# Closed-loop control of a high-voltage induction machine using a high-voltage multi-level converter 

by<br>José Miguel Sánchez Lobato



> Submitted to the Department of Electrical Engineering, Electronics, Computers and Systems
> in partial fulfilment of the requirements for the degree of Master of Science in Electrical Energy Conversion and Power Systems at the UNIVERSIDAD DE OVIEDO
> July 2013
> © Universidad de Oviedo 2013. All rights reserved.

Author $\qquad$
José Miguel Sánchez Lobato

Certified by $\qquad$
David Díaz Reigosa
Associate Professor
Thesis Advisor
Certified by $\qquad$

Full Professor
Thesis Coadvisor

# Closed-loop control of a high-voltage induction machine using a high-voltage multi-level converter 

by<br>José Miguel Sánchez Lobato

Submitted to the Department of Electrical Engineering, Electronics, Computers and Systems on July 11, 2013, in partial fulfilment of the requirements for the degree of Master of Science in Electrical Energy Conversion and Power Systems


#### Abstract

In this thesis, a complete set of hardware and software has been designed and implemented to interface a Neutral Point Clamped three level converter in order to perform a closed-loop control of a high voltage induction machine.

The hardware design is related to the selection of the proper components for the correct communication with the PC, linkage to the NPC through fibre optic link, design of the filter stages, reading of the encoder signals and finally design and building of the PCB.

The software carries out the development of the algorithms to implement the closed-loop control of a high voltage induction machine by reading the encoder attached to its shaft and controlling the currents flowing to the machine.

The equipment used has been a $4 \mathrm{kV}, 36 \mathrm{~A}$ high-voltage high-power supply unit to feed up the NPC converter capable to manage $4 \mathrm{kV}, 40 \mathrm{~A}$ to control a high-voltage induction machine with rating $690 \mathrm{~V}_{\text {ph-ph }}, 45 \mathrm{~kW}$, 2pole, $50 \mathrm{~Hz}, 2970 \mathrm{rpm}$.


## Contents

Contents ..... 5
List of Figures ..... 8
List of Tables ..... 10
Introduction ..... 12
1.1 Motivation and Objectives ..... 12
1.2 Neutral point diode clamped multilevel converter (NPC) ..... 13
1.2.1 Background ..... 13
1.2.2 Advantages and drawbacks of NPC inverters ..... 14
Hardware design ..... 16
2.1 Emulation board ..... 16
2.2 Interface board ..... 17
2.3 Error Management ..... 18
2.4 PWM gate signal generation ..... 22
2.5 Fibre optic links ..... 23
2.6 Error Reception ..... 24
2.7 PWM transmission ..... 24
2.8 Filtering stage $-\mathrm{A} / \mathrm{D}$ acquisition ..... 25
2.8.1 Sensors used ..... 25
2.8.1.1 Voltage sensors ..... 25
2.8.1.2 Current sensors ..... 26
2.8.1.3 Encoder ..... 27
2.8.2 Voltage shifting stage ..... 28
2.8.3 Filtering stage ..... 29
2.8.3.1 Active Filter topologies ..... 29
2.8.3.1.1. Butterworth topology ..... 29
2.8.3.1.2. Chebyshev topology ..... 30
2.8.3.1.3. Multiple Feedback Bessel (MFB) ..... 30
2.9 Encoder signal reception ..... 32
2.10 SCI and SPI communication modules ..... 33
2.11 GPIO ports ..... 34
2.12 Power stage ..... 34
2.13 DSP board ..... 35
Experimental setup ..... 36
3.1 Medium Voltage induction machine ..... 36
3.2 NPC Inverter ..... 38
3.3 Power Supply ..... 39
Control implementation ..... 40
4.1 Control implementation ..... 40
4.2 Software routines ..... 41
Experimental Results ..... 43
5.1 Power switches signals ..... 43
5.2 Board signals ..... 44
5.2.1 PWM signals ..... 44
5.2.2 Error signals. ..... 45
5.2.3 Filtering stage ..... 46
5.2.4 Encoder signals ..... 46
5.2.5 Speed control ..... 47
Conclusions and further improvements ..... 48
References ..... 50
Annex I: Source Code ..... 51
Annex II: Schematics ..... 56
Annex III: PCB ..... 57
Annex IV: Datasheets ..... 59

## List of Figures

Fig. 1 3ph 3-level NPC inverter ..... 13
Fig. 2 Output voltage generation ..... 14
Fig. 3 Emulation Board ..... 16
Fig. 4 Interface board general overview ..... 17
Fig. 5 Error management logic gates ..... 20
Fig. 6 Error Voltage shifting ..... 21
Fig. 7 Latch and final AND gate ..... 22
Fig. 8 Fibre optic link, transmitters and receivers ..... 23
Fig. 9 Receiver built-in circuitry. ..... 24
Fig. 10 Transmitter schematic ..... 25
Fig. 11 a) LEM LV100-3000/SP3 voltage transducer; b) Hall effect principle ..... 25
Fig. 12 Voltage sensor V to I transducing curve ..... 26
Fig. 13 a) LEM LF305-S current transducer; b) Hall effect principle ..... 26
Fig. 14 Current sensor I to I transducing curve ..... 27
Fig. 15 Incremental encoder operating principle ..... 27
Fig. 16 Voltage shifting stage ..... 28
Fig. 17 Amplitude response curves. Butterworth topology ..... 30
Fig. 18 (a) Chebyshev filter step responses; (b) Amplitude response. Chebyshev filter ..... 30
Fig. 19 MFB amplitude response ..... 31
Fig. 20 MFB used filter ..... 31
Fig. 21 Analog and Digital Grounds union ..... 32
Fig. 22 Encoder differential signaling ..... 32
Fig. 23 Differential AC termination ..... 33
Fig. 24 SCI, SPI and JTAG connections ..... 33
Fig. 25 GPIO connector footprint ..... 34
Fig. 26 TMDSCNCD28335 card connected to the interface board ..... 35
Fig. 27 Laboratory setup overview ..... 36
Fig. 28 Medium voltage induction machine ..... 37
Fig. 29 Encoder attached to the shaft of the machine ..... 37
Fig. 30 NPC inverter power stage. ..... 38
Fig. 31 DC Power Supply ..... 39
Fig. 32 Implemented control strategy ..... 41
Fig. 33 Implemented control code block diagram ..... 42
Fig. 34 a) PWM applied to the gates; b) CE Voltage withstood by the transistor ..... 43
Fig. 35 Turning OFF and ON: Transmitters (a); Gates (b) ..... 44
Fig. 36 a) PWM signals transmitters; b) Gates ..... 45
Fig. 37 Point of transmitter PWM reading ..... 45
Fig. 37 Error signal (a); STOP signal (b); PWM signal (c) ..... 46
Fig. 38 Post filtered current (green); Prefiltered current (blue) ..... 46
Fig. 39 A, A (a); B, B (b); A and B outputs (blue and green, c) ..... 47

Fig. 40 Reference speed (blue); Actual speed (green)

## List of Tables

Table1 NPC inverter switching pattern ..... 14
Table 2 Induction machine ratings ..... 37
Table 3 NPC inverter ratings ..... 38
Table 4 High Voltage power supply parameters ..... 39
Table 5 Parameters chosen for the regulators ..... 41

## Chapter 1

## Introduction

### 1.1 Motivation and Objectives

The concept of multilevel converters has been known since 1975. The multilevel terminology started with the three level converters. This topology promoted the development of new topologies with more than three levels.

The advantages that the multilevel converters introduce can be summarized in the next points:

- They are able to generate the output with lower harmonic distortion than the PWM traditional ones. Also, the harmonic content of the input current is lower than the PWM traditional converters.
- In addition, they reduce the $d v / d t$ stresses induced in the switches since they have to support lower voltage than the two level PWM converters.
- Closely related to the work developed (as it is used to control an induction machine), the common mode voltage that the multilevel converters produce is lower than the PWM converters. This behaviour causes in the bearings of the motor to have smaller mechanical stress. Furthermore, such common voltage can be reduced by using modified modulation strategies.
- Multilevel converters (depending on the switches used) can operate at both fundamental switching and high frequency switching as PWM converters do. The lower the switching frequency, lower the switching losses and therefore, higher the efficiency.

However, some drawbacks of the multilevel converters make them unsuitable for all the situations. One of the main disadvantages is related to the number of switches used. As the number of levels is increased, the number of switches increases also. Subsequently, all of them will require a gate circuitry to manage its switching state which causes the system to be more expensive and complex.

Many multilevel converter topologies, control and modulation strategies have been proposed, but, three different major structures have been reported in the literature: cascaded H -bridges converter (with isolated DC links), neutral point clamped (using diodes) and flying capacitor (or capacitor clamped). In the case of the modulation, many strategies have been studied also: sinusoidal pulse width modulation (SPWM), space vector modulation (SVM) and others.

Applications for multilevel converters are mainly industrial medium voltage motor drives (the application related to this work), renewable energy systems, flexible AC transmission systems (FACTS) and traction drives.

The aim of the work developed is, in the end, to perform a closed-loop control of a high voltage induction machine. Starting from a commercial DC source, a custom NPC multilevel inverter, and a commercial induction machine, the PCB board to interface the PC to the inverter has been developed. Also, the work carried out includes the software needed to implement a speed control using the readings from an encoder attached to the shaft of the machine.

### 1.2 Neutral point diode clamped multilevel converter (NPC)

### 1.2.1 Background

This kind of topology was first proposed by Nabae, Takahashi and Akagi in 1981. It was basically a three-level diode-clamped inverter [1]. A three-phase three-level diode-clamped inverter is shown in Fig. 1. The NPC inverter can be found in literature as three, four or five-level inverter, but only the three-level inverter was used wider than the other topologies.


Fig. 1 3ph 3-level NPC inverter
Each of the three phases is connected to a DC bus which has been divided in three levels by using two capacitors. As it can be seen, the two levels are connected each other by means of a clamping
diodes forming the neutral point which sets the division in the DC bus. Connecting the semiconductors this way allows the power devices to block half of the total input voltage.

In order to control the converter, only two signals are needed per phase which are complementary to avoid the short circuit of the DC bus. The gate signals are binary signals since a zero stands for the OFF state of the switch and a one represents its ON state.

Table1represents the different switching states of the converter with its corresponding voltage outputs. Fig. 2shows graphically the states gathered in the table below as well as the current flow achieved in each state.

|  | S1 | SS | S'1 | S'2 | Vout |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | 1 | 1 | 0 | 0 | VDC |
| II | 0 | 1 | 1 | 0 | 0 |
| III | 0 | 0 | 1 | 1 | -VDC |
| Table1 NPC inverter switching pattern |  |  |  |  |  |



Fig. 2 Output voltage generation
Each active switching transistor is required to block a voltage level of VDC and the number of diodes is six. As the number of levels is increased, the number of transistors and diodes increase, and, when the number of levels is high enough, the number of required diodes makes the converter to be almost impossible to implement.

Furthermore, as the control strategy will be based on PWM, the diode reverse recovery of the clamping diodes causes a great challenge when applied to high power applications [2].

### 1.2.2 Advantages and drawbacks of NPC inverters

Many features offered by the NPC inverter made it one of the first candidates for energy conversion applications. One of them is that the semiconductors have to withstand VDC/2 during its OFF state.

The line to line voltage is composed by three levels (+VDC, 0 and -VDC) leading to lower total harmonic distortion. Also, the stress induced because of $d v / d t$ is lower than the classical two-level PWM inverters.

However, NPC have disadvantages derived from the clamping diodes needed, more or less complicated PWM switching strategy depending on the control and possible unbalance in the DC bus capacitors because of its inherent differences introduced by their manufacturing.

In this condition, if the DC neutral point has too much deviation and an undesired voltage distribution takes place, may lead to a premature failures of the transistors increasing the THD of the output voltage [3].

## Chapter 2

## Hardware design

In this chapter, the description of the hardware design is done. First, the emulation PCB board needed to communicate the microprocessor to the PC in order to program it and to run the application. In second term, a description of the interface board is detailed. Such PCB board have several modules ready to use: errors connection, PWM control signal optical link, SCI and SPI interface, $\mathrm{A} / \mathrm{D}$ conversion, filters, etc.

### 2.1 Emulation board

The DSP used for the project has been a TMS320F28335, floating point Delfino ${ }^{\circledR}$ Microcontroller from Texas Instruments. In order to connect the DSP to the PC, an emulator board in needed. The designed board is based in the XDS100 [4] emulator from Texas Instruments.

However, a different digital isolator has been used in order to separate (for protection purposes) the USB part of the PC from the rest of the circuit. This way, in case of an electric fault in the interface board, it is not passed to the PC protecting it from electrical shocks.

Fig. 3 shows the emulation board. Its main component is the FT-2232D from FTDI, used to translate the DSP UART protocol to the USB protocol. It has the whole USB protocol embedded, so there is no need for an additional firmware and serves as a bridge between the DSP and the PC. It is USB 2.0 full speed compliant (12Mbaud).


Fig. 3 Emulation Board

The emulation board also implements the JTAG protocol developed by Texas Instruments. Such a protocol provides the user the ability to emulate the microcontroller for debugging purposes.

The emulation PCB board also has a 4kBit EEPROM memory (93LC66BT from Microchip) which stores the serial number of the emulator. Finally, the digital isolator used belongs to ST semiconductors, ADUM4160BRIZ. The digital isolator is connected directly to the USB and interfaces the FTDI. As soon as the interface board is powered up, the emulation PCB is also powered and the emulator is detected by the host and automatically connected.

### 2.2 Interface board

The interface board includes several modules useful for the control of the NPC inverter and many other features. Since the DSP is able to generate up to twelve PWM control signals the interface board can also manage all of these twelve signals. Hence, only one NPC inverter can be controlled or two classical PWM inverters as they only need six PWM signals each one. Fig. 4 shows a general overview of the interface board as well as its main modules.


Fig. 4 Interface board general overview

Each of the modules that compose the interface board can be studied independently as the interact each other but their design is not fixed by the other existent modules. The modules that compose the interface board are listed below:

- Error management: The errors reported by the IGBT drivers, are collected altogether resulting in only one error signal which is sent both to the DSP in order to acknowledge its triggering and to a flip flop IC which blocks the sending of the gate pulses to the optical link.
- Gate signals: The PWM signals to be sent to the drivers have to be conditioned to the levels of the line drivers which perform the electrical to optical signal transducing.
- Filtering stage: Needed for the A/D acquisition, the implemented filters can be totally customized in order to achieve the desired cut-off frequency. However its architecture cannot be modified. Each of them is composed by two stages.
- GPIO: Several general purposes input-output ports have been connected to a terminal in order to be used as desired.
- Encoder modules: Two different encoder modules have been implemented. Both of them use differential reception in order to eliminate noise when reading the speed of the machine.
- SCI and SPI connections: The DSP allows the user to communicate with other peripherals by means of the SCI and SPI modules.
- Power stage: As the DSP is 3.3 V signal tolerant, all the IC used in the board work at 5 V level, and all the operational amplifiers have to be polarized to +15 V and -15 V , a multiple power stage have to be implemented.


### 2.3 Error Management

In order to avoid the operation of the inverter in a faulty situation, the gate signals have to be stopped when any of the drivers reports an error. The error management part of the board implements the reception, voltage shifting, pulse blocking and visual advising.

All the twelve drivers that manage the switching of the transistors have the ability to feedback errors to the interface board because of three main reasons:

- Overvoltage during turn off
- Overcurrent in all short circuit conditions

The board does not establish difference between any of the three types of error since the useful information of the error is only the notification itself to stop the gates pulses to avoid damages on the switches or even risk situations.

This part implements also a R-S latch IC (MC14044 from ST Semiconductors), which stores in its output a voltage level blocking the PWM gates signals sent to the transmitters. The latch also serves as a powering-up protection since the prior signal is the Reset. In the powering-up of the board, both the inputs adopt a logical zero, so as the latch gives priority to the R , the output of this final stage of error management sets a logical zero.

The output of the latch is connected to a final AND gate (SN74LS08N from Texas Instruments) which collects its signal and a signal coming from an external breaker. Such a breaker has the purpose of block the pulses externally by hardware. Operating this way, in case of a fault in the board or in the software (or even in case of an uncontrolled or wrong operation) the pulses can be turned off just by deactivating the breaker. Hence, an extra security measure is provided to the user.

As the A/D acquisition starts with the run button in the software, there may be some inconsistencies if the run button is pressed and the pulses are not turned on (speed of the machine, current regulators, control actions, etc.), leading to erroneous situations which may be potentially hazardous. So, in order to run the program, the external breaker has to be activated before starting the program to allow the control to operate correctly.

The effect on the PWM gates signals is its blocking and no PWM signal is sent to the transmitters. Also, the purpose of introduce a latch in the circuitry is to avoid undesired triggering events caused by noises in the system.

Fig. 5shows the schematic implemented for this part. The process of receiving, notify and blocking the gates pulses is explained in the next steps:

- When an error is reported, the correspondent fibre optic transmitter turns off the light for a while.
- The receiver which gets the error turns its electrical output to a logical one.
- The output of the logical NOR gates notifies the error by setting its output to a logical zero.
- As the DSP voltage level (3.3V) and the gates voltage level (5V) are different, a voltage shifter is needed. The selected IC was 74LS07N which has an open collector output stage capable to deliver up to 1 A . By means of a pull-up resistor, the output of the gate is now at 3.3 V level.
- The output of the logical gates is sent both to a GPIO of the DSP in order to be detected via software and to the latch which manages the blocking of the PWM transmitters.
- As the system is working correctly at this stage (pulses breaker turned on), the final AND gate output follows the event triggered by the latch. So the output of the AND gate is going to be a logical zero from now.
- The transmitters implement a built-in AND gate. One of the inputs comes from the PWM signal of the DSP and the other signal from the latch. When the error is notified to the latch, it blocks the gates pulses just by setting its output to a logical zero.
- The gates pulses remain blocked until the reset button in the board is pressed in order to clear the error and restart the control of the inverter.


Fig. 5 Error management logic gates


Fig. 6 Error Voltage shifting


Fig. 7 Latch and final AND gate
Additionally, a LED attached directly to the second output of the latch notifies the error occurred visually. It follows the behaviour of the gate blocking stage and remains turned on until the reset button is pressed.

### 2.4 PWM gate signal generation

The PWM gate signals are generated by the PWM modules of the DSP. The outputs of the DSP are 3.3V level. However, the fibre optic transmitters (HFBR-1522 from Avago Technologies) need up to 80 mA of current to correctly polarize the LED which sends the optical signal. Also, their levels are 0 to 5 V which are not compatible with the DSP voltage levels.

These issues caused in the circuitry to implement an intermediate power stage capable to manage all the current demanded by the transmitters. Also, the transmitters have to be controlled by the error management stage. These operating conditions are perfect for the line driver suggested by the manufacturer of the transmitters.

The line driver suggested by the manufacturer was the SN75451BP from Texas Instruments. Such a line driver has two NAND built-in gates, the capability to manage up to two transmitters (which reduces the number of line drivers needed) and an open collector output power stage capable to deliver 50 mA .

The output of the line driver is connected directly to the input of the fibre optic transmitter. As the output of the SN75451BP is an open collector, a pull-up resistor has to be connected to set up the output voltage to the +5 V rail.

As said, the input stage of the line drivers is a NAND gate. Its logical levels are fully compatible with the output voltage levels of the DSP so there is no need to implement an intermediate buffering stage. Hence, one of the inputs of the NAND input gates is connected directly to the PWM output of the DSP.

A special situation takes place when the software used to debug, programs the memory of the DSP. In this process its PWM outputs are set in high impedance state while the outputs can be modified without control by any part of the rest of the circuitry. This condition may lead the inverter to a risk situation where the switches may be turned on without control.

In order to avoid such situation, a pull down resistors have to be connected to the inputs of the line drivers. This way, the resistors fix the voltage to a logic zero (IGBT in OFF state) when the DSP is being programmed avoiding that risk situation.

The other input is managed by the error output. Unless the latch releases the blocking signal, the line drivers cannot sent signals to the gate drivers. As both the error output and the line drivers (SN75451BP) have TTL technology they are totally compatible. Also the final AND gate has enough power to manage all the six line drivers needed to control the NPC inverter.

### 2.5 Fibre optic links

The fibre optic links selected for the sending and receiving of the signals were a standard performance 10 m long. They are composed by a simplex cable with a latching function that ensures the correct locking of the fibre optic into the receivers or transmitters.

The fibre optic (HFBR_RLS010z) is also manufactured by Avago Technologies, made from optical plastic (which implies a low cost). It has $0.22 \mathrm{~dB} / \mathrm{m}$ attenuation, 1 mm diameter. The signal wavelength is 660 nm .

In order to establish a difference between the receiving end and the sending end, both of them have different colour connectors. Hence, the colour of the end attached to the receiver is blue while the sending end has a grey colour.

Fig. 8 shows the fibre optic used for the link as well as the entire family of transmitters and receivers used in the project.


Fig. 8 Fibre optic link, transmitters and receivers

### 2.6 Error Reception

The transducers used to transform the optical signal into an electrical one have been the HFBR$2521 Z$ from Avago Technologies. Such transducers belong to the Versatile Link family.

As Fig. 9 shows, the transducer has a built-in circuitry capable to deliver up to 25 mA . Their outputs are connected directly to a high impedance input stage gates, hence this is not a problem since their current capability is high enough. They have an open collector output stage with a built-in pull up resistor. Their supply voltage has to be 5 V .

This circuitry causes the output of the receiver to have a negative behaviour: when the transmitter is sending a logic one (light turned on), the receiver puts in its output a logic zero. On contrary, when the transmitter is sending a logic zero (light turned off), the receiver is getting a logic one in its output. This has to be considered when designing the rest of the circuit.

The maximum data transfer rate that they can manage is up to 1 MBd . Such parameter is far away from the frequency used for the switching pattern of the IGBT, 2 kHz .


Fig. 9 Receiver built-in circuitry

### 2.7 PWM transmission

In order to send the PWM signals, a HFBR-1522z transducer has been used. Such a transducer belongs to the same Versatile Link family from Avago Technologies as in the case of the receivers.

The transmitter has a built-in diode with a 660 nm wavelength which is used to send the information through the fibre optic. However, as the signal cannot be viewed directly, the transmitter includes a general purpose LED which acknowledges whether the transmitter is sending information or not.

As said before, the transmitters are managed by a line driver capable of manage two transmitters each one. As the line drivers have an open collector output stage, a pull-up resistor has to be connected to the +5 V rail in order to set the operating current. In this condition, and taking the values of the datasheet, the resistor is calculated for a forward current of 25 mA causing in the diode to have a voltage drop of 1V approximately.

Fig. 10 shows the selected schematic for the correct polarization of the transmitter diode.


Fig. 10 Transmitter schematic

### 2.8 Filtering stage - A/D acquisition

### 2.8.1 Sensors used

The control of the machine performed has two different loops: an inner current loop and an outer speed loop. As its control is not going to be sensorless, it is necessary to include some current and voltage sensors and an encoder to feedback to the control the actual measures. Also, the measures reported by the sensors (both current and voltage), serve to the user as a software protection in case of a wrong controlled operation.

### 2.8.1.1 Voltage sensors

The voltage sensors used were the LV100-3000/SP3 from LEM which are closed loop Hall Effect voltage transducer (Fig. 11, a). The operating principle of the voltage transducer is based on the Hall Effect (Fig. 11, b). A very small current limited by a series resistor is taken from the voltage to be measured and is driven through the primary coil. The magnetic flux created by the primary current IP is balanced by a complementary flux produced by driving a current through the secondary windings. A hall device and associated electronic circuit are used to compensate the secondary current that is an exact representation of the primary voltage.


The primary nominal voltage is 3000 V . Hence, when the voltage applied to the primary is 3000 V , its output current is 50 mA . They achieve a very good linearity between the applied voltage to the primary and the current output on the secondary. The linear relationship can be observed in Fig. 12.


Fig. 12 Voltage sensor V to I transducing curve

### 2.8.1.2 Current sensors

On the other hand, the current transducers used are the LF305-S from LEM (Fig. 13, a). As in the case of the voltage transducer, they are also a closed loop Hall Effect current transducer (Fig. 13, b). Its operation is the same as the voltage transducer but, instead of apply the voltage to the primary of the transducer, the current flows through its hole inducing a magnetic flux that is compensated by the secondary winding.


In this case, the maximum current that the transducer is capable to measure is 300 A . When this current is flowing through the sensor, its output delivers 150 mA . Similar to the voltage transducer, a line that relates the sensed current to the output current can be drawn (Fig. 14).


Fig. 14 Current sensor I to I transducing curve

### 2.8.1.3 Encoder

An encoder is a device that converts the relative movement of the shaft of a machine into electrical pulses. The shaft encoder generates a signal every incremental change in its position. Also, they can be used to measure linear movement.

Inside the device, a line-coded disc made of metal or plastic, attached to the shaft of the encoder interrupts an IR light generated by a transmitter LED which is send to an IR receiver. The higher number of lines the encoder has, the higher its resolution (the encoder used has 1024 lines per revolution, it implies that every step read from the encoder, the shaft has rotated $360 / 1024=0.35^{\circ}$ ).


Fig. 15 Incremental encoder operating principle
Every interruption of the IR light made by the lines of the disc means a pulse read by the IR receiver. By means of the built-in circuitry of the encoder, its outputs show a rectangular signal which depends on the frequency of the mechanical rotation of the shaft of the machine (Fig. 15).

### 2.8.2 Voltage shifting stage

As said, both the voltage and current transducers have a current output. This fact implies that the signals reported by the sensors cannot be read directly by the DSP. In order to surpass this issue, a voltage shifter stage has to be implemented.

Such stage performs two different functions: translate the current output of the sensors into a voltage (just by introducing a measuring series resistor) and shift the previous voltage to the levels suitable for the DSP.

The A/D modules of the DSP are 0 to 3 V tolerant. That means the signals generated by the sensors have to be shifted to such range. Also, their measures have to be filtered in order to get the useful information. Filtering stage is studying in the next paragraph.

Fig. 16 shows the voltage shifting stage. The sensors output current is delivered to a series resistor with a value depending on the sensor used.


Fig. 16 Voltage shifting stage
The equation of the voltage shifting stage is:

$$
V_{o u t}=\left(1+\frac{R_{2}}{R_{1}}\right) \cdot i_{I N} \cdot R_{m}-\frac{R_{2}}{R_{1}} \cdot V_{\text {ref }}
$$

The voltage sensors will always measure from 0 to $\mathrm{V}_{\mathrm{DC}}$ as the sensors are connected in parallel to the bus capacitors. So, as the maximum reading of the voltage sensor is going to be 2000 V , the maximum output current is going to be 33.3 mA . When the voltage is 0 , the current is 0 . This makes the output current to be proportional to the voltage measured.

This voltage shifting stage does not inverse the signal, it only introduces a gain and offsets its input signal. The filtering stage connected to the output of this stage does inverse the signal, so the output of the filter results a signal filtered and reversed. To undo the inversion introduced by the filters, the current acquired is inversed by software.

In order to set an output voltage range for the shifting stage from 0 to -3 V , its input has to be in the range -1 V to 1 V , taking into account that the voltage sensor is delivering from 0 to 33.3 mA . So, in order to get a $\mathrm{V}_{\text {IN }}$ equal to 1 V when the maximum voltage is read $(2000 \mathrm{~V}$ which equals to 33.3 mA ), $\mathrm{R}_{\mathrm{m}}$ has to be equal to:

$$
R_{m}=\frac{1 V}{0.0333 A}=30 \Omega
$$

For the current sensors, the maximum current they are going to measure will be -150 A to +150 A . Adopting the same thoughts as in the case of the voltage sensors, the output of the voltage shifting stage has to be in the range of -1 V to 1 V .

When the sensor is reading its nominal current ( -150 A and +150 A ), the current that is delivering on its output the current transducer is -75 mA and +75 mA . Performing the same operation as for the case of the voltage transducer, the series measuring resistor is:

$$
R_{m}=\frac{1 V}{0.075 \mathrm{~A}}=13.3 \Omega
$$

### 2.8.3 Filtering stage

However, the sensors do not give clean signals since they are located in an electrical noisy environment. Their signals are contaminated by the switching of the transistors, ground loops, EMI radiation, etc. In order to get cleaner signals and to adequate their levels to the ones tolerated by the A/D modules of the DSP, both filter and voltage shifting stages are needed to perform such signal conditioning.

In order to ensure the correct acquisition of the $\mathrm{A} / \mathrm{D}$, not only a voltage shifting stage is needed but also a filtering stage. In the next paragraphs, the filter stage, its dimensioning and implementation are explained in detail.

### 2.8.3.1 Active Filter topologies

Although many topologies are widely used to filter signals, this work will only focus on the most common topologies. They are: Butterworth, Chebyshev and Bessel (Multiple Feedback).

For the application that this work is thought, the filter which is going to be used is a low pass filter. The reason is that the main noise the filter has to avoid is the one coming from the switching of the transistors. The useful information for the $\mathrm{A} / \mathrm{D}$ conversion is related to the main frequency of the currents $(50 \mathrm{~Hz})$ and so, any component above that value should be removed.

### 2.8.3.1.1. Butterworth topology

The Butterworth is probably the best-known filter topology. This topology exhibits a nearly flat passband with almost no ripple. Its rolloff is smooth and monotonic. It has a low-pass rolloff rate of $20 \mathrm{~dB} /$ decade for every pole. In the case of the filter finally used, only one pole.

The general equation for a Butterworth filter's is:

$$
H(\omega)=\frac{1}{1+\left(\frac{\omega}{\omega_{0}}\right)^{2 n}}
$$

where n is the order of the filter, can be any positive whole number ( $1,2,3 \ldots$ ).

Fig. 17 shows the amplitude response curves for Butterworth low-pass filters of various orders.


Fig. 17 Amplitude response curves. Butterworth topology
However, the main disadvantage of the Butterworth topology is that it has a wide transition region (choosing $\mathrm{n}=1$ ) when switching from the pass band to the stop band.

### 2.8.3.1.2. Chebyshev topology

The Chebyshev topology achieves ripple in the pass band amplitude response. When defining the Chebyshev filter, such amount of allowed ripple is one of the parameters to be taken into account.

This topology has a steeper rolloff than the Butterworth near the cutoff frequency. However its monotonicity lower than the Butterworth achieves and furthermore it has a poorer transient response.

Fig. 18 (a) shows a step response (the higher the order, the higher the overshoot). Fig. 18 (b) shows the amplitude response versus the normalized frequency.


Fig. 18 (a) Chebyshev filter step responses; (b) Amplitude response. Chebyshev filter

### 2.8.3.1.3. Multiple Feedback Bessel (MFB)

The main advantage of the Bessel (or Thompson) filter is that the phase shift is approximately linear with frequency. This results in the action of the filter to be as a low pass filter with a delay. The higher the filter order, the more linear the phase response.

Also, the characteristics of the Bessel filter are that the overshoot and the ripple when a step is introduced in the filter is lower than the experimented by the Chebyshev topology. The amplitude
response of the MFB is monotonic and smooth (Fig. 19), but its rolloff is lower compared to Butterworth or Chebyshev ( $\mathrm{n}=1$ ).


Fig. 19 MFB amplitude response
The MFB filter is widely used in high dynamic range ADC input stages. This topology of filters offers very good stop band rejection over the former filter topologies described [5].

The topology selected for the filters is shown in Fig. 20. The design is an inverting signal path, second order MFB low pass filter. Also, to set an additional protection measure, a zener diode $\left(\mathrm{V}_{\mathrm{z}}=3 \mathrm{~V}\right)$ is placed. In case the output of the filter exceeds a voltage of 3 V , it will conduct current setting the output of the filter equal to 3 V .


Fig. 20 MFB used filter
The cutoff frequency of the filter is given by the relationship:

$$
f_{c}=\frac{1}{2 \cdot \pi \cdot \sqrt{R_{6} R_{5} C_{1} C_{2}}}
$$

With the values shown in Fig. 13, the cutoff frequency results 1 kHz .
The gain of the filter is [6]:

$$
A v D C=-\frac{R_{6}}{R_{4}}=-1
$$

To separate the digital ground plane from the analog ground plane both planes are attached each one by only specific locations (Fig. 21). The path is only a trace that acts as impedance to high frequency noise coming from the digital part of the circuit disturbing the $\mathrm{A} / \mathrm{D}$ acquisition.


Fig. 21 Analog and Digital Grounds union

### 2.9 Encoder signal reception

In order to avoid EMI noises induced in the wiring coming from the encoder, the encoder used (Heidenhain ERN430), gives the possibility to use differential wiring. The differential wiring implies to use two wires for each signal sending the signal and their opposite (Fig. 22).


Fig. 22 Encoder differential signaling
When the noise is induced in the wiring (they are twisted-pair cables), the same noise in induced in both the signals (A and $\bar{A}$ ). When the receiving end gets the signals, the differential signaling allows removing the noisy component reading the clean signal sent by the encoder.

The differential receiving stage is shown in Fig. 23. The architecture is termed as AC Termination. It receives such a name because the termination resistor $\left(\mathrm{R}_{\mathrm{t}}\right)$ allows the current to flow from the high-state to the low-state. The fact of include a capacitor, eliminates the DC current path from one differential signal to the other.

However, this included RC impedance introduces in the circuitry a delay depending on the time constant which may reduce the transmission speed. But, as the motor is not going to run at a very high speed, the data rate capability of the receiving stage is far away from the encoder data rate.


Fig. 23 Differential AC termination
The selected differential receiver IC is the 26LS32AMS from Texas Instruments. It has a +5 V voltage supply. The encoder has to be fed with +15 V but as its output stage is a TTL, the output voltage signals are set by the differential amplifier.

The differential amplifier sets an output changing from 0 V to +5 V which is not a value tolerated by the DSP ( 3.3 V ) so a voltage shifting buffer stage is needed. As in the previous cases, the selected voltage shifter is the SN74LS07N from Texas Instruments. It is a buffer with an open collector output stage. By using a pull-up resistor connected to the 3.3 V rail, the output can be connected to the inputs of the encoder modules of the DSP.

### 2.10 SCI and SPI communication modules

The DSP implements two different communication modules: SCI (Serial Communication Interface) to send serial data (for example to the PC) and SPI (Serial Peripheral Interface) to communicate with other slave devices.

As the project implemented is not going to use such a connections, the final implementation was only focused in make their connections accessible. In order to use them, the user only has to implement new modules (with the adequate ICs) which can be connected directly to the connectors.

Fig. 24 shows in detail the connectors and its physical implementation in the interface board.


Fig. 24 SCI, SPI and JTAG connections

### 2.11 GPIO ports

In order to give the interface board functionality beyond of the control of the NPC inverter, the board has also, easily accessible a connector to use the general purpose input-output.

This module implements only a connector which can be used for external triggers, manage digital signals, block the gates pulses by software, etc. Fig. 25 shows the accessible connector for the GPIO ports.


Fig. 25 GPIO connector footprint

### 2.12 Power stage

The interface board has four voltage rails. They are 3.3 V for the DSP input signals, 5 V for all the IC present in the circuit (latch, logical gates, transmitters and receivers, line drivers, differential receivers, etc.). Additionally, the operational amplifiers need two voltage rails composed by +15 V and -15 V to be correctly polarized.

The power stage makes profit of switched power supplies with the exact values needed for feed up the board. Hence, the power supply used has been the ECM60UT33 from XP Power that has enough power to supply correctly the entire board. Such a power supply has 3 different voltage rails: $+5 \mathrm{~V},+15 \mathrm{~V}$ and -15 V . They can be connected directly to the power rails of the board.

In order to generate the 3.3 V level, a low dropout voltage regulator (LDO) has been used. It receives power from the +5 V rail and by means of a linear regulation, sets an output of 3.3 V . This voltage level is ready to be used to adapt the error signal voltage level to a suitable level for the DSP.

In order to avoid noise effects, to provide current peaks and establish a constant voltage, three $1000 \mu \mathrm{~F} / 35 \mathrm{~V}$ capacitors are located near the pluggable power connector between all the three voltage rails and the digital ground.

### 2.13 DSP board

As said, the microcontroller to be used is the TMS320F28335. As the building of a PCB board was physically too complicated to solder the microcontroller to a customized PCB, the solution adopted was to use a commercial daughter board released by Texas Instruments.

The board finally used was the TMDSCNCD28335. Such a control card implements a low pass filter stage, isolated RS-232 communication, several I/O ports or JTAG emulation.

Fig. 26 shows the card used to control the inverter. The card is connected to the interface board using a 100 pin memory socket.


Fig. 26 TMDSCNCD28335 card connected to the interface board

## Chapter 3

## Experimental setup

In addition to the hardware designed previously, some commercial devices have been used. This way, the work can be only focused in the control part of the system (hardware and software). The power devices used in the project are explained following.

Fig. 27 shows the laboratory experimental setup.


Fig. 27 Laboratory setup overview

### 3.1 Medium Voltage induction machine

The selected electric motor has been a M2QA225M2A from ABB motors (Fig. 28). It is a medium voltage induction machine that is capable to be fed up with 1.5 kV ph-ph in star connection.


Fig. 28 Medium voltage induction machine
Its ratings are shown in the next table:

| Parameter | Value |
| :---: | :---: |
| Vph-ph star connection | 690 V |
| Frequency | 50 Hz |
| Power | 45 kW |
| rpm | 2970 |
| Maximum current | 45.69 A |
| $\cos (\varphi)$ | 0.89 |
| Pole | 2 |
| Table 2 Induction machine ratings |  |

An encoder Heidenhain ERN430 has been used. It has been attached to the rear part of its shaft by using a flexible coupling (Fig. 29).


Fig. 29 Encoder attached to the shaft of the machine

### 3.2 NPC Inverter

The NPC inverter used for the power stage part has been a customized NPC inverter manufactured by ELINSA. ELINSA is a Spanish company that designs, tests and manufactures all kind of electronic equipment in several areas such as marine, renewable energies and industrial sector.

The power ratings of the inverter are shown in the table below:

| Parameter | Value |
| :---: | :---: |
| Maximum Current | 36 ADC |
| Maximum Voltage | 4 kV |
| Levels | 3 |
| Topology | NPC |
| Protection level | IP23 |
| Isolation voltage level | 6 kV |
| Table 3 NPC inverter ratings |  |

Fig. 30 shows in detail the power stage of the inverter.


Fig. 30 NPC inverter power stage

### 3.3 Power Supply

The machine is fed by a medium voltage power. The one selected for the work has been a MTD4000-36 from Magna-Power Electronics (Fig. 31).


Fig. 31 DC Power Supply
Its main parameters are shown in the table below:

| Parameter | Value |
| :---: | :---: |
| Maximum DC output voltage | 4000 VDC |
| Maximum DC output current | 36 ADC |
| Maximum power | 150 kW |
| $\cos (\varphi)$ | 0.92 |
| Table 4 High Voltage power supply parameters |  |

Table 4 High Voltage power supply parameters

## Chapter 4

## Control implementation

In this chapter, the control of the machine is studied. In the first section, the control implementation is detailed, explaining both the speed and the current loops. In the second section of this chapter, the software algorithm is explained.

### 4.1 Control implementation

A speed control has been implemented. Basically, the control performed implements two different loops: an outer speed control loop which sets the mechanical speed of the machine and an inner current control loop which controls the current that flows to the load.

Fig. 32 shows the control block diagram. In the figure, a classical speed control is implemented. The outer control loop which sets the rotor speed of the machine takes a reference given by the user. Such a reference is compared with the mechanical speed of the machine (read from the encoder) to extract the error among both magnitudes.

The error, as usual, is connected to the input of a PI controller, generating the current vector which will be injected into the machine ( $\mathrm{I}_{\mathrm{q}}$ ). The equation below shows the PI regulator implemented for all the controllers:

$$
G(s)=K_{p} \cdot\left(1+\frac{K_{i}}{s}\right)
$$

Such a current, as in the case of the speed control, is compared by means of a subtraction with the measured currents. This operation sets the deviation between the reference current and the measured one. The error is the input of the PI current controller, which will give the $q$-axis voltage reference component that the inverter will generate.

As the d-axis component of the current is needed only to magnetize the machine, there is no speed control action in this component. Only a current control loop is needed. Both the d and q -axis components of the current are controlled using the same parameters for the PI controllers.

On the other hand, the q -axis component of the current will generate the necessary torque (a small one since the machine is working at no load condition) to rotate the machine.

The tuning of the PI controllers has been done taking in account the estimated parameters of the machine and studying the response of the machine to a step in its speed reference.

Finally, the calculation of the duty cycles to be applied to the power switches has to be done by applying a dq to abc transformation. The mechanical angle estimated is used to carry out such a transformation. As the actual mechanical speed of the machine is known (by reading the encoder), its angle is known just by integrating its value every acquisition.


Fig. 32 Implemented control strategy
The parameters finally used for the PI controllers are shown in the Table 5.

| Parameter | Value |
| :--- | :--- |
| Speed control P constant (q-axis) | 0.01 |
| Speed control I constant (q-axis) | 0.3 |
| Current control P constant (both dq axis) | 1.5 |
| Current control I constant (both dq-axis) | 40 |

Table 5 Parameters chosen for the regulators

### 4.2 Software routines

To implement the previous control, a few software routines have been implemented. The entire source code developed can be read in Annex I.

The block diagram shown in Fig. 33 explains the way of operation of the implemented control software. The DSP (after the initialization of all the variables and required modules of the DSP) is running in an idle situation where any instruction is being executed. All the control of the machine is done using interruptions.

As the A/D acquisition can be started triggered by any event, the selected event has been the PWM. Every time the event is triggered by the PWM module, a start of conversion (SOC) is launched. The functionality is provided by the DSP itself that facilitates the development of the A/D acquisition. A/D channels calibration is not detailed in this work. It can be further studied in [7].

Also, as the PWM frequency does not vary any time of the program, the A/D samples are constant through the time, performing an easier discrete control.


Fig. 33 Implemented control code block diagram

## Chapter 5

## Experimental Results

In this chapter, the experimental operation of the entire system is demonstrated. Several figures will show the function of the inverter studying the signals of the system. Also, the main signals of one switch of the NPC inverter are presented in order to study its operation.

### 5.1 Power switches signals

To study the correct operation of the NPC inverter, only one switch will be studied. The most representative voltages of a power transistor are: gate-emitter voltage $\left(\mathrm{V}_{\mathrm{GE}}\right)$, collector-emitter voltage ( $\mathrm{V}_{\mathrm{CE}}$ ).

Fig. 34 shows the voltage signals mentioned. When $\mathrm{V}_{\text {GE }}$ is positive $(+15 \mathrm{~V})$, the transistors turns on, becomes to conduct current and the $\mathrm{V}_{\mathrm{CE}}$ is only related to the saturation of the transistor $(2.8 \mathrm{~V})$. On the other hand, when the $\mathrm{V}_{\text {GE }}$ is negative $(-15 \mathrm{~V})$ the transistor is turned off and the current lows to zero, and the $\mathrm{V}_{\mathrm{CE}}$ is 0 or $\mathrm{V}_{\mathrm{DC}} / 2$ depending on the state of the other switches.
a)



Fig. 34 a) PWM applied to the gates; b) CE Voltage withstood by the transistor

A soft switching technique implemented automatically by the driver called active clamping can be observed (Fig. 35). The driver turns off the transistor by setting the gate voltage to an intermediate level. This behaviour lowers the voltage stress that the switches have to support when the turning off takes place.


Fig. 35 Turning OFF and ON: Transmitters (a); Gates (b)

### 5.2 Board signals

The interface board implements several modules, however, some of the modules implemented were not used, so a few signals are going to be studied in this section. The most important signals are: PWM, errors, filtering stage and encoder signals.

### 5.2.1 PWM signals

The PWM signals are related to the control of the switches themselves. Fig. 36 a) the PWM waveform sent by the transmitter for one of the switches (not all the signals are studied since they all are analogue) while Fig. 36 b) shows the gate voltage applied to the transistor. The variation of the duty cycle in order to generate the correct voltage can be observed clearly.

a)


Fig. 36 a) PWM signals transmitters; b) Gates
The PWM waveform of Fig. 36 a) has been read in the point that the red circle in Fig. 37 indicates. Such waveform is due to the combined capacitance of the transmitter itself and the one introduced by the line driver.


Fig. 37 Point of transmitter PWM reading

### 5.2.2 Error signals

An error has been simulated to demonstrate the correct operation of the error management part. As the Fig. 38 shows, the error signal remains at low level (Fig. 38, a) and when the error occurs, its rising lows the STOP signal to the low level (Fig. 38, b). This causes in the gates to put a logic zero on their outputs and the PWM are blocked down (Fig. 38, c).

When the reset button is pressed, the PWM signals are allowed to be sent to the transmitters operating in a normal situation (not shown in the figure).
a)



Fig. 38 Error signal (a); STOP signal (b); PWM signal (c)

### 5.2.3 Filtering stage

Filtering stage is one of the most important modules implemented in the board. Fig. 39 shows the current before and after the filtering stage. As the switching frequency is set to 2 kHz , and the filtering stage has its cutoff frequency equal to 1 kHz , the effect of the filter is to remove components with frequency more than such 1 kHz . Also, the offset in order to achieve the supported values of the DSP can be observed (signals stands between 0 and 3 V all the time).


Fig. 39 Post filtered current (green); Prefiltered current (blue)

### 5.2.4 Encoder signals

The encoder is a device that provides three signals (A, B and I), but only A and B are used in this work. Fig. 40 shows the signals at the output of the encoder ( $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ and $\overline{\mathrm{B}}$ ), the signals received by the differential receiver and the single signals got at the output of the differential receiver.


Fig. $40 \mathrm{~A}, \overline{\mathbf{A}}(\mathbf{a}) ; \mathbf{B}, \overline{\mathrm{B}}(\mathrm{b}) ; \mathbf{A}$ and $\mathbf{B}$ outputs (blue and green, c)

### 5.2.5 Speed control

To verify the correct operation of the speed control, the speed of the machine has been saved and analysed. Fig. 41shows the evolution of the machine speed when a step like change of 20 Hz has been applied at $\mathrm{t}=5 \mathrm{~s}$. As it is observed the steady state is reached in less than 50 seconds.


Fig. 41 Reference speed (blue); Actual speed (green)

## Chapter 6

## Conclusions and further improvements

The work developed in this thesis covers the start-up of a custom commercial NPC multilevel inverter, the design and building of the interface board and the implementation and debugging of the software routines to perform a closed-loop speed control of a high voltage induction machine.

The thesis focussed on the first tests using a commercial power devices to verify the correct operation of the algorithms. Actually the algorithms are working properly so the next step of the project will be to build a NPC multilevel inverter using discrete SiC power transistors to compare the operation of the commercial devices versus the SiC ones.

Although the power supply is able to deliver up to 4 kV , the machines in the laboratory were not able to support more than 1.5 kV in safety conditions. Hence, to avoid hazardous situations, the maximum voltage used to feed the machine was 1 kV . Also, the inverter has some snubber capacitors which causes in the internal circuits to reflow huge amount of currents rising the temperature of all the power switches and bars.

More machines with higher voltage capability are located in other laboratory. However, due to their size, they could not be moved to the same laboratory that the used equipment was. Such machines are going to be used to rise the bus voltage to 4 kV .

The first version of the interface board designed has many features that allow the user to make profit of all the powerful characteristics of the DSP.

However, as in all first prototypes, it has some mistakes that should be reviewed and rethought. Mainly, the design lacks of built-in standard modules as RS-232, or SPI. These modules can be built separately but, in order to ensure a better mechanical fixation, the modules should be implemented inside the board. As all the functionalities were implemented in a modular way, it can be used or not whether the application needs it without affecting the operation of the rest of the modules.

This first prototype has been designed using through hole ICs and passive components. If the IC's used were SMD technology, the board could be smaller.

The LED connected to each one of the error channels have the drawback of blinking for a while (typically milliseconds) while the error is being triggered, but the error signal coming from the driver disappears and hence the LED turns off. Hence, the effect is that no error can be observed. To surpass this issue, there are two different solutions depending on the information that the user wants to know:

- Remove the entire individual error LED and maintain only the one attached to the latch: This fact allows to reduce the complexity of the board and its associated cost.
- Include a latch for every LED: This solution gives to the user better information on where the error has occurred and what switched has caused it. The major drawback of this solution is that the components needed to implement such new functionality is that its associated cost and the complexity of the board.

In order to use a cheaper power supply and improve the overall efficiency of the power stage, a $\mathrm{DC} / \mathrm{DC}$ converter can be implemented to generate $+15 \mathrm{~V},-15 \mathrm{~V}$ and 3.3 V starting from a +5 V single channel power supply.

Related to the control of the machine, the next step in the algorithm is to remove the encoder (which caused a lot of troubles in the very beginning because of its mechanical attachment) and to develop a sensorless control.

Also, a GUI could be developed in order to extract some parameters from the memory of the DSP since its memory map is not so large. Also, such a GUI could be used to extract real-time data from the DSP.

## References

[1] A. Nabae, I. Takahashi, H. Akagi, "A new neutral-point-clamped PWM inverter", IEEE Transactions on Industrial Electronics 1981, pp. 518-523.
[2] Rodriguez, J.; Jih-Sheng Lai; Fang Zheng Peng; "Multilevel inverters: a survey of topologies, controls, and applications", Industrial Electronics, IEEE Transactions on , vol.49, no.4, pp. 724-738, Aug 2002.
[3] Wu, B.; High-Power Converters and AC Drives. New York: IEEE Press, 2006.
[4] Texas Instruments, XDS100 web page: http://processors.wiki.ti.com/index.php/XDS100
[5] Karki, J.; "Active low-pass filter design", Texas Instruments Application note (SLOA049), Sept 2002
[6] Steffes, M.; "Design Methodology for MFB Filters in ADC Interface Applications", Texas Instruments Application Report (SBOA114), Feb 2006.
[7] TMS320x2833xAnalog-to-Digital Converter (ADC) Module Reference Guide, Texas Instruments Module Reference Guide (SPRU812A), Sept 2007.

## Annex I: Source Code

```
#include "MW_Circ_v2.h"
#include "RN_174.h"
#include "Constants.h"
#include "DataStorage.h"
#include "FilterAndRotations.h"
#include "QDOperations.h"
#include "Utils.h"
#include "qep.h"
#define Imax 80
#define Vbusmax 1000
\begin{tabular}{lll} 
\#define vel_ref & 5 & //Speed reference \((\mathrm{Hz})\) \\
\#define Kp & 1.5 &
\end{tabular}
#define Ki 40
#define Kp_v 0.01
#define Ki_v 0.3
#define DTF (0.0005)
#define DT (_IQ(DTF))
// sampling rate
#define DTDIV2 (_IQ(DTF/2))
#define INVDT (_IQ(1/DTF))
// this machine #defines
#define ENCODER_LINES 1024
#define POLE_PAIRS 1
#define T_QEP 1000//1000
const _iq Rs = _IQ(0.6); // stator resistance (Ohm)
const _iq Rr = _IQ(0.022); // rotor resistance (Ohm)
const _iq Lm = _IQ(0.03317); // magnetizing inductance (H)
const _iq Lls = _IQ(0.0022); // stator leakage inductance (H)
const _iq tau_r = _IQ(1.6); // rotor time constant (s)
// Prototype statements for functions found within this file.
void delay_loop(long);
void Configure_RN174 (void);
extern void InitFlash(void);
extern void InitAdc(void);
extern void InitPieCtrl(void);
extern void InitPieVectTable(void);
extern void InitSysCtrl(void);
extern unsigned int RamfuncsLoadStart;
extern unsigned int RamfuncsLoadEnd;
extern unsigned int RamfuncsRunStart;
interrupt void adc_isr(void); // ADC End of Sequence ISR
interrupt void cpu_timer0_isr(void); //Timer0 Interrupt Service
// Global Variables
volatile _iq ia, ib, ic, vbus_top, vbus_bot;
volatile _iq vas, vbs, vcs, vu_ref, vv_ref, vw_ref, D_top_u, D_bot_u, D_top_v, D_bot_v, D_top_w, D_bot_w;
volatile _iq m = _IQ(0.8);
volatile _iq t = 0;
```

volatile_iq phi $=0$;
volatile _iq dphi $=\_\mathrm{IQ}(2 * 3.1416 * 50 * 1 \mathrm{e}-4)$;
const _iq desfase = _IQ(2.094395102393195);
//Current regulator
volatile struct sqddata idqe_ref ; //reference current vector in stationary reference frame
volatile struct sqddata idqs; //current vector
volatile struct sqddata idqe; //current vector
volatile struct qddata err_idqe; //current regulator error
volatile struct qddata vdqs; //voltage vector in stationary reference frame
volatile struct qddata vdqe; //current vector
volatile data w_flux_hat; //
volatile data theta_flux_hat; //
volatile data w_elec; //
_iq Kp_current = _IQ(Kp);//_IQ(193.8);//_IQ(55);
_iq Ki_current = _IQ(Ki);//_IQ(5); //constantes del regulador de corriente
_iq Fref_iq = _IQ(Fref);
//Speed regulator
volatile _iq w_refhz = _IQ(vel_ref);
volatile _iq w_ref = _IQ(vel_ref*6.28318530717959);
volatile data error_w;
volatile data T_ref;
volatile data phase_rotor;
_iq Kp_vel =_IQ(Kp_v);//_IQ(193.8);//_IQ(55);
_iq Ki_vel = _IQ(Ki_v);//_IQ(5); //constantes del regulador de corriente
volatile _iq w_hz = _IQ(0.0);
//FAILSAFE PROTECTIONS
int fallo_bus $=0$;
int fallo_i $=0$;
//\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
//
main code
//\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
void main(void)
\{

```
idqe_ref.d = _IQ(0.0);
idqe_ref.q = _IQ(0.0);
INIT_QDDATA(vdqe);
INIT_QDDATA(err_idqe);
INIT_DATA(w_flux_hat);
INIT_DATA(w_elec);
INIT_DATA(error_w);
INIT_DATA(T_ref);
INIT_DATA(phase_rotor);
INIT_DATA(theta_flux_hat);
InitSystem(); // Basic Core Initialization
memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, &RamfuncsLoadEnd - &RamfuncsLoadStart);
InitFlash();
DINT; // Disable all interrupts
Gpio_config();
InitPieCtrl(); // basic setup of PIE table; from DSP2833x_PieCtrl.c
InitPieVectTable();// default ISR's in PIE
EALLOW;
PieVectTable.ADCINT = &adc_isr;
EDIS;
InitAdc(); // Basic ADC setup, incl. calibration
Setup_ADC();
//EQEP CONFIGURATION
```

ConfigureQEP1(0/*QEP1Interrupt*/, T_QEP, PCRM_MAX_POS, ENCODER_LINES, POLE_PAIRS);
PieCtrlRegs.PIEIER1.bit.INTx6 = 1; // ADC
IER |=1;
EINT;
ERTM;
EnableQEP1();
EALLOW;
while(1)
\{ asm(" IDLE");
\}

## \}

interrupt void adc_isr(void)
\{

```
//A/D acquisitions
ia = _IQmpy (((long)AdcMirror.ADCRESULT0)<<GLOBAL_Q,GAINA0)+OFFSETA0;
ib =_IQmpy(((long)AdcMirror.ADCRESULT3)<<GLOBAL_Q,GAINB0)+OFFSETB0;
ic =_IQmpy(((long)AdcMirror.ADCRESULT2)<<GLOBAL_Q,GAINB2)+OFFSETB2;
vbus_top = _IQmpy(((long)AdcMirror.ADCRESULT4)<<GLOBAL_Q,GAINB1)+OFFSETB1;
vbus_bot =_IQmpy(((long)AdcMirror.ADCRESULT1)<<GLOBAL_Q,GAINA1)+OFFSETA1;
ia =_IQmpy(ia,_IQ(-1.0));
ib = _IQmpy(ib,_IQ(-1.0));
ic =_IQmpy(ic,_IQ(-1.0));
QEP1VelocityAndPosition();
//Overcurrent protection
if (_IQabs(ia) >= _IQ(Imax) | _IQabs(ib) >= _IQ(Imax) | _IQabs(ic) >= _IQ(Imax))
{
    ModulationOFF();
    fallo_i = 1;
}
//Overvoltage protection
if (vbus_top >= _IQ(Vbusmax) || vbus_bot >= _IQ(Vbusmax))
{
    ModulationOFF();
    fallo_bus = 1;
}
//SPEED CONTROL
//update states
UPDATEQD_STATE(err_idqe);
UPDATEQD_STATE(vdqe);
UPDATE_STATE(theta_flux_hat);
UPDATE_STATE(w_flux_hat);
UPDATE_STATE(w_elec);
UPDATE_STATE(error_w);
UPDATE_STATE(T_ref);
UPDATE_STATE(phase_rotor);
w_ref = _IQmpy(w_refhz,TWOPI);
PH2QD(ia,ib,idqs);
phase_rotor[N]= qep1.theta_elec;
w_elec[N] = qep1.w_elec;
w_hz = _IQmpy(qep1.w_elec,ONEOVERTWOPI);
```

```
if (_IQabs(w_elec[N]-w_elec[N1])>=_IQ(5))
{
    w_elec[N]=w_elec[N1];
}
SROTATE_POS(idqs,idqe,theta_flux_hat[N1]);
// Flux observer
if(_IQabs(idqe.d)<_IQ(1.0))
    w_flux_hat[N] = w_flux_hat[N1];
else
    w_flux_hat[N] = w_elec[N] + _IQdiv(-idqe.q,_IQmpy(idqe.d,tau_r));
INT(w_flux_hat,theta_flux_hat);
WRAP2PI(theta_flux_hat[N]);
error_w[N]= w_elec[N] - w_ref;
PI_REG(error_w,T_ref,Kp_vel,Ki_vel);
LIM(T_ref[N],_IQ(50));//Imax
idqe_ref.q = T_ref[N];
idqe_ref.d = _IQ(18);
LIM(idqe_ref.d,_IQ(30));/Imax
LIM(idqe_ref.q,_IQ(50));/Imax
//Current Regulator
err_idqe.d[N] = idqe_ref.d -idqe.d;
err_idqe.q[N] = idqe_ref.q -idqe.q;
PI_QD_REG(err_idqe,vdqe,Kp_current, Ki_current);
//dq to abc
ROTATE_NEG(vdqe,vdqs,theta_flux_hat[N1]);
if(_IQabs(vdqs.q[N]) >= (_IQdiv((vbus_top+vbus_bot),_IQ(2.0))))
{
    LIM(vdqs.q[N],_IQdiv((vbus_top+vbus_bot),_IQ(2.0)));
    ROTATE_POS(vdqs,vdqe,theta_flux_hat[N1]);
    INV_PI_QD_REG(err_idqe,vdqe,Kp_current,Ki_current);
}
DQ2PH_QDDATA(vdqs,vas,vbs,vcs);
LIM(vas,_IQdiv((vbus_top+vbus_bot),_IQ(2.0)));
LIM(vbs,_IQdiv((vbus_top+vbus_bot),_IQ(2.0)));
LIM(vcs,_IQdiv((vbus_top+vbus_bot),_IQ(2.0)));
vu_ref = _IQdiv(_IQmpy(vas,_IQ(2.0)),(vbus_top+vbus_bot));
vv_ref = _IQdiv(_IQmpy(vbs,_IQ(2.0)),(vbus_top+vbus_bot));
vw_ref = _IQdiv(_IQmpy(vcs,_IQ(2.0)),(vbus_top+vbus_bot));
```

//Duty cycle calculations and limits
D_top_u = vu_ref;
if(D_top_u <= 0)
D_top_u $=0 ;$
D_bot_u = vu_ref + _IQ(1.0);
if(D_bot_u <= 0)
D_bot_u $=0$;
D_top_v = vv_ref;
if(D_top_v <=0)
D_top_v $=0$;
D_bot_v = vv_ref + _IQ(1.0);
if(D_bot_v <= 0)
D_bot_v = 0;
D_top_w = vw_ref;
if(D_top_w <= 0)
D_top_w $=0$;
D_bot_w = vw_ref + _IQ(1.0);
if(D_bot_w <=0)
D_bot_w = 0;

```
//Duty cycles update
UpdatePWM1(D_top_u);
UpdatePWM2(D_bot_u);
UpdatePWM3(D_top_v);
UpdatePWM4(D_bot_v);
UpdatePWM5(D_top_w);
UpdatePWM6(D_bot_w);
// Reinitialize for next ADC sequence
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit AdcRegs.ADCTRL2.bit.RST_SEQ2 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ2_CLR = 1; // Clear INT SEQ1 bit
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE
// ======== End of Source Code =========\\
```


## Annex II: Schematics

品里










| Title |  |  |  |
| :--- | :--- | :--- | :--- |



## Annex III: PCB

PCB TOP layer


PCB BOTTOM layer


Annex IV: Datasheets

## HFBR-RXXYYY Series (POF) <br> HFBR-EXXYYY Series (POF)

Plastic Optical Fiber Cable and Accessories for Versatile Link

## Data Sheet

## Cable Description

The HFBR-R/EXXYYY series of plastic fiber optic cables are constructed of a single step-index fiber sheathed in a black polyethylene jacket. The duplex fiber consists of two simplex fibers joined with a zipcord web.

Standard attenuation and extra low loss POF cables are identical except for attenuation specifications.

Polyethylene jackets on all plastic fiber cables comply with UL VW-1 flame retardant specification (UL file \# E89328).

Cables are available in unconnectored or connectored options. Refer to the Ordering Guide for part number information.


Figure 1. Typical POF attenuation vs. wavelength.


## Features

- Compatible with Avago Versatile Link Family of connectors and fiber optic components
- 1 mm diameter Plastic Optical Fiber (POF) in two grades: low cost standard POF with $0.22 \mathrm{~dB} / \mathrm{m}$ typical attenuation, or high performance extra low loss POF with $0.19 \mathrm{~dB} / \mathrm{m}$ typical attenuation


## Applications

- Industrial data links for factory automation and plant control
- Intra-system links; board-to-board, rack-to-rack
- Telecommunications switching systems
- Computer-to-peripheral data links, PC bus extension
- Proprietary LANs
- Digitized video
- Medical instruments
- Reduction of lightning and voltage transient susceptibility
- High voltage isolation


## Plastic Optical Fiber Specifications: HFBR-R/EXXYYY

Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unit | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storage and Operating Temperature | $\mathrm{T}_{5,0}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Recommended Operating Temperature | $\mathrm{T}_{0}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Installation Temperature | $\mathrm{T}_{1}$ | -20 | +70 | ${ }^{\circ} \mathrm{C}$ | 1 |
| Short Term Tensile Force | $\mathrm{F}_{\mathrm{T}}$ |  | 50 | N | 2 |
|  | $\mathrm{F}_{\mathrm{T}}$ |  | 100 | N |  |
| Short Term Bend Radius | $r$ | 25 |  | mm | 3,4 |
| Long Term Bend Radius | $r$ | 35 |  | mm |  |
| Long Term Tensile Load | $\mathrm{F}_{\mathrm{T}}$ |  | 1 | N |  |
| Flexing |  |  | 1000 | Cycles | 4 |

Mechanical/Optical Characteristics, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

| Parameter |  | Symbol | Min. | Typ. ${ }^{[5]}$ | Max. | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cable <br> Attenuation | Standard Cable, Type "R" | $\alpha_{0}$ | 0.15 | 0.22 | 0.27 | $\mathrm{dB} / \mathrm{m}$ | Source is HFBR-15XX <br> ( 660 mm LED, 0.5 NA ) <br> $\boldsymbol{q}=50$ meters |
|  | Extra Low Loss, Type "E" |  | 0.15 | 0.19 | 0.23 |  |  |
| Reference <br> Attenuation | Standard Cable, Type "R" | $\alpha_{R}$ | 0.12 | 0.19 | 0.24 | $\mathrm{dB} / \mathrm{m}$ | Source is 650 nm , 0.5 NA monochrometer, $\mathcal{L}=50$ meters Note 7, Figure 1 |
|  | Extra Low Loss, Type "E" |  | 0.12 | 0.16 | 0.19 |  |  |
| Numerical Aperture |  | NA | 0.46 | 0.47 | 0.50 |  | >2 meters |
| Diameter, Core and Cladding |  | $\mathrm{D}_{\mathrm{C}}$ | 0.94 | 1.00 | 1.06 | mm |  |
| Diameter, Jacket |  | $\mathrm{D}_{\mathrm{J}}$ | 2.13 | 2.20 | 2.27 | mm | Simplex Cable |
| Propagation Delay Constant |  | I/v |  | 5.0 |  | $\mathrm{ns} / \mathrm{m}$ | Note 6 |
| Mass per Unit Length/Channel |  |  |  | 5.3 |  | $\mathrm{g} / \mathrm{m}$ | Without Connectors |
| Cable Leakage Current |  | $\mathrm{I}_{\mathrm{L}}$ |  | 12 |  | nA | $50 \mathrm{kV},{ }_{\sim}^{\boldsymbol{\sim}}=0.3$ meters |
| Refractive Index | Core | n |  | 1.492 |  |  |  |
|  | Cladding |  |  | 1.417 |  |  |  |

Notes:

1. Installation temperature is the range over which the cable can be bent and pulled without damage. Below $-20^{\circ} \mathrm{C}$ the cable becomes brittle and should not be subjected to mechanical stress.
2. Short Term Tensile Force is for less than 30 minutes.
3. Short Term Bend Radius is for less than 1 hour nonoperating.
4. $90^{\circ}$ bend on 25 mm radius mandrel. Bend radius is the radius of the mandrel around which the cable is bent.
5. Typical data are at $25^{\circ} \mathrm{C}$.
6. Propagation delay constant is the reciprocal of the group velocity for propagation delay of optical power. Group velocity is $\mathrm{v}=\mathrm{c} / \mathrm{n}$ where c is the velocity of light in free space ( $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ ) and n is the effective core index of refraction.
7. Note that $\alpha_{R}$ rises at the rate of about $0.0067 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$, where the thermal rise refers to the LED temperature changes above $25^{\circ} \mathrm{C}$. Please refer to Figure 1 which shows the typical plastic optical fiber attenuation versus wavelength at $25^{\circ} \mathrm{C}$.

## Plastic Fiber Connector Styles Connector Description

Fourconnectorstylesare availablefortermination of plastic optical fiber:simplex, simplex latching, duplex and duplex latching. All connectors provide a snap-in action when mated to Versatile Link components. Simplex connectors are color coded to facilitate identification of transmitter and receiver connections. Duplex connectors are keyed so that proper orientation is ensured during insertion. If the POF cable/connector will be used at extreme operating temperatures or experience frequent and wide temperature cycling effects, the cable/connector attachment can be strengthened with an RTV adhesive (see Plastic Connectoring Instructionsformore detail).The connectors are made of a flame retardant VALOX UL94 V-0 material (UL file \# E121562).

## SIMPLEX CONNECTOR STYLES <br> HFBR-4501/4511 - Simplex



The simplex connector provides a quick and stable connection for applications that require a component-to-connector retention force of 8 Newtons ( 1.8 lb .). These connectors are available in gray (HFBR-4501) or blue (HFBR-4511).

## HFBR-4503/4513 - Simplex Latching



The simplex latching connector is designed for rugged applications requiring a greater retention force- 80 Newtons ( 18 lb. ) - than provided by a simplex nonlatching connector. When inserting the simplex latching connector into a module, the connector latch mechanism should be aligned with the top surface of the horizontal modules, or with the tall vertical side of the vertical modules. Misalignment of an inserted latching connector into either module will not result in a positive latch. The connector is released by depressing the rear section of the connector lever, and then pulling the connector assembly away from the module housing.

The simplex latching connector is available in gray (HFBR4503) or blue (HFBR-4513).

DUPLEX CONNECTOR STYLES HFBR-4506 - Duplex


Duplex connectors provide convenient duplex cable termination and are keyed to prevent incorrect insertion into duplex configured modules. The duplex connector is compatible with dual combinations of horizontal orvertical Versatile Link components (e.g., two horizontal transmitters, two vertical receivers, a horizontal transmitter with a horizontal receiver, etc.).The duplex non-latching connector is available in parchment, off-white (HFBR-4506).

## HFBR-4516 - Duplex Latching



The duplex latching connector is designed for rugged applications requiring greater retention force than the nonlatching duplex connector. When inserting the duplex latching connector into a module, the connector latch mechanism should be aligned with the top surface of the dual combination of horizontal or vertical Versatile Link components. The duplex latching connector is available in gray (HFBR-4516).

## Feedthrough/Splice <br> HFBR-4505/4515 Bulkhead Adapter



The HFBR-4505/4515 adapter mates two simplex connectors for panel/bulkhead feedthrough of HFBR-4501/4511 terminated plastic fiber cable. Maximum panel thickness is 4.1 mm ( 0.16 inch$)$. This adapter can serve as a cable inline splice using two simplex connectors. The adapters are available in gray (HFBR-4505) and blue (HFBR-4515). This adapter is not compatible with POF duplex, POF simplex latching, or HCS connectors.

Plastic Optical Fiber Connector Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unit | Note |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage and Operating Temperature | $\mathrm{T}_{\mathrm{S}, \mathrm{O}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ | 1 |
| Recommended Operating Temperature | $\mathrm{T}_{\mathrm{O}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ | 1 |
| Installation Temperature | $\mathrm{T}_{1}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ | 1 |
| Nut Torque | $\mathrm{T}_{\mathrm{N}}$ |  | 0.7 | $\mathrm{~N}-\mathrm{m}$ | 2 |
| HFBR-4505/4515 Adapter |  |  | 100 | OzF-in. |  |

## Notes:

1. Storage and Operating Temperatures refer to the ranges over which the connectors can be used when not subjected to mechanical stress. Installation Temperature refers to the ranges over which connectors may be installed onto the fiber and over which connectors can be connected and disconnected from transmitter and receiver modules.
2. Recommended nut torque is $0.57 \mathrm{~N}-\mathrm{m}$.

## Plastic Optical Fiber Connector Mechanical/Optical Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified.


## Notes:

1. Typical data are at $+25^{\circ} \mathrm{C}$.
2. No perceivable reduction in retention force was observed after 2000 insertions. Retention force of non-latching connectors is lower at elevated temperatures. Latching connectors are recommended for applications where a high retention force at high temperatures is desired.
3. For applications where frequent temperature cycling over temperature extremes is expected, please contact Avago Technologies for alternate connectoring techniques.
4. Minimum and maximum limit for $\alpha_{\mathrm{CC}}$ for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. Typical value of $\alpha_{\mathrm{CC}}$ is at $+25^{\circ} \mathrm{C}$.
5. Factory polish or field polish per recommended procedure.
6. Destructive insertion force was typically at $178 \mathrm{~N}(40 \mathrm{lb}$.$) .$

## Step-by-Step Plastic Cable Connectoring Instructions

The following step-by-step guide describes how to terminate plastic fiber optic cable. It is ideal for both field and factory installation. Connectors can be easily installed on cable ends with wire strippers, cutters and a crimping tool.

Finishing the cable is accomplished with the Avago HFBR-4593 Polishing Kit, consisting of a Polishing Fixture, 600 grit abrasive paper and $3 \mu \mathrm{~m}$ pink lapping film ( 3 M Company, OC3-14). The connector can be used immediately after polishing.

Materials needed for plastic fiber termination are:

1. Avago Plastic Optical Fiber Cable (Example: HFBRRUS500, HFBR-RUD500, HFBR-EUS500, or HFBREUD500)
2. Industrial Razor Blade or Wire Cutters
3. 16 Gauge Latching Wire Strippers (Example: Ideal Stripmaster ${ }^{\text {TM }}$ type 45-092).
4. HFBR-4597 Crimping Tool
5. HFBR-4593 Polishing Kit
6. One of the following connectors:
a) HFBR-4501/4503 Gray Simplex/Simplex Latching Connector and HFBR-4525 Simplex Crimp Ring
b) HFBR-4511/4513 Blue Simplex/Simplex Latching Connector and HFBR-4525 Simplex Crimp Ring
c) HFBR-4506 Parchment (off-white) Duplex Connector and HFBR-4526 Duplex Crimp Ring
d) HFBR-4516 Gray Latching Duplex Connector and HFBR-4526 Duplex Crimp Ring

## Step 1

The zip cord structure of the duplex cable permits easy separation of the channels. The channels should be separated a minimum of $100 \mathrm{~mm}(4 \mathrm{in})$ to a maximum of 150 mm (6 in) back from the ends to permit connectoring and polishing.

After cutting the cable to the desired length, strip off approximately 7 mm ( 0.3 in .) of the outer jacket with the 16 gauge wire strippers. Excess webbing on the duplex cable may have to be trimmed to allow the simplex or simplex latching connector to slide over the cable.

When using the duplex connector and duplex cable, the separated duplex cable must be stripped to equal lengths on each cable. This allows easy and proper seating of the cable into the duplex connector.


## Step 2

Place the crimp ring and connector over the end of the cable; the fiber should protrude about 3 mm ( 0.12 in .) through the end of the connector. Carefully position the ring so that it is entirely on the connector with the rim of the crimp ring flush with the connector, leaving a small space between the crimp ring and the flange. Then crimp the ring in place with the crimping tool. One crimp tool is used for all POF connector crimping requirements.

For applications with extreme temperature operation or frequent temperature cycling, improved connector to cable attachment can be achieved with the use of an RTV (GE Company, RTV-128 or Dow Corning 3145-RTV) adhesive. The RTV is placed into the connector prior to insertion of the fiber and the fiber is crimped normally. The connector can be polished after the RTV has cured and is then ready for use.
Note: By convention, place the gray connector on the transmittercable end and the blue connector on the receiver cable end to maintain color coding (different color connectors are mechanically identical).

Simplex connector crimp rings cannot be used with duplex connectors and duplex connector crimp rings cannot be used with simplex connectors because of size differences. The simplex crimp has a dull luster appearance; the duplex ring is glossy and has a thinner wall.


Step 3
Any excess fiber protruding from the connector end may be cut off; however, the trimmed fiber should extend at least 1.5 mm ( 0.06 in ) from the connector end.

Insert the connector fully into the polishing fixture with the trimmed fiber protruding from the bottom of the fixture. This plastic polishing fixture can be used to polish two simplex connectors or simplex latching connectors simultaneously, or one duplex connector.

Note: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible. Typically, the polishing fixture can be used 10 times; 10 duplex connectors or 20 simplex connectors, two at a time.

Place the 600 grit abrasive paper on a flat smooth surface, pressing down on the connector, polish the fiber and the connector using a figure eight pattern of strokes until the connector is flush with the bottom of the polishing fixture. Wipe the connector and fixture with a clean cloth or tissue.



## Step 4

Place the flush connector and polishing fixture on the dull side of the $3 \mu \mathrm{~m}$ pink lapping film and continue to polish the fiber and connector for approximately 25 strokes. The fiber end should be flat, smooth and clean.

This cable is now ready for use.
Note:Useof the pinklapping film finepolishingstep results in approximately 2 dB improvement in coupling performance of either a transmitter-receiverlink or a bulkhead/splice over a 600 grit polish alone. This fine polish is comparable to the Avago factory polish. The fine polishing step may be omitted where an extra $2 d B$ of optical power is not essential, as with short linklengths. Properpolishing of the tip of thefiber/connector face results in a tip diameter between 2.5 mm ( 0.098 in.) minimum and 3.2 mm ( 0.126 in .) maximum..

## HFBR-4593 Polishing Kit



## Ordering Guide for POF Connectors and Accessories

## Plastic Optical Fiber Connectors

| HFBR-4501 | Gray Simplex Connector/Crimp Ring |
| :--- | :--- |
| HFBR-4511 | Blue Simplex Connector/Crimp Ring |
| HFBR-4503 | Gray Simplex Latching Connector with Crimp Ring |
| HFBR-4513 | Blue Simplex Latching Connector with Crimp Ring |
| HFBR-4506 | Parchment Duplex Connector with Crimp Ring |
| HFBR-4516 | Gray Duplex Latching Connector with Crimp Ring |
| HFBR-4505 | Gray Adapter (Bulkhead/Feedthrough) |
| HFBR-4515 | Blue Adapter (Bulkhead/Feedthrough) |

## Plastic Optical Fiber Accessories

| HFBR-4522 | 500 HFBR-0500 Products Port Plugs |
| :--- | :--- |
| HFBR-4525 | 1000 Simplex Crimp Rings |
| HFBR-4526 | 500 Duplex Crimp Rings |
| HFBR-4593 | Polishing Kit (one polishing tool, two pieces 600 grit <br> abrasive paper, and two pieces $3 \mu \mathrm{~m}$ pink lapping film) |
| HFBR-4597 | Plastic Fiber Crimping Tool |

## Ordering Guide for POF Cable

For Example:
HFBR-RUD500 is a Standard Attenuation, Unconnectored, Duplex, 500 meter cable.

HFBR-RLS001 is a Standard Attenuation, Latching Simplex Connectored, Simplex, 1 meter cable.

HFBR-RMD010 is a Standard Attenuation,Standard Duplex Connectored, Duplex, 10 meter cable.

## Cable Length Tolerances:

The plastic cable length tolerances are: $+10 \% /-0 \%$.
NOTE: By convention, pre-connectored simplex POF cables have gray and blue colored connectors on the opposite ends of the same fiber; although oppositely colored, the connectors are mechanically identical. Duplex POF cables with duplex connectors use color- coded markings on the duplex fiber cable to differentiate between the channel.

HFBR-RMD100 is a Standard Attenuation, Standard Duplex Connectored, Duplex, 100 meter cable.

U = Unconnectored
N = Standard Simplex Connectors
L = Latching Simplex Connectors
M = Standard Duplex Connectors
T = Latching Duplex Connectors

## Cable Code

R = Standard Attenuation POF
$\mathrm{E}=$ Extra Low Loss POF

## Connector Code

## Length Code

(measured from tip of connector to tip of connector)

1-500 meters in 1 meter increments

$$
\text { e.g. } 015=15 \text { meters }
$$

1-10 meters in 1 decimeter increments
e.g. $15 \mathrm{D}=1.5$ meters

HFBR-

anne code

## Channel Code

S = Simplex Cable
D = Duplex Zipcord Cable

## Connector Applications

## Attachment to Avago Versatile Link Fiber Optic Components



DIMENSIONS IN MILLIMETRES (INCHES)


TWO STACKED
VERTICAL
PACKAGES


DIMENSIONS IN MILLIMETRES (INCHES)

TWO STACKED
VERTICAL
PACKAGES


Bulkhead Feedthrough or Panel Mounting for HFBR-4501/4511 Simplex Connectors


## Versatile Link Mechanical Dimensions

Fiber Optic Cable Dimensions


Panel Mounting - Bulkhead Feedthrough

THREE TYPES OF PANEL/BULKHEAD HOLES CAN BE USED.
DIMENSIONS IN mm (INCHES)
ALL DIMENSIONS + 0.2 mm

7.9 (0.312) HOLE MIN.

HFBR-4505 (Gray)/4515 (Blue) Adapters


Bulkhead Feedthrough with Two HFBR-4501/4511 Connectors


All dimensions in mm (inches).
All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified.

## Versatile Link Mechanical Dimensions, continued

HFBR-4516 (Parchment) Duplex Latching Connector


HFBR-4503 (Gray)/4513 (Blue) Simplex Latching Connector


HFBR-4506 (Parchment) Duplex Connector


HFBR-4501 (Gray)/4511 (Blue) Simplex Connector


All dimensions in mm (inches).
All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified.

## HFBR-0500Z Series

Versatile Link

## The Versatile Fiber Optic Connection

## Data Sheet



## Description

The Versatile Link series is a complete family of fiber optic link components for applications requiring a low cost solution. The HFBR-0500Z series includes transmitters, receivers, connectors and cable specified for easy design. This series of components is ideal for solving problems with voltage isolation/insulation, EMI/RFI immunity or data security. The optical link design is simplified by the logic compatible receivers and complete specif-cations for each component. The key optical and electrical parameters of links configured with the HFBR-0500Z family are fully guaranteed from $0^{\circ}$ to $70^{\circ} \mathrm{C}$.

A wide variety of package configurations and connectors provide the designer with numerous mechanical solutions to meet application requirements. The transmitter and receiver components have been designed for use in high volume/low cost assembly processes such as auto insertion and wave soldering.

Transmitters incorporate a 660 nm LED. Receivers include a monolithic dc coupled, digital IC receiver with open collector Schottky output transistor. An internal pullup resistor is available for use in the HFBR-25X1Z/2Z/4Z receivers. A shield has been integrated into the receiver IC to provide additional, localized noise immunity.
Internal optics have been optimized for use with 1 mm diameter plastic optical fiber. Versatile Link specifications incorporate all connector interface losses. Therefore, optical calculations for common link applications are simplified.

## Features

- RoHS-compliant
- Low cost fiber optic components
- Enhanced digital links: dc-5 MBd
- Extended distance links up to 120 m at 40 kBd
- Low current link: 6 mA peak supply current
- Horizontal and vertical mounting
- Interlocking feature
- High noise immunity
- Easy connectoring: simplex, duplex, and latching connectors
- Flame retardant
- Transmitters incorporate a 660 nm red LED for easy visibility
- Compatible with standard TTL circuitry


## Applications

- Reduction of lightning/voltage transient susceptibility
- Motor controller triggering
- Data communications and local area networks
- Electromagnetic Compatibility (EMC) for regulated systems: FCC, VDE, CSA, etc.
- Tempest-secure data processing equipment
- Isolation in test and measurement instruments
- Error free signalling for industrial and manufacturing equipment
- Automotive communications and control networks
- Noise immune communication in audio and video equipment


## HFBR-0500Z Series Part Number Guide



## Link Selection Guide

(Links specified from 0 to $70^{\circ} \mathrm{C}$, for plastic optical fiber unless specified.)

| Signal Rate | Distance (m) $25^{\circ} \mathbf{C}$ | Distance (m) | Transmitter | Receiver |
| :---: | :---: | :---: | :---: | :---: |
| 40 kBd | 120 | 110 | HFBR-1523Z | HFBR-2523Z |
| 1 MBd | 20 | 10 | HFBR-1524Z | HFBR-2524Z |
| 1 MBd | 55 | 45 | HFBR-1522Z | HFBR-2522Z |
| 5 Mbd | 30 | 20 | HFBR-1521Z | HFBR-2521Z |

## Evaluation Kit

## HFBR-05002 1 MBd Versatile Link:

This kit contains: HFBR-1524Z Tx, HFBR-2524Z Rx, polishing kit, 3 styles of plastic connectors, Bulkhead feedthrough, 5 meters of 1 mm diameter plastic cable, lapping film and grit paper, and HFBR-0500Z data sheet.

## Application Literature

Application Note 1035 (Versatile Link)

## Package and Handling Information

The compact Versatile Link package is made of a flame retardant VALOX ${ }^{\ominus}$ UL 94 V-0 material (UL file \# E121562) and uses the same pad layout as a standard, eight pin dual-in-line package. Vertical and horizontal mountable parts are available. These low profile Versatile Link packages are stackable and are enclosed to provide a dust resistant seal. Snap action simplex, simplex latching, duplex, and duplex latching connectors are offered with simplex or duplex cables.

## Package Orientation

Performance and pinouts for the vertical and horizontal packages are identical. To provide additional attachment support for the vertical Versatile Link housing, the designer has the option of using a selftapping screw through a printed circuit board into a mounting hole at the bottom of the package. For most applications this is not necessary.

## Package Housing Color

Versatile Link components and simplex connectors are color coded to eliminate confusion when making connections. Receivers are blue and transmitters are gray, except for the HFBR-15X3Z transmitter, which is black.

## Handling

Versatile Link components are auto-insertable. When wave soldering is performed with Versatile Link components, the optical port plug should be left in to prevent contamination of the port. Do not use reflow solder processes (i.e., infrared reflow or vapor-phase reflow). Nonhalogenated water soluble fluxes (i.e., 0\% chloride), not rosin based fluxes, are recommended for use with Versatile Link components.

Versatile Link components are moisture sensitive devices and are shipped in a moisture sealed bag. If the components are exposed to air for an extended period of time, they may require a baking step before the soldering process. Refer to the special labeling on the shipping tube for details.

## Mechanical Dimensions

## Horizontal Modules



## Recommended Chemicals for Cleaning/Degreasing

Alcohols: methyl, isopropyl, isobutyl. Aliphatics: hexane, heptane. Other: soap solution, naphtha.
Do not use partially halogenated hydrocarbons such as 1,1.1 trichloroethane, ketones such as MEK, acetone, chloroform, ethyl acetate, methylene dichloride, phenol, methylene chloride, or N-methylpyrolldone. Also, Avago does not recommend the use of cleaners that use halogenated hydrocarbons because of their potential environmental harm.

## Vertical Modules



## Versatile Link Printed Board Layout Dimensions

Horizontal Module


DIMENSIONS IN MILLIMETERS (INCHES).

## Vertical Module



## Interlocked (Stacked) Assemblies (refer to Figure 1)

Horizontal packages may be stacked by placing units with pins facing upward. Initially engage the interlocking mechanism by sliding the $L$ bracket body from above into the $L$ slot body of the lower package. Use a straight edge, such as a ruler, to bring all stacked units into uniform alignment. This technique prevents potential harm that could occur to fingers and hands of assemblers from the package pins. Stacked horizontal

## Stacking Horizontal Modules



Figure 1. Interlocked (stacked) horizontal or vertical packages
packages can be disengaged if necessary. Repeated stacking and unstacking causes no damage to individual units.

To stack vertical packages, hold one unit in each hand, with the pins facing away and the optical ports on the bottom. Slide the $L$ bracket unit into the $L$ slot unit. The straight edge used for horizontal package alignment is not needed.

## Stacking Vertical Modules



5 MBd Link (HFBR-15X1Z/25X1Z)
System Performance 0 to $70^{\circ} \mathrm{C}$ unless otherwise specified.

|  | Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High <br> Performance <br> 5 MBd | Data Rate |  | dc |  | 5 | MBd | BER $\leq 10^{-9}$, PRBS:27-1 |  |
|  | Link Distance (Standard Cable) | $\mu$ | $\begin{aligned} & 19 \\ & 27 \end{aligned}$ | 48 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ | Fig. 3 <br> Note 3 |
|  | Link Distance (Improved Cable) | $\underline{1}$ | $\begin{aligned} & 22 \\ & 27 \end{aligned}$ | 53 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ | Fig. 4 <br> Note 3 |
|  | Propagation Delay | $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$ |  | $\begin{aligned} & 80 \\ & 50 \end{aligned}$ | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { fiber length }=0.5 \mathrm{~m} \\ & -21.6 \leq \mathrm{P}_{\mathrm{R}} \leq-9.5 \mathrm{dBm} \end{aligned}$ | Fig. 5, 8 <br> Notes 1,2 |
|  | Pulse Width <br> Distortion tpLh $^{-t_{P H L}}$ | tD |  | 30 |  | ns | $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-15 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ | Fig. 5, 7 |

## Notes:

1. The propagation delay for one metre of cable is typically 5 ns .
2. Typical propagation delay is measured at $P_{R}=-15 \mathrm{dBm}$.
3. Estimated typical link life expectancy at $40^{\circ} \mathrm{C}$ exceeds 10 years at 60 mA .


Figure 2. Typical 5 MBd interface circuit


Figure 3. Guaranteed system performance with standard cable (HFBR-15X1Z/25X1Z)


Figure 4. Guaranteed system performance with improved cable (HFBR-15X1Z/25X1Z)


Figure 5.5 MBd propagation delay test circuit


Figure 6. Propagation delay test waveforms


Figure 7. Typical link pulse width distortion vs. optical power


Figure 8. Typical link propagation delay vs. optical power

## HFBR-15X1Z Transmitter



| Pin \# | Function |
| :--- | :--- |
| 1 | Anode |
| 2 | Cathode |
| 3 | Open |
| 4 | Open |
| 5 | Do not connect |
| 8 | Do not connect |

Note: Pins 5 and 8 are for mounting and retaining purposes only. Donot electrically connect these pins.

Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Units | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | $\mathrm{T}_{\mathrm{S}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | $\mathrm{T}_{\text {A }}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temp. |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1, 4 |
|  | Time |  |  | 10 | sec |  |
| Forward Input Current |  | IFPK |  | 1000 | mA | Note 2, 3 |
|  |  | $\mathrm{I}_{\text {Fdc }}$ |  | 80 |  |  |
| Reverse Input Voltage |  | $V_{B R}$ |  | 5 | V |  |

## Notes:

1. 1.6 mm below seating plane.
2. Recommended operating range between 10 and 750 mA .
3. $1 \mu \mathrm{~s}$ pulse, $20 \mu \mathrm{~s}$ period.
4. Moisture sensitivity level (MSL) is 3.

All HFBR-15XXZ LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed draft scheduled to go into effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your local Avago sales representative for more information.

Transmitter Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.

| Parameter | Symbol | Min. | Typ. ${ }^{[5]}$ | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter Output Optical Power | $\mathrm{P}_{\mathrm{T}}$ | -16.5 |  | -7.6 | dBm | $\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$ | Notes 1, 2 |
|  |  | -14.3 |  | -8.0 | dBm | $\mathrm{I}_{\text {fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
| Output Optical Power Temperature Coefficient | $\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ |  | -0.85 |  | \%/ ${ }^{\circ} \mathrm{C}$ |  |  |
| Peak Emission Wavelength | $\lambda_{\text {PK }}$ |  | 660 |  | nm |  |  |
| Forward Voltage | $\mathrm{V}_{\mathrm{F}}$ | 1.45 | 1.67 | 2.02 | V | $\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$ |  |
| Forward Voltage <br> Temperature Coefficient | $\Delta V_{F} / \Delta T$ |  | -1.37 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |  | Fig. 9 |
| Effective Diameter | D |  | 1 |  | mm |  |  |
| Numerical Aperture | NA |  | 0.5 |  |  |  |  |
| Reverse Input Breakdown Voltage | $V_{B R}$ | 5.0 | 11.0 |  | V | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=10 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Diode Capacitance | $\mathrm{C}_{0}$ |  | 86 |  | pF | $\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=\mathrm{MHz}$ |  |
| Rise Time | $\mathrm{tr}_{r}$ |  | 80 |  | ns | 10\% to 90\%, | Note 3 |
| Fall Time | $\mathrm{tf}_{f}$ |  | 40 |  | ns | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ |  |

## Notes:

1. Measured at the end of 0.5 m standard fiber optic cable with large area detector.
2. Optical power, $P(d B m)=10 \log [P(\mu W) / 1000 \mu W]$.
3. Rise and fall times are measured with a voltage pulse driving the transmitter and a series connected $50 \Omega$ load. A wide bandwidth optical to electrical waveform analyzer, terminated to a $50 \Omega$ input of a wide bandwidth oscilloscope, is used for this response time measurement.


Figure 9. Typical forward voltage vs. drive current


Figure 10. Normalized typical output power vs. drive current

## HFBR-25X1Z Receiver



| Pin\# | Function |
| :--- | :--- |
| 1 | $\mathrm{~V}_{\mathrm{O}}$ |
| 2 | Ground |
| 3 | $\mathrm{~V}_{\mathrm{CC}}$ |
| 4 | $\mathrm{R}_{\mathrm{L}}$ |
| 5 | Do not connect |
| 8 | Do not connect |

Note: Pins 5 and 8 are for mounting and retaining purposes only. Donot electrically connect these pins.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Reference |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering Cycle |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1,3 |  |
|  | Temp. |  |  | 10 |  |  |
|  | Time |  |  | 7 | V | Note 2 |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 |  |  |  |  |
| Output Collector Current | IOAV |  | 25 | mA |  |  |
| Output Collector Power Dissipation | $\mathrm{P}_{\mathrm{OD}}$ |  | 40 | mW |  |  |
| Output Voltage | $\mathrm{V}_{\mathrm{O}}$ | -0.5 | 18 | V |  |  |
| Pull-up Voltage | $\mathrm{V}_{\mathrm{P}}$ | -5 | $\mathrm{~V}_{\mathrm{CC}}$ | V |  |  |
| Fan Out (TTL) | N |  | 5 |  |  |  |

## Notes:

1. 1.6 mm below seating plane.
2. It is essential that a bypass capacitor $0.1 \mu \mathrm{~F}$ be connected from pin 2 to pin 3 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. Moisture sensitivity level (MSL) is 3 .

Receiver Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{C \mathrm{C}} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Optical Power Level for Logic "0" | $\mathrm{P}_{\mathrm{R}(\mathrm{L})}$ | -21.6 |  | -9.5 | dBm | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \hline \end{aligned}$ | Notes 1,$2,4$ |
|  |  | -21.6 |  | -8.7 |  | $\begin{aligned} & \mathrm{VOL}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Input Optical Power Level for Logic"1" | $\mathrm{PR}_{\mathrm{R}(\mathrm{H})}$ |  |  | -43 | dBm | $\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}} \leq 250 \mu \mathrm{~A} \end{aligned}$ | Note 1 |
| High Level Output Current | IOH |  | 5 | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$ | Note 3 |
| Low Level Output Current | VOL |  | 0.4 | 0.5 | V | $\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{R}(\mathrm{~L}) \mathrm{MIN}} \end{aligned}$ | Note 3 |
| High Level Supply Current | IcCH |  | 3.5 | 6.3 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=0 \end{aligned}$ | Note 3 |
| Low Level Supply Current | $\mathrm{I}_{\text {CCL }}$ |  | 6.2 | 10 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$ | Note 3 |
| Effective Diameter | D |  | 1 |  | mm |  |  |
| Numerical Aperture | NA |  | 0.5 |  |  |  |  |
| Internal Pull-up Resistor | $\mathrm{R}_{\mathrm{L}}$ | 680 | 1000 | 1700 | $\Omega$ |  |  |

## Notes:

1. Optical flux, $P(d B m)=10 \log [P(\mu \mathrm{~W}) / 1000 \mu \mathrm{~W}]$.
2. Measured at the end of the fiber optic cable with large area detector.
3. $R_{L}$ is open.
4. Pulsed LED operation at $I_{F}>80 \mathrm{~mA}$ will cause increased link tpLH propagation delay time. This extended tpLH time contributes to increased pulse width distortion of the receiver output signal.

## 1 MBd Link

(High Performance HFBR-15X2Z/25X2Z, Standard HFBR-15X4Z/25X4Z)
System Performance Under recommended operating conditions unless otherwise specified.

|  | Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Performance 1 MBd | Data Rate |  | dc |  | 1 | MBd | BER $\leq 10^{-9}$, PRBS:27-1 |  |
|  | Link Distance (Standard Cable) | $\underline{L}$ | $\begin{aligned} & 39 \\ & 47 \end{aligned}$ | 70 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ | Fig. 14 <br> Notes 1, $3,4$ |
|  | Link Distance (Improved Cable) | $\underline{L}$ | $\begin{aligned} & 45 \\ & 56 \end{aligned}$ | 78 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ | Fig. 15 <br> Notes 1, $3,4$ |
|  | Propagation <br> Delay | $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ |  | $\begin{aligned} & 180 \\ & 100 \end{aligned}$ | $\begin{aligned} & 250 \\ & 140 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{I}=0.5 \text { metre } \\ & \mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm} \\ & \hline \end{aligned}$ | Fig. 16, 18 <br> Notes 2, 4 |
|  | Pulse Width <br> Distortion tpLh-tpHL | $t_{D}$ |  | 80 |  | ns | $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ | Fig. 16, 17 <br> Note 4 |


|  | Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard | Data Rate |  | dc |  | 1 | MBd | BER $\leq 10^{-9}$, PRBS:27-1 |  |
| 1 MBd | Link Distance (Standard Cable) | $\underline{R}$ | $\begin{gathered} 8 \\ 17 \end{gathered}$ | 43 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ | Fig. 12 Notes 1, 3,4 |
|  | Link Distance (Improved Cable) | $\mathcal{L}$ | $\begin{aligned} & 10 \\ & 19 \end{aligned}$ | 48 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ | Fig. 13 Notes 1, 3, 4 |
|  | Propagation Delay | $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ |  | $\begin{aligned} & 180 \\ & 100 \end{aligned}$ | $\begin{aligned} & 250 \\ & 140 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{I}=0.5 \text { metre } \\ & \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm} \\ & \hline \end{aligned}$ | Fig. 16, 18 <br> Notes 2, 4 |
|  | Pulse Width Distortion tpLh $^{- \text {tpHL }}$ | tD |  | 80 |  | ns | $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ | Fig. 16, 17 Note 4 |

## Notes:

1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $\mathrm{I}_{\mathrm{Fdc}} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the following rules for pulse width apply: $I_{\text {FPK }} \leq 160 \mathrm{~mA}$ : Pulse width $\leq 1 \mathrm{~ms}$ IFPK $>160 \mathrm{~mA}$ : Pulse width $\leq 1 \mu \mathrm{~S}$, period $\geq 20 \mu \mathrm{~S}$.
2. The propagation delay for one meter of cable is typically 5 ns .
3. Estimated typical link life expectancy at $40^{\circ} \mathrm{C}$ exceeds 10 years at 60 mA
4. Pulsed LED operation at $\mathrm{I}_{\text {FPK }}>80 \mathrm{~mA}$ will cause increased link $\mathrm{t}_{\text {PLH }}$ propagation delay time. This extended tpLH time contributes to increased pulse width distortion of the receiver output signal.


Figure 11. Required 1 MBd interface circuit

The HFBR-25X2Z receiver cannot be overdriven when using the required interface circuit shown in Figure 11


Figure 12. Guaranteed system performance for the HFBR-15X4Z/25X4Z link with standard cable


Figure 14. Guaranteed system performance for the HFBR-15X2Z/25X2Z link with standard cable


Figure 13. Guaranteed system performance for the HFBR-15X4Z/25X4Z link with improved cable


Figure 15. Guaranteed system performance for the HFBR-15X2Z/25X2Z link with improved cable


Figure 16. 1 MBd propagation delay test circuit


Figure 17. Pulse width distortion vs. optical power

Figure 19. Propagation delay test waveforms



Figure 18. Typical link propagation delay vs. optical power


| Pin\# | Function |
| :--- | :--- |
| 1 | Anode |
| 2 | Cathode |
| 3 | Open |
| 4 | Open |
| 5 | Do not connect |
| 8 | Do not connect |

Note: Pins 5 and 8 are for mounting and retaining purposes only. Do not electrically connect these pins.

## Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Units | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | TS | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | $\mathrm{T}_{\text {A }}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temp. |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1, 4 |
|  | Time |  |  | 10 | sec |  |
| Forward Input Current |  | IFPK |  | 1000 | mA | Note 2, 3 |
|  |  | $\mathrm{I}_{\text {fdc }}$ |  | 80 |  |  |
| Reverse Input Voltage |  | $V_{B R}$ |  | 5 | V |  |

## Notes:

1. 1.6 mm below seating plane.
2. Recommended operating range between 10 and 750 mA .
3. $1 \mu \mathrm{~s}$ pulse, $20 \mu \mathrm{~s}$ period.
4. Moisture sensitivity level (MSL) is 3 .

> All HFBR-15XXZ LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed draft scheduled to go into effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your Avago sales representative for more information.

Transmitter Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.
For forward voltage and output power vs. drive current graphs.

| Parameter |  | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter Output | HFBR-15X2Z | $\mathrm{P}_{\mathrm{T}}$ | $\begin{aligned} & \hline-13.6 \\ & -11.2 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline-4.5 \\ & -5.1 \\ & \hline \end{aligned}$ | dBm | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Optical <br> Power | HFBR-15X4Z | $\mathrm{P}_{\mathrm{T}}$ | $\begin{aligned} & \hline-17.8 \\ & -15.5 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline-4.5 \\ & -5.1 \\ & \hline \end{aligned}$ | dBm | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Output Optical Power Temperature Coefficient |  | $\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ |  | -0.85 |  | \%/ ${ }^{\circ} \mathrm{C}$ |  |  |
| Peak Emission Wavelength |  | $\lambda_{\text {PK }}$ |  | 660 |  | nm |  |  |
| Forward Voltage |  | $V_{F}$ | 1.45 | 1.67 | 2.02 | V | $\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$ |  |
| Forward Voltage <br> Temperature Coefficient |  | $\Delta V_{F} / \Delta T$ |  | -1.37 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |  | Fig. 11 |
| Effective Diameter |  | $\mathrm{D}_{\text {T }}$ |  | 1 |  | mm |  |  |
| Numerical Aperture |  | NA |  | 0.5 |  |  |  |  |
| Reverse Input Breakdown Voltage |  | $V_{B R}$ | 5.0 | 11.0 |  | V | $\begin{aligned} & \mathrm{I}_{\text {Fdc }}=10 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Diode Capacitance |  | $\mathrm{C}_{0}$ |  | 86 |  | pF | $\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  |
| Rise Time |  | $\mathrm{t}_{\mathrm{r}}$ |  | 80 |  | ns | 10\% to 90\%, | Note 1 |
| Fall Time |  | $\mathrm{tf}_{f}$ |  | 40 |  | ns | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ |  |

## Note:

1. Rise and fall times are measured with a voltage pulse driving the transmitter and a series connected $50 \Omega$ load. A wide bandwidth optical to electrical waveform analyzer, terminated to a $50 \Omega$ input of a wide bandwidth oscilloscope, is used for this response time measurement.

## HFBR-25X2Z/25X4Z Receivers



| Pin\# | Function |
| :--- | :--- |
| 1 | $V_{0}$ |
| 2 | Ground |
| 3 | $V_{C C}$ |
| 4 | $R_{\perp}$ |
| 5 | Do not connect |
| 8 | Do not connect |

Note: Pins 5 and 8 are for mounting and retaining purposes only. Donot electrically connect these pins.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Reference |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature |  | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Solderina Cycle |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1,3 |  |
|  | Temp. |  |  | 10 | sec |  |
|  | Time | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 | 7 | V | Note 2 |
| Supply Voltage | $\mathrm{I}_{\mathrm{OAV}}$ |  | 25 | mA |  |  |
| Output Collector Current | $\mathrm{P}_{\mathrm{OD}}$ |  | 40 | mW |  |  |
| Output Collector Power Dissipation | $\mathrm{V}_{\mathrm{O}}$ | -0.5 | 18 | V |  |  |
| Output Voltage | $\mathrm{V}_{\mathrm{P}}$ | -5 | $\mathrm{~V}_{\mathrm{CC}}$ | V |  |  |
| Pull-up Voltage | N |  | 5 |  |  |  |
| Fan Out (TTL) |  |  |  |  |  |  |

## Notes:

1. 1.6 mm below seating plane.
2. It is essential that a bypass capacitor $0.1 \mu \mathrm{~F}$ be connected from $\operatorname{pin} 2$ to $\operatorname{pin} 3$ of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. Moisture sensitivity level (MSL) is 3 .

Receiver Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

| Parameter |  | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Receiver <br> Optical Input <br> Power Level <br> Logic 0 | HFBR-2522Z | $\mathrm{P}_{\mathrm{R}(\mathrm{L})}$ | -24 |  |  | dBm | $\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$ | Notes 1, 2, 3 <br> Note 4 |
|  |  |  |  |  |  |  |  |  |
|  | HFBR-2524Z |  | -20 |  |  |  |  |  |
| Optical Input Power Level Logic 1 |  | $\mathrm{P}_{\mathrm{R}(\mathrm{H})}$ |  |  | -43 | dBm | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=\leq 250 \mu \mathrm{~A} \end{aligned}$ |  |
| High Level Output Current |  | IOH |  | 5 | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$ | Note 5 |
| Low Level Output Voltage |  | VOL |  | 0.4 | 0.5 | V | $\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{R}(\mathrm{~L}) \mathrm{MIN}} \end{aligned}$ | Note 5 |
| High Level Supply Current |  | $I_{\text {cch }}$ |  | 3.5 | 6.3 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=0 \end{aligned}$ | Note 5 |
| Low Level Supply Current |  | $\mathrm{I}_{\text {CCL }}$ |  | 6.2 | 10 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$ | Note 5 |
| Effective Diameter |  | D |  | 1 |  | mm |  |  |
| Numerical Aperture |  | NA |  | 0.5 |  |  |  |  |
| Internal Pull-up Resistor |  | RL | 680 | 1000 | 1700 | $\Omega$ |  |  |

## Notes:

1. Measured at the end of the fiber optic cable with large area detector.
2. Pulsed LED operation at $\mathrm{I}_{\mathrm{F}}>80 \mathrm{~mA}$ will cause increased link $t_{\text {PLH }}$ propagation delay time. This extended tpLH time contributes to increased pulse width distortion of the receiver output signal.
3. The LED drive circuit of Figure 11 is required for 1 MBd operation of the HFBR-25X2Z/25X4Z.
4. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log [\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}]$.
5. $R_{L}$ is open.

## 40 kBd Link

System Performance Under recommended operating conditions unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate |  | dc |  | 40 | kBd | BER $\leq 10^{-9}$, PRBS: $2^{7}-1$ |  |
| Link Distance (Standard Cable) | $\underline{T}$ | $\begin{aligned} & 13 \\ & 94 \\ & \hline \end{aligned}$ | $\begin{gathered} 41 \\ 138 \\ \hline \end{gathered}$ |  | m | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \end{aligned}$ | Fig. 21 <br> Note 1 |
| Link Distance (Improved Cable) | $\mathcal{L}$ | $\begin{gathered} 15 \\ 111 \end{gathered}$ | $\begin{gathered} 45 \\ 154 \end{gathered}$ |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \end{aligned}$ | Fig. 22 <br> Note 1 |
| Propagation <br> Delay | $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 4 \\ 2.5 \end{gathered}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{P}_{\mathrm{R}}=-25 \mathrm{dBm}, 1 \mathrm{~m} \mathrm{fiber} \end{aligned}$ | Fig. 22, 25 <br> Note 2 |
| Pulse Width <br> Distortion tpLh- $_{\text {tpHL }}$ | tD |  |  | 7 | $\mu \mathrm{s}$ | $\begin{aligned} & -39 \leq \mathrm{P}_{\mathrm{R}} \leq-14 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ | Fig. 23, 24 |

Notes:

1. Estimated typical link life expectancy at $40^{\circ} \mathrm{C}$ exceeds 10 years at 60 mA .
2. The propagation delay for one metre of cable is typically 5 ns .


Figure 20. Typical 40 kBd interface circuit


Figure 21. Guaranteed system performance with standard cable


Figure 22. Guaranteed system performance with improved cable


Figure 23.40 kBd propagation delay test circuit


Figure 24. Typical link pulse width distortion vs. optical power


Figure 26. Propagation delay test waveforms

## HFBR-15X3Z Transmitter



| Pin \# | Function |
| :--- | :--- |
| 1 | Anode |
| 2 | Cathode |
| 3 | Open |
| 4 | Open |
| 5 | Do not connect |
| 8 | Do not connect |

Note: Pins 5 and 8 are for mounting and retaining purposes only. Do not electrically connect these pins.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Reference |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature |  | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1,4 |  |
|  | Temp. |  |  | 10 | sec |  |
|  | Time |  |  | 1000 | mA | Note 2,3 |
| Forward Input Current | $\mathrm{I}_{\mathrm{FPK}}$ |  | 80 |  |  |  |
| Reverse Input Voltage |  |  |  |  |  |  |

## Notes:

1. 1.6 mm below seating plane.
2. Recommended operating range between 10 and 750 mA .
3. $1 \mu$ s pulse, $20 \mu$ s period.
4. Moisture sensitivity level (MSL) is 3 .

## AII HFBR-15XXZ LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed draft scheduled to go into effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your Avago sales representative for more information.

Transmitter Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.
For forward voltage and output power vs. drive current graphs.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter Output Optical Power | $\mathrm{P}_{\mathrm{T}}$ | $\begin{aligned} & \hline-11.2 \\ & -13.6 \\ & -35.5 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline-5.1 \\ & -4.5 \end{aligned}$ | dBm | $\begin{aligned} & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{Fdc}}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C} \end{aligned}$ | Notes 3, 4 <br> Fig. 9, 10 |
| Output Optical Power Temperature Coefficient | $\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ |  | -0.85 |  | \%/ ${ }^{\circ} \mathrm{C}$ |  |  |
| Peak Emission Wavelength | $\lambda_{\text {PK }}$ |  | 660 |  | nm |  |  |
| Forward Voltage | $\mathrm{V}_{\mathrm{F}}$ | 1.45 | 1.67 | 2.02 | V | $\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$ |  |
| Forward Voltage <br> Temperature Coefficient | $\Delta V_{F} / \Delta T$ |  | -1.37 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |  | Fig. 18 |
| Effective Diameter | D |  | 1 |  | mm |  |  |
| Numerical Aperture | NA |  | 0.5 |  |  |  |  |
| Reverse Input Breakdown Voltage | $V_{B R}$ | 5.0 | 11.0 |  | V | $\begin{aligned} & \mathrm{I}_{\text {Fdc }}=10 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Diode Capacitance | $\mathrm{C}_{0}$ |  | 86 |  | pF | $\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  |
| Rise Time | $\mathrm{tr}_{\mathrm{r}}$ |  | 80 |  | ns | 10\% to 90\%, | Note 1 |
| Fall Time | $\mathrm{t}_{\mathrm{f}}$ |  | 40 |  |  | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ |  |

## Note:

1. Rise and fall times are measured with a voltage pulse driving the transmitter and a series connected $50 \Omega$ load. A wide bandwidth optical to electrical waveform analyzer, terminated to a $50 \Omega$ input of a wide bandwidth oscilloscope, is used for this response time measurement.

## HFBR-25X3Z Receiver



| Pin\# | Function |
| :--- | :--- |
| 1 | Vo |
| 2 | Ground |
| 3 | Open |
| 4 | Vec $_{C l}$ |
| 5 | Do not connect |
| 8 | Do not connect |

Note: Pins 5 and 8 are for mounting and retaining purposes only. Do not electrically connect these pins.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Reference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{TS}_{\mathrm{S}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering Cycle | Temp. |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1,3 |
|  | Time |  |  | 10 | sec |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 | 7 | V | Note 2 |  |
| Average Output Collector Current | $\mathrm{IO}_{\mathrm{O}}$ | -1 | 5 | mA |  |  |
| Output Collector Power Dissipation | $\mathrm{POD}_{\mathrm{OD}}$ |  | 25 | mW |  |  |
| Output Voltage | $\mathrm{V}_{\mathrm{O}}$ | -0.5 | 7 | V |  |  |

## Notes:

1. 1.6 mm below seating plane.
2. It is essential that a bypass capacitor $0.1 \mu \mathrm{~F}$ be connected from pin 2 to pin 4 of the receiver.
3. Moisture sensitivity level (MSL) is 3 .

Receiver Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Optical Power | $\mathrm{P}_{\mathrm{R}(\mathrm{L})}$ | -39 |  | -13.7 | dBm | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}}, \mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ | Notes 1,$2,3$ |
| Level Logic 0 |  | -39 |  | -13.3 |  | $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Input Optical Power Level Logic 1 | $\mathrm{P}_{\mathrm{R}(\mathrm{H})}$ |  |  | -53 | dBm | $\begin{aligned} & \mathrm{V} \mathrm{VH}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=\leq 40 \mu \mathrm{~A} \end{aligned}$ | Note 3 |
| High Level Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{O}}=-40 \mu \mathrm{~A}, \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$ |  |
| Low Level Output Voltage | VoL |  |  | 0.4 | V | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{R}(\mathrm{~L}) \mathrm{MIN}} \end{aligned}$ | Note 4 |
| High Level Supply Current | $\mathrm{I}_{\mathrm{CCH}}$ |  | 1.2 | 1.9 | mA | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$ |  |
| Low Level Supply Current | $I_{\text {CCL }}$ |  | 2.9 | 3.7 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL}}(\mathrm{MIN}) \end{aligned}$ | Note 4 |
| Effective Diameter | D |  | 1 |  | mm |  |  |
| Numerical Aperture | NA |  | 0.5 |  |  |  |  |

## Notes:

1. Measured at the end of the fiber optic cable with large area detector.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10$ Log $\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Because of the very high sensitivity of the HFBR-25X3Z, the digital output may switch in response to ambient light levels when a cable is not occupying the receiver optical port. The designer should take care to filter out signals from this source if they pose a hazard to the system.
4. Including current in 3.3 k pull-up resistor.
www.ti.com

## FEATURES

- AM26LS32A Devices Meet or Exceed the Requirements of ANSI TIA/EIA-422-B, TIA/EIA-423-B, and ITU Recommendations V. 10 and V. 11
- AM26LS32A Devices Have $\pm 7-\mathrm{V}$ Common-Mode Range With $\pm 200-\mathrm{mV}$ Sensitivity
- AM26LS33A Devices Have $\pm 15-\mathrm{V}$

Common-Mode Range With $\pm 500-\mathrm{mV}$ Sensitivity

- Input Hysteresis ... 50 mV Typical
- Operate From a Single 5-V Supply
- Low-Power Schottky Circuitry
- 3-State Outputs
- Complementary Output-Enable Inputs
- Input Impedance . . 12 k $\Omega$ Minimum
- Designed to Be Interchangeable With Advanced Micro Devices AM26LS32 ${ }^{\text {TM }}$ and AM26LS33 ${ }^{\text {TM }}$



## DESCRIPTION

The AM26LS32A and AM26LS33A devices are quadruple differential line receivers for balanced and unbalanced digital data transmission. The enable function is common to all four receivers and offers a choice of active-high or active-low input. The 3-state outputs permit connection directly to a bus-organized system. Fail-safe design ensures that, if the inputs are open, the outputs always are high.
Compared to the AM26LS32 and the AM26LS33, the AM26LS32A and AM26LS33A incorporate an additional stage of amplification to improve sensitivity. The input impedance has been increased, resulting in less loading of the bus line. The additional stage has increased propagation delay; however, this does not affect interchangeability in most applications.
The AM26LS32AC and AM26LS33AC are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The AM26LS32AI is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The AM26LS32AM and AM26LS33AM are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

[^0]
## MC14043B, MC14044B

## CMOS MSI

## Quad R-S Latches

The MC14043B and MC14044B quad R-S latches are constructed with MOS $\mathrm{P}-$ Channel and N -Channel enhancement mode devices in a single monolithic structure. Each latch has an independent Q output and set and reset inputs. The Q outputs are gated through three-state buffers having a common enable input. The outputs are enabled with a logical " 1 " or high on the enable input; a logical " 0 " or low disconnects the latch from the Q outputs, resulting in an open circuit at the Q outputs.

## Features

- Double Diode Input Protection
- Three-State Outputs with Common Enable
- Outputs Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}$ )

| Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | DC Supply Voltage Range | -0.5 to +18.0 | V |
| $\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$ | Input or Output Voltage Range <br> (DC or Transient) | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$ | V |
| $\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$ | Input or Output Current <br> (DC or Transient) per Pin | $\pm 10$ | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation, per Package <br> (Note 1) | 500 | mW |
| $\mathrm{~T}_{\mathrm{A}}$ | Ambient Temperature Range | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature <br> (8-Second Soldering) | 260 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}$ ). Unused outputs must be left open.

## ON Semiconductor ${ }^{\circledR}$

http://onsemi.com


ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

- Convert TTL Voltage Levels to MOS Levels
- High Sink-Current Capability
- Input Clamping Diodes Simplify System Design
- Open-Collector Driver for Indicator Lamps and Relays


## description/ordering information

These hex buffers/drivers feature high-voltage open-collector outputs to interface with high-level circuits or for driving high-current loads. They are also characterized for use as buffers for driving TTL inputs. The 'LS07 devices have a rated output voltage of 30 V , and the SN74LS17 has a rated output voltage of 15 V . The maximum sink current is 30 mA for the SN54LS07 and 40 mA for the SN74LS07 and SN74LS17.

These circuits are compatible with most TTL families. Inputs are diode-clamped to minimize transmission-line effects, which simplifies design. Typical power dissipation is 140 mW , and average propagation delay time is 12 ns.

ORDERING INFORMATION

| $\mathrm{T}_{\text {A }}$ | PACKAGE $\dagger$ |  | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
| :---: | :---: | :---: | :---: | :---: |
| $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | PDIP - N | Tube | SN74LS07N | SN74LS07N |
|  | SOIC - D | Tube | SN74LS07D | LS07 |
|  |  | Tape and reel | SN74LS07DR |  |
|  | SOP - NS | Tape and reel | SN74LS07NSR | 74LS07 |
|  | SSOP - DB | Tape and reel | SN74LS07DBR | LS07 |

$\dagger$ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
logic diagram (positive logic)


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

- Package Options Include Plastic "Small Outline"' Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


## description

These devices contain four independent 2-input AND gates.
The SN5408, SN54LS08, and SN54S08 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN7408, SN74LS08 and SN74S08 are characterized for operation from $0^{\circ}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| A | B |  |
| $H$ | $H$ | $H$ |
| L | X | L |
| X | L | L |

logic symbol ${ }^{\dagger}$

$\dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, J, N, and W packages.

SN5408, SN54LS08, SN54S08 . . . J OR W PACKAGE SN7408 . . . J OR N PACKAGE
SN74LS08, SN74S08 . . . D, J OR N PACKAGE
(TOP VIEW)

| 1A 1 | U14] VCC |
| :---: | :---: |
| 18 2 | 13.4 B |
| $1 \mathrm{Y} \square^{3}$ | 12.4 A |
| 2A 4 | 11.4 Y |
| 2B 5 | 10 3B |
| 2 Y -6 | $9] 3 \mathrm{~A}$ |
| GND 7 | 8 8 3 Y |

SN54LS08, SN54S08 . . . FK PACKAGE
(TOP VIEW)


NC-No internal connection
logic diagram (positive logic)


- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


## description

These devices contain two independent 4-input AND gates.

The SN54LS21 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LS21 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## FUNCTION TABLE (each gate)

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| A | B | C |  |
| H | H | H | H |
| L | X | X | X |
| X | L | X | X |
| X | X | L | X |
| X | X | X | L |

logic symbol ${ }^{\dagger}$

$\dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, J, N, and W packages.

## SN54LS21 . . . J OR W PACKAGE SN74LS21 . . . D OR N PACKAGE (TOP VIEW)



SN54LS21 . . . FK PACKAGE (TOP VIEW)


NC-No internal connection
logic diagram

(positive logic) $Y=A \cdot B \cdot C \cdot D$ or $Y=\overline{\bar{A}+\bar{B}+\bar{C}+\bar{D}}$

- Package Options Include Plastic and Ceramic DIPs and Ceramic Flat Packages
- Dependable Texas Instruments Quality and Reliability


## description

These devices contain dual 4 -input positive NOR gates with strobe. They perform the Boolean function:

$$
Y=\overline{G\{A+B+C+D)}
$$

(with 1 X and $1 \overline{\mathrm{X}}$ of ' 23 left open).
The SN5423 and the SN5425 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN7423 and the SN7425 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## FUNCTION TABLE

| INPUTS |  |  |  |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | G | Y |
| H | X | X | X | H | L |
| X | H | X | X | H | L |
| X | X | H | X | H | L |
| X | X | X | H | H | L |
| L | L | L | L | X | H |
| X | X | X | X | L | H |

Expander inputs are open.
$H=$ high levei, $L=$ low level, $X=$ irrelevant
logic symbols ${ }^{\dagger}$
SN5423/SN7423


```
SN5423 . . . J OR W PACKAGE
```

    SN7423 . . .N PACKAGE
                (TOP VIEW)
    
SN5425 . . . J OR W PACKAGE
SN7425 . . . N PACKAGE
(TOP VIEW)

| 1 A -1 | U14] Vcc |
| :---: | :---: |
| 18-2 | 13 20 |
| 1G-3 | $12 \mathrm{72C}$ |
| 1C-4 | 1172 G |
| 10-5 | 1072B |
| $1 \mathrm{Y}{ }^{1}$ | $9 \square 2 \mathrm{a}$ |
| GND [ | $8 \bigcirc 2 \mathrm{~V}$ |

logic diagram


SN5425/SN7425


[^1]Pin numbers are for $J, N$, or $W$ packages.

## PERIPHERAL DRIVERS FOR <br> HIGH-CURRENT SWITCHING AT VERY HIGH SPEEDS

- Characterized for Use to $\mathbf{3 0 0} \mathrm{mA}$
- High-Voltage Outputs
- No Output Latch-Up at 20 V (After Conducting $\mathbf{3 0 0} \mathrm{mA}$ )
- High-Speed Switching
- Circuit Flexibility for Varied Applications
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame Provides Cooler Operation and Improved Reliability
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF DEVICES

| DEVICE | LOGIC OF <br> COMPLETE CIRCUIT | PACKAGES |
| :---: | :---: | :---: |
| SN55451B | AND | FK, JG |
| SN55452B | NAND | JG |
| SN55453B | OR | FK, JG |
| SN55454B | NOR | JG |
| SN75451B | AND | D, P |
| SN75452B | NAND | D, P |
| SN75453B | OR | D, P |
| SN75454B | NOR | D, P |

SN55451B, SN55452B,
SN55453B, SN55454B . . . JG PACKAGE
SN75451B, SN75452B,
SN75453B, SN75454B . . . D OR P PACKAGE


SN55451B, SN55452B SN55453B, SN55454B . . . FK PACKAGE


NC - No internal connection

## description

The SN55451B through SN55454B and SN75451B through SN75454B are dual peripheral drivers designed for use in systems that employ TTL logic. This family is functionally interchangeable with and replaces the SN75450 family and the SN75450A family devices manufactured previously. The speed of the devices is equal to that of the SN75450 family, and the parts are designed to ensure freedom from latch-up. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN75453B, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively (assuming positive logic), with the output of the logic gates internally connected to the bases of the npn output transistors.
The SN55' drivers are characterized for operation over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN75' drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

# TL082 Wide Bandwidth Dual JFET Input Operational Amplifier 

Check for Samples: TL082-N

## FEATURES

- Internally Trimmed Offset Voltage: 15 mV
- Low Input Bias Current: 50 pA
- Low Input Noise Voltage: $16 \mathrm{nV} / \mathrm{VHz}$
- Low Input Noise Current: 0.01 pA//Hz
- Wide Gain Bandwidth: $\mathbf{4} \mathbf{~ M H z}$
- High Slew Rate: 13 V/us
- Low Supply Current: $\mathbf{3 . 6} \mathbf{~ m A}$
- High Input Impedance: $10^{12} \Omega$
- Low Total Harmonic Distortion: $\leq 0.02 \%$
- Low 1/f Noise Corner: 50 Hz
- Fast Settling Time to 0.01\%: $2 \mu \mathrm{~s}$


## DESCRIPTION

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage ( BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL082 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and most LM358 designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

## Typical Connection



## Connection Diagram



Figure 1. PDIP/SOIC Package (Top View) See Package Number D0008A or P0008E

[^2]
## ULTRALOW-NOISE, HIGH PSRR, FAST RF 500-mA LOW-DROPOUT LINEAR REGULATORS

## FEATURES

- 500-mA Low-Dropout Regulator With EN
- Available in $1.6-\mathrm{V}, 1.8-\mathrm{V}, 2.5-\mathrm{V}, 3-\mathrm{V}, 3.3-\mathrm{V}$, and Adjustable
- High PSRR ( 50 dB at 10 kHz )
- Ultralow Noise ( $33 \mu \mathrm{~V}$ )
- Fast Start-Up Time ( $50 \mu \mathrm{~s}$ )
- Stable With a 1- $\mu \mathrm{F}$ Ceramic Capacitor
- Excellent Load/Line Transient
- Very Low Dropout Voltage ( 110 mV at Full Load, TPS79530)
- 5-Pin SOT223-5 Package


## APPLICATIONS

- Powering Noise-Sensitive Circuitry
- RF
- Audio
- VCOs
- DSP/FPGA/Microprocessor Supplies
- Post Regulator for Switching Supplies


## DESCRIPTION

The TPS795xx family of low-dropout (LDO) low-power linear voltage regulators features high power supply rejection ratio (PSRR), ultralow noise, fast start-up, and excellent line and load transient responses in a small outline, SOT223-5, package. Each device in the family is stable with a small $1-\mu \mathrm{F}$ ceramic capacitor on the output. The family uses an advanced, proprietary BiCMOS fabrication process to yield extremely low dropout voltages (e.g., 110 mV at 500 mA ). Each device achieves fast start-up times (approximately $50 \mu \mathrm{~s}$ with a $0.001-\mu \mathrm{F}$ bypass capacitor) while consuming very low quiescent current ( $265 \mu \mathrm{~A}$ typical). Moreover, when the device is placed in standby mode, the supply current is reduced to less than $1 \mu \mathrm{~A}$. The TPS79530 exhibits approximately $33 \mu \mathrm{~V}_{\text {RMS }}$ of output voltage noise with a $0.1-\mu \mathrm{F}$ bypass capacitor. Applications with analog components that are noise sensitive, such as portable RF electronics, benefit from the high PSRR and low noise features, as well as the fast response time.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


[^0]:    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. AM26LS32, AM26LS33 are trademarks of Advanced Micro Devices, Inc..

[^1]:    ${ }^{\dagger}$ These symbols are in accordance with ANSIIIEEE Std. 91-1984 and IEC Pubtication 617-12

[^2]:    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

