figure 33. Example of an assertion

We have implemented this, as a single node that can function in two different

modes.

template < class AIInstance > 1

ENodeResult Condition < AIInstance >:: Step () 2

{ 3

 bool bResult = m_pCondition -> Evaluate (); 4

 if (m_bAssertion) 5

 { 6

 return (bResult) ? NR_IN_PROGRESS : NR_FAILED; 7

 } 8

 return (bResult) ? NR_SUCCEEDED : NR_FAILED; 9

}10

We can translate this code into a tabular format to simplify it (Table 7).

 99

Operation mode Condition? Node result

Precondition TRUE Succeeded

Precondition FALSE Failed

Assertion TRUE In progress

Assertion FALSE Failed

Table 7. Results obtained using the different operation modes of condition nodes

9.4.2. Actions

Actions are the nodes that modify the state of the world. They can perform

different activities, such as modifying values, running an animation, creating new

entities, etc. Because of this, they are very dependent on the game.

We considered two different design approaches to model actions. The first one was

to think in advance of all the possible actions any game may need to perform and

create an abstract layer games would have to implement. Using this solution, we

could have created all of our action nodes in the library, but we would be limiting

the set of actions videogames using the library could execute.

In contrast, the solution we chose is more flexible. We only define a basic, abstract

action node, and games are in charge of creating their final action nodes.

We will show some actual implementations of actions in 12.2.1.1.

9.5. Filters

A filter is just a node that wraps a branch, so it alters its normal execution flow.

They use a decorator pattern. Our library contains some useful decorators, which

allow us to create things such as loops. Figure 34 show what filters have been

implemented, as well as the relations existing among them.

 100

Figure 34. Filters that are available in the library

A simple example of the usage of a filter can be seen in Figure 35.

Figure 35. A filter working in a real-world example

In this case, we are modelling a simple zombie behaviour. We just want our zombie

to chase its enemy while it is alive. Using a conditional loop that checks whether or

not this is satisfied, we can build the final behaviour swiftly.

9.5.1. Loops

A loop is a node that runs a branch several times in a row. We have implemented

three different types of loops, which are studied below.

9.5.1.1. Basic loop

The basic type of loop will just keep executing its underlying branch until it fails.

template < class AIInstance > 1

ENodeResult Loop < AIInstance >:: Step () 2

{ 3

 ENodeResult eResult = m_pDecoratedNode -> Step (); 4

 if (eResult == NR_SUCCEEDED) 5

 { 6

 // Restart decorated node 7

 m_pDecoratedNode -> Stop (); 8

 m_pDecoratedNode -> Start (); 9

 10

 eResult = NR_IN_PROGRESS; 11

 101

 } 12

 13

 return eResult ; 14

} 15

If the decorated node succeeds (line 5), we just restart it (lines 8-9) and return we

are still in progress. This is explained in Table 8.

Child branch Node result

Succeeded In progress

Failed Failed

Error Error

In progress In progress

Table 8. Possible results of a basic loop node

It is worth noting that a loop will never succeed, but just fail or keep running.

9.5.1.2. Conditional loop

This type of loop replicates the functionality of C++’s “while” loop: it will keep

executing its child branch while a condition is met.

template < class AIInstance > 1

ENodeResult ConditionalLoop < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(m_pCondition != NULL, L"A condition wasn't set!"); 4

 ENodeResult eResult = NR_SUCCEEDED; 5

 6

 if (m_pCondition -> Evaluate ()) 7

 { 8

 eResult = m_pDecoratedNode -> Step (); 9

 if (eResult == NR_SUCCEEDED) 10

 { 11

 // Restart decorated node 12

 m_pDecoratedNode -> Stop (); 13

 m_pDecoratedNode -> Start (); 14

 15

 eResult = NR_IN_PROGRESS; 16

 } 17

 } 18

 19

 return eResult ; 20

} 21

Let us express this as a table (Table 9).

 102

Child branch Condition? Node result

Succeeded TRUE In progress

In progress TRUE In progress

Failed TRUE Failed

Error TRUE Error

- FALSE Succeeded

Table 9. Possible results of a conditional loop node

In this case, we have decided that the node will always succeed if the condition is

not satisfied.

9.5.1.3. Run until succeeded

The last type of loop will restart the child branch indefinitely –ignoring all the

possible failures that can happen in it– until it succeeds.

template < class AIInstance > 1

ENodeResult RunUntilSucceeded < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(m_pDecoratedNode != NULL, L"NULL decorated node"); 4

 5

 ENodeResult eResult = m_pDecoratedNode -> Step (); 6

 if (eResult == NR_FAILED) 7

 { 8

 // Restart the node 9

 m_pDecoratedNode -> Stop (); 10

 m_pDecoratedNode -> Start (); 11

 12

 eResult = NR_IN_PROGRESS; 13

 } 14

 15

 return eResult ; 16

} 17

Table 10 shows the possible results of this kind of node.

Child branch Node result

Succeeded Succeeded

Failed In progress

Error Error

In progress In progress

Table 10. Possible results of a "Run until succeeded" node

From these results, we must note this node can never fail.

 103

9.5.2. Conditional execution

This node will allow us to prune a branch quickly. It will bail out with a failure

result, and without executing the child node, if a condition is not satisfied.

template < class AIInstance > 1

ENodeResult ConditionalExecution < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(m_pCondition != NULL, L"A condition wasn't set!"); 4

 ENodeResult eResult = NR_FAILED; 5

 6

 if (m_pCondition -> Evaluate ()) 7

 { 8

 eResult = m_pDecoratedNode -> Step (); 9

 } 10

 11

 return eResult ; 12

} 13

The possible return values of this type of node are shown in Table 11.

Condition? Node result

TRUE Same as the child result

FALSE Failed

Table 11. Possible results of a "conditional execution" node

9.5.3. Result modifiers

We call result modifiers those nodes that just run their decorated ones and convert

their return value to produce a different output. Our library includes two of these

nodes, which are presented next.

9.5.3.1. Not

This node will negate the result of the underlying branch, as shown in the

following code snippet.

template < class AIInstance > 1

ENodeResult Not < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(m_pDecoratedNode != NULL, L"NULL decorated node"); 4

 5

 // Negate the result 6

 ENodeResult eResult = m_pDecoratedNode -> Step (); 7

 if (eResult == NR_FAILED) 8

 { 9

 eResult = NR_SUCCEEDED; 10

 } 11

 else if (eResult == NR_SUCCEEDED) 12

 { 13

 eResult = NR_FAILED; 14

 } 15

 16

 return eResult ; 17

 104

} 18

It will, however, retain errors, as explained in Table 12.

Child node result Node result

Succeeded Failed

Failed Succeeded

Error Error

Table 12. Possible results of a "Not" filter

9.5.3.2. Ignore failure

This type of node converts node failures into successes.

template < class AIInstance > 1

ENodeResult IgnoreFailure < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(m_pDecoratedNode != NULL, L"NULL decorated node"); 4

 5

 // Ignore failures 6

 ENodeResult eResult = m_pDecoratedNode -> Step (); 7

 if (eResult == NR_FAILED) 8

 { 9

 eResult = NR_SUCCEEDED; 10

 } 11

 12

 return eResult ; 13

} 14

As the code shows, it is a very basic filter, and its possible results are presented in

Table 13.

Child node result Node result

Failed Succeeded

Any other result Same as the child result

Table 13. Possible results of an "Ignore failure" filter

9.6. Running a behaviour

So far, we have defined all the basic elements in our library, but, how do they

combine to produce a behaviour?

First, the game has to create an AI instance; it will do so through the AI manager.

Once the instance is ready, the client will set a behaviour (tree), and the instance

will run it until it is finished. Figure 36 illustrates this process.

 105

Figure 36. Process involved in the creation and initialisation of an AI

A BT is always run starting at its root. Let us show how a simple tree would be

executed. To do that, we will use the zombie behaviour presented earlier (Figure

35), explaining the first four updates of the tree, which are outlined in Figure 37.

Figure 37. A BT is always executed starting from its root. The execution flow is determined

by the type of nodes used to build the tree

 106

In the first step, the root filter is executed for the first time. Let us say the condition

is met (we are still alive), so the decorated node, in this case, a sequence, is run.

The sequence starts running its first node, and it succeeds. The sequence will then

update its current child and point to the second element in the sequence. The step

ends here and the sequence returns it is in progress; the loop is in progress as well.

The following steps are pretty similar, with leaf succeeding, and the sequence

updating its current child accordingly.

Let us say “Wait for movement” takes some time to complete. In that case, step 4

would be different to the rest. Rather than having the leaf ending, it will return an

“in progress” state, causing the sequence not to increment its iterator. This will

continue for some updates, until the action is completed. When this happens, the

sequence will know it has got to the end of its list of children, and thus will

succeed. The main loop, upon receiving this success, will restart the sequence, and

the following step would be the same as step 1, as depicted in the figure.

Finally, the AI’s enemy decides to kill it. When the AI starts updating its tree, it will

notice that on its root: the condition will no longer be satisfied, and the loop will

bail out, succeeding, and ultimately, finishing the behaviour.

The execution flow in a behaviour tree is defined by the filters and metanodes we

use in its creation. These nodes are the ones that make behaviour trees work as

reactive planners, because they guide the execution towards different situations

(sub-trees or sub-behaviours) depending on the state they detect.

In the following chapter we will introduce our novel technique, which will allow us

to modify the execution flow without modifying the structure of the tree.

 107

Chapter 10. EXPANDING OUR BT: HINTS

So far, we have described how our implementation of a standard behaviour tree

system works. However, regular BTs do not allow us to prototype new behaviours

swiftly and without additional programming work, so they do not meet our

requirements.

In this chapter, we will examine our new approach, Hinted-execution Behaviour

Trees, which try to overcome these problems.

10.1. The concept of hint

The main difference between a behaviour tree and a hinted-execution counterpart

is that, while the execution flow for the former is defined by its own structure,

HeBTs can reorder their branches dynamically to produce different results.

The system tries to imitate real-life command hierarchies, where lower-levels are

told by higher-level ones what must be done, but, in the end, deciding how to do it

is up to the individuals. In our system, the individual AI is a complex behaviour

tree that controls the AI, so it behaves autonomously; this tree will probably be

created and maintained by engineers.

We want other members of the team, not only programmers, to be able to test their

ideas easily. A non-technical person will probably not be interested in how the AI

works internally, but they only want to tell it to do things, i.e. they just want to be

able to order the AI to “kill an enemy”, rather than “find a path to your enemy, then

get closer, draw your weapon and fire at your target, reloading your gun when you

need to, etc.”.

We call “hint” a piece of information an AI can receive from a higher-level source

and use to produce an alternative behaviour, as a consequence of a priority

reorder. This means an NPC, while maintaining its capability to respond properly

to different situations, will take into account the requests coming higher in the

command hierarchy to adapt its behaviour to these petitions.

 108

10.2. Execution flow in behaviour trees

As we explained in 9.3, composite nodes are used to create complex structures in

our trees. Among them, selectors provide trees with a way to choose, more or less

intelligently, what to do when it comes to solving a problem. So, ultimately,

selectors decide which branch should be executed at any given moment.

Recalling how the type of selector we have implemented in our prototype works, it

will try each of its branches sequentially until one of them succeeds: its decisions

are based on how its children nodes are ordered.

The AI will still be autonomous, as it will decide if a branch can be executed or not,

but, basically, choosing which branch is the most important one, or what actions

should be tried before others, is up to the engineers.

Hinted-execution behaviour trees provide a way for these priorities to be changed

dynamically, just as we showed in Figure 21.

10.3. Implementing a hint system

Now that we have described the idea behind HeBTs, we have to modify our

prototype to support hints. To do this, we are going to extend our selector nodes.

Selectors, as composite nodes, have a list of children sub-branches, each of which

represents a possible action a higher-level will, potentially, want the node to

choose. We will talk further about these higher-levels in 11.2.

Each of these branches is assigned a unique identifier. This identifier is assigned at

creation time. This allows designers to name the branches, and therefore the hints

that will favour their execution. Identifiers will be explained in 12.3.3. At any given

time, a hint can be positive, negative or neutral; if a hint is positive the tree is

being told to do something, if negative it is being told not to do something, and

neutral if the selector is not receiving the hint at all. Identifier and state form our

basic HintInfo structure.

 109

Each selector keeps a list of hints it is able to accept, having one HintInfo per

branch. This information will be used by the node to reorder its branches

accordingly.

10.3.1. Updating hints

 We use an observer pattern to manage the dispatching of hints. A new class,

BehaviourTree, which wraps a root node and provides some basic functionality,

will work as the subscriber, holding a list of observers (IHintChangeReceiver) that

want to be notified when a hint is updated. Figure 38 shows how this is organised.

Figure 38. Structure of our improved selectors

When a new selector is added to a behaviour tree, it registers itself as a new

observer. Also, the BehaviourTree keeps a map of (hint_id, state), so it can correctly

decide which nodes to notify.

The following code snippet shows how a tree dispatches a change of state in one of

its hints to all the observers.

template < class AIInstance > 1

void BehaviourTree < AIInstance >:: SetHintState (const hints :: HintID & hintId , 2

const hints :: EState eState) 3

{ 4

 HintMap :: iterator it = m_hints . find (hintId); 5

 ASSERT_STR(it != m_hints . end (), L"Invalid hint ID!"); 6

 7

 hints :: EState ePreviousValue = it -> second ; 8

 if (ePreviousValue != eState) 9

 { 10

 it -> second = eState ; 11

 12

 // Notify all receivers 13

 HintChangedReceiverVector :: iterator receiverIt = 14

 m_hintReceivers . begin (); 15

 HintChangedReceiverVector :: iterator receiverEnd = 16

 m_hintReceivers . end (); 17

 for (; receiverIt != receiverEnd ; ++ receiverIt) 18

 { 19

 (* receiverIt)-> HintChanged (hintId , eState); 20

 } 21

 110

 } 22

}23

The BT starts looking for the previous state of the hint in its map of hints (line 5). If

the state has changed (line 9), then it must notify all the receivers about this (lines

11-22). The observers can then ignore or process the message. Figure 39

illustrates the process.

Figure 39. Hints are sent to BTs, which then notify all the selectors

It is important to note that when a tree receives a new hint, its normal execution is

interrupted, and the tree gets restarted. This assures the tree is reordered

properly and it also forces it to re-evaluate any condition that may have changed.

10.3.2. Reordering branches

Now that we have defined what a hint is (a state and a unique identifier), we need

to modify our selectors, so they can use this new information.

Looking back at 9.3.3, normal selectors iterate through their children, looking for a

branch that can be run. Rather than modifying this original list, our new selectors

maintain three different lists: the first of them keeps the nodes that have been

positively hinted (and thus, have more priority), the second one stores the nodes

that have not been hinted (they are neutral), and the last one maintains the nodes

that have been negatively hinted (they have reduced priority). These lists are still

sorted using the original order, so if two or more nodes are hinted, AIs will know

which action is more important according to their original behaviour. A couple of

examples are shown in Table 14.

 111

Original

list

Hinted

branches

High-priority Normal-

priority

Low-priority New order of

execution

1-2-3-4-

5-6-7

1(+), 3(+),

4(-)

1-3 2-5-6-7 4 1-3-2-5-6-7-4

1-2-3-4-

5-6-7

4(-), 5(-),

7(+)

7 1-2-3-6 4-5 7-1-2-3-6-4-5

 Table 14. Some examples of how a list of branches is split into two lists, depending on

priority

In code, this works as shown below.

template < class AIInstance > 1

void Selector < AIInstance >:: UpdateIteratorVectors () 2

{ 3

 Clear (); 4

 5

 NodeVector :: iterator it = m_children . begin (); 6

 NodeVector :: iterator end = m_children . end (); 7

 uint uiIndex = 0; 8

 for (; it != end ; ++ it , ++ uiIndex) 9

 { 10

 HintInfo & info = m_hints [uiIndex]; 11

 if (info . id != INVALID_HINT_ID) 12

 { 13

 m_hintedNodes [info . eState]. push_back (it); 14

 } 15

 else 16

 { 17

 // The hint wasn't named, so the sub-branch remains neutral 18

 m_hintedNodes [hints :: EState_Neutral]. push_back (it); 19

 } 20

 } 21

 22

 m_nextHintedNode = m_hintedNodes [m_eCurrentState]. begin (); 23

 if (m_nextHintedNode == m_hintedNodes [m_eCurrentState]. end ()) 24

 { 25

 IncrementNodeIterator (); 26

 } 27

}28

The node iterates through its children (lines 6-9), and checks the state of the info

assigned to that branch to decide which sub-list it will be assigned to (lines 12-20).

After the branches have been reordered, the node must be restarted, so the correct

child is selected, and any previous state is discarded.

The final result is a selector which is quite similar to the original one, but that can

be changed dynamically to obtain different outputs. The Step method of the final

node is explained below.

 112

template < class AIInstance > 1

ENodeResult Selector < AIInstance >:: Step () 2

{ 3

 ENodeResult eResult = NR_IN_PROGRESS; 4

 5

 // Get our current node 6

 AbstractNode < AIInstance >* pNode = NULL; 7

 if (m_nextHintedNode != m_hintedNodes [m_eCurrentState]. end ()) 8

 { 9

 pNode = ** m_nextHintedNode ; 10

 } 11

 else 12

 { 13

 ERROR_STR(L"Don't have a valid node to update!"); 14

 } 15

 16

 eResult = pNode-> Step (); 17

 if (eResult == NR_SUCCEEDED) 18

 { 19

 // Succeeded 20

 Clear (); 21

 eResult = NR_SUCCEEDED; 22

 } 23

 else if (eResult == NR_FAILED) 24

 { 25

 // Stop current task 26

 pNode-> Stop (); 27

 28

 // Jump to next task 29

 AbstractNode < AIInstance >* pNextNode = IncrementNodeIterator (); 30

 if (pNextNode == NULL) 31

 { 32

 // Failed, as no further task was found 33

 Clear (); 34

 eResult = NR_FAILED; 35

 } 36

 else 37

 { 38

 // Start new task and return that we're in progress 39

 if (pNextNode -> Start ()) 40

 { 41

 eResult = NR_IN_PROGRESS; 42

 } 43

 else 44

 { 45

 eResult = NR_ERROR; 46

 } 47

 } 48

 } 49

 50

 return eResult ; 51

}52

First, the selector tries to find the node it has to run in this step (lines 7-15), from

one of its lists. Then, it will execute it (line 17) and either bail out succeeding, if the

node succeeded (lines 18-23) or move its iterators (line 30) in case the sub-branch

fails, so in the next step the next node can be selected. If no node was found, the

selector will bail out failing (lines 31-36), otherwise, it will start the new node and

return it is still in progress (lines 39-48).

 113

The method in charge of selecting the subsequent node has been implemented as

follows:

template < class AIInstance > 1

AbstractNode < AIInstance >* Selector < AIInstance >:: IncrementNodeIterator () 2

{ 3

 AbstractNode < AIInstance >* pNode = NULL; 4

 while (pNode == NULL) 5

 { 6

 if (m_nextHintedNode != m_hintedNodes [m_eCurrentState]. end ()) 7

 { 8

 // Increment the iterator 9

 ++ m_nextHintedNode ; 10

 } 11

 else 12

 { 13

 // Move to the next vector of nodes 14

 m_eCurrentState = 15

 static_cast < hints :: EState >(m_eCurrentState + 1); 16

 if (m_eCurrentState == hints :: EState_Count) 17

 { 18

 // We have reached the last node 19

 break ; 20

 } 21

 22

 // Get our new iterator 23

 m_nextHintedNode = 24

 m_hintedNodes [m_eCurrentState]. begin (); 25

 } 26

 27

 if (m_nextHintedNode != m_hintedNodes [m_eCurrentState]. end ()) 28

 { 29

 // Just use the current iterator... 30

 pNode = ** m_nextHintedNode ; 31

 } 32

 } 33

 return pNode; 34

} 35

This method will return the next node the selector will have to use. Internally, we

store three vectors of iterators to the node’s list of children, one each per priority

group. We store which our current state (priority group, either positive, neutral or

negative) is, and we use it to select one of the vectors. We also keep an iterator to

the last element we have used.

We try to look for a new node until we have found one (line 5) or we have run out

of nodes (lines 17-21). On each step, we first try to increase the current iterator,

and use it if we have not got to the end of the active vector (lines 7-11); otherwise,

we increase our current state and re-initialise the iterator, so it uses the correct

vector (lines 14-25). Finally, if we have found a valid one, we dereference it to get

the node (lines 28-32). Note we have to dereference it twice, because

 114

m_nextHintedNode is an iterator to a vector of iterators to the node’s vector of

children.

10.4. Hints and conditions

With the modifications presented so far, we have made our trees capable of

accepting hints and reordering the branches controlled by their selector nodes.

However, we can push this a little further if we add the possibility of designing the

lower-level trees to make use of hints.

It is up to tree designers to expose whatever logic they feel is important to higher-

levels, i.e. to choose what hints the tree will accept. The main objective of this

thesis is to find a system in which high-level users do not have to worry about the

internals of the system, but they can just use it easily. To achieve this, lower-level

behaviour trees must have been designed correctly, having in mind how the

system works, and making sure everything that is exposed works correctly.

Mostly, we can think of a behaviour tree as a collection of sequences that can be

run by a selector, just as we show in Figure 40. In fact, if we repeat this structure

recursively, we can get the basic shape of most BTs.

Figure 40. A behaviour tree can be seen as a structure made up of sequences which are run

by selectors

Most of these sequences follow a basic pattern (Figure 41), where some condition

nodes are placed as the first children, followed by actual actions. This way, the

 115

actions will only get executed in these preconditions are met. If one of the

conditions fails, the sequence will bail out, returning a failure, which will probably

be caught by a selector that will then try to run a different branch.

Figure 41. Basic sequence structure, where actions are preceded by a collection of

preconditions

This is not good for our hints in some situations, as the conditions could be making

a hinted branch fail and not be executed. We can expand the example presented in

7.4.2 to illustrate this. In that section, we did not expand the main branches, but

just assumed everything would work. However, let us say that in our base tree,

cover is only chosen if our health is low. As Figure 42 shows, in the event the

condition was not met (which is not according to our current state), the branch we

were hinting the tree to run was not chosen.

 116

Figure 42. A bad design can lead to useless hints

So, we need a way to be able to ignore these preconditions if that makes sense, that

is, if the condition is not really mandatory for the rest of the branch to be executed.

In our example, we did not really need to be low on health to cover, but it was just

something that was a design decision, trying to build a believable behaviour.

We have achieved this by:

• Allowing complex conditions to be created, so we can represent a complete

list of preconditions in a single node. This was explained in detail in 9.4.1.

• Creating a new type of condition that is able to check the state of a hint, that

is, whether it is active or not.

10.4.1. Hint condition

This type of condition keeps track of the state of a particular hint at any given

moment. Internally, it implements ICondition, so it can be used as part of a complex

condition.

These conditions store a reference to the behaviour tree they belong to; this will be

used to query the state of the hint we are interested in, as shown below:

template < class AIInstance > 1

bool HintCondition < AIInstance >:: Evaluate () const 2

{ 3

 return (m_pTree -> GetHintState (m_hintId) == hints :: EState_Positive); 4

} 5

It is important to note we have decided to only allow these nodes to check if a hint

is being received with a positive state (line 4). We chose to implement hint

conditions this way so we could keep condition trees as simple as possible.

Going back to our example, we can change our precondition and use a complex

condition instead, where we check if we have been told to cover, as well as test our

old condition. In that case, the precondition will allow the branch to be executed,

and our hint would have worked as expected for higher-levels, just as shown in

Figure 43.

Figure 43. Using hint conditions we can overcome problems caused by preconditions

 118

Chapter 11. MULTI-LEVEL ARCHITECTURE

In the previous chapter, we introduced the concept of hints, and how behaviour

trees can be modified dynamically using them. These hints were sent to our trees

by what we called “higher-levels of logic”. Different approaches can be taken to

implement these levels. For example, a quick and effective solution could be a layer

of scripts that use the system to generate new behaviours. However, the usage of

scripts makes things harder if we want everyone in the team to be able to build

new behaviours, as they require some technical background.

A visual solution would be much more appropriate, as the ability to visualise

things is much simpler than learning a new language and its rules. So, why not take

advantage of the tools we have built to generate our base behaviour trees, and

expand it, so it can be used by non-technical members of the team?

11.1. Behaviour controllers

A behaviour tree is a structure that reacts to the state of the world and executes

actions depending on changes to its environment. So far, we have presented how

regular behaviour trees work in Chapter 9, and expanded the model so the

execution flow can be modified dynamically, in Chapter 10.

Behaviour trees are constructed using a set of building blocks, among which we

have actions; they are the nodes in charge of modifying the environment or the

state of the AI instance itself. Depending on the granularity of the system, these

actions can be more or less complex, ranging from sub-behaviours, such as “cover”,

to atomic actions such as “find cover spot”. For users not interested in how

behaviours work, but just that they do work, the coarser the granularity, the

simpler the system will be for them: they can work, test, and improve their ideas

effortlessly if we can build a system that allows them to play with the AI, without

worrying about details or needing external support, which is the core of this thesis.

Modifying a big BT can be complex, and could require taking into account quite a

lot of variables. Also, small changes in a tree could lead to undesirable behaviours,

 119

making AIs not work as expected. Because of this, we do not want new behaviours

to be created from scratch, but we just want them to be flexible and malleable.

So let us keep a base tree, maintained by engineers, and provide the team with a

tool to create new trees. We will use a different set of building blocks to create

these new trees. Specifically, we will replace the action nodes with some new

nodes called “hint nodes”, which, as their name indicates, will send hints to our

base tree. These new trees will work on top of our base behaviour, modifying it

dynamically, and allowing designers to prototype new ideas easily and safely, as

the main behaviour is not modified permanently, reducing risks. From now on, our

AI instances will no longer be controlled by a single tree, but by a number of layers

of behaviour trees.

In Figure 25, we showed each of our AIs owned a BehaviourController. These

controllers are in charge of maintaining the multiple levels of trees an instance can

use, and running all of them to produce the final results. Figure 44 shows the basic

interface of one of these objects.

Figure 44. Behaviour controllers maintain a hierarchy of behaviour trees that will be run

concurrently

A BehaviourController works as a stack, where we can push new trees. The top of

the stack represents the highest level of logic, whereas the bottom contains the

base behaviour tree. We have implemented this stack using an STL deque, as we

want the top of the stack to be the first element (to simplify things when running

HeBTs, as we will see later), as well as having a random access structure.

template < class AIInstance > 1

bool BehaviourController < AIInstance >:: PushBehaviour (TreeType * pTree) 2

{ 3

 ASSERT_STR(pTree != NULL, L"Trying to add a NULL tree"); 4

 5

 // Get the immediate lower-level tree 6

 TreeType * pLowerLevelTree = NULL; 7

 120

 if (! m_trees . empty ()) 8

 { 9

 pLowerLevelTree = m_trees . front (); 10

 pTree -> SetLowLevelTree (pLowerLevelTree); 11

 } 12

 13

 // Add the new tree 14

 m_trees . push_front (pTree); 15

 16

 return true ; 17

} 18

Every time we add a new tree, the controller informs the newly created high-level

tree about what its immediate lower-level tree is (lines 10-11). This will allow

hints to be sent to the correct BT. We can still create AIs controlled by old-plain

behaviour trees, or modify them dynamically clearing the controller and pushing

the correct trees back to the stack.

Behaviour controllers are the core components of hinted-execution behaviour

trees, which we can now define as:

“A hierarchy of regular behaviour trees, where each level is able to hint its

immediate lower level, and receive hints from the immediate higher one and

the original behaviour remains at the lowest-level, and works as the

interface with the AI’s environment”

This is illustrated by Figure 45.

 121

Figure 45. Structure of a Hinted-execution Behaviour Tree

The system must be totally transparent to high-level users, and they should know

nothing about its internals. This has been addressed by enhancing our own BT

editor, adding more complex functionality, such as allowing higher-level trees to

be created, using any BT as a base, and allowing direct communication with the

game, so new behaviours can be tested on the fly.

11.1.1. Running an HeBT

Once all the different trees have been created and registered with a

BehaviourController, it can run the final behaviour.

Hinted-execution behaviour trees are run from the top down, so higher-levels are

run first. This means that, by the time a tree is going to be executed, it would have

already received all its hints, and their branches would be properly sorted, as

shown in Figure 46.

 122

Figure 46. HeBTs are run from the top-down. This means low-level trees have been modified

by the time they get executed

In code, the process look like this:

template < class AIInstance > 1

bool BehaviourController < AIInstance >:: Step () 2

{ 3

 TreeDeque :: iterator it = m_trees . begin (); 4

 while (it != m_trees . end ()) 5

 { 6

 TreeType * pTree = * it ; 7

 if (! pTree -> IsStarted ()) 8

 { 9

 // The tree was stopped, so remove it if the higher -levels 10

 // finished 11

 if (it == m_trees . begin ()) 12

 { 13

 SafeDelete < TreeType >(pTree); 14

 it = m_trees . erase (it); 15

 } 16

 else 17

 { 18

 // Move to next tree 19

 ++ it ; 20

 } 21

 } 22

 else 23

 { 24

 thesis :: behaviour :: ENodeResult eResult = pTree -> Step (); 25

 if (eResult == thesis :: behaviour :: NR_ERROR) 26

 { 27

 // The tree has returned an error, so we have to en d 28

 // the behaviour now 29

 Clear (); 30

 return false; 31

 } 32

 else if (eResult != thesis :: behaviour :: NR_IN_PROGRESS) 33

 { 34

 // Stop this tree 35

 123

 pTree -> Stop (); 36

 37

 // Update the current iterator to the next valid 38

 // tree... 39

 ++ it ; 40

 41

 // ... and clear its hints, if it exists 42

 if (it != m_trees . end ()) 43

 { 44

 TreeType * pLowerLevelTree = * it ; 45

 pLowerLevelTree -> ClearHints (); 46

 } 47

 } 48

 else 49

 { 50

 // Move to next tree 51

 ++ it ; 52

 } 53

 } 54

 } 55

 return (! m_trees . empty ()); 56

}57

We will iterate through our stack of trees (line 5), starting with the highest-level

one, as we have already explained. The first thing we must note is that if a lower-

level tree is stopped (either because it finishes or fails), we will not stop any other

tree straight away; instead, we will maintain the tree in the stack, waiting for the

higher-levels to finish their execution (lines 8-22). If our current tree is still

running, we update it (line 25), and we can abort the execution if an error occurs

(lines 26-32), and stop the current one, clearing all the hints it could have sent to

the immediate lower-level tree (lines 33-48). If the tree is still running, we just

increment our iterator (line 52) and keep executing the rest of the hierarchy.

By the end of the update, the AI will have run whatever action it has considered to

have the higher priority, based on the information it has gathered from the

environment and the hints it has received.

11.2. Exposing hints to higher-levels

High-level trees are built using a base BT to determine the hints that are available

to it. When creating new trees, designers can name the branches of their selectors,

and this would automatically expose that hint. In a similar way, if a condition hint

is used anywhere in the tree, the hint will also be exposed.

As we showed in 10.3.1, behaviour trees maintain a map of hint ids and their

states. When a tree is initialised, its nodes are processed, looking for hints that

 124

have been named, and thus have to be exposed. The following code shows how our

library handles this:

/** 1

 * Registers the hints a branch can handle 2

 */ 3

template < class AIInstance > 4

void BehaviourTree < AIInstance >:: RegisterHintsAndReceivers (NodeType * pNode) 5

{ 6

 if (pNode-> GetType () == behaviour :: NT_SELECTOR) 7

 { 8

 behaviour :: Selector < AIInstance >* pSelector = 9

 static_cast < behaviour :: Selector < AIInstance >* >(pNode); 10

 11

 // Register node as a receiver 12

 m_hintReceivers . push_back (pSelector); 13

 14

 // Register node's hints 15

 hints :: HintIDVector hintIds ; 16

 pSelector -> FillHintIDs (hintIds); 17

 hints :: HintIDVector :: const_iterator it = hintIds . begin (); 18

 hints :: HintIDVector :: const_iterator end = hintIds . end (); 19

 for (; it != end ; ++ it) 20

 { 21

 const hints :: HintID & hintId = * it ; 22

 if (m_hints . find (hintId) == m_hints . end ()) 23

 { 24

 // Add the new hint 25

 m_hints . insert (26

 std :: pair < hints :: HintID , hints :: EState >(27

 hintId , hints :: EState_Neutral)); 28

 } 29

 } 30

 } 31

 else if (pNode-> GetType () == behaviour :: NT_CONDITION) 32

 { 33

 behaviour :: Condition < AIInstance >* pCondition = 34

 static_cast < behaviour :: Condition < AIInstance >* >(35

 pNode); 36

 37

 RegisterHintsInCondition (pCondition -> GetCondition ()); 38

 } 39

 else if (pNode-> GetType () == behaviour :: NT_CONDITIONAL_FILTER) 40

 { 41

 behaviour :: filters :: ConditionalFilter < AIInstance >* 42

 pConditionalFilter = 43

 static_cast < behaviour :: filters :: ConditionalFilter < 44

 AIInstance >* >(pNode); 45

 46

 RegisterHintsInCondition (pConditionalFilter -> GetCondition ()); 47

 } 48

 49

 // Register children nodes 50

 unsigned int uiChildCount = pNode-> GetChildCount (); 51

 for (unsigned int uiIndex = 0; uiIndex < uiChildCount ; ++ uiIndex) 52

 { 53

 RegisterHintsAndReceivers (pNode-> GetChild (uiIndex)); 54

 } 55

 56

 // Register decorated nodes 57

 if ((pNode-> GetType () == behaviour :: NT_FILTER) 58

 || (pNode-> GetType () == behaviour :: NT_CONDITIONAL_FILTER)) 59

 { 60

 behaviour :: Filter < AIInstance >* pFilter = 61

 static_cast < behaviour :: Filter < AIInstance >* >(pNode); 62

 RegisterHintsAndReceivers (pFilter -> GetDecoratedNode ()); 63

 125

 } 64

} 65

 66

/** 67

 * Registers the hints present in a condition (or/a nd sub-conditions) 68

 */ 69

template < class AIInstance > 70

void BehaviourTree < AIInstance >:: RegisterHintsInCondition (71

 conditions :: ICondition * pCondition) 72

{ 73

 switch (pCondition -> GetType ()) 74

 { 75

 case conditions :: CT_AND: 76

 case conditions :: CT_OR: 77

 { 78

 conditions :: CompositeCondition * pComposite = 79

 static_cast < conditions :: CompositeCondition * >(pCondition 80

); 81

 uint uiChildCount = pComposite -> GetChildConditionCount (); 82

 for (uint uiIndex = 0; uiIndex < uiChildCount ; ++ uiIndex) 83

 { 84

 conditions :: ICondition * pChild = 85

 pComposite -> GetChildCondition (uiIndex); 86

 RegisterHintsInCondition (pChild); 87

 } 88

 } 89

 break ; 90

 case conditions :: CT_NOT: 91

 { 92

 conditions :: NotCondition * pNot = 93

 static_cast < conditions :: NotCondition * >(pCondition); 94

 RegisterHintsInCondition (pNot -> GetDecoratedCondition ()); 95

 } 96

 break ; 97

 case conditions :: CT_HINT: 98

 { 99

 conditions :: HintCondition < AIInstance >* pHintCondition = 100

 static_cast < conditions :: HintCondition < AIInstance >*>(101

 pCondition); 102

 103

 const hints :: HintID & hintId = pHintCondition -> GetHint (); 104

 if (m_hints . find (hintId) == m_hints . end ()) 105

 { 106

 // Add the new hint 107

 m_hints . insert (108

 std :: pair < hints :: HintID , hints :: EState >(109

 hintId , hints :: EState_Neutral)); 110

 } 111

 } 112

 break ; 113

 default : 114

 break ; 115

 } 116

} 117

We have two methods that will be called recursively to add the new hints. The first

of them (lines 1-64) processes behaviour tree nodes, adding the hints exposed in

selectors (lines 7-31), while the second (lines 70-117) uses condition tree nodes,

exposing hints used in hint conditions (lines 99-112). Hints are always added to the

map in their neutral state (lines 26-28, 108-110).

 126

To simplify things, our editor will allow new trees to be created based on existing

ones, and it will automatically show which hints can be used, as we will see in

Chapter 13.

11.3. Hint nodes

As demonstrated before in this chapter, high-level trees cannot use actions, but

they can use hint nodes instead. These nodes allow trees to send any of the hints

exposed by their lower-level trees, in order to produce new behaviours.

Internally, they are very simple nodes; their logic is only executed once, and they

bail out succeeding right after the hint has been sent. Because of this, we have

chosen to put this code in their “Start” method.

template < class AIInstance > 1

bool Hint < AIInstance >:: Start () 2

{ 3

 if (Parent :: Start () && (m_hintId != INVALID_HINT_ID)) 4

 { 5

 BehaviourTree < AIInstance >* pLowLevelTree = 6

 m_pTree -> GetLowLevelTree (); 7

 ASSERT_STR(pLowLevelTree != NULL, 8

 L"We must have a low-level tree if we want to use hi nts!"); 9

 pLowLevelTree -> SetHintState (m_hintId , m_eHintState); 10

 pLowLevelTree -> ReApplyHints (); 11

 return true ; 12

 } 13

 return false ; 14

}15

The code enables a hint in the lower-level tree (line 10), and force hints to be re-

applied (line 11), producing a shallow reorder of the branches of the tree (that is,

their selectors re-build their internal structures).

It is important to note hint nodes can send different types of hints, allowing us to

send positive or negative hints. They can also set a hint back to neutral if necessary.

11.3.1. Parallels and hint nodes

If we want to use a parallel node in our high-level logic, we can find ourselves

trying to send two different hints at the same time. A bad design could lead us to a

parallel sending both a negative and a positive version of the same hint, so,

depending on the order the branches in the parallel are run, we could get different

results (Figure 47).

 127

Figure 47. Depending on the order the children of a parallel get run, different hints would be

sent to a lower-level tree, so we would get different results from the final behaviour

Parallels can cause odd behaviours, which sometimes require the usage of special

types of nodes to control concurrency, such as resource allocators (Champandard,

2007), and they can definitely complicate things for non-technical people, so,

depending on what we want to offer to final users, we could limit their use in our

tools, as we will see later in Chapter 12.

11.4. Why allow more than two levels?

Most of this thesis is built around the idea of producing a system that can be used

by designers to test and prototype new behaviours. From what has been presented

so far, one can see that just using a level on top of our base trees would be enough

for this purpose.

However, extensibility is one of the keys of Hinted-execution Behaviour Trees, and

allowing an undefined number of levels opens the range of applications of these

structures. None of these possibilities have been implemented as part of this

thesis, as we decided this research would benefit from focusing on a particular

problem, but some are pointed out later on in this document in 15.2.

 128

Also, supporting multiple levels does not increase the complexity of the code or

add any performance overhead.

 129

Chapter 12. APPLYING HEBTS TO A GAME

In previous chapters we have presented our own implementation of a Hinted-

execution Behaviour Tree system. We developed it as an abstract library, which

can be adapted to, potentially, any type of game.

In order to exemplify how the library would be used in a real game environment,

and also as a way to experiment with the new technique and obtain some results,

we decided to build a game prototype, where the AI is controlled by our new

approach.

This chapter studies how this prototype was built, and shows how hinted-

execution behaviour trees can be part of a game and improve the way an AI system

is created.

12.1. Choosing a game

The first step towards creating a good prototype was choosing the type of game we

wanted to implement, and what tools we were going to use to do so. Developing a

game is not a trivial task, and although it was an important part of our prototype,

we decided not to spend unnecessary time trying to build a new framework, new

art, sounds and all the different components that are part of a game. Instead, we

decided that it was better to try and build our prototype on top of an existing

game.

Many commercial games offer public SDKs so they can be extended or modified to

create new experiences. Above all, FPSs3 have traditionally been the type of game

which released these tools. With this in mind, we considered three different games,

and studied their suitability, according to our needs. These games were Doom 3 (id

Software, 2004), Unreal, which had recently released a public version of its engine,

called UDK (Epic, 2009), and Half-Life 2 (Valve, 2004).

3 First Person Shooter, a genre started by some classic games such as Wolfenstein 3D, Doom or Quake, in which players

control a character in first person, and move through complex environments, eliminating enemies using various different

weapons.

 130

UDK was an interesting option, as it basically offers one of the most widely used

engines in the industry. However, we soon discarded it, because our library was

written in C++. Unreal Engine is controlled by its own script language, UnrealScript,

and only allows C++ code to be used using non-free licenses.

Doom was a second option. There is quite a lot of information on the internet about

it, and we had some experience developing mods4 for Quake 2, which used a

previous iteration of id Software’s Tech engines (Doom 3 uses id Tech 4, while

Quake 2 used id Tech 2). A simple prototype was developed in a week, but, in

contrast to Quake, which was written in C, Doom’s AI was heavily scripted, using

id’s proprietary language. Although it was possible to move some key functionality

back to code, so we could control game entities using HeBTs (a simple action to

make an AI walk towards the player was implemented), it was going to take too

long, and our research was not really going to benefit from it, so the prototype was

dropped.

Finally, we opted for Half-Life 2 (HL2). This game, and its predecessor, is extremely

popular among mod communities; for example, the popular Counter-Strike (Valve,

2000) was first created as a mod of the original Half-Life.

12.1.1. Half-Life and the Source Engine

Half-Life 2 was built using Valve’s Source Engine. This engine has been used in

many games ever since, such as Portal (Valve, 2007) or Left 4 Dead (Valve, 2008).

Source’s shared AI (that is, the systems that are common to Source games) is

implemented in C++, using a powerful technique, which is quite similar to a

behaviour tree. Each AI is controlled by schedules. A schedule is a list of tasks the AI

has to perform, and it is chosen based on a state and some conditions. There are

some other concepts such as behaviours, but we can basically define an AI just by

using these basic concepts.

The game defines a set of entities that implement their own behaviours, by

defining new schedules and tasks (or using common ones). Then, the entity will

run as follows (Valve, 2010):

4 Game modifications are usually nicknamed “mods” in game communities.

 131

1. The AI performs sensing, building lists of important entities or events (such

as sounds).

2. A list of conditions is generated based on the lists built in point 1.

3. A state is chosen, based on the conditions.

4. A new schedule is selected if necessary, based on the current state and the

list of conditions.

5. The current task in the schedule is run.

Entities inherit from various classes, including CAI_BaseNPC, which implements

the sequence shown above.

12.2. Replacing Half-Life’s AI system

The best way to make HL2 use our technique was to implement our own NPC class,

as Valve similarly does in the SDK. In our case we decided to inherit from one of

CAI_BaseNPC’s children, CAI_BaseActor, which is the one that supports humanoid

entities, like the ones we want to create; rather than defining tasks and schedules,

we overwrote some of the entity’s main virtual functions, particularly RunAI, which

is the one in charge of stepping a normal AI’s logic. We kept part of their logic (for

example, we wanted to maintain the sensory system, so we did not have to

implement our own), but removed all references to schedule updating. Our final

method looks like this:

void CNPC_Thesis :: RunAI () 1

{ 2

 // Gather conditions 3

 AI_PROFILE_SCOPE_BEGIN(CAI_BaseNPC_RunAI_GatherConditions); 4

 GatherConditions (); 5

 RemoveIgnoredConditions (); 6

 AI_PROFILE_SCOPE_END(); 7

 8

 // Update the activity (animation) 9

 MaintainActivity (); 10

 11

 ClearTransientConditions (); 12

} 13

Lines 4-7 and 12 are all related to performing sensing. Line 10 is in charge of

maintaining a correct animation. This is all our agents need from Half-Life.

 132

Recalling what we studied in 9.1, our library uses an AI Manager, which maintains

and updates a list of AI instances. These instances have a pointer to a native entity,

and receive its type as a template parameter.

In order to register our native instances with our manager, we had to make it a

singleton, and made our NPC use it on construction/destruction, as shown below:

/** 1

 * Constructor 2

 */ 3

CNPC_Thesis :: CNPC_Thesis () 4

{ 5

 // Register in the manager 6

 m_pAI = ThesisAIManager :: Ref (). StartAI (this); 7

} 8

 9

/** 10

 * Destructor 11

 */ 12

CNPC_Thesis ::~ CNPC_Thesis () 13

{ 14

 m_pAI = NULL; 15

 16

 // Unregister in the manager 17

 ThesisAIManager :: Ref (). StopAI (this); 18

} 19

Each AI is controlled by a behaviour controller, and, ultimately, shows its

behaviour by executing different actions, or nodes that affect the game.

12.2.1. Creating custom nodes

Most of our system is game-independent; this means we can use it in different

games without any modification. Because the system is so abstract, we cannot

predict which actions or conditions will be needed in trees built for a particular

game. The library delegates this responsibility to the game, which is in charge of

providing its own actions and conditions. Let us build some examples.

12.2.1.1. Implementing a simple action

For instance, we will implement an action node to make an AI look at the player.

We will call this node FaceEnemy. To do so, we will need to create a new class,

which, in this case, will be included in the game’s project, and make this new action

inherit from our library’s Action class (see 9.4.2). Once we have done this, we just

have to overwrite its Step method as follows:

behaviour :: ENodeResult FaceEnemy:: Step () 1

{ 2

 // Get our native entity 3

 CNPC_Thesis * pAI = m_pInstance -> GetNativeAI (); 4

 5

 // We need to have an enemy to run this action 6

 if (! pAI -> GetEnemy()) 7

 { 8

 return behaviour :: NR_FAILED; 9

 } 10

 11

 // Get our enemy's position 12

 Vector vecEnemyLKP = pAI -> GetEnemyLKP(); 13

 if (! pAI -> FInAimCone (vecEnemyLKP)) 14

 { 15

 // Our enemy is inside our cone of vision 16

 // CalcReasonableFacing() is based on previously set ideal yaw 17

 pAI -> GetMotor ()-> SetIdealYawToTarget (vecEnemyLKP); 18

 pAI -> GetMotor ()-> SetIdealYaw (19

 pAI -> CalcReasonableFacing (true)); 20

 } 21

 else 22

 { 23

 // Not in our cone of vision... only set a new yaw if it's 24

 // reasonable 25

 float flReasonableFacing = pAI -> CalcReasonableFacing (true); 26

 if (fabsf (flReasonableFacing - pAI -> GetMotor ()-> GetIdealYaw ()) 27

 > 1) 28

 { 29

 pAI -> GetMotor ()-> SetIdealYaw (flReasonableFacing); 30

 } 31

 } 32

 33

 // Update our entity's yaw 34

 pAI -> GetMotor ()-> UpdateYaw (); 35

 36

 // Succeed if we're already facing our ideal yaw! 37

 return (pAI -> FacingIdeal ()) ? behaviour :: NR_SUCCEEDED 38

 : behaviour :: NR_IN_PROGRESS; 39

} 40

The action node acts through the native entity, which works as our interface with

the game. In this case, the logic is quite simple. First, the AI checks whether it has

spotted an enemy (line 7), and the action fails and bails out in case it has not (line

9). Otherwise, lines 13-31 calculate a new yaw for the entity, using the player’s

(enemy) last known position (LKP, line 13). Then, the AI updates its yaw (line 35)

and finally succeeds if it is already facing the player; if it is not, the action will

continue to be in progress.

So let us test this node. In order to do that, we will create a simple behaviour tree

(we do not need to use an HeBT now, as a single tree will be enough) like the one

shown in Figure 48.

 134

Figure 48. A simple BT that will make an AI face the player indefinitely

The tree uses a couple of filters (see 9.5). The first one is an “Ignore failure”; we

need this one as our action will fail when the AI does not detect us as an enemy.

Because the AI is static –as we have not added any movement action–, this will

happen as soon as we walk away from it. The second filter is an unconditional loop,

which will make sure our logic is executed constantly, unless an error occurs.

Running this tree in the game, we would have a static AI that rotates on itself,

facing the player as he moves around. Figure 49 shows two screenshots, taken at

different positions in our test level.

Figure 49. Our first BT will make entities face us, but they will maintain their positions

12.2.1.2. Implementing a simple condition

Similarly to how we created our action nodes, conditions are created by inheriting

from a class in our library. In this case, we want to create a LeafCondition (9.4.1).

 135

We will create a condition to check whether our AI is alive. The logic resides in the

Evaluate method, which we show below:

/** 1

 * Evaluates the condition 2

 */ 3

bool Alive :: Evaluate () const 4

{ 5

 return (m_pInstance -> GetNativeAI ()-> GetHealth () > 0); 6

} 7

Easy enough, we just have to check if our native AI’s health is greater than zero

(line 6). We could use this action in the tree presented in Figure 48, and replace

our loop with a conditional one, so the logic is stopped when the agent dies.

12.3. Building and using HeBTs

Although possible, building our trees directly in code is a tedious process, and

makes the whole idea of prototyping useless. That is why we need a way to load

and set behaviours in the game: we want our AI to be data-driven.

We have chosen to integrate a Lua interpreter into our project, because it is free

and easy to use. Our library contains a LuaManager, which exposes some basic

functionality to run Lua commands or load and run script files. Our final goal is to

be able to build new trees using Lua commands, so we need to implement a set of

commands to do this.

Lua provides developers with a way to call C functions from script, so we can map

our commands to methods in code that instantiate and create links among nodes.

The process is pretty straightforward, but we have simplified it by introducing

LuaInterfaces. These interfaces define all the functions we want to expose, along

with the commands we want to map them to.

Basically, a command is a C function of this type:

typedef int (* FunctionPtr) (lua_State *);

Our LuaManager allows us to register these functions using the following method:

void LuaManager :: RegisterFunction (FunctionPtr f , 1

 const std :: string & name) 2

{ 3

 lua_register (m_pLuaState , name. c_str (), f); 4

}5

As we have said before, we are trying to build an abstract system. Because our

library is so abstract, we cannot instantiate any type of node –even the common

ones, such as sequences– because they are templatised. This forces us to create a

specific Lua interface for each new game.

For our prototype, we have created a LuaBTInterface. It is created when Half-Life is

loaded, and it registers a set of commands we can then use in our scripts to

generate new trees.

Internally, the interface uses a stack of nodes; this allows it to maintain the tree

hierarchy while building it, pushing nodes onto it and adding links when the nodes

are removed. Most of our commands are actually pairs, that is, a command to start

the definition of a node, and another one to end it. Many times, we can think of

“start commands” as commands that push nodes, and “end commands” as those

which pop them.

Trees follow this structure, and we have two commands to start and end a new

tree: startBehaviour and endBehaviour. The code for start a new behaviour is

shown below:

int LuaBTInterface :: StartBehaviour (lua_State * L) 1

{ 2

 ASSERT_STR(s_nodeStack . empty (), 3

 L"Some nodes were present in the stack of nodes!"); 4

 ASSERT_STR(s_pCurrentInstance == NULL, 5

 L"A previous AI was already present!"); 6

 ASSERT_STR(s_pCurrentTree == NULL, 7

 L"A previous tree was already present!"); 8

 9

 // Clear previous stack. This SHOULDN'T HAPPEN! as it should be 10

 // empty 11

 while (! s_nodeStack . empty ()) 12

 { 13

 ThesisAbstractNode * pNode = s_nodeStack . top (); 14

 delete pNode; 15

 s_nodeStack . pop (); 16

 } 17

 18

 // Get the AI we're creating the behaviour for. It' s ID has to 19

 // be stored in a global variable 20

 lua_getglobal (L, CURRENT_AI_GLOBAL_VARIABLE_NAME); 21

 ThesisAIInstance :: UIDType uid = 22

 137

 static_cast < ThesisAIInstance :: UIDType >(23

 lua_tonumber (L, 1)); 24

 lua_pop (L, 1); 25

 26

 s_pCurrentInstance = ThesisAIManager :: Ref (). GetAI (uid); 27

 ASSERT_STR(s_pCurrentInstance != NULL, 28

 L "Can’t find a valid instance!"); 29

 30

 // Create a new behaviour tree. It won't be initial ised until 31

 // EndBehaviour is called 32

 s_pCurrentTree = new ThesisBehaviourTree (); 33

 34

 return 0; 35

} 36

Lines 3-8 present some basic integrity checks. Our interface keeps a current

instance and tree, along with the stack of nodes, and, at this point, everything

should be empty or null. We need a way to define which AI we are creating the tree

for. Instances have a unique numeric identifier, which is used to tell the manager

what instance we want to operate in. In our case, we have chosen to pass this

number as a global variable to the Lua interpreter. Lines 21-29 use this data to

obtain a pointer to the AI instance. Finally, line 33 creates a new tree, and

everything would be ready to create our new behaviour.

We need to call endBehaviour once we have built our tree:

int LuaBTInterface :: EndBehaviour (lua_State * L) 1

{ 2

 ASSERT_STR(s_pCurrentInstance != NULL, L"No valid AI was specified!"); 3

 ASSERT_STR(s_nodeStack . size () == 1, 4

 L"No node (or more than one) was found in the stack! "); 5

 6

 // Initialises the tree, as the top element in the stack of nodes 7

 s_pCurrentTree -> Initialise (s_nodeStack . top ()); 8

 s_nodeStack . pop (); 9

 10

 // Pushes the behaviour 11

 s_pCurrentInstance -> PushBehaviour (s_pCurrentTree); 12

 13

 // Clear the entity PTR 14

 s_pCurrentInstance = NULL; 15

 16

 // Clear the pointer to the tree 17

 s_pCurrentTree = NULL; 18

 19

 return 0; 20

} 21

First, we make a couple of integrity tests (lines 3-5) to check that we have called

the right commands before ending our behaviour. After that, we initialise our new

tree with the node at the top of the stack; at this point, all the links should have

been created, and we should only have one node in the stack, which is the root of

 138

our tree (lines 8-9). We will then push the newly created behaviour onto our

instance’s behaviour controller (line 12), and clear the interface object (15-18).

12.3.1. Exporting a simple BT

So, how do we build a tree? Let us build our “face enemy” tree using a script. It will

look like this (note that we have added some indentation to the code, so it is easy

to read):

startBehaviour() 1

 startLoop() 2

 startIgnoreFailure() 3

 addFaceEnemyAction() 4

 endNode() 5

 endNode() 6

endBehaviour() 7

Lines 1 and 7 are already known, and just define the start and the end of our tree.

Line 2 starts a new loop filter. In code, this is mapped to the following method:

template < class T > 1

int LuaBTInterface :: StartCompositeNode (lua_State * L) 2

{ 3

 ASSERT_STR(s_pCurrentInstance != NULL, 4

 L"No valid AI was specified!"); 5

 6

 // Create a new node and add it to the stack 7

 T* pNode = new T(); 8

 pNode-> Initialise (s_pCurrentInstance , s_pCurrentTree); 9

 s_nodeStack . push (pNode); 10

 11

 return 0; 12

} 13

To simplify things, we have implemented a template method to create any

composite (that is, any non-leaf node) node. This method creates a new instance of

the given type (line 8), initialises it (line 9) and pushes it onto the stack (line 10).

In our sample script, we have two of these commands: startLoop and

startIgnoreFailure.

At this point, we would have two filters in the stack. We need to add our action

now, so we call addFaceEnemyAction:

 139

template < class T > 1

int LuaBTInterface :: AddAction (lua_State * L) 2

{ 3

 ASSERT_STR(s_pCurrentInstance != NULL, L"No valid AI was specified!"); 4

 5

 T* pAction = new T(); 6

 pAction -> Initialise (s_pCurrentInstance , s_pCurrentTree); 7

 s_nodeStack . push (pAction); 8

 EndNode(L); 9

 10

 return 0; 11

} 12

The code for this action is pretty similar to that used by filters. Note, however, that

we are calling EndNode in line 10. This is the same command we are executing in

our script to end our loops (lines 5 and 6 in the script listing), but we decided it

was clearer to be able to add leaf nodes using a single command. Let us study what

this code does:

int LuaBTInterface :: EndNode(lua_State * L) 1

{ 2

 ASSERT_STR(! s_nodeStack . empty (), L"No node was found in the stack!"); 3

 ASSERT_STR(s_pCurrentInstance != NULL, L"No valid AI was specified!"); 4

 5

 if (s_nodeStack . size () > 1) // If the node is the last one, just leave 6

 // it in the st ack 7

 { 8

 // Get the top of the stack 9

 ThesisAbstractNode * pNode = s_nodeStack . top (); 10

 s_nodeStack . pop (); 11

 12

 // Add to parent 13

 ASSERT(pNode); 14

 AddToParent (pNode); 15

 } 16

 17

 return 0; 18

} 19

This method is in charge of adding links between nodes. To do so, it first gets the

top of the stack (line 10-11) and calls AddToParent (line 15), which will add that

node correctly to its parent, depending on its type. We only do this if we have more

than one node in the stack, that is, if the node is not the root of the tree. So, let us

inspect the remaining method:

void LuaBTInterface :: AddToParent (ThesisAbstractNode * pChildNode) 1

{ 2

 ASSERT_STR(! s_nodeStack . empty (), 3

 L"No parent node was found in the stack!"); 4

 ASSERT_STR(pChildNode != NULL, L"No valid child node was specified!"); 5

 6

 ThesisAbstractNode * pParent = s_nodeStack . top (); 7

 ASSERT(pParent != NULL); 8

 9

 // Add to parent, depending on its type 10

 switch (pParent -> GetType ()) 11

 { 12

 140

 case behaviour :: NT_SEQUENCE: 13

 case behaviour :: NT_SELECTOR: 14

 case behaviour :: NT_PARALLEL: 15

 { 16

 behaviour :: Composite < ThesisAIInstance >* pComplex = 17

 static_cast < behaviour :: Composite < 18

 ThesisAIInstance >* >(pParent); 19

 pComplex -> AddChild (pChildNode); 20

 } 21

 break ; 22

 case behaviour :: NT_FILTER: 23

 case behaviour :: NT_CONDITIONAL_FILTER: 24

 { 25

 behaviour :: Filter < ThesisAIInstance >* pFilter = 26

 static_cast < behaviour :: Filter < 27

 ThesisAIInstance >* >(pParent); 28

 pFilter -> SetDecoratedNode (pChildNode); 29

 } 30

 break ; 31

 default : 32

 ERROR_STR(L"Invalid parent type!"); 33

 break ; 34

 } 35

} 36

The method receives the node we want to process. It will then get the parent node,

which is now at the top of the stack (line 7). Finally, depending on the type of the

node, it will add it either as a child (lines 13-21), in case we are dealing with a

metanode, or as the decorated node (lines 23-31) in case it is a filter.

So, trees are built from the bottom up. Table 15 summarises what the tree will look

like during the building process:

Lua command Stack State of the tree

startBehaviour() - -

startLoop() Loop -

startIgnoreFailure()
IgnoreFailure

Loop
-

addFaceEnemyAction()
IgnoreFailure

Loop
FaceEnemy

endNode() Loop

IgnoreFailure

|

FaceEnemy

endNode() Loop

Loop

|

IgnoreFailure

|

FaceEnemy

endBehaviour() - Tree is set to the AI

Table 15. Process followed to build a tree from a Lua script

 141

12.3.2. Exporting condition trees

In the previous example, we did not use any condition at all; we will exchange our

loop for a conditional one, and see how a complex condition tree would be declared

using Lua commands.

Let us say we want our AI to face the player only if it can see him/her and its health

level is low. This condition is represented by the condition tree shown in Figure

50.

Figure 50. Condition tree we will export to Lua

Conditions follow the same structure we used to declare trees, so they are built

using their own stack of condition tree nodes. Any node that requires a condition

must define it right after its start command. For example, replacing the root of our

previous tree, we would end up with a script like this:

startBehaviour() 1

 startConditionalLoop() 2

 startAndCondition() 3

 startNotCondition() 4

 addEnemyOccludedCondition() 5

 endCondition() 6

 addLowHealthCondition() 7

 endCondition() 8

 startIgnoreFailure() 9

 addFaceEnemyAction() 10

 endNode() 11

 endNode() 12

endBehaviour() 13

The condition tree is built in lines 3-8. Again, complex nodes are started and ended

(for example, lines 4 and 6), while leaf nodes, that is, the actual conditions, are

constructed using a single command.

 142

It is worth noting that the last endCondition (line 8), which ends the condition tree,

adds the newly created condition to the BT node that is at the top of the stack. In

code, we implemented it like this:

int LuaBTInterface :: EndCondition (lua_State * L) 1

{ 2

 ASSERT_STR(! s_nodeStack . empty (), L"No node was found in the stack!"); 3

 ASSERT_STR(! s_conditionStack . empty (), 4

 L"No condition was found in the stack!"); 5

 6

 if (s_conditionStack . size () > 1) 7

 { 8

 // Get the top of the stack 9

 behaviour :: conditions :: ICondition * pCondition = 10

 s_conditionStack . top (); 11

 s_conditionStack . pop (); 12

 13

 // Add to parent 14

 ASSERT(pCondition); 15

 AddToParentCondition (pCondition); 16

 } 17

 else 18

 { 19

 //-- Set the condition to the node we're currently creating (the 20

 // one at the top of the stack of no des) 21

 22

 // Get the condition 23

 behaviour :: conditions :: ICondition * pCondition = 24

 s_conditionStack . top (); 25

 s_conditionStack . pop (); 26

 27

 // Get node 28

 behaviour :: AbstractNode < ThesisAIInstance >* pNode = 29

 s_nodeStack . top (); 30

 if (pNode-> GetType () == behaviour :: NT_CONDITION) 31

 { 32

 behaviour :: Condition < ThesisAIInstance >* pConditionNode = 33

 static_cast < behaviour :: Condition < 34

 ThesisAIInstance >* >(pNode); 35

 pConditionNode -> SetCondition (pCondition); 36

 } 37

 else if (pNode-> GetType () == behaviour :: NT_CONDITIONAL_FILTER) 38

 { 39

 behaviour :: filters :: ConditionalLoop < ThesisAIInstance >* 40

 pFilter = static_cast < 41

 behaviour :: filters :: ConditionalLoop < 42

 ThesisAIInstance >* >(pNode); 43

 pFilter -> SetCondition (pCondition); 44

 } 45

 else 46

 { 47

 ERROR_STR(L"Not implemented yet..."); 48

 } 49

 } 50

 51

 return 0; 52

} 53

Lines 11-17 are in charge of adding links between nodes in the condition tree,

similar to what we did in the previous section to build relations between BT

nodes. As we said, in the event that the condition stack contains only one node, it

 143

means we have to assign the complex condition we have just created to its parent

BT node (which we get from the top of the BT stack in lines 29-30). Depending on

the type of the parent node, we would have to various operations (lines 31-49).

12.3.3. Building an HeBT

So far, we have studied how regular behaviour trees are created, so we must

describe how our hierarchy of trees are exported. Specifically, we need to define:

• How a base tree declares the list of hints that it will accept.

• How a high-level tree declares its hint nodes.

We will do so presenting a slightly more complex example.

12.3.3.1. Creating a base behaviour tree

First, we will create a complex base tree that will make our AI behave

autonomously. Our agents will:

• Cover if their health is too low.

• Face their enemy and attack it (a range attack will be used). They will also

have to reload their weapons if necessary.

• Chase their enemy if this tries to hide.

The final behaviour tree will look like the one shown in Figure 51.

 144

Figure 51. A complex behaviour tree that will make our agents behave autonomously

This behaviour presents a main selector that is run in parallel with an assertion,

checking that the AI has an enemy. We want to ignore any possible failure, and

keep executing this while the instance is alive, so we have added two filters at the

root of the tree.

Our selector has three branches: COVER, ATTACK and CHASE. They look like good

candidates to be exposed as hints to higher-levels, so we have done so5.

5 Most of the figures showing behaviour trees that are used in this dissertation have been captured directly from our editor.

How the editor works, and thus how we can expose hints will be studied in 0

 145

Our COVER branch starts with a precondition, which will test whether the instance

should try to cover; particularly, it will test whether its health level is too low. Once

we have decided this is the right branch to run, we will either stop if we are

already in a cover position; otherwise, we will find one and run towards it until we

are covered. We have modelled this as a selector that will first check if we are in a

proper position, or will look for one as a secondary option, because we have sorted

our branches in that order6.

If for any reason our COVER branch fails –most likely because our precondition as

failed–, our AI will try to attack its enemy. To do so, we use a sequence with a

precondition, which is checking whether our enemy is visible, that will make the AI

face its enemy and either attack it or reload its weapon. Again, we have used a

selector to decide what is best to do.

Finally, if our AI has not been able to COVER or ATTACK us yet, we are their

enemy, it means it has to try to find and chase us. We have built this as a simple

sequence.

Exporting this tree to Lua, we end up with a quite long script (73 lines), so we will

only highlight the most important sections. Undoubtedly, the key of a base tree,

from an HeBT point of view, resides in exporting selectors correctly, and exposing

their branches as hints, so they are available for higher-level trees. Exporting our

main selector to Lua will produce something similar to this:

6 Note our trees are read from the left to the right.

 146

startSelector() 1

startBranch("COVER") 2

... 3

 endBranch() 4

startBranch("ATTACK") 5

 ... 6

endBranch() 7

startBranch("CHASE") 8

 ... 9

 endBranch() 10

endNode() 11

Whereas, for instance, the process followed to build a sequence from Lua relies on

BT Lua interface’s node stack, constructing a selector requires the use of some

additional commands, so we can give each branch a name. These names are the

hints that we want to expose, and will be translated to an integer version to be

used by behaviour controllers, as discussed in 11.2. We show the code in charge of

generating these hints below:

/** 1

 * Starts a branch in a selector 2

 */ 3

int LuaBTInterface :: StartSelectorBranch (lua_State * L) 4

{ 5

 ASSERT_STR(! s_nodeStack . empty (), L"No node was found in the stack!"); 6

 ASSERT_STR(s_pCurrentInstance != NULL, L"No valid AI was specified!"); 7

 8

 // Get the top of the stack 9

 ASSERTS_ONLY(ThesisAbstractNode * pNode = s_nodeStack . top ();); 10

 ASSERT_STR(pNode-> GetType () == behaviour :: NT_SELECTOR, 11

 L"No selector was read before this branch!"); 12

 13

 s_hintStack . push (std :: string ()); 14

 if (lua_gettop (L) == 1) 15

 { 16

 ASSERT_STR(lua_isstring (L, 1), L"Invalid hint ID"); 17

 std :: string & branchHint = s_hintStack . top (); 18

 branchHint = lua_tostring (L, 1); 19

 } 20

 21

 return 0; 22

} 23

 24

/** 25

 * Ends a branch in a selector 26

 */ 27

int LuaBTInterface :: EndSelectorBranch (lua_State * L) 28

{ 29

 ASSERT_STR(! s_nodeStack . empty (), L"No node was found in the stack!"); 30

 ASSERT_STR(s_pCurrentInstance != NULL, L"No valid AI was specified!"); 31

 32

 // Get the top of the stack 33

 ThesisAbstractNode * pNode = s_nodeStack . top (); 34

 ASSERT_STR(pNode-> GetType () == behaviour :: NT_SELECTOR, 35

 L"No selector was read before this branch!"); 36

 37

 147

 ASSERT_STR(! s_hintStack . empty (), 38

 L"No hint is available to close this branch!"); 39

 const std :: string & branchHint = s_hintStack . top (); 40

 if (branchHint . size () > 0) 41

 { 42

 behaviour :: Selector < ThesisAIInstance >* pSelector = 43

 static_cast < behaviour :: Selector < 44

 ThesisAIInstance >* >(pNode); 45

 pSelector -> SetHintIDForChild (pSelector -> GetChildCount () - 1, 46

 hints :: GetIDFromString (branchHint)); 47

 } 48

 s_hintStack . pop (); 49

 50

 return 0; 51

}52

Branches are built in two steps (lines 4, 28). During the start command we push

the name of our branch to a hint stack (lines 14-20). Naming a branch is not

required (line 15); if we do not provide a name, we are simply not exposing that

branch to higher levels. Names are used later in the end command. Note we always

add a string to the hint stack (line 14); if the name was not an empty string, that is,

if we supplied a valid name, we get the selector node from the top of the node

stack, build a hint id from the name we provided (line 47) and assign this id to the

appropriate child of the node (line 46).

The method we use to convert names to hint IDs is pretty simple, and is listed next:

HintID GetIDFromString (const std :: string & hintStr) 1

{ 2

 int iLength = hintStr . size (); 3

 HintID id = 0; 4

 for (int i = 0; i < iLength ; ++ i) 5

 { 6

 HintID uiValue = ((HintID) hintStr [i]) * 1000; 7

 id = (id + uiValue) / 2; 8

 } 9

 10

 return id ; 11

} 12

12.3.3.2. Creating a high-level tree

Once we have defined our high-level tree, we can start building a high-level one. To

continue with our example, let us say we want to create a kamikaze AI, just as we

did in 7.4.2.

High-level trees are always built on top of a base tree. Recalling what we studied in

11.3, high-level trees cannot use actions directly. Instead, they make use of hint

nodes, which allow them to modify the normal execution flow of the underlying

 148

tree. In our example, we exposed three hints in our base tree (COVER, ATTACK and

CHASE), so these are the hints our new tree will be able to use.

So, let us build this new tree. We show the final result in Figure 52.

Figure 52. High-level tree that will make our AI be a kamikaze

The tree is very simple, which is what we were looking for. It simply has an

unconditional loop as its root, which sends a ‘DO NOT COVER’ hint indefinitely.

Building a high-level tree from Lua is simple, as it uses exactly the same

commands, but replaces our action commands with hint commands. This way, our

tree would be defined using the following script:

startBehaviour() 1

 startLoop() 2

 addHint("COVER", "Negative") 3

 endNode() 4

endBehaviour() 5

The addHint command receives two parameters: the first one is the name of the

hint we are going to send, which will, be converted internally to a hint id using the

function previously shown; the second one indicate what type of hint we want to

send, that is, which state the hint will be in. Three different states can be used as

this second parameter; these are “Negative”, “Positive” and “Neutral”. The code

handling hint commands is as follows:

int LuaBTInterface :: AddHintNode (lua_State * L) 1

{ 2

 ASSERT_STR(s_pCurrentInstance != NULL, L"No valid AI was specified!"); 3

 4

 ASSERT_STR(lua_gettop (L) == 2, 5

 L"Invalid number of parameters for addHint"); 6

 ASSERT_STR(lua_isstring (L, 1) && lua_isstring (L, 2), 7

 L"Invalid parameter type for addHint"); 8

 std :: string hintName = lua_tostring (L, 1); 9

 std :: string hintStateStr = lua_tostring (L, 2); 10

 thesis :: hints :: HintID hintId = thesis :: hints :: GetIDFromString (hintName 11

); 12

 thesis :: hints :: EState hintState = 13

 thesis :: hints :: GetStateFromString (hintStateStr); 14

 149

 15

 thesis :: behaviour :: Hint < ThesisAIInstance >* pHint = 16

 new thesis :: behaviour :: Hint < ThesisAIInstance >(); 17

 pHint -> Initialise (s_pCurrentInstance , s_pCurrentTree); 18

 pHint -> SetHintId (hintId); 19

 pHint -> SetHintState (hintState); 20

 s_nodeStack . push (pHint); 21

 EndNode(L); 22

 23

 return 0; 24

} 25

After performing some tests (lines 3-8), we get the parameters passed to the

command, converting them to the appropriate types (lines 9-14). Once the

parameters are read, we create a new instance of the node (lines 16-20), push the

node onto the stack (line 21) and finalise it (line 22), as we are using a single

command to create the node.

What our node, which is sending a ‘do not cover’ hint is doing, is effectively

reordering the branches in our base tree as shown in Figure 53.

Figure 53. After receiving a 'do not cover' hint, our tree moves its cover branch to the last,

and least priority, position

 150

Let us examine a slightly more difficult example. In this case we want to model a

coward AI that always tries to cover. The base tree remains the same and we only

have to build a high-level tree such as the one shown in Figure 54, which is pretty

similar to the one presented in the previous example, retaining its simplicity.

Figure 54. High-level tree that will make our AI be a coward

The tree is sending the same hint, “COVER”, but in this case it is sending it with a

positive value. The question here is: how does the hint work, if it is already the

most important branch in the original tree? Inspecting our base tree, our “cover”

branch has a precondition, which is checking whether the AI’s health level is below

a certain value; this makes the AI ignore our hint if it is healthy.

In order to solve this problem we must recall the hint conditions, which were

introduced in 10.4. As we said then, base trees require a good design that allows

higher-level logic to concentrate only on creating new behaviours, and not bother

with low-level details. If we modify the precondition in the base tree, so the AI can

decide to cover, either if its health is low or it is receiving a “COVER” hint, we will

have solved the problem. The final precondition used by the branch is shown in

Figure 55.

Figure 55. Precondition used by our "cover" branch

12.4. Setting behaviours

Once we have created our scripts to build our trees, we need a way to set them to

the appropriate AI in the game. This can be done either during the creation of a

level, or dynamically, while the game is running.

 151

12.4.1. Level creation

Half-Life’s SDK includes its own level editor, Hammer, which is the same one the

developers used to create the game. The editor uses text files, with extension .fgd,

to configure the entities that will be available during level edition.

In order to be able to add our own entities (npc_thesis) to a level, we have to create

our own FGD, which looks like this:

@BaseClass base(Angles) studio("models/police.mdl") = npc_thesis : 1

 "Thesis model entity." 2

[3

BaseBehaviour(string) : "Base behaviour" : "" : "Ba se behaviour tree to use" 4

HighLevelBehaviour(string) : "High-level behaviour" : "" : 5

 "High-level behaviour tree to use" 6

 7

input PushBehaviour(string) : "Pushes a new behavio ur." 8

input ClearBehaviours(void) : "Clears all the behav iours." 9

] 10

With this file, we are letting Hammer know there is an entity called npc_thesis (line

1), which has two string properties that can be edited (lines 4-6), which are paths

to the Lua files that define our base and high-level trees. We have decided to only

use two levels as it will be enough for the examples presented in this thesis, but

this could be easily modified later. The entity also exposes two methods,

PushBehaviour and ClearBehaviours, which allow other entities to send messages

to our agents and change their behaviours, as we will see later in Chapter 14.

Once our new FGD is loaded into Hammer, our agents will be ready to be used in

new maps, as shown in Figure 56.

 152

Figure 56. Adding an npc_thesis to a level in Hammer

We also have to map our class’ member variables and methods to the properties

and inputs we have defined. This is done in the entity’s source file, using some

specific macros. We show the code we use for our entities below:

BEGIN_DATADESC(CNPC_Thesis) 1

 2

DEFINE_INPUTFUNC(FIELD_STRING, "PushBehaviour" , PushBehaviourInput), 3

DEFINE_INPUTFUNC(FIELD_VOID , "ClearBehaviours" , \ 4

 ClearBehavioursInput), 5

DEFINE_KEYFIELD(m_baseTreePath , FIELD_STRING, "BaseBehaviour"), 6

DEFINE_KEYFIELD(m_highLevelTreePath , FIELD_STRING, \ 7

 "HighLevelBehaviour"), 8

 9

END_DATADESC() 10

Finally, we need to make our entities use these values. To do so, we have added a

method that is called from the NPC’s spawn function:

void CNPC_Thesis :: SetInitialBehaviour () 1

{ 2

 // Get the game dir 3

 char szGameDir [256]; 4

 engine -> GetGameDir (szGameDir , sizeof (szGameDir)); 5

 6

 // Set a base tree, if it's available 7

 153

 std :: string treePath = m_baseTreePath . ToCStr (); 8

 if (treePath . length () > 0) 9

 { 10

 char szBuffer [512]; 11

 Q_snprintf (szBuffer , sizeof (szBuffer), "%s/%s" , szGameDir , 12

 treePath . c_str ()); 13

 Q_FixSlashes (szBuffer); 14

 if (! PushBehaviour (szBuffer)) 15

 { 16

 DevMsg("Invalid base tree: [%s]" , treePath . c_str ()); 17

 } 18

 else 19

 { 20

 // Set a high-level tree if it's available 21

 treePath = m_highLevelTreePath . ToCStr (); 22

 if (treePath . length () > 0) 23

 { 24

 Q_snprintf (szBuffer , sizeof (szBuffer), "%s/%s" , 25

 szGameDir , treePath . c_str ()); 26

 Q_FixSlashes (szBuffer); 27

 PushBehaviour (szBuffer); 28

 if (! PushBehaviour (szBuffer)) 29

 { 30

 DevMsg("Invalid high-level tree: [%s]" , 31

 treePath . c_str ()); 32

 } 33

 } 34

 } 35

 } 36

} 37

All our paths are relative to the game’s initial path, so we get it first (lines 4-5). If a

base tree was defined (lines 8-9), we simply generate a proper full path (lines 11-

14) and push the behaviour to our AI’s stack (line 15). We follow a pretty similar

process to set a high-level tree if the base tree was set correctly (lines 19-36).

12.4.2. Dynamic changes

Half-Life has a powerful in-game console players can open at any moment to run

commands, such as cheats. For example, typing “god” will make the player

invincible.

We have added two commands, so we can control our AIs from the console:

• pushBehaviour receives the ID of the agent we want to use, as well as the

full path to a behaviour tree we want to push to our entity’s stack.

• clearBehaviours receives only an ID, and it will clear all the behaviours

used by that AI.

We show the code used by pushBehaviour as an example:

static void PushBehaviour (const CCommand & args) 1

 154

{ 2

 if (args . ArgC() == 3) 3

 { 4

 int id = atoi (args [1]); 5

 ThesisAIInstance * pAI = ThesisAIManager :: Ref (). GetAI (id); 6

 if (pAI == NULL) 7

 { 8

 DevMsg("Can't find AI [%i]" , id); 9

 } 10

 else 11

 { 12

 DevMsg("AI [%i]: pushing behaviour defined in [%s]" , 13

 id , args [2]); 14

 ThesisAIManager :: Ref (). GetLuaManager (). SetGlobalNumber (15

 lua :: LuaBTInterface :: CURRENT_AI_GLOBAL_VARIABLE_NAME, id); 16

 ThesisAIManager :: Ref (). GetLuaManager (). RunFile (17

 args [2]); 18

 } 19

 } 20

 else 21

 { 22

 DevMsg("Invalid arguments for pushBehaviour"); 23

 } 24

} 25

 26

ConCommand pushBehaviour_function ("pushBehaviour" , PushBehaviour , 27

 "Pushes a behaviour for an AI (id, lua file)" , FCVAR_CHEAT); 28

In order to define a command, we have to create a static function that receives a

CCommand as its first and only argument (line 1). This object contains information

about the parameters that were passed to the command in the console, so we

check we are receiving two (line 3, args[0] contains the name of the command),

and use it to set the behaviour to the appropriate instance (lines 5-19). We also

need to register the command, which is done creating a global ConCommand, as

shown in lines 27-28.

 155

Chapter 13. VISUAL EDITING

In previous chapters, we introduced our new technique, Hinted-execution

Behaviour Trees, and presented how the system works, and how we have

implemented it. We also made some notes about how the system would be greatly

improved, both in terms of productivity and usability.

Also, the use of an editor is crucial if we want to achieve our objective of allowing a

multidisciplinary team share responsibilities in the development and enhancement

of our AI.

Because of this, we have developed our own HeBT editor, as a fundamental part of

this work. In this chapter we will present this tool and show how it is integrated

with the rest of the system.

13.1. Functionality

HeBT Editor is a complete tool that manages Hinted-execution Behaviour Trees

from their creation process to their deployment and testing. It has been developed

using C#/WPF, so it requires .NET, and offers the following functionality:

• An XML-based node library, which allow new nodes to be added to the tool

easily.

• A visual way to create and modify behaviour trees, which are shown in a

graph-like representation. Nodes can be dragged-and-dropped from the

library and can be connected with just a couple of clicks.

• Complex conditions can be created, in the form of condition trees, using the

same graph-like, drag-and-drop enabled interface.

• High-level BTs can be created based on existing BTs. The node library is

automatically updated, so actions are replaced with hint nodes, using those

hints exposed by the base tree.

 156

• Trees can be saved and loaded as XML files, which makes them easy to

understand in a plain text editor, and can also be exported to a LUA format

that is accepted by our game prototype (presented in Chapter 12).

• The editor is capable of establishing a connection with the game prototype,

and changes the behaviours of the game’s entities dynamically. This allows

modifications to be tested quickly.

• Debugging capabilities are also offered, when the editor is connected to the

prototype. The base tree is shown, and the nodes that are running are

highlighted in real time, so the effect of the hints can be easily seen.

• The editor uses a command system, so actions can be undone and redone,

improving usability.

13.2. Main window

The main window is simple (Figure 57), showing a toolbar with three icons that

provide quick access to the game-communication functions (connect to game, run

and debug tree), as well as a main menu.

Figure 57. Main window of HeBT Editor

 157

The menu provides access to the basic functions of the editor (such as creating or

saving trees), the undo system and also to the communication options shown in

the toolbar. Figure 58 shows the menu items.

Figure 58. Options present in the main menu

13.3. Architecture

HeBT Editor uses a docking layout system similar to that present in Visual Studio,

and uses AvalonDock (Marinucci, 2010) to do this. Taking advantage of the

functionality provided by this library, we have been able to implement a MDI

interface, where multiple documents, each of which represents a behaviour tree,

can be opened simultaneously.

A document is the graphical representation of our logical model. We have

separated both models and built a behaviour tree system based on composite and

visitor design patterns. The latter is especially important for our editor, as we will

see later in this chapter, we have implemented most of the functionality as

different visitors that operate on our trees, simplifying the logic of the nodes and

trees, and allowing us to have an extensible application.

13.3.1. Documents

Trees in our editor are represented as a non-connected graph, where each node is

an instance of a class present in a node library. This basic structure is illustrated in

Figure 59.

 158

Figure 59. Structure of a document

Documents also expose some basic functionality, like loading, saving, and

exporting documents, and are the interface the tool uses to communicate with our

model.

For each document, the editor will show a new tab divided into two different areas.

The main one shows the behaviour tree that is being created, while the second

area shows the node library that is available for this particular tree. The library

shows different elements depending on the type of tree. New nodes can be added

to the tree just by drag-and-dropping them onto the main area, just as we illustrate

in Figure 60.

Figure 60. New nodes can be added to a BT just by drag-and-dropping them from the library

 159

In a similar fashion, we can add new links between nodes just by clicking on the

source node and on the destination one (in that order). A node or link can be

removed by selecting them and pressing “Del” on the keyboard.

13.3.2. Behaviour trees

Behaviour trees are handled by the editor in a similar way to that used in the

library presented in Chapter 9. In this case, the relations between the different

classes are shown in Figure 61.

AbstractNode

CompositeNode

ParallelNode SelectorNode SequenceNode

DecoratorNode

ConditionalDecoratorNode

HintNode ActionNodeConditionNode

1

1

*

1

BehaviourTree1

-roots

*

GenericNode

Figure 61. Structure of a behaviour tree in the editor

We must note that we use a GenericNode that contains the basic information

needed for a node to be used in our graph editor. We have separated this from our

AbstractNodes because we will reuse this component as an editor of condition trees,

which will be introduced further on in this chapter. Each of these nodes stores

some useful information such as which their parent nodes are, what their offsets

are related to those parents, which are used for drawing, or whether they are

selected or started, as well as the identifier of the node class they were created

from.

A BT in the editor can have multiple root nodes. This is a consequence of the

edition mode we have chosen, where we can add nodes by dragging them from the

editor, but they are unconnected when they are dropped.

 160

However, we decided not to bloat nodes with logic other than that which keeps the

relations among nodes. Instead, we use various different visitors to perform

operations on trees.

13.3.2.1. Visitors

When designing HeBT Editor, we found that almost certainly we were going to be

adding new functionality to the tool as a result of our research. According to its

definition, “a visitor pattern is a way of separating an algorithm from an object

structure it operates on” (Wikipedia, 2010). Visitors can run some specific logic for

each node on the tree, depending on their types, automatically, so we decided that

was exactly what we needed.

The version of the editor presented in this document uses eight different visitors

that operate on BTs, plus five additional ones that are used by condition trees

(which will be presented later in this chapter). These visitors are:

• CheckVisitor is in charge of checking that a tree can be used by our BT

library. A tree is valid only if it has a unique root, all its composite nodes

have, at least, a child, and all the nodes that use conditions have been

assigned a valid one.

• DrawVisitor is used to draw trees in the editor. It takes into account not

only the type of node in order to produce a valid graphical representation of

it, but also its state, so it is able to highlight nodes that are being run or are

selected.

• HintParserVisitor is used to build a fill in a list with the identifiers of the

hints used in the tree.

• LinkSelectVisitor and SelectVisitor receive a point on screen and are able

to select a node or a link, based on that position.

• LuaExporterVisitor exports a tree to a LUA format that can be read by the

game.

 161

• LuaNetExporterVisitor and StateUpdaterVisitor use the communication

capabilities of the editor, which will be studied in 13.5, to send trees

through this communication channel and receive updates about the state of

the nodes of a tree.

Once a visitor is implemented, using it is very simple. We just have to create a new

instance of the editor and call Accept on the root of our tree, passing in the visitor.

The following snippet shows how this works in code:

HintParserVisitor visitor = new HintParserVisitor (); 1

foreach (AbstractNode root in behaviourTree . Roots) 2

{ 3

 root . Accept (visitor); 4

} 5

// At this point, visitor.ListOfHints contains all the hints used in 6

// behaviourTree7

13.3.2.2. Saving a tree as XML

We use .NET’s capabilities to serialise and deserialise objects to XML to save our

trees and load them in the editor. However, we have chosen not to use this XML

formats in the game, and use a LUA file instead, because the latter can be parsed

and executed directly by a LUA interpreter, which we have included to our library.

Figure 62. Simple tree we will serialise

An example of the output produced by our serialisation process, and using the

simple tree shown in Figure 62, can be seen below:

<?xml version ="1.0" encoding ="utf-8" ?> 1

<BehaviourTree xmlns : xsi ="http://www.w3.org/2001/XMLSchema-instance" 2

xmlns : xsd ="http://www.w3.org/2001/XMLSchema" > 3

 < Roots > 4

 < AbstractNode xsi : type ="SequenceNode" > 5

 < Offset > 6

 < X>178</ X> 7

 < Y>53.043124237060539</ Y> 8

 </ Offset > 9

 < Size > 10

 < Width >30</ Width > 11

 < Height >30</ Height > 12

 </ Size > 13

 < ItemId >1</ ItemId > 14

 < Children > 15

 162

 < AbstractNode xsi : type ="ActionNode" > 16

 < Offset > 17

 < X>0</ X> 18

 < Y>74</ Y> 19

 </ Offset > 20

 < Size > 21

 < Width >30</ Width > 22

 < Height >30</ Height > 23

 </ Size > 24

 < ItemId >102</ ItemId > 25

 </ AbstractNode > 26

 </ Children > 27

 </ AbstractNode > 28

 </ Roots > 29

</ BehaviourTree > 30

The process is quite simple: we serialise all the roots of the tree (line 4). In this

instance we only have one root, which is our sequence (line 5). The sequence has

one child, an action (line 16). We know which action we are serialising because of

its itemId (line 25), which corresponds to one of items in the node library we were

using.

13.3.3. Node libraries

A node library is a list of node classes that can be used in a behaviour tree. We

needed the editor to be extensible, so new types of nodes could be used by it

without any modifications. Above all, we needed this to add new actions, as they

are the ones that change between different games.

As we said before, nodes in our BTs are just instances of the items in our library.

These items contain information that is shared among those instances. The data

that defines a library node is:

• A unique numeric identifier, which will be used by node instances to refer

to their parent node class.

• A class name, which will be used to create an instance of the node in the

editor. The class name must match one of those presented in 13.3.2, as we

are using C#’s reflection capabilities to instantiate the new objects.

• A label, which will be used by the draw visitor.

• The LUA commands a node will be translated to, when we export the tree.

We can add two strings to define these commands: one of them will be used

 163

when we start exporting the node; the other, after we have finished the

process. The exportation process was explained in detail in 12.3.

• A flag to indicate whether the node will be available in all levels, or just in

the lowest one. This is useful if we want to avoid some nodes from being

used in higher-levels of logic. For example, we could hide parallel nodes, as

commented in 11.3.

• A list of child nodes. We have designed our library as a hierarchy, so it is

easier to classify nodes in groups. It is important to note that only leaf

nodes can be instantiated in an actual tree.

We use an XML file to define a library. We show an example library:

<?xml version ="1.0" encoding ="utf-8" ?> 1

<NodeLibrary xmlns : xsi ="http://www.w3.org/2001/XMLSchema-instance" 2

xmlns : xsd ="http://www.w3.org/2001/XMLSchema" > 3

 < Items > 4

 < NodeLibraryItem > 5

 < Label >Metanodes </ Label > 6

 < AvailableInAllLevels >true </ AvailableInAllLevels > 7

 < Children > 8

 < NodeLibraryItem > 9

 < ClassName > 10

 HeBTEditor . Logic . BehaviourTree . SequenceNode 11

 </ ClassName > 12

 < Label >Sequence </ Label > 13

 < StartExportString >startSequence ()</ StartExportString > 14

 < EndExportString >endNode ()</ EndExportString > 15

 < Id >1</ Id > 16

 < AvailableInAllLevels >true </ AvailableInAllLevels > 17

 < Children /> 18

 </ NodeLibraryItem > 19

 </ Children > 20

 </ NodeLibraryItem > 21

 < NodeLibraryItem > 22

 < Label >Actions </ Label > 23

 < AvailableInAllLevels >true </ AvailableInAllLevels > 24

 < Children > 25

 < NodeLibraryItem > 26

 < ClassName > 27

 HeBTEditor . Logic . BehaviourTree . RunUntilConditionNode 28

 </ ClassName > 29

 < Label >Run until condition </ Label > 30

 < StartExportString > 31

 startRunUntilConditionNode () 32

 </ StartExportString > 33

 < EndExportString >endNode ()</ EndExportString > 34

 < Id >99</ Id > 35

 < AvailableInAllLevels >true </ AvailableInAllLevels > 36

 < Children /> 37

 </ NodeLibraryItem > 38

 </ Children > 39

 </ NodeLibraryItem > 40

 < NodeLibraryItem > 41

 < Label >Filters </ Label > 42

 < AvailableInAllLevels >true </ AvailableInAllLevels > 43

 164

 < Children > 44

 < NodeLibraryItem > 45

 < ClassName > 46

 HeBTEditor . Logic . BehaviourTree . DecoratorNode 47

 </ ClassName > 48

 < Label >Loop </ Label > 49

 < StartExportString >startLoop ()</ StartExportString > 50

 < EndExportString >endNode ()</ EndExportString > 51

 < Id >200</ Id > 52

 < AvailableInAllLevels >true </ AvailableInAllLevels > 53

 < Children /> 54

 </ NodeLibraryItem > 55

 </ Children > 56

 </ NodeLibraryItem > 57

 </ Items > 58

</ NodeLibrary > 59

This file is defining three categories (line 5 – metanodes, line 22 – actions and line

41 – filters), each containing a node. Figure 63 shows the library as it would be

seen in the editor.

Figure 63. Example node library

We can also add properties to the nodes we define in our libraries; these will be

used so users can specify certain parameters, and will allow us to create more

complex nodes. An example would be a timed loop filter, where we can set the time

the loop must be run for. We would define the property as follows:

<NodeLibraryItem> 1

 <ClassName>HeBTEditor.Logic.BehaviourTree.Decor atorNode</ClassName 2

 <Label>Timed loop</Label> 3

 <StartExportString>startTimedLoop({0})</Start ExportString> 4

 <EndExportString>endNode()</EndExportString> 5

 <Id>205</Id> 6

 <AvailableInAllLevels>true</AvailableInAllLevel s> 7

 <Children /> 8

 <Properties> 9

 <NodePropertyData> 10

 <Key>Duration</Key> 11

 <Value>1.0</Value> 12

 <Type>System.Single</Type> 13

 </NodePropertyData> 14

 </Properties> 15

</NodeLibraryItem> 16

Each property we define must have a key, a default value and a type (C# types)

that will be used to allow the editor to check if the values received for that

 165

parameter are correct. Properties can be set for a node just by double-clicking it in

the editor (see Figure 64).

Figure 64. Some nodes expect some parameters (properties) that can be defined via the

editor

13.3.4. Condition trees

Conditions trees were already introduced in 9.4.1.1., and, basically, they allow us to

generate complex conditions. Our tool can create new condition trees using an

editor that is very similar to the one used to build behaviour trees. The hierarchy

of classes we use is shown in Figure 65.

GenericNode

AbstractCTNode

CompositeCTNode

AndCTNode

ConditionTree

HintCTNode LeafCTNode NotCTNode

OrCTNode

*

1

1

1

1

-roots

*

Figure 65. Structure of a condition tree in the editor

 166

Condition trees are created in the same way as normal behaviour trees, just by

drag-and-dropping new nodes from a library of them, and connecting our

instances appropriately. Figure 66 shows our editor of conditions.

Figure 66. Interface of the condition tree editor

We use condition libraries that follow the same structure as our node libraries,

which we defined in the previous section.

13.4. Creating a new tree

The editor allows users to create two different types of behaviour trees: base BTs

and high-level ones; differences between these types were presented in Chapter

11. When we try to create a new tree, the tool will ask for the type of BT we want

to use, as shown in Figure 67.

 167

Figure 67. The editor allows us to create low-level or high-level trees

13.4.1. Low-level trees

Low-level trees are the ones AIs use to communicate with the game, using action

nodes. They cannot send hints to other trees, but they can expose them, so higher-

level ones can be built to improve them.

Recalling what we studied in 11.2, hints are exposed by naming selectors’ branches

or using hint conditions. In the editor, selectors are displayed graphically as shown

in Figure 68.

Figure 68. A simple selector, as shown by the editor

Note the two little squares in the middle of each link: the squares represent the

hint the branch can receive. If no hint was defined, the square will be white.

Double-clicking the square, we will access a new dialog where we can name the

branch, thus exposing a new hint (Figure 69).

Figure 69. Naming a selector's branch will expose a new hint to higher-levels

 168

After a hint is exposed, the little square will be coloured in black, as illustrated in

Figure 70.

Figure 70. Branches that have exposed a new hint are marked in a different colour in the

editor

As for conditions, we can expose new hints just by using a hint condition in a

condition tree. As shown in Figure 71, the hint used by the condition is undefined

by default.

Figure 71. Exposing new hints using hint conditions is as simple as adding one of these nodes

to a condition tree and defining the hint we want to check

Again, double-clicking on it will open a new window where we will be able to

define which hint we want the condition to check (Figure 72).

 169

Figure 72. We must define which hint a condition hint will check

Once the hint has been chosen, the editor will show it correctly, as illustrated in

Figure 73.

Figure 73. Once a hint is defined, the editor will reflect the change

13.4.2. High-level trees

High-level trees are built on top of a base tree, which will be used to generate the

node library the new tree will use. This library will exclude the nodes that were

marked as “not available in all levels” in the XML file, and will contain hint nodes

for each of the hints exported in the low-level tree. For instance, if we create a

high-level tree based on the base one shown in the previous section, we would get

a library such as the one shown in Figure 74.

Figure 74. The node library our high-level tree would use. The hints exposed in the base tree

are automatically added to the library

Hint nodes are treated in a special way in the editor, so we can define which hint

state a node will be sending. Figure 75 shows the dialog the tool will show after

double-clicking on one of these nodes.

 170

Figure 75. Hint nodes can send different states of a hint

13.5. Game communication

As stated earlier, HeBT editor is capable of establishing a communication with our

Half-Life 2 prototype. This is done via winsock.

Our library defines a Server class which is always listening for connections at port

16777 (at the moment, it will only accept one, from the editor). Once a connection

is made, it will notify a list of receivers, which must register with the server in

order to get data. Receivers must implement an IReceiver interface. This structure

is shown in Figure 76.

Figure 76. Structure of our communication server

We have also implemented a custom receiver, ThesisCommunication, which defines

all the functionality we need to be able to set and debug behaviours from the

editor. The object is registered with the server when the game is run.

ThesisCommunication works as a simple FSM with three states: Idle, ReceivingTree

and Debugging. We show its Receive method below:

void ThesisCommunication :: Receive (const std :: string & message) 1

{ 2

 std :: vector < std :: string > tokens = Tokenize (message , DELIMITERS); 3

 if (m_eState == EState_Idle) 4

 { 5

 if (tokens [0] == "SET_TREE") 6

 { 7

 ASSERT_STR(tokens . size () == 2, 8

 L"Invalid number of parameters (id expected)"); 9

 int id = std :: atoi (tokens [1]. c_str ()); 10

 ThesisAIManager :: Ref (). GetLuaManager (). SetGlobalNumber (11

 lua :: LuaBTInterface :: CURRENT_AI_GLOBAL_VARIABLE_NAME, id); 12

 171

 13

 // Start receiving the tree 14

 m_eState = EState_Receiving_Tree ; 15

 16

 DevMsg("Setting a new tree to AI [%i]\n" , id); 17

 } 18

 else if (tokens [0] == "CLEAR_BEHAVIOURS") 19

 { 20

 ASSERT_STR(tokens . size () == 2, 21

 L"Invalid number of parameters (id expected)"); 22

 int id = std :: atoi (tokens [1]. c_str ()); 23

 24

 //Get the AI and clear its behaviour 25

 ThesisAIInstance * pInstance = 26

 ThesisAIManager :: Ref (). GetAI (27

 static_cast < ThesisAIInstance :: UIDType >(id)); 28

 if (pInstance != NULL) 29

 { 30

 pInstance -> ClearBehaviours (); 31

 } 32

 33

 DevMsg("Clearing behaviours for AI [%i]\n" , id); 34

 } 35

 else if (tokens [0] == "DEBUG_TREE") 36

 { 37

 m_eState = EState_Debugging ; 38

 } 39

 else 40

 { 41

 // Just ignore any other message in this state 42

 } 43

 } 44

 else if (m_eState == EState_Debugging) 45

 { 46

 if (tokens [0] == "STOP_DEBUGGING") 47

 { 48

 m_eState = EState_Idle ; 49

 } 50

 else if (tokens [0] == "REQUEST_TREE_STATE") 51

 { 52

 int id = std :: atoi (tokens [1]. c_str ()); 53

 54

 ThesisAIInstance * pInstance = 55

 ThesisAIManager :: Ref (). GetAI (56

 static_cast < ThesisAIInstance :: UIDType >(id)); 57

 if ((pInstance != NULL) 58

 && (pInstance -> HasBehaviours ())) 59

 { 60

 ASSERT_STR(tokens . size () == 2, 61

 L"Invalid number of parameters (id expected)"); 62

 63

 // First, send the hint states 64

 hints :: HintAndStateVector info ; 65

 pInstance -> FillHintAndStateVector (info , -1); 66

 67

 hints :: HintAndStateVector :: const_iterator it = 68

 info . begin (); 69

 hints :: HintAndStateVector :: const_iterator end = 70

 info . end (); 71

 for (; it != end ; ++ it) 72

 { 73

 const hints :: HintAndState & hintAndState = 74

 * it ; 75

 char buffer [256]; 76

 sprintf_s (buffer , 256, 77

 "HINT_STATE %i %i" , 78

 hintAndState . id , 79

 static_cast < int >(80

 172

 hintAndState . state)); 81

 82

 ThesisAIManager :: Ref (). 83

 GetCommunicationServer (). Send(buffer); 84

 } 85

 86

 // Now send the node states 87

 ThesisNetVisitor visitor ; 88

 pInstance -> Accept (& visitor , -1); 89

 ThesisAIManager :: Ref (). 90

 GetCommunicationServer (). Send(91

 "TR EE_STATE_END"); 92

 } 93

 else 94

 { 95

 ThesisAIManager :: Ref (). 96

 GetCommunicationServer (). Send(97

 "TREE_STATE_STOPPED"); 98

 m_eState = EState_Idle ; 99

 } 100

 } 101

 else 102

 { 103

 DevMsg("Error: invalid command received [%s]\n" , 104

 message . c_str ()); 105

 } 106

 } 107

 else if (m_eState == EState_Receiving_Tree) 108

 { 109

 // Receiving a tree 110

 if (tokens [0] == "END_TREE") 111

 { 112

 // End of the tree 113

 m_eState = EState_Idle ; 114

 } 115

 else if (! ThesisAIManager :: Ref (). GetLuaManager (). 116

 ExecuteCommand (message)) 117

 { 118

 DevMsg("Error in command [%s] while setting a tree\n" , 119

 message . c_str ()); 120

 } 121

 } 122

}123

We first tokenise the message we are receiving (line 3), so we can use commands

properly. After that, we execute the logic of the active state:

• If we are idle (lines 4-44), we would could be receiving three different

commands:

o “SET_TREE instance_id” indicates we will start receiving lua

commands to set an AI instance, switching to a new state (line 15).

o “CLEAR_BEHAVIOURS instance_id” indicates we should clear the

behaviour that is controlling the given instance.

 173

o “DEBUG_TREE” indicates we want to debug a tree. This will put us in

Debugging state.

• If we are debugging a tree (lines 45-107), we would be put in a state where

we can receive update requests (REQUEST_TREE_STATE instance_id) (lines

51-100), which means we have to send the current state of the tree back.

First, we will send the current states of the hints for this tree, as a list of

“HINT_STATE hint_id hint_state” commands (lines 64-85), so the editor can

show this information; then a list of nodes and whether they are started or

not; the list is just a big string made of pairs (id state), where id is a numeric

value indicating the order in which the node was read, and state is a

boolean value, will follow (lines 87-92). The editor will send this command

periodically, and will update the states of the nodes in the tree it is

debugging accordingly, showing a tree where started nodes are highlighted

in yellow (Figure 77). If for some reason our behaviour ends while it is

being debugged, we would send a “TREE_STATE_STOPPED” command, and

get back to the Idle state (lines 96-99). Finally, we can also receive a

“STOP_DEBUGGING” command to indicate we do not want to debug the tree

anymore, so we get back to Idle.

• If we are receiving a tree (lines 108-122), the editor is basically exporting

a tree to Lua and sending the result through the socket; we will run the

commands as we receive them (lines 116-117), mimicking the process

shown in 12.4.2. When we receive an “END_TREE” command, we will get

back to the Idle state (111-115).

This functionality is accessed from the main menu or the toolbar icons.

 174

Figure 77. Debugging a tree in the editor

13.6. Future work

Although the editor developed in this thesis is fully functional, further work can be

done to improve its usability and the functionality it provides. Among the possible

extensions the tool would benefit from, we can suggest:

• A method to be able to check what conditions are being used by the

corresponding nodes in our trees. At the moment, the only way to do this is

by opening the condition tree editor (by double clicking a node), which

makes it difficult to have an idea of what the tree is doing at a first glance.

• A way to store parts of the tree as sub-behaviours that can be reused in

different trees. This would also allow trees to be easier to understand, as

they could be edited modularly.

• Support for expanding and collapsing branches. A different type of view,

explorer-like, could also be added.

• Support for copying and pasting or duplicating nodes or sub-trees.

 175

• Extending the command system, so any action can be undone or redone, as,

at the moment, condition or hint edition are not handled using commands.

• Enhanced debugging facilities. The current system only allows us to see

which nodes are active, with a frequency of a second between updates. Also,

if we are debugging a high-level tree, we would only be able to see how the

underlying base tree is performing. To improve this, we could:

o Allow the refresh rate to be modified dynamically.

o Add a way to choose which tree of an HeBT we want to be looking at,

or even being able to see more than one tree at a time.

o Modify the debug drawing code, so we can actually see how branches

are reordered when a selector is hinted.

o Add a high-frequency mode, where all the state changes are stored in

a file that could be examined later on. This would allow behaviours

to be debugged off-line, and would offer more detailed information.

• Add the possibility of creating group behaviours, such as the ones studied in

the previous section, using the editor.

• Find a better way to display all the trees that are part of the same HeBT at

once. At the moment, BTs are created individually, without taking into

account whether they belong to the same HeBT or not.

 176

Chapter 14. WHY HEBTS ARE GOOD FOR AI

PROGRAMMING: A PRACTICAL EXAMPLE

In Chapter 12 we studied how our new HeBT system can be applied to a real game,

and developed a prototype using Valve’s Half-Life 2 SDK. We also worked on some

basic examples to show the internals of the system, and how to generate new

behaviours creating simple high-level trees. However, these examples were too

simple, and they did not really demonstrate the real power of our solution.

In this chapter we will present a new case, in which the game will require some

complex additional logic; as we will show, it can be created as a high-level tree in

an HeBT, avoiding the need to modify the base behaviour, which would add

additional risks to the project.

14.1. Prototyping new ideas

In 7.4 we talked about different ways to modify a behaviour. Particularly, we

studied the use of personality traits as a simple solution to obtain different

responses from two AIs running the same logic. We also showed how adding a

more complex logic was not trivial without changing the original tree. On the

other hand, Hinted-execution Behaviour Trees allow us to generate this logic

easily, just by using a high-level behaviour tree, which will run on top of our base

one, guiding its normal execution towards what this new level is suggesting should

be done.

In a real project, we are always subject to changes at any time, if these changes

enhance the game experience. However, we cannot often work on new ideas as

they would require too many resources, or may pose a big risk to the project.

Although some examples were shown in Chapter 12, we have not built any

complex high-level behaviour yet, so, in order to completely prove this point, we

decided to implement a small gameplay feature in our prototype, completely

controlled by our HeBTs.

 177

14.2. Base behaviour

Working on a new behaviour requires that we have a base one working correctly;

it will define the way AIs in our game respond to different situations and, in a real

life project, it would have been thoroughly tested and optimised.

In our case, we will create a new Half-Life level and add some of our AIs to it. Let

us say our design team have decided the game needs some guards that:

• Are able to patrol using a predefined route.

• Detect the player as an enemy when they enter their cone of vision.

• Attack the player once it is identified.

• Try to find a cover position to keep attacking from it, if the agent is

damaged.

• Find a cover position to reload their weapons, it they are running low of

ammunition.

• Run away if their health level is too low.

This behaviour would be represented by a complex BT, such as the one shown in

Figure 78. As we will see, the root of our tree is a conditional loop, which is running

the behaviour as long as the AI is alive. The loop is decorating our main selector,

which is deciding whether to cover, patrol or attack.

Due to its size, we will study it by separating its different branches.

 178

Figure 78. Base behaviour tree used in our example

14.2.1. Cover branch

The first branch our main selector tries to run is the cover one. Its root is a

sequence with a precondition that will decide whether to execute the cover logic.

Based on our original design, this precondition should check what our health level

is. However, we find this is likely to be changed in the future, so we want to leave

this open, so new logic can decide if we should run this branch. Because of that, we

have decided to use a slightly more complex condition, so our logic will either be

triggered by a low health level or if we are receiving a hint to cover; this is shown

in Figure 79. The addition of this hint condition automatically exposes a COVER hint

that can be used by higher-level trees.

 179

Figure 79. Precondition that will decide whether to make the AI run to a cover position

A second sequence defines the rest of the logic, again using a precondition, shown

in Figure 80, which is preventing our agent from looking for a cover position if it is

already hidden, and some actions to stop the previous movement, find a new cover

position, run to it, and wait until we have got there.

Figure 80. Precondition to prevent AIs from looking for cover positions when they are

already hidden

When the branch is chosen by an agent, we will see how it tries to run away and

find a suitable position (Figure 81).

Figure 81. AI running away while trying to cover

As we have said, the first thing an AI will try to do is check if it needs to cover. We

might want to change this in the future, so we can build, for example, kamikaze AIs.

 180

Because of that, we decided to let our main selector receive COVER hints to reorder

its priorities (Figure 82).

Figure 82. We have modified our main selector so it is able to receive COVER hints from

higher-levels

14.2.2. Patrol branch

The second branch (see Figure 83) in the main selector makes agents follow a

predefined set of waypoints, in what we can call a patrol behaviour. Waypoints are

set from Hammer (Half-Life’s map editor) in edition time, and parsed by the AI

when it is spawned, generating a list of positions to patrol to. We make use of our

blackboard (9.1.2) to maintain what our next waypoint is, and increment it every

time we reach it.

Figure 83. Patrol branch

Our patrol behaviour starts with a parallel node, which is running an assertion to

make sure we do not have an enemy, as we want to abort this logic as soon as we

 181

detect an enemy. Again, we have decided to expand this condition to allow

extensions to this check, so the final condition used is shown in Figure 84.

Figure 84. Assertion used by our patrol branch

This way, we have exposed our second hint, PATROL, so higher-level trees can

control when an AI should be patrolling. Figure 85 shows an AI following its patrol

route.

Figure 85. Still unaware of our presence, this agent is just following its patrol route

14.2.3. Attack branch

The last branch defines the aggressive behaviour of our AIs. We show the branch

separated from the rest of the tree in Figure 86.

 182

Figure 86. Our attack branch

Again, we have an assertion. In this case, it is making sure we have an enemy, as we

would not be able to attack if we did not have one. In parallel to this assertion, we

are running a selector, decorated with an ignore failure filter. We have chosen to do

this as some of the actions could fail (such as those trying to find a cover position,

if there is none), and we do not want the branch to fail.

The selector will first try to attack, or make the agent look for a cover position if it

is under attack. We model this using an assertion in the leftmost branch to make it

bail out as soon as we detect we have received some damage. Again, we have

decided to expose a new hint so we can allow higher-levels to decide when or

whether to look for cover. We have named this hint ATTACK, as shown in Figure

87.

 183

Figure 87. Assertion controlling the execution of the attack branch

If the assertion is met, then we always stop the previous action, face the enemy,

and then we use a new selector to choose between running a reload sub-behaviour

or attacking our enemy; actually, we use yet another selector to check if our enemy

is visible before we decide to fire, as we would have to find a path to get back to the

action if it was not. Figure 88 shows two AIs using this branch.

Figure 88. An AI trying to find a cover position, but still facing us. We can also see another AI

at the back, ready to start its attack behaviour, as it has just spotted us

14.3. High-level trees

Once our AIs are able to run autonomously, meeting the game design, in an ideal

situation, most of the work for AI engineers consists of debugging and polishing

the behaviours. However, we could find ourselves in a situation when substantial

changes to these behaviours are required... or at least needed to test new ideas.

This is where the power of HeBTs comes into play.

 184

Again, we should note some examples were already shown in 12.3.3.2, but they

were just some simple ones that could have been imitated using a different

approach, such as the use of personality traits. In that moment, we also talked

about a “disguise system”, which we will use as our scenario to demonstrate the

capabilities of our new system.

As we have said, in a real project engineers would be in charge of modifying the

standard behaviours to take into account the new design request. Let us say the

new system should add the following features to the AI and gameplay systems:

• Players can wear the clothes of the enemies they kill, going unnoticed to

other AIs if they do so.

• AIs should not recognise “disguised” players as enemies. However, they

should react if the player damages them.

Basically, these changes would require gameplay and AI code modifications, and

this new feature could not make it through to the final game.

As our game would have been using HeBTs, we could delegate the prototyping of

new ideas to designers themselves. We only need to provide them with the right

tools to do it. We have already built our systems taking this into account, and so we

have developed the tool presented in Chapter 13.

We must bear in mind that if we want to have a system that requires virtually no

programming work to be extended, we must start from designing our base

behaviours correctly, just as we have done in the previous section. Also, building a

complete set of tree nodes and conditions can facilitate things further down the

line.

14.3.1. Modifying AIs knowledge

To let high-level trees add new gameplay features, such as the one we are trying to

model, we have designed our prototype to allow trees to set and access flags in our

AIs blackboards. Just as a reminder, our blackboards are just simple maps storing

key/value pairs that can represent any useful information agents might need.

 185

Setting flags is, actually, the communication system we have implemented, so an AI

can send some information to other peers. The information we allow to be sent is a

simple string identifier for the flag, and a boolean state. This can be done using a

FlagBroadcastAction node, which works as follows:

template < class AIInstance > 1

ENodeResult FlagBroadcastAction < AIInstance >:: Step () 2

{ 3

 ASSERT_STR(m_key. size () > 0, L"A valid key wasn't set"); 4

 m_pInstance -> BroadcastFlag (m_key, m_bValue , m_bSendToMyself); 5

 return NR_SUCCEEDED; 6

} 7

This node is using the BroadcastFlag functionality inside AI instances (line 5),

which receives the key and state (value) of the flag, as well as an extra flag to

indicate whether this information has to be used by the AI broadcasting it:

template < class NativeAI > 1

void AIInstance < NativeAI >:: BroadcastFlag (const std :: string & key , 2

 bool bValue , bool bSendToMyself) 3

{ 4

 AIManager < NativeAI >:: AIVector instances ; 5

 AIManager < NativeAI >:: Ref (). FillAIVector (instances); 6

 7

 AIManager < NativeAI >:: AIVector :: iterator it = instances . begin (); 8

 AIManager < NativeAI >:: AIVector :: iterator end = instances . end (); 9

 for (; it != end ; ++ it) 10

 { 11

 AIInstance < NativeAI >* pInstance = * it ; 12

 if (bSendToMyself || (pInstance != this)) 13

 { 14

 pInstance -> ReceiveFlag (key , bValue); 15

 } 16

 } 17

} 18

To broadcast a flag, an instance asks the AIManager for all the instances registered

in it (line 6), and uses this to call ReceiveFlag (line 15) on each instance, even the

one that originated the call, depending on what behaviour we have chosen to use

(line 13).

template < class NativeAI > 1

void AIInstance < NativeAI >:: ReceiveFlag (const std :: string & key , 2

 bool bValue) 3

{ 4

 if (bValue) 5

 { 6

 m_blackboard . Update (ks :: Blackboard :: GetKeyFromString (key), 7

 bValue); 8

 } 9

 else 10

 { 11

 // Let's just remove it from the blackboard 12

 m_blackboard . Remove(ks :: Blackboard :: GetKeyFromString (key)); 13

 } 14

 186

} 15

When an AI receives a flag, it basically keeps it in its blackboard, in case the flag

was enabled (lines 5-9) or removes it, if the state of the flag is false (lines 10-14).

We also need to create a new condition that checks an AI’s blackboard for a flag,

and returns true if the flag is present. We did this as shown below:

bool CheckFlag :: Evaluate () const 1

{ 2

 const ks :: Blackboard :: Element & element = 3

 m_pInstance -> GetBlackboard (). GetElement (4

 ks :: Blackboard :: GetKeyFromString (m_key)); 5

 return ((element . eType == ks :: Blackboard :: Element :: ET_BOOL) 6

 && (element . uValue . boolValue)); 7

} 8

Using these nodes, both action and condition ones, we can make our AIs use

additional information about their environment which was not originally planned.

14.3.2. Building our high-level logic

If we do not want gameplay engineers to add new code to support our disguise

feature, which we do not as we are only trying to prototype a new idea, then we

need a high-level tree that can simulate this.

For designers, high-level trees should be the only thing they care about; they do

not even need to know there is a base tree running underneath their logic, so what

they really want to do is to build a pretty similar behaviour tree, yet much simpler.

We will start the tree using a “while AI is alive” loop, just as we did with our base

behaviour. Want we want to do, is have AIs just patrolling if the player is disguised.

So, we want something like this shown in Figure 89.

Figure 89. Basic idea behind the disguise system

 187

This is, in a nutshell, what our high-level tree should look like. However, we still

have to define our condition. We want to check if the player is disguised, but we do

not have a condition that does that. So, we will use our new CheckFlag condition to

try and gather this information. But, if we want to check a flag, we should be

setting it somewhere.

If we have a look at our tree so far, we could see it uses a conditional loop as its

root. To meet our new design, we need to notify other AIs the player is disguised if

they kill us, so we need to use a FlagBroadcastAction to send a PLAYER_DISGUISED

flag; the question here is... where should we use this node?

To model this, we could use a selector as our tree’s root, and choose between our

normal behaviour and broadcasting the flag if we are killed. However, recalling

9.5.1.2, a conditional loop will succeed as soon as its condition fails, so if we use

this type of node as one of the children of our selector, the selector will succeed as

soon as the condition is not met, so the flag would never be sent round. To

overcome this, we can use a Not filter, which basically will negate our loop’s result,

causing the selector to choose its second branch, and broadcasting our message to

the rest of the AIs. This tree is shown in Figure 90.

Figure 90. Our first complex high-level tree

 188

The remaining AIs will then have their blackboards updated, and they will start

sending PATROL hints to their base BTs, causing agents to ignore the player as

intended (Figure 91).

Figure 91. An AI ignoring us after being hinted to PATROL

This tree is not completely correct yet, as AIs will not react to damage anymore if

the player is disguised. To implement this last feature, we need to clear the

PLAYER_DISGUISED flag if the agent is under attack. The final tree is shown in

Figure 92.

 189

Figure 92. Final high-level tree that models the new feature

In this last tree, we have replaced our sequence with a selector with three

branches. First, we need to check if we are under attack, as that means the player

has to become our enemy again; we will do so broadcasting the flag with a false

status. The condition we are checking is shown in Figure 93.

Figure 93. Condition that will decide whether to clear the PLAYER_DISGUISED flag

The second branch is just the one we used in the previous, simpler tree, while the

last one is making sure we are not telling the base behaviour to PATROL if the

previous branches failed (so, we are sending a neutral hint, as described in 10.3).

We can add or remove this tree dynamically, and we have not had to change a line

of code, or move a single node in our base tree, removing any new risk. Eventually,

if we decide we want this logic to be part of the final behaviour, we could get

engineers to integrate the changes into the base tree.

 190

Chapter 15. CONCLUSIONS AND FUTURE LINES OF

RESEARCH

In this work, we have presented a novel approach, Hinted-execution Behaviour

Trees, to model AI behaviours that can be modified dynamically using a stack of

behaviour trees, where each level can hint to the immediate one below what it

should try to be doing. This can be applied to commercial games, as we described

in Chapter 14.

15.1. Results

Our new technique provides development teams with the required tools to build

an AI system that meets the objectives set in Chapter 2. Among its features, we can

enumerate the following key characteristics:

• Hinted-execution Behaviour Trees are built based on a methodology where

everyone in the team can contribute directly to the quality of the AI. They

are also designed to solve real problems game studios face during

production time: Our solution allows rapid prototyping, where behaviours

are built using a graphical solution, so even non-technical staff can

understand and use them. This enhances the use of resources and reduces

risks.

• The core of an HeBT system can be built as an abstract library, which will

reduce costs. This way, a big part of the AI code can be shared among

different projects; only game-specific actions and conditions have to be

rewritten for different games.

• Behaviours can still be built in a traditional way if a single tree is used,

allowing for autonomous AIs that can run without any additional higher-

level logic, or they can be extended as necessary. The number of trees that

can be run simultaneously is not limited, which can allow developers to

decide how to arrange the different levels, and create very complex

 191

behaviours in a layered fashion, where layers can be added or removed

dynamically to obtain different results.

• HeBTs are a data driven solution, so any changes to behaviours can be

tested and integrated into games without the need to rebuild the game. This

also allows teams to build tools to generate them, improving productivity,

and easing the process.

If we study these results using the same method we presented in 7.1, we would

find HeBTs obtain the scores shown in Table 16.

Technique
Simplicity

(programming)

Modifiable

by

designers?

(no coding

involved)

Scalability Reusability
Behaviour

unpredictability

Behaviour

extensibility

Overall

result

(total)

HeBT 2 5 4 4 4 5 24

Table 16. HeBTs get the highest score in our study, mainly for the very good extensibility

they offer

Analysing this data we can conclude:

• Our new technique is quite complex to implement; in fact, its complexity is

comparable to an automated planner.

• Designers have a greater degree of control over the system; no

programming work should be needed for them to be able to control and

modify behaviours.

• The system is very scalable; we can add new layers of functionality by

adding additional levels in our stacks. An example of this could be the

implementation of group behaviours, as discussed in 15.2.2.

• In terms of reusability, HeBTs are quite similar to regular BTs; actions,

metanodes, and even whole sub-trees can be reused by different trees.

• Behaviours are more unpredictable with HeBTs, comparable to those

produced by automated planners, but, at the same time, they are more

controllable.

 192

• Using HeBTs, extending a behaviour is as easy as creating a new high-level

tree, based on another existing one; no additional risks are added doing

this, as higher-level trees work as plug-ins, and they can be added or

removed without changing the original behaviour.

Finally, we must also note this thesis has also produced a fully functional HeBT

editor, as well as a complete abstract library, so the system could be quickly

applied to any commercial game.

15.2. Future research

As we noted in Chapter 2, this thesis was initially aimed at building a dynamic

behaviour selection and modelling system that could allow AI to be adapted to

players. Although this is still our long-term objective, we had to divide the work in

various stages, the first of which was the design and implementation of a Hinted-

execution Behaviour Tree system. Among the future research lines we can mention

the following.

15.2.1. Adaptation to players

HeBTs were created as we found there was not any technique that would allow us

to modify behaviours depending on players’ preferences (Ocio & López Brugos,

2009).

Our technique allows us to build a base behaviour which will be controlled by a

higher-level logic. This control will not be complete, as the base behaviour will

maintain its autonomy, but will generate new behaviours that are coherent to the

original design.

In order to be able to adapt our behaviours to different types of players, we first

need to model those users, and we should be able to classify them depending on

what we determine will optimise their experience with the game. In fact, we could

approach this in two different ways, depending on whether we are modelling

player’s characteristics, such as accuracy, favourite weapons, etc., or we are

describing the game itself.

 193

15.2.1.1. Static classification

If we tried to model the game, rather than individual players, we would choose a

set of elements to define a model of enjoyment (Sweetser & Wyeth, 2005). Each

element would be given a score, where the higher the score, the more fun the game

is.

We also need to classify players in groups, and build some score tables, based on

what each group would think about our base behaviours. In this case, adaptation

would come from creating high-level trees that are specific to each of the groups,

trying to maximise the scores the game was given for each of the categories

chosen. A similar approach has also been taken in other fields, such as e-learning

(Paule et al., 2003).

A basic example would give a better idea of what this means; let us say we are

developing an infiltration, Splinter Cell (Ubisoft, 2010)-like game. We will define

two elements to model the enjoyment of players in this case: action and toughness,

where the former describes the amount of clashes with the AI, and the latter

evaluates how easy it is to take enemies down. We will also define two classes of

players: those who like action, and those who like stealth. Providing we build a

base behaviour that makes AI instances that are very good fighters, but weak, we

would get scores (ranging from 1 to 10) as shown in Table 17.

 Action Toughness

Prefers action 10 0

Prefers stealth 0 10

Table 17. Scores obtained by our base behaviours for the different classes of players

In order to improve our scores, we can create different high-level trees to hint to

our base behaviour what to do. For example, we can create a BT that makes AIs

very good at covering, co-operate to avoid showing weak points and prevent

getting themselves into situations where they would be an easy target for players;

on the other hand, we would build a tree for stealth players, so our agents cannot

detect players as easily, prefer to be alone, or try to call for reinforcements before

attacking. Using such trees, we would modify our scores, trying to find the optimal

solution.

 194

15.2.1.2. Dynamic modelling

Although trying to give our behaviours a score based on some predefined classes

of players can work, we might find it is not enough in an environment as dynamic

as those presented in videogames. Players can evolve as they play, so many times

we will find it is not possible to classify them beforehand and maintain such

classification over time.

Instead, we can build systems that can gather information dynamically (Thurau et

al., 2003; Laird & Duchi, 2000), or use some classification methods that can be run

concurrently or periodically, we could try to adapt the game to what players are

doing at each moment.

We could also go a step further and work on machine learning or other types of

algorithms that allow our high-level trees to evolve over time. Rather than

maintaining some static logic, our trees can change to produce better results. This

type of solution could allow us to have a much richer range of behaviours.

15.2.2. Group behaviours

In Chapter 14 we presented an example that used a special node to broadcast

messages to other AIs in the system. This was used as a simple implementation of a

communication system, which can be used by AIs to share important information;

it was just scratching the surface of a complex implementation of group

behaviours.

Our hinted-execution model could allow us to create complex group behaviours,

based on command hierarchies (Reynolds, 2002; Pittman, 2008), where hints

would flow down the chain, allowing some AIs to have a better control over what

others should do.

In hint-based system, we would be able to create new links in our chain as high-

level trees that are built on top of several base behaviours, rather than just one; in

this case, each base tree would expose the orders that a particular class of AI can

accept. We should also note these would not be regular BTs, but full HeBTs, so

individual behaviours can be hinted as well. Our higher-level tree would be able to

broadcast hints to groups of AIs that are using the behaviours this level was based

on.

 195

An example of this would be a small army that has warriors, archers and medics. A

simplified version of their behaviours can be seen in Figure 94.

Figure 94. Base BTs controlling the different classes of AI in our army

 We could use different generals, defining different high-level trees to create an

intelligent army obeying the orders we want to send. For instance, we could build a

high-level AI that wants to attack with its archers first, holding warriors and

medics, to continue with a melee attack, sending the medics along with our

warriors to try and heal wounded units... or a variation of this, hinting our units to

never retreat, such as the one shown in Figure 95.

Figure 95. Tyrant high-level AI that never allows individuals to retreat

Groups, that is, high-level entities, would also be controlled by HeBTs, so they can

receive hints too, and we could end up with a complex chain of command that can

help us create more credible group behaviours.

 196

15.2.3. Moving to a production environment

Although our system is fully functional, and can be applied to any game, there are

some aspects of it that should be improved before it can be used efficiently in a

production environment.

Among these, we can find some extra features the editor would benefit from, as we

showed in 13.6, and optimising the existing library to reduce memory usage or

enhance performance. Further than that, there is some essential functionality that

would be required to make the system usable in a big team so we can:

• Integrate the editor with a source control solution, such as Perforce, so we

keep track of changes in behaviours.

• Allow different people to work on the same behaviour concurrently,

merging different changes and offering a way to resolve conflicts.

• Implement a strong validity checker that assures the data exported by the

editor is correct and it cannot corrupt or crash the game.

 197

 REFERENCES

Alur, R., Kannan, S., & Yannakakis, M. (1999). Communicating hierarchical state

machines. In Proceedings of the 26th International Colloquium on Automata,

Languages and Programming (pp. 169-178). Springer.

Ambroszkiewicz, S., & Komar, J. (2006). A Model of BDI-Agent in Game-Theoretic

Framework. In Proceedings of the IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT’06) (pp. 8-19). Models of Agents, ESPRIT Project

Modelage Final Workshop.

Atari Inc. (1972). Pong. http://en.wikipedia.org/wiki/Pong.

Avalanche Studios (2010). Just Cause 2. http://www.justcause.com/.

Baekkelund, C. (2006). Academic AI Research and Relations with the Games

Industry. AI Game Programming Wisdom 3, (pp. 77-88). Higham, Massachusetts:

Charles River Media, Inc.

Bangeman, E. (2008). Growth of gaming in 2007 far outpaces movies, music.

Retrieved February 1, 2010, from

http://arstechnica.com/gaming/news/2008/01/growth-of-gaming-in-2007-far-

outpaces-movies-music.ars

Beaudry, E., Brosseau, Y., Côté, C., Räievsky, C., Létourneau, D., Kabanza, F., &

Michaud, F. (2005). Reactive planning in a motivated behavioural architecture. In

Proceedings of the American Association for Artificial Intelligence Conference (pp.

1242-1247).

Bethesda Game Studios (2008). Fallout 3. http://fallout.bethsoft.com/.

Bratman, M. E. (1987). Intention, Plans, and a Practical Reasoning. Harvard

University Press. Cambridge MA., USA.

Bratman, M. E., Israel, D. J., & Pollack, M. E. (1988). Plans and resource bounded

practical reasoning. Computational Intelligence, 4. (pp. 349-355).

 198

Bryant, B. D. (2006). Evolving Visibly Intelligent Behavior for Embedded Game

Agents. PhD thesis, Department of Computer Sciences, The University of Texas at

Austin.

Buckland, M. (2005). Programming Game AI by example. Texas: Wordware

Publishing, Inc.

Bungie (2001). Halo. http://www.bungie.net/.

Castelfranchi, C., Falcone, R., & Piunti, M. (2006). Agents with anticipatory

behaviours: To be cautious in a risky environment. In Proceedings of the European

Conference on Artificial Intelligence. Trento, Italy.

Champandard, A. J. (2007). Using resource allocators to synchronize behaviors.

Retrieved February 10, 2010, from

http://aigamedev.com/open/articles/allocator/

Champandard, A. J. (2008). Getting started with decision making and control

systems. AI Game Programming Wisdom 4, (pp. 257-263). Boston, Massachusetts:

Course Technology.

Champandard, A. J. (2009-1), AI Blueprints for Action & Combat Behavior Trees.

Retrieved October 15, 2009, from

http://aigamedev.com/premium/masterclass/blueprint-combat-ai/.

Champandard, A. J. (2009-2), Behavior Tree Design Patterns: Priorization. Retrieved

October 15, 2009, from http://aigamedev.com/premium/masterclass/bt-

prioritization/.

Champandard, A. J. (2009-3), Dynamic Decisions: Building AI that can change its

mind. Retrieved October 15, 2009, from

http://aigamedev.com/premium/masterclass/dynamic-decisions/.

Champandard, A. J. (2010-1), Why State Machines Struggle with Concurrency.

Retrieved September 29, 2010, from http://aigamedev.com/open/articles/fsm-

struggle/

 199

Champandard, A. J. (2010-2), 10 Reasons the Age of Finite State Machines is Over.

Retrieved September 29, 2010, from http://aigamedev.com/open/articles/fsm-

age-is-over/

Champandard, A. J., Iassenev, D., Merrill, B., Orkin, J., & Pfeifer, B. (2009). Special

Report: Goal-Oriented Action Planning. Retrieved October 15, 2009, from

http://aigamedev.com/premium/reports/goal-oriented-action-planning/.

Charles, D., & Black, M. (2004). Dynamic player modelling: A framework for player-

centric digital games. Computer Games: Artifical Intelligence, Design and Education

(CGAIDE 2004). (pp. 29-35). University of Wolverhampton.

Cremer, J., Kearney, J., & Papelis, Y. (1995). HCSM: A framework for behaviour and

scenario control in virtual environments. ACM Transactions on Modelling and

Computer Simulation, 5, 3, (pp. 242-267).

Cutumisu, M., & Szafron. D. (2009). An Architecture for Game Behavior AI:

Behavior Multi-Queues. In Proceedings if the Fifth Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE 2009). AAAI Press.

D’Angelo, G. J. (1983). Tutorial on petri nets. ACM SIGSIM Simulation Digest.

Volume 14, Issue 1-4, pp. 10-25.

Dennett, D.C. (1987). The Intentional Stance. MIT Press. Cambridge MA., USA.

Diller, D., Ferguson, W., Leung, A., Benyo, B., & Foley, D. (2004). Behavior modelling

in commercial games. In Proceedings of the Thirteenth Conference on Behaviour

Representation in Modeling and Simulation. Orland, FL. University of Central

Florida.

Downey, A. B. (2005). The Little Book on Semaphores. Green Tea Press. Available at

http://greenteapress.com/semaphores/.

Drachen, A., Canossa, A., & Yannakakis, G. N. (2009). Player Modelling using Self-

Organization in Tomb Raider: Underworld. In Proceedings of the IEEE Symposium

on Computational Intelligence and Games (CIG2009) (Milano, Italy). IEEE

Computational Intelligence Society.

 200

Ellinger, B. (2008). Artificial personality: A personal approach to AI. AI Game

Programming Wisdom 4, (pp. 17-26). Boston, Massachusetts: Course Technology.

Epic Games. (2009). Unreal Development Kit (UDK). http://www.udk.com/.

Erol, K., Nau, D., & Hendler, J. (1994). HTN planning: Complexity and expressivity. In

Proceedings of the Twelfth National Conference on Artificial Intelligence (pp.

1123-1128). Menlo Park, California: American Association for Artificial

Intelligence.

Evans, R. (2002). Varieties of Learning. AI Game Programming Wisdom, (pp. 567-

578). Higham, Massachusetts: Charles River Media, Inc.

Firby, R. J. (1987). An investigation into reactive planning in complex domains. In

Proceedings of the Tenth International Joint Conference on Artificial Intelligence

(IJCAI-87) (pp. 202–206). Milan, Italy.

Fu, D., & Houlette, R. (2004). The ultimate guide to FSMs in games. AI Game

Programming Wisdom 2, (pp. 283-301). Higham, Massachusetts: Charles River

Media, Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design Patterns: Elements

of Reusable Object-Oriented Software . Addison-Wesley Professional, USA.

Garces, S., & Champandard, A. J. (2009). AI For Dynamic Large-Scale Open Worlds in

[Prototype] with Sergio Garces. Retrieved February 7, 2010, from

http://aigamedev.com/premium/interviews/prototype-large-scale/.

Georgeff, M. P., & Lansky, A. L. (1987). Reactive Reasoning and Planning. In

Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI’87)

(pp. 677-682). American Association for Artificial Intelligence. Menlo Park,

California.

Georgeff, M. P., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. (1999). The Belief-

Desire-Intention Model of Agency. In Proceedings of the Fifth International

Workshop on Intelligent Agents: Agent Theories, Architectures and Languages

(ATAL-98). Lecture Notes in Artificial Intelligence, vol. 1555 (pp. 1-10). Springer

Verlag. Hedelgerg, Germany.

 201

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., &

Wilkins, D. (1998). PDDL – The Planning Domain Definition Language V. 2.

Technical Report, report CVC TR-98-003/DCS TR-1165, Yale Center for

Computational Vision and Control.

GSC Game World (2007). S.T.A.L.K.E.R. Shadow of Chernobyl. http:// www.stalker-

game.com/.

Guerra-Hernández, A., El Fallah-Seghrouchni, A., & Soldano, H. (2004). Learning in

BDI Multi-agent Systems. In Proceedings of Computational Logic in Multi-Agent

systems (CLIMA IV) (pp 218-233). Springer-Verlag. Fort Lauderdale, FL. USA.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming 8, (pp. 231-274). North-Holland.

Harland, J., Thangarajah, J., & Padgham, L. (2002). Representation and reasoning for

goals in BDI agents. In Proceedings of the 25th Australian Computer Science

Conference (ACS2002).

Hart, P. E., Nilsson, N. J., Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics (SSC4) 4 (2): 100-107.

Haugeland, J. (1985). Artificial Intelligence: The very idea. MIT Press, Cambridge,

MA.

Hoang M., Lee-Urban, S., & Muñoz-Avila, H. (2005). Hierarchical plan

representations for encoding strategic game AI. In Proceedings of Artificial

Intelligence and Interactive Digital Entertainment Conference (AIIDE-05). AAAI

Press.

Hopcroft, J., & Ullman, J. (1979). Introduction to Automata Theory, Languages, and

Computation. Reading, MA: Addison-Wesley.

Houlette, R. (2004). Player modelling for adaptive games. AI Game Programming

Wisdom 2, (pp. 557-565). Higham, Massachusetts: Charles River Media, Inc.

 202

Houlette, R., Fu D., & Ross, D. (2001). Towards an AI Behaviour Toolkit for Games.

AAAI 2001 Spring Symposium on AI and Interactive Entertainment.

id Software (2001). Doom 3. http://www.idsoftware.com/games/doom/doom3/.

Isla, D. (2005). Handling complexity in the Halo 2 AI. In Proceedings of the Game

Developers Conference (GDC) 2005.

Isla, D. (2008). Building a better battle: the Halo 3 AI Objectives System. In

Proceedings of the Game Developers Conference (GDC) 2008.

Kelly, J. P, Botea, A., & Koenig, S. (2008). Offline planning with hierarchical task

networks in video games. In 4th Artificial Intelligence and Interactive Digital

Entertainment Conference (AIIDE 2008) (pp. 60-65), Stanford, USA.

Laird, J. E. (2002). Research in human-level AI using computer games.

Communications of the ACM. Volume 5, Issue 1. Special Issue: Game engines in

scientific research, pp. 32-35.

Laird, J. E., & Duchi, J. C. (2000). Creating human-like synthetic characters with

multiple skill levels: A case study using the Soar Quakebot. In Papers from the AAAI

2000 Fall Symposium on Simulating Human Agents (Tech. Rep. FS-0A-03; pp. 75–

79). Menlo Park, CA: AAAI Press.

Laming, B. 2009. From the ground Up: AI architecture and design patterns. In

Proceedings of Game Developers Conference,San Francisco.

LaMothe, A. (2002). Finite State Machines. Tricks of the Windows Game

Programming Gurus Second Edition, (pp. 737-742). Sams Publishing (Macmillian).

Lekavý, M., & Návrat., P. (2007). Expressivity of STRIPS-like and HTN-like planning.

In Proceedings of Agent and Multi-Agent Systems: Technologies and Applications,

First KES International Symposium (KES-AMSTA) (pp. 121-130).

Lionhead Studios (2001). Black & White.

http://www.lionhead.com/bw/Default.aspx.

Marinucci, A. (2010). AvalonDock. http://avalondock.codeplex.com/.

 203

Maxis Software (2008). Spore. http://www.spore.com/.

Monolith Productions (2005). F.E.A.R. First Encounter Assault Recon.

http://www.lith.com/.

Nareyek, A. (2004). AI in Computer Games. Queue. Feature: Q Focus: Game

Development, 1(10), 58-65.

Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999). SHOP: Simple Hierarchical

Ordered Planner. In Proceedings of IJCAI’99 (pp. 968-973).

Nilsson, N., & Fikes, R. (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(1971), 189-208.

Norling, E. (2004). Folk Psychology for Human Modelling: Extending the BDI

Paradigm. In Proceedings of Autonomous and Multiagent Systems (AAMAS’04) –

Volume 1 (pp. 202-209). New York, NY. USA.

O’Brien, J. (2002). A flexible goal-based planning architecture. AI Game

Programming Wisdom, (pp. 375-383). Higham, Massachusetts: Charles River

Media, Inc.

Ocio, S., & López Brugos, J. A. (2009). Multi-agent Systems and Sandbox Games. In

Proceedings of AISB09. AI & Games (pp. 70-74).

Orkin, J. (2002). 12 Tips from the trenches. AI Game Programming Wisdom, (pp. 29-

35). Higham, Massachusetts: Charles River Media, Inc.

Orkin, J. (2004-1). Applying goal-oriented action planning to games. AI Game

Programming Wisdom 2, (pp. 217-227). Higham, Massachusetts: Charles River

Media, Inc.

Orkin, J. (2004-2). Symbolic representation of game World state: Toward Real-

Time planning in games. In AAAI Challenges in Game AI Technical Report, 26-30.

Menlo Park, California: AAAI Press.

Orkin, J. (2006). Three states and a plan: The A.I. of F.E.A.R.. In Proceedings of the

Game Developers Conference (GDC) 2006.

 204

Paule, M. P., Ocio, S., Pérez, J. R., & González, M. (2003). Feijoo.net: An approach to

personalized e-learning using learning styles. In Proceedings of ICWE 2003. Lecture

notes in Computer Science, volume 2722/2003. Berlin, Heidelberg: Springer-

Verlag, (pp. 151-154).

Peterson, J. L. (1977). Petri Nets. ACM Computing Surveys (CSUR). Volume 9, Issue

3., (pp. 223-252).

Pittman, D. (2008). Command Hierarchies using Goal-Oriented Action Planning. AI

Game Programming Wisdom 4, (pp. 383-391). Boston, Massachusetts: Course

Technology.

Rabin, S. (2002). Enhancing a State Machine Language through Messaging. AI Game

Programming Wisdom, (pp.). Higham, Massachusetts: Charles River Media, Inc.

Rabin, S. (2004). Common Game AI Techniques. AI Game Programming Wisdom 2,

(pp. 3-14). Higham, Massachusetts: Charles River Media, Inc.

Radical Entertainment (2009). Prototype. http://www.prototypegame.com/.

Rao, A. S., & Georgeff, M. P. (1991). Modelling Rational Agents within a BDI

architecture. In Proceedings of the Second International Conference on Principles

of Knowledge Representation and Reasoning (KR’91) (pp. 473-484). Morgan

Kaufmann.

Rao, A. S., & Georgeff, M. P. (1995). BDI agents: From theory to practice. In

Proceedings of the First Conference on Multi-agent Systems (ICMAS95).

Reynolds, J. (2002). Tactical Team AI using a Command Hierarchy. AI Game

Programming Wisdom, (pp. 567-578). Higham, Massachusetts: Charles River

Media, Inc.

Rockstar Games (2010). Red Dead Redemption.

http://www.rockstargames.com/reddeadredemption/.

Russell, S., Graetz, M., Witaenem, W. (1962). SpaceWar!.

http://en.wikipedia.org/wiki/Spacewar!

 205

Sardina, S., & Padgham, L. (2007). Goals in the context of BDI plan failure and

planning. In Proceedings of the 6th International Joint Conference on Autonomous

Agents and Multiagent Systems. Honolulu, Hawaii. Article No.: 7.

Snavely, P. J. (2006). Custom Tool Design for Game AI. AI Game Programming

Wisdom 3, (pp. 3-12). Higham, Massachusetts: Charles River Media, Inc.

Spronck, P. (2005). Adaptive Game AI. Ph.D. thesis. Universitaire Pers Maastricht.

Sweetser, P., & Wyeth, P. (2005). GameFlow: a model for evaluating player

enjoyment in games. Computers in Entertainment (CIE). SECTION: Games. (pp. 3-

3). New York, USA: ACM.

The Creative Assembly (2009). Empire: Total War. http://www.totalwar.com/.

Thurau, C., Bauckhage, C., & Sagerer, G. (2003). Combining self organizing maps

and multilayer perceptrons to learn bot-behaviour for a commercial game”. In

GAME-ON, 2003. (pp. 119-123).

Tozour, P. (2002). The Perils of AI Scripting. AI Game Programming Wisdom, (pp.

541-547). Higham, Massachusetts: Charles River Media, Inc.

Tozour, P. (2004). Stack-Based Finite-State Machines. AI Game Programming

Wisdom 2, (pp. 303-306). Higham, Massachusetts: Charles River Media, Inc.

Ubisoft (2009). Assassin’s Creed 2. http://assassinscreed.uk.ubi.com/assassins-

creed-2/.

Ubisoft (2010). Splinter Cell Conviction. http://splintercell.uk.ubi.com/conviction/.

Ubisoft (2011). Driver: San Francisco. http://driver.uk.ubi.com/san-francisco/.

Valve Corporation (2000). Counter-Strike. http://store.steampowered.com/css.

Valve Corporation (2004). Half-Life 2. http://orange.half-life2.com/.

Valve Corporation (2007). Portal. http://www.whatistheorangebox.com/.

Valve Corporation (2008). Left 4 Dead. http://www.l4d.com/.

 206

Valve Corporation (2010). Valve Developer Community.

http://developer.valvesoftware.com/wiki/Main_Page

Wallace, N. (2004). Hierarchical planning in dynamic worlds. AI Game

Programming Wisdom 2, (pp. 229-235). Higham, Massachusetts: Charles River

Media, Inc.

Wallace, N. (2006). Designing for Emergence. AI Game Programming Wisdom 3,

(pp. 45-53). Higham, Massachusetts: Charles River Media, Inc.

Wallop, H. (2009). Video games bigger than film. Retrieved February 1, 2010, from

http://www.telegraph.co.uk/technology/video-games/6852383/Video-games-

bigger-than-film.html.

Wikipedia (2010). Visitor pattern. Retrieved June 17, 2010, from

http://en.wikipedia.org/wiki/Visitor_pattern

Wilkins, D. E., Myers, K. L., Lowrance, J. D., & Wesley, L. P. (1995). Planning and

reacting in uncertain and dynamic environments. Journal of Experimental and

Theoretical AI 7(1), (pp. 197-227)

Young, R. M., Riedl, M., Branly, M., Jhala, A., Martin, R. J., & Saretto, C.J. (2004). An

architecture for integrating plan-based behaviour generation with Interactive game

environments. The Journal of Game Development, Volume 1 (1).

Yue, B., & de-Byl P. (2006). The state of the art in game AI standardisation. In

Proceedings of the 2006 international conference on Game research and

development (pp. 41-46), Perth, Australia.

