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Resumen

La presente Tesis Doctoral se ha dedicado al desarrollo de nuevas herramien-
tas de análisis y optimización no lineal para el diseño de circuitos multifuncionales
basados en osciladores que, además de llevar a cabo la generación de las señales de
oscilador local que habitualmente se requieren en los sistemas de comunicaciones,
integran funcionalidades adicionales, necesarias en antenas activas de propósito
general, tales como mezcla, multiplicación en frecuencia, desfase variable y am-
plificación.

Estas técnicas hacen posible el desarrollo de complejos circuitos activos de
microondas que, con un número reducido de componentes activos, llevan a cabo
multitud de funciones adicionales, que de otra manera debeŕıan ser implemen-
tadas por otros subsistemas independientes. Mediante esta filosof́ıa de diseño, el
consumo de potencia, el tamaño y el número de fuentes de ruido presentes en el
sistema pueden ser potencialmente reducidos de manera significativa.

El presente documento se ha organizado en varios caṕıtulos. El Caṕıtulo 1
constituye una recopilación de los métodos teóricos de análisis y optimización,
aśı como de múltiples estrategias de diseño no lineal de circuitos de microondas,
que se han presentado en la literatura y que son de aplicación directa en los
circuitos y sistemas que se abordarán en caṕıtulos posteriores. Asimismo, las
diferentes soluciones que se pueden encontrar en los circuitos que se estudian en
este trabajo, junto con las bifurcaciones y fenómenos de dinámica no lineal más
comunes, se ilustran mediante ejemplos desarrollados a tal efecto, introduciendo
los métodos requeridos para su caracterización, análisis y optimización.

Las contribuciones originales presentadas en este trabajo comienzan en el
Caṕıtulo 2, en el que se utilizan mezcladores autooscilantes armónicos sincro-
nizados para el control de una agrupación de cuatro antenas receptoras. Estos
circuitos integran, junto con la generación de la señal de oscilador local, funcio-
nes tales como la mezcla armónica y la introducción de un desfase controlable en
un rango continuo que excede 360◦, introduciendo una ganancia de conversión
positiva. La dinámica no lineal de esta topoloǵıa circuital se analiza y describe en
detalle, particularizándola para su aplicación en la agrupación de antenas activas
que se ha propuesto. El sistema completo se ha validado mediante la construcción
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y medida de un prototipo, que ha constituido la primera realización práctica de
una agrupación de antenas activas basada en mezcladores autooscilantes armóni-
cos sincronizados. Se ha medido un rango continuo de barrido del haz entre −23,5
y 23,5◦.

La utilidad práctica de los mezcladores autooscilantes armónicos sincroniza-
dos se demuestra nuevamente en el Caṕıtulo 3, mediante su integración en una
antena receptora de polarización variable. La dinámica no lineal de estos circuitos
es analizada y ajustada para su aplicación a la antena de polarización variable,
en la que dos circuitos alimentan dos modos radiantes con polarización lineal y
ortogonales entre śı, de una antena en tecnoloǵıa impresa. Se ha desarrollado un
novedoso prototipo del sistema completo que permite, mediante una única señal
de control continua, la variación de la polarización en la antena receptora en un
rango que incluye polarización circular a derechas e izquierdas, junto con dos po-
larizaciones lineales perpendiculares entre śı. Una vez más, la utilización de esta
topoloǵıa circuital permite llevar a cabo la conversión a frecuencia intermedia de
la señal recibida, introduciendo una ganancia de conversión positiva.

Los circuitos mezcladores autooscilantes armónicos sincronizados que se uti-
lizan en los Caṕıtulos 2 y 3, han demostrado de manera experimental sus ven-
tajosas propiedades para aplicaciones de antenas activas en recepción, donde se
puede asumir que la señales introducidas en el circuito tienen un nivel de poten-
cia relativamente bajo. Sin embargo, este tipo de circuitos no es apropiado para
soluciones transmisoras, en las que generalmente se requieren niveles de potencia
de salida relativamente altos, dado que la presencia de señales de nivel elevado
en el circuito puede perturbar su solución oscilatoria autónoma.

Con el fin de superar esta limitación, permitiendo extender el uso de circuitos
multifuncionales basados en osciladores a sistemas de antenas activas en transmi-
sión, en el Caṕıtulo 4 se presenta una novedosa solución, basada en un oscilador
controlado por tensión convencional, en el que se ha optimizado la generación de
su cuarto armónico, que se utilizará como señal de salida. Puesto que la eficiencia
en la generación de armónicos superiores que se consigue en osciladores es t́ıpi-
camente muy limitada, se han desarrollado nuevas técnicas de optimización no
lineal para la reducción del consumo de potencia de los circuitos, de modo que
éstos se puedan utilizar en aplicaciones alimentadas mediante bateŕıas. Mediante
la utilización de las técnicas de análisis de dinámica no lineal presentadas en el
Caṕıtulo 1, se ha evaluado el comportamiento del circuito en diversas condiciones
de operación.

Para la validación experimental del diseño, se ha fabricado y medido un pro-
totipo de oscilador armónico, analizando experimentalmente sus prestaciones. Se
ha prestado especial atención a su comportamiento en cuanto a ruido de fase
aśı como a su capacidad para transmitir señales moduladas en fase mediante dos
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procedimientos: modulación directa de la señal de polarización del varactor o
sincronización con una señal modulada.

Los osciladores armónicos desarrollados en el caṕıtulo 4, se han empleado en
el caṕıtulo 5 para la realización práctica de una agrupación bidimensional de 4×4
antenas. La dinámica no lineal de los circuitos se ha analizado en profundidad,
identificando y combatiendo posibles fuentes de problemas prácticos tales como
el acoplo mutuo. En ese sentido, se ha desarrollado un diseño de ranuras en el
plano de masa para la reducción del acoplo entre elementos de la agrupación de
antenas.

Las especificaciones para las redes auxiliares necesarias, tales como divisores,
acopladores direccionales, etc. se han establecido desde un punto de vista con-
servador, orientado a la prevención de posibles problemas prácticos que pudieran
perturbar el normal funcionamiento del sistema. Los criterios de diseño aplicados
dan prioridad a la obtención de prototipos operativos, por encima de otros obje-
tivos, tales como maximizar la eficiencia, que se debeŕıan que abordar en etapas
posteriores de proceso de diseño.

La utilización práctica de esta novedosa topoloǵıa circuital multifuncional se
demuestra mediante la realización y caracterización de un prototipo de agrupa-
ción bidimensional de antenas controlada mediante osciladores armónicos.

En el Caṕıtulo 6, se propone una original topoloǵıa multifuncional basada en
osciladores, capaz de operar de manera simultánea como transmisor y receptor,
con aplicación en comunicaciones de baja potencia y alcance limitado. Esta nueva
solución se ha concebido para formar, junto los osciladores armónicos presentados
en el Caṕıtulo 4, una topoloǵıa en dos etapas. La combinación de ambos circuitos
llevaŕıa a cabo diversas funcionalidades en ambos sentidos de la comunicación,
tales como las correspondientes conversiones de frecuencia, introduciendo una
cierta ganancia de conversión, el desfase variable en rango continuo, aśı como
la generación de la señal de oscilador local. En el Caṕıtulo 6, las técnicas de
diseño empleadas para la implementación de los diferentes elementos del circuito
se describen en profundidad, con especial atención a las redes de polarización
basadas en ĺıneas de anchura modulada, además del multiplexor de entrada y el
diplexor de salida.

Se han optimizado las soluciones estacionarias del circuito, aśı como los pro-
ductos de intermodulación asociados a las operaciones de conversión de frecuencia
deseadas, obteniendo ganancias de conversión positivas en ambos sentidos. Se ha
fabricado un prototipo preliminar del circuito para la validación experimental del
diseño. Sin embargo, se han detectado ciertas discrepancias entre el comporta-
miento práctico del circuito y los resultados de simulación, especialmente en lo
que se refiere a la amplitud y frecuencia de la oscilación libre.





Conclusiones

En el presente trabajo se ha estudiado y evaluado experimentalmente la apli-
cación de diversos circuitos multifuncionales basados en osciladores a sistemas de
comunicaciones de propósito general implementados mediante antenas activas.

En primer lugar, se han utilizado mezcladores autooscilantes armónicos sin-
cronizados para el control de una agrupación de cuatro antenas en recepción.
Dichos circuitos llevan a cabo diversas funciones, tales como la generación de la
señal de oscilador local, conversión a frecuencia intermedia, generación armónica
con ganancia, aśı como desfase variable en un rango de más de 360 grados. El sis-
tema se ha validado experimentalmente mediante la fabricación de un prototipo,
sobre el que se ha conseguido variar la orientación del haz en un rango continuo
entre -23.5 y 23.5 grados.

La misma topoloǵıa se ha empleado para la implementación de una antena
activa de polarización variable, en la que dos circuitos alimentan dos modos con
polarización lineal y ortogonales entre śı, de una antena en tecnoloǵıa impresa.
El prototipo fabricado permite la variación de la polarización de la antena en
un rango que incluye polarización circular a derecha e izquierda, junto con dos
polarizaciones lineales ortogonales.

Se ha presentado un novedoso diseño de oscilador armónico, en el que se ha
reducido significativamente el consumo, para su utilización en transmisión. Se
ha fabricado un prototipo del diseño optimizado, dando lugar a un consumo de
6 mW. Se ha caracterizado el comportamiento del circuito en cuanto a ruido
de fase en diversas condiciones de operación y se ha estudiado la posibilidad de
utilizar el circuito para la transmisión de señales moduladas.

El diseño de oscilador armónico se ha aplicado al control de una agrupación
bidimensional de 4×4 antenas. La versatilidad del diseño se ha ilustrado expe-
rimentalmente mediante la caracterización de un prototipo de la agrupación de
antenas en transmisión.

Finalmente, se ha propuesto un novedoso circuito capaz de operar de manera
simultánea en transmisión y recepción, para comunicaciones de baja potencia y
alcance limitado. El circuito se ha concebido para su utilización junto con el osci-
lador armónico, dando lugar a una topoloǵıa en dos etapas, capaz de implementar
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diversas funciones sobre ambos sentidos de la comunicación. Se han optimizado
las soluciones estacionarias del circuito, aśı como las operaciones de mezcla desea-
das, obteniendo valores positivos de ganancia de conversión en ambos sentidos.
Sin embargo, se han encontrado ciertas discrepancias entre los resultados de las
simulaciones y las medidas realizadas en un prototipo preliminar del circuito.
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Introduction

The present doctoral work is devoted to the development of new analysis
and optimisation techniques for the design of oscillator based circuits that, apart
from generating a local oscillator signal required in general purpose communica-
tion systems, integrate additional functionalities that are generally required in
active antenna topologies, such as phase-shifting in a continuous range, frequency
multiplication, frequency mixing, and amplification.

The techniques enable the development of complex microwave active circuits
and antennas that, with a reduced number of active elements, realise multiple
functions that otherwise would be implemented with different sub-system blocks.
With this design philosophy, the DC power consumption, the overall size as well
as the number of inherent noise sources of the system are strongly reduced.

The document is organised in several chapters. Chapter 1 contains a custom
compilation of the theory, analysis and optimisation methods, as well as of several
design strategies that have been presented in the scientific literature, which have a
direct application on the non-linear circuits and systems studied in later chapters.
In the compilation the different solutions that can be found in the systems studied
in this Thesis, the possible bifurcations and other dynamical phenomena, as
well as the required methods for their calculation, analysis or optimisation, are
described and explained through purpose developed examples.

The novel scientific contributions generated by the author start in Chapter 2,
in which Injection Locked Third Harmonic Self Oscillating Mixers (IL3HSOM)
circuits are used to control a four element receiving phased antenna array. The
non-linear dynamics of these circuits, that perform several functions, such as
the generation of the local oscillator signal, harmonic mixing with gain, and
phase shifting in a continuous range that exceeds the generally required 360◦, are
analysed and described in detail, for their integration in the proposed receiving
phased antenna array system. The operation of these circuits is demonstrated
through the non-linear analysis of the overall system including the effect of the
radiating elements of the antenna array, and validated by experimental results
obtained through the fabrication and measurement of a prototype. The results
presented in this chapter represent the first realisation of an IL3HSOM based
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2 Introduction

phased antenna array, in which a continuous beam scanning range between −23.5
and 23.5◦, has been achieved.

The demonstration of the practical usability of injection locked third har-
monic self oscillating mixer circuits in active antennas is continued in Chapter 3,
where these circuits are employed for the implementation of a receiving polarisa-
tion agile active antenna. The non-linear behaviour of the harmonic self oscillat-
ing mixer circuits is analysed and adjusted for their integration in the polarisation
agile active antenna. The overall performance of the system, composed of two
IL3HSOM circuits, feeding two orthogonal linearly polarised radiating modes of
a microstrip antenna, is analysed through non-linear simulations and validated
through the experimental characterisation of a prototype. The work presented
in this chapter represents the first realisation of an IL3HSOM based polarisation
agile antenna, enabling the selection—through a single DC control signal—of
both right and left hand circular polarisations, along with two orthogonal linear
polarisation states. The inherent operation of IL3HSOM circuits additionally
performs the frequency downconversion operation and the local oscillator signal
generation, obtaining an overall positive conversion gain.

The ILHSOM circuits presented in Chapters 2 and 3 have proved to be very
useful for their application in receiving active antennas, where it can be assumed
that the received signals present relatively low power levels. However, this type
of circuits is not appropriate for transmitting solutions in which a relatively high
power is required, as the presence of high level signals would generally perturb
the autonomous oscillatory solution.

In order to overcome this limitation, enabling the use of oscillator based cir-
cuits in transmitting active antenna systems, a novel type of multifunctional
circuit is proposed in Chapter 4, consisting in a voltage controlled oscillator in
which the fourth harmonic component is optimised and used as the output sig-
nal. Since the efficiency in the harmonic generation in oscillators is typically very
low, new non-linear optimisation techniques for the reduction of the DC power
consumption of the circuit have been developed, enabling its use in general pur-
pose battery powered applications. The design and optimisation techniques used
during the realisation of the low power fourth harmonic oscillator are described
step by step. The non-linear dynamics of the circuit are analysed by means of
the techniques presented in Chapter 1, in both free running and injection locked
operation regimes. In the latter, the phase shift tuning capability of the circuit
is also analysed.

For the experimental validation of the design, a prototype of the circuit has
been manufactured and measured. Its phase noise performance has been analysed
under different operating conditions, as well as the dynamics of the circuit when
employed for the transmission of phase modulated signals through two different
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approaches: when modulating the varactor bias voltage and when introducing a
phase modulated reference signal.

The application of the fourth Harmonic OSCillators (4HOSC), developed in
Chapter 4, for the control of a transmitting active antenna array is described in
Chapter 5. In the proposed system, four identical 4HOSC circuits are used to
feed four different rows of a purpose designed 4×4 antenna array. The non-linear
dynamics of the 4HOSC circuits in this application are analysed and potential
practical sources of dysfunctional behaviour of the system, such as mutual cou-
pling, are studied and restrained. In particular, a Defective Ground Structure
(DGS) design is developed for the reduction of the mutual coupling between
elements of the 4×4 antenna array.

The design requirements for all the auxiliary networks required, such as power
dividers, synchronisation networks, sampling directional couplers, etc., have been
established from a conservative standpoint, aimed at preventing the appearance
undesired practical effects, that might hamper the normal operation of the circuit.
The applied design criteria prioritises the obtention of operative proof of concept
prototypes over other objectives, such as maximising the efficiency, which ought
to be addressed in subsequent design stages.

The usability of this type of multifunctional oscillator based circuits is demon-
strated through the realisation and experimental characterisation of a prototype
of a 4HOSC based transmitting active antenna array.

In Chapter 6, a novel multifunctional circuit topology is proposed for active
antennas operating as both transmitter and receiver, for low power short range
communications. The Full Duplex Self Oscillating Mixer (FDSOM) proposed in
Chapter 6, is meant to be used in a two stage topology, together with a 4HOSC
circuit. The combination of both circuits is intended to provide several func-
tionalities such as the frequency upconversion of the transmitted signals and the
frequency downconversion of the received signals, both with positive conversion
gain, the phase shifting in a continuous range that exceeds the 360◦, generally
required for most practical applications, as well as the generation of a local os-
cillator signal. In the chapter, the design techniques proposed for the realisation
of the different FDSOM circuit elements are described in detail, paying special
attention to the arbitrarily width modulated microstrip line based multiband DC
feeding networks and harmonic loads, the input multiplexer and output diplexer
networks and the required filters.

The steady state solutions of the circuit as well as the desired mixing oper-
ations have been optimised, obtaining positive conversion gain values. A pre-
liminary prototype of the circuit has been manufactured for the experimental
validation of the design. Several disagreements have been found between the
simulated results and the measured performance of this first prototype, espe-
cially in the amplitude and frequency of the oscillatory solution. Future work
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will be aimed at the identification of the causes of those deviations, as well as to
their correction.
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1.1. Introduction

The mathematical description of non-linear systems relies on a series of spe-
cific theoretical concepts and definitions, whose understanding is necessary for
the analysis and classification of the different types of dynamic behaviour. The
purpose of this chapter is to give an introductory insight into these fundamen-
tal mathematical concepts, that will be extensively used throughout the present
work, and to establish a homogeneous terminology and notation system. Al-
though the scope of this preliminary theoretical summary has been restricted
to the specific conceptual requirements of the particular non-linear phenomena
addressed in the subsequent chapters, a comprehensive analysis of these con-
cepts of non-linear dynamics can be found in the list of specialised bibliographic
references provided.

The time domain formulation of non-linear systems is introduced in the first
place, categorising the different types of steady state behaviour that can be ob-
served in those systems, and describing the characteristic features of the asso-
ciated solutions. Since, for a particular steady state regime to be practically
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observable, it must be able to recover from perturbations, time domain stability
analysis techniques will be presented, aimed at determining whether the calcu-
lated solutions are robust and thus potentially subject to physical observation.
Furthermore, the resolution of the non-linear differential equations that rule the
behaviour of these systems is usually very complex and requires the use of numer-
ical integration techniques, whose fundamental principles will be briefly discussed
at the end of the section.

In certain cases, it is advantageous to express the equations that describe the
system dynamics in the frequency domain, as it significantly simplifies the rep-
resentation of different components (such as the linear networks and distributed
elements present in electronic circuits), and enables the use of efficient numerical
resolution techniques. In Section 1.3, the frequency domain formulation of non-
linear systems is presented, together with the corresponding frequency domain
stability analysis techniques and different frequency domain numerical resolution
methods.

The solution of a dynamical system is usually influenced by the value of
the parameters that describe the system components and therefore, quantitative
changes in the system solutions are normally observed when varying these param-
eters. However, under specific circumstances, a qualitative change in the solution
known as bifurcation is observed. In Section 1.4 the fundamental concepts of bi-
furcation theory are introduced and the main different types of bifurcations are
characterised.

Finally, the synchronisation or injection locking phenomena, which take place
when an oscillator is perturbed by a periodic external signal under certain con-
ditions, are addressed in Section 1.5. These non-linear effects are the basis for
some functionalities of the circuit topologies dealt with in the present work and
will thus be largely exploited in the remaining chapters.

1.2. Time Domain Formulation

The non-linear differential equations ruling circuit behaviour are generally
expressed in terms of a vector of state variables x̄ = [x1, x2, . . . , xN ]. This vector
consists of the minimum number of variables such that its knowledge at time t0,
together with that of the system input for t ≥ t0, determine the circuit response
for t ≥ t0. Let x̄ ∈ R

N be the vector containing the system state variables.
A general non-linear circuit can be described with of a system of differential
algebraic equations that, under certain conditions, can be expressed in explicit
state form [1]. Depending on the presence or absence of time varying generators,
two different explicit formulations are possible:

dx̄

dt
= f̄(x̄, t), x̄(t0) = x̄0 Non-autonomous system (1.1a)
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dx̄

dt
= f̄(x̄), x̄(t0) = x̄0 Autonomous system (1.1b)

where x̄(t) ∈ R
N is the system state vector at time t. The function f̄ , which is

non-linear in x̄, is called the vector field.

In the case of non-autonomous systems, the presence of at least one inde-
pendent time varying generator brings about a differential equation of the form
(1.1a), in which the vector field depends explicitly on time, f̄ : R

N × R → R
N .

For autonomous systems, on the other hand, a differential equation of the form
(1.1b) is obtained, with a time independent vector field, f̄ : R

N → R
N . In such a

circuit, only external DC sources can be involved. The particular case in which
the vector field f̄ is only defined in a subset U ⊂ R

N × R (non-autonomous sys-
tems), or U ⊂ R

N (autonomous systems), could also be considered [1], although
it is not interesting for the purpose of this work.

The vector field f generates, for a non-autonomous system, a flow φ̄t : R
N ×

R → R
N , which represents the state of the system at time t, given the initial

condition x̄(t0) = x̄0. A solution of the system is a smooth function φ̄t(x̄0, t0) =
ū(t), defined in a given time interval It = (a, b) ⊆ R, fulfilling (1.1a) for all t in
It. Mathematically,

dū(t)

dt
= f̄(ū(t), t), ū(t0) = x̄0, ∀t ∈ It. (1.2)

Therefore, φ̄t(x̄0, t0) defines a solution curve, trajectory or orbit of the system,
based at (x̄0, t0). An analogous definition could be formulated for autonomous
systems, in terms of (1.1b). As a consequence of the lack of an independent time
reference in this kind of systems, if ū(t) is a solution of (1.1b), then ū(t + τ),
with τ being an arbitrary time shift, is also a solution.

For compactness in the formulation, the same formal equation (1.1b) can be
used both for autonomous and non-autonomous systems. The non-autonomous
system can be expressed as an autonomous system if the time t is considered a
state variable and included in the state vector x̄. The variable t grows unbound-
edly as t tends to infinity so, for the particular case of periodic vector fields,
the angular magnitude θ = 2π

T t is usually introduced, where T is the period of
variation (f̄(x̄, t + T ) = f̄(x̄, t)). Under these conditions, the equations of the
non-autonomous system are expressed as:

dx̄

dt
= f̄(x̄,

T

2π
θ)

dθ

dt
=

2π

T

(1.3)

Because f̄ is periodic in time with period T , the new system (1.3) is periodic in
θ with period 2π, and its solution is defined in the cylindrical space R

N ×S, with
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S = [0, 2π). The same transformation is possible for aperiodic non-autonomous
systems although, in this case, the variation of θ might be unbounded.

The systems considered in this work are assumed to fulfil the theorem of Ex-
istence and Uniqueness [1], which states that, if the vector field f̄ is continuously
differentiable1, then there exists a unique function ū(t) satisfying the differential
equation (1.1), for each given set of initial conditions x̄(t0) = x̄0.

The initial value of the state vector x̄0, and the initial time t0, determine
the circuit solution and, consequently, solution curves cannot intersect. If two
solution curves intersected at the point (x̄i, ti), assuming the initial conditions
x̄(ti) = x̄i, the solution would not be unique.

1.2.1. Steady State Solutions and Limit Sets

Dynamical systems can be classified in terms of their type of steady state
solutions, which refer to the asymptotic behaviour of the system as time tends
to infinity.

A trajectory of a dynamical system based at the initial state x̄(t0) = x̄0

settles, perhaps after a transient period, onto a limit set. The definition of non-
wandering state is usually employed to determine when the system has reached
the steady state. Wandering points correspond to transient behaviour, while
steady state or asymptotic behaviour corresponds to orbits of non-wandering
states [1].

A state p̄ is called non-wandering for the flow φ̄t if, for any neighbourhood
U of p̄, there exists arbitrarily large t, such that φ̄t(U) ∩ U 6= ∅.

Qualitatively, a non-wandering state has arbitrarily close trajectories which,
after a sufficient period of time, come back within any specified distance of this
state.

The subset S ⊂ R
N is said to be invariant for a flow φ̄t on R

N if, for every
x̄ ∈ S, φ̄t(x̄) ∈ S ∀t ∈ R.

A state p̄ is an ω-limit point of x̄ if there exists a succession of states in the
orbit of x̄, φ̄t(x̄), that tends to p̄ as time tends to infinity.

∃ {tn}n∈N, lim
n→∞

tn = ∞| lim
n→∞

φ̄tn(x̄) = p̄ (1.4)

Similarly, a state q̄ is an α-limit point of x̄ if there exists a succession of states
in the orbit of x̄, φ̄t(x̄), that tends to q̄ as time tends to minus infinity.

∃ {tn}n∈N, lim
n→∞

tn = −∞| lim
n→∞

φ̄tn(x̄) = q̄ (1.5)

1In order to be a continuously differentiable function, the vector field must have continuous
partial derivatives with respect to each state variable xi, i ∈ [1, . . . , N ] and time t, (in the
case of non-autonomous systems).
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The α- and ω-limit sets α(x̄), ω(x̄), are the sets of α- and ω-limit points of
x̄. Limit sets are closed and invariant [2].

A closed invariant set A ⊂ R
N is called an attracting set if there is some

neighbourhood U of A, such that φ̄t(x̄) ∈ U for t ≥ 0 and φ̄t(x̄) → A as t → ∞,
for all x̄ ∈ U . The set

⋃

t≤0 φ̄t(U) is the domain or basin of attraction of A. An
attracting set ultimately captures all orbits starting in its domain of attraction.
A repelling set can be defined analogously, replacing t by −t.

Domains of attraction of disjoint attracting sets are necessarily non-
intersecting and separated by the stable manifolds of non-attracting sets
[1].

1.2.2. Phase Space Representation of Solutions

The solutions of a non-linear system can be analysed by representing the
variation of the different state variables versus time.

Alternatively, the value of the state vector at each time instant x̄(t) can
be represented by a point in the phase space, which is defined by assigning a
coordinate axis to each state variable x̄i, i ∈ [1, . . . ,N ]. The evolution of the
system is indicated by a set of sequential points versus the implicit time variable,
following a trajectory in the phase space. In the case of non-autonomous systems,
a time related variable must be included in the phase space. Therefore, the phase
space representation for a system with N state variables has N dimensions if the
system is autonomous, whereas it has N + 1 if the system is non-autonomous.

In practice, the graphical phase space representation is limited to a maximum
of three dimensions. However, the solution trajectories of higher order systems
can be projected onto lower order phase spaces, with the subsequent loss of
information.

The steady state solutions of non-linear systems can by classified into four
principal types: equilibrium point or dc solutions, periodic solutions, quasiperi-
odic solutions, and chaotic solutions. The main characteristics of each type of
solution are described in the following section.

1.2.2.1. Equilibrium Point or DC Solution

An equilibrium point x̄eq of an autonomous system2 is a constant solution of
(1.1b), φ̄t(x̄eq) = x̄eq for all t. Except for some pathological cases [3], this kind of
solutions can be obtained by equating dx̄/dt = 0̄ and, therefore, they correspond
to zeroes of the vector field f̄(x̄) = 0̄.

The phase space representation of the equilibrium point in the phase space is
the point itself.

2A non-autonomous system does not have equilibrium points as the vector field varies with
time.
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1.2.2.2. Periodic Solution

The solution x̄0(t) is periodic if x̄0(t + T ) = x̄0(t) for all t and for some
minimal period T ∈ R. A periodic solution can be expanded in a Fourier series
with a fundamental frequency ω0 = 2π/T . In autonomous systems, the oscillation
period is determined by the parameters of the circuit elements and bias sources
whereas, for a forced circuit, it is determined by the input generator.

The periodic solution produces an isolated closed trajectory in the phase
space, usually known as limit cycle. The trajectories surrounding the limit cy-
cle are open, corresponding to transients which, depending on its stability, will
converge to the cycle or depart from it.

In Figure 1.1(a), the solutions of a cubic non-linearity oscillator [4], have been
represented in the phase space (constituted by two state variables: the induc-
tor current iL and the capacitor voltage vC). The circuit presents an unstable
equilibrium at x̄eq = (vC , iL) = (0, 0) and a stable limit cycle.

(a) (b)

Figure 1.1: Solutions of a cubic non-linearity oscillator for different initial condi-
tions. [4]. (a) Phase space representation. (b) Time domain representation.

For the initial state x̄(t0) = x̄eq, under ideal noise free conditions, the circuit
would remain at the equilibrium indefinitely. However, in practice, any instanta-
neous perturbation of the state of the system, will cause it to diverge from this
solution exponentially, making it physically unobservable.

The stable limit cycle, on the other hand, shows robustness versus small
perturbations, which means that the solution is continuously recovering from
these deviations and returning to the limit cycle. The solution for some initial
conditions in the surroundings of the equilibrium point x̄(t0) = x̄eq + δ̄, as shown
in Figure 1.1(b), approaches the limit cycle exponentially and maintains this
periodic behaviour steadily. In order to illustrate the fact that trajectories cannot
intersect in the phase space, the evolution of the system from a point in the
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transient of the previous orbit x̄b, has been superimposed in Figure 1.1(b). As
expected, the solution follows the same trajectory to the limit cycle. Similarly,
the system evolves from a state outside the cycle x̄a, with a transient leading to
the same periodic solution.

In Figure 1.1(b), the solution curves based at x̄eq + δ̄ and x̄a have been
depicted versus time. For the sake of clarity, the initial condition x̄(ta) = x̄a is
applied at a time instant ta > 0. After a transient, both solutions settle at the
same periodic steady state, except for certain phase shift.

1.2.2.3. Quasiperiodic Solution

A solution of a dynamical system is quasiperiodic if it can be expressed as a
sum of p ≥ 2 periodic functions [2]:

x̄(t) =

p
∑

i=1

ūi(t), (1.6)

where each function ūi(t), has minimal period Ti and angular frequency ωi =
2π/Ti. These angular frequencies ωi must be rationally linearly independent (or
incommensurable), which means that if m1ω1 + . . . +mpωp = 0, for some set of
integers mi ∈ Z, then mi = 0, ∀i ∈ {1, . . . , p}.

This kind of solution can thus be expanded in a Fourier series3 with funda-
mental frequencies ω1, . . . , ωp, as follows:

x̄(t) =
∑

k1,...,kp

X̄k1,...,kp
ej(k1ω1+...+kpωp)t (1.7)

where ki ∈ Z, i ∈ {1, . . . , p} and X̄k1,...,kp
is the vector containing the spectral

components of all the state variables, at the frequency k1ω1 + . . . + kpωp. A
key aspect of quasiperiodic solutions is that, although the number of required
fundamental frequencies p, is uniquely defined, different sets of base frequencies
ω1, . . . , ωp can be considered [2].

The simplest case of quasiperiodic solution, with two fundamental frequencies
(p = 2), can be easily obtained by connecting a RF generator at frequency ω1, to
a free running oscillator with a frequency of operation ω2. The rotation number
[4] can be defined as:

r =
ω1

ω2
(1.8)

and it must be irrational in order to obtain a quasiperiodic solution (the angular
frequencies ω1 and ω2 must be incommensurate). If the rotation number is ratio-
nal (r = m/n, m,n ∈ N), then it is possible to write nω1 = mω2. Therefore, both

3In this work, the generalisation of the Fourier series expansion for quasiperiodic signals
introduced in [5] is used.
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frequencies are harmonic components of ω0 = ω2/n: ω2 = nω0 and ω1 = mω0

and the solution is periodic with period T0 = 2π/ω0.
For an irrational rotation number, the solution is not periodic, and the trajec-

tory in the phase space cannot be a cycle. The trajectory lies on a diffeomorphic
copy of a two-torus [2]. Since the trajectory is a curve and the two-torus is a
surface, not every point on the torus lies on the trajectory. However, it can be
shown that the trajectory repeatedly passes arbitrarily closely to every point on
the torus and, therefore, the torus is the limit set of the quasiperiodic behaviour.

The steady state solution of the cubic non-linearity oscillator used in the pre-
vious section, in which an external current signal at an incommensurate frequency
has been introduced, is shown in Figure 1.2. The external current iext, has been
included in the representation, obtaining a three dimensional phase space. As
expected, the solution lies on the surface of a two-torus.

Figure 1.2: Phase space representation of the quasiperiodic solution of a cubic
non-linearity oscillator with an external current generator. The solution lies on
the surface of a two-torus.

Higher order quasiperiodic trajectories can occur in higher order dynamical
systems. In general, a quasiperiodic solution with p incommensurate fundamental
frequencies possesses a limit set that is p-dimensional figure, diffeomorphic to a
p-torus.

1.2.2.4. Chaotic Solutions

There is no generally accepted definition of chaos. However, from a practical
viewpoint, chaos can be defined as a steady state behaviour that is not an equi-
librium point, not periodic and not quasiperiodic. This type of solutions presents
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a sensitive dependence on the initial conditions. This means that two solutions
with an arbitrarily close initial state x̄(t0) = x̄0, diverge at a rate characteris-
tic of the system until, for all practical purposes, they are uncorrelated. Since,
in practice, initial conditions cannot be known with infinite accuracy, the time
evolution of the circuit variables x̄(t) is unpredictable. Nonetheless, this unpre-
dictable behaviour, as opposed to noise and random signals, is deterministic.

Figure 1.3: Phase space representation of the chaotic solution of Chua’s oscillator.

Because the chaotic solution is neither periodic, nor quasiperiodic, it presents
a continuous spectrum, at least in certain frequency intervals. When represented
in the phase space, the limit set of a chaotic solution is a bounded figure which,
unlike cycles and tori, is not entirely covered. Some sections of the figure are
not filled by any trajectory and thus, the dimension of the figure is fractal. As
an example, the chaotic solution of Chua’s oscillator [6], has been represented in
phase space in Figure 1.3.

1.2.3. Stability Analysis

As shown in previous sections, not all the steady state solutions of a given
circuit are physically observable. To be observable, a solution must be robust
versus the small perturbations that are always present in practical systems (noise,
small fluctuations in the generators, etc.). This robustness is usually defined in
terms of asymptotic stability.

Qualitatively, a limit set is asymptotically stable if all the neighbouring tra-
jectories in the phase space lead to it as t → ∞. Note that these neighbouring
trajectories are, in fact, all the transient trajectories that might be initiated by
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the small perturbations. The more general term stable refers to a limit set whose
neighbouring trajectories always remain close, without necessarily tending to it
as t → ∞. Since this latter concept has limited interest for the purpose of this
work, the term stable will henceforth refer to asymptotically stability.

If a small perturbation is applied to a stable solution, the system will return
to it exponentially in time. In contrast, if a small perturbation is applied to an
unstable solution, the system will evolve to a different steady state solution after
an initially exponential transient. The solution obtained after the transient will
be a stable solution and thus, physically observable.

A stable limit set is an attracting set or an attractor, as defined in Section
1.2.1, for all the trajectories in a neighbourhood called its basin of attraction.
Similarly, a repelling set—or repellor—is an unstable limit set. However, there
is a third essential type of limit set called saddle type, whose basin of attraction
does not contain all its neighbouring points. This type of limit set is, therefore,
unstable and unobservable.

Note that, for the stability analysis, no assumption is made as to the value of
the instantaneous perturbation applied. The only condition is that it has to be
small. This is because two or more stable steady state solutions may coexist and
a large perturbation may lead the system to a different stable solution. Thus,
the stability definition is local in nature; it refers only to the system behaviour
near the steady state solution. The stability or instability of a given steady state
solution depends on the system and on the particular solution, without regard to
the value of the applied small perturbation. This necessary restriction to small
perturbations is advantageous, as it allows linearisation of the circuit equations
about the particular steady state solution. Since an arbitrary perturbation may
have components in any direction of an N-dimensional phase space, the stable
steady state solution must be attracting for all the neighbouring trajectories.

For the stability analysis of a given steady state solution x̄s(t), either constant
or time varying, a small perturbation is applied at a given time instant t0 and,
from this state, the system is allowed to evolve according to its own dynamics.
Beginning at this time instant, the system analysed is a perturbed system in
which the stimulus that was applied is no longer present. Due to the effect of
the instantaneous perturbation, the solution becomes x̄s(t) + ∆x̄(t). Since the
perturbation is small, it is possible to expand the non-linear equation system
in a Taylor series around x̄s(t). The expansion is carried out only up to first
order (higher order is rarely necessary), which provides the following linear time
varying system:

dx̄s(t)

dt
+
d∆x̄(t)

dt
= f̄(x̄s(t)) + Jf̄(x̄s(t))∆x̄(t) (1.9a)

d∆x̄(t)

dt
= Jf̄(x̄s(t))∆x̄(t) (1.9b)
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where Jf̄(x̄s(t)) is the Jacobian matrix of the non-linear function f̄ , evaluated
at the steady state solution x̄s(t), as defined in (1.10). Since x̄s(t) fulfils (1.1),
equation (1.9a) can be simplified to (1.9b). For the steady state solution x̄s(t) to
be stable, the perturbation ∆x̄(t) must vanish exponentially in time, which will
be determined by the properties of the Jacobian matrix Jf̄(x̄s(t)). Because the
Jacobian matrix is evaluated at the steady state solution, it will have the same
type of behaviour as the particular solution (constant, periodic, quasiperiodic or
chaotic). The method to address the stability analysis in the different cases is
described in the following sections.

Jf̄(x̄s(t)) =

(

∂fi
∂xj

)∣

∣

∣

∣

x̄s(t)
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∣
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∣

∣

∣

x̄s(t)

(1.10)

1.2.3.1. Equilibrium Point or DC Solution

For the stability analysis of an equilibrium point x̄eq, the Jacobian matrix is
constant and thus, (1.9b) becomes a time invariant linear system. The general
solution of this kind of system is given by [7]:

∆x̄(t) =

N
∑

n=1

cke
λktūk (1.11)

where the exponents λk ∈ C, k ∈ {1, . . . ,N}, are the eigenvalues of the Jaco-
bian matrix Jf̄(x̄eq), the vectors ūk are the eigenvectors of this matrix, and ck
are constants that depend on the initial conditions, namely the instantaneous
perturbation applied. In order for expression (1.11) to be valid, all the eigenval-
ues λk, of the Jacobian matrix Jf̄(x̄s(t)), must be different. In case an eigen-
value λj is repeated p times and there are not N independent eigenvectors, the
coefficient of the associated exponential term eλjt, becomes time dependent as
(c0j + c1jt+ . . .+ c(p−1)jt

p−1)eλjt, and the calculation of generalised eigenvectors
is required [1].

The stability of the solution is determined by the real part of the eigenvalues
ℜ{λk}. According to (1.11), if all the eigenvalues have negative real parts, the
perturbation ∆x̄(t) vanishes exponentially in time, and the equilibrium point
x̄eq is stable. Conversely, if any of the eigenvalues had positive real part, the
perturbation would grow exponentially and tend to infinity over time. However,
the linearised equation (1.9b) assumes a small perturbation ∆x̄(t) and therefore,
it becomes invalid as the perturbation value grows. In reality, the solution does
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not tend to infinity; it tends to a different steady state that cannot be predicted
with this linearisation.

In case a zero eigenvalue—or eigenvalues with zero real parts—are obtained,
the equilibrium is called non-hyperbolic and higher order terms must be consid-
ered in the Taylor series development of the vector field for the determination of
its stability [4].

Note that, not all the eigenvalues have the same weight on the transient
response to the perturbation, given by (1.11). This transient will be dominated by
the eigenvalues with maximum real part. For a dominant pair of stable complex
conjugate eigenvalues σc ± jωc, an oscillation at the pole frequency ωc, with
amplitude decaying to zero at a rate controlled by σc is observed. An unstable
solution in which all the eigenvalues are real, and at least one of them is positive
and at least one is negative, is generally called a saddle.

1.2.3.2. Periodic Solution

Periodic solutions are possible both in autonomous and non-autonomous sys-
tems. For compactness in the notation, the two types of systems will be described
in terms of the characteristic equation of a non-autonomous system (1.1b). For
non-autonomous systems, the angular magnitude θ will be included in the state
vector and the equations will be expressed in the form (1.3). The same dimension
N of the state vector will be considered in both cases.

For the stability analysis of a periodic steady state solution x̄0(t), with period
T , the linearisation of the perturbed system must be particularised at the periodic
solution x̄0(t). Thus, a periodic Jacobian matrix Jf̄(x̄0(t)), with the same period
T is obtained, and equation (1.9b) becomes a periodic time varying linear system:

d∆x̄(t)

dt
= Jf̄(x̄0(t))∆x̄(t) (1.12)

Using Floquet theory, the behaviour of a linear time varying system with periodic
coefficients can theoretically be studied in terms of a reduced case with constant
coefficients.

In general, all the possible solutions of a N-dimensional linear system (1.9b),
by the principle of superposition, form a vector space and they can thus be rep-
resented as a linear combination of N independent solutions ∆x̄1(t), . . . ,∆x̄N (t).
If these independent solutions are arranged as columns of a matrix Y (t), it is
obvious that Y (t) fulfils the system equation (1.9b):

dY (t)

dt
= Jf̄(x̄s(t))Y (t) (1.13)

The matrix Y (t) is usually referred to as fundamental matrix solution of the
system (1.9b) and, any solution ∆x̄(t) can be written as ∆x̄(t) = Y (t)v̄0, where
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the constant vector v̄0 depends on the initial conditions. Furthermore, since
this matrix is not unique, it is advantageous to choose the fundamental matrix
that satisfies Y (t0) = I, where I is the N × N identity matrix and t0 is the
time instant when the initial condition is established. This matrix is called
canonical fundamental matrix and it is denoted as Y (t, t0). The solution of
the system (1.9b) for the initial conditions ∆x̄(t0) = ∆x̄0 is therefore given by
∆x̄(t) = Y (t, t0)∆x̄0. Any fundamental matrix solution U(t) can be expressed
as U(t) = Y (t, t0)U(t0), where U(t0) is the initial condition matrix.

In the particular case of a linear system with periodic coefficients, like (1.12),
the canonical fundamental matrix Y (t, t0), satisfies:

Y (t+ T, t0 + T ) = Y (t, t0) (1.14)

since it fulfils (1.12): d
dtY (t + T, t0 + T ) = Jf̄(x̄0(t + T ))Y (t + T, t0 + T ) =

Jf̄(x̄0(t))Y (t + T, t0 + T ), and Y (t0 + T, t0 + T ) = I so, by the uniqueness
theorem, it must be equal to Y (t, t0). Consequently, the monodromy matrix,
which accounts for the evolution of the system over one period:

M(t0) = Y (t0 + T, t0) (1.15)

is periodic with period T , M(t0 +T ) = M(t0). Looking into the evolution of the
system in steps of one period [8], an exponential behaviour is observed:

Y (t0 + nT, t0) = Y (t0 + nT, t0 + (n − 1)T )Y (t0 + (n− 1)T, t0)

= M(t0 + (n− 1)T )Y (t0 + (n− 1)T, t0)

= M(t0)Y (t0 + (n − 1)T, t0)

= M(t0)
nY (t0, t0) = M(t0)

n. (1.16)

A general solution ∆x̄(t) of (1.12), such that ∆x̄(t0) = ∆x̄0, must then satisfy
the following expression:

∆x̄(t+ nT ) = Y (t+ nT, t0)∆x̄0 = Y (t, t0)Y (t0 + nT, t0)∆x̄0

= Y (t, t0)M(t0)
n∆x̄0. (1.17)

It can be proved [9] that, if A is an N × N matrix and λ1, . . . , λN are its
eigenvalues, repeated according to their algebraic multiplicity, then λk1, . . . , λ

k
N

are the eigenvalues of Ak and eλ1 , . . . , eλN are the eigenvalues of eA.
Floquet’s theorem states that any fundamental matrix Y (t) of a periodic linear

system (1.12) can be expressed in the Floquet normal form [10]:

Y (t) = Z(t)eRt, where Z(t+ T ) = Z(t) (1.18)

and R is a constant matrix (Z(t) and R are N × N matrices). In particular,
for the canonical fundamental matrix, Y (t, t0) = eR(t0)(t−t0), since Y (t0, t0) =
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I. Similarly, the monodromy matrix can be represented in the same form as
M(t0) = eR(t0)T .

Hence, if ∆x̄λ, is an eigenvector of R(t0) corresponding to the eigenvalue λ,
so that M(t0)∆x̄λ = eλT∆x̄λ, then the solution ∆x̄(t) of (1.12) for the initial
condition ∆x̄(t0) = ∆x̄λ, satisfies:

∆x̄(t+ nT ) = Y (t, t0)M(t0)
n∆x̄λ = Y (t, t0)

[

eλT
]n

∆x̄λ

= mn
λY (t, t0)∆x̄λ = mn

λ∆x̄(t) (1.19)

where mλ = eλT has been introduced. Additionally, the solution ∆x̄(t) =
Y (t)∆x̄λ is of the form z̄(t)eλt and, by (1.18), the vector z̄(t) = Z(t)∆x̄λ has the
period T . More generally, if ∆x̄(t) is the solution of (1.12), it is expressible as a
linear combination of the form [10]:

∆x̄(t) =

N
∑

k=1

ckt
δkeλktūk(t) (1.20)

where ū(t + T ) = ū(t), δk ∈ Z, 0 ≤ δk ≤ N − 1 and λk, k ∈ 1, . . . ,N are
the eigenvalues of R. Even though neither the matrix R nor its eigenvalues
λ1, . . . , λN are uniquely determined, the eigenvalues of eRT , which are called the
Floquet multipliers of the system:

mk = eλkT k ∈ {1, . . . ,N} (1.21)

are unique for all the fundamental matrices Y (t) of (1.12).
From (1.20) follows that, whether the increment ∆x̄(t) will decay to zero

or grow unboundedly over time will depend solely on the limit value of mn
k for

n→ ∞, as the vectors ūk(t) are periodic with period T . Note that, the stability
of the solution of the periodic system (1.12), can thus be analysed in terms of
the eigenvalues of the constant matrix R.

Clearly, if any of the multipliers has a modulus greater than one, |mk| > 1,
the perturbation will tend to infinity and the solution will be unstable.

For the periodic solution x̄0(t) to be stable, all the multipliers must have
moduli smaller than 1, except for one corresponding to the perturbations tangent
to the periodic cycle, with value mj = 1. In non-autonomous circuits, it can be
shown that this multiplier is associated with the time related variable θ [7].

As already pointed out, an arbitrarily time shifted solution of an autonomous
system is also a solution, so perturbations tangent to the limit cycle will not van-
ish, as the solution is invariant under displacements along the cycle. Therefore,
one of the multipliers of the periodic solution must be mj = 1, which means that
the perturbation neither grows nor decays over time. The associated vector ūj(t)
must be tangent to the cycle at each time value or, in other words, parallel to the
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time derivative of the periodic solution x̄0(t): ūj(t) = c ddt x̄0(t) = c ˙̄x0(t). Conse-
quently, ∆x̄j(t) = mjūj(t) = c ˙̄x0(t), (note that mj = 1), must be a solution of
(1.12). This can be shown as follows:

Jf̄(x̄0(t))c ˙̄x0(t) = c
d

dt
f̄(x̄0(t)) = c

d ˙̄x0(t)

dt
, (1.22)

where the fact that x̄0(t) is a solution of (1.1): ˙̄x0(t) = f̄(x̄0(t)), has been taken
into account.

Different considerations can be made as to how the specific type of instability
of the periodic solution can determine the kind of stable steady state the system
will evolve to after the transient [7]. Nonetheless, for the purpose of this work,
it is enough to bear in mind that, for the solution x̄0(t) to be stable, all the
Floquet multipliers of (1.12) must have moduli smaller than one, except for the
one associated with perturbations tangent to the limit cycle:

mj = 1 and |mk| < 1, ∀ k ∈ {1, . . . ,N}, k 6= j (1.23)

The computation of the Floquet multipliers requires a representation of the
monodromy matrix in the form M(t0) = eRT , which can only be obtained by
actually generating a set of N linearly independent solutions of (1.12) to con-
stitute a fundamental matrix solution Y (t). Except in special theoretical cases,
this calculation is generally a greatly challenging task.

1.2.3.3. Lyapunov Exponents

Lyapunov exponents are a generalisation of the eigenvalues at an equilibrium
point and of the Floquet multipliers for periodic orbits. They are used to deter-
mine the stability of any type of steady state behaviour, including quasiperiodic
and chaotic solutions.

Consider the general non-linear differential equation for autonomous sys-
tems4:

dx̄

dt
= f(x̄), x̄ ∈ R

N (1.24)

with flow φ̄t. If ε ∈ R, ū, v̄ ∈ R
N , the two solutions φ̄t(ū), φ̄t(ū + εv̄), start at

two points in R
N whose separation is bounded by ε ||v̄||, where ||·|| is the usual

norm in R
N .

The Taylor expansion of the difference between the two solutions at ε = 0 is
given by:

φ̄t(ū+ εv̄) − φ̄t(ū) = εJφ̄t(ū)v̄ +O(ε2) (1.25)

where Jφ̄t(ū) denotes the Jacobian matrix of the flow φ̄t(x̄), with respect to the
initial condition x̄, evaluated at x̄ = ū. The first order approximation of the

4For non-autonomous systems, the equivalent formulation (1.3) is used.
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difference between the two solutions at time t is εJφ̄t(ū)v̄, and Jφ̄t(ū) is the
canonical fundamental matrix solution at t = 0 of the linearised equation:

dW

dt
= Jf̄(φ̄t(ū))W (1.26)

along the solution of the original system (1.24), starting at ū. To prove this,
substitute φ̄t(z̄) for x̄ in the general system equation (1.24): d

dt φ̄t(z̄) = f̄(φ̄t(z̄)),
φ̄t(0) = z̄ and differentiate versus the initial condition z̄ at z̄ = ū:

dJφ̄t(ū)

dt
= Jf̄(φ̄t(ū))Jφ̄t(ū), φ̄t(0) = I. (1.27)

Suppose that ū, v̄ ∈ R
N , v̄ 6= 0̄ and φ̄t(ū) is a solution of (1.24) based at ū,

defined for all t ≥ 0. The Lyapunov exponent at ū in the direction v̄ for the flow
φ̄t is defined as:

χ(ū, v̄) = lim
t→∞

1

t
ln

(
∣

∣

∣

∣Jφ̄t(ū)v
∣

∣

∣

∣

||v||

)

(1.28)

if the limit exists5. Let ν1, . . . , νN be the eigenvalues of Jφ̄t(ū) and η̄1, . . . , η̄N ,
the corresponding eigenvectors, the definition (1.28) can be expressed as [2]:

χ(ū, η̄i) = lim
t→∞

1

t
ln |νi(t)|. (1.29)

For the particular case of an equilibrium point, the Lyapunov exponents are
equal to the real parts of the eigenvalues of the perturbed system at the equi-
librium point, and they indicate the contraction (χi < 0) or expansion (χi > 0)
of the trajectories originated close to the equilibrium point. Since the Lyapunov
exponents are defined in terms of the limit as t → ∞, any finite transient of
the orbit may be neglected and therefore, in general, every point in the basin of
attraction of an attractor has the same Lyapunov exponents as the attractor6.

Similarly, the Lyapunov exponents χi of a limit cycle have a simple relation-
ship with the Floquet multipliers mi:

χi =
1

T
ln |mi|, i = 1, . . . ,N (1.30)

One Lyapunov exponent χj is always 0, corresponding to the multiplier that
is always one. The proof of this fact can be generalised to show that, for any

5The existence of the Lyapunov exponents can be guaranteed by considering the superior

limit. Nevertheless, the interpretation of the exponents presented below is only valid if the limit
in (1.28) exists [2].

6For some definitions of strange attractors, this statement may need to be changed to almost

every point, although it is always valid for non-strange attractors [2].
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Steady State
Limit Lyapunov

Dimension
Set Exponents

Equilibrium Point Point 0 > χ1 ≥ · · · ≥ χN 0

Periodic
Closed χ1 = 0

1
Curve 0 > χ2 ≥ · · · ≥ χN

Quasiperiodic
Torus

χ1 = χ2 = 0
2

(2 fundamentals) 0 > χ3 ≥ · · · ≥ χN

Quasiperiodic
K-torus

χ1 = · · · = χK = 0
K

(K fundamentals) 0 > χK+1 ≥ · · · ≥ χN

Chaotic Cantor-like
χ1 > 0

NonintegerN
∑

i=0
χi < 0

Table 1.1: Classification of the different types of hyperbolic steady states de-
pending on the Lyapunov exponents [2].

bounded attractor of an autonomous system, except an equilibrium point, one
Lyapunov exponent is always 0 [2].

The Lyapunov exponents represent the average rate of contraction or expan-
sion in a particular direction close to a particular trajectory. Ordering the χi
such that χ1 ≥ · · · ≥ χN , there are N nested subspaces, W1 ⊃ · · · ⊃ WN , such
that almost all perturbations in Wj evolve, on average, as eχjt. Obviously, these
conclusions are only valid for small perturbations, in order for the first order
approximation of (1.25) to be accurate.

Lyapunov exponents are convenient for categorising steady state behaviour.
For an attractor, contraction must outweigh expansion so:

N
∑

i=1

χi < 0. (1.31)

Attractors can be classified using their Lyapunov exponents as shown in Table
1.1. As already commented, chaotic behaviour is highly dependent on the initial
conditions; orbits originated at arbitrarily close points diverge in time until they
are uncorrelated. Hence, a feature that distinguishes strange attractors from
other types of attractor is the existence of at least one positive Lyapunov expo-
nent, which produces this divergence of trajectories, maintaining relation (1.31)
for stability.
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1.2.4. Poincaré Map

The Poincaré map allows the representation of the system solution with a
reduction of its dimension; it transforms the N dimensional continuous solution
x̄(t) = φ̄t(x̄0, t0) into a discrete solution of dimension N−1. This reduction of the
dimension simplifies the analysis of the system solution (qualitative variations as
a function of a parameter, evolution from a perturbed state, and so forth).

Let γ = x̄0(t) be a periodic orbit of some flow φ̄t in R
N , arising from a non-

linear vector field f̄(x̄). Consider a local cross section Σ ⊂ R
N , of dimension

N − 1. Although the hypersurface Σ need not be planar, it must be chosen so
that the flow is everywhere transverse to it. This is achieved by assuring that,
if n̄(x̄) is the unit normal to Σ at a point x̄ ∈ Σ, then f̄(x̄) · n̄(x̄) 6= 0 must be
fulfilled for all x̄ ∈ Σ. The size of Σ must be adjusted to provide a single point
of intersection with γ, denoted as p̄ = γ ∩Σ. Let U ⊂ Σ be some neighbourhood
of p̄. The Poincaré map P̄ : U → Σ is defined for a point q̄ ∈ U by:

P̄ (q̄) = φ̄τ (q̄), (1.32)

where τ = τ(q̄) is the time taken for the orbit φ̄t(q̄) based at q̄ to first return to
Σ. Note that τ generally depends upon q̄ and need not be equal to T , the period
of γ. However, τ tends to T as q̄ approaches p̄. In the periodic regime, the time
τ agrees with the period T , P̄ (p̄) = p̄, and p̄ is a fixed point of the Poincaré map.

It can be shown that the stability properties of the point p̄ for the discrete flow
defined by the Poincaré map are the same as those of the continuous solution
x̄0(t). The stability of the fixed point p̄ can be checked by applying a small
perturbation and analysing the evolution of the successive points of the map
which, in the case of a stable solution, must progressively approach p̄. In Figure
1.4(a), the Poincaré map of the periodic solution of an autonomous system has
been represented. Since the steady state solution is stable, the two perturbations
introduced in the system converge in the Poincaré map to the fixed point p̄.

For non-autonomous systems with a periodic forcing, with period T , an an-
gular magnitude θ = 2πt

T (mod 2π), can be included in the state vector x̄. A
global cross section Σ can then be defined as:

Σ =
{

(x̄, θ) ∈ R
N × S | θ = θ0

}

(1.33)

since all the solutions cross Σ transversely with period T . The intersection of Σ
with the solution orbit produces a Poincaré map P̄ : Σ → Σ of the form:

P̄ (p̄) = φ̄T (p̄, tθ0) (1.34)

Note that, in a non-autonomous system with a periodic forcing term of period
T , the period of the solution x̄(t) does not necessarily agree with T ; it might not
even be periodic.
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(a) (b)

Figure 1.4: Schematic diagram of the obtention of Poincaré maps. (a) For the
periodic solution of an autonomous system. Two perturbations have been intro-
duced to verify the robustness of the solution. (b) For the quasiperiodic solution
of a non-autonomous system. For the sake of clarity, the solution has been trun-
cated, obtaining a finite set of intersection points between the solution and the
Poincaré surface Σ.

In Figure 1.4(b), the Poincaré map of the quasiperiodic solution of a non-
autonomous system has been represented. Since the solution is not periodic, the
Poincaré map of the limit torus is an infinite set of discrete points distributed
along a closed cycle. However, for the sake of clarity, only a truncated version of
the continuous solution has been represented, yielding a finite number of points
in the Poincaré map. Both examples show how the Poincaré map enables the
two dimensional representation of solutions belonging to three dimensional phase
spaces.

1.2.4.1. Stability of Periodic Solutions using the Poincaré Map

The stability analysis of periodic steady state solutions can be performed
using the linearised Poincaré map, by applying analogous techniques to those
already explained for continuous flows. As previously pointed out, a periodic
orbit γ, with period T , produces a fixed point p̄ in the Poincaré map, such that

P̄ (p̄) = φ̄T (p̄) = p̄. (1.35)

The stability properties of the fixed point p̄ can be determined by studying
the evolution of the Poincaré map of a perturbed point p̄p ∈ U , p̄p = p̄ + ∆p̄.
Providing the magnitude of the applied perturbation ||∆p̄|| is small, the first
order Taylor expansion of the flow about the fixed point p̄, can be considered,
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yielding the following N − 1 dimensional linear perturbed map, U → Σ:

P̄l(∆p̄) = JP̄ (p̄)∆p̄, (1.36)

where JP̄ (p̄) represents the Jacobian matrix of the map P̄ , evaluated at the fixed
point p̄.

The eigenvalues of this Jacobian matrix λi, i ∈ {1, . . . ,N − 1}, determine the
stability of the fixed point p̄. If |λi| < 1, ∀i ∈ {1, . . . ,N − 1}, the magnitude
of the perturbation ||∆p̄|| will progressively decay and the fixed point p̄ will be
asymptotically stable. Conversely, the solution will be unstable if any of the
eigenvalues has modulus greater than one. In case one of the eigenvalues has
modulus one |λi| = 1, the fixed point is non-hyperbolic and its stability cannot
be determined with the first order Taylor expansion; higher order terms must be
considered.

It can be shown [1] that the N − 1 eigenvalues of JP̄ (p̄) agree with N − 1
Floquet multipliers of the periodic orbit γ. As has been commented in Section
1.2.3.2, the remaining multiplier—equal to unity—is associated with perturba-
tions tangent to the periodic orbit. Furthermore, the stability properties of the
map can be proved to be independent of the considered cross section Σ.

1.2.5. Time Domain Circuit Simulation

The time domain mathematical formulation of non-linear circuits presented in
previous sections, provides a natural description of the circuit dynamics in terms
of a system of non-linear differential equations, which simplifies the theoretical
identification and classification of the different possible types of solutions, from
a qualitative viewpoint. Nevertheless, the solution of a particular circuit, that
accurately predicts its behaviour, is generally difficult to obtain and requires the
use powerful numerical simulation techniques.

The purpose of this section is to introduce the principles of the time domain
integration techniques applied to the numerical simulation of non-linear circuits,
highlighting their main practical advantages and drawbacks, that must be con-
templated by the circuit designer, without addressing a detailed analysis of the
underlying numerical algorithms, which lie beyond the scope of this work.

An important aspect for the simulation of non-linear circuits is the accurate
modelling of the non-linear devices involved. Since these non-linear elements
are usually described in terms of their constitutive functions, which relate the
instantaneous value of the non-linear magnitude (current, charge, etc.), to those
of the control variables, these equations can be directly introduced in the time
domain circuit formulation.

On the other hand, distributed elements (such as transmission lines, coupled
lines, and so on), widely used in high frequency circuits—in the microwave band
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and above—are difficult to simulate in the time domain, as they are originally
described in terms of partial differential equations. The most general approaches
are based on the numerical calculation of the impulse response of the element from
the inverse Fourier transform of its transfer function. This transfer function can
be straightforwardly computed from the frequency dependent Z, Y or S parame-
ters of the distributed element. It is also possible to use the Laplace transform of
the partial differential equation that rules the distributed element, and adopt its
truncated Taylor series expansion as a reduced order model. This expansion can
be subsequently matched to a complex rational function in terms of pole–residue
pairs, whose inverse Laplace transform can be analytically calculated, yielding
the impulse response. The impulse response of the distributed element, obtained
through either procedure, can be incorporated in the differential equation as a
convolution operation—that must be computed at each time step—to determine
the time domain response of the element. Alternatively, from the initial descrip-
tion in the Laplace domain, it is possible to model the distributed element with
a set of linear differential equations, related to the rest of the circuit equations
through Kirchhoff’s laws. Detailed information about these techniques can be
found in [7].

To determine the circuit solution, the non-linear differential equation that
rules its behaviour (including non-linear devices, distributed elements, and so
on) must be integrated from the initial conditions established at a time point
t0. To do this, the continuous time variable t is discretised, with a constant
or variable time step, and replaced with the time points {t0, . . . , tn, . . . , tN}.
This transforms the continuous system of non-linear differential equations into
an algebraic system of non-linear equations, in terms of the time samples of
the circuit variables at the time instants tn. The derivatives dx̄/dt at a time
instant tn+1 can be approximated, in multiple manners, as a function of the values
{. . . , x̄n−1, x̄n, x̄n+1}, and each particular approximation constitutes a different
integration algorithm (such as forward or backward Euler, Runge–Kutta, Gear,
etc.). Each algorithm leads to a different discrete system with its characteristic
accuracy, efficiency and stability properties [7]. The system resulting from the
application of the selected integration algorithm is usually resolved using the
Newton–Raphson method, which converts the non-linear problem into a sequence
of linear equations, that can be solved iteratively.

Direct integration methods can, in principle, be used for the simulation of any
kind of regime, periodic, quasiperiodic or chaotic and with periodic or aperiodic
input signals. The complete solution curve is computed; the steady state solution
is reached after the calculation of the whole transient so, if convergence is achieved
and the integration method and time step are adequately chosen, the steady state
solution is stable.
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The time step must be selected to provide an accurate representation of the
waveforms present in the circuit. In case the spectrum of the solution contains
both high and low frequency components, the time step must be short enough
to represent the high frequency components accurately, and the integration time
interval must be long enough to account for the evolution of the low frequency
components, giving rise to an enormous number of calculation points. Usually,
most of the simulation time is devoted to the transient regime, while the inter-
est of the designer lies in the steady state. To overcome this limitation, fast
time domain algorithms [7] have been proposed. Nevertheless, for the simula-
tion of periodic or quasiperiodic regimes of circuits with distributed elements,
the harmonic balance method presented in the following section may be more
appropriate.

1.3. Frequency Domain Formulation

As already mentioned, the description of linear networks is generally straight-
forward in the frequency domain. In particular, for distributed elements, the
convolution integrals used in the time domain formulation can be substituted by
simple transfer function products in the frequency domain. Taking advantage of
this property, the frequency domain formulation transforms the set of non-linear
differential equations that rule the circuit behaviour into a set of non-linear alge-
braic equations in the frequency domain. It uses the simplified frequency domain
descriptions of linear networks, retaining the natural time domain constitutive
equations of the non-linear elements.

The frequency domain formulation of non-linear circuits is closely related to
the harmonic balance simulation method. In fact, in some bibliographic refer-
ences, the formulation is introduced as a part of the simulation method. However,
in this work, the frequency domain formulation of non-linear circuits is presented
separately, in analogy to the time domain formulation described in Section 1.2,
while the peculiarities of the harmonic balance resolution method are commented
in a dedicated subsection.

In the frequency domain formulation, it is assumed that the circuit variables
can be expanded in a Fourier series with a finite set of irrationally related fun-
damentals {Ω1, . . . ,ΩK}, such that Ωi = 2πFi. Moreover, in practice, the series
must be truncated to a finite number NH of positive frequency components, in
the general form:

u(t) =

NH
∑

m=−NH

Ume
jωmt ωm ≡ λ̄mΩ̄ Ω̄t = [Ω1 . . .ΩK ] (1.37)
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where u(t) is a generic circuit variable. The vector λ̄tm ∈ Z
K contains the in-

teger coefficients of the intermodulation product m, given by ωm ≡ λ̄mΩ̄ =
λ1
mΩ1 + . . .+ λKmΩK , with λjm ∈ Z. The superscript j in λjm indicates the funda-

mental frequency Ωj that is affected by that particular integer. The subscript m
places the resulting frequencies in increasing order ω1 < · · · < ωNH

. Note that
only positive frequencies are included in the set {ω1, . . . , ωNH

}. Their negative
counterparts (and the dc component) are also considered in the Fourier series, as
shown in (1.37), although—for real variables—the coefficients Um are known to
fulfil the hermitian symmetry Um = U∗

−m.

For series with more than one fundamental, different systematic truncation
criteria [7], can be used to establish the maximum order of the harmonic compo-
nents and intermodulation products taken into account. Nonetheless, when there
are significant differences in the amplitude of the signals at the different funda-
mental components, it may be interesting to assign a specific maximum harmonic
order Mj for each fundamental j ∈ [1,K], such that |λjm| ≤Mj, ∀m ∈ [1, . . . ,K],
as well as a maximum order for the intermodulation products Mim, so that
|λ1
m|+ . . .+ |λKm| ≤Mim. Thus, the frequency basis can be efficiently adapted to

take into account the higher harmonic content generated for the fundamentals
with higher signal amplitude, while disregarding the terms of the same order of
fundamentals with lower signal level, which would have a negligible value.

The representation of the variables in a Fourier series restricts the variety of
regimes that can be studied in the frequency domain to periodic or quasiperiodic
steady state solutions. Due to the truncation of the series, this formulation is
only appropriate for mild non-linear regimes and might not be convenient for
periodic signals with short rise and fall times. Furthermore, unlike in the time
domain simulation, the obtained solution may be either stable or unstable, so a
complementary stability analysis is necessary.

Two different frequency domain formulations have been presented in the lit-
erature [7]. The first formulation, known as nodal harmonic balance, results from
directly introducing the Fourier series expansions in the time domain circuit
equations. The state variables are all the node voltages and inductance currents,
usually leading to a system with a large number of unknowns. On the other hand,
the second formulation, known as piecewise harmonic balance, is based on a strict
separation of the circuit elements into linear and non-linear. The non-linear el-
ements are modelled as dependent sources and their control variables constitute
the set of state variables. Compared to the nodal formulation, the number of un-
knowns is considerably reduced at the expense of an increase in the complexity
of the relationships representing the linear embedding network, which will have
higher order in the frequency ω. The frequency domain description of non-linear
circuits illustrated in the following is based on the piecewise formulation.
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Figure 1.5: Representation of a generic circuit in the frequency domain formula-
tion.

For the definition of the frequency domain formulation, the general circuit
shown in Figure 1.5 is considered. The P non-linear magnitudes produced by the
non-linear devices involved in the circuit are firstly identified and represented by
dependent sources. Their Q control variables constitute the set of state variables.
The S external input generators are also considered separately. Since the rest of
the circuit is a linear network, the application of Kirchhoff’s laws yields a linear
relationship that interlinks the evolution of the non-linear magnitudes ȳ(t) =
[y1(t), . . . , yP (t)]t, the state variables x̄(t) = [x1(t), . . . , xQ(t)]t and the input
signals ḡ(t) = [g1(t), . . . , gS(t)]t, where the superscript t represents the transpose
operation. Obviously, the non-linear magnitudes grouped in ȳ(t) are still related
to the state variables x̄(t) through the non-linear function:

ȳ(t) = f̄nl(x̄(t)) (1.38)

The three vectors x̄, ȳ and ḡ are represented in the frequency domain by the
coefficients of the Fourier series expansion, grouped respectively in the vectors
X̄, Ȳ and Ḡ, defined as follows:

X̄t = [X̄−NH
, . . . , X̄i, . . . , X̄NH

] X̄i = [X1
i , . . . ,X

q
i , . . . ,X

Q
i ]

Ȳ t = [Ȳ−NH
, . . . , Ȳi, . . . , ȲNH

] Ȳi = [Y 1
i , . . . , Y

p
i , . . . , Y

P
i ]

Ḡt = [Ḡ−NH
, . . . , Ḡi, . . . , ḠNH

] Ḡi = [G1
i , . . . , G

s
i , . . . , G

S
i ]

(1.39)

The column vectors are structured in 2NH+1 subvectors, one for each analysis
frequency. Each subvector—dedicated to the frequency component indicated by
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the subscript i—contains the coefficients of the Fourier series corresponding to
the Q state variables for X̄i, the P non-linear magnitudes for Ȳi and the S input
generators for Ḡi.

The application of Kirchhoff’s laws to the circuit of Figure 1.5 provides the
linear relationships existing between the componets of the vectors X̄, Ȳ and Ḡ,
that can be expressed in the general form:

Ē(X̄) = AxX̄ +AyȲ +AgḠ = 0̄ (1.40)

where Ax, Ay and Ag are constant matrices, obtained from the evaluation of
the frequency dependent linear relationships given by Kirchhoff’s laws, at the
frequency basis considered.

The basis functions of the Fourier series expansion are known to be eigenfunc-
tions of the linear invariant systems [11]. Assuming time invariance of the linear
network and taking into account the superposition principle, the linear network
can only interrelate the coefficients of the different circuit variables corresponding
to the same frequency component. Therefore, considering the structure of the
vectors shown in (1.39), the matrices must have a block diagonal structure com-
posed of submatrices dedicated to each of the 2NH + 1 frequency components,
in the general form:

A =













[A−NH
] [0] · · · [0]

[0] [A−NH+1] · · · [0]

...
...

. . .
...

[0] · · · [0] [ANH
]













(1.41)

where A stands for any of the matrices Ax, Ay or Ag. The blocks [Ai], i ∈
[−NH , . . . , NH ] have dimensions Q × Q for Ax, Q × P for Ay and Q × S for
Ag. Hence, (1.40) represents a system of (2NH + 1)Q equations in (2NH + 1)Q
unknowns, grouped in the set of state variables X̄. Note that the external input
generators are known and the non-linear magnitudes Ȳ , are related to the state
variables through (1.38).

1.3.1. Frequency Domain Circuit Simulation: Harmonic Balance

The frequency domain formulation that has been introduced can be used to
efficiently represent non-linear circuits working in periodic or quasiperiodic oper-
ating regimes. The harmonic balance simulation method relies on the resolution
of the non-linear algebraic system (1.40), that represents a particular circuit,
to determine the specific solution that rules its behaviour. This resolution is
normally carried out using numerical iterative techniques.
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The vector of state variables X̄, that cancells out the error vector Ē(X̄),
is determined through a minimisation method (usually based on the Newton–
Raphson algorithm), applied to the norm of the error vector ||Ē(X̄)||.

State Variables External Generators

Nonlinear Magnitudes

Optimisation

Figure 1.6: Evaluation of equation (1.40).

The evaluation of equation (1.40) for a given state vector X̄ , is performed as
shown schematically in Figure 1.6. The state vector X̄ and the external input
signals Ḡ are directly introduced in the equation. The non-linear magnitudes Ȳ
are dependent on the state variables through the time domain equation (1.38),
which relates ȳ(t) with x̄(t). Therefore, in order to use this equation, the time
domain representation of the state vector x̄(t), is required. From the coefficients
of the Fourier series expansion X̄ , the time domain signal x̄(t) can be obtained
through the summation of the series (1.37). Equation (1.38) can then be applied
to calculate the non-linear magnitudes in the time domain, ȳ(t). Finally, the
non-linear magnitudes in the frequency domain Ȳ , are simply the coefficients of
the Fourier series expansion of ȳ(t). In Figure 1.6, the process of calculation of
the coefficients for the Fourier Series Expansion is indicated as FSE, while the
summation of the series to obtain the time domain signal is labelled as FSE−1.
These operations are usually referred to in the literature as, respectively, analysis
and synthesis of the Fourier series [11].

The optimisation process starts with an initial value X̄0, which can be de-
termined with a DC analysis of the circuit. The system is subsequently resolved
through an iterative process, usually based on the Newton–Raphson algorithm,
whereby the state vector for the iteration j + 1, X̄j+1, is estimated from a lin-
earisation of the system about the point X̄j , corresponding to the iteration j.
Mathematically:

X̄j+1 = X̄j − [JE]−1
∣

∣

X̄j Ē
j(X̄j) (1.42)
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where JE|X̄j is the Jacobian matrix of the error function of (1.40), with respect
to the state vector X̄, evaluated in the iteration j, X̄j . The process finishes when
the variation of the state vector X̄j+1, with regard to the previous iteration X̄j ,
lies within the desired tolerance.

The convergence of the Newton–Raphson algorithm is highly influenced by
the initial value X̄0. As has been stated, the DC solution can be an appropriate
starting point, especially for small signal operation. However, when the level
of the input generators is high, the large signal solution may be considerably
different from the DC starting point, seriously compromising the convergence of
the optimisation process.

Different methods, known as continuation techniques, have been proposed in
the literature to tackle this problem [7]. They basically consist in introducing
a parameter η, that can either belong to the original system or be artificially
defined, in such a way that the system can be easily solvable for some value of the
parameter ηi, while completely agreeing with the original system for another value
ηf . The harmonic balance system is successively solved, varying the parameter
from ηi to ηf in a certain number of steps. The resolution in the first step is, by
the definition of the parameter, straightforward and, for the each of the following
steps, the solution of the previous one is taken as the initial value. For instance,
in the case of high amplitude generators, the parameter can be introduced as a
factor multiplying the external sources Ḡc(η) = ηḠ, which is varied from a small
value, corresponding to small signal operation, to η = 1, corresponding to the
original situation.

The practical application of the methods that have been described is, in
general, highly demanding in terms of computational resources. A great variety
of works can be found in the bibliography, focusing on the efficient numerical
implementation of the different challenging parts of the simulation algorithm,
such as the Fourier series expansion calculation or the inversion of the Jacobian
matrix required in (1.42). However, since the details of these improved numerical
techniques are not interesting for the purpose of this work, they are not addressed
here.

1.3.2. Simulation of Autonomous Regimes

In the introduction of the frequency domain formulation, it was assumed that
all the circuit variables can be represented in a conveniently truncated Fourier
series, with a finite number of analysis frequencies {ω−NH

, . . . , ωNH
}. This re-

quires an a priori knowledge of the type of signals present in the circuit, since
the range of solutions that can be obtained is restricted to those expressible in
terms of the pre-established frequency basis. In pure non-autonomous regimes,
the frequency basis can be straightforwardly determined, taking into account the
signals delivered by the external generators and their significant harmonic com-
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ponents and intermodulation products. When the circuit exhibits autonomous
behaviour, on the other hand, additional frequency components—not necessarily
present in or related to the frequency content of the input signals—can be gen-
erated, which, if not included in the frequency basis, would be overlooked in the
simulation process, leading to incorrect or unphysical solutions.

Furthermore, even if the additional frequency components are correctly in-
cluded in the basis, the simulation might still not converge to the autonomous
behaviour, producing a non-oscillatory coexisting mathematical solution. As has
been pointed out, the Newton–Raphson algorithm used in the resolution of the
harmonic balance system is very dependent on the initial value. Unless an appro-
priate starting point with accurate values of the coefficients at the self generated
frequency components is provided, the method tends to converge to a coexisting
non-autonomous steady state regime, in which the coefficients at the additional
frequency components vanish.

In circuits with an autonomous oscillation, the exact frequency of this oscil-
lation ω0, can be considered as an unknown, and added to the set of state vari-
ables of the frequency domain formulation. The associated simulation technique,
known as mixed harmonic balance, yields an unbalanced system of (2NH + 1)Q
equations in (2NH +1)Q+1 unknowns. However, as discussed in Section 1.2, an
arbitrarily time shifted solution of an autonomous system is also a solution which,
in the frequency domain, means that the solution is independent of the phase
origin. Consequently, the real or imaginary part of one of the state variables in
X̄ can be arbitrarily set to 0, for instance ℑ{Xk

j } = 0, equating the number of
unknowns to the number of equations.

Nevertheless, this method still requires a suitable initial value to avoid conver-
gence to trivial, non-oscillatory solutions. Different complementary techniques
have been proposed in the literature for the efficient initialisation of the mixed
harmonic balance system [7]. A different approach is presented in what follows.

The main problem with autonomous regimes derives from the fact that the
oscillation frequency is internally generated, without being excited by any gen-
erator. The auxiliary generator technique overcomes this issue by introducing an
artificial generator at the frequency of oscillation ωAG = ω0. Thus, the auxiliary
generator imposes the oscillation and prevents the default convergence towards
non-oscillatory regimes; the autonomous behaviour can therefore be analysed as
a conventional forced regime.

Two different types of auxiliary generators can be considered: voltage gener-
ators connected in parallel to a circuit node, and current generators connected
in series at a circuit branch, as shown in Figure 1.7. It is important to note that
voltage and current sources behave as, respectively, short and open circuits at
the frequencies different from those that they deliver. Therefore, an ideal filter
is necessary in either case, to prevent the auxiliary generator from perturbing
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the circuit at different frequencies ω 6= ωAG. The response of these filters in
terms of impedance Zs(ω), for the voltage generator and admittance Yp(ω), for
the current generator, is given by:

Zs(ω) = Yp(ω) =

{

0 ω = ωAG
∞ ω 6= ωAG

(1.43)

Figure 1.7: Auxiliary generators: (a) voltage generator and, (b) current genera-
tor.

Finally, it is important to guarantee that the auxiliary generator has no in-
fluence over the solution or, equivalently, that the solution of the circuit with
the auxiliary generator is actually a solution of the original circuit. To fulfil
this condition, the auxiliary generator must neither deliver energy to the cir-
cuit, nor dissipate it, which is assured if the current delivered by the voltage
generator Iv, is zero, or if the voltage drop across the current generator Vc, is
zero. Nonetheless, these conditions can still be fulfilled for trivial solutions in
which the oscillation vanishes (VAG = 0, for the voltage generator or IAG = 0,
for the current generator). In order to avoid convergence to this type of solu-
tions, the non-perturbation conditions are formulated in terms of the admittance
YAG, for the voltage generator or in terms of the impedance ZAG, for the current
generator, as follows:

YAG =
Iv
VAG

∣

∣

∣

∣

ω=ωAG

= 0 Voltage auxiliary generator (1.44)

ZAG =
Vc
IAG

∣

∣

∣

∣

ω=ωAG

= 0 Current auxiliary generator (1.45)

These complex equations can be directly translated into two additional real equa-
tions for the harmonic balance system. In vector notation, the non-perturbation
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condition can be expressed as:

Ēnp =

[

ℜ{UAG}
ℑ{UAG}

]

= 0̄ (1.46)

where UAG represents the admittance YAG, for the case of a voltage source or the
impedance ZAG, for the case of a current source.

The inclusion of the auxiliary generator adds two additional equations to the
harmonic balance system, due to the non-perturbation condition, along with
three additional parameters: the amplitude VAG or IAG, the frequency ωAG
and the phase φAG. However, taking into consideration the particular opera-
tion regime studied, one of the parameters can be usually fixed, leading to a
balanced system that can be solved through the normal procedure.

For instance, for a free running oscillator, as has been commented, the solu-
tion is independent of the phase origin, and therefore, the phase of the auxiliary
generator can be arbitrarily set to zero, φAG = 0, producing the following bal-
anced system:

Ē(X̄,AAG, ωAG) = 0̄

Ēnp(X̄,AAG, ωAG) = 0̄

}

(1.47)

where Ē represents the error function of the standard harmonic balance system,
taking into account the inclusion of the auxiliary generator, Ēnp are the non-
perturbation conditions as defined in (1.44), X̄ is the standard state vector and
AAG stands for the amplitude of the auxiliary generator (VAG or IAG, depending
on the type of source chosen).

Although, as has been commented, either a voltage or a current auxiliary
generator may be used, voltage generators are usually considered in this work.
Current generators can be more efficient for the analysis of series resonances,
though they are rarely necessary [7].

The auxiliary generator technique has proved to be a highly efficient and ver-
satile complementary tool for the harmonic balance simulation method, enabling
the analysis of non-linear circuits with autonomous behaviour as normal forced
systems. This provides remarkable flexibility for the control and optimisation of
the different parameters of interest in this kind of circuits, that will be largely
exploited throughout this work, addressing the simulation procedures for other
operation regimes, as well as for the optimisation of certain properties.

1.3.3. Stability Analysis

It has already been pointed out that, unlike in time domain simulation, when
using frequency domain analysis techniques, no information is obtained about
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the evolution of the circuit during the transient regime, and so the robustness of
the determined steady state solution versus perturbations is uncertain.

Furthermore, in the frequency domain techniques, it is assumed that the sig-
nals present in the circuit are expressible in terms of a pre-established frequency
basis, restricting the analysis to this set of signals. However, the obtention of a
solution does not ensure that the chosen basis is complete; there might still exist
additional frequency components in the circuit that have been ignored, leading
to an incorrect solution.

Thus, in order to verify the physical existence of the solutions obtained, the
use of a complementary stability analysis method is needed. The method must
evaluate the behaviour of the system under small perturbations of the steady state
solution obtained through the frequency domain techniques. This approach, usu-
ally referred to in the literature as local stability analysis, provides information
about the local robustness of a specific steady state solution to small perturba-
tions, without regard to the response of the system to large perturbations.

In this section, three different stability analysis techniques in the frequency
domain are presented. The first one, conceptually analogous to the time domain
stability analysis described in Section 1.2.3, is based on the study of the lin-
earised perturbed system in the frequency domain. This approach is appropriate
if an in-house harmonic balance implementation is available, since it requires the
operation with certain internal data, not usually accessible to the user in com-
mercial simulators. The other two approaches, on the other hand, are based on
the closed loop transfer function of the circuit, which can be easily determined
through conventional harmonic balance simulations.

1.3.3.1. Characteristic Determinant of the Harmonic Balance System

The result of the harmonic balance simulation of a given circuit is a steady
state solution in the general form:

x̄s(t) =

NH
∑

m=−NH

X̄sme
jωmt (1.48)

which may represent a constant, periodic or quasiperiodic operating regime.

Let ū(t) be a small amplitude vector perturbation of the form:

ū(t) = āe(σ+jω)t (1.49)

where ω is not an integer multiple of ωm,m ∈ {−NH , . . . ,NH}. If the steady state
solution x̄s(t) is perturbed through the injection of ū(t), due to the non-linearity
of the system, all the intermodulation products between ω and {ω1, . . . , ωNH

} will
be generated. Taking into account the small amplitude of the perturbing signal,
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the higher order terms in ω may be neglected, and the resulting perturbation
takes the form [12]:

∆x̄(t) = āeσt
NH
∑

m=−NH

∆X̄me
j(ω+ωm)t (1.50)

where ∆X̄m are a priori undetermined complex amplitudes. The following per-
turbed regime will be considered:

x̄(t) = x̄s(t) + ∆x̄(t) (1.51)

which, according to (1.48) and (1.50), represents a linear combination of ex-
ponential terms of the form eξt, ξ ∈ C. Since these signals are known to be
eigenfunctions of the linear invariant systems [11], the response they produce in
this type of systems is simply a version of the same signal, conveniently weighted
by a complex constant H(ξ), that depends on the complex frequency ξ = α+ jβ,
of the exponential term.

Thus, considering the time invariance of the linear networks involved in the
circuit, a linear frequency dependent relationship between the different frequency
components of the state variables X̄(s), the non-linear magnitudes Ȳ (s), and the
external generators Ḡ(s), can be defined. These vectors have been introduced
in order to take into account the new frequency components produced in the
perturbed regime considered, given by the intermodulation products s + jωm,
where ωm ∈ {ω−NH

, . . . , ωNH
} and s = σ+ jω. Since their structure is analogous

to that of X̄, Ȳ and Ḡ, as defined in (1.39), they reduce to these vectors for s = 0
(X̄(0) = X̄ , Ȳ (0) = Ȳ and Ḡ(0) = Ḡ). Assuming that the linear relationship
between the vectors exists for the values of s considered, it can be written as
follows:

Bx(s)X̄(s) +By(s)Ȳ (s) +Bg(s)Ḡ(s) = 0̄ (1.52)

where Bx(s), By(s) and Bg(s) are frequency dependent matrices. Note that, as
the evaluation of these matrices at s = 0 leads to the respective matrices Ax, Ay
and Ag, as they appeared in (1.40), the expression (1.52) is equivalent to (1.40)
for s = 0.

The non-linear magnitudes Ȳ (s) are non-linearly related to the state variables
X̄(s) through the time domain equation (1.38). However, taking into account the
fact that a small amplitude perturbation is considered in (1.51), the non-linear
relationship can be approximated by a Taylor series expansion around the steady
state solution x̄s(t):

Ȳ (s) ≈ Ȳs + JȲ (X̄s) (X̄(s) − X̄s) (1.53)

where X̄s and Ȳs are the frequency domain representation of the state variables
and the non-linear magnitudes respectively, at the steady state solution x̄s(t).
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The operator JȲ (X̄s) represents the Jacobian matrix of the non-linear function
(1.38) in the frequency domain, evaluated at the steady state conditions X̄s,
defined as:

JȲ (X̄s) =

(

∂Y j
i

∂X l
k

)∣

∣

∣

∣

∣

X̄s

=
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−NH
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X̄s

(1.54)

The calculation of the individual partial derivatives ∂Y j
i /∂X

l
k, can be carried out

as follows:

∂Y j
i

∂X l
k

=
∂

∂X l
k

lim
T→∞

∫ T

0
yj(t)e

−jωitdt =

= lim
T→∞

∫ T

0

∂yj(t)

∂xl(t)

∂xl(t)

∂X l
k

e−jωitdt = lim
T→∞

∫ T

0
h(t)ejωkte−jωitdt =

= Hωi−ωk

(1.55)

First, the coefficient Y j
i can be expressed as a function of the non-linear magni-

tude yj(t) through the analysis equation of the Fourier series expansion7. Since
the non-linear relationship ȳ(t) = f̄nl(x̄(t)) is analytically known, the partial
derivative of the non-linear magnitude yj(t) with respect to the state variable
xl(t): ∂yj(t)/∂xl(t), can be straightforwardly calculated. Similarly, from (1.48),
the partial derivative of the state variable xl(t) with respect to its harmonic
component X l

k, is directly the exponential term ejωkt. Therefore, the frequency

domain partial derivative ∂Y j
i /∂X

l
k is simply given by the spectral component

of the corresponding time domain derivative of the non-linear function (1.38),
h(t) = ∂yj(t)/∂xl(t), at the intermodulation product ωi − ωk, Hωi−ωk

.
Introducing the linear approximation (1.53) into (1.52) and considering the

perturbed regime given by (1.51), the following simplified frequency domain sys-
tem is obtained:

[

Bx(s) +By(s)JȲ (X̄s)
]

∆X̄(s) = 0̄ (1.56)

taking into account the fact that the steady state solution X̄s, fulfils (1.52). Since
the external generators are not influenced by the presence of the perturbation,

7For the general case of a quasiperiodic signal yj(t), the coefficient Y j
i of its Fourier series

expansion can be calculated through the expression: Y j
i = limT→∞

R T

0
yj(t)e

−jωitdt [5]. For
periodic signals, this procedure is equivalent to the traditional calculation of the coefficients of
the Fourier series.
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they produce no signals at the intermodulation products s+ jωm and thus, Ḡ(s)
vanishes for s 6= 0, cancelling out the corresponding term in (1.52).

Because (1.56) is an homogeneous linear system, in order for the perturba-
tion ∆X̄(s) to be different from zero, its characteristic matrix must be singular,
fulfilling:

∆(s) = det
[

Bx(s) +By(s)JȲ (X̄s)
]

= 0 (1.57)

Note that the perturbation ∆X̄(s) necessarily differs from zero, as an instan-
taneous perturbation was in fact introduced in the system. The roots of the
characteristic determinant (1.57) will determine the evolution of the perturba-
tion (1.50). For the steady state solution (1.48) to be stable, the roots must not
have positive real parts. This means that the perturbation ∆x̄(t) vanishes expo-
nentially in time (due to the negative sign of σ) and the system evolves towards
the steady state solution x̄s(t).

Direct calculation of the roots of the characteristic equation is usually ex-
tremely complicated, owing to the normally high order in s of the matrices Bx(s)
and By(s). Since, in most cases, the interest lies in determining the stability of
the steady state regime, rather than the exact solutions of (1.57), this informa-
tion can be graphically obtained through the application of Nyquist’s analysis to
the determinant ∆(s) [12].

1.3.3.2. Closed Loop Transfer Function: Admittance or Impedance

Diagrams

The obtention of the characteristic determinant of the harmonic balance sys-
tem used in the previous section is basically restricted to in-house harmonic
balance formulations, as it requires access to internal parts of the process, not
usually available to the user in commercial simulators. The approach illustrated
in this section, on the other hand, is based on the closed loop transfer function
of the circuit, that can be readily determined through conventional harmonic
balance simulations.

Let x̄s(t) be a steady state solution of a given non-linear circuit, obtained
through harmonic balance simulation. A closed loop transfer function of the
system, associated with a linearisation about the steady state solution x̄s(t), can
be determined by conveniently perturbing the system operation regime [13]. If a
small amplitude current In(ω) at the frequency ω is introduced into the circuit
by connecting an ideal generator in parallel at a circuit node, a single input
single output transfer function can be defined in terms of the input impedance
at the node Zn(ω), given by the relationship between the node voltage Vn, and
the current delivered In, at the frequency ω:

Zn(ω) =
Vn
In

∣

∣

∣

∣

ω

(1.58)
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Analogously, the transfer function could be defined in terms of the input ad-
mittance by the introduction of a small amplitude voltage in series at a circuit
branch. In either case, it must be ensured that the system, operating at the
steady state regime x̄s(t), presents a linear behaviour with respect to the pertur-
bation. The perturbation amplitude must be small enough to avoid disturbance
of the steady state regime, yet sufficiently high to prevent numerical inaccuracy
problems.

Unless exact pole zero cancellations occur, all the possible transfer functions
Zn(ω), associated with each of the circuit nodes share the same characteristic
equation [13], providing the required stability information of the circuit. Hence,
the transfer function can theoretically be obtained by simply connecting a current
generator at any node of the circuit and sweeping the frequency ω. Nonetheless, in
practice, as some nodes are less numerically sensitive and pole zero cancellations
may take place, it is advisable to perform the analysis at different nodes; the
terminals of the active devices are generally an appropriate choice.

The frequency of the perturbation ω must be included in the frequency basis
and swept throughout the desired interval, to obtain the transfer function Zn(ω).
Due to the linear behaviour of the system with respect to the perturbation,
no harmonic components of the perturbation frequency are required. In order
for this transfer function to represent a linearisation of the system about the
steady state solution x̄s(t), the external generators, as well as—when necessary—
the non-perturbing auxiliary generators that sustain the autonomous behaviour,
must maintain the same operating conditions as for the simulation of the steady
state, so that the circuit remains at this operating regime throughout all the
process.

The presence of the perturbation at ω (and, because it is a real signal, at −ω)
will generate intermodulation products with the frequency components present
in the system at ±ω + ωm, m ∈ {−NH , . . . ,NH}. Providing enough harmonic
components have been included in the basis (and they are actually present in the
system), it can be proved that the onset of a spurious oscillation at ω will produce
a component in the interval [0,Ωmin/2], where Ωmin is the minimum non-zero
positive fundamental frequency of the considered basis. Thus, for the stability
analysis, it would be theoretically sufficient to determine the transfer function
in this frequency interval, although, with this single node approach, taking into
account the behaviour in a wider frequency range usually brings about more
reliable results.

The instability of a particular solution is generally associated with the exis-
tence of a pair of complex conjugate poles s = σ ± jω0, with positive real part
(σ > 0) in the linearised transfer function Zn(ω). Under these conditions, any
perturbation around the frequency ω0 will progressively increase its amplitude,
leading the system towards a different stable solution that cannot be predicted
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using this linearisation. An intuitive method to detect the presence of unstable
complex conjugate poles in the closed loop transfer function is presented next.

A pair of complex conjugate poles s = σ±jω0 produces a factor in the transfer
function Zp(s) of the form:

Zp(s) =
σ2 + ω2

0

s2 − 2σs+ σ2 + ω2
0

(1.59)

It will be assumed that this factor is the dominant contribution in the pole residue
expansion of the closed loop transfer function Zn(s) [13]. Since the transfer
function is obtained in the pure sinusoidal regime excited through the perturbing
generator, replacing s with jω, the factor associated with the dominant pair of
poles in this regime becomes:

Zp(ω) =
σ2 + ω2

0

σ2 + ω2
0 − ω2 − j2σω

(1.60)

Applying the mathematical property: sign(dφ/dx) = sign(d tan(φ)/dx), which
holds for any real angle φ and independent variable x, from:

tan(angle(Zp(ω))) =
ℑ{Zp(ω)}
ℜ{Zp(ω)} =

2σω

σ2 + ω2
0 − ω2

(1.61)

it can be stated that, for positive σ, the phase of Zp(ω) has a positive slope at
the resonant frequency ω0. The function Zn(ω) agrees with the inverse of the
input admittance at the observation port Yn(ω) = Y r

n (ω)+ jY i
n(ω). Therefore, it

is possible to write:

tan(angle(Zp(ω))) = −Y i
n(ω)

Y r
n (ω)

(1.62)

Assuming a slow frequency variation of Y r
n (ω), a resonance (Y i

n(ω0) = 0) in which
the real part of the admittance is negative and the imaginary part presents a posi-
tive slope, entails a positive slope in the phase of the closed loop transfer function
Zn(ω), corresponding to a pair of unstable (σ > 0) complex conjugate poles [7].
In summary, these rules, usually referred to in the literature as oscillation start-up
conditions, can be written as:

Y r
n (ω0) < 0

Y i
n(ω0) = 0

∂Y i
n(ω0)

∂ω
> 0

(1.63)

In Figure 1.8, the fulfilment of these conditions in a practical circuit is il-
lustrated. Depending upon the type of steady state solution x̄s(t), about which
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the linearisation has been performed, the interpretations might be slightly dif-
ferent. In case x̄s(t) represents a non-autonomous regime, the input admittance
response shown in Figure 1.8 generally means that an autonomous oscillatory
transient of growing amplitude will start (initially) at 2.5 GHz, taking the cir-
cuit to a stable solution that cannot be predicted using this analysis. Although
the precise stable solution must be determined through the simulation methods
that have been described for autonomous regimes, such as the auxiliary genera-
tor technique, the frequency at which conditions (1.63) are fulfilled is usually a
good starting point for the optimisation. Depending on the intended application
of the circuit, this situation may be interesting (oscillators, frequency dividers,
etc.) or utterly detrimental (amplifiers, etc.), in which case the design must be
appropriately modified.

Figure 1.8: Fulfilment of conditions (1.63) at 2.5 GHz in a practical circuit.

On the other hand, if x̄s(t) represents an autonomous regime, duly sustained
in the simulation by non-perturbing auxiliary generators, fulfilment of (1.63) only
means that the solution is unstable. No further assumption can be made as to the
type of solution the circuit will present in practice, since the linearisation has been
performed about an artificially sustained regime that cannot be experimentally
observed, due to its lack of robustness versus perturbations.

Nonetheless, as has been commented, even if the system is unstable, an inap-
propriate choice of the observation node or branch may lead to incorrect results
in terms of stability. Hence, it is convenient to repeat the analysis with differ-
ent closed loop transfer functions obtained from different observation nodes or
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branches; maximum sensitivity is usually found on the terminals of the non-linear
devices.

This analysis, based on the input admittance (or impedance) diagram, con-
stitutes a simple and efficient method for the qualitative detection of unstable
poles in the linearised transfer function Zn(ω), that can be straightforwardly
implemented in any harmonic balance simulator.

1.3.3.3. Closed Loop Transfer Function: Pole Zero Identification

Alternatively, instead of verifying the fulfilment of conditions (1.63) in the
input admittance diagrams, pole zero identification techniques can be applied to
a closed loop transfer function associated with the linearisation of the system
about the steady state solution x̄s(t) [14]. Despite the fact that, in a linear
system, all the possible closed loop transfer functions can be defined with the
same denominator [13], a convenient choice is normally the input impedance
Zn(ω), as has been defined in (1.58), due to the proximity between input and
output.

Using pole zero identification techniques, the complex function Zn(ω) is fitted,
through a least squares method, to a quotient of polynomials of the form [14]:

Zn(ω) → Zf (s) = A

M
∏

i=1
(s− zi)

N
∏

i=1
(s− pi)

(1.64)

The identification must be performed from ω = 0 to the maximum frequency
at which any of the active devices shows gain. As already mentioned, even
though the considered interval may be reduced under certain conditions, taking
into account a wider frequency range generally leads to more reliable results.
Note that the identification in a wide frequency range may require a high order
N in the denominator polynomial, degrading the identification accuracy that
can be attained. However, as the transfer function Zn(ω) is linear, the total
frequency interval can be divided into subintervals, allowing a piecewise accurate
identification process with a low order of the denominator polynomials in (1.64).

The set of poles {p1, . . . , pN} of (1.64) determines the stability of the steady
state solution x̄s(t). In order for this solution to be robust versus small perturba-
tions, all the poles must have negative real parts. In these conditions, any small
perturbation will vanish exponentially in time and the system will recover the
steady state solution x̄s(t), making it stable.

The stability analysis using pole zero recognition techniques generally pro-
vides accurate quantitative information about the roots of the characteristic de-
terminant of the system, linearised about the considered steady state solution
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x̄s(t). Nevertheless, since the procedure relies on the same closed loop transfer
function used in the foregoing approach, based on the admittance or impedance
diagrams, the limitations commented in terms of the possible lack of sensitiv-
ity of the chosen node and the convenience to repeat the analysis from different
observation ports, as well as the interpretation criteria for the results, can be
directly applied here.

1.3.4. Envelope Transient Simulation

The harmonic balance simulation technique, as presented in Section 1.3.1, is
a powerful and efficient method for the analysis of non-linear circuits. However,
the frequency domain representation of the signals, in terms of Fourier series,
restricts the range of solutions that can be studied using this technique to con-
stant, periodic and quasiperiodic steady state regimes. No information about
the transient response of the circuit or about its behaviour when dealing with
modulated signals can be obtained using this method.

On the other hand, although the time domain integration techniques can
theoretically be applied to any kind of operating regime or input signals, as has
been commented in Section 1.2.5, practical limitations arise when signals with
both low and high frequency components are present in the system. The time step
must be short enough to accurately represent the high frequency components,
while the integration time must be long enough to take into account the variation
of the low frequency components, leading to an enormous number of calculation
points.

In the analysis of communication systems, where high frequency carriers mod-
ulated by relatively low frequency signals are usually present, the problem of the
different frequency scales has traditionally been addressed using the low-pass
equivalents of bandpass signals and functions. The generic bandpass signal s(t)
is expressed as s(t) = ℜ{s̃(t)ejω0t}, where s̃(t) is the slowly varying complex
envelope of s(t).

A similar approach is used in the envelope transient simulation technique for
the analysis of non-linear circuits. It is assumed that the signals present in the
circuit can be expanded in a series of the general form [7; 15]:

x̄(t) =

NH
∑

m=−NH

X̄m(t)ejωmt (1.65)

where x̄(t) is the state vector of the circuit. The frequency components ωm,
m ∈ {−NH , . . . , NH} constitute a user defined frequency basis, analogous to the
one used in the frequency domain formulation, as described in (1.37). The slowly
time varying coefficients X̄m(t), represent the complex envelope of the bandpass
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signal associated with each frequency component ωm. These baseband equiva-
lents X̄m(t) can be related to their frequency domain representations through
the Fourier transform:

X̄m(t) =
1

2π

∫ Bm/2

−Bm/2
X̄m(ξ)ejξtdξ (1.66)

where each vector X̄m(ξ) contains the spectra of the different state variables
x1(t), . . . , xQ(t), about the carrier frequency ωm, and therefore, the continuous
frequency ξ, represents an offset with respect to this central frequency. The
envelopes X̄m(t) must present slow variation rates with regard to the carrier
frequencies ωm and thus, their bandwidth Bm must be relatively narrow. In par-
ticular, in order for the series expansion to be unique, the spectra of the different
envelopes X̄m(ξ), centred at their corresponding carrier frequency ωm, must not
overlap one another. However, this condition is not particularly restrictive, as
this method is optimised for passband signals and it is only efficient in comparison
with the full time domain integration for relatively narrowband envelopes.

The representation based on the time varying coefficients X̄m(t), that has
been illustrated for the state vector x̄(t), is extended to the rest of the circuit
variables, namely the non-linear magnitudes Ȳm(t) and the external generator
signals Ḡm(t). Moreover, in agreement with the notation that has been used in
the frequency domain formulation, these time varying coefficients for the different
components {ω−NH

, . . . , ωNH
}, are grouped in the vectors X̄(t), Ȳ (t) and Ḡ(t),

with the structure shown in (1.39). Similarly, the frequency domain representa-
tion of these vectors, given by the Fourier transform, are denoted by X̄(ξ), Ȳ (ξ)
and Ḡ(ξ), respectively.

As has been shown in the stability analysis described in Section 1.3.3.1, a lin-
ear frequency dependent relationship can be defined between the state variables
X̄(ξ), the non-linear magnitudes Ȳ (ξ) and the external generator signals Ḡ(ξ),
in terms of the matrices Bx(s), By(s) and Bg(s), introduced in (1.52). Partic-
ularising the matrices for the purely imaginary frequency s = jξ, the following
system of (2NH + 1)Q equations can be obtained:

Ē(X̄(ξ)) = Bx(jξ)X̄(ξ) +By(jξ)Ȳ (ξ) +Bg(jξ)Ḡ(ξ) = 0̄ (1.67)

Under the assumption of slowly varying envelopes, the spectra X̄(ξ), Ȳ (ξ)
and Ḡ(ξ) must be narrowband, allowing a Taylor series expansion of the fre-
quency dependent matrices Bx(jξ), By(jξ) and Bg(jξ), about ξ = 0. If the
frequency variation of these matrices is smooth, a first order approximation is
usually sufficient [16]:

B(jξ) ≈ B(0) +
∂B(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

jξ (1.68)
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where B(jξ) stands for any of the matrices Bx(jξ), By(jξ) or Bg(jξ). Replacing
the matrices in (1.67) with their Taylor expansion yields:

[

Bx(0) +
∂Bx(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

jξ

]

X̄(ξ) +

[

By(0) +
∂By(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

jξ

]

Ȳ (ξ)+

+

[

Bg(0) +
∂Bg(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

jξ

]

Ḡ(ξ) = 0̄

(1.69)

Note that the only frequency dependent terms in this equation are the jξ fac-
tors and the vectors X̄(jξ), Ȳ (jξ) and Ḡ(jξ); the matrices are constant versus
frequency. Differentiating both sides of (1.66), the following property is obtained:

˙̄X(t) =
dX̄(t)

dt
=

1

2π

∫ Bm/2

−Bm/2
jξX̄m(ξ)ejξtdξ (1.70)

The application of this property, together with the Fourier transform synthesis
equation (1.66) to (1.69), leads to the time domain system:

Ē(X̄(t)) = Bx(0)X̄(t) +
∂Bx(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

˙̄X(t) +By(0)Ȳ (t)+

+
∂By(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

˙̄Y (t) +Bg(0)Ḡ(t) +
∂Bg(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

˙̄G(t) = 0̄

(1.71)

Since a first order Taylor expansion of the matrices that describe the linear net-
works of the circuit has been considered, this equation is only valid for slowly
varying envelopes X̄(t), Ȳ (t) and Ḡ(t), associated with narrowband spectra. A
more accurate representation of these matrices can be achieved by considering
higher order terms of the Taylor series expansion (1.68) [15], leading to higher
order time domain derivatives of the envelopes in (1.71). Alternatively, a dif-
ferent envelope transient formulation without these bandwidth constraints can
be defined, based on the nodal harmonic balance technique [17]. Nonetheless,
a major drawback of this approach lies in the fact that it requires the calcula-
tion of the impulse responses of the distributed elements and the computation
of convolution products. Furthermore, as previously commented, the envelope
transient technique is only advantageous versus a full time domain integration
when dealing with strictly narrow passband signals.

The resolution of the time domain non-linear system (1.71) is performed using
the general time domain integration techniques described in Section 1.2.5. The
continuous variable t is discretised and replaced by a set of sampling points, and
the continuous system of non-linear differential equations is thereby transformed
into an algebraic system of non-linear equations. Because the complex envelopes
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X̄(t), Ȳ (t) and Ḡ(t) present a considerable slower variation rate than the real
circuit signals x̄(t), ȳ(t) and ḡ(t), this formulation admits an accordingly larger
time step in comparison with a complete time domain integration, leading to a
substantial reduction in the number of computation points.

Depending on the particular integration algorithm chosen, the time domain
derivatives are approximated by a different function of the discrete values of the
variables at the considered sampling points. For instance, using the backward
Euler approach, the derivative of the state variables and non-linear magnitudes
at the sampling point tn are expressed as:

˙̄X(tn) ≈
X̄(tn) − X̄(tn−1)

∆t
, ˙̄Y (tn) ≈

Ȳ (tn) − Ȳ (tn−1)

∆t
(1.72)

where ∆t = tn−tn−1 is the time step selected. Substituting these approximations
for the corresponding time domain derivatives in (1.71), the following non-linear
algebraic system is obtained:

Ē(X̄(tn)) =

[

Bx(0) +
1

∆t

∂Bx(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

]

X̄(tn)+

+

[

By(0) +
1

∆t

∂By(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

]

Ȳ (tn)+

+Bg(0)Ḡ(tn) +
∂Bg(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

˙̄G(tn)

− ∂Bx(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

X̄(tn−1)

∆t
− ∂By(jξ)

∂jξ

∣

∣

∣

∣

ξ=0

Ȳ (tn−1)

∆t
= 0̄

(1.73)

Note that, as the signals introduced by the external generators ḡ(t) are ana-

lytically known, the derivative of their complex envelopes ˙̄G(t) can be directly
calculated.

The solution of the circuit at the initial time t0 is obtained through a pre-
liminary harmonic balance analysis, considering constant envelopes of the the
external signals Ḡ0, which may correspond to either the initial or average value
of the time varying envelopes Ḡ(t). For the general time point tn, once the
solution values of the circuit at the instant tn−1 have been conveniently substi-
tuted for the corresponding variables X̄(tn−1) and Ȳ (tn−1), the equation (1.73)
reduces to a conventional harmonic balance system, that can be normally solved
through an error minimisation process based on the Newton–Raphson algorithm,
as explained in Section 1.3.1.

A simplified example of the envelope transient simulation procedure
is schematically illustrated in Figure 1.9. The considered input signal
g1(t) = ℜ{g̃1(t)ejωmt}, shown in blue, is defined as a tone of frequency ωm
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modulated by a slowly varying real envelope g̃1(t), displayed in red. For the
simulation, the input signals must be expanded in a series of the form (1.65), with
time varying coefficients Ḡ(t), that are subsequently discretised and replaced
by their values at a set of sampling points {t1, t2, . . .}. The magnitude of the
sampled coefficients associated with g1(t), |Ḡ1(ti)| are represented with yellow
spectral lines. Note that, for the particular case of g1(t), only the coefficient
corresponding to the frequency component at ωm is non-zero, and its amplitude
varies according to the same envelope |G1

m(t)|, displayed in dotted red line.

Figure 1.9: Schematic envelope transient simulation procedure.

With the coefficients of all the signals at each time step ti, a system of the
form (1.73) is obtained, whose resolution is analogous to a harmonic balance
simulation. The results of this simulation are the coefficients of all the state
variables corresponding to all the frequency component in the basis, for this
particular time step ti. For simplicity, the pink spectral lines only represent the
amplitudes of the coefficients |X̄1(ti)|, associated with the state variable x1(t).
The coefficients at the different sampling points are thus determined through
successive harmonic balance analyses.

1.3.4.1. Simulation of Autonomous Regimes

The envelope transient method, described in the previous section, can be
straightforwardly applied to the simulation of purely forced circuits, enabling
the analysis of their performance in presence of modulated bandpass signals.
Nonetheless, as was the case with harmonic balance, the application of this
method to circuits with autonomous behaviour generally requires complementary
techniques, in order to avoid convergence towards coexisting non-autonomous so-
lutions. The user defined frequency basis, as well as the chosen sampling rate of
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the time varying complex envelopes, are sensitive factors that may compromise
the convergence of the simulation to the desired solution.

Taking advantage of the fact that stable solutions behave as attractors for
the neighbouring trajectories, a systematic technique for the selection of the par-
ticular operating regime to analyse in the simulation, can be developed. The
solution of the circuit at the initial time t0 is determined through a traditional
harmonic balance simulation with constant coefficients. Providing the intended
autonomous operating regime can be expressed in terms of the pre-established
frequency basis (the solution must be either periodic or quasiperiodic and its
fundamentals must be included in the basis), it can be conveniently initialised
in this preliminary harmonic balance analysis, using non-perturbing auxiliary
generators, as explained in Section 1.3.2. The results of this analysis are pro-
vided as initial values to the envelope transient simulation, in which the circuit
is allowed to evolve in accordance with its own dynamics. Therefore, as long as
the intended autonomous regime is stable, once initialised, the circuit will spon-
taneously maintain this solution, without requiring auxiliary generators or any
other complementary techniques.

Even though the envelope transient method is available in some commercial
circuit simulation packages, these implementations usually lack built-in tools for
the analysis of autonomous operating regimes. However, the initialisation tech-
nique that has been described can be externally applied by the user, as explained
below.

First of all, a harmonic balance simulation of the circuit must be carried out,
disregarding the possible modulation of the input signals and conveniently sus-
taining the autonomous behaviour through auxiliary generators, that must fulfil
the corresponding non-perturbation conditions. The envelope transient simula-
tion is set up with the same frequency basis, auxiliary generators and circuit
parameters. Note that, since the non-perturbation conditions were fulfilled in
the preliminary harmonic balance simulation of the circuit, they need not be im-
posed again in this analysis. The auxiliary generator must be disconnected from
the circuit for t > t0, once the circuit variables have been initialised, in order
to allow the circuit to evolve in accordance with its own dynamics. When using
commercial software, this disconnection can be carried out with the aid of a time
varying resistor RAG(t), in series with the voltage auxiliary generator, defined as
follows:

RAG(t) =

{

0 t = t0
∞ t > t0

(1.74)

For the case of a current auxiliary generator, a component with conductance
GAG(t) = RAG(t), must be connected in parallel with the generator.

The introduction of modulated signals into the system, its evolution in a tran-
sient regime or, in general, the appearance of any type of signal not expressible in
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a conventional Fourier series, with constant coefficients, will be represented with
time varying envelopes X̄(t). For instance, let us consider a simple free running
oscillator with a design operating frequency ωAG, which will be the only fun-
damental in the frequency basis established for the simulation. The fulfilment
of the non-perturbation condition in the preliminary harmonic balance set-up
indicates that a steady state solution of the circuit has been found. However,
no assumption can be made as to the stability of the solution without further
analysis. Suppose the steady state solution at ωAG, although unstable, is located
within the basin of attraction of a stable solution x̄s(t), with slightly different
frequency ω0. Under these conditions, when the circuit is allowed to evolve freely
in the envelope transient simulation, the perturbation associated with the dis-
connection of the auxiliary generator or even the numerical inaccuracies of the
method might trigger a transient regime, leading to the stable solution x̄s(t),
which will be expressed as follows:

x̄s(t) =

NH
∑

m=−NH

X̄0
me

jmω0t =

=

NH
∑

m=−NH

X̄0
me

jm(ω0−ωAG)tejmωAGt =

NH
∑

m=−NH

X̄m(t)ejmωAGt

(1.75)

The solution x̄s(t) can be expanded in a Fourier series with the fundamental
frequency ω0. However, since only the fundamental ωAG has been included in the
established frequency basis, time dependent coefficients X̄m(t), with a periodic
variation at the offset frequency ω0 − ωAG, need to be used. Note that, as
the envelopes are discretised, the chosen sampling rate might be insufficient to
represent their variations, leading to incorrect results. Thus, the integration step
is a critical factor in this simulation method, that must be carefully selected to
avoid convergence to incorrect solutions. Under these particular circumstances,
however, it would be advisable to try and determine the stable solution precisely
and modify the frequency basis accordingly, instead of reducing the integration
step, which would considerably increase the simulation time. In general, in order
to improve the efficiency, the frequency basis must be adjusted to minimise the
bandwidth of the complex envelopes X̄(t).

1.4. Bifurcation Analysis

In the set of equations that describes a dynamical system, parameters are
magnitudes that characterise the specific elements present in the system, without
affecting its general nature. In circuit analysis, examples of parameters can be,
among others, the values of the linear components, the amplitudes of the bias
sources or the levels or frequencies of the input signal generators.
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The continuous variation of a parameter η generates a set of steady state
solutions x̄(η), known as solution path [7]. While the variation of this parame-
ter ordinarily brings about quantitative changes in the circuit solutions, in some
cases, a qualitative change may also take place at a particular value ηb. A bi-
furcation is defined as a qualitative change in the stability of a solution—or in
the number of solutions—of a dynamical system when a parameter is varied
continuously.

Bifurcations can be classified as local or global. Local bifurcations involve
variations in the stability properties of a single solution and thus, they can be
studied through the pole analysis of this specific solution. Global bifurcations,
on the other hand, are qualitative variations in the phase space that cannot be
analysed at local level, as they generally involve intersections between the stable
and unstable manifolds of one or more solutions [1].

The present section is devoted to the analysis of the main different types of
bifurcations, focusing on the characterisation of those influential in the dynamic
behaviour of the circuit topologies addressed in this work.

1.4.1. Local Bifurcations

As already stated, local bifurcations are associated with qualitative changes in
the stability properties of a single steady state solution x̄s(t). These properties are
determined through applying a small instantaneous perturbation and analysing
the subsequent evolution of the circuit variables. Due to the small amplitude of
the applied perturbation, the circuit equations:

˙̄x = f̄(x̄, η), (1.76)

can be linearised about the particular steady state solution, that is generally
dependent on the value of the parameter η, x̄s(t, η), giving rise to the system:

∆ ˙̄x(t) = Jf̄(x̄s(t), η)∆x̄(t). (1.77)

The bifurcation analysis will thus be based on the magnitudes that determine
the stability of the particular steady state solution considered; the eigenvalues
of the linearisation for constant solutions, the Floquet multipliers for periodic
solutions or the Lyapunov exponents for quasiperiodic and chaotic solutions.
Alternatively, as has been described in Section 1.3.3, it is possible to study the
stability properties of a constant, periodic or quasiperiodic steady state solution
x̄s(t), in terms of the poles of any of the possible linearised closed loop transfer
functions that can be defined in the frequency domain, by introducing a small
signal perturbation into the system, while it operates at this particular solution.

At a specific point in the solution path x̄(ηb), indicated by parameter value ηb,
a real pole γ (or a pair of complex conjugate poles σ±jω) may cross the imaginary
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axis, producing a bifurcation of the steady state solution x̄s(t, η), versus the
parameter η. If the solution was stable, it will obviously become unstable after
the bifurcation. The bifurcation is called direct if the real pole, or the pair of
complex conjugate poles, crosses the imaginary axis to the right hand side of
the complex plane, and inverse if it crosses the imaginary axis in the opposite
direction. Furthermore, when approaching a bifurcation from a stable regime,
the circuit transient response, described by exponential terms of the form eσt or
eγt, becomes progressively slower, as the magnitude of the real pole γ (or of the
real part of the complex conjugate poles σ) decreases.

Since the bifurcation analysis in the time domain depends on the type of so-
lution considered, some bifurcations of equilibrium points and periodic solutions
are considered next.

1.4.1.1. Bifurcations of Equilibrium Points

For the stability analysis of a constant steady state solution or equilibrium
point x̄eq, as presented in Section 1.2.3.1, the perturbed system (1.77) becomes
a time invariant linear system that can be generally8 solved as:

∆x̄(t) =

N
∑

k=1

cke
λktūk, (1.78)

where the exponents λk(η) ∈ C, k ∈ {1, . . . ,N} are the eigenvalues of the matrix
Jf̄(x̄eq, η), and ūk(η) are the corresponding eigenvectors. A bifurcation will
be obtained if, for certain parameter value ηb, the corresponding equilibrium
x̄eq(ηb) is non-hyperbolic (it has a zero real eigenvalue λk = 0, or a pair of
complex conjugate eigenvalues σ ± jω, with zero real part σ = 0), and it brings
about a qualitative change in the stability properties of the solution. The two
possible codimension9 one bifurcations of constant solutions are described below.
Other bifurcation types, which require symmetry or additional constraints, are
not considered due to their structural instability, in the sense that they are not
robust versus slight perturbations of the vector field.

Saddle–node. Suppose the system (1.76) has an equilibrium point x̄eq, for the
parameter value ηb, f̄(x̄eq, ηb) = 0̄. Providing this equilibrium point presents
a single zero eigenvalue—with the remaining eigenvalues having non-zero real
parts—the centre manifold theorem enables the analysis of the orbit structure of

8The case with repeated eigenvalues and less than N independent eigenvectors is not con-
sidered in the expression (1.78).

9The codimension of a bifurcation indicates the number of parameters that must be varied
for the bifurcation to occur.
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the system, in the vicinity of (x̄eq, ηb), in terms of the one dimensional equation
[18]:

ẏ = g(y, µ), (1.79)

where µ = η − ηb. Furthermore, this centre manifold equation must satisfy:

g(0, 0) = 0, (1.80a)

∂g

∂y
(0, 0) = 0. (1.80b)

Equation (1.80a) reflects the existence of the equilibrium point x̄eq, which has
been translated to the origin of the centre manifold by (1.79), taking place for
y = 0 and µ = 0. The existence of the zero eigenvalue is indicated by the
non-hyperbolicity condition (1.80b).

The system (1.79) will undergo a saddle–node bifurcation at the non-
hyperbolic equilibrium (y, µ) = (0, 0) (or, equivalently, the system (1.76) will be
subjected to a saddle–node bifurcation at the non-hyperbolic equilibrium x̄eq,
for the parameter value ηb), if the following conditions are satisfied:

∂g

∂µ
(0, 0) 6= 0, (1.81a)

∂2g

∂y2
(0, 0) 6= 0. (1.81b)

It can be shown [18] that equation (1.81a) implies that a unique solution path
passes through (y, µ) = (0, 0), and (1.81b) implies that this curve lies locally
on one side of µ = 0. This kind of behaviour is shown schematically in Figure
1.10(a).

Note that, the presence of a non-hyperbolic equilibrium point, as defined by
conditions (1.80), is a necessary but not sufficient condition for the existence of a
saddle–node bifurcation. In fact, the presence of the non-hyperbolic equilibrium
does not even guarantee the existence of a bifurcation; the stability properties
throughout the solution path may not change at the non-hyperbolic equilibrium.
Fulfilment of conditions (1.81), together with (1.80b), indicates the presence of
a saddle–node bifurcation.

Although similar conditions can be derived for the pitchfork and transcritical
bifurcations, as previously mentioned, they are not interesting for the purpose of
this work, due to their structural instability.

At the saddle–node bifurcation, also known as turning point or fold bifurca-
tion, the solution path folds over itself and is tangent to µ = 0, giving rise to a
multivalued solution either for µ < 0, as shown in Figure 1.10(a), or for µ > 0.
However, only one of the branches is formed by stable nodes (the upper branch
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(a) (b)

Figure 1.10: Saddle–node bifurcation: (a) Bifurcation diagram: solution path
versus the parameter µ. The stable part is indicated in solid line. (b) Schematic
representation of the vector field; The saddle and stable node type solutions,
coexistent for µ < 0, coalesce for µ = 0 and annihilate one another, leaving (lo-
cally) no equilibria for µ > 0. The stable and unstable equilibria are represented
with filled and open circles,  and # respectively, and the bifurcations are
represented with half filled circles, G#.

in the figure, represented in solid line), and thus it represents stable equilibria,
whereas the other is formed by unstable saddle type solutions.

The phase portrait of the system restricted to the centre manifold before,
during and after the bifurcation is presented in Figure 1.10(b). Two equilibrium
points coexist for µ < 0; a stable node and an unstable saddle type solution, that
approach one another as µ tends to zero. These two solutions coalesce at the
bifurcation point µ = 0, giving rise to a local annihilation of both equilibrium
points. No equilibrium points can be found in this area of the phase space for
µ > 0.

It is important to highlight the fact that the stability properties of the equilib-
rium points that have been discussed, refer exclusively to the system restricted
to the centre manifold (1.79), and they can only be extrapolated to the com-
plete N-dimensional system (1.76), if the remaining eigenvalues—overlooked in
the centre manifold—have negative real parts. Otherwise, the presence of an
eigenvalue with positive real part would make the whole solution path unsta-
ble, although the equilibria in one of the branches would still have an additional
unstable eigenvalue in comparison with the other.

Although, in the graphical example presented in Figure 1.10, the complete
solution path is defined for µ < 0, this is not a necessary condition for the
existence of a saddle–node bifurcation, which may still take place as long as—in
the vicinity of the bifurcation point—the solution path lies on one side of µ = 0.

In practice, saddle–node bifurcations can lead to hysteresis cycles when a
circuit parameter in varied, as shown in Figure 1.11, where a state variable xi is
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Figure 1.11: Hysteresis cycle originated by the existence of two saddle–node
bifurcations. The solution in the interval (ηb1 , ηb2) is determinded by the direction
in which the parameter η is varied.

represented versus the varied parameter η. Two turning points, T1 and T2 take
place for the values ηb1 and ηb2 of the bifurcation parameter. The segment of
solution path between the bifurcations, represented in dotted line, is unstable,
while the parts represented in solid line are stable. When the parameter η is
progressively increased starting from a value η < ηb1 , the observed equilibrium
point follows the lower stable segment of the solution path until η = ηb2 , where the
solution undergoes an abrupt change. Beyond this point the value indicated by
the upper stable segment is observed. Nonetheless, if the parameter is decreased
from a value η > ηb2 , then the observed solution follows the upper segment until
η = ηb1 , and the lower segment beyond this point. Therefore, in the interval
(ηb1 , ηb2), the direction in which the parameter is varied determines the solution
of the system, giving rise to a hysteresis cycle.

Hopf Bifurcation. Consider an equilibrium point x̄eq of the system (1.76),
with a pair of complex conjugate eigenvalues λk,k+1 = σ ± jω, , that crosses the
imaginary axis for the parameter value ηb. Providing the remaining eigenvalues of
the equilibrium point have non-zero real parts, the existence of a Hopf bifurcation
at the point ηb is subjected to the fulfilment of the following conditions:

λk,k+1(ηb) = ±jω, (1.82a)

dσ

dη

∣

∣

∣

∣

η=ηb

6= 0, (1.82b)
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The transversality condition (1.82b) implies that the pair of complex conjugate
eigenvalues actually crosses the imaginary axis.

As previously commented, the centre manifold theorem provides a systematic
procedure for the analysis of the orbit structure in a neighbourhood of the non-
hyperbolic equilibrium (x̄eq, ηb). In this case, a family of vector fields on the two
dimensional centre manifold, indexed by the parameter µ = η − ηb, is obtained,
in which the equilibrium at (x̄eq, ηb), has been translated to the origin, (ȳ, η) =
(0̄, 0).

The eigenvalues of the vector field, restricted to the centre manifold, about
the equilibrium point at the origin, are denoted by λ(µ) and λ∗(µ), where

λ(µ) = σ(µ) + jω(µ). (1.83)

Note that, according to the previous assumptions, the eigenvalues must become
purely imaginary for µ = 0: σ(0) = 0 and ω(0) 6= 0.

The behaviour of the system in the vicinity of the equilibrium point can be
locally studied in terms of the corresponding normal form, which is a simplified—
although topologically equivalent—version of the vector field (1.76). By calcu-
lating the third order Taylor expansion of the normal form about µ = 0, in the
polar coordinates r and θ, the following general expression is obtained:

ṙ = dµr + ar3,

θ̇ = ω + cµ+ br2,
(1.84)

where the parameters a and b are coefficients of the Taylor expansion of the
normal form [18], ω = ω(0) and

d =
dσ

dµ

∣

∣

∣

∣

µ=0

, c =
dω

dµ

∣

∣

∣

∣

µ=0

. (1.85)

Providing d 6= 0 and a 6= 0, it can be proved [18], that the normal form
(1.84) possesses a surface of periodic orbits that lies locally on one side of the
plane µ = 0, being tangent to it at the origin (ȳ, µ) = (0, 0). Furthermore, these
periodic solutions will be asymptotically stable for a < 0 and unstable for a > 0.

Since the equilibrium point at ȳ = 0̄ and a degenerated periodic orbit of
zero amplitude coalesce at the Hopf bifurcation µ = 0 (note that the surface
of periodic orbits is tangent to the plane µ = 0 at that point), both solutions
cannot be simultaneously stable. Thus, at the side of the plane µ = 0 where they
coexist, µ < 0 or µ > 0, either the equilibrium point at ȳ = 0̄ or the periodic
orbits will be asymptotically stable.

The direction in which the pair of complex conjugate eigenvalues crosses the
imaginary axis, indicated by the parameter d, determines the stability properties
of the equilibrium point at ȳ = 0̄. For d > 0, because the eigenvalues cross from
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the left half plane to the right half plane as µ is increased, the equilibrium point
will be asymptotically stable for µ < 0. Conversely, if they cross the axis in the
opposite direction, the equilibrium will be asymptotically stable for µ > 0.

Hence, the stability properties of the solutions that coexist in a Hopf bifurca-
tion are determined by the parameters d and a. The case in which the periodic
orbits are unstable (a > 0) is usually referred to as subcritical and the case in
which the periodic orbits are stable (a < 0) is usually referred to as supercritical.
Both types of bifurcations are schematically shown if Figure 1.12 for d > 0 (the
case with d < 0 is directly symmetrical with respect to the plane µ = 0).

(a)

(b)

Figure 1.12: Hopf bifurcations when the pair of complex conjugate eigenvalues
crosses the imaginary axis in the positive direction (d > 0): (a) Supercritical
(a < 0), the surface of limit cycles is stable. (b) Subcritical (a > 0), the periodic
solutions are unstable.
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The supercritical case (a < 0), is presented in Figure 1.12(a). For µ negative
and sufficiently close to the bifurcation point, the equilibrium at ȳ = 0̄ has a
dominant pair of complex conjugate eigenvalues with negative real parts σ <
0. The equilibrium behaves as a stable focus that attracts the neighbouring
trajectories in a rotating transient. This pair of eigenvalues crosses the imaginary
axis for µ = 0, and the equilibrium becomes an unstable focus that repells the
adjacent orbits in the same rotating fashion. The surface of limit cycles will be
stable, locally attracting both the interior an exterior trajectories. Note that,
because they are associated with the same pair of eigenvalues, the direction of
rotation is the same for all the orbits.

In the subcritical case (a > 0), shown in Figure 1.12(b), the equilibrium point
exhibits the same stability properties, behaving as a stable focus for µ < 0 and
as an unstable focus for µ > 0. The surface of limit cycles, on the other hand,
is unstable and appears for µ < 0, repelling all the neighbouring trajectories.
Therefore, the basin of attraction of the stable equilibria for µ < 0 is limited by
the surface of repelling limit cycles, as the orbits originated outside this surface
depart from it in an initially exponential rotating transient.

The foregoing discussion about the stability properties of the coexisting so-
lutions in a Hopf bifurcation, refers solely to the system restricted to the centre
manifold, and it only applies to the complete N-dimensional system if the remain-
ing eigenvalues—not considered in the centre manifold—have negative real parts.
If any of them had a positive real part, the solutions coexisting in the bifurcation
would be unstable, albeit a qualitative change in their properties would still take
place at the bifurcation point, consisting in a variation of the number of unstable
eigenvalues.

1.4.1.2. Bifurcations of Periodic Solutions

In this section, the evolution of a periodic solution x̄0(t) of the non-linear
system (1.76), with respect to the continuous variation of the parameter η is
studied. Since the periodic solution gives rise to a limit cycle in the phase space,
its representation as a function of the parameter η is not as simple as in the
case of equilibrium points. The Poincaré map, as introduced in Section 1.2.4,
enables the representation of each steady state periodic solution as a fixed point
or—at most—as a limited numberM of fixed points, which makes it a convenient
approach for the analysis of this type of solutions. A representative state variable
can generally be chosen to evaluate the qualitative behaviour of the steady state
solution, versus the variation of the parameter.

The stability analysis of a periodic steady state solution x̄0(t), requires the
linearisation of the perturbed system about this periodic solution, leading to a
time varying linear system with periodic coefficients, whose behaviour can be
addressed using the Floquet theory, that has been described in Section 1.2.3.2.
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The stability properties of the solution can ultimately be studied in terms of the
Floquet multipliers mk, k ∈ {1, . . . ,N}, associated with the linearisation of the
system (1.76) about the periodic solution x̄0(t, η), for each value of the parameter
η.

The periodic solution will possess a Floquet multiplier mj = 1, corresponding
to perturbations tangent to the periodic orbit. The limit cycle will be asymp-
totically stable if the remaining multipliers have moduli smaller than one, or
unstable if any of them has modulus greater than one.

Equivalently, as has been commented in Section 1.2.4.1, the stability analysis
of periodic solutions can be performed through the linearisation of the corre-
sponding Poincaré map about the fixed point that represents the solution, lead-
ing to a linear time invariant system. The N − 1 eigenvalues of this system agree
with the Floquet multipliers associated with the periodic solution x̄0(t), except
for that corresponding to perturbations tangent to the orbit, which is equal to
unity. Therefore, the Floquet multipliers or the eigenvalues of the Poincaré map
linearisation can be used indistinctively, to determine the stability properties of
periodic steady state solutions.

When, for some value of the parameter η, the solution becomes non-hyperbolic
(at least one Floquet multiplier has modulus one), its stability analysis analysis
cannot be performed using the linearisation, and the variation of the parameter
may result in a qualitative change in the properties of the solution (bifurcation).

If the stability of the periodic solution is studied using the associated Poincaré
map, the analysis of the orbit structure in the vicinity of the fixed point that
represents the solution, can be carried out by restricting the map to the centre
manifold, in an analogous process to that followed for the bifurcations of equi-
librium points. The main different types of bifurcations of periodic solutions are
described next.

Saddle–node. If, for a parameter value ηb, the periodic solution x̄0(t, η) has a
single real multiplier equal to one, and the remaining multipliers have moduli not
equal to one, the corresponding Poincaré map restricted to the one-dimensional
centre manifold can be written as:

Q(y, µ) = g(y, µ), (1.86)

where the non-hyperbolic fixed point associated with the periodic solution
x̄0(t, ηb), has been translated to the origin (y, µ) = (0, 0). The Poincaré map
restricted to the centre manifold must thus fulfil the following conditions:

g(0, 0) = 0, (1.87a)

∂g

∂y
(0, 0) = 1, (1.87b)
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that reflect the existence of a non-hyperbolic fixed point at the origin of the centre
manifold, which may originate different types of bifurcations, namely pitchfork,
transcritical or saddle–node. Nonetheless, due to the structural instability of the
others, only the saddle–node bifurcation is considered in this work.

Hence, assuming the Poincaré map (1.86) has a non-hyperbolic fixed point at
the origin (0, 0), fulfilling equations (1.87), a saddle–node bifurcation will take
place at that point if the following conditions are satisfied:

∂g

∂µ
(0, 0) 6= 0, (1.88a)

∂2g

∂y2
(0, 0) 6= 0. (1.88b)

Conditions (1.88) indicate that a single curve of fixed points of the map
(1.86), passes through (y, µ) = (0, 0), and that this curve lies locally on side of
µ = 0. This behaviour is completely analogous to the saddle–node bifurcation of
equilibrium points and therefore, the bifurcation diagram of the corresponding
Poincaré map has the same appearance shown in Figure 1.10(a), although, in
this case, the fixed points of the map represent periodic solutions. The curve of
periodic orbits x̄0(t, η), folds over itself versus the parameter η, at the value ηb.
Two different periodic steady state solutions coexist on one side of η = ηb, either
η > ηb or η < ηb, coalesce and annihilate each other at ηb, and leave (locally) no
steady state solution on the other side. The bifurcation point divides the solution
path into two branches with different stability properties; the solutions on one
of the branches have an additional multiplier with modulus greater than one in
comparison with those on the other.

In case the non-hyperbolicity of the periodic solution were caused by a real
multiplier equal to minus one, a different type of bifurcation, known as flip or
period-doubling, might be originated. This kind of bifurcation results in the
appearance of a periodic steady state solution of double period, coexisting with
the original solution. Nevertheless, this bifurcation is not interesting for the
purpose of this work and will not be addressed.

Secondary Hopf or Neimark–Sacker Bifurcation. Consider a periodic so-
lution x̄0(t, η) of the system (1.76), with a pair of complex conjugate multipliers
mk,k+1, that crosses the unit circle for certain parameter value ηb. Assuming the
remaining multipliers have moduli not equal to one, the system (1.76) will un-
dergo a secondary Hopf or Neimark–Sacker bifurcation for the parameter value
ηb, under the following conditions:

mk,k+1 = e±jθ, (1.89a)
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d|mk,k+1|
dη

∣

∣

∣

∣

η=ηb

6= 0, (1.89b)

where mk = m∗
k+1 and θ 6= mπ/2, m ∈ Z. The transversality condition (1.89b)

implies that the multipliers actually cross the unit circle. The orbit structure
in the vicinity of the non-hyperbolic steady state solution x̄0(t, ηb), can be anal-
ysed by restricting the associated Poincaré map to the two-dimensional centre
manifold, in a process (initially) similar to the approach outlined for the Hopf
bifurcation of equilibrium points.

It can be shown [18] that, the fulfilment of conditions (1.89) implies the
appearance of an invariant cycle in the Poincaré map, which has zero area for
the parameter value ηb. The stability properties of the solutions coexisting in a
Secondary Hopf bifurcation, namely the fixed point that represents the periodic
solution x̄0(t, η), and the invariant cycle, can be discussed versus the parameters
of the associated normal form, as was done for the Hopf bifurcation of equilibrium
points, leading to similar bifurcation diagrams.

Despite the similarities, a fundamental aspect differentiates the secondary
Hopf bifurcation from the remaining bifurcations described thus far. In all the
previous bifurcations, either of equilibrium points or of periodic solutions, the in-
variant sets created consisted of single orbits, whereas, in this case, an invariant
surface that contains innumerable orbits is obtained, for each parameter value
η. As shown schematically in Figure 1.4(b), in the original N-dimensional phase
space, this invariant cycle in the Poincaré map results in an homeomorphic two-
torus, that contains all the possible solutions. Furthermore, depending on the
parameter value η, the steady state orbits may be periodic, closing over them-
selves at some point, or quasiperiodic, and densely filling the two-torus. Note
that, although the orbits in the former case are periodic, the invariant set is not
a limit cycle, due to the fact that, depending on the initial conditions, differ-
ent periodic solutions lying on the surface of the two-torus invariant set may be
obtained.

1.4.2. Global Bifurcations

As has been previously stated, global bifurcations are dynamical properties
that cannot be studied in terms of the local stability analysis of single solutions,
as opposed to local bifurcations, since these situations usually involve global
aspects of the flows.

The saddle type solutions are characterised by being attractive for a subset
of the phase space R

N , which is referred to as the stable manifold of the solu-
tion. Since the solution must have at least a real eigenvalue with positive real
part, for the case of an equilibrium point (a real multiplier with modulus greater
than one, for a periodic orbit), the solution will still be unstable and physically
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unobservable. However, the capability of saddle type solutions to attract certain
trajectories of the phase space can give rise to global bifurcations involving more
than one solution. The two main kinds of global bifurcations originated by saddle
type solutions are considered in the following sections.

1.4.2.1. Saddle Connection

Let a saddle type solution of an equilibrium point be considered. The vari-
ation of a parameter η of the system may bring about an intersection of the
stable and unstable manifolds of the saddle type solution, for the parameter
value ηb, giving rise to the appearance of a homoclinic orbit (a trajectory that
starts and ends at the equilibrium point). The intersection of the stable and
unstable manifolds is necessarily tangential, due to the fact that, at any point
x̄ of the orbit, the vector ˙̄x that determines the time evolution of the system,
is tangent to both manifolds. As a result of this tangential intersection, the
homoclinic orbit obtained is structurally unstable and will be destroyed by the
slightest perturbation with components in the full phase space R

N . Nonetheless,
under certain circumstances, the destruction of the homoclinic orbit may lead to
the appearance of a limit cycle, or even chaotic behaviour [1]. This phenomenon
is illustrated schematically in Figure 1.13.

Figure 1.13: Saddle connection bifurcation. A tangential intersection between
the stable and unstable manifolds of a saddle type solution takes place at η = ηb,
giving rise to a homoclinic orbit. The destruction of the homoclinic orbit for
η > ηb, results in the creation of a limit cycle.

Assuming a limit cycle has been generated from the homoclinic orbit, it will
have non-zero amplitude and infinite period at the bifurcation point ηb, and will
continue to exist (with a decreasing period), when further varying the parameter
η in the same direction.

Saddle connections can also take place in fixed points of Poincaré maps, that
represent periodic solutions. Under certain conditions, the saddle connection
may produce either an invariant cycle, equivalent to a two-torus invariant set
in the N-dimensional phase space, or chaotic behaviour. As was the case in the
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Neimark–Sacker bifurcation, the invariant cycle may be composed of periodic or
quasiperiodic orbits.

1.4.2.2. Saddle–node Homoclinic Bifurcation

In the saddle–node bifurcation, as has been previously described, the solution
path folds over itself at the bifurcation point ηb, leaving two coexisting solutions
on one side of η = ηb, that annihilate one another at the bifurcation. On the
other side of η = ηb, the two previous steady state solutions no longer exist, and
the system evolves towards a different solution that cannot be locally determined.
However, a completely different phenomenon may take place at the turning point,
corresponding to a global bifurcation known as saddle–node homoclinic or saddle–
node local–global bifurcation.

Let the case of a saddle–node bifurcation of an equilibrium point be con-
sidered. The turning point divides the solution path into two branches, which
differ in the sign of a real eigenvalue. Assuming the remaining eigenvalues have
negative real parts, one of the branches is composed of asymptotically stable
equilibrium points (stable nodes), and the other is composed of unstable saddle
type solutions. These equilibria approach each other as the parameter η tends
to the bifurcation point ηb, where they coalesce and disappear. Under specific
circumstances, before the bifurcation point is reached, the unstable manifold of
the saddle solution forms a closed connection passing through the stable node, as
illustrated in Figure 1.14. Note that this closed connection is not a periodic or-
bit, as both angular directions are simultaneously present. Thus, the only stable
and physically observable solution continues to be the node. Nonetheless, when
the turning point is reached at ηb and both equilibrium points merge, the loop
becomes a homoclinic orbit with infinite period.

If the parameter is varied further beyond the bifurcation point in the same
direction (η > ηb in the figure), a limit cycle is created from the homoclinic orbit,
and its period progressively decreases as the parameter η is varied away from the
bifurcation point. A fundamental difference between this limit cycle and those
generated in Hopf bifurcations of equilibrium points, lies in the fact that this
cycle is generated with an amplitude different from zero, which is determined by
the homoclinic orbit generated at the bifurcation point.

Saddle–node homoclinic bifurcations may also take place in a Poincaré map.
When this is the case, the fixed points represent periodic solutions of node and
saddle type in the N-dimensional phase space. Prior to the bifurcation, the
unstable manifold of the saddle type solution forms a closed loop including the
stable node which, at the bifurcation point, results in a homoclinic orbit. Beyond
the bifurcation, an invariant cycle corresponding to a two-torus invariant set in
the N-dimensional phase space is generated which, depending on the parameter
value η, may be composed of either periodic or quasiperiodic orbits,
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Figure 1.14: Saddle–node homoclinic bifurcation. At some point before the bi-
furcation, the unstable manifold of the saddle type solution forms a closed loop
that includes the stable node. When both equilibrium points coalesce at η = ηb,
a homoclinic orbit is generated which, for η > ηb, results in the creation of a limit
cycle.

The saddle–node homoclinic bifurcation in the Poincaré map is found in in-
jection locked oscillators, for relatively low levels of the input generator. This
bifurcation, also referred to as mode-locking bifurcation, is responsible for the
synchronisation and desynchronisation phenomena that will be studied in detail
in a dedicated section.

1.4.3. Frequency Domain Bifurcation Analysis

The frequency domain circuit simulation techniques that have been described
in Section 1.3.1, enable the obtention of constant, periodic or quasiperiodic steady
state solutions, regardless of their stability properties. Thus, the complete solu-
tion path, as a function of a parameter η can be determined—including both the
stable and unstable parts—which can be subsequently discriminated, using the
complementary stability analysis methods that have been introduced in Section
1.3.3. Note that, since the range of operating regimes that can be simulated in
the frequency domain is limited to those expressible in the pre-established fre-
quency basis, this basis must be appropriately selected to include all the solutions
involved in the bifurcation.

The convergence of the Newton–Raphson algorithm may be compromised if,
for certain parameter value ηb, the Jacobian matrix of the harmonic balance
system becomes singular, as is the case in turning points or saddle–node bi-
furcations. In order to tackle this limitation, continuation techniques based on
replacing the parameter η with another circuit variable, for which the Jacobian
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matrix is not singular in the region of difficult convergence, have been developed
[4]. Although these techniques are not implemented in some commercial har-
monic balance simulation packages, they can be externally applied by the user
with the aid of auxiliary generators and optimisation processes [4].

The application of pole zero identification techniques to the closed loop trans-
fer function of the circuit, corresponding to different values of the parameter η,
provides, along with the required stability information, variation loci for the dif-
ferent solution poles, as a function of η. Once the complete map of coexisting
solutions, complemented with the pole information, has been obtained, the qual-
itative changes associated with bifurcations can be straightforwardly detected.

The mathematical bifurcation conditions that have been established in the
time domain are topological descriptions that must be satisfied by the flows or
Poincaré maps, in order for the associated system to undergo the bifurcation
phenomena. However, the thorough information about the evolution of the dif-
ferent solutions that can be obtained in the frequency domain, enables the direct
identification of the different types of bifurcations.

For a constant solution (or equilibrium point), the solution poles agree with
the roots of the characteristic determinant of the linearised system in the fre-
quency domain. In the case of a periodic regime, an infinite set of poles σ+ jmω,
m ∈ Z is obtained, due to the non-univocal relationship between the Floquet
multipliers and the Floquet exponents (which match the solution poles). Hence,
unlike in the time domain, the solution poles provide a common criterion for the
stability analysis of steady state solutions, irrespective of the type of operating
regime they represent. Taking advantage of this common criterion, the evolution
of the solution poles in the different types of local bifurcations is described next,
both of equilibrium points and periodic solutions.

Saddle–Node Bifurcation. Due to convergence problems, the solution path
is generally obtained versus a circuit parameter for which this curve is not mul-
tivalued.

At the saddle–node bifurcation point, a real pole crosses the imaginary axis,
dividing the solution path in two parts for which the number of unstable (or
stable) poles differs in one. Since the existence of a zero eigenvalue produces a
singularity of the Jacobian matrix at the bifurcation point, this condition can
also be used for the bifurcation detection.

For the saddle–node bifurcation of a periodic solution of frequency ω0, an
infinite set of poles of the form σ + jmω0, m ∈ Z, associated with a single real
Floquet multiplier, crosses the imaginary axis at the bifurcation point.

Hopf Bifurcation. A pair of complex conjugate poles σ±jω crosses the imag-
inary axis at the bifurcation point.



66 Chapter 1. Non-linear Circuit Analysis

At the bifurcation of an equilibrium point, the pair of complex conjugate poles
is transformed into two real multipliers equal to one (or, equivalently, two real
poles of the periodic solution equal to zero). As the amplitude of the limit cycle
generated increases, one of the poles continues to be equal to zero, corresponding
to perturbations tangent to the periodic orbit, whereas the other moves continu-
ously away from the imaginary axis. If this pole moves to the left hand side of the
complex plane, it will have negative real part and the periodic solution will be
stable (as long as the remaining poles have negative real parts, except for the one
equal to zero), giving rise to a supercritical Hopf bifurcation. Conversely, if the
pole moves to the right hand side of the complex plane, the periodic solution will
be unstable and the bifurcation will be subcritical. The two types of bifurcation
can also be distinguished by observing the geometrical variation of the different
solutions with the bifurcation parameter.

For the case of a secondary Hopf or Neimark–Sacker bifurcation, a set of
complex conjugate poles of the periodic solution of the form σ±j(αω0+mω0), m ∈
Z, crosses the imaginary axis at the bifurcation point. An additional fundamental
frequency αω0, which is usually dependent on the bifurcation parameter value η,
appears in the system.

1.5. Synchronisation or Injection Locking

A non-linear autonomous dynamical system operating in a stable periodic
regime x̄0(t), is usually referred to in the literature as a self-sustained or free
running oscillator. When the operation of such a system is perturbed by the
injection of an external periodic signal x̄s(t), different non-linear phenomena
can take place, generally leading to variations in the parameters (amplitude,
frequency, phase) of the autonomous solution x̄0(t).

Under specific conditions, the interaction results in the onset of a constant
and stable phase relationship between the autonomous and the external signal,
in virtue of a phenomenon known in the bibliography as injection locking or
synchronisation10. Although, in general, this non-linear phenomenon reflects the
mutual influence between self-sustained oscillators, the analysis performed here
will be restricted to the assumption that the external signal x̄s(t) is robust and
cannot be affected by the interaction, focusing exclusively on its effects upon the
autonomous solution x̄0(t).

Due to the complexity of the non-linear dynamics involved, it is not possible
to obtain a closed universal model of the phenomenon, valid for every oscillator
and for every level of interaction. However, through the application of differ-
ent approximations, a simplified phase equation can be derived, providing an

10In the related mathematical literature, the terms phase locking or frequency entrainment

are usually more common.
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acceptably accurate description of the phase dynamics, under the circumstances
associated with the performed approximations. When these assumptions cannot
be made, the behaviour in each particular case can be analysed through numerical
simulation.

In this section, the simplified phase model will be presented and described,
along with the specific conditions in which it is reliable. The operation under
these conditions has a substantial practical interest for the purpose of this work,
as will be properly justified. In order to illustrate the fundamental operating
regimes that can be observed in oscillators with external periodic forcing, simula-
tions of a representative system in different working conditions will be presented,
highlighting the main similarities and differences with practical interest.

1.5.1. Weak Forcing: Averaged Phase Equation

Consider a non-linear N-dimensional autonomous system of ordinary differ-
ential equations

dx̄

dt
= f̄(x̄), (1.90)

with a stable periodic steady state solution x̄0(t), with period T0, such that
x̄0(t) = x̄0(t+T0). The instantaneous solution of the system follows a limit cycle
in the phase space and it can thus be parameterised in terms of a uniformly
growing phase coordinate φ, fulfilling

dφ

dt
=

2π

T0
= ω0. (1.91)

Note that such a uniformly growing phase variable always exists and can be
obtained from any 2π periodic angle variable θ, through the transformation [19]:

φ = ω0

∫ θ

0

[

dθ

dt

]−1

dθ. (1.92)

Because the possible perturbations of the system steady state may drive the
trajectory away from the limit cycle, it is interesting to extend the phase def-
inition to the vicinity on the limit cycle. This is achieved by considering the
mapping

Φ(x̄) : x̄(t) 7→ x̄(t+ T0), (1.93)

for which the points of the limit cycle are fixed points. The set of points in the
phase space that are attracted to a specific point in the limit cycle x̄a, under
the action of Φ, forms a (N-1)-dimensional hypersurface called isochrone [19],
that crosses the limit cycle at x̄a. Since a different isochrone can be obtained for
every point in the limit cycle x̄a, these hypersurfaces can also be parameterised
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by the phase corresponding to the associated point x̄a, thus extending the phase
definition to the vicinity of the limit cycle.

When the operation of the self-sustained oscillator is perturbed by the in-
troduction of a small external periodic signal εp̄(x̄, t), the forced system can be
described by the equations

dx̄

dt
= f̄(x̄) + εp̄(x̄, t), (1.94)

where the signal εp̄(x̄, t) = εp̄(x̄, t+T ), has a period T , generally different from T0.
Since the amplitude of the external signal is proportional to the small parameter
ε, the analysis presented in the following is restricted exclusively to first order
effects in ε.

The presence of the external signal drives the trajectory away from the stable
limit cycle. However, taking advantage of the weakness of the external force and
the stability of the cycle, it can be assumed that the trajectory is only slightly
deviated from the original solution x̄0(t) or, equivalently, that perturbations in
the direction transverse to the cycle are relatively small. On the other hand,
as has been previously discussed, an autonomous system operating at a stable
periodic solution is incapable of recovering from perturbations tangential to the
associated limit cycle, for which it has a zero Lyapunov exponent (or a Floquet
multiplier equal to one). Note that such a system is invariant with respect to time
shifts; an arbitrarily time shifted solution is also a solution. Therefore, unlike
amplitude, phase is neutrally stable in autonomous11 periodic systems, in the
sense that its perturbations remain constant; neither grow, nor decay in time.
As a result of the fact that forced systems lack this fundamental property, which
is the basis of the synchronisation processes, they are not subject to this kind of
phenomena.

In the vicinity of the limit cycle x̄0(t), where the isochrones are defined,
equation (1.91) takes the form:

dφ(x̄)

dt
= ω0. (1.95)

Alternatively, because the phase is a smooth function of the coordinates x̄, its
time derivative can be calculated as:

dφ(x̄)

dt
=

N
∑

n=0

∂φ

∂xn

dxn
dt

=

N
∑

n=0

∂φ

∂xn
fn(x̄) = ω0, (1.96)

11A non-autonomous system can be formulated as autonomous by introducing an additional
state variable that represents time. The periodic solutions of such a system also have a zero
Lyapunov exponent, corresponding to perturbations of this time related variable. However, it
is obvious that this variable cannot be practically influenced.
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where fn(x̄) represents the nth scalar function that composes the vector field
f̄(x̄) which, by (1.90), is equal to the time derivative of the nth state variable xn.
For the perturbed system, using (1.94) instead of (1.90), an analogous expression
is obtained:

dφ(x̄)

dt
=

N
∑

n=0

∂φ

∂xn
[fn(x̄) + εpn(x̄, t)] = ω0 + ε

N
∑

n=0

∂φ

∂xn
pn(x̄, t). (1.97)

Taking advantage of the previous assumption that the perturbations trans-
verse to the limit cycle are small, the second term of equation (1.97) particularised
at a generic point x̄e can be approximated by its value at the closest point in
the limit cycle x̄0. As the points of the limit cycle can be parameterised by the
phase, the following closed equation for the phase dynamics is obtained:

dφ

dt
= ω0 + εQ(φ, t), (1.98)

where

Q(φ, t) =

N
∑

n=0

∂φ(x̄0(φ))

∂xn
pn(x̄0(φ), t). (1.99)

Because Q(φ, t) is 2π periodic function of φ and T periodic function of t, it
can be expanded in a Fourier series in the general form:

Q(φ, t) =
∑

k,l

ak,le
j(kφ+lωt), (1.100)

where ω = 2π/T is the frequency of the external signal.
Neglecting the effect of the external signal (ε = 0), equation (1.90) has the

solution
φ = ω0t+ φ0. (1.101)

The particularisation of (1.100) for this solution, yields:

Q(φ, t) =
∑

k,l

ak,le
jkφ0ej(kω0+lω)t. (1.102)

The function Q(φ, t) is composed of both fast oscillating terms and slowly
varying (or even constant) terms that satisfy the resonance condition:

kω0 + lω ≈ 0. (1.103)

Replacing (1.102) into (1.98), the fast oscillating terms give rise to deviations
of the order of ε, whereas the resonant terms can lead to large (although slow,
due to the integration at a rate proportional to the small parameter ε) variations
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in the phase, which constitute the principal component of the phase dynamics.
Hence, in order to simplify the analysis, the forcing (1.102) is restricted to the
resonant terms through averaging. The relationship between the frequency of
the external signal ω and the natural frequency ω0 determines the particular
terms that fulfil (1.103). In general, when these frequencies are nearly rationally
related, mω0 ≈ nω, where m and n are coprime integers, the resonant terms are
associated with the indices k = m and l = −n and their integer multiples. The
averaged forcing can thus be written as:

∑

k,l

ak,le
j(kφ+lωt) =

∑

s

asm,−sne
js(mφ−nωt) = q(mφ− nωt), (1.104)

where q(·) is a 2π periodic function. Introducing the phase difference ψ = mφ−
nωt, and the frequency detuning ν = nω − mω0, the phase equation can be
written as:

dψ

dt
= −ν + εmq(ψ). (1.105)

Equation (1.105) depends on two parameters: ε, which is related to the am-
plitude of the external signal, and ν = nω −mω0, that represents the frequency
detuning. The function q(ψ) is smooth and 2π periodic, therefore it must have a
maximum qmax and a minimum qmin in the interval [0, 2π). As shown if Figure
1.15(a), two different types of dynamic behaviour are possible depending on the
values of the parameters. If the frequency detuning ν lies in the interval

εqmin < ν < εqmax, (1.106)

then the phase equation has at least one pair of fixed points (roots of −ν +
εmq(ψ)); one asymptotically stable and one unstable. Note that more stable fixed
points may exist if the function has more than two non-degenerate (d2q(ψ)/dψ2 6=
0) extrema. Hence, in the range of ν where (1.106) is satisfied, the system evolves
to one of the stable fixed points ψ = ψs, and maintains this constant solution.
Under these operating conditions, the phase φ varies as:

φ =
n

m
ωt+

ψs
m
, (1.107)

which corresponds to a constant angular frequency Ω, rationally related to the
forcing frequency ω, as follows:

Ω =
dφ

dt
=
n

m
ω. (1.108)

This dynamic regime is known as synchronisation or phase locking, as the phase
difference ψ = mφ − nωt, is locked to a constant value ψs, or as frequency
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entrainment, referring to the fact that the frequency of the oscillator maintains a
rational relationship with that of the forcing signal. The interval of values of the
frequency detuning (νmin, νmax) for which the injection locked solution exists, or
synchronisation region, depends on the forcing amplitude ε, according to (1.106).
In the parameter space (ε, ν), this area limited by straight lines that intersect
at the point (ε, ν) = (0, 0), as depicted in Figure 1.15(b), is known as Arnold
tongue. Note that, when the frequency detuning is zero, synchronisation takes
place even for vanishingly small amplitudes of the forcing signal although, in this
case, a long transient period would be required for the phase locked regime to set
in. Conversely, as the frequency detuning departs from zero, increasingly high
amplitudes of the forcing signal are needed for the synchronisation phenomenon
to take place.

(a) (b) (c)

Figure 1.15: (a) Generic q(ψ) function represented in one period. Depending
on the values of the frequency detuning, Equation (1.105) will have at least two
fixed points, one stable and one unstable (ν1), one structurally unstable (ν2), or
none (ν3). (b) Synchronisation region on the (ε, ν) plane: Arnold tongue. (c)
Averaged observed frequency Ω of the oscillator, versus the detuning.

A completely different dynamic behaviour is observed if the frequency de-
tuning lies outside the range (1.106). Then, the time derivative of the phase
difference ψ is permanently positive or negative, and therefore, (1.105) does not
have any constant steady state solution. The variation of the phase φ is given
by:

φ =
n

m
ωt+

ψ(t)

m
. (1.109)

Since, in this regime, the frequency of the self-sustained oscillator may be time
dependent, the mean observed frequency Ω is defined as:

Ω =

〈

dφ

dt

〉

=
n

m
ω +

1

m

〈

dψ(t)

dt

〉

=
n

m
ω +

1

m
Ωψ, (1.110)

where the angle brackets 〈〉 denote time averaging. The beat frequency Ωψ is
defined as the averaged time derivative of the phase difference ψ(t). When the
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detuning ν lies outside the synchronisation range, the oscillator solution will
be quasiperiodic providing the beat frequency is not rationally related to the
forcing frequency ω. As the forcing frequency is varied, the solution will become
alternatively periodic, when the detuning lies within the synchronisation region
associated with a generic pair of integers ng, mg, such that ω0 ≈ ng/mgω, and
quasiperiodic otherwise.

In the vicinity of the synchronisation transition, where a stable and an unsta-
ble node coalesce and annihilate each other through a saddle–node bifurcation (as
illustrated in Figure 1.15(a) for ν = ν2), it can be shown that the beat frequency
presents approximately a square root variation with the frequency detuning, in
the general form [19]:

|Ωψ| ≈ K
√

|ν − νext|, (1.111)

where νext represents the limit of the synchronisation region, either νmin or νmax.
The typical dependence of the observed frequency on the detuning is depicted
in Figure 1.15(c). Within the synchronisation region, ν ∈ (νmin, νmax), the beat
frequency is equal to zero and the observed frequency remains constant and
rationally related to the forcing frequency, as Ω = ωn/m. Outside this region,
the beat frequency initially evolves in accordance to (1.111) in the vicinity of the
transition, and progressively tends to the asymptote associated with the isolated
behaviour. If the external forcing did not affect the phase of the self-sustained
oscillator, it would rotate with its natural frequency ω0, and the beat frequency
would be given by:

Ωψisolated
=

〈

dψ(t)

dt

〉

= m

〈

dφ

dt

〉

− nω = mω0 − nω = −ν. (1.112)

When the forcing frequency is sufficiently far from the synchronisation region, the
phase of the oscillator rotates with its natural undisturbed frequency ω0. How-
ever, as the forcing frequency approaches the phase locking range, the frequency
of the self-sustained oscillator gradually tends to the corresponding synchronised
frequency, to which it eventually becomes entrained in the synchronisation range.
The interval of the detuning ν in which the frequency of the oscillator is progres-
sively attracted to the synchronised frequency is usually referred to as injection
pulling region.

1.5.1.1. Simplified Fundamental Synchronisation: Adler Equation

The simplest case of phase locking, known as fundamental synchronisation,
is obtained when ω ≈ ω0, corresponding to the indices n = m = 1 in (1.105).
Under these conditions, the generalised phase difference ψ, directly represents
the difference between the phase of the oscillator and that of the external signal
ψ = φ− ωt, and the frequency detuning ν, represents the difference between the
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frequency of the external forcing and the natural frequency of the self-sustained
oscillator ν = ω − ω0.

A simplified model of the phase dynamics of free running oscillators under
fundamental synchronisation was obtained in [20]. Through a series of geometri-
cal approximations, a phase equation analogous to (1.105) was derived, in which
the generic periodic waveform q(ψ) is a sine function. The resulting expression,
usually referred to in the literature as Adler equation, can be written as:

dψ

dt
= −ν + ε sinψ. (1.113)

The synchronised behaviour is associated with the existence of fixed points
in (1.113). The parameters ε and ν must satisfy:

−ν + ε sin(ψ) = 0. (1.114)

Considering the fact that | sin(ψ)| ≤ 1, the synchronisation region can be de-
scribed as |ν| ≤ ε, which represents the typical Arnold tongue in the parameter
space (ε, ν), illustrated in Figure 1.15(b). Within this region, the solution of
(1.113) is constant ψ(t) = ψs, and its value can be obtained from (1.114) as:

ψ(t) = ψs = arcsin(
ν

ε
). (1.115)

Except for the structurally unstable cases in which | sin(ψ)| = 1, two values of
ψ satisfy (1.114) for a given pair of parameter values (ε, ν), in every 2π interval.
However, in order for the fixed point ψs to be stable, the left hand side of (1.114)
must pass through zero at ψs, with positive slope. The stable solutions in the
(−π/2, π/2) interval have been depicted in Figure 1.16(a), as a function of the
frequency detuning ν.

In the synchronised regime, the phase of the self-sustained oscillator varies in
accordance with:

φ = ωt+ ψs, (1.116)

which corresponds to a constant rotation at the frequency of the external forcing
ω, maintaining a constant phase difference ψs, that depends on the initial dif-
ference between the forcing frequency and the natural frequency of the oscillator
ν = ω − ω0.

Therefore, the injection locking phenomenon can be used as the base for
variable phase shifting applications, by controlling the frequency detuning ν,
which can be straightforwardly achieved through varying the frequency of the
external signal ω. Nonetheless, the goal in this type of practical applications, is
generally to control the phase shift of a carrier with constant frequency and thus,
the frequency of the external signal ω, to which the oscillator is entrained must
be kept constant.



74 Chapter 1. Non-linear Circuit Analysis

(a) (b)

Figure 1.16: (a) Phase difference characteristic versus the frequency detuning
according to Adler equation. (b) Time evolution of the phase difference in the
injection locked regime and for several values of the detuning ν in the vicinity of
the synchronisation transition.

The frequency detuning ν can be equivalently modified if, for certain pa-
rameter η of the oscillator, its natural frequency can be swept throughout the
synchronisation region ω0 = ω0(η). However, the parameter ε which, as has been
commented, is related to the amplitude of the external signal, also depends on
certain internal parameters of the oscillator. Under the approximations carried
out in [20], this parameter is defined as:

ε =
V

V0

ω0

2Q
, (1.117)

where Q is the quality factor of the oscillator, V is the amplitude of the external
signal and V0 is the amplitude of the self-sustained oscillations. The internal
parameter η of the oscillator, that enables the control of the natural frequency
ω0, may also considerably affect the quality factor Q, or the amplitude of the
oscillation V0, giving rise to potential deviations from the ideal phase shifting
characteristic shown in Figure 1.16(a). This approach will be extensively em-
ployed throughout this work for the design of multifunctional versatile phase
shifting applications.

Outside the phase locking region, (1.113) does not have fixed points and
the phase difference is time dependent ψ(t). The evolution of this phase differ-
ence ψ(t) is shown in Figure 1.16(b), both within the injection locking area and
outside, for different values of the frequency detuning ν, in the vicinity of the
synchronisation transition. The dynamics of the phase difference are highly non-
uniform in time, when operating close to the limits of the phase locking region,
νext = νmin, νmax. The trajectory spends long periods of time (approximately
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proportional to
√

|ν − νext|) in the neighbourhood of the maximum or minimum
phase difference that can be attained in the synchronised regime ψmax or ψmin.
These periods of nearly constant phase difference ψ ≈ ψmax, intermingle regu-
larly with relatively short intervals in which the phase varies (either increases or
decreases) in 2π; these events are called phase slips. Between the slips, the oscil-
lator is nearly synchronised to the external force and its phase is nearly locked
to the external phase, and the phase difference remains in the vicinity of ψmax
or ψmin. During the slip, the phase of the oscillator makes a complete addi-
tional rotation of 2π or −2π with respect to the external force. As the frequency
detuning approaches the synchronisation region, the interval between the slips
progressively increases until they completely disappear in the injection locked
regime

1.5.1.2. Limitations of the Averaged Phase Equation Approach

The foregoing description of the phase dynamics of a self-sustained oscillator
under periodic forcing is based on the assumption that the amplitude of the
forcing signal is small. Therefore, the analysis has been limited to a first order
approximation in ε, whereby the external signal may significantly influence the
phase of the oscillation, whereas its effects upon the amplitude are negligible.
The fundamental changes in the dynamics that can be observed when considering
moderate and high amplitudes of the external signal are summarised next.

For the case of moderate amplitude of the external signal, the behaviour is not
essentially modified; the solution is periodic with a frequency rationally related
to that of the forcing signal within the synchronisation region, and quasiperiodic
outside. The variation of the beat frequency in the vicinity of the synchronisation
transition continues to be smooth and proportional to a square root function of
the detuning, as this behaviour is determined by the type of bifurcation, which
remains of the saddle–node type. However, the boundaries of the synchronisation
region are generally curves, rather than straight lines, for moderate ε. If the
resonant terms are not present in the Fourier series (1.102), they can appear in
higher order approximations (as terms proportional to ε2, ε3, . . .) giving rise to
extremely narrow synchronisation ranges as ε tends to zero. Furthermore, due
to the effect of the non-resonant terms that have been neglected in the averaged
approach, the phase difference ψ is not generally constant in the synchronised
regime, for moderated amplitudes of the forcing, and becomes periodic with the
period of the external force.

For high amplitude values of the external signal, on the other hand, the
synchronisation transition may be originated by different types of bifurcations,
leading to qualitatively different dynamical properties, or even more complicated
regimes, such as transitions to chaos. Under these circumstances, in which the
simplified model fails to describe the behaviour accurately, the dynamical prop-
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erties can still be studied through numerical simulation, as will be shown in the
following section.

1.5.2. Synchronisation Dynamics of a Representative Circuit

The averaged phase equation approach, that has been introduced, is a valu-
able simplified model for the description of the synchronisation phenomena, un-
der weak forcing conditions. However, the dynamical characterisation of the
synchronisation process in the general case, in which no initial assumptions as
to the level of the forcing can be made, must be generally carried out through
numerical simulation. In order to illustrate the fundamental dynamical features
of this phenomenon, which will be extensively exploited throughout this work,
the numerical simulations of the behaviour of a simple, yet sufficiently represen-
tative, system will be presented and discussed next, both in the cases in which
the averaged phase equation can be applied, and when it no longer provides an
accurate prediction of the performance.

The circuit chosen to perform the numerical analysis consists of a parallel
RLC resonator, connected to a third order current non-linearity, as shown in
Figure 1.17. This circuit has a stable periodic solution at a frequency f0 =
ω0/2π ≈ 1.5876 GHz, in the neighbourhood of the resonance frequency of the
parallel RLC network, given by:

fRLC =
ωRLC
2π

≈ 1

2π
√
LC

≈ 1.5915 GHz. (1.118)

An external current generator of amplitude Is, frequency fs and phase φs has
been connected in parallel to the free running oscillator, in order to evaluate its
performance under external periodic forcing. It will be assumed that the external
generator is independent and cannot be perturbed by the interaction with the
circuit.

Figure 1.17: Circuit diagram of the free running oscillator used in the numerical
simulations. The non-linear element is ruled by the time domain expression:
i(v) = −0.03v+0.01v3 . An external current generator of amplitude, Is, frequency
fs and phase φs, has been connected to the circuit.

In the following, the case of fundamental synchronisation, in which the fre-
quency of the forcing signal is close to the natural frequency of the self-sustained
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oscillator, fs ≈ f0, will be considered in detail first. Different types of rational
synchronisation (fs ≈ m/nf0, m 6= n, m,n ∈ N) will be subsequently addressed,
focusing on their main similarities and differences with the fundamental case.

1.5.2.1. Fundamental Synchronisation

The injection locked solutions of the considered circuit have been obtained
through harmonic balance, for a frequency variation range of the external signal
fs, between 1.3 and 1.9 GHz and for different current amplitudes In, from 0.5 to
30 mA. As has been stated, the phase locked solutions share the same frequency
as the external signal fs, and they can thus be described by the amplitude Vn,
and phase φn of the corresponding phasor, v(t) = ℜ{Vnejφnejωst}, Vn, φn ∈ R.
The results are shown in terms of amplitude Vn in Figure 1.18(a), and in terms
of phase shift with regard to the external signal ∆φ = φn−φs, in Figure 1.18(b).

The red traces correspond to amplitude values of the external signal Is from
0.5 to 12.5 mA, in steps of 4 mA, increasing in the directions indicated by the
grey arrows. The red dotted lines in the lower part of Figure 1.18(a) have been
calculated with a conventional harmonic balance simulation, without any com-
plementary initialisation process. Because the autonomous oscillation was not
properly initialised, the simulation converges to an unstable regime associated
with the perturbation of the unstable constant (DC) solution of the circuit. This
solution is of the unstable focus type, except in the central region of the con-
sidered frequency band (where it coexists with other synchronised solutions), in
which it becomes of the unstable node type. The corresponding phase shift ∆φ
response is represented in red dotted line in Figure 1.18(b). These curves ex-
hibit the characteristic behaviour of a parallel resonant circuit: the phase crosses
through 180◦ at the maximum of the amplitude.

In the central part of the studied frequency range, this solution coexists with a
closed solution curve, that evolves from a small loop around the natural frequency
of the oscillator f0, for Is = 0.5 mA, to a loop that spans a frequency range over
100 MHz for Is = 0.5 mA. Each of these closed curves is formed by two solution
branches; the upper part, indicated in solid line, consists of stable node type
solutions, whereas the lower part, plotted in dashed line, is formed by saddle
solutions. These two solutions coalesce and annihilate one another at two saddle–
node bifurcations.

The phase shift ∆φ associated with these solutions is shown in Figure 1.18(b);
each closed amplitude curve corresponds to a 360 degree phase variation. For low
amplitudes of the external signal Is, the behaviour in the stable part—limited by
saddle–node bifurcations—is analogous to that predicted by Adler equation, as
shown in Figure 1.16(a); a phase variation of about 180 degrees is covered in the
synchronisation range. However, this phase shift range progressively increases
with Is, deviating from the results predicted by the simplified model.
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For the obtention of these injection locked solutions, the autonomous oscil-
lation has been conveniently initialised in the harmonic balance simulations, by
means of a non-perturbing voltage auxiliary generator with the same frequency
as the external generator fAG = fs. Taking advantage of the fact that each value
of the phase shift ∆φ = φn − φs = φAG − φs, in the range [0, 360)◦ produces one
single solution point, the phase shift has been swept throughout this range in the
simulation process, optimising, for each point, the values of amplitude VAG and
frequency fs = fAG, that fulfil the non-perturbation condition.

The green traces correspond to amplitude values of the external signal Is,
between 12.6 and 15 mA, in steps of 0.8 mA and from 16 to 18 mA, in steps of
1 mA. The closed and open curves found in the previously considered amplitude
range have merged, giving rise to a single continuous trace for each amplitude
value, divided into different regions (associated with different types of solutions),
by saddle–node bifurcations. Starting from either end of the frequency range
and moving towards the centre, only one solution of the unstable focus type can
be found for each frequency value—indicated with dotted line—that becomes of
the unstable node type at some point, as has been commented. At certain value
of the frequency, which varies with the amplitude Is, two additional coexisting
solutions appear at a saddle–node bifurcation; a stable node (solid line) and a
saddle (dashed line). The unstable node and the saddle progressively approach
each other as the frequency tends to the centre of the range, until they eventually
connect and disappear in a turning point, that will be closer to the centre for
lower values of the amplitude of the external signal Is. The behaviour of the
phase shift ∆φ is similar to the previous case; the range it covers continues to
widen as the synchronisation amplitude grows.

Since the curves for this amplitude range are multivalued in amplitude, fre-
quency and phase, they must be obtained in a piecewise approach using con-
tinuation techniques. Each trace is thereby divided into three different regions:
the part above the saddle–node bifurcation loci, which is not multivalued versus
fs, and the two lateral sectors at either side of the centre of the figure which,
individually, are not multivalued versus the amplitude Vn.

The harmonic balance simulations of the injection locked solutions are per-
formed with a non-perturbing auxiliary generator operating at the same fre-
quency as the external generator fAG = fs. For the obtention of the upper part,
the frequency of the auxiliary generator fAG = fs is swept, optimising the am-
plitude VAG = Vn, and phase values φAG = φn, that minimise the error function
associated with the non-perturbation condition. The simulation of either of the
lateral parts, on the other hand, is carried out by sweeping the amplitude of the
generator VAG = Vn and optimising the phase φAG and the frequency fAG = fs
(restricted to the corresponding lateral part), that fulfil the non-perturbation
condition.



1.5. Synchronisation or Injection Locking 79

(a)

(b)

Figure 1.18: Injection locked solutions versus the frequency of the external forcing
fs, for different values of the current amplitude In, from 0.5 to 30 mA. (a)
Amplitude of the node voltage Vn and (b) Phase shift with regard to the external
reference ∆φ = φn − φs.
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As has been previously discussed, the convergence of the harmonic balance
simulation is compromised when approaching a turning point, as the Jacobian
matrix becomes progressively singular. Since, in the upper part, this happens at
the intersection with the saddle–node bifurcation locus while, in the lateral parts,
the only tuning point versus the amplitude takes place at the maximum of the
curve, the appropriate combination of the three segments leads to the accurate
obtention of the complete solution curve.

Finally, the blue curves have been calculated for the amplitude values Is = 19
mA and from 20 to 30 mA in steps of 2 mA. As no turning points are observed in
these traces, they can be straightforwardly calculated by sweeping the frequency
of the external signal in conventional harmonic balance simulations, without any
complementary techniques. The stable ranges are limited by secondary Hopf or
Neimark–Sacker bifurcations, in which the stable periodic solution of the focus
type, becomes an unstable focus, as a pair complex conjugate Floquet multipliers
crosses the unit circle. Although the Neimark–Sacker bifurcation can be detected
through an envelope transient simulation, for this particular circuit, it can be
proved [7] that it takes place for Vn = 1.15 V.

Note the asymmetrical behaviour of the outermost green trace (Is = 18 mA),
in which the stable range is limited by a turning point at the lower frequency
end, and by a secondary Hopf bifurcation at the upper end.

Figure 1.19: Bifurcation loci in the parameter plane (Is, fs). The areas with
different solution properties have been shaded in different colours.
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The bifurcation loci can be represented in the parameter plane (Is, fs),
as shown in Figure 1.19. In the regions where the saddle–node and the
Neimark–Sacker bifurcation loci converge, complex higher order bifurcations
may occur [21].

The saddle–node bifurcation locus delimits the area shaded in green, in which
the system presents three coexisting solutions: a stable node and a saddle, that
compose the closed solution curves of Figure 1.18(a), together with an unstable
node corresponding to the central region of the red dotted traces. The parts of
the locus in solid line represent the saddle–node bifurcation associated with the
stable node and the saddle, whereas the parts in dashed line correspond to the
coalescence of the unstable node and saddle.

In the region shaded in blue, delimited by the Neimark–Sacker bifurcation
locus and the upper part of the saddle–node locus, the system presents one single
solution, which is of node type in the central region of the frequency range, and
becomes of focus type when approaching the Neimark–Sacker bifurcation locus.
Outside the previously described areas, no stable synchronised solution can be
found; the system shows a quasiperiodic regime represented by an invariant cycle
in the Poincaré map. Nevertheless, in the vicinity of the frequency values of the
external signal that are rationally related to the natural oscillation frequency,
nfs = mf0, the solution will be periodic, although these rational synchronisation
regions may be extremely narrow and difficult to detect.

In order to illustrate the synchronisation process under different conditions,
the behaviour of the system has been evaluated when varying the amplitude and
the frequency of the external generator along the grey arrows shown in Figure
1.19. The results of the simulations are presented and commented next.

Frequency Sweeps. The frequency of the external signal fs has been varied
between 1.3 and 1.9 GHz for two fixed values of the amplitude Is: 9 and 24 mA.

The results for 9 mA are shown in terms of amplitude in Figure 1.20(a),
and averaged observed frequency fΩ, in Figure 1.20(b). The averaged observed
frequency fΩ is associated with the averaged observed angular frequency Ω =
2πfΩ, as defined in (1.110), which represents the mean frequency of the oscillator.
Note that this frequency is in general different from the natural frequency of the
oscillator f0, due to the effect of the perturbing external signal.

In the central region of the frequency range, a stable phase locked solution has
been obtained in a harmonic balance simulation, using a non-perturbing auxiliary
generator operating at the same frequency as the external generator. The phase
of the auxiliary generator has been swept between 0 and 360◦ optimising the
amplitude and frequency values that fulfil the non-perturbing condition. The
amplitude of the synchronised solutions produces a closed curve represented in
red, like those shown in Figure 1.18(a), whose upper part is stable (solid line)
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and the lower part is unstable (dashed line). Since both parts annihilate each
other at a saddle node bifurcation, no synchronised solution can be found outside
this region.

The behaviour outside the synchronisation region has been evaluated through
a different harmonic balance simulation. Because the observed frequency of the
oscillator no longer matches that of the external signal, an additional fundamental
must be included in the frequency basis. Furthermore, when the oscillator is not
synchronised, it can be analysed as a perturbed autonomous system and thus, the
phase of the auxiliary generator can be arbitrarily set to zero, taking advantage of
the invariance of the solution versus time shifts. The amplitude and frequency of
the auxiliary generator have been optimised to fulfil the non-perturbing condition.
The amplitudes of the components of the node voltage Vn at the frequency of the
external signal fs and at the observed frequency of the oscillator fΩ, have been
represented in Figure 1.20(a), and the values of the observed frequency fΩ in
Figure 1.20(b). Note that, in the synchronisation region, the observed frequency
matches that of the external signal fΩ = fs.

(a) (b)

Figure 1.20: Solutions of the circuit of Figure 1.17 when sweeping the frequency
of the external generator for a fixed amplitude value of 9 mA. (a) Node voltage
amplitude. (b) Averaged observed frequency fΩ.

As the frequency of the external generator approaches the natural frequency
of the oscillator f0, the observed frequency fΩ progressively tends to that of the
external signal fs, until it matches that value fΩ = fs, in the synchronisation
region. On the other hand, as the perturbed frequency of the oscillator converges
to that of the external generator, the amplitudes of the components at fs and
fΩ respectively increase and decrease their values smoothly, until they eventually
undergo an abrupt change in the synchronisation transition.
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The result of the corresponding simulations of the frequency sweep with a
fixed amplitude value Is = 24 mA are presented in terms of amplitude Vn in
Figure 1.21(a), and averaged observed oscillator frequency fΩ in Figure 1.21(b).

This frequency sweep crosses the blue region of Figure 1.19 where, as has been
commented, the system presents a single solution. Therefore, this synchronised
solution can be obtained through a conventional harmonic balance simulation
without any complementary initialisation technique. As opposed to the previous
case, the synchronised solution exists throughout the whole frequency range,
although it becomes unstable through two secondary Hopf bifurcations, which
set the limits of the synchronisation region. The phase locked solution continues
to exist beyond those limits, but it is not robust and therefore unobservable.

The operation of the circuit outside the synchronisation region is evaluated
in an analogous manner to that used in the previous case: a harmonic balance
simulation with a two fundamental frequency basis (fs and fΩ), complemented by
a non-perturbing auxiliary generator has been used. The phase of the auxiliary
generator can be arbitrarily set to zero and its amplitude and frequency are
optimised to satisfy the non-perturbing condition.

As can be seen in Figure 1.21(a), the amplitude of the component at fs
progressively tends to the amplitude of the synchronised solution at the phase
locking transitions, until it matches this value smoothly at the limit of the syn-
chronisation region. On the other hand, the amplitude of the component at fΩ

progressively reduces its value until it vanishes at the synchronisation transition.
This behaviour corresponds to a Neimark–Sacker bifurcation, as described in
Section 1.4.1.2.

When the frequency of the external signal is far apart from the synchro-
nisation region, the observed frequency fΩ is close to the natural frequency of
the oscillator f0 and, as it approaches the synchronisation region, the observed
frequency first tends to the frequency of the external signal at the limit of the
phase locking region, and then slightly deviates from it. At the limit of synchro-
nisation region, the component at frequency fΩ has completely vanished, and
the solution presents a single frequency component at fs. This kind of phase
locking for relatively high amplitude values of the external signal is usually re-
ferred to in the bibliography as suppression of the natural dynamics, as opposed
to the conventional phase locking or synchronisation, that takes place for lower
amplitudes [21].

Amplitude Sweeps The amplitude of the external generator has been swept
along the grey arrows shown in dashed line in Figure 1.19, corresponding to 1.55
and 1.7 GHz.

The behaviour of the system has been evaluated through envelope transient
simulations, obtaining samples of the envelopes of the circuit variables, about
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(a) (b)

Figure 1.21: Solutions of the circuit of Figure 1.17 when sweeping the frequency
of the external generator for a fixed amplitude value of 24 mA. (a) Node voltage
amplitude. (b) Averaged observed frequency fΩ.

the components of the pre-established frequency basis. Because the frequency of
the external signal fs is close to the natural frequency of the oscillator f0, the
simulations are performed with fs as the only fundamental of the frequency basis,
while setting a sufficiently high sampling rate to detect the possible coexisting
frequency components.

The Poincaré map is a useful tool for the simplified representation of the sys-
tem solutions, transforming a N dimensional continuous solution into a discrete
solution of dimension N−1. As has been explained in Section 1.2.4, for a system
under periodic forcing with period Ts, an angular magnitude θ = 2πt

Ts
(mod 2π),

can be introduced in the state vector, enabling the definition of a global cross
section through simply selecting a fixed value θ = θ0, of this angular magnitude.
The evaluation of the state variables at this constant value of the angular mag-
nitude is equivalent to a sampling at the period of the forcing Ts, with an initial
offset that depends on the particular value θ0.

Given the envelope of a state variable X(t), whose samples are obtained as
the result of an envelope transient simulation, the corresponding time domain
signal x(t) can be calculated as

x(t) = ℜ{X(t)ejωst}. (1.119)

At integer multiples of the forcing period t = kTs, k ∈ N, the exponential term
of (1.119) is equal to unity and therefore, the time domain signal can be evalu-
ated as x(kTs) = ℜ{X(kTs)}. By setting up the envelope transient simulation
to calculate samples of the envelope at integer multiples of the period X(kTs),
the Poincaré maps of the solutions can be straightforwardly obtained. The com-
putational cost of the simulation can be reduced by decreasing the number of
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calculation points to X(nTs)), n = 2k, 3k, . . ., leading to the Poincaré second,
third and successive return maps, as long as the sampling rate remains high
enough to correctly represent all the frequency components involved.

The results for the amplitude sweep corresponding to fs = 1.55 GHz are
presented in Figure 1.22, for six different values of the amplitude of the syn-
chronisation signal Is. For each amplitude value, the Poincaré map, calculated
through the foregoing procedure, is shown in the upper part, and the normalised
envelope spectrum centred at the carrier at fs on the lower part. For the Poincaré
map, the unstable solutions are calculated using harmonic balance simulations.

In the absence of the synchronisation signal (Is = 0 mA) the results are shown
in Figure 1.22(a). Exceptionally, in this case the envelope transient simulation
has been performed with the natural frequency f0 as the only fundamental. A
stable periodic solution is obtained, giving rise to a limit cycle in the phase
space represented by the red filled circle in the Poincaré map. The envelope
spectrum has been centred at fs = 1.55 GHz to simplify the comparison with
the remaining cases. This solution coexists with an unstable constant solution of
the circuit with v = iL = 0, which is indicated by a triangle instead of a circle,
in order to highlight the fact that it represents a constant solution, rather than
a periodic orbit.

Due to the injection of the external signal, the constant solution has become
an unstable periodic orbit, indicated by the red empty circle of Figure 1.22(b). If
the observed frequency of the oscillator (which corresponds to the perturbation
of the previously stable periodic orbit) and the frequency of the external signal
are not rationally related, the solution will be quasiperiodic, giving rise to an
invariant cycle in the Poincaré map. The envelope spectrum is formed by two
main peaks, along with their intermodulation products; the peak at 0 MHz cor-
responds to the frequency of the external signal fs, while the other main peak is
associated with the observed frequency of the oscillator. The observed frequency
of the oscillator has slightly shifted from the natural frequency f0, indicated by
the grey dashed line, towards the forcing frequency fs (offset frequency 0).

As the limit of the phase locking region is approached, the solution spends
most of the time in the vicinity of a particular point of the invariant cycle,
although it periodically completes a turn around the invariant cycle quickly, as
shown in Figure 1.22(c). This is in total agreement with the phase slips predicted
by Adler equation and depicted in Figure 1.16(b). In the envelope spectrum, the
observed frequency of the oscillator is extremely close to the frequency of the
external signal, giving rise to a dense spectrum.

In the synchronisation transition, a saddle–node bifurcation takes place at
the point of the invariant cycle around which the solution used to spend most of
the time. The situation slightly after the bifurcation is shown in Figure 1.22(d),
where the previous invariant cycle has been represented in grey. Two periodic
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(a) (b) (c)

(d) (e) (f)

Figure 1.22: Simulation of the circuit of Figure 1.17 for a fixed frequency of the
external signal fs = 1.55 GHz and for six different values of its amplitude Is. In
each subfigure, (a) to (f), the Poincaré map of the solution is shown on the upper
side and the envelope spectrum centred at fs on the lower side. Except in (a),
the envelope spectrum is normalised versus its value at fs.
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orbits have been generated at the bifurcation: one of the stable node type and
the other of the saddle type. These solutions are indicated in the Poincaré map
with the blue filled circle and the blue empty circle, respectively. The solution is
periodic and, consequently, the spectrum shows a single tone at fs.

When approaching the upper limit of the phase locking region shaded in green
in Figure 1.19, the saddle type solution generated in the bifurcation (blue empty
circle) progressively closes on the unstable node type solution (red empty circle),
as shown in Figure 1.22(e). These solutions merge and disappear in a new saddle-
node bifurcation, leaving the stable node type solution, represented by the blue
filled circle in Figure 1.22(f), as the only solution of the system; the system is
now operating in the region of suppression of the natural dynamics (blue region
in Figure 1.19).

It is important to focus on the noteworthy properties of the saddle–node
bifurcation that originates the synchronisation transition. In a typical saddle–
node bifurcation of periodic solutions, as described in Section 1.4.1.2, two periodic
solutions: one of node type and one of saddle type, like those represented in
Figure 1.22(d), coalesce and annihilate each other. If the node type solution
involved was stable, the system evolves to a different steady state solution beyond
the bifurcation point, that cannot be locally determined. However, in this case,
the quasiperiodic solution that appears after the bifurcation is such that the torus
that represents it in the phase space, contains the periodic orbits that merged at
the turning point (the invariant cycle in Figure 1.22(c) contains the fixed points
associated with the saddle and node periodic solutions).

This kind of behaviour, first discovered in the Van der Pol oscillator, is associ-
ated with a global bifurcation: the saddle–node homoclinic bifurcation, as intro-
duced in Section 1.4.2.2 [22]. Before the bifurcation point, the unstable manifold
of the saddle forms a closed connection passing through the stable node, that
leads to a homoclinic orbit with infinite period at the bifurcation point. This
homoclinic orbit brings about a limit torus beyond the bifurcation point, as the
period of the newly generated fundamental progressively decreases. Immediately
after the desynchronisation, the fundamental of the solution associated with the
previous stable periodic regime coexists with a new fundamental originated in
the homoclinic orbit, which has a large period. The solution spends most of
the time in the vicinity of the previously stable periodic orbit and occasionally
completes a quick turn around the other dimension of the torus, which explains
the behaviour shown in Figure 1.22(c). Further beyond the bifurcation point,
the rotation period around the newly created dimension of the torus continues
to decrease steadily.

The results of the amplitude sweep for a fixed frequency fs = 1.7 are pre-
sented in Figure 1.23, for six different values of the amplitude Is. The envelope
transient simulations have been performed with a single fundamental frequency
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(a) (b) (c)

(d) (e) (f)

Figure 1.23: Simulation of the circuit of Figure 1.17 for a fixed frequency of the
external signal fs = 1.7 GHz and for six different values of its amplitude Is. In
each subfigure, (a) to (f), the Poincaré map of the solution is shown on the upper
side and the envelope spectrum centred at fs on the lower side. Except in (a),
the envelope spectrum is normalised versus its value at fs.
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basis, which is f0 for the first case without synchronisation signal, and fs for
the remaining cases. The envelope spectrum is centred at fs for all the cases, in
order to simplify the comparison.

Without external synchronisation signal (Figure 1.23(a)), the solution is a
periodic orbit with natural frequency of the oscillator f0, which is represented
by a red filled circle in the Poincaré map. This periodic solution coexists with a
constant solution that is indicated with an empty triangle. The natural frequency
f0 is indicated in all the spectra by a grey dashed line.

As a result of the injection of the external synchronisation signal, the previous
unstable constant solution becomes an unstable periodic orbit, represented by a
red empty circle in Figure 1.23(b). The envelope spectrum consists of two main
peaks, together with their intermodulation products: the peak at 0 corresponds
to the component at fs, and the other main peak is associated with the observed
frequency of the oscillator, which has slightly shifted from the natural value f0

towards fs. When these two fundamentals are not rationally related, the solution
yields an invariant cycle in the Poincaré map (equivalent to a limit torus in the
phase space).

With the increasing amplitude of the external signal Is (Figures 1.23(c) and
1.23(d)), the observed frequency of the oscillator continues to approach the fre-
quency of the external signal fs, while it gradually reduces its oscillation ampli-
tude. Consequently, the area of the invariant cycle in the Poincaré map progres-
sively reduces.

At some point close to the limit of the phase locking region, as was detected
in the results of the frequency sweep for Is = 24 presented in Figure 1.21(b), the
observed frequency of the oscillator starts to depart from the frequency of the
external signal fs. In the envelope spectrum shown in Figure 1.23(e), it can be
seen that the peak corresponding to the oscillator operation has slightly moved
away from fs, with regard to the previous case, while its amplitude has further
decreased. The invariant cycle in the Poincaré map has shrunk to a small loop
around the unstable periodic orbit corresponding to the perturbation of the DC
solution of the self-sustained oscillator.

At the synchronisation transition, the area of the invariant cycle has de-
creased to zero; the oscillating component has completely vanished from the
spectrum, and the periodic orbit becomes stable in a supercritical secondary
Hopf or Neimark–Sacker bifurcation. Due to this progressive extinction of the
oscillating component of the circuit, this type of synchronisation is also referred to
in the literature as suppression of the natural dynamics. Beyond the bifurcation,
a single periodic orbit exists, as can be seen in Figure 1.22(f).

The practical interest of the synchronisation phenomena has traditionally lain
in the capability to stabilise the frequency of a powerful oscillator by means of
a very precise but weak signal [19]. More recently, these phenomena have been
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applied to a wider range of practical purposes, such as the development of mul-
tifunctional oscillator based phase shifting topologies, to which the present work
is devoted. For these applications, it is usually sought to reduce the required
synchronisation power, in order to improve the efficiency and to enable the en-
trainment of multiple oscillators with the same external signal. Hence, for these
particular purposes, the phase locking with low amplitude (the green area of Fig-
ure 1.19) is usually preferred over the suppression of the natural dynamics (blue
area), which requires higher amplitude values.

1.5.2.2. Rational Synchronisation

The rational synchronisation describes the phenomenon whereby the oscilla-
tor frequency is entrained to a frequency rationally related to that of the external
signal. Under these conditions, as has been previously derived, the phase of the
oscillator is described by the expression

φ =
n

m
ωt+

ψs
m
, (1.120)

where ψs ∈ [0, 2π) is a fixed point of the averaged phase equation. Although there
exists a fixed point of the averaged phase equation for every value of this interval,
normally only a subset of these are stable. According to Adler equation, which
has proved to be accurate for fundamental phase locking with low amplitude of
the external signal, only half of this interval consists of stable equilibria. Outside
the 2π interval, the fixed points repeat themselves. The phase evolution described
by (1.120) corresponds to a oscillation at a frequency fΩ = n

mfs, with a constant

phase shift given by ∆φ = ψs

m . Note that the range of constant phase shift values
∆φ, that can be obtained is restricted to ∆φ ∈ [0, 2π

m ).
This operating regime can be thought of as the entrainment of the mth har-

monic component of the oscillation by the nth harmonic component of the exter-
nal signal (nfs = mfΩ). Therefore, these harmonic components must be present
in the circuit, with the appropriate levels, in order for the synchronisation to
occur. Theoretically, the phase locking phenomenon would take place even for
vanishingly small values of the external signal, although the synchronised regime
would take a long time to set in. However, the synchronisation region under
these conditions would be extremely narrow, making it extraordinarily difficult
to detect in simulation, and nearly impossible to observe in practice.

Different representative types of rational synchronisation have been obtained
through an analogous procedure to that followed in the previous section. The
bifurcation loci represented in the parameter plane (Is, fs/f0) are depicted in
Figure 1.24. For the sake of clarity, the frequency of the external signal fs has
been normalised by the natural frequency of the oscillator f0. Although the phase
locking phenomenon would theoretically take place for every rational number



1.5. Synchronisation or Injection Locking 91

n
m , n,m ∈ N, the analysis has been restricted to four representative cases:
n = 3,m = 1 (3fs = fΩ), n = m = 1 (fs = fΩ, fundamental synchronisation),
n = 2,m = 4 (2fs = 4fΩ) and n = 1,m = 3 (fs = 3fΩ).

The Neimark–Sacker bifurcation locus delimits the common area of suppres-
sion of the natural dynamics, shaded in blue, whereas the saddle–node bifurcation
locus associated to each particular type of rational synchronisation defines an in-
dividual Arnold tongue. The remaining area, shaded in light red, corresponds to
quasiperiodic solutions, except in the vicinity of the rational values n

m , n,m ∈ N

(in the corresponding rational synchronisation regions), where the solutions will
be periodic.

Figure 1.24: Bifurcation loci in the parameter plane (Is, fs/f0) for four different
types of rational synchronisation: n = 3,m = 1 (3fs = fΩ), n = m = 1 (fs = fΩ,
fundamental synchronisation), n = 2,m = 4 (2fs = 4fΩ) and n = 1,m = 3
(fs = 3fΩ).

The rational synchronisation region associated with n = 3,m = 1 (3fs = fΩ)
has been magnified in Figure 1.25(a). The saddle–node bifurcation locus has
a curvy triangular shape analogous to that corresponding to the fundamental
synchronisation, shown in Figure 1.19. The rationally synchronised solutions
have been calculated through harmonic balance simulations, complemented with
a non-perturbing auxiliary generator operating at a fixed frequency fAG = 3fs.
The phase of the auxiliary generator φAG is swept between 0 and 2π, optimising
the amplitude and frequency values that fulfil the non-perturbation condition.



92 Chapter 1. Non-linear Circuit Analysis

The synchronisation region for n = 1,m = 3 (fs = 3fΩ) has been magnified
in Figure 1.25(c). Since m = 3, the phase shift range that can be obtained in
this case is limited to the interval [0, 2π

3 ). Therefore, the phase locked solutions
are calculated through the same simulation set-up, by sweeping the phase of
the auxiliary generator φAG between 0 and 2π

3 , as the solution repeats itself
thereafter.

(a) (b) (c)

Figure 1.25: Magnification of the bifurcation loci associated with several rational
phase locking. (a) n = 3,m = 1 (3fs = fΩ). (b) n = 2,m = 4 (2fs = 4fΩ). (c)
n = 1,m = 3 (fs = 3fΩ)

In the vicinity of fs/f0 = 2 the rational phase locking for n = 1,m = 2
(fs = 2fΩ) might be expected. Nonetheless, since the non-linear element of
the circuit of Figure 1.17 has a describing function i(v) = −0.03v + 0.01v3,
which lacks the second order term, no second order harmonics or second order
intermodulation products are generated. Therefore, a higher order phase locking
n = 2,m = 4 takes place instead. In this case, the third harmonic component of
the self oscillation at 3fΩ is entrained by the third order intermodulation product
2fs − fΩ, leading to a synchronised solution at 2fs − fΩ = 3fΩ or, equivalently
2fs = 4fΩ.

The appearance of this higher order synchronisation is proved by the fact that
the solution repeats itself after a 2π

4 interval, rather than π interval, as would be
the case in a n = 1,m = 2 entrainment. Moreover, if the frequency component at
4fΩ is not included in the frequency basis for the harmonic balance simulation,
the synchronised solution cannot be obtained. The saddle–node bifurcation locus
for this type of synchronisation is magnified in Figure 1.25(b).

The synchronisation region that has been obtained for n = 2,m = 4 is ex-
tremely narrow due to the weakness of the high order components involved. In
general, the width of the phase locking range is determined by the levels of the
frequency components that take part in the process.
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2.1. Introduction

Antenna arrays have been widely employed in a great variety of applications,
taking advantage of their well known beam forming, pattern nulling or comforma-
tion capabilities, among many others. Additionally, the behaviour of the arrays
can be completely modified in real time, giving rise to adaptive solutions.

For the implementation of these adaptive topologies, the contributions trans-
mitted or received by each of the individual elements composing the array, must
be separately tuned in amplitude and phase.

As opposed to the amplitude tuning, which can be straightforwardly achieved
through variable gain amplifiers, the practical implementation of versatile and
efficient phase shifting solutions represents a noteworthy technological challenge,
especially at high frequencies.

For this purpose, multiple phase shifting topologies based on oscillator circuits
have been presented in the literature [1; 2; 3; 4]. Solutions based on fundamen-
tally injection locked oscillators are limited to a 180◦ theoretical phase shift range
[5]. This range can be doubled by using a two stage solution in which the second
oscillator is injection locked to the second harmonic component of the first oscil-
lator [6], when using a configuration based on master–slave cascaded oscillators
[7], or by extracting the second harmonic component of a synchronised oscillator
[8].

In this work, in order to assure a practically usable phase shift range of at
least 360◦, an injection locked harmonic self oscillating mixer circuit [9], has
been chosen. This topology integrates the downconversion and continuous range
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Figure 2.1: Block Diagram of the receiving phased antenna array based on injec-
tion locked third harmonic self oscillating mixers.

phase shifting operations, together with the local oscillator, providing an overall
positive conversion gain.

As shown schematically in Figure 2.1, this topology will be used to control
a receiving four element linear antenna array. The isolated performance of the
circuits will be first analysed, both as a function of the control voltages and
versus frequency. The antenna array, along with the required auxiliary microwave
networks will be designed and experimentally validated separately. Finally, a
prototype of the complete system will be manufactured, and its performance will
be assessed through measurements in the anechoic chamber.

2.1.1. Third Harmonic Self Oscillating Mixer

The design of the third harmonic self oscillating mixer used in the present
chapter was prior to this work [9] and therefore, it has not been part of it.
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Figure 2.2: Frequency components involved in the operation of the injection
locked harmonic self oscillating mixer.

Nonetheless, in the interest of self-containment, the main features of this circuit
are briefly described in this introductory section.

The harmonic self oscillating mixer circuit is firstly designed as a voltage con-
trolled oscillator at a frequency f0 = 3.25 GHz. Under injection locked operating
conditions, as explained in Section 1.5, the phase of the output signal with respect
to the external reference can be varied within a continuous range of about 180◦.
However, since this phase shift range is not sufficient for the effective control of
an antenna array, a harmonic component of the fundamentally synchronised self
oscillation must be used instead.

Even though the second harmonic component would theoretically yield a 360◦

phase shift range, this theoretical range is usually reduced in practice as a result
of the appearance of noisy precursors when the circuit is operated close to the
limits of the synchronisation region [10]. Thus, in order to assure that a full
360◦ phase shift range is effectively available in practice, the third harmonic
component of the oscillation, with a theoretical phase shift range of 540◦, was
chosen for this design.

The operation of the circuit is illustrated in Figure 2.2. The input RF signal
in the band fin = 11.1−11.4 GHz is mixed with the third harmonic component of
the fundamentally injection locked self oscillation. Using the techniques presented
in [11], the circuit was optimised to carry out an efficient mixing operation fIF =
fin − 3f0, providing an overall positive conversion gain.
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Figure 2.3: Schematic topology of the harmonic self oscillating mixer.

2.1.1.1. Circuit Topology

The electrical diagram of the third harmonic self oscillating mixer design is
shown schematically in Figure 2.3. The topology comprises the following funda-
mental parts:

Transistor: A Hewlett-Packard ATF-36077 Pseudomorphic High Electron
Mobility Transistor (pHEMT) has been chosen for this design, owing to its
ultra low noise performance capabilities in its operating band, from 2 to 18
GHz.

Series Feedback: A resonant network is connected to the source terminal
of the transistor in order to synthesise the required oscillation start-up
conditions at the operating frequency f0 = 3.25 GHz. A varactor diode
is integrated in this series feedback network, enabling the tuning of the
oscillation frequency f0.

Varactor: The chosen device is a Microsemi-GC15007, which provides a
capacitance range between 0.2 and 2.8 pF, for control voltages from 20
to 0 V.

Synchronisation Filter: An external generator is connected to the circuit
for injection locking purposes. The external signal at frequency fs = f0 =
3.25 GHz is routed through a bandpass filter in order to block out other
undesired external signals that might lead to spurious synchronisations.
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Input Filter: The input RF signal in the band fin = 11.1 − 11.4 GHz is
selected using a hairpin bandpass filter and delivered to the transistor gate
terminal.

IF Filter: The output signal of the harmonic self oscillating mixer is
the intermodulation product generated in the mixing operation between
the input signal in the band 11.1 − 11.4 GHz, and the third harmonic
component of the oscillation at 3f0 = 9.75 GHz. The product, in the
intermediate frequency band fIF = 1.35 − 1.65 GHz, is extracted from the
transistor drain terminal through the IF bandpass filter.

Multiharmonic Load: A transmission line structure whose parameters
can be optimised to control the harmonic content present in the circuit is
connected to the transistor gate terminal.

2.2. System Overview

A diagram of the receiving active antenna array based on injection locked
harmonic self oscillating mixers that has been designed is shown in Figure 2.4.
The signal received by each of the four elements of the antenna array in the band
fin = 11.1 − 11.4 GHz, is delivered to the input port of an independent third
harmonic self oscillating mixer, which is injection locked to an external reference
signal at frequency fs = f0 = 3.25 GHz. A synchronisation network has been
designed to deliver this reference signal with equal power Ps and phase φs, to
each of the harmonic self oscillating mixer circuits.

As has been previously explained, the third harmonic self oscillating mixer
circuit performs a mixing operation between the input signal and the third har-
monic component of the self oscillation, downconverting the input signal to the
corresponding intermediate frequency band fIF = 1.35 − 1.65 GHz. In the pro-
cess, the circuit introduces a phase shift that can be arbitrarily varied within a
continuous range wider than 360◦, adding an overall positive conversion gain.

For monitoring purposes, an individual low power sample is extracted from
the output of each of the individual harmonic self oscillating mixers through
a directional coupler. Each of these samples can be selected through a 4 × 1
microwave switch and separately measured using an Agilent 89600 Vector Signal
Analyser. The output signals of the harmonic self oscillating mixer circuits at
intermediate frequency are finally combined to obtain the overall system output.
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Figure 2.4: Topology of the receiving phased antenna array based on injection
locked third harmonic self oscillating mixers.

2.3. Behaviour of the Injection Locked Harmonic Self

Oscillating Mixer Circuits

The design criteria for the different functional blocks involved in the system
topology that has been described in the foregoing section are primarily deter-
mined by the core active circuit. Thus, a thorough evaluation of the perfor-
mance of the injection locked harmonic self oscillating mixer circuit was initially
performed, focusing on the specific parameters that are directly related to its
application in the active antenna array system.

As has been previously mentioned, the IL3HSOM circuit is injection locked
at the fundamental oscillation component. Hence, the phase of the fundamental
component with regard to that of the external signal ∆φ = φ − φs, varies with
the frequency detuning ν = ωs − ω0 = 2π(fs − f0), while the frequency remains
equal to that of the external signal fΩ = fs.

In the analysis presented in Section 1.5, the phase variation of the oscilla-
tion signal was evaluated while sweeping the frequency of the external signal fs.
However, using that approach, the frequency of the oscillation follows that of the
external signal, which rarely has practical interest.

For the purpose of this application, the oscillation signal—specifically its third
harmonic component—will be used as the local oscillator for the downconversion,
whose frequency must be constant. Therefore, the frequency of the synchroni-
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sation generator ωs cannot be swept to tune the phase shift introduced by the
circuit, and the frequency detuning ν = ωs − ω0 must be varied otherwise.

The circuit can be designed as a Voltage Controlled Oscillator (VCO), inte-
grating a tuning device in its resonant network (e.g. a varactor diode), in such
a way that its fundamental oscillation frequency ω0 can be varied by tuning the
bias voltage of the device. Thus, the frequency detuning ν = ωs − ω0, which—
under injection locked conditions—determines the phase shift of the oscillation
with regard to the external signal, can be modified while keeping its frequency
fΩ = fs constant.

As shown in Figure 2.3, a varactor diode was integrated in the series feedback
network of the IL3HSOM circuit, enabling the tuning of its fundamental oscil-
lation frequency f0 which, in turn, varies the frequency detuning ν = ωs − ω0.
Hence, the phase shift ∆φ introduced by the circuit, can be directly controlled
through the bias voltage of the varactor diode.

2.3.1. Injection Locked Solutions

As has been discussed in Section 1.5, for an external signal with a given power
value Ps, there will be a range of values of its frequency fs around the fundamental
oscillation frequency of the circuit f0, known as fundamental synchronisation
region, where the oscillation frequency of the circuit follows that of the external
signal fΩ = fs. Within the synchronisation region, the phase shift between the
oscillation and the external signal ∆φ = φ − φs is determined by the frequency
detuning ν = ωs − ω0.

However, in the operation regime of the IL3HSOM circuit that has been
described, the frequency of the external signal fs is kept constant, and the fre-
quency detuning is modified through the variation of the fundamental oscillation
frequency of the circuit. In an analogous manner, for a given power value of
the synchronisation signal Ps, there will be a range of values of the fundamental
oscillation frequency f0 in which the circuit will be injection locked, that defines
the synchronisation region in this case.

In order to take advantage of the complete theoretical phase shift range avail-
able, the frequency tuning range achieved by the voltage controlled oscillator
design must cover the entire synchronisation region at the desired power level of
the external signal Ps. In case the frequency cannot be tuned throughout the
complete synchronisation range, only a limited fraction on the theoretical phase
shift range will be practically usable.

The injection locked solutions of the circuit for different values of the syn-
chronisation power Ps have been evaluated through harmonic balance simula-
tions, carried out using the commercial software package Advanced Design System
(ADS). A frequency basis with one fundamental component at the frequency of
the external generator fs, along with its first 10 harmonic components has been
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considered in those simulations. To initialise the correct autonomous solution,
a voltage auxiliary generator directly connected to the gate port of the transis-
tor has been used. The injection locked solutions are obtained by sweeping the
phase of the auxiliary generator φAG between 0 and 360◦, while the phase of the
external signal φs can be arbitrarily set to 0. At each point of the sweep, the
frequency of the auxiliary generator is set to be equal to that of the external
signal fAG = fs, and the voltage VAG and capacitance of the varactor diode Cvar
are optimised to fulfil the corresponding non-perturbation condition.

(a) (b)

Figure 2.5: Injection locked solutions for four different synchronisation power
levels. (a) Amplitude. (b) Phase shift.

The synchronised solutions, calculated for four different power values of the
external signal, are shown in terms of amplitude of the auxiliary generator VAG,
in Figure 2.5(a), and in terms of phase φAG, in Figure 2.5(b), both versus the
capacitance of the varactor diode Cvar.

As expected, for higher power levels of the external signal Ps, there is a wider
range of values of the fundamental oscillation frequency f0 which corresponds
to injection locked solutions and therefore, a wider variation of the capacitance
of the varactor diode Cvar is required to cover the synchronisation range. The
varactor diode that has been chosen for this design provides capacitance values
between 0.2 and 2.8 pF, which is sufficient for the synchronisation power levels
that have been studied.

Although the synchronisation loci calculated through harmonic balance are
mathematical solutions of the circuit, no information is obtained regarding their
stability properties. Envelope transient simulations have been used to determine
the stable regions, which are indicated in solid line in Figure 2.5, while the
unstable parts are represented in dotted line.
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For the power values of the external signal Ps that have been considered, the
phase of the fundamental oscillation can be varied in a continuous range of about
180◦, by tuning the capacitance of the varactor diode Cvar. The amplitude of
the oscillation VAG shows a slight dependence on the capacitance of the varactor
diode, and thus it varies with the phase shift selected. Nevertheless, this variation
is very limited and it can be neglected for most applications.

In the IL3HSOM topology that has been presented, the third harmonic com-
ponent of the oscillation is used as the local oscillator signal for the down-
conversion. Therefore, the phase shift introduced in this frequency component
∆φ3 = φ3 − φs, will be imposed on the output signal at intermediate frequency,
giving rise to the desired phase shifting behaviour.

The phase shift of the third frequency component of the oscillation is pre-
sented in Figure 2.6, as a function of the capacitance of the varactor Cvar, for
four different values of the synchronisation power Ps. A continuous phase shift
range of about 540◦ is available, which assures a practically usable range wider
than 360◦.

Figure 2.6: Synchronised solutions of the IL3HSOM circuit versus the capacitance
of the varactor diode Cvar. (a) Amplitude of the auxiliary generator (b) phase
of the auxiliary generator. The stable parts are represented in solid line and the
unstable part in dotted line.

2.3.1.1. Characterisation as a Variable Phase Shifter

The IL3HSOM circuit has been conceived to introduce a variable phase shift
while performing the downconversion operation. Thus, in order to characterise
its phase shifting performance, the behaviour of the circuit must be analysed
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when introducing an external signal at frequency fin, through the antenna port
indicated in Figure 2.3.

Harmonic balance simulations have been performed introducing a tone at the
centre frequency of the input RF band finc = 11.25 GHz. The frequency basis
for these simulations must include this new frequency component and the inter-
modulation products up to, at least, the 4th order (note that the intermediate
frequency is obtained through the mixing of the input signal with the 3rd har-
monic component of the self oscillation). Intermodulation products up to the
fifth order have been included in the basis. Nonetheless, assuming that the level
of the input signal is low and consequently, that the response of the circuit to
this signal can be considered approximately linear, no harmonic components of
this fundamental have been considered.

The output signal of the circuit is obtained at intermediate frequency fIF =
fin−3fs. The conversion gain can thus be defined as the ratio between the power
of the output signal at intermediate frequency Po, and the input RF power Pin,
as follows

Gc =
Po
Pin

. (2.1)

The phase shift introduced by the circuit is defined as the difference between
the phase of the output signal at intermediate frequency φo and that of the input
RF signal φo:

∆φ = φo − φin. (2.2)

The conversion gain of the circuit calculated for three different values of the
synchronisation power are presented in Figure 2.7(a). In this case, the results
have been represented as a function of the control voltage of the varactor diode
Vc using the varactor model provided by the manufacturer. The corresponding
phase shift ∆φ is shown in Figure 2.7(b), also versus the varactor bias voltage.

A continuous variable phase shift range of about 540◦ has been obtained for
the three power values of the synchronisation power that have been analysed.
For the sake of clarity, the phase reference φs has been adjusted for the traces to
intersect at 0◦.

The conversion gain is slightly dependent on the control voltage and thus, on
the imposed phase shift. Although the variation increases with the synchroni-
sation power level, it remains under 0.7 dB for the synchronisation power levels
that have been considered.

Hence, the injection locked harmonic self oscillating mixer can effectively
perform the local oscillator signal generation, together with the frequency down-
conversion and the continuous range variable phase shifting operations, while
providing a positive conversion gain, barely dependent on the phase shift value
selected.
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(a) (b)

Figure 2.7: Characterisation of the IL3HSOM circuit versus the varactor bias
voltage Vc, for different values of the synchronisation power. (a) Conversion
gain (b) Phase shift. The stable ranges calculated through harmonic balance
simulations are indicated in solid line.

2.3.2. Frequency Response

As has been shown, the injection locked harmonic self oscillating mixer intro-
duces a phase shift value that can be accurately controlled within a continuous
range greater than 360◦. Nonetheless, this phase shift value can only be imposed
at a single frequency (note that the figures shown in the previous section corre-
spond to the the centre frequency finc = 11.25 GHz). The phase shift introduced
at other frequencies cannot be controlled simultaneously, as it is determined by
the frequency response of the circuit.

The frequency performance of the circuit has been evaluated through har-
monic balance simulations in which the frequency of input signal fin, has been
swept throughout the input frequency band (11.1–11.4 GHz). In order to analyse
the influence of the phase shift value imposed at the centre of the band ∆φ(finc)
in the frequency response of the circuit, the simulations have been carried out
for six uniformly distributed values across the stable range: ∆φ(finc) = ∆φn =
−225◦ + n90◦, n ∈ [0, 5].

The frequency response calculated for two different values of the synchroni-
sation power Ps is presented in terms of conversion gain in Figure 2.8(a), and in
terms of phase shift in Figure 2.8(b).

The conversion gain presents a wider variation range both with frequency
and with the phase shift imposed at the centre frequency ∆φ(finc), for higher
values of the synchronisation power. Even though these fluctuations are more
pronounced at the ends of the frequency band, the maximum variation is about
2 dB in the worst case.
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(a) (b)

Figure 2.8: Frequency response of the IL3HSOM circuit for six different values
of the phase shift established at the centre frequency ∆φ(finc). (a) Conversion
gain (b) Phase shift.

The phase shift at intermediate frequency ∆φ shows a steep slope versus fre-
quency that disguises the small variations for the different the phase shift values
imposed at the centre frequency. This slope is caused by the propagation of the
signals throughout the circuit. The phase shift undergone by an electromagnetic
wave traveling in an ideal and lossless transmission line of length L is known to
be given by

∆φL = −2π

λL
L = −2π

vL
fL, (2.3)

where λL and vL are respectively the wavelength and the propagation velocity in
the transmission line. Therefore, the propagation through the transmission line
gives rise to a linear variation of the phase shift with frequency, analogous to the
behaviour observed in Figure 2.8(b).

As was the case with the conversion gain, the phase shift also shows a wider
range of variation with frequency for higher values of the synchronisation power
Ps. A more detailed analysis, eliminating the slope and particularising the results
for a practical antenna array, will be performed later in this chapter.

2.4. Antenna Array Design

The design process of the four element antenna array that will be controlled by
means of the injection locked harmonic self oscillating mixer circuits is addressed
in this section.
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The elements of the array will be disposed in a linear arrangement. In this
configuration, the radiation pattern in the plane perpendicular to the axis of the
array cannot be controlled, as it directly matches that of the individual element.

The antenna array will be designed and manufactured in microstrip technol-
ogy, taking advantage of the robustness, versatility and ease of design of these
implementations.

2.4.1. Individual Radiating Element

The antenna elements for the array must necessarily cover the input frequency
band (11.1–11.4 GHz), with a return loss greater than 10 dB. Nonetheless, it
would be desirable to obtain a slightly wider bandwidth, in order to prevent small
deviations that might appear between simulated and measured performance (due
to errors in the manufacturing process, simulation inaccuracies, mismatches in
the physical properties of the material, etc.), from completely invalidating the
design for the target application.

Since no further specifications are imposed on the performance of the antenna
element in addition to the relatively lax bandwidth requirement, keeping the
element complexity to a minimum has been adopted as an additional goal for the
design process.

The first choice to make when it comes to microstrip technology is the type
of substrate to employ. In this case, the same multipurpose laminate used to
implement the injection locked harmonic self oscillating mixer circuits—Arlon
25N—has been chosen for the individual antenna element. The datasheet prop-
erties of this material are summarised in Table 2.1.

Symbol Parameter Value Unit

εr Relative Permittivity 3.38

tan(δ) Loss Tangent 0.0025

h Thickness 0.762 mm

hc Cladding Thickness 18 µm

Table 2.1: Datasheet specification of the Arlon 25N substrate. Electrical prop-
erties measured at 10GHz.

Multiple antenna designs implemented in microstrip technology have been
presented in the literature, optimised for different purposes and applications.
For simplicity, a rectangular patch has been chosen as the first approach to this
design. An important aspect to address in the design of this type of antenna
topologies is the feeding technique. For the modular assembly of the different
parts of the system, it is advantageous to install the connectors to feed the array
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in the edge of the printed circuit board, as it simplifies its connection to the
IL3HSOM circuits.

By implementing the feeding line in the in the same layer as the patch, the
complete array can be designed in a single layer substrate structure, which makes
the design cheaper and easier to manufacture. This approach also presents several
technical shortcomings, such as the fact that the radiation of the feeding line may
disturb the radiation pattern of the antenna. Nevertheless, since this substrate
is not particularly thick or its dielectric constant particularly low, the impact
of this effect on the overall radiative performance of the patch should be fairly
limited.

In order to obtain an estimate to the dimensions of the rectangular patch,
the following set of approximate design equations can be found in [12]:

W =
1

2f
√
µ0ε0

√

2

εr + 1
, (2.4)
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− 2∆L, (2.7)

where W and L are the width and length of the patch. Although these approxi-
mate equations were derived under certain simplifying assumptions, they usually
provide a good starting point for the design process. By particularising the equa-
tions for the substrate parameters and desired centre operating frequency in this
case, the initial dimensions of the patch shown in Table 2.2 have been obtained.

Frequency [GHz] Wi [mm] Li [mm]

11.25 9 6.9

Table 2.2: Approximate dimensions of the resonant rectangular microstrip patch.

A rectangular patch with the initial dimensions that have been calculated
is simulated using the Method of Moments (MoM) electromagnetic simulator
included in the software package Advanced Design System.

As has been commented, the patch is fed through a transmission line etched
on the same layer. If the line is directly connected to the edge of the patch, the
input impedance will be very high and thus difficult to match. However, the
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Figure 2.9: Schematic diagram of the final individual microstrip antenna element.
Dimensions in millimetres.

impedance will progressively decrease from the radiating edge towards the centre
of the patch, where it will reach 0 Ω. The simplest method to match the input
impedance of the patch to the feeding line is known as inset feeding, and it entails
cutting a slot in the patch at either side of the line, in such a way that, rather
than connecting it to the edge of the patch, it is connected to an inner point
where the input impedance is similar to that of the line.

The patch will be fed using a transmission line with a characteristic impedance
of 50 Ω. Using the tool LineCalc, included in the ADS package, and taking
into account the properties of the substrate, the width of the transmission line
corresponding to a characteristic impedance of 50 Ω at 11.25 GHz was found to
be Wline = 1.75 mm.

By tuning the design parameters: lengths, widths of the patch and of the
matching slots, the patch was matched to an input impedance of 50 Ω, achieving
a maximum bandwidth of about 300 MHz centred at 11.25 GHz. Although this
bandwidth would be just enough to cover the input frequency band between 11.1
and 11.4 GHz, as has been justified, it would be advisable to have certain margin
over the requirements, in order for the design to tolerate small deviations from
the expected behaviour.

Hence, certain modifications in the structure of the patch were considered to
increase its bandwidth. A rectangular microstrip antenna is a resonant system
whose operating frequency is closely related to its geometrical dimensions, specif-
ically to its length. A common approach to increase the bandwidth consists in
generating additional resonances at frequencies close to the fundamental, giving
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(a) (b)

Figure 2.10: Simulated performance of the final microstrip antenna design (a)
S11 parameter (b) Copolar component of the radiation pattern in the H (xz) and
E (yz) planes.

rise to a widened band. This can be attained by delimiting separate areas that
resonate at different frequencies, either inside the patch, through cutting slots
and/or holes, or outside, introducing parasitic patches.

The influence of the inclusion of a rectangular parasitic patch at either side of
the main patch has been evaluated. To prevent the appearance of asymmetries in
the radiation pattern, the dimensions of the patches were kept identical. As was
the case with the main patch, the length of the parasitic patches has a strong
connection to their resonant frequency, whereas their width is less influential.
The separation between the main patch and the parasitic, whose lower limit
is set by the precision of the fabrication equipment, determines the coupling
between them.

The design parameters were conveniently modified in method of moments
simulations to maximise the bandwidth. A schematic diagram of the optimised
design is shown in Figure 2.9, including dimension lines. The best performance
was attained when the length of the main patch is slightly smaller than that
of the single resonant patch, shifting its resonance to a higher frequency, while
the parasitic patches are slightly longer, decreasing their resonant frequency.
Consequently, these close resonances merge together, giving rise to an extended
operating band of about 350 MHz, as shown in Figure 2.10(a).

The radiation patterns of the final design are presented in Figure 2.10(b),
both in the E (yz) and H (xz) planes. A gain value of 6.34 dB was obtained,
with a negligible cross polar component. This final optimised design will be used
as the individual element for the antenna array.
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2.4.2. Array Design

The joint behaviour of a group of antennas working together in an array is
primarily determined by the way the signals received by the individual elements
are combined. By conveniently weighting and/or phase shifting those individ-
ual signals prior to the combination, the radiation pattern of the array can be
effectively governed.

Depending on its position in space with regard to the incoming wavefront,
each individual element will receive the impinging signal with a given phase shift.
A schematic diagram of a four element linear antenna array with an incoming
wavefront forming and angle θ with the axis of the array, is shown in Figure
2.11. The elements of the array are uniformly distributed along the x axis and
separated a distance d.

Figure 2.11: Schematic diagram four element antenna array.

Under far field1 conditions, the additional distance that the wave needs to
cover between one individual element and the next is given by ∆ = d sin θ. This
difference in distance causes a phase shift

∆φp = kd sin θ, (2.8)

1When the wave that reaches the array is generated at a point source located far away from
it, the rays that impinge upon the different individual elements can be considered to be parallel,
and the associated wavefront, plane. This approximation brings about an error in the distance
to the different elements, that decreases with the distance to the source of the wave. When
the source is located at a distance far greater than the wavelength dsource >> λ, such that
dsource > 2D2/λ, where D is the greatest dimension of the antenna, the phase error associated
with this approximation is smaller than π/8, which is usually regarded as acceptable. The
area where these conditions are fulfilled is generally referred to in the literature as far field or
Fraunhofer region [12].
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where k = 2π/λ, is the wave number and λ, the wavelength, both in the free
space.

The radiation pattern of the array can be calculated as the superposition
of the individual contributions. Assuming all the antennas are identical and
neglecting any mutual coupling, the complete radiation pattern can be written
as

~E(~r) = ~E0(~r)
[

A1e
−jk 3d

2
sin θ +A2e

−jk d
2

sin θ +A3e
jk d

2
sin θ +A4e

jk 3d
2

sin θ
]

, (2.9)

where the centre of the array has been chosen as the phase reference and ~E0(~r),
represents the radiation pattern of the individual element located at the origin
of the coordinate system. As has been commented, the radiation pattern of
the array can be controlled by conveniently weighting and phase shifting the
different contributions before combining them. The complex factors An = ane

jαn ,
represent the phase shift αn, and the weight an, applied to each of the individual
components.

The design parameters for the antenna array are the separation between el-
ements d, and the set of factors An, that needs to by applied to the individual
contributions in order to produce the desired radiation pattern. The variety of
factors that can be selected is usually limited by the practical implementation
of the array. In this case, as has been studied, the injection locked harmonic
self oscillating mixers enable the phase shift tuning of the received signals in a
continuous range greater than 360◦. The slight variation of the conversion gain
with the phase shift selected is negligible, and a uniform amplitude distribution
an = 1, ∀n ∈ [1, 4], can be assumed for the purpose of this analysis.

For simplicity, ease of design and good performance, progressive phase shift
distributions, in which the difference in phase shift between adjacent elements is
constant α = αn − αn−1, ∀n ∈ [2, 4], are widely employed in antenna arrays. In
this configuration, (2.9) can be rewritten as

~E(~r) = ~E0(~r)
4
∑

n=1

ane
j[n− 5

2
](kd sin θ+α) = ~E0(~r)FA(θ), (2.10)

where FA(θ) is usually referred to as the array factor and defined as

FA(θ) = e−j
5

2
(kd sin θ+α)

4
∑

n=1

ane
jn(kd sin θ+α). (2.11)

If the magnitude of the array factor is plotted as a function of Ψ = kd sin θ+α,
a 2π periodic function is observed, with a maximum for Ψ = 0. Therefore, the
maximum of the array factor will be obtained for the incidence angle θm, that
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satisfies Ψ = kd sin θm + α = 0, namely:

θm = − arcsin(
α

kd
). (2.12)

The radiation pattern can be estimated according to (2.10), as the product
between the radiation pattern of the individual element, as shown in Figure
2.10(b), and the array factor. To illustrate the influence of the design parameters,
the magnitude of the radiation pattern thus estimated is represented in Figure
2.12(a) for three values of the separation d, when the same phase shift is applied
to all the elements α = 0. As the separation d increases, the main lobe becomes
narrower improving the directivity of the array, while worsening the side lobe
level. However, at some point, copies of the main lobe known as grating lobes
will appear in the radiation pattern, limiting its practical interest.

(a) (b)

Figure 2.12: Estimation of the radiation pattern for different values of the sep-
aration between elements d: (a) Broadside configuration (b) Main beam shifted
to θm = −25◦.

For d < λ/2, there will be one single main lobe in the array factor, whereas
for d > λ, there will be more than one regardless of the value of the progressive
phase shift α selected. In between, the level of the grating lobes will be directly
dependent on the progressive phase shift applied α.

A design requirement of a side lobe level smaller than −10 dB for angles of
the main lobe |θm| < 20◦, is imposed on the antenna array. In order to meet this
requirement, the properties of the individual element must be taken into account,
along with the array factor, in accordance with (2.10). As shown in 2.10(b), the
radiation pattern of the individual element has its maximum for θ = 0◦ and
progressively decreases with the incidence angle until it practically vanishes for
θ = ±90◦.
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For a separation d = 0.9λ, the outermost secondary lobes shown in Figure
2.12(a), are actually grating lobes, which are severely attenuated by the pattern of
the individual element. Nonetheless, as the progressive phase shift is incremented
α 6= 0◦, the main lobe starts to shift from the direction perpendicular to the axis
of the array θ = 0◦, thus being multiplied by the increasingly low value of the
radiation pattern of the individual element. Conversely, the grating lobe, which
was initially highly attenuated by the pattern of the individual element, gains
significance rapidly as it correspondingly shifts towards θ = 0◦.

To illustrate this behaviour, the estimated radiation patters for the same
three values of the separation d, are presented in Figure 2.12(b) when the main
lobe is shifted to θm = −25◦, which corresponds to the progressive phase shift
values α(0.5λ) = 65◦, α(0.7λ) = 80◦ and α(0.9λ) = 100◦.

For d = 0.9λ, the side lobe level when θm = −25◦ is higher than −10 dB. On
the other hand, the side lobe level specification is fulfilled with θm = −25◦, both
for d = 0.7λ and d = 0.5λ. Although there would be margin to further shift the
main lobe with d = 0.5λ, this option brings about a significant reduction in the
directivity. Hence, the separation value d = 0.7λ will be chosen for this work as
a trade-off solution.

The analysis that has been carried out thus far is based on the array fac-
tor formulation, which includes a set of approximations, such as neglecting the
coupling between the individual elements, that may compromise the accuracy of
the results obtained. Therefore, the microstrip antenna array with an element
separation d = 0.7λ which, in free space, corresponds to d = 18.67 mm, has been
studied using method of moments simulations. The simulated radiation patterns
in the H plane when the elements are fed in phase α = 0, are presented in Figure
2.13(a). The side lobe level is about −13 dB and the cross polar component is
more than 35 dB under the copolar. The gain obtained in the simulation was
G = 11.81 dB.

The maximum deviation of the main lobe corresponding to a side lobe level
under −10 dB has also been determined through simulation. With a progressive
phase shift α = 104◦, a deviation of the main lobe of θm = 23.5 dB was obtained,
while meeting this requirement. In this situation, the level of the crosspolar
component increases to nearly −25 dB, as shown in Figure 2.13(b).

Finally, in order to validate the simulated results, a prototype of the four ele-
ment antenna array fed in phase with a conventional power divider implemented
in microstrip technology has been manufactured. An image of the prototype is
presented in Figure 2.14. The H plane radiation patterns measured in the ane-
choic chamber are compared with the simulated results in Figure 2.15(a) for the
copolar component and in Figure 2.15(b) for the crosspolar.
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(a) (b)

Figure 2.13: Method of moments simulation of the array radiation pattern cor-
responding to an element separation d = 0.7λ: (a) Broadside configuration (b)
Main beam shifted to θm = −23.5◦.

The good agreement that has been obtained between simulations and mea-
surement validates the antenna array design for the target application for which
it has been conceived.

2.5. Auxiliary Networks

For the interconnection of the different functional blocks that compose the
receiving antenna array topology, as shown schematically in Figure 2.4, several
microwave networks are required.

In addition to the signal routing and distribution purposes, these networks
will also be used to physically assemble the different parts of the system in the
final prototype. Therefore, both electrical and mechanical specifications need to
be imposed on their design process.

The required networks have been developed in microstrip technology, using
the substrate laminate Arlon 25N, whose datasheet properties have been spec-
ified in Table 2.1. The design process leading to the final solutions, which are
manufactured and measured for their experimental validation, is illustrated in
this section.

2.5.1. Synchronisation Power Divider

The injection locked harmonic self oscillating mixer circuits require an ex-
ternal synchronisation signal at the frequency of the fundamental oscillation
fs = 3.25 GHz. As shown in Figure 2.4, this signal is produced for the four
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Figure 2.14: Prototype of the antenna array.

circuits by a single signal generator, and delivered to them by means of a four
port power divider.

Inasmuch as the synchronisation signal constitutes the reference for the phase
shifting operation of the circuits, it must be delivered with equal phase and,
more importantly, it must be robust and independent on their operation regime.
Therefore, high isolation levels are required between the output ports of the
network, in order to conveniently attenuate the spurious signals produced by the
circuits and delivered through their synchronisation port, that might otherwise
perturb the synchronisation signal of adjacent circuits.

Furthermore, as has been previously discussed, the power level of the synchro-
nisation signal has a strong influence on the performance of the circuits. Hence,
for the circuits to present a similar behaviour, the synchronisation signal must
be delivered with equal power level.

In the final prototype, the physical separation between injection locked har-
monic self oscillating mixer circuits is determined by the antenna array that has
been designed. For mechanical compatibility, the same separation d = 18.66
mm, must be established between the output ports of the synchronisation power
divider.

In consideration of the equal split and high isolation requirements, the well-
known Wilkinson power divider topology, shown schematically in Figure 2.16,
is a simple and versatile solution [13]. It is designed as a conventional quarter
wavelength power divider in which a resistor of twice the value of the input
impedance Z0, is connected between the output ports.

The connection of the resistor turns the design into a three port lossy network
which is matched in all the ports and significantly improves the isolation between
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(a) (b)

Figure 2.15: Measured H-plane radiation patterns of the manufactured prototype:
(a) Copolar component (b) Crosspolar component.

Figure 2.16: Schematic transmission line diagram of the Wilkinson power divider.

output ports. Moreover, it can be shown that, when Z0 loads are connected to
the output ports, no power dissipation takes place in the network [13].

To provide the synchronisation signal to the four IL3HSOM circuits a two
stage topology using three Wilkinson power dividers has been designed at fs =
3.25 GHz. The lengths of the interconnecting lines involved have been adjusted
to obtain the desired separation d = 18.66 mm between the output ports.

Once the final design was obtained, the prototype shown in Figure 2.17 was
manufactured for its experimental validation. The measurements are compared
to the simulated results in the following.

As can be observed in Figure 2.18, the input port of the power divider (port
1), as well as the output ports (port 2 to 5), present a relatively high return loss
throughout a wide band around the operating frequency fs = 3.25 GHz.

The scattering parameters Si1, i ∈ [2, 5], that describe the transmission be-
tween the input and each of the outputs are presented in Figure 2.19(a), in
amplitude and in Figure 2.19(b), in phase. The measured loss is slightly higher
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Figure 2.17: Circuit board of the synchronisation power divider.

than the result obtained in the electromagnetic simulation, due to the fact that
the connectors were not modelled in the simulation. Nevertheless, a practically
equal split among the four output ports has been obtained.

As has been justified, the isolation between the output ports is also an im-
portant parameter for the synchronisation power divider. The isolation between
two non-consecutive ports is represented in Figure 2.20. Despite the fact that
the isolation between consecutive ports could not be measured, due to the close
proximity between them, which made it physically impossible to connect the ca-
bles of the vector network analyser, a sufficiently high value of about 30 dB is
expected according to the simulations.

2.5.2. Output Power Combiner and Sampling Network

The downconverted and conveniently phase shifted signals obtained at the
output of the injection locked harmonic self oscillating mixers must be combined
to produce the global output of the system. A four port power combiner operating
in the intermediate frequency band 1.35−1.65 GHz, is required for this purpose.

The input ports must be matched to 50 Ω to maximise the power transfer from
the IL3HSOM circuits, and high isolation levels between them are necessary to
prevent the injection of spurious signals through the output port of the circuits,
that might disturb their operation regime.

Once again, in order for the network to be mechanically compatible with the
rest of the prototype from an assembly standpoint, the separation between the
input ports must be d = 18.66 mm.
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Figure 2.18: Measured reflection coefficients at the ports of the synchronisation
power divider.

Furthermore, prior to the combination, low power samples must be extracted
from the output of each IL3HSOM circuit, for individual phase shift monitoring
purposes. These samples must be routed to independent connectors installed
underneath the ground plane of the structure, in such a way that the phase shift
introduced from the each of the input ports to its corresponding sample port is
identical, not perturbing the measurement.

The sample ports will be connected to an 8 port ACSW−5034 microwave
switch, that enables the selection, through a digital control signal, of the indi-
vidual sample to measure with an Agilent 89600 vector signal analyser N8201A–
N8221A.

Since the input ports of the switch are separated 12.9 mm, the sample connec-
tors must be geometrically disposed to fit four of these ports. This specification,
together with the distance between the input ports of the network and the re-
quirement to introduce the same phase shift between each input port and the
corresponding sampling port, add an additional challenge to the design process.

2.5.2.1. Power Combiner

The Wilkinson power divider used in the previous section presented a set of
interesting properties, such as impedance matching in all ports and high isolation
level between outputs. Taking into account the reciprocity of the network, these
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(a) (b)

Figure 2.19: Transmission coefficients measured from the input to each of the
output ports of the synchronisation power divider: (a) Magnitude (b) Phase.

same properties are observed if inputs and outputs are interchanged, using it as
a power combiner.

Likewise, the transmission coefficients are the same, giving rise to a total
combination loss slightly higher than 6 dB, which fundamentally corresponds to
the power dissipated in the resistors.

An analogous topology to the power divider described in the last section has
been designed to operate at the intermediate frequency band 1.35−−1.65 GHz.

2.5.2.2. Sampling

The extraction of a fraction of the power travelling through a transmission
line can be achieved using multiple microwave solutions. Since only a low power
sample (below 10%) is required in this case, a topology based on a coupled line
directional coupler seems to be appropriate.

The component consists of two transmission line segments disposed in close
proximity, giving rise to certain degree of coupling between them. A schematic
diagram of a directional coupler is shown in Figure 2.21. Most of the power in-
jected through port ➀ continues to port ➁, while a small fraction is derived to
port ➂. Although, theoretically, ➃ is isolated, the isolation that can be practi-
cally attained in microstrip implementations is fairly limited, and this port must
be terminated with a 50 Ω load.

The coupling factor between the lines is primarily determined by the sepa-
ration between them, which is usually constrained by the accuracy that can be
achieved in the fabrication process. Nonetheless, according to the electromag-
netic simulations of the structure, a tap loss of 13 dB corresponds to a separation
of 0.28 mm, which can be straightforwardly manufactured.
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Figure 2.20: Measured isolation between non-consecutive output ports of the
synchronisation power divider.

Figure 2.21: Schematic diagram of the coupled line directional coupler.

2.5.2.3. Layout

As has been pointed out, several geometrical constraints have been imposed
on the power combiner and sampling network. The separation between the input
connectors must be 18.66 mm and the sampling connectors must match four
ports of the switch, which are separated 12.9 mm. Furthermore, the phase shift
introduced between each of the input ports and the corresponding sample port
must be identical and the input signals must be combined in phase.

At a single frequency, this requirement can be satisfied if the lengths of the
transmission line segments associated with the different branches differ an integer
multiple of the guided wavelength. However, the only way to fulfil this condition
throughout the intermediate frequency band is by assuring that the electric path
between each of the input port and the corresponding sample port is the same.
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To meet this requirement, the sample connectors can be arranged to match any
four of the eight input ports of the switch.

The solution based on symmetrical curves, which guarantees their equal
lengths, that has been adopted is depicted in Figure 2.22. The sample con-
nectors have been arranged to match the ports 1, 4, 5 and 8 of the switch, in
order to maximise the separation between the different branches.

Figure 2.22: Layout of the power combiner to match the ports of the ACSW−5034
microwave switch.

The procedure to install the connectors underneath the ground plane is anal-
ogous to the well-known probe feeding technique, widely used in microstrip patch
antennas [12]. The outer conductor of the coaxial connector is soldered to the
ground plane of the structure, while the inner conductor—or probe—is connected
to the corresponding transmission line in the upper metal layer through a hole in
the substrate with diameter of 0.8 mm. A small area of the ground plane around
the hole must be removed to avoid the shorting of the connector.

Additionally, four 2 mm holes have been drilled to accommodate the mounting
pins of the connector, conceived to install it on the edge of the circuit board.
A metal region is laid out around these holes and grounded using via holes.
Likewise, grounded areas are introduced to connect the 50 Ω loads to the isolated
ports of the directional couplers.

An image of the circuit board of the final design, where labels for the main
composing parts have been superimposed, is shown in Figure 2.23.
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Figure 2.23: Circuit board of the output power combiner and sampling network.
Labels for the main composing parts have been superimposed.

2.5.2.4. Results

The design process that has been described was carried out using method
of moments simulations. In the following, the simulations of the the different
parameters of interest, are compared with measurements of the prototype that
has been manufactured for the experimental validation of the design.

The impedance matching of the input ports can be evaluated through the S22

to S55 parameters, presented in Figure 2.24. The network exceedingly covers the
intermediate frequency band with a return loss greater than 10 dB.

The combination loss of the network can be assessed through the parameters
Si1, shown in Figure 2.25(a). The variation of the simulated and measured
parameters follow a similar trend, although with approximately a 1 dB offset.
The coefficients for the different ports vary in a range of about 0.2 dB, which is
negligible. The total combination loss of the network, including the sampling, is
under 7.35 dB.

To verify that the input signals are combined in phase, the phase of the same
Si1 parameters is shown in Figure 2.25(b). In this case, the simulated results are
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Figure 2.24: Measured reflection coefficients at the ports of the output power
combiner.

not included, since the connectors were not modelled in the simulations. The
maximum phase deviation observed is about 2◦, which is perfectly acceptable.

The fraction of power extracted from each input and delivered to the cor-
responding sample port is given by the transmission parameters Sij, measured
from each input port to its associated sample port, which are plotted in Figure
2.26(a). The simulation shows a transmission coefficient of -13 dB, which was
the design goal, whereas the measured values are about 1.5 dB below, showing
reasonably similar results for all the branches (the maximum variation is about
0.5 dB).

As has been explained, the sample ports are used to monitor the phase shift
introduced by the individual IL3HSOM circuits. Hence, an important design
requirement is that the phase shift introduced between each input and its sample
port is the same. This feature can be verified through the phase of the same
Sij parameters shown in Figure 2.26(b). As required, the maximum variation is
about 4◦.

Finally, the isolation between non-consecutive input ports is under −35 dB,
as shown in Figure 2.27. Although the isolation between consecutive ports could
not be measured, it is expected to be sufficiently high, in accordance with the
simulations.

Thus, the network effectively satisfies both the electrical and the mechanical
specifications imposed, which validates it for its inclusion in the complete antenna
array prototype.
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(a) (b)

Figure 2.25: Transmission coefficients measured from each of the inputs to the
output port of the output power combiner: (a) Magnitude (b) Phase.

2.6. Global Frequency Response

In previous sections, the fundamental features of the injection locked har-
monic self oscillating mixers have been studied, evaluating the feasibility of using
these circuits to control an active phased antenna array.

During the design process of the antenna array, the different parameters were
adjusted to meet the specifications imposed in terms of side lobe level and beam
scanning angle. Nonetheless, all the analyses were performed at the centre fre-
quency of the input band finc = 11.25 GHz, disregarding the behaviour at other
frequencies.

The present section is devoted to the analysis of the frequency response of the
system. Initially, the isolated behaviour of the antenna array is addressed, and
the frequency response of the injection locked harmonic self oscillating mixers is
particularised for the case of a progressive phase shift distribution. The overall
frequency response of the system will be subsequently analysed, evaluating the
influence of the operating regime of the circuits on the global performance.

2.6.1. Antenna Array

As has been justified in Section 2.4.2, due to the difference in propagation
distance, an incident wave impinging with an angle θ, on a linear antenna array
with uniformly distributed elements, will be received by consecutive elements
with a phase shift given by

∆φp = kd sin θ. (2.13)
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(a) (b)

Figure 2.26: Transmission coefficients measured from each of the input ports to
its corresponding sample port: (a) Magnitude (b) Phase.

When using a progressive phase shift distribution, a phase shift α, such that
∆φp + α = 0, is introduced between the individual contributions prior to com-
bining them, thus creating a maximum of the radiation pattern in the direction
given by θ.

In (2.13), the wave number k = 2π
λ , is directly dependent on frequency

through the speed of light c, as follows

∆φp =
2π

λ
d sin θ =

2π

c
fd sin θ. (2.14)

The incident signal is received in consecutive elements of the array with a
phase shift ∆φp, which is linearly dependent on frequency. Consequently, in
order to keep the maximum of the radiation pattern of the array at the same
angle θm, throughout the input frequency band, a phase distribution with the
opposite variation trend should be imposed, such that ∆φp(f) + α(f) = 0.

Conversely, if the required phase shift is calculated at a single frequency (at
the centre of the band, for instance) and imposed throughout the band, the
maximum of the radiation pattern will shift with frequency, giving rise to a
phenomenon known as frequency scanning [14].

Therefore, according to (2.14), the progressive phase shift required for the
main beam to be pointed at an angle θmc at the centre of the band fc will be

α = −2π

c
fcd sin θmc . (2.15)

Solving (2.14) for θm, and substituting the progressive phase shift calculated
at the centre of the band (2.15), the angle of the main beam as a function of
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Figure 2.27: Measured isolation between non-consecutive input ports of the out-
put power combiner.

frequency can be obtained:

θm(f) = arcsin

(

− α

2πfd
c

)

= arcsin

(

fc
f

sin θmc

)

. (2.16)

For certain sets of values of f , fc and θmc , the argument of the inverse sine
function in (2.16) is greater than 1, and therefore it cannot be solved in R.
This is because (2.16) was derived in Section 2.4.2 under the assumption that
the maximum of the array factor (2.11), takes place when the argument of the
exponential terms cancels out. However, for specific values of the parameters, the
exponent never becomes zero, in which case, the maximum of (2.11) is reached
for a different value of the exponents.

Nevertheless, for the particular cases addressed in this work, with relatively
small scanning angles of the main lobe θm, and restricting the analyses to the
relatively narrow input band, a real solution will always exist for (2.16).

The deviation of the main beam with regard to the angle imposed at the
centre of the band ∆θm(f) = θm(f) − θmc , is represented versus frequency in
Figure 2.28. According to (2.16), the variation of the scanning angle θm(f) with
frequency increases with the angle imposed at the centre of the band θmc . Hence,
the deviation has been represented for the maximum angle of the main beam that
can be achieved with the array that has been designed θmc = 23.5◦.

The frequency scanning observed ∆θm(f), presents a nearly linear behaviour,
crossing through zero at the centre of the band and progressively increasing
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Figure 2.28: Deviation of the main beam ∆θm with regard to the angle imposed
at the centre of the band, as a function of frequency.

towards the ends, where it reaches a maximum deviation of about 0.35◦, in
absolute value.

As has been discussed in Section 2.4.2, the array factor approach to modelling
antenna array, on which the foregoing analysis is based, relies on several simpli-
fying assumptions that may lead to certain inaccuracies in the results. Thus, the
frequency performance of the array has been analysed using method of moments
electromagnetic simulations for the same steering angle at the centre of the band,
θmc = 23.5◦. A wider variation with frequency (of nearly 2◦) can be observed in
Figure 2.28.

2.6.2. Injection Locked 3rd Harmonic Self Oscillating Mixers

The frequency response of the IL3HSOM circuits has been described, from a
general standpoint, in Section 2.3.2. However, to precisely evaluate its influence
on the overall behaviour of the active antenna array topology, this response must
be particularised for that scenario.

Firstly, depending on the desired offset angle of the main beam θm, a pro-
gressive phase shift α, must be introduced between consecutive elements of the
array. The imposition of that progressive phase shift distribution throughout the
array requires, in general, a different absolute phase shift ∆φ for each circuit,
which is associated with a different control voltage, a different operation point
and thus, a different frequency response.
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Although there exist infinitely many absolute phase shift distributions that
produce the same progressive phase shift, in this work, a progressive phase shift
α, will be introduced through an absolute phase shift distribution ∆φi, i ∈ [1, 4],
of the IL3HSOM circuits given by

[

−3α
2 ,−α

2 ,
α
2 ,

3α
2

]

.

Figure 2.29: Control voltage required for the IL3HSOM circuits, as a function of
the intended progressive phase shift value α.

In Figure 2.29, the control voltages for the IL3HSOM circuits Vci , i ∈ [1, 4],
is presented as a function of the progressive phase shift α, for two values of
the synchronisation power level. As could be concluded from the phase shift
characteristics of the circuit shown in Figure 2.7(b), a wider variation of the
control voltages is required for higher values of the synchronisation power.

The control voltages presented in Figure 2.29 have been calculated at the
centre frequency finc = 11.25 GHz. For these control voltages, the variation of
the conversion gain and the phase shift for each of the circuits will be analysed
throughout the band. This analysis will be performed when imposing the pro-
gressive phase shift α, associated with the maximum steering angle of the main
beam that can be achieved in the antenna array with a side lobe level better than
−10 dB, θmc = 23.5◦.

The deviation of the conversion gain for the i-th circuit, at the frequency fin
for a steering angle of the main beam at the centre of the band θmc , with regard
to the conversion gain corresponding to a broadside pattern (α = θmc = 0◦), is
defined as

DGci(fin, θmc) = Gci(fin, θmc) −Gci(fin, θmc = 0◦), (2.17)
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where the conversion gains and the deviation are expressed in dB. The gain devi-
ation DGci(fin, θmc , θmc) for the four circuits and for two values of the synchro-
nisation power has been plotted in Figure 2.30(a). The variation increases with
the synchronisation power level, although it remains under 0.75 dB, in absolute
value.

(a) (b)

Figure 2.30: (a) Deviation of the conversion gain of the four HSOM circuits versus
frequency, for two power values of the synchronisation signal. (b) Deviation of
the phase shift of the four HSOM circuits versus frequency, for two power values
of the synchronisation signal.

On the other hand, as was shown in Figure 2.8(b), the phase shift at interme-
diate frequency presents a steep slope versus frequency that conceals the features
of the frequency response. For the sake of clarity, this slope is cancelled out in
the definition of the phase shift deviation for the i-th circuit, by subtracting the
frequency response of the circuit for a phase shift α = 0◦, as follows

Dφi(fin, θmc) =[∆φi(fin, θmc) − ∆φi(fin, θmc = 0◦)]

− [∆φi(finc , θmc) − ∆φi(finc , θmc = 0◦).
(2.18)

The two terms in the second square brackets are offset constants to impose that
the deviation at the centre frequency and for a broadside radiation pattern (α =
θmc = 0) is zero: Dφi(finc , θmc = 0◦).

The phase shift deviation for a steering angle θmc = 23.5◦, Dφi(fin, θmc =
23.5◦), and for two values of the synchronisation power is shown in Figure 2.30(b).
The deviation increases with the synchronisation power, nearly reaching 7.5◦ in
absolute value, for Ps = −30 dBm.

Consequently, the frequency response of the injection locked harmonic self
oscillation mixers presents a wider variation, both in conversion gain and in
phase shift, for higher values of the synchronisation power.
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2.6.3. Overall Behaviour

According to the analyses that have been carried out thus far, when certain
amplitude and phase distributions—constant in frequency—are applied to the
signals received by the individual elements of an antenna array, a variation of the
steering angle of the main beam known as frequency scanning, is observed.

On the other hand, it has been shown that the conversion gain and phase shift
of the IL3HSOM circuits do not present a flat frequency response, but rather
they exhibit certain variations throughout the band, which are more apparent
for higher values of the synchronisation power.

Nonetheless, solely based on these individual analyses, no assumption can be
made as to the overall frequency response of the system. It is obvious that, if the
variations of the conversion gain and the phase shift were reduced to negligible
values, the frequency scanning phenomenon observed in the isolated antenna
would be reproduced, but it is yet to be determined whether the actual frequency
response of the circuits will aggravate, or rather mitigate, this error.

Hence, in order to evaluate the overall behaviour of the system, as well as
to determine the operation point that minimises the frequency scanning, the
response of the complete antenna array topology is studied next.

Figure 2.31: Steering angle of the main beam evaluated at the centre and at both
ends of the input frequency band, as a function of the progressive phase shift α,
imposed at the centre frequency finc .

In Figure 2.31, the steering angle of the main beam θm, is represented versus
the progressive phase shift α, imposed at the centre frequency finc = 11.25 GHz.
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The simulations have been performed at three frequency points: both ends and
the centre of the input frequency band (11.1, 11.25 and 11.4 GHz). The steering
angle θm shows a nearly linear dependence on α, crossing through zero for α = 0◦,
where all the circuits work at the same operating point, and they thus present
identical conversion gain and phase shift at every frequency.

For α 6= 0◦, a deviation in the steering angle of the main beam is observed
at both ends of the input frequency band, which increases with the progressive
phase shift applied, in such a way that, for the lower frequency, the main beam
shifts towards greater angles in absolute value whereas, at the upper frequency,
it shifts towards smaller absolute angles.

With regard to the synchronisation power level Ps, a greater deviation is
obtained for Ps = −40 dBm, while for Ps = −30 dBm, the deviation is slightly
smaller at those frequency points.

In order to gain an insight into the frequency performance of the system, the
simulations must be performed at more frequency points, distributed throughout
the input band. Inasmuch as the simulations that have been performed thus
far, both of the isolated antenna array and of the complete system at the ends
of the band, agree in predicting that the deviation of the steering angle with
frequency increases with the steering angle imposed at the centre of the band,
the simulations will henceforth be carried out for θmc = 23.5◦.

Figure 2.32: Overall deviation of the main beam considering the intrinsic fre-
quency scanning of the antenna array and the conversion gain and phase shift
frequency response of the HSOM circuits (both separately and jointly).
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The results of multiple simulations have been plotted together in Figure 2.32,
for ease of comparison. Moreover, for convenience, the frequency scanning cor-
responding to the isolated antenna array, when both a gain and a phase shift
distribution constant in frequency are applied, that was shown in Figure 2.28,
has also been represented as a reference.

Starting from the case with both a conversion gain and a phase shift distribu-
tion with a flat frequency response are applied (black trace), the actual frequency
responses that have been calculated for the IL3HSOM circuits, are introduced
separately in terms of conversion gain and phase shift.

Considering the phase shift distribution flat in frequency and introducing the
real values of the conversion gain (square markers, red for Ps = −40 dBm and
blue for Ps = −30 dBm), the behaviour is practically indistinguishable from the
reference, for both power levels.

Nevertheless, when assuming a constant conversion gain and taking into ac-
count the calculated values for the frequency response of the the phase shift dis-
tribution, a reduction of the frequency scanning is observed throughtout the band
for Ps = −40 dBm. Furthermore, a significant mitigation of the frequency scan-
ning ∆θm(fin), which is over 75% througtout two thirds of the input frequency
band, has been attained for Ps = −30 dBm. Once again, the results barely
change when incorporating the calculated frequency response of the consversion
gain (note the small value of the variation).

As a conclusion, taking advantage of the fact that the frequency response
of the injection locked harmonic self oscillating mixers tends to compensate for
the frequency scanning phenomenon, which is intrinsic to antenna arrays, the
overall performance of the system can be improved with regard to an antenna
array driven by circuits with an ideal (flat) frequency response. Furthermore, the
adequate choice of the synchronisation power level enables a significant reduction
of this effect.

2.7. Experimental Results

Once the different parts that compose the active antenna array topology based
on injection locked harmonic self oscillating mixers have been designed, analysed
and experimentally validated separately, they can be put together in a prototype
of the complete system.

This section is focused on the development of the prototype and on the obten-
tion of experimental results to evaluate the practical performance of the system.
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Figure 2.33: Image of one of the manufactured harmonic self oscillating mixers.

2.7.1. Prototype Assembly

The composing blocks of the active antenna array based on injection locked
3rd harmonic self oscillating mixers were schematically outlined in Figure 2.4.

According to the block diagram shown in Figure 2.4, the active antenna
array topology is operated by four independent injection locked 3rd harmonic
self oscillating mixers, like the one presented in Figure 2.33. Three connectors
have been installed at the edges of the circuit board in order to introduce the
synchronisation and input RF signals (left hand and upper sides, respectively),
as well as to extract the downconverted output at intermediate frequency (right
hand side).

A prototype of the four element antenna array has been manufactured, as
shown in Figure 2.34(a).The synchronisation signal produced by an external gen-
erator is delivered, with equal power level and phase, through the synchronisation
power divider that has been described, shown in Figure 2.34(b).

The sampling network that must extract a small fraction of the output signal
of each of the HSOM circuits prior to combining them has been integrated with
the output combiner, leading to the prototype presented in Figure 2.35(a). The
sample ports are located on the opposite side of the board, as shown in Figure
2.35(b).
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(a) (b)

Figure 2.34: (a) Prototype of the four element microstrip antenna array. (b)
Synchronisation power divider.

The aforementioned functional blocks have been implemented in separate
circuit boards, conveniently provided with SMA end launchers, which enable the
circuit interconnection. The prototype is thus assembled using SMA plug-plug
straight adaptors.

In order to limit the mechanical stress on the connectors and to enable the
appropriate suspension of the prototype in the anechoic chamber, a tailor-made
wooden support structure has been fabricated. An image of the system prototype
fitted into the support structure and mounted on the azimuthal positioner of the
anechoic chamber is shown in Figure 2.36.

A closer image of the prototype is shown in Figure 2.37, where the main
composing parts are indicated.

2.7.2. Measurement Set-up

For the experimental characterisation of the complete system, the measure-
ment set-up represented schematically in Figure 2.38 has been employed.

The fundamental equipment and accessories that compose this set-up are
briefly described in the following:

DC Power Supplies Hameg HM7044 and HM7042-5: In order to
control the three DC bias signals of each of the four HSOM circuits inde-
pendently, 12 separate power supply channels are required. The ammeters
of the power sources enable the real time monitoring of the power consump-
tion of the circuits, which is closely related to their operating regimes.
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(a) (b)

Figure 2.35: Prototype of the output power combining and sampling network.
(a) Upper side. (b) Lower side: sample connectors.

Figure 2.36: Prototype of the complete receiving active antenna array mounted
on the rotary platform of the anechoic chamber.
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Figure 2.37: Image of the prototype of the active antenna array in which the
main composing parts are indicated.

Microwave Signal Generator Rohde & Schwarz SMR40: This gen-
erator produces the synchronisation signal at fs = 3.25 GHz for the circuits.
A second generator produces the RF signal in the input frequency band
(11.1–11.4 GHz). The phase locked loops of all the generation and mea-
surement equipment share a 10 MHz reference signal which sets a common
frequency reference.

Microwave Switch ACSW-5034: As has been described, the sample
ports of the power combining network are multiplexed using this device.
Through a digital input, the sample signal that is connected to the output
port can be selected.

Vector Signal Analyser Agilent 89600 N8201A–N8221A: This de-
vice measures the sample signal selected through the switch, determining
the relative phase shift and conversion gain introduced by the correspond-
ing HSOM circuit.

Pyramidal Horn Antenna: Fed by the second signal generator, this
antenna will be used to transmit the test signal in the input frequency
band (11.1–11.4 GHz), that will be received by the system.

Spherical Range in Anechoic Chamber: In order to minimise the
impact of reflections and spurious signals in general, the complete mea-
surement process has been carried out in an anechoic environment.
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Figure 2.38: Schematic diagram of the measurement set-up in the anechoic cham-
ber.

Vector Network Analyser Rohde & Schwarz ZVK 10 MHz–40

GHz: This analyser is part of the equipment of the anechoic chamber
and, as such, it is triggered by the control system of the different rotary
platforms.

RF Cables: In addition to the anechoic chamber semi-rigid cabling, two
new flexible coaxial cables were required to connect the prototype to the
measurement equipment.

DC wiring: For the independent power supply and control of the HSOM
circuits, multiple DC circuits are required. A purpose-built VGA cable was
used to route these circuits and a VGA jack was installed on the support
structure to simplify the connection and disconnection.

2.7.3. System Start-up

Once the prototype has been appropriately connected to ground, the transis-
tors can be biased with the voltages associated with the selected operation point.
The gate terminal of the common source topology is initially biased with 0 V,
while the drain voltage is progressively increased to about 1.9 V, leading to the
onset of an oscillatory regime with a fundamental frequency close to 3.25 GHz.
This fundamental frequency can be varied by tuning the varactor bias voltage
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Vc. At the desired operation point, about 22 mA will be drawn from the power
supply.

As soon as the four circuits are oscillating at similar frequencies, the external
synchronisation signal at fs = 3.25 GHz can be introduced. If the fundamental
frequencies of the circuits are not close enough to fs, or if its power level Ps, is
low, these frequencies will coexist with fs giving rise to intermodulation products.

However, by adjusting the varactor bias voltages Vci , to bring the oscillation
frequencies closer to fs, or by increasing the power level Ps, the circuits will
become injection locked.

Under these conditions, the only fundamental component present in the cir-
cuits will be fs, and they will be prepared to downconvert the signal introduced
through the input RF port to intermediate frequency, introducing variable phase
shifts that can be separately controlled through the varactor bias voltages Vci .

2.7.4. Coexistence of IL3HSOM Circuits

For the purpose of this work, it has been assumed that the reference signal
for all the IL3HSOM circuits is common and independent. Under this assump-
tion, each circuit would preserve the same properties that have been observed
in its isolated operation, providing an independent continuous phase shift range
exceeding 360◦.

Nevertheless, the mutual interaction between practical circuits may lead to
significant degradations in their performance. In case the fundamental oscilla-
tion of one of the circuits—at the synchronisation frequency fs—is coupled onto
another, the reference signal of the latter would be determined by the vector sum
of the external reference and the contribution coupled from the former.

Hence, when the control voltage of a circuit is tuned, the amplitude and phase
of its oscillation changes, as does the contribution coupled onto the neighbouring
circuits. That coupled contribution will in turn modify the power and phase of
the reference signal for these circuits.

The outcome of this effect is twofold. On the one hand, for a given control
voltage Vc, the HSOM circuit introduces a fixed phase shift ∆φ, referred to the
synchronisation signal it receives, which is influenced by the coupled contribu-
tions. Thus, the actual phase shift introduced by the circuit, with regard to the
external unperturbed reference, will be dependent not only on its own control
voltage, but also on the phase shift introduced by the neighbouring circuits.

On the other hand, as has been shown in Figure 2.7(b), the response of
the HSOM circuit to the control voltage is determined by the reference signal
power. For a given control voltage Vc, except for the value corresponding to
the intersection of the traces (∆φIF = 0 in Figure 2.7(b)), the variation of the
synchronisation power affects the operation of the circuit, to the point that it
might even bring it to an unstable region, where it would lose the synchronisation.
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Coupled topologies have also been presented in the literature both using oscil-
lators [15], and more complex oscillator based designs [8]. In these solutions, the
coupling effects between the circuits are deliberately increased through a purpose-
built network, designed to control the output phase of some of the circuits by
generating the appropriate reference signal.

In [16], mutually coupled harmonic third oscillating mixers have been used
to control a four element antenna array. Through the variation of the varactor
bias voltages of the two outer circuits—which are injection locked to an external
reference—the progressive phase shift throughout the array can be controlled.
In order to minimise the variation of the phase shift with the synchronisation
power level on the inner circuits, they are operated at the intersection point of
the traces (∆φIF = 0 in Figure 2.7(b)) [17].

This approach allows a reduction in the number of required DC control signals
(corresponding to the circuits that are controlled through the reference signal),
at the expense of reducing the range of phase distributions that can be obtained,
with regard to the case of individually injection locked circuits.

In this work, the individually injection locked topology has been chosen so as
to preserve the total flexibility in the phase distributions that can be imposed,
whereby each circuit can independently apply any phase shift value within a
continuous range of at least 360◦.

As has been justified, any mutual coupling between circuits leads to a situa-
tion where changes in the control signal of one circuit brings about variations of
the output phase of the neighbouring circuits. These variations, whose magnitude
will be determined by the power ratio between the injected external reference and
the coupled contributions, could be compensated through the joint adjustment
of the control voltages of the different circuits.

Nonetheless, this phenomenon gives rise overlapped phase shift ranges in
which, while certain phase shift distributions can be achieved with several com-
binations of control voltages, others become unavailable, resulting in an effective
contraction of the usable phase shift ranges [18]. Therefore, the mutual coupling
is an utterly detrimental effect that must be kept under control in this type of
systems.

For the physical disposition of the HSOM circuits in the manufactured pro-
totype and for the separation between them, the radiative mutual coupling that
has been observed is negligible. Hence, any effective coupling can only take place
through the antenna array and auxiliary networks.

In fundamental oscillator based topologies, the relatively high output power at
the fundamental oscillation frequency generally leads to high coupled components
[18], which are difficult to reduce in practice.

Conversely, the architecture of the third harmonic self oscillating mixer
strongly limits its vulnerability to this phenomenon. Since both the input RF
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signal and the IF output are at different bands, separated from the fundamental
oscillation frequency, the fundamental coupling can be severely reduced through
filtering, without significantly affecting the desired input and output signals
present in the corresponding ports.

Moreover, the purposeful assignment of the input RF and output IF bands of
the circuit so as to avoid the harmonic components of the fundamental oscillation
frequency Nf0, N ∈ N, enables the strong attenuation of these components
by means of filtering, which prevents potential harmonic synchronisations from
taking place through these ports.

Likewise, the fact that no harmonic component of the fundamental oscillation
frequency lies within the input RF band also prevents the potential synchronisa-
tion between the input signal and one of these harmonic components Nf0 = fins,
N ∈ N, which may result in dysfunctional behaviour.

Although rational synchronisations Nf0 = Mfins , N,M ∈ N, might still
occur, unless this feature is deliberately optimised [19], the associated synchro-
nisation ranges are generally extremely narrow and thus impossible to observe in
practice, especially for high rational indices N and M .

Hence, owing to the HSOM architecture, the possible mutual coupling be-
tween circuits is fundamentally restricted to the synchronisation network.

Consequently, this network must be designed to guarantee sufficiently high
isolation levels. However, this is not generally a particularly challenging task
since, even if a lossy topology needs to be adopted, the absolute power losses are
usually limited, due to the relatively low synchronisation power required by the
circuits.

2.7.5. Measurements

The characterisation of the system has been carried in the anechoic chamber,
using the measurement set-up that has been described. The receiving antenna
array is illuminated with a wave in the input frequency band (11.1–11.4 GHz),
with constant power, using a pyramidal horn.

In order to obtain the radiation patterns synthesised by the system, the mea-
surements must be carried out in the far field region of the antenna array which,
in this case, starts at a distance of about2 0.35 m. The distance between the
transmitting horn and the axis of the azimuthal rotary platform is about 5 m,
which exceedingly satisfies this condition.

When the circuits are at the selected operating regime and the antenna array
is illuminated with the input RF signal, the desired phase shift distribution can

2The Fraunhofer region is considered when the following conditions are fulfilled:
d >> λ = 27.03 mm
d ≥

2D2

λ
≈ 350 mm

D = 67.4 mm is the maximum dimension of the antenna array.
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be imposed by tuning the varactor bias voltages Vci , i ∈ [1, 4]. By selecting
the appropriate input of the sample switch, the output signal of each HSOM
circuit can be separately monitored. The phase shift distribution can thus be
determined by comparing the phase of the output signal of the different circuits,
when they receive the impinging signal in phase. Since this condition is only
satisfied3 when the incidence is perpendicular to the plane of the array (θ = 0◦),
the phase distribution must be established with the system in that azimuthal
position.

2.7.5.1. Radiation Patterns

The radiation patterns that have been measured at finc = 11.25 GHz,
for progressive phase shift distributions corresponding to steering angles
θm = 0,±5,±10, ±15,±20,±25◦, are presented in Figure 2.39.

The main lobe of the synthesised radiation pattern can be steered in the
desired range, which validates the system for the proposed application. As was
pointed out in the design process, for θm = 25◦ > 23.5◦, the side lobe level is
higher than −10 dB.

The asymmetry that can be observed in the radiation patterns may be jus-
tified by the fact that the HSOM circuits are facing one side of the prototype,
with the ground plane facing the opposite side. Therefore, when the incoming
signal impinges on the circuit side of the prototype, a fraction of the power can
be directly coupled onto the circuits, while this effect may be less apparent when
it impinges on the ground plane side.

2.7.5.2. Power at Intermediate Frequency

The measured radiation patterns have been presented normalised to simplify
the comparison. However, by representing the maximum level received for each
steering angle, valuable information about the overall response of the system can
also be obtained. The maximum power received at intermediate frequency as a
function of the steering angle imposed θm, is shown in Figure 2.40, normalised
by the maximum power received for θm = 0◦.

The maximum power measured corresponds to θm ≈ 10◦, and it decreases
monotonically when departing from that value, reaching a maximum variation
range smaller than 3.5 dB. This behaviour is caused by the radiation pattern of
the individual antenna element, together with the deviations in the conversion
gain of the circuits in the different operation points.

3Although, strictly speaking, the spherical wavefront would reach the different elements of the
array with certain phase deviations, these can generally be neglected under far field conditions.
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Figure 2.39: Radiation patterns measured at finc = 11.25 in the anechoic cham-
ber for the steering angles: θm(finc) = 0,±5,±10,±15,±20 ± 25◦.

2.7.5.3. Frequency Response

In order to experimentally validate the conclusions drawn in Section 2.6.3,
regarding the system frequency response, the radiation patterns corresponding
to a steering angle imposed at the centre frequency θm(finc) = 23◦, have been
measured at the ends of the input frequency band, 11.1 and 11.4 GHz, for two
values of the synchronisation power, –40 and –30 dBm. The measurements are
compared in Figure 2.41.

As was predicted by the simulations, the main lobe shifts towards greater
absolute angles for lower frequencies, and towards smaller angles for greater fre-
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Figure 2.40: Received power at intermediate frequency as a function of the steer-
ing angle θm, normalised by the power received for θm = 0◦.

quencies. Furthermore, the deviation observed is clearly smaller for Ps = −30
dBm.

Thus, it has been shown that the synchronisation power level has a direct
influence on the frequency scanning and how, by the appropriate selection of this
level, the intrinsic frequency scanning of the antenna array can be mitigated.

2.8. Conclusions

A receiving four element linear antenna array based on injection locked third
harmonic self oscillating mixers has been presented. It has been shown that the
multifunctional nature of the IL3HSOM circuits, whereby the downconversion
and continuous range phase shifting operations can be integrated with the lo-
cal oscillator generation, makes them an advantageous choice for the control of
receiving antenna array systems. Furthermore, as opposed to other oscillator
based topologies, the architecture of the IL3HSOM circuit enables the efficient
reduction of the coupling phenomena between adjacent circuits through filtering,
without affecting the IF output power of the antenna array.

The frequency response of the complete antenna array system has been evalu-
ated. Through the appropriate selection of the synchronisation power level of the
IL3HSOM circuits, the intrinsic frequency scanning effect of the antenna array
can be significantly mitigated throughout the input frequency band.
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Figure 2.41: Magnification of the main lobe at the ends of the input frequency
band, for a steering angle imposed at the centre frequency θm(finc) = 23◦.

The performance of the manufactured prototype of the receiving antenna
array topology has been experimentally assessed through measurements in the
anechoic chamber. A continuous beam scanning range between −23.5 and 23.5◦

has been attained at the central frequency finc = 11.25 GHz. The reduction of
the frequency scanning effect through the proper selection of the synchronisation
power level has also been verified.
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3.1. Introduction

Reconfigurable antennas have become widespread in recent years, owing to
their capability to dynamically adjust some of their properties to the requirements
of each particular scenario. In this context, polarisation agility is an interesting
feature for an antenna, since it simplifies the implementation of frequency reuse
techniques—which can nearly double the channel capacity—and allows the po-
larisation matching between transmitter and receiver, minimising the associated
link losses.

A wide variety of works on polarisation agile antennas have been presented in
the literature. Some passive topologies enable the selection of a discrete number
of polarisation states by altering the antenna layout through solid state [1; 2], or
piezoelectric [3] switches. Others implement a continuous range of polarisation
tuning by attaching varactor loads to the radiating patch [4].

Most of the active topologies available in the literature rely on feeding two or-
thogonal linearly polarised radiating modes of the antenna with the same original
signal, conveniently modified through phase shifting circuitry, in order to provide
the polarisation tuning capability. As has been commented, phase shifting solu-
tions based on a single oscillator circuits injection locked at the first harmonic
component of the oscillation, enable a theoretical phase shift range limited to
180◦. This phase shift range can be doubled by feeding each of the radiating
modes with an independent oscillator [5], although the appearance of coupling
effects between the circuit may lead to severe reductions of the practically us-
able phase shift ranges [6]. Mutually coupled topologies maintain the same 180◦

theoretical phase shift range, which can be doubled, as in [7], by extracting the
second harmonic component of the oscillation.

With regard to receiving topologies, as has been discussed in detail in Chapter
2, the phase shifting functionality can be attained through an Injection Locked
3rd Harmonic Self Oscillating Mixer (IL3HSOM), in which the output signal
is generated through mixing the input signal at frequency fin, with the third
harmonic component at frequency 3f0 of the HSOM self oscillation fundamental
frequency f0. As a result of this operation, a downconverted signal at fIF =
fin − 3f0 is obtained in a single stage, with the desired phase shift within a
practically usable range of at least 360◦.

In this chapter, a receiving polarisation agile microstrip antenna based on the
IL3HSOM circuit topology is presented, enabling the polarisation tuning within
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Figure 3.1: Schematic diagram of the two port aperture coupled antenna with
dual polarisation.

a continuous range, comprising two orthogonal linear polarisations and both left
hand and right hand circular polarisation (LHCP and RHCP). Additionally, an-
other two linear polarisations might be produced by alternatively activating one
circuit at a time. However, these are not considered in this work since the re-
ceived power would be halved, as it would be with any other of the available
polarisations.

3.1.1. Two Port Dual Polarisation Microstrip Antenna

The polarisation agile active antenna solution addressed in the present chap-
ter was developed in collaboration with Dr. Germán León [8], who performed
the design of the two port microstrip antenna with dual polarisation that will
be employed in the system. Therefore, this antenna topology—whose design has
not been part of this work—is only briefly described in this introductory section,
for completeness.

The antenna, as depicted schematically in Figure 3.1, consists of a square
patch designed in the bottom layer of a 0.762 mm thick ARLON 25N substrate,
and placed inverted on top of a 2.6 mm thick foam layer (ǫr = 1.07 and tan δ =
0.0041 at 10 GHz). The power received in each of the two orthogonal linearly
polarised fundamental modes of the patch is electromagnetically coupled through
two perpendicular slots etched on the ground plane of the distribution network,
onto the corresponding microstrip transmission line, connected to one of the out-
put ports. These transmission lines are designed to have the necessary length
difference, in order for the output signals to be in phase when the incident radi-
ation presents right hand circular polarisation.

A prototype of the antenna was manufactured and measured, showing an
impedance matched (|Sxx|, |Syy | < −10 dB) frequency band from 10.5 to 12
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GHz. High isolation levels between the ports (|Sxy| < −30 dB), are observed
throughout the same band.

3.2. System Overview

The topology of the receiving polarisation agile active antenna is presented
in Figure 3.2. A two port aperture coupled microstrip antenna, receives two
orthogonal linearly polarised fundamental modes of the incident electromagnetic
wave, in the band fin = 11.15 − 11.35 GHz. The mode with linear polarisation
along the x axis is coupled onto the output port labelled as port x, while its
counterpart with linear polarisation along the y axis, is delivered through port y.

These output ports are connected to the input RF ports of two third har-
monic self oscillating mixers, injection locked to an external signal of power Ps,
frequency fs = 3.25 GHz and phase φs, through a Wilkinson power divider,
providing equal power and phase in both branches.

As has been described in Chapter 2, the injection locked harmonic self oscillat-
ing mixer circuit performs the mixing operation fIF = fin−3f0, and delivers the
conveniently phase shifted and downconverted signal at intermediate frequency
fIF = 1.4 − 1.6 GHz, to its output port.

The phase shifts introduced by the IL3HSOM circuits at intermediate fre-
quency, with respect to the external phase reference (∆φi = φIFi

−φs, i ∈ {x, y}),
can be separately controlled through two DC signals, enabling the polarisation
tuning capability. Low power samples of the output signals of both circuits are
extracted through microstrip directional couplers for phase shift monitoring pur-
poses. The sampled signals are simultaneously measured with two Agilent 89600
Vector Signal Analysers (N8201A - N8221A). The output signal of the polarisa-
tion agile antenna is finally obtained through a Wilkinson combiner and measured
with the vector network analyser of the anechoic chamber measurement set-up.

In order to prevent detrimental reductions in the phase shift ranges of the
IL3HSOM circuits and to assure their independent performance, mutual coupling
between them at the harmonic components of the self oscillation frequency, (Nf0,
N ∈ N), must be avoided. The required isolation levels through the input and
output ports are achieved by filtering, taking advantage of the fact that none of
these harmonic components falls into either the input or output frequency bands.
Mutual coupling through the synchronisation port at the harmonic components
(Nf0, N = 2, . . . , 8) is avoided by the bandpass filter centred at fs = f0. How-
ever, the synchronisation power divider must be designed to feature high isolation
levels, so that the synchronisation signal for both circuits is nearly exclusively
determined by the external generator.

Except for the fact that two, instead of four, IL3HSOM circuits are employed
in the polarisation agile active antenna presented in Figure 3.2, this new system



3.2. System Overview 153

Figure 3.2: Topology of the polarisation agile active antenna based on injection
locked third harmonic self oscillating mixers.

is topologically analogous to the active phased antenna array design addressed
in Chapter 2. Moreover, the frequency bands involved are compatible, as are the
design requirements that have been imposed on the different composing parts.

Therefore, the auxiliary networks that were developed for the antenna array
prototype, described in detail in Section 2.5, can be reused here for the polari-
sation agile active antenna design. Since these networks were designed to drive
four IL3HSOM circuits, and only two are employed in this new topology, the
remaining ports are terminated with 50 Ω loads.

Consequently, the power losses, both in the synchronisation divider and out-
put combiner, will be about 3 dB higher than the values that could be achieved
with purpose-built networks. Nevertheless, inasmuch as this excess of power
loss does not affect the operation dynamics of the system, beyond a tantamount
reduction of the overall output power and an increment in the external synchro-
nisation power level required, the design and fabrication of new networks is not
justified for this first proof of concept prototype.

Similarly, the injection locked third harmonic self oscillating mixer design
used in Chapter 2 will also be employed here with certain minor modifications,
as will be discussed in a subsequent dedicated section.
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3.3. Polarisation Fundamentals

As has been justified, under far field conditions, the electromagnetic wave ra-
diated by an antenna can be locally approximated by a plane wave with the same
field amplitude, propagating in the radial direction from the antenna. For plane
waves, it can be shown [9] that the electric and magnetic fields are perpendicular
to the direction of propagation. Therefore, this type of waves can be described
by their electric field, as the magnetic field is perpendicular and proportional to
it.

Let Ē(z, t) be the electric field of a plane monochromatic wave propagat-
ing along the positive z direction, in an unbounded lossless medium, defined as
follows:

~E(z, t) = Ex cos(ωt− kz + αx)x̂+ Ey cos(ωt − kz + αy)ŷ, (3.1)

where x̂ and ŷ are the unit vectors in the directions x and y, k is the wave number
and ω, the angular frequency. The electric field can thus be expressed in terms
of two orthogonal components in the directions x and y, characterised by their
amplitudes, Ex and Ey, and phases, αx and αy, respectively.

The polarisation of the electromagnetic wave defined in (3.1) is determined
by the trajectory described by the electric field vector at a fixed point in space
in one period, and the sense in which it is traced, as observed along the direction
of propagation [10].

Particularising (3.1) for a fixed point z = z0, the electric field can be rewritten
as:

~E(z0, t) = Ex cos(ωt+ ϕx)x̂+ Ey cos(ωt+ ϕy)ŷ, (3.2)

where the constants ϕx = kz0 + αx and ϕy = kz0 + αy have been introduced.

Since (3.2) is the parametric equation of an ellipse, the polarisation of the
wave is defined in terms of the geometrical parameters of this figure, known as
polarisation ellipse.

The polarisation of the wave is usually characterised by the ellipticity ε, or
axial ratio AR, defined as the ratio between the major and the minor axes of the
ellipse, and by the angle ψ, between the major axis of the ellipse and the x axis,
as shown schematically in Figure 3.3.

Due to their practical relevance, two particular cases are usually considered.
When the phase difference between the two components of (3.2) is

∆ϕ = ϕy − ϕx = αy − αx = nπ, n ∈ Z, (3.3)

then corresponding ellipse becomes a straight line, and the polarisation is referred
to as linear.
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Figure 3.3: Polarisation ellipse and its fundamental parameters.

On the other hand, when both components have identical amplitude, Ey =
Ex, and the phase difference is an odd multiple of π/2:

∆ϕ = ϕy − ϕx = αy − αx = ±
(

1

2
+ 2n

)

π, n ∈ Z, (3.4)

the associated ellipse becomes a circumference, and the polarisation is known
as circular. Depending on the sense of rotation as the wave travels away from
the observer, circular polarisation is classified as Left Hand Circular Polarisation
(LHCP) for ∆ϕ > 0, and as Right Hand Circular Polarisation (RHCP) for ∆ϕ <
0.

If the polarisation is neither linear nor circular, then it is called elliptical.
Although, in practice, the polarisation is generally elliptical, by convention, it is
considered linear when the axial ratio is very high (AR > 30 dB), and circular
when it is close to unity (AR < 3 dB). This is the criterion that has been adopted
for the present work.

The polarisation of a transmitting antenna in a specified direction is defined
as the polarisation of the plane wave by which the radiated wave can be locally
approximated at a point in that direction within the far field region of the antenna
[10].

Analogously, the polarisation of a receiving antenna in a given direction is
defined as the polarisation of a plane wave, with fixed power flux density, incident
from that direction, which results in maximum available power at the antenna
output [10].

3.3.1. Polarisation Tuning

As has been commented, the antenna separates two independent perpendic-
ular linearly polarised components of the incident electromagnetic wave. The
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polarisation state of the complete active antenna will be determined by the rela-
tive gain and phase shift applied to these components, prior to combining them
to obtain the overall antenna output.

Taking advantage of the phase shifting capabilities of the IL3HSOM circuits,
the relative phase between the components can be arbitrarily modified, thus
controlling the polarisation state.

According to the system topology presented in Figure 3.2, the output signal
of the active antenna is given by the combination of the output signals of the
IL3HSOM circuits, as follows:

Vout = gxVx + gyVye
j(∆φ−90), (3.5)

where Vy and Vx are voltage phasors that represent the two perpendicular linearly
polarised modes received, as they are excited on the antenna patch. The voltage
gain terms gy and gx are associated with the conversion gain of the circuits, Gcy
and Gcx , which are assumed to be equal Gcy = Gcx . The phase term ∆φ = ∆φy−
∆φx, represents the relative phase shift between both components, introduced by
the IL3HSOM circuits. Note that the antenna introduces an additional 90◦ phase
shift in the Vy component, in order to produce right hand circular polarisation
when its output signals are combined in phase.

In fact, the model described by (3.5) is incomplete. On the one hand, the
response of the antenna may not be identical for both modes, affecting the po-
larisation state. Moreover, the responses of both the antenna and the IL3HSOM
circuits are frequency dependent, as will be studied in later sections. Never-
theless, this preliminary simplified analysis can still be used to illustrate the
approximate polarisation tuning capabilities of the system.

The variation of the polarisation state and the changes in the corresponding
polarisation ellipse, versus the relative phase shift ∆φ, are shown schematically
in Figure 3.4, assuming the incident wave propagates in the +z direction. The
tuning of the relative phase shift in a 360◦ range enables the obtention of two
orthogonal linear polarisations, together with right hand and left hand circular
polarisation.

The polarisation state of the antenna can also be described in terms of the
axial ratio, as represented in Figure 3.5, versus the relative phase shift ∆φ. When
both components are combined in phase (∆φ = 0◦), the axial ratio drops to zero,
corresponding to right hand circular polarisation (RHCP). The axial ratio is
likewise zero for ∆φ = ±180◦, obtaining left hand circular polarisation (LHCP).
For ∆φ = 90◦ and ∆φ = −90◦, two linear polarisations (AR > 30 dB) are
achieved in the ψ = +45◦ and ψ = −45◦ orientations respectively (henceforth
referred to as LP+ and LP−).
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Figure 3.4: Polarisation states associated with different relative phase shifts ∆φ.

3.3.2. Frequency Response

As has been discussed in Section 2.3.2, even ideal antenna arrays exhibit
an intrinsic frequency response, associated with the spatial distribution of the
composing individual elements, whereby the steering angle of the main beam
varies with frequency.

Nonetheless, in the case of the polarisation agile topology addressed here,
since the same microstrip patch is used to receive the two perpendicular linearly
polarised components of the incident wave, no frequency dependent phase shift
is observed between both components due to propagation effects.

Therefore, as opposed to the antenna array case, if the polarisation agile an-
tenna topology were implemented using a phase shifter with a completely flat
frequency response, the polarisation state would in principle be frequency inde-
pendent.

However, as can be seen in Figure 3.1, the coupling slot and microstrip line
associated with either linearly polarised component of the incident wave are not
placed symmetrically and therefore, the modifications—in terms of both ampli-
tude and phase—undergone by these components as they are coupled onto their
corresponding output ports, may not necessarily be identical, giving rise to dif-
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Figure 3.5: Axial ratio as a function of the relative phase shift ∆φ.

ferent frequency responses. Furthermore, the lengths of the transmission lines
corresponding to either component were subsequently adjusted to produce right
hand circular polarisation when the output signals are combined in phase, which
further affects the frequency response of the antenna.

The polarisation of the antenna is determined by the relative phase shift in-
troduced between the signals associated with the two perpendicular components
of the incident wave, prior to combining them. Thus, if the antenna exhibits
a different frequency response for either component, these frequency responses
must be taken into account, as they will affect the overall polarisation behaviour
of the active antenna system.

The two port antenna with dual polarisation has been modelled through
electromagnetic MoM simulations. When the antenna is illuminated with an
electromagnetic field linearly polarised along the x axis, ~E = Exx̂, the voltage
waves delivered to the output ports Vx and Vy, have been obtained, enabling the
calculation of the following complex transfer functions:

Txx =
Vx
Ex

,

Tyx =
Vy
Ex

.

(3.6)

When the antenna is illuminated with an electromagnetic field linearly polarised
along the y axis, the transfer functions Txy and Tyy, can be analogously calcu-
lated.

To illustrate the behaviour of the antenna, the transfer functions associated
with the coupling of either linearly polarised mode onto its corresponding port,
Txx and Tyy, are compared in Figure 3.6(a), in terms of amplitude and in Figure
3.6(b), in terms of phase.
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(a) (b)

Figure 3.6: Coupling between either linearly polarised mode of the incident wave
onto its corresponding port. (a) Relative amplitude. (b) Relative phase.

The amplitude traces have been normalised by the value of the transfer func-
tion Tyy, evaluated at the centre of the input frequency band finc. The maximum
relative variation is about 0.75 dB. The phase traces, shown in Figure 3.6(b), are
also referred to the value of the transfer function Tyy at the centre of the input
frequency band finc . Additionally, for ease of comparison, 90◦ have been sub-
tracted from the trace corresponding to the transfer function Txx, to compensate
for the phase shift introduced to obtained right hand circular polarisation.

The remaining transfer functions, Txy and Tyx, correspond to the cross-polar
components of the antenna. Although these contributions will also be taken into
account in the calculations performed in later sections, their influence on the
overall polarisation is far less significant, due to their low amplitude.

3.4. Enhancement of the IL3HSOM Circuit Fre-

quency Performance

The topology of the injection locked third harmonic self oscillating mixer has
been shown and described in Chapter 2. The circuit integrates the continuous
range phase shifting and downconversion operations, together with the local os-
cillator generation, providing a positive global conversion gain. Furthermore,
the possibility to effectively adjust its frequency response to compensate for the
frequency scanning effect in antenna arrays, has also been demonstrated.

In the case of the polarisation agile antenna topology addressed in this chap-
ter, the differences in the coupling performance of the two antenna ports that
have been evaluated, show a very mild relative frequency variation. Therefore,
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as opposed to the antenna array case, when using ideal phase shifters with a flat
frequency response, the polarisation state of the active antenna would naturally
exhibit a limited frequency dependence.

On the other hand, the frequency response of the IL3HSOM circuit varies
with the phase shift selected at the centre of the band. When the phase shift
selected for both ports is not the same, this variation results in the frequency
response of the circuits being different, which ultimately brings about a mismatch
in the conversion gain and phase shift applied to either port. Since this mismatch
is frequency dependent, it cannot be compensated for through calibration.

Hence, in order to reduce the variation of the frequency response of the
IL3HSOM circuit with the selected phase shift, which would otherwise result
in a frequency dependence of the polarisation state of the active antenna, an re-
optimisation of the IL3HSOM circuit design to improve its frequency behaviour
has been addressed.

Since the purpose of this process is not to undertake a full redesign of the
circuit, but to reduce the fluctuation of the frequency response with the control
voltage, stringent constraints must be imposed on the optimisation.

Firstly, only a limited set of parameters is defined as optimisation variables,
such as the parameters of the multiharmonic load, the amplitude of the auxiliary
generator VAG and the varactor capacity Cvar. The DC bias point of the tran-
sistor and the vast majority of the geometrical design parameters of the circuit
are kept constant.

Although the circuit employed for the antenna array topology presented in
Chapter 2 was already optimised, using the techniques described in [11], to max-
imise the conversion gain Gc, the reduction of the input frequency band in this
case to fin = (11.15−11.35) GHz, leaves room for further optimisation. Moreover,
the requirements in terms of conversion gain are slightly relaxed here, enabling
the flattening of the frequency response, at the expense of a limited reduction of
the absolute conversion gain.

The circuit is analysed using harmonic balance simulations, duly initialised
with a complementary voltage auxiliary generator. In each iteration of the opti-
misation process, the circuit is simulated for three values of the input frequency
fin: the two ends and the centre of the band. The set of goals for the optimi-
sation are composed by the non-perturbation conditions, the phase shift value
to establish at the centre of the band ∆φ(finc), and maximum fluctuation limits
for both the phase shift and the conversion gain at the three frequency points
considered.

Since the fluctuation of the frequency response increases as the established
phase shift at the centre of the band approaches the limits of the synchronisation
range, the optimisations are initially performed for those values. As the successive
optimisation converge, the maximum fluctuation limits imposed are progressively
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(a) (b)

Figure 3.7: Injection locked solutions of the isolated IL3HSOM circuit for three
different synchronisation power levels Ps, as a function of the control voltage Vc,
for (a) the conversion gain Gc, and (b) the phase shift at intermediate frequency
∆φ. The stable and unstable regions have been determined through envelope
transient simulations.

tightened. The complete frequency response must be periodically simulated, in
order to prevent undesirable abrupt changes in the behaviour of the circuit.

After a few iterations, the frequency response has been effectively flattened,
thus reducing its dependence on the phase shift established at the centre of the
band. The behaviour of the optimised design that has been obtained is shown
and commented next.

3.4.1. Injection Locked Solutions

The injection locked solutions of the IL3HSOM circuit, have been evaluated
using harmonic balance simulations, initialised through a non-perturbing voltage
auxiliary generator.

The solutions of the circuit have been calculated with an input RF signal
at the centre of the band finc, and for three different power values of the syn-
chronisation signal Ps. The stable ranges of the synchronisation loci have been
determined using envelope transient simulations.

The conversion gain Gc, as a function of the varactor control voltage Vc, is
represented in Figure 3.7(a). The conversion gain is slightly dependent on the
control voltage and, although this dependence increases with the synchronisation
power level Ps, it is not significant for this application since, in the worst case
(Ps = −30 dBm), its variation range remains under 0.3 dB.

The phase shift ∆φ introduced in the downconverted signal has been repre-
sented in Figure 3.7(b). By tuning the varactor control voltage Vc, the phase shift
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(a) (b)

Figure 3.8: Frequency response of the IL3HSOM circuit for three different syn-
chronisation power levels and for seven working points, uniformly distributed
throughout the stable ranges (a) Conversion gain. (b) Phase deviation Dφ, as
defined in (3.7).

∆φ can be controlled within a stable range of about 450 degrees. Even though
the sensitivity to the control signal is higher for lower synchronisation power lev-
els, the stable range of variation is approximately the same for the three cases
studied.

3.4.2. Frequency Response

The phase shift introduced at a particular frequency, such as the centre of
the band, ∆φ(finc), can be arbitrarily selected within the synchronisation ranges
through the varactor bias voltage Vc. However, once the phase shift is fixed at a
specific frequency point ∆φ(finc), the phase shifts introduced at other frequencies
cannot be controlled, as they are determined by the frequency response of the
circuit.

For three synchronisation power levels, this frequency response has been cal-
culated through harmonic balance and envelope transient simulations, consider-
ing seven different phase shift values set at the centre frequency ∆φ(finc), uni-
formly distributed throughout the corresponding stable ranges (Figure 3.7(b)).

The frequency response of the conversion gain Gc, is represented in Figure
3.8(a). For higher synchronisation power levels, a stronger variation is observed,
both with frequency and with the operation point selected (∆φ(finc)), especially
when approaching the limits of the input frequency band.

With regard to the phase shift, in order to simplify the comparison between
the multiple traces represented, the phase deviation Dφ can be defined as:
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Dφ(f, Vc, Ps) =∆φ(f, Vc, Ps) − ∆φ(finc , Vc, Ps) (3.7)

− L(f, Ps) + L(finc, Ps),

wherein the first term is the actual frequency response of the circuit, for the
different control voltages Vc considered. By subtracting the second term (the
phase shift value established at the centre frequency ∆φ(finc , Vc, Ps), for each
different trace), the offset between traces is eliminated, bringing them together
at the centre frequency.

Due to the propagation throughout the circuit, the phase response presents
the characteristic strong slope as a function of frequency which, in this case, con-
ceals the small differences between the traces. Thus, for each of the considered
synchronisation power levels, the linear least squares fitting of the trace corre-
sponding to the centre of the stable phase shift range (Figure 3.7(b)), L(f, Ps),
is calculated to cancel out this slope. The last term of (3.7) sets the deviation
to zero at the centre frequency (Dφ(finc , Ps) = 0).

As shown in Figure 3.8(b), the phase deviation Dφ also increases its variation,
both with frequency and with the operation point selected (∆φ(finc)), for higher
synchronisation power levels. The impact of the frequency performance of the
circuit on the present application is studied in the next section.

3.5. Polarisation Tuning of the Complete Active An-

tenna System

The polarisation tuning capability of the active antenna is attained by in-
troducing a relative phase shift between the signals corresponding to the two
orthogonal linearly polarised modes received, by means of the IL3HSOM circuits.

Apart from the relative phase shift introduced by the circuits, which can
be arbitrarily controlled at the centre frequency finc , the polarisation state is
also influenced by other factors. The conversion gain Gcx and Gcy , as well as
the frequency response of the antenna, modelled through the complex transfer
functions Txx and Tyy—which have been shown to be slightly different for either
port—must be jointly considered to determine the overall polarisation state of
the system.

Furthermore, the coupling of undesired cross-polar components onto the out-
put ports, quantified through the transfer functions Tyx and Txy, must also be
taken into account, as it also affects the polarisation state of the antenna.
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Therefore, taking into consideration all the effects involved, the overall output
signal of the active antenna can be expressed as:

Vout =gx(fin)Txx(fin)Ex + gy(fin)Tyy(fin)Eye
j∆φ(fin)

+gx(fin)Txy(fin)Ey + gy(fin)Tyx(fin)Exe
j∆φ(fin),

(3.8)

where gx, gy ∈ R are the voltage gain factors associated with the conversion gain
terms Gcx and Gcy of the IL3HSOM circuits, and ∆φ ∈ R, is the relative phase
shift introduced ∆φ = ∆φy − ∆φx. Note that the transfer functions Txx, Tyy,
Tyx and Txy are complex quantities.

By regrouping the terms of (3.8), separating those multiplying either mode,
the expression can be rewritten as:

Vout =
(

gx(fin)Txx(fin) + gy(fin)Tyx(fin)e
j∆φ(fin)

)

Ex

+
(

gy(fin)Tyy(fin)e
j∆φ(fin) + gx(fin)Txy(fin)

)

Ey.
(3.9)

For convenience, the parameters px, py, αx, αy ∈ R, can be introduced and
substituted for the factors in brackets in (3.9), as follows:

Vout = pxe
jαxEx + pye

jαyEy. (3.10)

Note that those parameters are dependent on both the input frequency fin, and
the relative phase shift ∆φ, imposed.

Through the geometrical analysis of the polarisation ellipse associated with
(3.10), the axial ratio of the active antenna can be calculated as [12]:

AR = cot

∣

∣

∣

∣

1

2
arcsin

(

2pxpy
p2
x + p2

y

sin(α− 90)

)∣

∣

∣

∣

, (3.11)

where α = αy − αx, has been introduced.
As far as the polarisation is concerned, in the following, the incident wave

will be assumed to propagate in the +z direction.

3.5.1. Simulated Behaviour

The behaviour of the complete active antenna topology, as shown in Figure
3.2, has been simulated for three different values of the synchronisation power
Ps.

According to the analysis shown in Figure 3.5, a 360◦ relative phase shift
range is enough to cover all the polarisation states that can be achieved with the
proposed system configuration; left hand circular polarisation is obtained both
with ∆φ = −180◦, and with ∆φ = 180◦, and the polarisation states are repeated
outside this range.
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Strictly speaking, since the elliptical polarisations present little practical in-
terest, the two orthogonal linear polarisations, along with left hand and right
hand circular polarisation can be achieved with a 270◦ phase shift range (from
−180◦ to 90◦ or from 90◦ to 180◦, as shown in Figure 3.5).

Hence, the required phase shift range can be exceedingly covered by tuning
the control voltage of only one of the IL3HSOM circuits. However, as discussed
in Section 3.4.2, the frequency response of the circuits exhibits wider fluctuations
as the phase shift imposed at the centre frequency approaches the limits of the
synchronisation range. Consequently, with regard to the overall frequency re-
sponse of the system, it would be advantageous to simultaneously tune the phase
shift imposed by both circuits, in such a way that they are set symmetrically
around the centre of the synchronisation range (∆φ = 0◦ in Figure 3.7(b)).

Nonetheless, in order to evaluate the impact of the circuit frequency response
on the overall antenna polarisation, as well as to illustrate the behaviour in a
worst case scenario, in this analysis the whole range of polarisation states will be
covered by tuning the control voltage of one single IL3HSOM circuit.

The control voltage of HSOMy, Vcy , has been swept throughout its stable
range (Figure 3.7(a)), while keeping HSOMx working at the centre point. In
Figure 3.9, the evolution of the axial ratio as a function of the control voltage
Vcy , has been represented. As the phase shift ∆φ produced by the IL3HSOM
circuits is a monotonically increasing function of the control voltage, as shown in
Figure 3.7(b), the peaks and minima in this case represent the same polarisation
states indicated in theoretical analysis presented in Figure 3.5. For each of the
synchronisation power levels considered, the performance at six frequency points,
uniformly distributed throughout the input band (fink

= 11.11 + 0.04k GHz,
k = 1, . . . , 6), have been displayed.

Both circular polarisations are successfully obtained (AR < 3 dB), for all the
synchronisation power levels and at all the frequency points considered. With
the linear polarisations, on the other hand, due to their higher sensitivity to
the phase shift (Figure 3.5), a somewhat more frequency selective response is
observed. This is especially apparent for Ps = −30 dBm, where both linear
polarisations (AR > 30 dB) are only achieved at some frequencies. For the two
lower synchronisation power levels (Ps = −35 and Ps = −40 dBm), LP− is
stable for all the considered frequency values, whereas for LP+, the axial ratio
drops below the 30 dB threshold at some point. The behaviour for Ps = −40
dBm has been magnified in the first inset of Figure 3.9, showing peaks at two
successive Vcy values, which take place at different frequency points (Figure 3.10).
This suggests the existence of an intermediate working point between those two,
providing higher axial ratio levels, together with a better frequency performance.

The variation of the axial ratio over frequency is shown in Figure 3.10. Since
the circular polarisations have been found to be stable in the input band (Figure
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Figure 3.9: Variation of the axial ratio at the centre of the input frequency band
(finc = 11.25 GHz), as the control voltage Vc1 is swept, while keeping HSOM2

working at the centre of its synchronisation range. For each synchronisation
power level, the behaviour at six points of the input frequency band is displayed.

3.9), only the linear ones, corresponding to the working points specified in the
legend, have been represented. For Ps = −40 dBm, the behaviour at the two
successive Vcy values corresponding to LP+ have been included, showing linear
polarisation in two different frequency ranges. The most limited frequency per-
formance is observed for Ps = −30 dBm. The polarisation LP− is maintained
along the input band for the two lower synchronisation power levels, whereas for
LP+, the axial ratio drops below 30 dB at some point within this band.

In conclusion, the performance of the IL3HSOM based phase shifter circuit
is more stable over frequency for lower values of the synchronisation power, as
discussed in Section 3.4.2, leading to potentially wider polarisation bandwidths.
Nevertheless, since the phase shift can be varied within a continuous range, the
working point selected also has an important impact on the frequency perfor-
mance, especially for linear polarisations.

3.6. Experimental Results

For the experimental characterisation of the polarisation agile active antenna
system that has been proposed, a prototype of the complete topology outlined
in Figure 3.2 has been manufactured. As has been justified, due to the compati-
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Figure 3.10: Variation of the axial ratio over frequency for the working points
specified in the legend.

bility between both topologies, the auxiliary networks designed for the antenna
array system addressed in Chapter 2, have been reused here. The prototype has
been likewise mounted on the same wooden support structure, which enables its
appropriate mechanical suspension on the anechoic chamber.

3.6.1. Measurement Set-up

In order to experimentally evaluate the polarisation behaviour of the active
antenna, the prototype has been measured in an anechoic environment, using the
set-up outlined schematically in Figure 3.11.

Once again, taking advantage of the similarities between this system and
the active antenna array, the required equipment is analogous. The same power
supplies and associated DC wiring is used, although fewer channels are needed
in this case, due to the fact that only two instead of four IL3HSOM circuits
are employed. Similarly, the same microwave signal generators, vector network
analyser and RF cabling are used, as well as the pyramidal horn antenna, which
has a highly pure linear polarisation.

The main difference in the set-up is that, since only two IL3HSOM circuits
are employed in this prototype, instead of using a microwave switch, the sample
signals of both outputs are simultaneously monitored using two Agilent 89600
vector network analysers (N8201A - N8221A).
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Figure 3.11: Schematic diagram of the measurement set-up in the anechoic cham-
ber.

3.6.2. Polarisation Pattern

The polarisation of an antenna is completely characterised by the parameters
of its polarisation ellipse (axial ratio and tilt angle) along with the sense of
rotation.

Among the various techniques that have been proposed in the literature for
the measurement of antenna polarisation, one of the simplest procedures to de-
termine the paremeters of the polarisation ellipse is known as the polarisation
pattern method [13]. This method entails the measurement of the power received
at the output of the antenna under test, as the transmitting antenna—with linear
polarisation—is rotated about the axis intersecting both antennas.

Thus, the unit polarisation vector of the transmitting antenna, as function of
the rotation angle α is given by:

ût = cosαx̂+ sinαŷ, (3.12)

assuming that, for α = 0◦, ût is parallel to the x axis. Similarly, for a generic
polarisation vector ~ug = x̂+ ρejφŷ, the corresponding unit vector can be written
as:

ûg =
x̂+ ρejφŷ
√

1 + ρ2
, (3.13)

where ρ and φ are the parameters that define the generic polarisation.
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The polarisation loss factor, which represents the link power loss produced by
the polarisation mismatch, can be defined as the dot product between the unit
vectors, as follows:

PLF = |ûg · ût|2 . (3.14)

As per its definition, the polarisation loss factor is a real number that varies
between 0, corresponding to orthogonal polarisations in transmitter and receiver,
and 1, corresponding to perfectly matching polarisations.

Introducing (3.12) and (3.13) into (3.14) and simplifying, the polarisation loss
factor can be particularised to the polarisation pattern measurement as:

PLF(α) =
1

√

1 + ρ2

(

cos2 α+ ρ2 sin2 α+ 2ρ cosα sinα cosφ
)

. (3.15)

As the transmitting antenna is rotated the angle α, the received power varies
in accordance with (3.15). The received power will be maximum when the angle
α is such that the transmitted linear polarisation is aligned with the major axis
of the ellipse, and minimum when it is parallel to the minor axis. Thus, by
calculating the relationship between the maximum and the minimum of (3.15),
the axial ratio squared is obtained:

AR2 =
max {PLF(α)}
min {PLF(α)} . (3.16)

Similarly, the rotation angle of the transmitting antenna for which the max-
imum received power takes place αmax, corresponds to the tilt angle of the po-
larisation ellipse ψ.

The unit polarisation ellipse associated with ρ = 1 and φ = π/4 has been
represented in Figure 3.12, together with the corresponding polarisation pattern
(square root of (3.15)). The polarisation pattern intersects the polarisation ellipse
at the ends of the major and minor axes.

Although this approach enables the identification of the geometrical param-
eters of the polarisation ellipse—axial ratio and tilt angle—no information is
obtained as to the sense of rotation.

Nevertheless, since output signal is measured in both magnitude and phase, if
the signal received for two perpendicular orientations of the probe are compared,
the sense of rotation is determined by rotating the phase leading component
towards the phase lagging component [10].

In fact, the polarisation state could be completely determined through the
amplitude and phase measurement of those two components, as they define the
parameters of the polarisation unit vector (3.13). On the other hand, the calcu-
lation of the polarisation state exclusively based on two individual measurements
is more vulnerable to practical errors, whereas the continuous variation shown
in the polarisation pattern, exposes the potential artefacts that might appear in
the measurement process.
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Figure 3.12: Unit polarisation ellipse for ρ = 1 and φ = π/4, with the associated
polarisation pattern

3.6.3. Measurements

The performance of the system prototype is evaluated using the anechoic
chamber set-up that has been described, in which the receiving antenna is illu-
minated with the far fields of the pyramidal horn, in the input frequency band
fin = 11.15 − 11.35 GHz.

In accordance with the simulations that have been performed, the polarisation
tuning capabilities of the system will be experimentally assessed by tuning the
control voltage of one of the IL3HSOM circuits Vc1, while keeping the other at
the centre of the synchronisation range.

3.6.3.1. Polarisation Tuning

In order to measure the polarisation pattern of the receiving active antenna
system, the output power at intermediate frequency is registered while the trans-
mitting horn is rotated about the axis that intersects both antennas.

Since all the parameters that influence the link budget, modelled through the
Friis transmission equation [10] are kept constant—except for the polarisation
loss factor—the fluctuation of the received power must be due to this parameter,
whose variation can thus be determined.

The polarisation tuning capabilities of the system have been evaluated while
sweeping the control voltage Vc1 throughout the synchronisation range. Since,
the simulations showed better performance for lower values of the synchronisation
power, the measurements have been carried out for Ps = −35 and Ps = −40 dBm.
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At the centre of the input frequency band (finc = 11.25 GHz), the normalised
output power received at intermediate frequency, for a synchronisation power
level Ps = −35 dBm, has been represented in Figure 3.13, as a function of the
control voltage Vc1 and the rotation angle α, of the transmitting antenna. An
analogous representation for Ps = −40 dBm is shown in Figure 3.14. For the
sake of clarity, only a representative set of the measurements carried out has been
included in these figures.

Figure 3.13: Relative IF power measured at the output of the active antenna
at the centre frequency of the input band (finc = 11.25 GHz), as a function of
the control voltage and the rotation angle α of the transmitting antenna, for
Ps = −35 dBm.

The axial ratio measured at the centre frequency of the input band has been
displayed versus the control voltage Vc1 in Figure 3.15, for Ps = −35 and Ps =
−40 dBm.

A small deviation on the performance of the manufactured IL3HSOM cir-
cuits has been found, producing stronger variations of the conversion gain with
the control voltage, especially at the upper end of the synchronisation range.
Although, as a consequence of this deviation, the second left hand circular polar-
isation observed in simulation (corresponding to the higher value of the control
signal), is not reached in measurement, all the desired polarisations have been
successfully attained. Furthermore, note that, for this experimental set-up the
second HSOM circuit has been kept at a fixed working point and therefore, a
double phase shift tuning range is available.

The variation of the axial ratio over frequency is represented in Figure 3.16,
for the two orthogonal linear polarisations (LP+ and LP−), and for RHCP and
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Figure 3.14: Relative IF power measured at the output of the active antenna
at the centre frequency of the input band (finc = 11.25 GHz), as a function of
the control voltage and the rotation angle α of the transmitting antenna, for
Ps = −40 dBm.

LHCP. Unlike in the simulation, the values of the control signal Vc1 have been
carefully selected to produce the best possible frequency performance. Both
linear polarisations are maintained over almost the whole input frequency band
for both synchronisation values, although a slightly wider bandwidth is observed
for Ps = −40 dBm.

The stronger variation in the conversion gain of the practical circuits men-
tioned earlier, has a greater impact on the circular polarisations, which conse-
quently present a poorer frequency performance. The polarisation bandwidth is
reduced with respect to the simulated results, although for Ps = −40 dBm, the
axial ratio remains below the 3 dB threshold throughout a substantial part of
the band.

3.6.4. Radiation Pattern

The radiation pattern of the active antenna at the centre frequency finc =
11.25 GHz, has been measured by rotating the complete prototype about the
azimuth axis of the anechoic chamber, while the polarisation of the transmitting
horn is oriented in the ϕ = 45◦ direction. The results are displayed in Figure
3.17 for two different synchronisation power levels and for the linear polarisation
LP+, as well as for right hand circular polarisation.
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Figure 3.15: Measured axial ratio for Ps = −35 and Ps = −40 dBm as a function
of the control voltage Vc1 at the centre of the input frequency band (finc = 11.25
GHz).

3.7. Conclusions

A receiving polarisation agile antenna topology based on injection locked
third harmonic self oscillating mixers has been presented in this chapter. Taking
advantage of the multifunctional nature of the IL3HSOM circuit, the continuous
range phase shifting—required to control the antenna polarisation—has been
integrated with the frequency downconversion operation and the local oscillator
signal generation, obtaining an overall positive coversion gain.

The proposed topology enables the control of the antenna polarisation state
in a continuous range that comprises two orthogonal linear polarisations, along
with left hand and right hand circular polarisation.

Through the constrained reoptimisation of the circuit, its frequency response
has been enhanced, in order to reduce the polarisation state fluctuation through-
out the input frequency band. The global frequency response of the system has
been further studied, observing a more stable behaviour for lower values of the
synchronisation power level.

A prototype of the complete system has been manufactured and measured in
the anechoic chamber, for the experimental validation of the design process. The
results that have been obtained are in good agreement with the simulations.
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Figure 3.16: Measured axial ratio for Ps = −35 and Ps = −40 dBm as a function
of frequency for LP− and LP+ (upper subfigure), and for RHCP and LHCP
(lower subfigure), at the centre of the input frequency band (finc = 11.25 GHz).

Figure 3.17: Radiation pattern of the active antenna at finc = 11.25 GHz, for
LP+ and RHCP and for two synchronisation power levels, measured with the
polarisation of the transmitting oriented in the α = 45◦ direction.
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4.1. Introduction

A wide variety of high efficiency oscillator designs have been presented in
the literature [1; 2]. Those circuits are typically optimised to generate a carrier
with a high power level (of the order of 1 W), as well as to minimise the power
consumption, leading to power efficiencies that may exceed 80% [2].

For low range point-to-point reconfigurable communications between mobile
or portable devices, in which the required power levels are relatively low, the
implementations presented in the previously referenced works are not appropriate
since, in spite of the high efficiencies attained, the excessive output power levels
delivered by those topologies give rise to a relatively high power consumption
that is generally difficult to sustain in battery powered devices.

On the other hand, ultra low power consuming oscillator topologies for appli-
cations such as passive RFID (Radio Frequency Identification) tags or biomed-
ical telemetry, have also been presented [3; 4], with power consumption levels
even lower than 1 mW. However, since the RF output power level is not a con-
cern in those applications, it can be as low as −32 dBm [4], which is generally
insufficient—even for low range—wireless communications.

The purpose of the present chapter is to develop an oscillator circuit with
an output power level of about −5 dBm at a frequency fo = 10 GHz, while
keeping a contained power consumption which makes it suitable for low range
reconfigurable point-to-point portable or mobile communication schemes, as well
as for battery powered applications in general.

A solution implemented in monolithic technology that fulfils the specified
design requirements was presented in [5]. An LC tank oscillator at 2.4 GHz with
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an output power level about −6 dBm was obtained, with a power consumption
of 3 mW.

However, in order to enable the use the designed circuit topology to control a
reconfigurable antenna array implementation, its capability to operate as a phase
shifter will be of paramount importance. Therefore, in the design that will be
addressed in the following, the fourth harmonic component of the oscillation will
be optimised as the output signal, leading to a 720◦ theoretical phase shift range,
which guarantees practically usable range exceeding 360◦.

For the thorough experimental validation of the design, a prototype will be
manufactured and measured under various operating conditions. The phase noise
performance of the fourth harmonic oscillator will be evaluated, both free running
and injection locked. The capability of the circuit to transmit modulated signals
while preserving the phase shifting functionality will also be investigated.

4.2. Circuit Topology

The electrical diagram of the fourth harmonic oscillator design that will be
developed in the present chapter is shown schematically in Figure 4.1. The
external generator connected to the input port of the circuit is required for its
injection locked operation, which will be considered in subsequent sections. The
topology is constituted by the following fundamental parts:

Transistor: A Hewlett-Packard ATF-36077 Pseudomorphic High Electron
Mobility Transistor (pHEMT) has been chosen for this design, owing to its
ultra low noise performance capabilities in its operating band, from 2 to 18
GHz.

Series Feedback: A resonant network is connected to the source terminal
of the transistor in order to synthesise the required oscillation start-up
conditions at the operating frequency f0 = 2.5 GHz. A varactor diode is
integrated in this series feedback network, enabling the fine tuning of the
oscillation frequency f0.

Varactor: The chosen device is a Microsemi-GC15007, which provides a
capacitance range between 0.2 and 2.8 pF, for control voltages from 20
to 0 V.

Multiharmonic Loads: In order for the accurate control and optimisa-
tion of the harmonic content present in the circuit, transmission line newt-
works whose frequency response can be precisely tailored, are required. In
this particular design, two such networks have been used, connected to the
drain and gate terminals of the transistor. These components are imple-
mented through arbitrarily width modulated transmission line segments,
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Figure 4.1: Schematic topology of the proposed fourth harmonic oscillator.

which provide high design flexibility and low complexity, as will be shown
later in this section.

The complete low power fourth harmonic oscillator design is implemented in
a Rogers 3003 substrate laminate, whose properties are summarised in Table 4.1.

Symbol Parameter Value Unit

εr Relative Permittivity 3

tan(δ) Loss Tangent 0.0013

h Thickness 0.75 mm

hc Cladding Thickness 17 µ m

Table 4.1: Datasheet specification of the Rogers 3003 substrate. Electrical prop-
erties measured at 10GHz.

The circuit topology that has been presented includes additional components
with specific functionalities (filters, DC bias networks, etc.), which were designed
separately prior to addressing the complete oscillator topology. These compo-
nents are described in detail in the following dedicated subsections.

4.2.1. Multiharmonic DC Bias Network Based on Arbitrarily

Width Modulated Microstrip Line

Active RF circuits generally receive their power supply though the direct
connection to a DC source. However, the connection of this power source must be
performed in such a way that its presence does not affect the normal RF behaviour
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of the circuit. This is achieved through the design of a DC bias network, or
bias tee, which presents a high input impedance at the RF connection point for
the frequencies of operation of the circuit, preventing the RF power from being
delivered to the DC power source.

Because basic RF active components generally operate over limited frequency
ranges, it usually suffices to obtain this RF rejection behaviour in this restricted
operation bandwidth. A simple and widely used bias tee topology for high fre-
quency circuits consists of a quarter wavelength open circuited stub, plus a quar-
ter wavelength connecting transmission line. The quarter wavelength stub shows
a short circuit at its input, which is subsequently transformed into an open cir-
cuit at the input of the connecting line. Radial stubs are usually employed,
since they provide a low impedance level at a well specified insertion point in a
wide frequency band [6]. The rejection bandwidth can be further increased by
introducing several cascaded sections.

Nonetheless, circuits with an optimised harmonic content require feeding net-
works that prevent the power transfer to the DC source at multiple harmonic
components. Radial stub based feeding structures with several blocking bands
tend to be highly sensitive to the design parameters and to present a relatively
narrowband behaviour, which makes them rarely appropriate for this kind of ap-
plications. As a versatile alternative to overcome these limitations, a novel feeding
network based on Arbitrarily Width Modulated Microstrip Lines (AWMML) has
been designed [7].

The structure of the arbitrarily width modulated microstrip line is shown
schematically in Figure 4.2. The total structure length L is uniformly divided
into a large number N of microstrip tapered sections of equal length, ∆L = L/N .
In order to impose the continuity of the modulating function, the width of one of
the two parallel sides of each particular trapezium shaped section Wn−1,2, is set
to the width of the corresponding side of the adjoining section, Wn,1 = Wn−1,2,
as outlined in Figure 4.2. The width of the remaining side is left as a design
parameter, giving rise to a number of degrees of freedom N , equal to the total
number tapered sections. The feeding network ends with a narrow transmission
line segment on the RF side and with a DC pad for the connection of the power
supply at the other side.

In a first stage, the bias network for N = 200 is implemented using the
distributed element models included in the Agilent Advanced Design System
(ADS) circuit simulation libraries. The design parameters are adjusted through
a nominal optimisation process, to obtain the RF blocking behaviour in the bands
of interest. A minimum input impedance value |Zin,min| = 1 kΩ is required over a
200 MHz bandwidth, centred at the first four harmonic components of the circuit
oscillation frequency f0 = 2.5 GHz.
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Figure 4.2: Schematic diagram of the arbitrarily width modulated feeding net-
work.

Once the design requirements are fulfilled using library components, the per-
formance of the structure is assessed through Method of Moments (MoM) elec-
tromagnetic simulations of the entire network. Small deviations from the design
requirements can normally be corrected at this stage, through the fine tuning of
certain sensitive parameters of the structure, such as the length L. The shape
of the final optimised design is presented in Figure 4.3(a). The input impedance
Zin values calculated both using library components and through electromag-
netic simulation are compared in Figure 4.4. Although the peaks obtained in
the electromagnetic simulation are lower, sufficiently high impedance values are
observed in all the bands of interest.

(a) (b)

Figure 4.3: (a) Shape of the final optimised design. (b) Prototype for the exper-
imental validation of the arbitrarily width modulated feeding network.



4.2. Circuit Topology 183

Figure 4.4: Simulated input impedance |Zin| in the bands of interest, both us-
ing library components and through the MoM electromagnetic simulation of the
complete structure. The yellow hatched areas indicate the design requirements
for the optimisation process.

For the experimental validation of the feeding structure, a simple prototype
in which the DC bias network is connected to a transmission line segment of char-
acteristic impedance 50 Ω at 2.5 GHz, has been manufactured (Figure 4.3(b)).
The |S21| parameter of the network has been measured in the bands of inter-
est, connecting the DC pad to ground through three different resistors of values
RDC =0.01 Ω, 50 Ω and 10 kΩ. As can be observed in the results presented in
Figure 4.5, the bias network has a limited influence over the RF response of the
transmission line in the bands of operation, without regard to the resistor value
connected.

Therefore, this feeding network design is appropriate for the low power fourth
harmonic oscillator circuit addressed in the present chapter, and will be used for
the DC biasing of the transistor, both in its drain and gate terminals, as well as
to control the operation point of the varactor diode.

Figure 4.5: Measured |S21| parameter of the prototype shown in Figure 4.3(b),
connecting the DC pad to ground through three different resistor values RDC =
0.01 Ω, 50 Ω and 10 kΩ.
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4.2.2. Input Filter

For the injection locked operation of the fourth harmonic oscillator, which
enables its performance as a continuous range phase shifter, an external reference
signal at the oscillation frequency f0 = 2.5 GHz, needs to be introduced in the
circuit. For this purpose, an input port that gives access to the gate terminal of
the transistor is introduced in the topology, as depicted in Figure 4.1. However,
since the performance of the oscillator can be severely damaged in the presence
of certain spurious signals, a filter that restricts the input through that port to a
specific passband around the fundamental frequency f0 = 2.5 GHz, is required.

It is well known that signals at the harmonic components of the fundamental
frequency, either produced by the normal harmonic distortion of the external
generator or by any other source, are especially detrimental, as they can lead
to undesired harmonic synchronisations that may bring about harsh deviations
from the circuit expected performace. Thus, the attenuation levels introduced
by the input filter at these harmonic components will be a critical aspect to take
into consideration during its design process.

An image of the manufactured prototype of the final filter is shown in Figure
4.6(a). A three stage design has been adopted for this network; one independent
parallel coupled quarter wavelength transmission line section on either side of
the structure, along with an optimum open circuited stub based bandstop filter
in the central part.

The parallel coupled transmission line sections are designed to present max-
imum coupling in the vicinity of 2.5 GHz, giving rise to a passband around this
frequency. This type of structure theoretically produces transmission zeroes at
the even harmonic components of the passband (in this case 5 GHz, 10 GHz,
15 GHz, and so forth), which is a useful feature to increase the attenuation of
these components. However, in practice, the stopbands produced by these trans-
mission zeroes—which are intrinsically narrowband—do not take place at the
exact integer multiples of the passband, thus making it difficult to achieve high
attenuation levels at 5 and 10 GHz simultaneously. In order to overcome this
limitation, two slightly different coupled line sections have been used; one of
them has been fine-tuned to centre the stopband at 5 GHz, while the other has
been adjusted to maximise the attenuation at 10 GHz. In addition, the coupled
transmission line topology is particularly advantageous for the input filter design
due to its inherent DC blocking behaviour, which prevents the normal biasing of
the transistor gate terminal from originating a direct current flow through the
external RF generator.

The coupled transmission line sections that have been described provide high
attenuation levels at the second and fourth harmonic components of the funda-
mental frequency—5 and 10 GHz, respectively—whereas little consideration has
been given so far to the component at 7.5 GHz. In order to address this defi-
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(a) (b)

Figure 4.6: (a) Manufactured input filter prototype. (b) Simulated and measured
scattering parameters of the input filter design.

ciency, the topology has been complemented with a third filtering stage, aimed
at improving the rejection of this harmonic component.

An optimum open circuited stub based bandstop filter has been introduced
between the two coupled transmission line sections. Conventional bandstop fil-
ters with open circuited stubs are composed of shunt quarter wavelength open
circuited stubs separated by unit elements, which are quarter wavelength long
transmission line segments at the mid stopband frequency. Nevertheless, it has
been shown [6], that the traditional design approach of this kind of filters leads
to redundant unit elements, whose potential filtering properties are not fully ex-
ploited. Therefore, by taking into consideration the unit elements in the design
process, relevant improvements in the attenuation characteristic can be attained
for the same filter order.

An optimum open circuited stub bandstop filter has been developed ac-
cording to the design equations derived in [6], for a Chebyshev response with
0.044 dB passband ripple. A second order topology with 100% fractional band-
width FBW = ∆f/fc, centred at fc = 7.5 GHz has been chosen for this filter
stage.

A prototype of the complete structure has been manufactured for the ex-
perimental validation of the design (Figure 4.6(a)). The measured scattering
parameters of the prototype are compared with the electromagnetic method of
moments simulation of the whole structure in Figure 4.6(b). The measured be-
haviour is in good agreement with the simulation results: a well defined pass-
band with low insertion loss has been obtained around the fundamental frequency
f0 = 2.5 GHz, while high attenuation levels are introduced at the corresponding
harmonic components at 5, 7.5 and 10 GHz.
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(a) (b)

Figure 4.7: (a) Manufactured output filter prototype. (b) Simulated and mea-
sured scattering parameters of the output filter design.

4.2.3. Output Filter

The low power fourth harmonic oscillator is designed to maximise the ampli-
tude of the fourth harmonic component of the oscillation frequency, at 10 GHz,
that is delivered to the external load connected to the transistor drain terminal
through the multiharmonic load, as shown in Figure 4.1. Nonetheless, in order
to further improve the signal purity in the output port, a passband filter that
increases the attenuation of the adjacent harmonic components is integrated in
the circuit topology.

A parallel coupled filter with half wavelength resonators has been realised
using the design equations summarised in [8]. A fourth order Butterworth re-
sponse with a fractional bandwidth FBW = 0.1 GHz centred at 10 GHz, has
been chosen for this design. As was the case with the input filter, the DC block-
ing behaviour of the coupled line topology is advantageous to prevent the direct
current flow through the external output load, enabling the normal DC biasing
of the transistor drain terminal.

The prototype of the final filter shown in Figure 4.7(a) has been manufactured
for the experimental validation of the design. The measured scattering parame-
ters are compared with the results of the electromagnetic MoM simulation of the
structure in Figure 4.7(b). The measured insertion loss in the passband is about
4 dB, slightly higher than the simulated results. As expected, high attenuation
levels are introduced at the remaining harmonic componets of the fundamental
frequencies.
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4.3. Simulation Set-up

The auxiliary networks described in the foregoing sections have been individ-
ually developed to meet the specific a priori requirements of the fourth harmonic
oscillator design. Since these subcircuits have already been optimised for their
particular purpose within the circuit topology presented schematically in Figure
4.1, they will not be modified during the design process of the complete circuit
structure.

In order to provide an accurate model of these networks for the subsequent
simulations of the complete circuit topology, full wave electromagnetic simula-
tions of these individual components have been performed using the Method of
Moments (MoM) simulator included in Advanced Design System (ADS). Since
the design process will be mainly based on non-linear analyses, the frequency
plan chosen for the electromagnetic simulations is primarily focused on the har-
monic components of the fundamental oscillation frequency f0 = 2.5 GHz. The
performance of the subcircuits is evaluated in 1 GHz wide frequency bands cen-
tred at the first ten harmonic components of the oscillation frequency (as well
as between DC and 500 MHz), with a 1 MHz step, and complemented with a
general sweep between DC and 25.5 GHz with a 50 MHz step.

Since a footprint of the transistor packaging must be introduced in the circuit
to solder the device, this footprint has also been modelled through electromag-
netic simulations with the same frequency plan.

Once the electromagnetic models in terms of scattering parameters of these
individual components have been obtained, they are introduced in the oscillator
topology shown in Figure 4.1, composed in the schematic simulator of ADS. The
remaining transmission line networks: the multiharmonic loads, series feedback,
input and output connecting lines, etc.—which are subject to changes during the
design and optimisation process—are implemented with the library models of the
simulator.

Although the particular details of the simulations of the circuit that will
carried out in the following will be specified in each case, the set-up that has
been described will be the base for all of them, unless otherwise stated.

4.4. Oscillation Start-up

The circuit topology shown schematically in Figure 4.1 intrinsically presents
a trivial non-oscillatory solution, which makes it an attractive choice for the
implementation of amplifier designs. However, for oscillator based applications
in which a robust autonomous solution is sought, this DC solution must be made
unstable, in order to allow the onset of the required oscillatory solutions.
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The stability of a particular steady state solution, as has been widely ex-
plained in Section 1.2.3, is determined by its behaviour in the presence of the
small perturbations that always exist in practical systems. The solution will
be stable if it is capable of recovering from these perturbations. Because the
stability properties of a particular steady state solution depend exclusively on
the response of the system to small perturbations, the stability analysis can be
performed through the linearisation of the system about this specific solution.

As described in Section 1.3.3.2, a closed loop transfer function of the circuit,
associated with a linearisation about a given steady state solution can be obtained
by simply perturbing the system operation regime with a small signal current
generator, connected to a sensitive node of the circuit; in this case, the transistor
drain terminal has been chosen. The single input single output transfer function
can be directly calculated as the input impedance of the perturbed node, given
by the relationship between the node voltage Vn and the perturbing current In
at the frequency ω, as follows:

Zn(ω) =
1

Yn(ω)
=
Vn
In

∣

∣

∣

∣

ω

. (4.1)

Unless exact pole zero cancellations occur, all the closed loop transfer functions
associated with the different circuit nodes provide the necessary stability infor-
mation about the selected solution of the circuit. In particular, as discussed in
Section 1.3.3.2, fulfilment of (4.2), which can be easily checked by simply ob-
serving the behaviour of the input admittance Yn(ω), indicates the existence of a
pair of complex conjugate poles with positive real part, which makes the solution
unstable.

Y r
n (ω0) < 0

Y i
n(ω0) = 0

∂Y i
n(ω0)

∂ω
> 0

(4.2)

The closed loop transfer function Zn(ω) obtained through this procedure
corresponds to a linearisation of the circuit about the solution that has been
perturbed in the simulation. Taking advantage of the fact that conventional har-
monic balance simulations converge unaided to the DC solution of the circuit,
no additional initialisation techniques are required for the simulation of this so-
lution. Thus, the harmonic balance simulation can be performed considering one
single fundamental: the frequency of the perturbation generator, which is swept
throughout the desired frequency range. Due to the small amplitude of the per-
turbation, no harmonic components of this fundamental need to be considered.

Thus, using these simulations, the circuit networks have been tuned to syn-
thesise a pair of complex conjugate poles with positive real part in the closed
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loop transfer function associated with the DC solution, which makes this spu-
rious equilibrium unstable. The input admittance of the tuned design Yn(ω) is
shown in Figure 4.8, where the fulfilment of (4.2) at 2.5 GHz can be verified.

Figure 4.8: Fulfilment of (4.2), that indicate the existence of a pair of complex
conjugate poles with positive real part in the closed loop transfer function Zn(ω),
linearised about the DC solution of the circuit.

The existence of a pair of complex conjugate poles with positive real part at
2.5 GHz means that the DC solution of the system is not practically observable,
as the slightest perturbation of this steady state regime will start an oscillatory
transient at this frequency, with—initially—exponentially growing amplitude,
which will take the circuit to a stable steady state solution. Since the linearised
analysis that has been performed progressively loses its accuracy as the ampli-
tude of the perturbation grows, this final stable steady state solution cannot be
predicted using this linearisation, and a complete non-linear analysis must be
carried out. Nonetheless, the frequency of the unstable poles (in this case 2.5
GHz) is generally a good starting point for the non-linear optimisations, as will
be shown in the next sections.

4.5. Periodic Steady State Solutions

As has been discussed in Section 1.3.2, the simulation of autonomous regimes
in the frequency domain is not straightforward and it generally requires the
use of complementary initialisation techniques, such as the introduction of non-
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perturbing auxiliary generators, which enable the analysis of autonomous solu-
tions as conventional forced regimes.

The non-linear analysis of this fourth harmonic oscillator design is performed
using harmonic balance simulations with one single fundamental, f0 = 2.5 GHz,
taking into account its first ten harmonic components. The autonomous solu-
tion is initialised using a voltage auxiliary generator connected to the transistor
drain terminal. In order to assure that the circuit can spontaneously sustain the
solutions calculated through this approach, the auxiliary generator must fulfil
the non-perturbation condition (4.3), in terms of the input admittance at the
auxiliary generator connection node YAG:

YAG =
Iv
VAG

∣

∣

∣

∣

ω=ωAG

= 0, (4.3)

which guarantees that the auxiliary generator does neither deliver energy to the
circuit nor dissipate it. Fulfilment of (4.3) adds two additional equations to the
conventional harmonic balance system, together with three degrees of freedom
associated with the parameters of the auxiliary generator: voltage VAG, frequency
ωAG = 2πfAG and phase ϕAG.

For the analysis of a conventional free running oscillator, the phase of the
auxiliary generator can be arbitrarily set to 0, taking advantage of the indepen-
dence of the solution of the phase origin, and the frequency and amplitude of the
auxiliary generator are optimised to fulfil the non-perturbation condition (4.3).

Nonetheless, the goal in this case is to synthesise an oscillatory steady state
solution with the desired amplitude and frequency (fAG = 2.5 GHz and VAG =
1.9 V) . Thus, the frequency and amplitude of the auxiliary generator are set to
these values and the geometrical parameters of the networks implemented with
library components are optimised to fulfil the non-perturbation condition. This
optimisation process leads to a design that possesses an autonomous steady state
solution with the values of amplitude and frequency imposed by the auxiliary
generator. However, no further assumption can be made as to the stability of this
solution, which must be subsequently evaluated using the techniques described
in Section 1.3.3.2.

The preliminary design obtained as a result of this first optimisation presents
the output power levels shown in Figure 4.9. The output power Po is the power
delivered to the Z0 impedance that represents the output port in the circuit
topology shown in Figure 4.1.

The output power spectrum of the preliminary design shows a dominant
fourth harmonic component at 10 GHz, with a level about -41 dBm. However,
this behaviour is in fact originated by the response of the output filter (shown in
Figure 4.7(b)), which attenuates the first harmonic components over 60 dB.
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Figure 4.9: Output power spectrum of the preliminary fourth harmonic oscillator
design.

Therefore, this first circuit version generates a dominant component at the
oscillation frequency and a relatively weak fourth harmonic at 10 GHz, leading to
the low output power level that has been observed. To increase the output power
level at this harmonic component, the circuit must be optimised to enhance the
fourth harmonic generation at the non-linear device, as well as to improve the
transmission of this component through the output networks to the load, as will
be shown in the following.

4.5.1. Harmonic Content Enhancement

The desired output signal for this circuit topology is the fourth harmonic of
the fundamental oscillation, at 4f0 = 10 GHz, while the presence of the rest of
harmonic components in the output of the circuit is detrimental and must be
kept under control. The output filter has been designed to introduce relatively
high attenuation levels to this undesired harmonic components, in order to assure
certain degree of purity in the output signal.

In the preliminary design obtained in the previous section, the filter response
severely attenuates the undesired components, giving rise to an output power
spectrum dominated by the weak fourth harmonic generated by the circuit. The
performance of the design could be improved by optimising the harmonic con-
tent generated in the circuit, both to increase the level of the fourth harmonic
produced and to reduce the power of the other undesired components.
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Nonetheless, even though the fundamental oscillation at f0 = 2.5 GHz is not
valuable as an output signal, its amplitude determines the operation regime of the
transistor, which has a strong influence on the harmonic content generated. Since
a relatively high fourth harmonic generation has been observed for an amplitude
of the fundamental oscillation about 1.9 V, this value—which is directly imposed
by the auxiliary generator—will be maintained constant throughout this design
stage.

Thus, the geometrical parameters of the circuit multiharmonic loads, series
feedback, input and output networks are optimised to improve the level of the
fourth harmonic delivered to the output load, as well as to reduce—as far as
possible—the power delivered at the remaining components, while keeping the
amplitude of the auxiliary generator VAG = 1.9 V. The output power spectrum
of the optimised design with enhanced harmonic content is presented in Figure
4.10.

Figure 4.10: Output power spectrum of the design with enhanced harmonic
content.

The power level delivered to the output load at the fourth harmonic compo-
nent has increased to Po(4f0) = −11.45 dBm. Although the amplitude of the
fundamental component at the drain terminal has been kept constant by the
auxiliary generator, the power level delivered to the load at this frequency has
slightly increased with regard to the previous preliminary design (from -55.82 to
-51.24 dBm). Despite the unintended increase in the output level at the undesired
frequency components, as a result of the optimisation process, these components
are maintained over 31 dB below the fourth harmonic (Po(3f0) = −42.76 dBm).
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Po(4f0) [dBm] Po(4f0) [µW] ID [mA] PDC [mW] η [%]

-11.45 71.6 15 28.5 0.25

Table 4.2: Summary of the power levels delivered and consumed by the design
with enhanced harmonic content that has been obtained.

The transistor device is biased with a voltage VDS = 1.9 V, using a DC power
supply connected to the drain terminal through the associated bias network. The
current absorbed by this design with enhanced harmonic content is ID = 15 mA,
corresponding to a total DC power consumption PDC = 28.5 mW. Considering
the power efficiency of the circuit η, as the ratio—in percentage terms—between
the output power delivered at the fourth harmonic component of the oscillation
Po(4f0) and the DC power consumed PDC , as follows:

η =
Po(4f0)

PDC
· 100, (4.4)

and taking into account the output levels and power consumption that have
been specified, the design presents a power efficiency η = 0.25%, as summarised
in Table 4.2.

The design with enhanced harmonic content that has been presented exhibits
a moderately high DC power consumption, leading to a relatively low efficiency
value. Moreover, this power consumption limits the potential application of this
circuit in low power portable or mobile solutions, where this parameter is a critical
aspect. Hence, even though the harmonic content of the circuit could be further
optimised to produce higher output power levels, the following design stage will
be primarily aimed at reducing the power consumption, giving rise to a suitable
solution for this kind of applications.

4.5.2. Low Power Optimisation

The fourth harmonic oscillator topology addressed in the present chapter
has been conceived as a multifunctional control circuit for the implementation of
reconfigurable active antenna arrays applied to low power point-to-point commu-
nications between portable or mobile devices. Nevertheless, since the efficiency
and—especially—the power consumption, are critical limiting factors in this type
of systems, which are generally battery powered, the relatively high power con-
sumption that has been observed in the design presented in the previous section
seriously compromises its potential use for this target application.

To tackle this limitation, the purpose of this section is to produce a low power
consuming design that preserves an optimised harmonic content, characterised
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by the generation of a fourth harmonic component with relatively high output
power level.

The non-linear device chosen for this topology is a depletion mode pseudo-
morphic high electron mobility transistor. When this type of device is biased
with a drain to source voltage VDS , the current drawn from the power supply
through the drain terminal ID, can be controlled through the gate to source bias
voltage VGS . In the depletion mode case, the DC power flow ID, for a given drain
to source voltage VDS , is maximum for the gate to source voltage VGS = 0 V.
As the gate to source union is reversely biased (VGS < 0 V), the drain current
ID progressively decreases until it completely vanishes for the pinch off voltage
VGS = Vpinch off.

The operation point chosen for the transistor in the previous designs corre-
sponds to VDS = 1.9 V and VGS = 0 V. Therefore, the current drawn by the
circuit from the DC supply can be limited by introducing a gate to source reverse
bias voltage VGS < 0 V, giving rise to a lower power consumption. Since the gate
source union of this pHEMT device is a Shottky barrier, the current flow through
the gate terminal is negligible and consequently, this biasing does not contribute
to increasing the power consumption.

After a preliminary analysis of the transistor performance in different oper-
ation points, in terms of the absorbed power, harmonic content generated and
other parameters, a gate to source voltage value VGS = −0.51 V has been chosen.
The drain to source voltage, on the other hand, is maintained at the previous
value VDS = 1.9 V, in which an adequate behaviour regarding harmonic genera-
tion has been observed.

The modification of the transistor operation point directly affects its electri-
cal parameters and, in consequence, the input and output impedances it must
be loaded with to operate in a specific regime. As has been commented, in order
to enable the onset of the desired stable periodic steady state regime, the insta-
bility of the coexisting constant solution inherent in this circuit topology must
be verified. Hence, the design parameters of the input and output networks have
been readjusted for the fulfilment of (4.2) at the selected operating point.

As has been described, the large signal solutions of the circuit are studied
through harmonic balance simulations initialised using a non-perturbing voltage
auxiliary generator connected to the transistor drain terminal. The amplitude of
the fundamental oscillation is set to a fixed value VAG—imposed by the auxiliary
generator—and the design parameters are optimised for the fulfilment of the non-
perturbation conditions (4.3). After evaluating the influence of the amplitude of
the fundamental component on the fourth harmonic generation, the same value
used in the previous cases VAG = 1.9 V, has been maintained.

A thorough optimisation of the circuit design parameters: series feedback, in-
put and output networks, multiharmonic loads, and so forth, has been performed
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to maximise the power level at the fourth harmonic component delivered to the
output load. Since the other harmonic components are detrimental as output
signals, the power delivered at of these components is wasted and contributes to
decrease the efficiency. Thus, the level of these components is also limited as a
secondary goal of the optimisation. The output power spectrum of the low power
fourth harmonic oscillator design with optimised harmonic content that has been
obtained is shown in Figure 4.11.

Figure 4.11: Output power spectrum of the low power fourth harmonic oscillator
design with optimised harmonic content.

The low power design with optimised harmonic content that has been
obtained features an output power level at the fourth harmonic Po(4f0) =
−2.93 dBm, while the undesired frequency components are nearly 40 dB below
the fourth harmonic (Po(3f0) = −42.04 dBm).

For the chosen transistor drain to source bias voltage VDS = 1.9 V, the
current drawn from the power supply by this optimised design is ID = 3.3 mA,
corresponding to a total DC power consumption PDC = 6.27 mW. The efficiency
of this low power fourth harmonic oscillator design with optimised harmonic
content is η = 8.12%, as summarised in Table 4.3.

In conclusion, the careful choice of an appropriate operating point for the
transistor, together with the employment of non-linear global optimisation tech-
niques, has enabled the control of the harmonic content in a conventional oscil-
lator circuit topology, while maintaining a reduced power consumption, leading
to a fourth harmonic oscillator design suitable for its target application in re-
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Po(4f0) [dBm] Po(4f0) [µW] ID [mA] PDC [mW] η [%]

-2.93 509.33 3.3 6.27 8.12

Table 4.3: Summary of the power levels delivered and consumed by the low power
fourth harmonic oscillator circuit with optimised harmonic.

configurable active antenna arrays for low power point-to-point communications
between portable or mobile devices.

4.6. Injection Locked Solutions

As has been discussed in Section 1.5, when the operation of a free running
oscillator with a natural frequency f0 is perturbed by the injection of a periodic
external signal of frequency fs, under certain conditions, the interaction results
in the onset of a constant phase relationship between the fundamental oscillation
and the external signal, in virtue of a phenomenon known as synchronisation or
injection locking.

In the particular case of fundamental synchronisation, which takes place when
the frequency of the external signal fs is close to the fundamental frequency of
the oscillator f0, the phase difference between the fundamental oscillation and
the external signal ∆φ = φ − φs, is constant and therefore, the frequency of
the oscillation matches that of the forcing fΩ = dφ/dt = fs. Moreover, this
constant phase difference ∆φ, which can be varied in a theoretical range of 180◦,
is directly dependent on the frequency detuning νf = fs − f0, given by the
separation between the frequency of the forcing signal and the natural frequency
of the oscillator.

The fourth harmonic oscillator topology that has been designed includes a
varactor diode in the series feedback network, as shown schematically in Figure
4.1. The tuning of this device with a DC control voltage Vc, applied through the
corresponding bias network, modifies the varactor capacity Cvar, which affects
the natural oscillation frequency of the circuit f0(Vc), enabling its operation as a
Voltage Controlled Oscillator (VCO).

Therefore, when the fourth harmonic oscillator design is injection locked to
an external signal of fixed frequency fs, the modification of the control voltage
Vc produces a variation in the frequency detuning νf = fs − f0(Vc), allowing
the tuning of the phase shift between the oscillation frequency and the external
reference signal ∆φ in a theoretical continuous range of 180◦, while the oscillation
frequency remains constant fΩ = dφ/dt = fs.

Since the circuit has been optimised to produce a fourth harmonic component
of the oscillation as the output signal, the theoretical stable phase shift range
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Figure 4.12: Injection locked solutions of the fourth harmonic oscillator design
versus the varactor capacity Cvar, for different values of the synchronisation
power Ps. (a) Amplitude of the auxiliary generator VAG (b) Phase shift at the
fundamental component ∆φ. The stable ranges are indicated in solid line.

available between the fourth harmonic component φo and the synchronisation
signal ∆φo = φo − φs, is four times the range at the fundamental component:
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720◦. Although these ranges are generally reduced in the presence of noise and
other non-linear effects [9], the employment of the fourth harmonic component
as the output signal guarantees a usable stable range of 360◦, necessary for the
control of antenna arrays.

The injection locked solutions of the circuit are calculated through the pro-
cedure explained in Section 1.5. The autonomous oscillation is conveniently ini-
tialised using a non-perturbing voltage auxiliary generator with the same fre-
quency as the external generator fAG = fs. Taking advantage of the fact that
the solution curves are not multivalued in phase in the interval [0, 360◦), the
phase of the auxiliary generator φAG is swept throughout this interval, optimis-
ing the values of amplitude of the auxiliary generator VAG and varactor capacity
Cvar that satisfy the non-perturbation conditions (4.3).

The injection locked solutions versus the varactor capacity Cvar, obtained for
power values of the external signal fs between -45 and -25 dBm are shown in
terms of amplitude of the auxiliary generator VAG in Figure 4.12(a) and phase
shift ∆φ = φAG − φs in Figure 4.12(b).

As expected, the phase variation interval is the same for all the synchroni-
sation power values considered, while the tuning range of the varactor capacity
Cvar (and, consequently, of the natural frequency of the oscillator f0) necessary
to cover it increases with the injected power Ps. The phase solution curves cor-
responding to the different synchronisation power levels intersect at phase values
separated 180◦. At these operation points, the phase shift ∆φ is not influenced
by the synchronisation power level Ps. For the sake of clarity, the phase of the
external signal φs has been arbitrarily set in the simulation for the phase solution
curves to intersect at ∆φ = 0.

The synchronisation loci that have been obtained are multivalued in the var-
actor capacity Cvar. Because these curves have been calculated through harmonic
balance simulations, no assumption can be made as to their stability properties,
that must be subsequently analysed using complementary techniques. In this
case, the stable parts of the solution curves—which are indicated in solid line—
have been determined using envelope transient simulations.

The solution curves for the output power Po(4f0) are shown in Figure 4.13(a),
and for the phase shift of the output signal φo with regard to the external reference
∆φo = φo − φs in Figure 4.13(b). The stable ranges calculated using envelope
transient simulations are indicated in solid line. In order to clearly show the
separation between the output power loci, their central region has been magnified
in the inset of Figure 4.13(a).

In this case, the phase solution curves for the different synchronisation power
levels intersect at phase values separated 720◦. Once again, the phase of the
external signal φs has been arbitrarily set in the simulation for the phase curves
to intersect at ∆φo = 0◦.
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Figure 4.13: Injection locked solutions of the fourth harmonic oscillator design
versus the varactor capacity Cvar, for different values of the synchronisation
power Ps. (a) Output power Po(4f0) (b) Phase shift of the output signal ∆φo.
The stable ranges are indicated in solid line.

The selection of the fourth harmonic component as the output signal provides
a stable continuous phase shift range of about 720◦, that considerably exceeds the
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360◦ range usually required for the control of antenna arrays. Hence, the required
360◦ range can be entirely covered in the central part of the stable range, leading
to a higher linearity of the phase shift response versus frequency. Moreover, the
detrimental non-linear effects that generally appear when operating close to the
limits of the synchronisation region [9] may be avoided.

4.7. Experimental Results

For the experimental validation of the fourth harmonic oscillator that has
been designed in the preceding sections, the prototype shown in Figure 4.14 has
been manufactured.

Figure 4.14: Manufactured prototype of the fourth harmonic oscillator circuit.

The potential fluctuations of the DC bias signals may have a detrimental effect
on the circuit performance. Thus, in order to stabilise the bias signals, minimising
these fluctuations, a 100 pF and a 100 nF chip capacitor have been connected in
parallel with each of the DC pads, together with a 100 µF electrolytic capacitor.

In this section, the performance of the circuit under multiple operating con-
ditions will be analysed though different types of measurements.
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4.7.1. Output Power Spectrum

The output power spectrum of the circuit has been measured with a Rohde
& Schwarz FSP 40 spectrum analyser. An image of the measurement set-up is
shown in Figure 4.15.

Figure 4.15: Output power spectrum measurement set-up.

Three channels of the DC source has been used to bias the circuit. From left
to right in Figure 4.15, the first and second channels are used to reversely bias
the varactor diode and the gate terminal of the pHEMT transistor, while the
third, which is the only one delivering power to the circuit, is connected to the
drain terminal.

The varactor diode is reversely biased with a voltage Vc = 19 V, corresponding
to low value of the union capacitance. The drain terminal is biased with the
design voltage VDS = 1.9 V and, when the gate terminal is reversely biased with
a voltage VGS = −0.57 V, the circuit draws a current ID = 3 mA through the
drain terminal.

Since, under these conditions, the 4HOSC circuit is operating as a free running
harmonic oscillator and the input port is not used, it has been terminated with
a 50 Ω load.

Due to the additional losses introduced by the connecting RF cable and the
output end launch connector, the power measured by the spectrum analyser will
be appreciably lower than the output power generated by the circuit. Therefore,
the frequency dependent losses of the connector and the RF cable have been
measured separately, in order to correct the measured spectrum, referring it to
the power delivered at the output microstrip line. The combined losses at 10 GHz
amount to L(10 GHz) = 4.45 dB.
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The complete corrected output power spectrum of the circuit, measured be-
tween 2 and 13 GHz, has been represented in Figure 4.16.

Figure 4.16: Corrected output power spectrum of the fourth harmonic oscillator
circuit.

The spectrum is dominated by the fourth harmonic component of the oscil-
lation, at a frequency 4f0 = 9.998 GHz, with a level Po(4f0) = −5.05 dB.

This measured level is lower than the value obtained in the simulated re-
sults (−2.93 dB), shown in Figure 4.11. Similarly, other discrepancies have been
observed between the simulated and measured levels of the different harmonic
components.

Nonetheless, this disagreement is clearly originated by the behaviour of the
output filter. As was already shown in Figure 4.7(b), the electromagnetic sim-
ulation of the filter, which has been used to perform the circuit optimisation,
follows reasonably well the trend of the measured performance, although the
specific values at the circuit harmonic components present some differences.

At the first and second harmonic components, where the measured filter in-
sertion losses are lower than the simulated values, the measured output power at
those components is higher than the simulated results. Conversely, at the third,
fourth and fifth harmonic components, the measured filter insertion losses are
higher than the simulated value, and the measured levels of those components
are lower than the simulated values.

Hence, the steady state regime observed in the practical circuit matches the
solution optimised in the simulations. As per its power efficiency, a value η =
5.48% has been attained, as summarised in Table 4.4.
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Po(4f0) [dBm] Po(4f0) [µW] ID [mA] PDC [mW] η [%]

-5.05 31.26 3 5.7 5.48

Table 4.4: Summary of the power levels delivered and consumed by the manu-
factured fourth harmonic oscillator.

Due to the additional insertion losses observed in the passband of the out-
put filter, with regard to the simulated result, the measured output power does
not reach the simulated result, limiting the power efficiency value that can be
achieved.

For the design of this first prototype, stringent requirements were imposed in
terms of the attenuation of the output filter at the undesired harmonic compo-
nents to prevent potential practical problems. Nevertheless, after verifying that
those requirements can be relaxed, the efficiency of the circuit could be straight-
forwardly improved by redesigning the output filter to reduce the insertion losses
in the passband.

4.7.2. Operation as a Voltage Controlled Oscillator

In the fourth harmonic oscillator circuit topology that has been described, a
varactor diode was introduced in the series feedback network for tuning purposes.
By changing the DC control voltage of this diode Vc, the frequency at which the
autonomous oscillation occurs can be varied: f0 = f0(Vc), giving rise to a Voltage
Controlled Oscillator (VCO) implementation.

The oscillation frequency tuning capabilities of the circuit have been measured
with a Rohde & Schwarz FSP 40 spectrum analyser, while sweeping the varactor
bias voltage Vc, throughout the continuous range between 16.35 and 20.37 V,
where the circuit exhibits a stable, free from hysteresis behaviour.

The circuit performance has been evaluated at 13 operating points, corre-
sponding to 13 operating frequencies uniformly spaced throughout the tuning
range. The associated output power spectra are shown in Figure 4.17(a), focus-
ing on the fundamental oscillation component, while those corresponding to the
fourth harmonic component, are presented in Figure 4.17(b).

The fundamental oscillation frequency f0 can be tuned in a 12 MHz range
between 2.4903 and 2.5022 GHz. The low amplitude levels observed in the fun-
damental component are produced by the high attenuation level introduced by
the output filter at that frequency.

As expected, the fourth harmonic component presents substantially higher
power levels, together with a frequency tuning range four times as wide: 48 MHz,
from 9.961 to 10.009 GHz.
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(a) (b)

Figure 4.17: Measured output spectra of the fourth harmonic oscillator: (a)
About the fundamental oscillation component. (b) Focusing on the fourth har-
monic component.

Since the fourth harmonic component of the oscillation is the desired output
signal, in the interest of clarity, the output power level and frequency are related
to the applied control voltage in Figure 4.18.

(a) (b)

Figure 4.18: (a) Output power level at the fourth harmonic component versus
the applied control voltage Vc. (b) Frequency of the fourth harmonic component
versus the applied control voltage Vc.

The output power level shows uneven fluctuations between adjacent points,
caused by the relatively low frequency resolution of the spectrum analyser, for the
frequency span selected in Figure 4.17(b). Nevertheless, the power level exhibits
a very limited variation which barely exceeds 2 dB throughout the whole tuning
range.
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The frequency of the fourth harmonic component, as shown in Figure 4.18(b),
presents a nearly linear dependence on the control voltage. At each operating
point, the frequency of the fundamental oscillation can be calculated as one forth
of those values.

4.7.3. Injection Locked Operation

The operation of the fourth harmonic oscillator as a continuous range phase
shifter requires the injection of an external signal of power Ps, frequency fs and
phase φs. As has been commented, under specific conditions, the presence of the
external perturbation leads to the onset of a constant relationship between the
phase of the external signal φs and the phase of the autonomous oscillation φ, in
virtue of a phenomenon known as injection locking.

In the particular case of fundamental injection locking, which takes place
when the frequency of the external signal is close to the circuit natural frequency,
fs ≈ f0, the constant phase relationship can be written as ∆φ = φ− φs, causing
the circuit to oscillate at the frequency of the external forcing fΩ = 1/2πdφ/dt =
fs. Furthermore, the constant phase shift between the autonomous oscillation
and the external signal, which is determined by the frequency detuning ν =
fs−f0: ∆φ = ∆φ(ν), can be controlled in a continuous theoretical range of 180◦.

For most practical applications, where the phase tuning of a carrier with
constant frequency is required, the appropriate operation regime of the fourth
harmonic oscillator would be to injection lock it to an external signal of constant
frequency fs. Thus, the oscillation frequency of the circuit will remain constant
fΩ = fs, while the frequency detuning ν = fs − f0, which, in turn, determines
the phase shift of the oscillation signal, can be controlled through varying the
oscillator natural frequency f0, taking advantage of its operation as a voltage
controlled oscillator that has been evaluated in the previous section.

As has been discussed in detail in Section 1.5, the range of frequency detun-
ing values for which the circuit remains injection locked to the external signal—
usually referred to as synchronisation range—generally increases with the power
of the external signal, for relatively low power levels. The operation outside the
synchronisation range has limited practical interest, since the circuit is no longer
injection locked to the external signal and it oscillates at a different frequency
fΩ 6= fs, giving rise to a time dependent phase relationship ∆φ = ∆φ(t). Nev-
ertheless, the frequency tuning capabilities of the circuit, operating as a VCO,
must be wide enough to enable the frequency detuning ν, to be swept throughout
the synchronisation range as, otherwise, the associated phase shift range would
be further reduced from the 180◦ theoretical value.

Hence, the frequency tuning range of the circuit, measured in the foregoing
section, needs to be taken into account to adequately select the frequency of the
external synchronisation signal, which cannot be too close to either limit of the
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frequency tuning range, as this would result in a contraction of the maximum
phase shift range that can be attained. Moreover, since the synchronisation
range typically widens as the synchronisation power is increased (for relatively
low power levels), for sufficiently high power levels, the circuit might become
unable to cover the whole synchronisation range, regardless of the synchronisation
frequency fs chosen, remaining synchronised for all the values of the varactor
control voltage Vc.

However, for practical applications, it is clearly advantageous in terms of sys-
tem efficiency to maintain the required synchronisation power as low as possible.
In this case, in order to be able to illustrate the injection locked performance
of the circuit for synchronisation power levels between −40 and −20 dBm, the
frequency of the reference signal has been chosen to be fs = 9.997 GHz.

The injection locked operation of the circuit has been evaluated using an
Agilent N5247A PNA-X Vector Network Analyser, which provides the external
reference signal at a frequency fs = 9.997 GHz, and measures the power and
phase shift of the desired harmonic component of the oscillation through the
output filter, as the varactor bias voltage Vc, is swept throughout the synchroni-
sation range.

The measured synchronised solutions corresponding to the fundamental os-
cillation, for power levels Ps from −40 to −20 dBm, in steps of 5 dB, are shown
in Figure 4.19(a), in terms of power, and in Figure 4.19(b), in terms of phase
shift ∆φ.

Since the fundamental component is severely attenuated by the output filter,
very low power levels have been measured at that component. As expected, for
higher power levels of the external signal, the synchronisation range progressively
widens, as does the interval of varactor bias voltages that needs to be swept to
cover it.

The power level of the fundamental component increases its variation with
the varactor control voltage for higher synchronisation power levels, the overall
variation remains under 1.5 dB for all the measured cases.

With regard to the phase shift response, shown in Figure 4.19(b), a continuous
phase shift range wider than 160◦ has been measured for Ps = −25 and Ps =
−20 dBm. The measured phase shift ranges become increasingly smaller for
lower values of the synchronisation power Ps. Although the phase shift ranges
generally show a mild dependence on the applied synchronisation power, this
dependence does not justify the significant contractions that have been observed,
which are caused by practical limitation of the measurement set-up employed.

The varactor control voltage Vc is imposed using a Hameg HM7044 DC power
supply, with a 10 mV voltage resolution. As the power of the external refer-
ence signal Ps is reduced and, consequently, the synchronisation range shrinks,
the 10 mV step represents an increasingly greater fraction of the whole range.
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Figure 4.19: Measured synchronised solutions at the fundamental component of
the fourth harmonic oscillator versus the varactor control voltage Vc. (a) Power
measured through the output filter. (b) Phase shift with regard to the external
reference signal.

Therefore, fewer of the practically available varactor voltage values correspond to
injection locked solutions, giving rise to a relatively coarser sweep that restricts
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closest proximity to the limits of the synchronisation range at which the measure-
ment can be performed. Since the slope of the trace becomes maximum when
approaching those limits, relatively small variations of the voltage at which the
measurement is carried out bring about important fluctuations of the associated
phase shift. Nonetheless, this limitation is not intrinsic to the circuit dynamics
and could be mitigated by increasing the control voltage resolution.

The traces corresponding to all the measured synchronisation power values
intersect for the operating point Vc = 19 V, at which the free running oscillator
frequency equals that of the external reference signal: f0(Vc = 19 V) = fs. For
the sake of clarity, the phase reference has been arbitrarily set for the associated
phase shift to be ∆φ(Vc = 19 V) = 0◦, at that operating point.

Since the desired output signal of the circuit is the fourth harmonic component
of the oscillation, the injection locked solutions corresponding to that component
have been analogously measured. The results are presented in Figure 4.20(a) in
terms of output power and in Figure 4.20(b) in terms of phase shift with regard
to the external reference ∆φo = φo − φs.

The output power exhibits a very limited variation with the control voltage
Vc, which remains under 0.4 dB in all the studied cases. The power level slightly
increases with the applied synchronisation power Ps.

Regarding the phase shift performance, stable ranges wider than 620◦ have
been measured for Ps = −25 and Ps = −20 dBm. For lower synchronisation
power levels, the observed ranges are narrower due to the limited resolution
of the DC power supply. Once again, the phase reference has been deliberately
established for the intersection between the different traces to take place at ∆φo =
0◦.

In conclusion, the injection locked operation of the fourth harmonic oscillator
provides a carrier signal with a relatively constant amplitude, whose phase can
be straightforwardly controlled in a continuous range wider than 620◦. Since
only a 360◦ range is required for most practical applications, it can be covered
with a restricted subinterval of the synchronisation range, which can be chosen
to optimise different aspects of the circuit behaviour. For instance, according to
4.20(b), the operation of the circuit in the central region of the synchronisation
range increases the linearity of its response to the control voltage Vc.

4.7.4. Phase Noise

The fundamental component of the oscillator signal has hitherto been con-
sidered a pure sinusoid of the form:

xp(t) = A cos(ω0t+ φ0), (4.5)
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Figure 4.20: Measured synchronised solutions at the fourth harmonic component
of the oscillation versus the varactor control voltage Vc. (a) Output power. (b)
Phase shift with regard to the external reference signal.

where ω0 = 2πf0, is the fundamental angular frequency of the oscillation. Due
to the non-linearity of the circuit, a collection of discrete harmonic components
are generated, whose relative levels have been optimised for different purposes.
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However, in practice, the oscillator circuit operates under the influence of
multiple perturbing phenomena of random nature, that affect the generated sig-
nals. Therefore, a more accurate model for the fundamental component can be
written as:

x(t) = [A+ ε(t)] cos(ω0t+ φ0 + φ(t)), (4.6)

where ε(t) and φ(t) are the instantaneous amplitude and phase random fluc-
tuations, respectively. Both ε(t) and φ(t), represent deviations or departures
from a nominal value, and are thus defined as zero mean magnitudes, E{ε(t)} =
E{φ(t)} = 0, where E[·] represents the expectation operator.

As has been pointed out, the non-linear steady state autonomous regime of
the oscillator is self limited, in the sense that it is capable of recovering from
perturbations that drive it outside the associated limit cycle, even though the
dynamics of this recovery may be very slow. Conversely, due to the fact that an
arbitrarily time shifted solution of an autonomous system is also a solution, the
system is unable to recover from phase perturbations, that may thus accumulate
indefinitely. Since this section is devoted to phase noise analysis, the amplitude
fluctuations will henceforth be neglected.

Multiple works can be found in the literature, addressing the modelling sim-
ulation and prediction of the phase noise performance of different devices under
various operating conditions [10; 11; 12; 13]. Nevertheless, those topics lie beyond
the scope of this section, which is aimed at the measurement of the phase noise
characteristics of the fourth harmonic oscillator circuit that has been designed,
in several operation regimes. In order to perform these measurements, two dif-
ferent methodologies, which can be implemented with the existing laboratory
equipment, will be described and compared.

Given the random nature of the the phase fluctuations φ(t), an adequate
statistical characterisation of the process will be required in order to model the
fundamental oscillation according to (4.6). Assuming φ(t) is a wide sense station-
ary process, it can be described through its power spectral density1 Sφ(f), which
represents the distribution of its average power over the frequency domain2. The
phase spectrum Sφ(f), is considered a one-sided spectral density, only specified
for frequencies f ≥ 0.

The phase noise represents the single sideband spectral density of the phase
fluctuations which, assuming symmetry between the sidebands, is defined as one

1In spite of the fact that φ(t) represents a phase, expressed in radians, and thus, its squared
value cannot be considered power, the term power spectral density is commonly used in the
literature notwithstanding, in analogy to the treatment given to conventional voltage signals.

2Note that, for notation convenience and in agreement with the existing literature in the
field, the ordinary frequency f , instead of the angular frequency ω, has been chosen as the
spectral domain variable in this section.
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half of the phase spectrum Sφ(f), as follows [14]:

L (f) =
1

2
Sφ(f). (4.7)

As the phase fluctuation φ(t) is measured in radians, the dimensions of the phase
spectrum Sφ(f) are [rad2/Hz]. The phase noise L (f), is typically represented in
logarithmic scale in the independent variable f , and using decibels referred to 1
rad2/Hz:

L (f) = 10 log

(

1

2
Sφ(f)

) [

dB
rad2

Hz

]

. (4.8)

4.7.4.1. Direct Spectrum Measurement: Amplitude Approximation

Neglecting the amplitude instantaneous deviation ε(t) and focusing on the
phase fluctuations, the fundamental component of the oscillation can be modelled
by rewriting (4.6) as:

x(t) = A cos(ω0t+ φ0 + φ(t)). (4.9)

Using basic trigonometric identities, (4.9) can be expanded as follows:

x(t) = A[cos(ω0t+ φ0) cos(φ(t)) − sin(ω0t+ φ0) sin(φ(t))]. (4.10)

Without a specific knowledge of the function φ(t), the characteristics of (4.10)
are, in general, difficult to anticipate. Nevertheless, in case the function φ(t) is
known to be bounded in absolute value by a relatively small number, compared
to one radian, then the following approximations can be introduced into (4.10):

|φ(t)| ≪ 1 ⇒







cos(φ(t)) → 1

sin(φ(t)) → φ(t)
(4.11)

and, strictly under these simplifying assumptions, the fundamental oscillation
signal modelled by (4.10), can be approximated by:

x(t) ≈ x̃(t) = A[cos(ω0t+ φ0) − φ(t) sin(ω0t+ φ0)]. (4.12)

The expected value of the approximate model of the fundamental oscillator
signal can be calculated as:

E{x̃(t)} = A cos(ω0t+ φ0), (4.13)

where the facts that φ(t) is a zero mean stochastic process E{φ(t)} = 0, and that
it is uncorrelated with deterministic signals, have been taken into account.
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Similarly, the autocorrelation of x̃(t), can be calculated through the definition:

Rx̃(t, t+ τ) = E{x̃∗(t)x̃(t+ τ)} =

= E{A2[cos(ω0t+ φ0) cos(ω0(t+ τ) + φ0)

− φ(t+ τ) cos(ω0t+ φ0) sin(ω0(t+ τ) + φ0)

− φ(t) cos(ω0(t+ τ) + φ0) sin(ω0t+ φ0)

+ φ(t)φ(t+ τ) sin(ω0t+ φ0) sin(ω0(t+ τ) + φ0)]}.

(4.14)

Once again, taking into account that φ(t) is uncorrelated with deterministic
signals, together with the fact that E{φ(t)} = E{φ(t+ τ)} = 0, the terms in the
third and fourth lines of (4.14) vanish. Moreover, since φ(t) is assumed to be a
wide sense stationary process, its autocorrelation will not depend on the specific
time instant t: Rφ(t, t+ τ) = E{φ(t)φ(t + τ)} = Rφ(τ). Therefore, after further
trigonometric simplification, (4.14) can be rewritten as:

Rx̃(t, t+ τ) =
A2

2

[

cos(ω0(2t+ τ) + 2φ0) + cos(ω0τ)

+Rφ(τ)[cos(ω0τ) − cos(ω0(2t+ τ) + 2φ0)]
]

.

(4.15)

In accordance with the Wiener-Kinchine theorem [15], for a wide sense sta-
tionary process, its power spectral density can be calculated as the Fourier trans-
form of its autocorrelation. Even though the process φ(t) has been assumed to
be wide sense stationary, it is straightforward to verify that x̃(t) is not wide sense
stationary. From (4.13) and (4.15), it is obvious that the expected value and the
autocorrelation of x̃(t) are dependent on the specific time instant t, at which they
are calculated.

Nonetheless, since the autocorrelation of x̃(t), given by (4.15), is clearly peri-
odic in t, with period π/ω0, the process x̃(t) can be considered almost cyclosta-
tionary in the wide sense3[16]. A generalisation of the Wiener-Kinchine theorem
can be obtained for such processes [16], whereby their power spectral density can
be calculated as the Fourier transform of the time averaged autocorrelation.

The time averaged autocorrelation of x̃(t) can be calculated from (4.15) as:

Rx̃(τ) =< Rx̃(t, t+ τ) >=
A2

2
[cos(ω0τ) +Rφ(τ) cos(ω0τ)], (4.16)

where< · >, represents time averaging. The power spectral density of x̃(t) can be
finally obtained as the Fourier transform of (4.16). The one-sided power spectral
density of x̃(t), Sx̃(t), is therefore given by:

Sx̃(f) =
A2

2
[δ(f0) + Sφ(f − f0)]. (4.17)

3In order to be cyclostationary in the wide sense, the mean of the process should also be
periodic in t, with the same period as the autocorrelation [16] which, according to (4.13), is not
fulfilled in the case of x̃(t).
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When the frequency content of a signal is studied with a spectrum analyser,
the result obtained in the output display represents, for each frequency point in
the considered sweep, the power integrated after passing the input signal through
a bandpass resolution filter centred at that point. The function obtained by the
spectrum analyser for an input signal x̃(t), with power spectral density Sx̃(f),
can be expressed as:

PSA(f) =

∫ ∞

−∞

Sx̃(γ)|ΠRBW (γ − f)|2 dγ, (4.18)

where ΠRBW (f) represents the transfer function of the bandpass resolution filter
employed, centred at the origin.

Note that, since the process φ(t) has been defined with zero mean: E{φ(t)} =
0, its power spectral density also vanishes for f = 0: Sφ(0) = 0. Therefore,
providing the resolution filter is sufficiently narrow, the power level displayed in
the spectrum analyser at f0, for the input signal x̃(t), would be PSA(f0) ≈ A2/2.
On the other hand, for offset frequencies fm = f − f0 6= 0, by normalising
the measurement for a 1 Hz resolution bandwidth [17], the following result is
obtained:

PSA(fm)|1 Hz ≈
A2

2
Sφ(fm) fm 6= 0. (4.19)

Hence, providing |φ(t)| ≪ 1, an approximation of the single sideband phase
noise spectral density can be calculated as

L (f) ≈ 1

2

PSA(fm)|1 Hz

PSA(f0)
. (4.20)

The approximate measurement of L (f) from the spectrum analyser display,
is outlined schematically in Figure 4.21. Based on that measurement approach,
the phase noise L (f) is sometimes expressed in dBc/Hz, although in this work,
only the standard unit dBrad2/Hz will be used. The phase noise measurement
applications based on spectrum analysers that are commercially available [17],
rely on this simple procedure. In particular, the R&S FS-K4 software embedded
in a Rohde & Schwarz FSP40 spectrum analyser, that will be used for some of
the phase noise measurements of this section, uses the same principles.

Nevertheless, it must be noted that the phase noise measurement obtained
from a spectrum analyser is only valid under the assumption that the approxi-
mation (4.12) can be performed, which strictly requires that |φ(t)| ≪ 1 radian.

4.7.4.2. Proposed Measurement Method: Phase Demodulation

In practical oscillators, the fundamental frequency cannot be considered con-
stant, as it generally exhibits certain degree of drift and/or fluctuation about a
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Figure 4.21: Phase noise approximate measurement using a spectrum analyser.

nominal value, over time. Since the model of the fundamental oscillation, given
by (4.6), was defined with a constant angular frequency ω0 = 2πf0, any depar-
ture of the instantaneous frequency from that nominal value must be reflected
by φ(t), giving rise to the appearance of an additive linear term in the form
φ∆f (t) = 2π∆ft. At microwave frequencies, even relatively small frequency fluc-
tuations ∆f (of the order of one kilohertz or hundreds of hertz), maintained over
a short period of time, may bring about large variations of φ(t).

Consequently, except for the particular case of frequency synthesisers or phase
locked loops, which usually present an extraordinarily high frequency stability,
the approximations for |φ(t)| ≪ 1 radian cannot typically be assumed in practical
free running oscillators. Therefore, the direct spectrum measurement method
described in the foregoing section, is not valid, in general, for this type of circuits.

As an alternative to assess the phase noise performance of free running os-
cillators, a method based on the demodulation of the oscillator signal has been
developed.

Since the free running oscillator frequency is not constant, its fundamental
component will be demodulated using a local oscillator with frequency ωOL ≈ ω0,
which, for the time being, will be considered constant. The limitations that the
frequency instability of the local oscillator introduces in the measurement will be
commented later in this section.
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By quadrature demodulating the fundamental oscillator signal, given by (4.6),
the following low-pass components are obtained [15]:

xI(t) =
A+ ε(t)

2
cos((ω0 − ωOL)t+ φ0 + φ(t)) (4.21)

xQ(t) =
A+ ε(t)

2
sin((ω0 − ωOL)t+ φ0 + φ(t)) (4.22)

where unity amplitude local oscillator and unity gain ideal low-pass filtering have
been considered. From these quadrature components, the demodulated phase
φd(t) can be directly calculated as:

φd(t) = arctan

(

xQ(t)

xI(t)

)

= (ω0 − ωOL)t+ φ0 + φ(t). (4.23)

The phase noise is defined as the single sideband spectral density of the phase
fluctuation φ(t). However, in the demodulated phase φd(t), the phase fluctuation
appears together with a constant φ0, and an additional term linearly dependent
on time, originated by the difference between the nominal frequency ω0, and the
local oscillator frequency ωOL. By calculating the linear least squares fitting of
the demodulated phase φd(t): Lφd

(t), the phase fluctuations can be extracted
from the demodulated phase φd(t), as follows:

φ̃(t) = φd(t) − Lφd
(t). (4.24)

By definition, the recovered phase fluctuation φ̃(t), has zero average and it
does not contain any additive component linearly dependent on time. There-
fore, φ̃(t) represents the phase fluctuations about the average frequency of the
oscillator signal x(t), over the observed time interval.

The recovered phase φ̃(t) is sampled at a frequency Fs = 1/Ts, over an
interval of length TM , obtaining the sequence φ̃[n] = φ̃(nTs), n = 0, 1, . . . ,N − 1,
where N = TM/Ts. Assuming the sample frequency fulfils the sampling theorem
Fs > 2B, where B represents the maximum frequency component contained
in φ̃(t), the power spectral density of the recovered phase fluctuations can be
estimated using classical spectral analysis techniques of digital signal processing.

The average power of the continuous signal φ̃(t), over the interval (0, TM ),
can be approximated through the sampled sequence φ̃[n], providing the sampling
period Ts is sufficiently small, as follows:

Pφ̃ =
1

TM

∫ TM

0
φ̃2(t) dt ≈ 1

N

N−1
∑

n=0

φ̃2[n]. (4.25)

From the sampled sequence φ̃[n], samples of the Fourier transform of the
continuous function φ̃(t), truncated in the interval (0, TM ), can be calculated
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through the Discrete Fourier Transform (DFT) [18]:

Φ̃(f = k
Fs
N

) =
1

N

N−1
∑

n=0

φ̃[n]e−j2πk
n
M , k = 0, 1, . . . ,N − 1. (4.26)

Applying Parseval’s Relation [18], the average power of the continuous signal
φ̃(t) given by (4.25), can be related to the samples of its spectrum, calculated in
(4.26), as follows:

Pφ̃ ≈ 1

N

N−1
∑

n=0

φ̃2[n] =

N−1
∑

k=0

∣

∣

∣

∣

Φ̃(k
Fs
N

)

∣

∣

∣

∣

2

. (4.27)

The average power of the continuous signal φ̃(t), can also be obtained through
the integration of its power spectral density, Sφ̃(f), in the frequency domain.
Assuming that the sampling frequency has been correctly chosen, the integration
can be restricted to the interval (−Fs/2, Fs/2). Moreover, using samples of the
power spectral density, the integral can be approximated by:

Pφ̃ =

∫ ∞

−∞

Sφ̃(f) df =

∫ Fs
2

−
Fs
2

Sφ̃(f) df ≈ Fs
N

N−1
∑

k=0

Sφ̃(k
Fs
N

). (4.28)

By equating (4.27) and (4.28), an estimate of the power spectral density of
φ̃(t): S̃φ̃(f), sampled at frequencies kFs/N , can be obtained:

S̃φ̃(k
Fs
N

) =
N

Fs

∣

∣

∣

∣

Φ̃(k
Fs
N

)

∣

∣

∣

∣

2

k = 0, 1, . . . ,N − 1. (4.29)

The estimate of the power spectral density given in (4.29) is usually referred
to in the literature as periodogram. It can be shown [19], that the periodogram
constitutes an asymptotically unbiased estimator of the power spectral density,
i.e. the expected value of the periodogram converges to the actual power spectral
density of the process when the observation time (or, equivalently, the number
of samples N), tends to infinity.

Nonetheless, in general, the variance of the periodogram estimate of the power
spectral density does not decay to zero, even if the number of samples tends to
infinity. In fact, the variance of the estimate may be relatively high (for certain
type of processes, it is of the order of the actual power spectral density squared,
at each frequency point [19]).

Therefore, even though its expected value tends asymptotically to the actual
power spectral density, the periodogram is an inconsistent spectral estimator,
which continues to fluctuate around the actual power spectral density of the
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process, with a non-zero variance, even if the number of samples N , is increased
unboundedly.

Multiple periodogram based methods have been proposed in the literature to
reduce the variance of the estimate obtained. In particular, a simple approach
would be to acquire a number L of non overlapping successive (although not nec-
essarily consecutive) sequences of N samples Ai = {φ̃i[n]}N−1

n=0 , i = 0, 1, . . . , L−1.
From each sequence Ai, an independent periodogram S̃i

φ̃
, is calculated according

to (4.29), and the estimate of the power spectral density S̃L,φ̃, is finally obtained
by averaging the L periodograms, as follows:

S̃L,φ̃ =
1

L

L−1
∑

i=0

S̃i
φ̃
. (4.30)

The averaged periodogram, given by (4.30), is equivalent to Bartlett’s method,
when the sequences Ai are acquired consecutively. Under these conditions, it can
be shown [19] that the variance of the averaged periodogram is divided by the
number of averaged sequences L, with regard to the case in which one single pe-
riodogram is considered. This result can be assumed to extrapolate to a scenario
where the sequences Ai are not consecutively acquired, providing they correspond
to independent realisations of the process.

The phase noise single sideband spectral density can be calculated from the
averaged periodogram as

L (f) ≈ S̃L,φ̃, f ≥ 0, (4.31)

without imposing any restriction on the behaviour of φ(t), as was the case with
the direct spectrum approach, described in the previous section.

Experimental Set-up and Practical Limitations

In the phase noise measurement procedure that has been described, the oscil-
lator output signal is demodulated using a local oscillator signal of frequency
ωOL, which has been assumed to be constant and close to the nominal oscilla-
tor frequency. The subsequent signal processing performed has been designed to
eliminate the potential offset of the local oscillator signal, referring the computed
phase fluctuations to the average oscillator frequency in the observed interval.

Nonetheless, in practical implementations, the local oscillator frequency will
not remain constant, as it will possess its own phase noise characteristics. As
is the case with the direct spectrum technique [17], the phase noise of the local
oscillator will limit the sensitivity of the measurement set-up, in such a way that
only higher phase noise levels than those of the local oscillator employed can be
reliably measured.
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In this case, the phase noise measurement technique that has been described,
will be practically implemented with an Agilent N5247A PNA-X Vector Network
Analyser. In continuous wave analysis mode, the input signal is quadrature de-
modulated at the selected carrier frequency and sampled in the time domain,
which matches the requirements of the specified measurement procedure. How-
ever, since this piece of equipment was not conceived for the desired purpose, it
imposes several practical limitations that must be taken into account, as they
condition the measurement capabilities. Some of these limitations are detailed
next:

Sample Buffer: The maximum number of consecutive samples that can
be acquired is limited to N = 32001. After a data processing and display
delay, a new sequence of data can be sampled.

IF Bandwidth: The maximum bandwidth that can be managed at inter-
mediate frequency is BWIF ≤ 15 MHz. The IF bandwidth can be reduced
from that limit through digital filtering. However, the reduction of the IF
bandwidth brings about an increased acquisition time.

Acquisition Time: The minimum acquisition time for the maximum
number of samples N = 32001, which takes place for the maximum IF
bandwidth BWIF = 15 MHz, is Tacq = 1.60005 ms.

Sampling Frequency: From the previous specifications, for a sequence
of N = 32001 samples, the minimum acquisition time, corresponding to
an IF bandwidth of 15 MHz, is Tacq = 1.60005 ms. Thus, the maximum
acquisition frequency will be Fs = N/Tacq = 20 MHz.

The phase noise is normally displayed in logarithmic scale for offset frequen-
cies from as close to the carrier as possible, to a maximum of the order of a few
megahertz, at which the levels are typically very low. For this purpose, the IF
bandwidth of 15 MHz would generally suffice. However, note that the minimum
sampling frequency required to represent such bandwidth without distortion is
30 MHz, and the maximum sampling frequency that can be practically achieved
is Fs = 20 MHz.

Furthermore, no improvement can be obtained through the reduction of the
IF bandwidth, as the additional delay introduced by the digital filter would give
rise to an increase of the acquisition time, leading to a proportionally lower
sampling frequency.

Hence, the best configuration is attained with the maximum IF bandwidth
BWIF = 15 MHz, which corresponds to an acquisition time TM = Tacq =
1.60005 ms and a sampling frequency Fs = 20 MHz. Although aliasing may
take place between 5 and 15 MHz, the spectrum is, in principle, free from dis-
tortion up to that frequency.
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On the other hand, the maximum number of consecutive samples determines
the frequency resolution and the minimum positive frequency at which the phase
noise will be evaluated: fmin = Fs/N = 625 Hz. Consequently, the phase noise
will be reliably measured from fmin = 625 Hz to approximately 5 MHz. Nonethe-
less, note that these limitations are not intrinsic to the phase demodulation
method, but they are imposed by the available measurement equipment.

Finally, in order to reduce the variance of the spectral estimate obtained,
the averaged periodogram corresponding to a number L of successively acquired
sequences will be calculated. Results for different numbers of averaged peri-
odograms L, will be compared.

4.7.4.3. Measurement Method Experimental Comparison

In order to validate the implementation of the measurement procedures that
have been described, the results they produce when measuring a common RF
source will be analysed and compared.

Since the direct spectrum method can only be applied to sources with a
limited phase fluctuation, it cannot be used to measure a free running oscillator,
as it has already been commented. Thus, a PLL based frequency synthesised
source with a relatively high frequency stability will be measured instead.

As has been explained in Section 4.7.3, the injection locked performance of
the 4HOSC circuit is assessed by using the PNA-X internal generator to produce
the reference signal at a frequency fs ≈ 2.5 GHz. Inasmuch as the same set-
up will be used later in this section to evaluate the phase noise levels of the
4HOSC circuit, under different injection locked operating conditions, the phase
noise characteristics of the reference generator need to be determined.

Therefore, the phase noise of the PNA-X internal generator, configured to
produce an output signal of frequency fs = 2.5 GHz, has been characterised
using the measurement procedures that have been described.

Firstly, the R&S FS-K4 software, embedded in a Rohde & Schwarz FSP40
spectrum analyser has been used. The results, for offset frequencies from 10 Hz
to 100 MHz, are shown in Figure 4.22, labelled as FSP Measurement.

The phase noise performance of the same source has been evaluated using
the phase demodulation technique, implemented with the PNA-X. The variance
of the spectral estimation performed has been reduced by averaging a number
L = 10.000, of independent periodograms. The results, for offset frequencies
from 625 Hz to 10 MHz, have been labelled as PNA-X Measurement in Figure
4.22.

The measurements obtained through both procedures are in good agreement.
As has been pointed out, the PNA-X measurement suffers aliasing in the higher
region of the band, approximately over 5 MHz, which distorts the results. The
5 MHz value was obtained by considering the 3 dB bandwidth of the resolution
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Figure 4.22: Phase noise measurements of a 2.5 GHz tone, generated by the PNA-
X internal source. Measurements performed with the direct spectrum technique
(FSP), and through phase demodulation (PNA-X). The datasheet phase noise
specification of both local oscillators have been superimposed.

filter. However, in practice, the aliasing effect seems to be appreciable at slightly
lower frequencies.

As a reference, the manufacturer datasheet specification of the phase noise
characteristics of the local oscillators employed in both systems, have also been
superimposed in Figure 4.22. Note that, in the case of the PNA-X measurement,
the local oscillator employed is identical to the source under test.

Due to the fact that the phase noise levels of the source under test are com-
parable to those of the local oscillators employed, neither measurement can be
considered quantitatively rigorous. Nevertheless, the agreement, both between
the measurements, and with the PNA-X source datasheet specification, can be
regarded as an experimental validation of the methods, for the lowest phase noise
levels that will be analysed in the following.

Comparatively, the direct spectrum method provides relatively accurate re-
sults over a wider offset frequency range, which are acquired in a straightforward
manner, without requiring any further data processing. However, the restrictive
small phase fluctuation condition (|φ(t)| ≪ 1 rad), invalidates it for the evalu-
ation of most practical oscillators, for which the phase demodulation technique
still offers accurate results.
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(a) (b)

Figure 4.23: Phase noise measurements of the fundamental component of the
4HOSC circuit at f0c = 2.496 GHz, for different numbers of averaged peri-
odograms L. (a) L = 1, 10 and 100. (b) L = 100, 1.000 and 10.000.

4.7.4.4. Free Running 4HOSC: Number of Averaged Periodograms

The phase noise performance of the fundamental component of the free run-
ning 4HOSC circuit has been measured through phase demodulation. As has
been justified, the number of averaged periodograms is an important parame-
ter that directly affects the variance of the spectral estimate obtained. In order
to illustrate the influence of that parameter, results for different values will be
calculated and compared.

The 4HOSC circuit is operated at the centre of its frequency tuning band,
f0c = 2.496 GHz, and the fundamental component is measured through the input
port, to avoid the high attenuation level introduced by the output filter. The
phase noise results for three different numbers of averaged periodograms L = 1,
10 and 100, are represented in Figure 4.23(a).

When considering one single periodogram to estimate the spectral density
(L = 1), the results exhibit very wide fluctuations, especially at high frequen-
cies. Nevertheless, if the data is smoothed through a moving average filter, the
output will approximate to the results obtained with higher numbers of averaged
periodograms (note that, due to the logarithmic dB representation, the moving
average will be relatively close to the upper side of the fluctuations).

The amplitude of the fluctuations in the results clearly reduces for L = 10,
and slightly more for L = 100, as the variance of the spectral estimate should
divide by the number of averaged periodograms.

The results for higher numbers of averaged periodograms L = 100 and 1.000,
are presented in Figure 4.23(b), where the trace for L = 100, has been repeated
for ease of comparison. As can be observed, the amplitude of the fluctuations
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barely reduces when increasing the number of averaged periodograms over L =
100.

Hence, in following measurements, a number of averaged periodograms L =
100, will be generally used, except when the maximum precision in the spectral
estimation is strictly necessary, in which case it will be explicitly stated.

4.7.4.5. Operation as a Voltage Controlled Oscillator

The natural oscillation frequency f0, of the 4HOSC circuit can be modified
by tuning the varactor control voltage Vc. The phase noise levels of the circuit
operating at 5 different oscillation frequencies, uniformly distributed through-
out its frequency tuning range, are compared in Figure 4.24. Once again, the
fundamental component has been measured through the input port.

Figure 4.24: Phase noise levels of the fundamental component of the 4HOSC
circuit, for 5 different oscillation frequencies.

Higher phase noise levels have been measured close to the ends of the fre-
quency tuning range, whereas lower levels have been obtained towards the centre.
Anyway, the variation observed is not very significant and barely reaches 5 dB.

4.7.4.6. Fourth Harmonic Component

The 4HOSC circuit has been optimised to produce the fourth harmonic com-
ponent of the oscillation as its output signal. Therefore, the phase noise behaviour
of that harmonic component needs to be characterised.
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In general, harmonic content of orderN ∈ Z,N > 1, is generated in non-linear
devices due to the appearance of powers of the same order in the constitutive
relationships that model their physical behaviour. If the fundamental oscillator
signal, as modelled by (4.9), is raised to the N th power

xN (t) = AN cosN (ω0t+ φ0 + φ(t))

= B cos(Nω0t+Nφ0 +Nφ(t)) + z(t),
(4.32)

the trigonometric expression can be expanded as a term in which the argument is
multiplied by N—corresponding to the N th harmonic component, with frequency
Nf0—plus some additional lower order terms, gathered in z(t).

According to (4.32), the phase fluctuation at the N th harmonic component
is equal to the fluctuation at the fundamental oscillation, φ(t), multiplied by N .
Thus, the power spectral density of the phase fluctuations at the N th harmonic
component Sφ,N (f), can be related to that of the fundamental component Sφ(f),
as

Sφ,N(f) = N2Sφ(f). (4.33)

From (4.33), the phase noise level at the N th harmonic component LN (f),
can be analogously related to that at the fundamental component, in dB, as
follows:

10 log
LN (f)

L (f)
= 20 log(N). (4.34)

Thus, the phase noise level increases with the order of the harmonic com-
ponent employed. In particular, for the fourth harmonic component used in
the 4HOSC circuit, the increment in the phase noise level with regard to the
fundamental component will be:

10 log
L4(f)

L (f)
= 20 log(4) ≈ 12.04 dB. (4.35)

The phase noise level of the 4HOSC circuit at the centre of the frequency
tuning range has been measured, both at the fundamental, and at the fourth
harmonic component. In order to enable an accurate comparison between both
measurements, the number of averaged periodograms has been increased, in this
case, to L = 10.000.

The results have been represented in Figure 4.25. As has been indicated in
the figure, the offset between the traces is approximately 12 dB, in accordance
with (4.35).

4.7.4.7. Fourth Harmonic Component: Operation as a VCO

The phase noise performance of the fundamental component has been assessed
for different oscillation frequencies. Nonetheless, since the output signal of the
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Figure 4.25: Phase noise level of the 4HOSC circuit, both at the fundamental
and at the fourth harmonic component.

circuit is the fourth harmonic component, its phase noise characteristics have
been measured for seven oscillation frequencies, uniformly spaced throughout
the frequency tuning range.

The measurement results are presented in Figure 4.26. As was the case at
the fundamental component, higher phase noise levels are obtained at the ends of
the frequency tuning band. In this case, with a higher number of measurement
frequencies, it can be clearly observed that the lowest phase noise levels are
obtained at 4f0 = 9.969, 9.977 and even at 9.985, whereas the levels increase for
higher frequency values. Hence, the minimum phase noise levels take place closer
to the lower end of the frequency tuning range, rather than exactly at the centre.

As was the case with the fundamental component, the variation is not very
significant, and barely reaches 5 dB. Note, however, that the absolute levels in
this case are about 12 dB higher, as has been properly justified.

4.7.4.8. Injection Locked Behaviour: Synchronisation Power

In order for the 4HOSC circuit to operate as a phase shifter, it must be injec-
tion locked to an external reference signal. The main parameters that condition
the synchronise operation regime of the circuit are the synchronisation power Ps
and frequency fs, together with the natural oscillation frequency of the circuit
f0.
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Figure 4.26: Phase noise levels of the fourth harmonic component of the 4HOSC
circuit, for seven different oscillation frequencies.

In this section, the phase noise performance of the injection locked circuit has
been analysed versus the synchronisation power level Ps. To guarantee that the
circuit remains injection locked for all the synchronisation power levels imposed,
the measurement is carried out at the centre of the frequency tuning range fs =
2.496 GHz, tuning the varactor control voltage so that fs = f0.

Since the circuit input port is used to inject the external reference signal, the
fundamental component cannot be measured through that port. On the other
hand, the high attenuation introduced by the output filter at the fundamental
component would bring about a very noisy acquisition. Thus, under injection
locked operation conditions, only the fourth harmonic component will be mea-
sured.

The results are represented in Figure 4.27, for the synchronisation power val-
ues Ps = −45, −42.5, −40, −37.5, −35, −30, −25, −20, −15, −10, −5 and
0 dBm. Additionally, the phase noise performance of the fourth harmonic com-
ponent of the free running 4HOSC circuit, as well as that of the PNA-X, which
is used as synchronisation generator, have been included for comparison.

As has been graphically indicated in the figure, the phase noise levels con-
tinually decrease as the synchronisation power is increased. Even for a very low
synchronisation power, such as Ps = −45 dBm, the phase noise level is signifi-
cantly reduced (a minimum of 15 dB), with regard to the free running operation.
The levels progressively decrease and adopt the shape of the trace corresponding
to the reference signal, until—for relatively high values of the synchronisation
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Figure 4.27: Phase noise levels of the fourth harmonic component of the injec-
tion locked 4HOSC circuit, for different synchronisation power levels. The free
running performance and that of the reference signal have been superimposed for
comparison.

power—the phase noise level saturates to approximately the characteristic for
Ps = 0 dBm.

Note that the trace for Ps = 0 dBm approximately matches the characteristic
of the PNA-X reference signal, offset upward about 12 dB. The fact that the
represented trace corresponds to the fourth harmonic component of the 4HOSC
circuit oscillation means that, according to (4.35), the fundamental oscillation ap-
proximately matches the phase noise characteristic of the reference signal. Thus,
for relatively high synchronisation power levels, the phase noise performance at
the fundamental component of the injection locked oscillator tends to match that
of the external reference.

Injection locking has traditionally been employed as a means of improving
the frequency stability of oscillators [20; 21]. As has been verified, even with a
very low synchronisation power level, the phase noise performace of the circuit
can be substantially improved.

4.7.4.9. Injection Locked Behaviour: Phase Shift Tuning

The phase noise characteristic of the injection locked 4HOSC circuit have been
studied for different synchronisation power levels Ps. However, to take advantage
of the phase shift tuning capabilities of the circuit, the difference between the
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frequency of the external signal fs, and the natural oscillator frequency f0— the
frequency detuning—must be varied.

The phase noise performance of the injection locked circuit has been analysed
for different values of the frequency detuning, controlled through the varactor bias
voltage Vc.

The results for a synchronisation signal with power Ps = −35 dBm and fre-
quency fs = 2.496 GHz, are shown in Figure 4.28. The trace colours correspond
to different phase shift values ∆φo, uniformly spaced throughout the associated
synchronisation locus, as indicated in the upper inset.

Figure 4.28: Phase noise levels of the 4HOSC circuit, injection locked to an
external signal of power Ps = −35 dBm and frequency fs = 2.496 GHz, for
different phase shift values, as indicated in the inset.

Higher phase noise levels have been observed at both end points of the interval
of phase shift values considered. Very similar and appreciably lower levels are
obtained at the penultimate point at either end of the interval. The phase noise
levels continue to reduce towards the centre of the locus, although a limited
variation is further observed.

It is important to emphasise the fact that an interval of phase shift values of
nearly 540◦ has been considered while, for practical applications, a range wider
than 360◦ is rarely necessary. A 360◦ range can be effectively covered without
considering the two end values of the interval depicted in the inset of Figure
4.28, in which case the variation of the phase noise level with the phase shift
value imposed is lower than 2.5 dB.
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The phase shift performace of the circuit has been analogously analysed for a
synchronisation power level Ps = −40 dBm. A slightly greater than 360◦ phase
shift interval has been considered in this case, as shown in Figure 4.29.

Figure 4.29: Phase noise levels of the 4HOSC circuit, injection locked to an
external signal of power Ps = −40 dBm and frequency fs = 2.496 GHz, for
different phase shift values, as indicated in the inset.

In accordance with the analysis presented in the previous section, the absolute
phase noise levels for Ps = −40 dBm have increased with regard to the case with
Ps = −35 dBm.

The phase noise spectral density is still higher at the end points of the phase
shift interval, and progressively decreases towards the centre of the locus. How-
ever, in this case, the whole considered interval is required to cover a 360◦ phase
shift range, giving rise to a variation of the phase noise level slightly higher than
5 dB.

Thus, as a result of reducing the synchronisation power Ps, the absolute phase
noise levels observed have increased, as has the variation of those levels with the
imposed phase shift ∆φo, within a 360◦ range.

Nonetheless, despite the variation with the phase shift value imposed, it is
important to notice the substantial reduction of the phase noise levels that has
been attained, even with a very low synchronisation power level, such as Ps =
−40 dBm, with regard to the free running oscillator performance.
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4.7.5. Transmission of Phase Modulated Signals

The fourth harmonic oscillator circuit that has been designed, optimised and
experimentally evaluated, presents a number of interesting features, such as an
optimised harmonic content, which leads to a reduced power consumption, and
a wide continuous phase shift range, very attractive for the control of antenna
arrays. Nonetheless, in the foregoing analyses, the circuit operation regime has
been restricted to the transmission of simple carrier signals, which significantly
constrains the range of prospective applications. In order to enable the use of the
4HOSC circuit as a stand-alone transmitter in general purpose communication
systems, it must be capable of generating—or, at least, dealing with—modulated
signals.

Different approaches to the use of oscillator based circuits in communication
systems can be found in the literature [22; 23; 24; 25]. In analogy to the classical
superheterodyne transmitter topology, the modulated signal can be introduced in
an oscillator circuit, duly optimised to extract the appropriate intermodulation
product, leading to a self oscillating mixer implementation [26]. By optimising
the generated harmonic content to perform the mixing operation with a harmonic
component of the oscillation signal, a harmonic self oscillating mixer topology,
like the one used in Chapters 2 and 3, can be obtained. As has been pointed
out, that topology integrates the signal downconversion and continuous range
phase shifting operations, together with the local oscillator generation, providing
an overall positive conversion gain. The conversion gain of the circuit can be
further optimised for wideband operation by deliberately forcing the operation
of the circuit in the vicinity of several instabilities, through bifurcation control
techniques [27].

Harmonic self oscillation mixer design is generally performed using a small
signal approach, i.e. under the assumption that the oscillatory solution behaves
linearly with respect to the input signal. This condition is usually fulfilled in
receiving topologies, in which the input signal has commonly been highly atten-
uated by the propagation, having a relatively low level.

Conversely, for transmitting topologies, in which a high output signal level is
generally required, the power of the input IF signal needs to be increased and,
consequently, the small signal approach can no longer be employed. Therefore,
the presence of an additional signal with relatively high power in the circuit will
give rise to the generation of harmonic components, as well as intermodulation
products with the oscillatory solution, which must be taken into account in the
harmonic balance frequency basis, increasing the computational complexity of
the simulations accordingly. Furthermore, the presence of an arbitrary external
signal with relatively high power will in general perturb the oscillatory solution,
to the extent that it may even affect its stability properties. Thus, the design of
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a transmitting harmonic self mixer topology with a relatively high output power
constitutes a daunting task that has rarely been practically addressed.

As an alternative to the self oscillating mixer approach for transmitting
topologies, several techniques based on the direct modulation of the oscillator
signal have been proposed. The main advantage of directly modulating the os-
cillatory solution is that the output modulated signal level can in principle be as
high as the output power of the selected oscillator. On the other hand, the circuit
dynamics will condition the range of modulation formats that can be introduced
in the oscillatory solution.

The self limited nature of the non-linear oscillatory regime limits the capabil-
ity of the circuit to modify the amplitude of its steady state solution. Therefore,
a major restriction in the range of modulation schemes that can be applied to
the oscillatory solution is that they must have constant amplitude.

As has been shown, the fourth harmonic oscillator circuit can be used as
a VCO, changing its oscillation frequency as a function of the oscillator bias
voltage. However, when the circuit is injection locked to an external signal, the
oscillation frequency is imposed by that external reference. Variations of the syn-
chronisation signal frequency result in changes in the frequency detuning which,
in turn, bring about changes in the applied phase shift. Therefore, frequency
modulations schemes are also not appropriate, as they cannot coexist with the
phase shifting functionality.

With regard to phase modulations, the fourth harmonic oscillator circuit has
experimentally proved to operate as an effective continuous range phase shifter.
Taking advantage of that known property, several approaches to the use of os-
cillator based circuits for the transmission of phase modulated signals have been
presented in the literature [28; 29; 30; 31; 32; 33; 34]. However, the focus of
those works has been centred in the modulation of the oscillator signal, while
overlooking the capability of simultaneously using the circuit as a variable phase
shifter.

In this section, different techniques for the modulation of the oscillator signal
will be discussed and evaluated for the particular case of the fourth harmonic
oscillator design that has been presented, while focusing on preserving the vari-
able phase shifting capability. The addition of the capacity to deal with phase
modulated signals to the 4HOSC circuit would lead to a multifunctional circuit
topology that can be used as a stand-alone front end for the control of transmit-
ting antenna array elements.

4.7.5.1. Modulation of the Varactor Bias Voltage

As has been demonstrated, under injection locked operation conditions, the
phase shift of the 4HOSC circuit output signal can be controlled through the
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varactor bias voltage Vc. Thus, by adequately changing the amplitude of the
varactor bias voltage, the 4HOSC output signal can be phase modulated.

This modulation technique was proposed in the literature [28; 29], to generate
BPSK (Binary Phase Shift Keying) signals, using fundamentally injection locked
oscillators. Since those circuits are known to provide a theoretical phase shift
range of about 180◦, the whole range needs to be used to produce the two symbols
of the BPSK constellation, which are separated 180◦. However, as has been
experimentally observed, the theoretical ranges tend to reduce in practice due to
the appearance of non-linear effects as the circuit approaches the instabilities at
the limits of the synchronisation range, where the phase noise performance also
becomes poorer.

In [30], a discrete 180◦ phase shifter based on a PIN diode switch, is combined
with an injection locked oscillator providing an additional 90◦ phase shift range
by tuning its drain to source bias voltage. That topology enables the generation
of both BPSK and QPSK (Quadrature Phase Shift Keying) signals.

A more recent version of this approach was presented in [31], using a push-
push oscillator topology, whose output signal is the second harmonic component,
doubling the theoretical phase shift range available. Therefore, the 360◦ range
can be used to generate BPSK and even QPSK signals, while leaving a stability
margin at either side of the range—that does not need to be used—in order to
prevent degradations in the performance of the circuit.

Due to the relatively narrow phase shift ranges available in the aforementioned
works, the modulation of the oscillator signal is performed at the expense of
the phase shifting functionality. Nevertheless, one of the main advantages of
the 4HOSC circuit topology is the extended phase shift range, which has been
experimentally verified to be wider than 620◦. Taking advantage of that extended
range, a BPSK modulation comprising the symbols with phase shift < ∆φo >
−90◦ and < ∆φo > +90◦ can be generated, in which the centre phase shift <
∆φo >, can still be varied in a 360◦ range. Note that 360◦ +180◦ = 540◦ < 620◦.

The non-linear response of the phase shift introduced by the 4HOSC circuit,
with regard to the varactor bias voltage Vc, that has been shown in Figure 4.13,
will determine the characteristics of the time varying control voltage Vc(t), that
is necessary to obtain the desired modulation of the output signal.

For a given centre phase shift < ∆φo >, the phase shift corresponding to
the symbol “1” will be < ∆φo > +90◦, whereas, for the symbol “0”, the cor-
responding phase shift will be < ∆φo > −90◦, as shown in the inset of Figure
4.30(a). Therefore, the required varactor bias voltage corresponding to either
symbol of the constellation, versus the required centre phase shift < ∆φo >, can
be obtained by simply introducing a 90◦ and a −90◦ offset, respectively, in the
experimental synchronisation locus depicted in Figure 4.13.
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(a) (b)

Figure 4.30: (a) Varactor bias voltages corresponding to the symbols of the
BPSK modulation, versus the centre phase shift < ∆φo >, for Ps = −30 dBm.
(b) Amplitude of the required varactor bias voltage waveform versus the centre
phase shift < ∆φo >.

The varactor control voltage levels corresponding to the symbols of the BPSK
constellation are illustrated in Figure 4.30(a), as a function of the desired centre
phase shift < ∆φo >, for the particular case of Ps = −30 dBm.

For the range of centre phase shift values < ∆φo >∈ [−180◦, 180◦], the voltage
levels corresponding to both symbols of the constellation have been specified.
After a relatively narrow interval at either side of that range, the trace associated
with one of the symbols is no longer defined. As has been discussed, the DC
sources employed in the experimental set-up limited the measurement close to
the ends of the synchronisation range, which is in fact slightly wider than the
represented trace. Nonetheless, since a 360◦ + 180◦ = 540◦ phase shift range is
required for this application, the performance of the circuit will necessarily start
to degrade within that range.

Furthermore, note that the difference between the varactor bias voltage re-
quired for the symbols of the constellation is not constant, and varies with the
desired centre phase shift < ∆φo >. Thus, the required varactor bias voltage
waveform Vc(t), will have a centre value < Vc >, and an amplitude ∆Vc, both
dependent on the centre phase shift < ∆φo >.

The amplitude of the required varactor bias voltage waveform ∆Vc, has been
represented as a function of the centre phase shift in Figure 4.30(b). A non-
linear variation in the required amplitude greater than 30% is observed, which
substantially complicates the control circuitry.

If that required amplitude variation were neglected, applying a constant am-
plitude and changing only the centre value < Vc >, the symbols of the BPSK
modulation would not be separated 180◦ for all the values of the centre phase
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shift < ∆φo >, which has a negative impact on the probability of error of the
modulation. More importantly, if the amplitude of the varactor control voltage
waveform is not decreased when approaching the limits of the centre phase shift
range (−180 and 180◦), the response of one of the circuits becomes increasingly
sensitive to the control voltage, to the point that it might be pushed out of
synchronisation.

Hence, in a scenario where multiple 4HOSC circuits are used to control the
elements of an antenna array transmitting phase modulated signals, control wave-
forms with different amplitudes and centre values need to be generated for the dif-
ferent elements, which significantly complicates the associated control circuitry.
In addition, the wide phase shift range required with this approach forces the
operation of the circuit far from the centre of the synchronisation range, giving
rise to degradations in the performance.

Consequently, the practical limitations that have been mentioned discourage
the modulation of the varactor bias voltage as a means for the 4HOSC circuit to
transmit BPSK signals, while preserving the phase shifting functionality. A more
advantageous modulation technique will be commented and analysed in the the
following section.

4.7.5.2. Phase Modulated Reference Signal

Under injection locked operating conditions, the phase shift introduced by the
4HOSC circuit can be controlled through the varactor bias voltage Vc, and that
phase shift is referred to the external reference signal. Therefore, if the phase
of that external reference changed, the phase of the circuit output signal would
follow that variation after a transient regime.

Taking advantage of that phenomenon, an array of oscillator based active
antennas, injection locked to a phase modulated signal was presented in [32].
The modulated signal is directly injected to the centre element of the array,
while the remaining elements become injection locked through electromagnetic
coupling.

The same concept was applied in [33; 34] to a fifth order subharmonically
injection locked oscillator. Due to the subharmonic synchronisation, the phase
shifts introduced in the reference signal are multiplied by five in the oscillator
output. Thus, the amplitude of the phase modulation introduced in the reference
signal must be divided by five. A GMSK (Gaussian Minimum Shift Keying)
modulation was successfully obtained.

Although that possibility was not considered in the previously referenced
works, the approach that has been described enables the modulation of the os-
cillator output signal without taking advantage of its phase shifting capabilities,
which remain completely available for simultaneous exploitation.
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The modulation of the oscillator signal while using its phase shifting func-
tionality, was explored by the author of this Thesis in [35], in a polarisation agile
antenna based on fundamentally injection locked oscillators. The phase shift
range provided by those circuits is sufficient to control the polarisation state of
an antenna, as demonstrated in [36], although it is not enough to drive a general
purpose antenna array.

In this section, the performance of the fourth harmonic oscillator circuit, in-
jection locked to digitally phase modulated signals, will be experimentally evalu-
ated under different operating conditions, while focusing on preserving its phase
shifting functionality.

Modulation of the Reference Signal

The 4HOSC circuit synchronisation signal, with frequency fs ≈ 2.5 GHz and
power Ps, must be phase modulated. Although any type of phase modulation
could, in principle, be employed, only digital Phase Shift Keying (PSK) signals
will be considered in this work.

In the simplest case, the Binary Phase Shift Keying (BPSK) modulation
scheme, features a constellation comprising two symbols separated 180◦: for in-
stance 0◦ and 180◦. Due to the harmonic nature of the 4HOSC circuit, in order
to produce a BPSK simulation in the circuit output, the symbols in the reference
signal must be placed 45◦ apart (180/4=45◦).

Taking advantage of the fact that the synchronisation signal is a single tone
at a constant frequency fs ≈ 2.5 GHz, its phase modulation is relatively easy
to perform. Multiple passive phase shifter based PSK modulator topologies can
be found in the literature, which can be employed for the reference signal phase
modulation. The required modulation could even be obtained by using two con-
secutive symbols of a commercially available 8PSK modulator. Note that, since a
relatively low power level is generally required for the synchronisation, the losses
introduced by the modulator will have a limited impact on the system overall
efficiency.

In this particular case, the modulation has been generated using the Rohde
& Schwarz IQ Modulation Generator AMIC, together with the Rohde & Schwarz
SMV03 Vector Signal Generator. This equipment is capable of producing a broad
range of fully configurable complex modulations, which exceedingly covers the
requirements of this measurement set-up.

To illustrate the quality of the modulations obtained, the modulated signals
generated for different output power levels have been measured with an Agilent
N5247A PNA-X Vector Network Analyser, operating in continuous wave as a
quadrature demodulator. The measurements for different output power levels
Ps, are shown in Figure 4.31.
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(a) (b)

Figure 4.31: AMIC phase modulated signals for different output power levels.
(a) Ps = −35, −30, −25 and −20 dBm. (b) Ps = −45, −40 and −35 dBm.

Given the sampling frequency limitations of the PNA-X that have been com-
mented in the previous section, the signals have been sampled at the maximum
available frequency, Fs = 20 MHz.

The modulated signals become increasingly noisy as the carrier power is re-
duced. Moreover, regardless of the output power selected, very sharp spikes are
produced both at the beginning and at the end of the edges of the signal. The
fact that those spikes are not observed in every edge may be due to the relatively
low sampling frequency that has been employed.

Circuit Dynamical Response: Synchronisation Power

The injection locked solutions of the 4HOSC circuit are generally greatly in-
fluenced by the synchronisation power Ps applied. Therefore, the dynamical
response of the circuit to a 45◦ step in the reference signal phase—which brings
about a 180◦ step in the circuit output—has been analysed for different synchro-
nisation power levels Ps. The results are shown in Figure 4.32(a).

The circuit response is increasingly fast for higher synchronisation power lev-
els. For relatively high synchronisation power levels, the circuit may seem to ex-
hibit overshoot. Nonetheless, note that the phase also features a sharp decrease
from the low level, just before the positive edge of the signal, which cannot be
explained by that phenomenon.

Consequently, as the synchronisation power level is increased and the cir-
cuit dynamics become increasingly fast, the response follows more closely the
behaviour of the reference, and the spikes of the latter can be appreciated in the
former. Conversely, as the synchronisation power level is reduced, the circuit
dynamics become slower, giving rise to a monotonic transient response.
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(a) (b)

Figure 4.32: (a) Dynamical response of the circuit to a 45◦ step in the reference
signal phase. (b) Rise time versus synchronisation power level Ps.

For a step response, the rise time is usually defined as the time taken for the
signal to change between a 10 and a 90% of the amplitude of the step. In this
case, for the 180circ step, it would be the time taken by the signal to change
between 18 and 162circ, as indicated in Figure 4.32(a).

The rise time versus the synchronisation power level have been represented
in Figure 4.32(b). As expected, the rise time progressively decreases as the
synchronisation power is increased.

Circuit Dynamical Response: Phase Shift Tuning

As has been discussed, the fourth harmonic oscillator circuit can be used to
transmit phase modulated signals while preserving its continuous range phase
shifting capabilities. In this section, the dynamics of the circuit are evaluated
at different working points within its synchronisation locus, corresponding to
different phase shift values imposed.

The reference signal is modulated so that the 4HOSC circuit output is a
BPSK signal of frequency fb = 0.5 MHz. For a synchronisation power level
Ps = −30 dBm, the response of the circuit at 8 operating points, uniformly
spaced throughout the associated synchronisation locus, are presented in Figure
4.33.

The noisy fluctuations of the reference signal that have been observed in
Figure 4.31(a) for Ps = −30 dBm, limit the conclusions that can be drawn from
the comparison of the different traces, which are reasonably similar. It seems
clear, nevertheless, that the response becomes slower towards the very ends of
the synchronisation locus. However, those two end points lie outside the 360◦
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Figure 4.33: BPSK modulated signal with frequency fb = 0.5 MHz, measured
at eight different working points, uniformly spaced throughout the associated
synchronisation locus, as shown in the inset. The synchronisation power is Ps =
−30 dBm.

phase shift range that is usually required in practical applications, and therefore,
the circuit would very rarely need to operate in those regimes.

For a synchronisation power level Ps = −40 dBm, the circuit response has
been analogously measured at nine working points uniformly spaced throughout
the corresponding injection locked solution locus. The results are presented in
Figure 4.34.

As expected, the dynamics of the circuit have become faster for a higher
synchronisation power level. Once again, the outer points considered in the
synchronisation locus correspond to slightly slower dynamics, although those
points are outside the usually required 360◦ phase shift range.

As a conclusion, the fourth harmonic oscillator has experimentally proved to
be capable of transmitting phase modulated signals, while preserving its phase
shifting functionality. The circuit dynamics do not exhibit a strong dependence
on the phase shift value imposed, although the response tends to become appre-
ciable slower when approaching the limits of the synchronisation range. However,
due to the wide phase shift range provided by the 4HOSC circuit, a 360◦ phase
shift range can be effectively provided in the central region of the locus, where
the dynamics remain reasonably fast.

On the other hand, the synchronisation power level directly affects the dynam-
ical response of the circuit, which becomes faster when increasing the reference
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Figure 4.34: BPSK modulated signal with frequency fb = 0.5 MHz, measured
at nine different working points, uniformly spaced throughout the associated
synchronisation locus, as shown in the inset. The synchronisation power is Ps =
−25 dBm.

signal power level. Thus, the 4HOSC topology will be especially indicated for
applications with moderate throughput requirements, in which case the circuit
can be injection locked with a relatively low synchronisation power level, like
those studied above. For instance, for a synchronisation power Ps = −30 dBm,
and taking into account the fact that the output signal power is Po ≈ −5 dBm,
the 4HOSC circuit can be considered a continuous range phase shifter with a
power gain G ≈ 25 dB.

Increasing Data Rate

Multiple techniques have been presented in the field of signal theory to increase
the data rate of modulations. A common approach is usually to increase the
number of symbols in the associated constellation, which brings about a higher
data rate at the expense of reducing the bit error rate.

Since the nature of the 4HOSC circuit imposed that all the symbols must
have the same amplitude, only the phase can change between different symbols,
leading to a generalised N-PSK modulation, which comprises N uniformly spaced
symbols in a circumference.

In order to illustrate this technique, a 4-PSK, usually referred to as a Quadra-
ture Phase Shift Keying (QPSK) modulation has been generated. The symbols
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in the reference signal must be separated 22.5◦, between 0◦ and 67.5◦. The QPSK
modulated signal measured at the output of the 4HOSC is shown in Figure 4.35,
for Ps = −25 and −30 dBm.

Figure 4.35: QPSK modulated signal measured at the output of the 4HOSC
circuit.

4.8. Conclusions

A fourth harmonic oscillator circuit has been designed. The optimisation of
the fourth harmonic component of the oscillation, at 10 GHz, as the output signal
gives rise to a theoretical phase shift range of 720◦. A practically usable phase
shift range wider than 620◦ has been measured in the manufactured prototype.

The harmonic content generated has been optimised through non-linear opti-
misation techniques to maximise the output power at the fourth harmonic com-
ponent, as well as to minimise the DC power consumption. A measured output
power Po ≈ −5 dBm was attained, with a power consumption PDC = 5.7 mW,
corresponding to a power efficiency η ≈ 5.48%.

The phase noise performance of the fourth harmonic oscillator was evaluated
both free running and injection locked to an external generator. In the latter
case, the phase noise level observed decreases as the power of the external ref-
erence signal is increased, and it progressively converges (at the fundamental
component) to the phase noise characteristic of the reference generator. More-
over, when used as a phase shifter, the phase noise performance of the circuit is
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better close to the centre of the associated synchronisation loci, and it worsens
towards the ends.

The capability of the circuit to transmit modulated signals has been assessed.
When the circuit is injection locked to a phase modulated external signal, the
output signal will follow the same phase modulation, with an amplitude multi-
plied by four. The circuit can be simultaneously used as a variable phase shifter,
by tuning the varactor bias voltage. The dynamics of the circuit become increas-
ingly faster for higher synchronisation power levels, as well as close to the centre
of the synchronisation locus.

Hence, the fourth harmonic oscillator that has been presented is a multi-
functional topology that can be used as a stand-alone front end for the control
of antenna array structures transmitting phase modulated signals. Furthermore,
the low power consumption that has been attained enable the use of that topology
in portable or mobile applications.
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5.1. Introduction

The well known properties of antenna arrays in the context of communication
systems have already been mentioned in previous chapters. In particular, a re-
ceiving topology based on injection locked third harmonic self oscillating mixers
was reported in Chapter 2.

This versatile circuit topology implements several functional blocks required
in common communication systems, such as continuous range phase shifting and
signal downconversion, together with the local oscillator signal generation, pro-
viding an overall positive conversion gain.

Nevertheless, the interesting features of this circuit architecture are generally
difficult to translate into transmitting topologies, owing to the higher output
power requirements normally imposed to this type of implementations.

In receiving topologies, the limited power levels of both the input RF and
the output IF signals, enable their analysis as a small signal regime about the
oscillatory solution. On the other hand, the increase of the required RF output
power, and possibly of the IF input level, will result in the generation of non-
negligible harmonic components and intermodulation products by these signals,
which must be taken into account, ultimately increasing the computational cost
of the simulations substantially. Furthermore, the presence of arbitrary signals
with relatively high power levels in the circuit may dramatically perturb the
oscillatory regime, to the point of completely extinguishing the solution via a
Neimark–Sacker bifurcation.

Given the intrinsic difficulties of adapting the self oscillating mixer topologies
to transmitting implementations, other options have been alternatively consid-
ered. The fourth harmonic oscillator design that has been presented in Chapter
4, exhibits interesting features such as very wide continuous phase shift range and
a contained power consumption for a relatively low output power, which makes
it appropriate for short-range point-to-point portable or mobile reconfigurable
communications.

Thus, the purpose of this chapter is to employ the fourth harmonic oscillator
circuit for the implementation of a two-dimensional active antenna array. The
antenna array, as well as the required auxiliary networks, will be separately
designed, analysed in detail and individually tested. Finally, a prototype of
the complete active antenna system will be manufactured and experimentally
characterised.
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Figure 5.1: Block diagram of the transmitting active antenna array based on
fourth harmonic oscillators.

5.2. System Overview

A schematic diagram of the transmitting active antenna array based on fourth
harmonic oscillators is outlined in Figure 5.1. Each row of the 4 × 4 two-
dimensional antenna array is fed with a uniform amplitude and phase distribution
through a power divider network, subsequently connected to a 4th Harmonic OS-
Cillator circuit (4HOSC).

As has been analysed in detail in Chapter 4, when the fourth harmonic oscilla-
tor circuit is injection locked to an external signal at the fundamental oscillation
component f0 = 2.5 GHz, by tuning the varactor bias voltage Vc, the phase of
its fourth harmonic component at 4f0 = 10 GHz—which has been optimised as
the output signal—can be controlled in a continuous range exceeding 360◦.

Therefore, by tuning the control signals of the four independently injection
locked circuits, the pencil beam of the antenna array can be vertically steered
(in the Y Z plane, according to Figure 5.1).

For system monitoring purposes, a low power sample of the output signal of
each of the 4HOSC circuits is extracted by means of directional couplers. These
samples are simultaneously measured using a four port Agilent N5247A PNA-X
vector network analyser.

5.3. Microstrip Antenna Array

Reconfigurable antenna arrays rely on separately controlling the feeding sig-
nals of the different individual elements, and thus, those signals need to be routed
from each of the tuning circuits to the corresponding radiating elements.
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The interconnection may not represent a challenge in linear arrays, such as
the design developed in Chapter 2, where each individual signal can be accessed
through a connector installed at the edge of the circuit board. However, this
approach is not directly scalable to two-dimensional topologies and, although it
can still be applied, it may lead to unwieldy implementations as the number of
elements increases.

This limitation is overcome in [1], using a topology based on quasi Yagi an-
tennas, in which the required tuning circuits for each row of the array are placed
in a perpendicular plane.

In this work, the same arrangement of the tuning circuitry will be used.
Nonetheless, in order to limit the interference of the spurious radiation produced
by the circuits with the antenna radiation pattern, a two-dimensional microstrip
antenna array, conveniently shielded by a common ground plane, will be designed
in this section.

5.3.1. Individual Radiating Element

Due to the fact that the tuning circuits will be located under the ground
plane of the antenna array, the radiating elements need to be fed from underneath.
Thus, probe feeding is an appropriate technique for this purpose, since connectors
associated with each of the individual elements can be installed on the ground
plane, were the necessary circuitry is connected.

The impedance bandwidth of microstrip patch antennas is known to increase
for higher values of the substrate thickness and for lower permittivities. However,
thick substrates generally give rise to higher coupling levels, which make them
inappropriate for array designs. Moreover, in simple probe fed topologies, the
required length of the probe increases with the substrate thickness, leading to
high inductance values that need to be subsequently compensated.

Hence, the solution that has been developed in this work relies on two stacked
patches, as schematised in Figure 5.2. The first substrate layer, through which
the probe is connected to the first patch, is maintained relatively thin, while
the layer between the first and the second patch can be moderately thickened to
improve the bandwidth.

The coaxial connector is soldered to the ground plane of the structure, while
the probe is connected to the specified point on the first patch, etched on top of
a 0.762 mm thick ARLON 25N substrate layer. The second patch is placed on
top of a double layer of the same ARLON 25N laminate (1.524 mm).

According to the coordinate reference indicated in Figure 5.2, the design
presents linear polarisation in the direction of the y axis. Therefore, the res-
onance frequency of either patch is primarily determined by its length in this
direction. By appropriately tuning these lengths, together with the remaining
dimensions, the resonances associated with the patches can be arranged close
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Figure 5.2: Proposed microstrip antenna design. Dimensions in millimetres.

together in the vicinity of the desired operating frequency, resulting in a band-
width enhancement. In this case, the first patch is slightly longer than the second,
giving rise to a lower resonance frequency.

The optimised design outlined in Figure 5.2 was developed by George Roberto
Hotopan, M.Sc. as part of his Master’s thesis [2], carried out under the supervi-
sion of the author of this doctoral work.

The design was developed relying on method of moments simulations per-
formed with Advanced Design System 2009 (ADS). According to these simula-
tions, an impedance bandwidth of over 1 GHz, centred at 10 GHz was obtained,
as shown in Figure 5.3.

In order to experimentally validate the antenna design obtained using the
simplified approach that has been described, the prototype shown in Figure 5.4,
was manufactured and measured. The measured reflection coefficient of the pro-
totype has been superimposed in Figure 5.3.

A significantly wider band of more than 1.5 GHz is observed in the prototype
measurement. Two separate resonances can be clearly identified: the first one,
at about 9.7 GHz, corresponds to the active patch, whereas the second, at about
10.6 GHz, is associated with the coupled (upper) patch.
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Figure 5.3: Simulation of the reflection coefficient of the antenna design, com-
pared to measurement of the manufactured prototype.

5.3.1.1. Modelling and Simulation

The antenna design that has been described was obtained using the method
of moments simulator of Advanced Design System 2009 (Momentum).

This analysis tool is usually classified as a 2.5D electromagnetic simulator,
based on the fact that it only allows the existence of current components in two
geometrical dimensions (2D), providing extended support for vertical currents in
specific structures, such as via holes, albeit with stringent limitations [3].

Therefore, the modelling of the feeding probe is not straightforward in this
simulation package. In addition to the limitations imposed on the via holes, the
coaxial mode excitation is not specifically supported. By introducing certain
geometric modifications in the design, the structure can still be excited using the
available ports, but these artificial techniques generally lead to unreliable results.

As an alternative, the structure can be simulated by placing an internal port
[3], directly onto the feeding point of the active patch, assuming an infinite and
continuous ground plane. Nonetheless, the effect of the feeding probe is com-
pletely overlooked with this simplified approach.

The simulation results corresponding to the latter simulation set-up, imple-
mented in Advanced Design System 2009 (ADS), have been presented in Figure
5.3.

As has been commented, the prototype exhibits an enhanced bandwidth with
regard to the simulation result, which exceedingly fulfils the design requirements.
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(a) (b)

Figure 5.4: Manufactured prototype of the microstrip antenna design: (a) Top
view. (b) Side view.

However, in order to be able to effectively optimise the performance of the an-
tenna element in the design process, it would be necessary to develop an accurate
and reliable electromagnetic model of the structure.

The divergence between simulation and measurement can in principle be at-
tributed to the simplified simulation set-up that has been employed, which com-
pletely neglects the effects of the feeding probe.

In order to verify the validity of this hypothesis, a full three-dimensional (3D)
model of the design has been created in the Ansys HFSS Finite Element Method
(FEM) simulator. The geometry of the antenna element has been accurately
modelled, including the feeding probe and the connector soldered to the ground
plane of the structure, which is directly excited with a coaxial mode.

The reflection coefficient obtained with the HFSS simulation, which is also
represented in Figure 5.3, is surprisingly similar to the result calculated in the
ADS simulation. In conclusion, the feeding probe seems to have a minor effect on
the return loss performance, which certainly does not account for the deviation
that has been observed in the manufactured prototype.

5.3.1.2. Radiation Pattern

The radiation features of the individual antenna design have been evaluated
using the two simulation set-ups that have been described. The radiation pat-
terns at the centre frequency, 10 GHz, have been calculated within both the E
plane (Y Z as indicated in Figure 5.2), and the H plane (XZ according to Figure



252 Chapter 5. Transmitting Active Antenna Array based on 4HOSC

(a)

(b)

Figure 5.5: Simulated radiation patterns compared to measurements of the man-
ufactured prototype at 10 GHz: (a) E plane (Y Z plane in Figure 5.2). (b) H
plane (XZ plane according to Figure 5.2).

5.2). The normalised results for the co-polar (CP) and cross-polar (XP) compo-
nents are represented in Figure 5.5, versus the spherical coordinate θ. Predicted
gain values of 5.17 and 6.5 dBi have been obtained using the ADS and HFSS
simulations respectively.

The corresponding radiation patterns of the manufactured prototype have
been measured in the anechoic chamber. The results have been superimposed in
Figure 5.5, for comparison.

The co-polar components of the radiation patters that have been obtained
with both simulation techniques are similar, showing a general agreement with
the measurements. On the E plane, the ADS simulation produces more accurate
results, especially for |θ| > 60◦, whereas, on the H plane, both analyses yield
analogous results.
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The measured radiation intensity for angles close to the dielectric surface
(|θ| → 90◦), is higher than the levels predicted by the ADS simulation in both
planes. This deviation may be caused by the fact that an infinite ground plane
is assumed in this simulation set-up. Nevertheless, the full 3D HFSS simulation
does not offer better results for those angles, especially on the E plane.

With regard to the cross-polar components, clearly dissimilar results are
yielded by both simulation techniques. Noticeably lower levels are predicted
by the ADS simulations (note that, on the E plane, they cannot even be appre-
ciated in the scale of Figure 5.5). Although the shape of the radiation patterns
are not precisely determined, the HFSS simulation provides a better prediction
of the the approximate cross-polar levels.

The prototype exhibits a pure linear polarisation (parallel to the y axis)
throughout an important part of the E plane. On the H plane, linear polarisation
is observed in the vicinity of the bore sight direction, and it deteriorates as |θ|
increases.

5.3.2. Two-dimensional Array Design

The microstrip antenna array that has been presented will be employed as the
individual radiating element in a two-dimensional antenna array. The elements
are arranged in a 4 × 4 rectangular grid, as shown in Figure 5.1.

The geometrical disposition of the elements, together with their individual
radiation characteristics, determine the overall array radiation pattern. In gen-
eral, for a constant element spacing d, if a progressive phase shift distribution is
applied, the radiation pattern will exhibit a main beam which will be narrower
for higher values of the element spacing. However, for d > 0.5λ, where λ is the
free space wavelength at the frequency of operation, copies of the main lobe—
known as grating lobes—will appear in the diagram, for certain steering angles of
the main beam. These grating lobes will be present for any steering angle when
d > λ.

In this work, as has been illustrated in Figure 5.1, each row of the array
will be fed with a uniform amplitude and phase distribution through a power
divider network, which will be connected to a fourth harmonic oscillator circuit.
Therefore, the array synthesises a pencil beam that can be steered in the Y Z
plane by tuning the control voltages of the 4HOSC circuits.

As a design requirement, a Side Lobe Level (SLL) lower than −10 dB has been
specified for steering angles |θ| < 25◦. For a vertical element spacing dy = 0.7λ,
where λ = 30 mm is the free space wavelength at 10 GHz, a grating lobe higher
than −10 dB appears in the radiation pattern for a steering angle θ = 25◦. Thus,
a vertical spacing dy = 0.6λ has been chosen instead, at the expense of slightly
widening the main beam.
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Conversely, since no steering is applied to the elements of each row, which
are fed with a uniform amplitude and phase distribution, a horizontal element
separation dx = 0.7λ can be established, fulfilling the SLL design requirement.

5.3.3. Mutual Coupling

The mutual coupling between individual elements is a key parameter that
must be kept under control in antenna arrays, as it may lead to severe degrada-
tions of the overall performance.

In order to evaluate the mutual coupling levels between the elements of the
antenna array with the spacings dx and dy that have been specified, simulations
of the complete 4 × 4 antenna array have been performed using both the ADS
and the HFSS set-ups that have been described.

The analysis of the simulated results indicates that the coupling levels ob-
served between adjacent elements vary noticeably depending on their type of
alignment, i.e. on whether they are relatively located in such a way that they
share a common E or H plane. These types of arrangements will be referred to
as E and H plane alignment respectively.

However, similar coupling levels were observed between adjacent elements
with the same type of alignment, regardless of the particular pair of elements
chosen.

Therefore, for the sake of clarity, only the coupling levels for one representa-
tive pair of neighbouring elements with either alignment have been represented
in Figure 5.6.

Higher coupling levels are predicted with both simulation schemes between
elements aligned along their E plane, which are separated dy = 0.6λ, than be-
tween those aligned along their H plane, which are separated dx = 0.7λ. Similar
values have been obtained with both simulation methods for either case.

For the validation of these results, measurements of the manufactured pro-
totype have also been superimposed in Figure 5.6. As opposed to the simulated
results, the measured coupling levels are very much alike for both types of align-
ments and lie approximately in the middle between the simulations for either
case.

5.3.4. Defected Ground Structure for Coupling Reduction

The coupling levels that have been observed between elements of the antenna
array (about −21 dB in the worst case), are generally considered sufficient to
ensure the proper operation of the antenna array without significant performance
degradation.

Beyond its potential direct impact on the antenna array performance, mutual
coupling between elements is especially detrimental when using oscillator based
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Figure 5.6: Mutual coupling (Sij parameter) between adjacent elements aligned
along either their E or their H plane.

phase shifters. As has been extensively discussed, the mutual coupling between
injection locked oscillators generally gives rise to contractions of the phase shift
ranges, with regard to the isolated behaviour. Moreover, excessive coupling levels
between elements might lead to undesired synchronisations, ultimately causing
dysfunctional operation.

According to the system topology outlined in Figure 5.1, each row of the
array will be controlled—through a power divider network—by an independent
injection locked fourth harmonic oscillator. Therefore, the elements of each row
will be connected to a single 4HOSC circuit and, although the mutual coupling
between these elements may affect the radiation pattern, it does not increase the
coupling levels between oscillator circuits.

On the other hand, since adjacent elements within the same column are con-
nected to different 4HOSC circuits, the mutual coupling between them consti-
tutes a coupling path between the associated oscillators that must be taken into
consideration. Consequently, in order to prevent the appearance of potential
detrimental effects, the mutual coupling levels between elements of the same
column, which are aligned along their E plane, need to be reduced.

Different methods for the reduction of mutual coupling between antenna array
elements have been proposed in the literature. An array of shorting pins between
the patch and the ground plane is introduced in [4], leading to substantially
decreased coupling levels. Other works focus on suppressing the surface wave
generation by optimising the antenna dimensions [5], using silicon micromachined



256 Chapter 5. Transmitting Active Antenna Array based on 4HOSC

substrate structures [6], or introducing superstrates [7]. Different approaches
have been presented, based on Electromagnetic Band Gap (EBG) structures
using either shorted [8] or floating [9] elements.

Defected Ground Structures (DGS) are implemented by etching slots of dif-
ferent shapes in the ground planes. They have been employed to improve the
performance in multiple applications such as filters, couplers or dividers, as well
as to reduce the mutual coupling between elements of antenna arrays [10].

In this section, a defected ground structure for mutual coupling reduction
between the antenna elements aligned collinearly along their E plane will be
proposed and optimised.

5.3.4.1. Mutual Coupling

Two different simulation set-ups have been used for the design and analysis
of the proposed probe fed microstrip antenna. However, neither approach has
stood out as a clearly superior model in terms of accuracy when compared with
experimental results.

The ADS simulation set-up is considerably simpler than the full 3D HFSS
scheme, leading to far shorter simulation times. Hence, since no appreciable im-
provement has been observed in the performance, the ADS simulation set-up will
be used in the following, in order to take advantage of the lower computational
cost.

The interaction between two antenna elements aligned collinearly along their
E plane, has been studied as a function of frequency, for different values of the
spacing, from λ/2 to λ, in steps of λ/30 (λ = 30 mm is the free space wavelength
at 10 GHz). The results are shown in terms of reflection coefficient in Figure
5.7(a), and in terms of mutual coupling in Figure 5.7(b).

The reflection coefficient is not significantly affected by the presence of the
second element and an impedance bandwidth greater than 1.12 GHz is observed
for all the studied values of the separation. Since the S22 parameter exhibits a
completely analogous behaviour, it has not been represented.

Except for the first three studied values, d = 15, 16 and 17 mm, which
have been represented in dotted line, as they show a slightly different variation
pattern, the mutual coupling decreases monotonically as the element separation
is increased.

5.3.4.2. Proposed DGS Design

The defected ground structure proposed in this work is composed of rectan-
gular slots, as shown schematically in Figure 5.8, where the design parameters
are the lengths li and widths wi, i = 1, . . . , 5, and the separation between them
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(a) (b)

Figure 5.7: Simulated scattering parameters for different values of the separation
between elements d (from λ/2 = 15 mm to λ = 30 mm in steps of λ/30 = 1mm).
(a) |S11|. (b) |S21|.

di−1,i, i = 2, . . . , 5. Two different structures with 3 and 5 slots will be opti-
mised. In both cases, the structure is placed in such a way that the middle
slot is centred—both vertically and horizontally—with respect to the two an-
tenna elements, which are separated d = 0.6λ. The remaining slots are vertically
centred.

The design was developed through a nominal gradient descent optimisation
process, based on ADS Momentum electromagnetic simulations. The goal of
the defected ground structure was to reduce the mutual coupling between the
antenna elements throughout its band of operation, and especially at 10 GHz,
which is the fourth harmonic component of the fundamental oscillation of the
4HOSC circuit.

Since, as has been shown in Figure 5.3, the centre of the measured impedance
bandwidth slightly shifted towards higher frequency, with regard to the simula-
tion results, the optimisation target is set up to minimise the mutual coupling at
9.8 GHz.

In spite of the limited efficiency of the ADS optimisation process based on
electromagnetic simulations, an effective reduction of the mutual coupling has
been attained using a structure with narrow, closely spaced slots. The optimised
dimensions of both the three and five slot designs are specified in Table 5.1.

The simulated performance of the final optimised DGS designs is presented
in Figure 5.9, compared to the behaviour without DGS. The mutual coupling
has been reduced throughout an important fraction of the antenna operating
bandwidth. A greater reduction has been attained with the five slot design
(around 11 dB with regard to the results without DGS), although a slightly
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(a) (b)

Figure 5.8: (a) Outline (not to scale) of the proposed defected ground structure,
indicating its design parameters. Two element antenna array with the optimised
five slot DGS design.

narrower bandwidth is observed. The three slot design presents a smoother
frequency variation, with a maximum mutual coupling reduction of around 9 dB.

5.3.4.3. Experimental Results

For the experimental validation of the simulated results, prototypes of the
two element antenna array with both optimised DGS designs have been manu-
factured. An image of the top layer, which is common for both manufactured
prototypes, is shown in Figure 5.10(a). The bottom substrate layer of the pro-
totypes with the three and five slot design are presented in Figures 5.10(b) and
(c), respectively.

Microscope photographs of the manufactured three slot DGS design are shown
in Figure 5.11(a), and of the five element design in Figure 5.11(b). The designs
have been manufactured through laser prototyping equipment, which provides a
cutting accuracy of ±2 µm, with a focused beamwidth of 25 µm.

Among the multiple technologies used in the fabrication processes of the
commercially available substrate laminates for RF applications, in the particular
case of the ARLON 25N substrate used for this antenna design, the 18 µm thick
copper sheet is glued on top of the dielectric material.

During the laser prototyping process, very high temperatures are reached in
the vicinity of the structured edges. This effect becomes especially critical when
thin metal strips need to be implemented in the design, in which case the adhesive
material under the metal layer may deteriorate, causing the structured strip to
come unstuck.

Therefore, although the dimensions of the optimised DGS structures, sum-
marised in Table 5.1, are far from the accuracy limits of the fabrication equip-
ment, the tendency of the metal layer to peel off has appreciably complicated the
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(µm) l1 w1 d1,2 l2 w2 d2,3 l3

3 slots − − − 10 348 223 91 10 613

5 slots 10 075 233 87 10 398 234 79 10 619

(µm) w3 d3,4 l4 w4 d4,5 l5 w5

3 slots 201 112 10 380 222 − − −

5 slots 226 114 10 329 222 74 9 939 268

Table 5.1: Dimensions of the optimised defected ground structure, in microme-
tres.

process. Nonetheless, well defined edges and sharp corners have been obtained
in both designs, as shown in Figure 5.11.

The measurements, compared to the performance of the array without DGS
are presented in Figure 5.12. According to the design goal, the minimum of the
mutual coupling with both DGS designs takes place at about 10 GHz, matching
the fourth harmonic component of the 4HSOM circuit. Minima of about −28
and −30 dB have been achieved with the three and five slot designs respectively.

Furthermore, the mutual coupling is reduced throughout a wider bandwidth
with the five slot design. Therefore, inasmuch as the manufacturing complexity
of both designs is analogous, the five element version will be chosen for the final
two-dimensional antenna array prototype.

5.3.5. Feeding Network

As has been commented, each fourth harmonic oscillator circuit controls one
row of the two-dimensional antenna array, whose elements are fed with a uniform
amplitude and phase distribution through a power divider network.

For the implementation of the required one-to-four equal split power dividers,
the two stage topology based on Wilkinson dividers that has been repeatedly used
in previous chapters, presents interesting features such as relatively broadband
response, high isolation levels, lossless operation when driving matched loads,
among others.

Four identical power dividers are needed for the feeding network of the 4× 4
antenna array—one for each row—which will be realised using the same Wilkin-
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Figure 5.9: Simulated S21 parameter in the two element antenna array with the
optimised DGS designs, compared to the results without DGS.

son based topology. The symmetry maintained in the transmission line layout
results in a uniform phase distribution in the four outputs of the network.

Additionally, an analogous power divider has been designed to feed the four
row dividers with a uniform amplitude and phase distribution, enabling the eval-
uation of the antenna array radiation pattern separately.

An image of the manufactured power dividers is presented in Figure 5.13. The
four row dividers are shown on the right hand side, while the transversal auxiliary
divider is on the left side. Note the difference in the output port spacing, which
is 0.6λ = 18 mm for the row dividers, and 0.7λ = 21 mm for the transversal
divider.

In spite of the fact that the dividers were designed to show identical ampli-
tudes and phases at their outputs, 10 GHz is a sufficiently high frequency for the
slightest manufacture errors to bring about observable deviations in the practi-
cal performance. Therefore, the measured transmission coefficients of the power
dividers are shown in Figure 5.14(a), in terms of normalised amplitude and in
Figure 5.14(b), in terms of relative phase.

Each of the traces represents the transmission coefficient Si5, from the input
port (port 5) of one of the manufactured dividers, to each of its output ports
i ∈ {1, . . . , 4}, at 10 GHz. All the traces are normalised with respect to the same
value.

A maximum amplitude deviation smaller than 2.5 dB has been observed.
With regard to the output phase distribution, the maximum deviation is lower
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(a) (b) (c)

Figure 5.10: Images of the manufactured two element antenna array prototypes
with the DGS designs (a) Top view, upper radiating patches. (b) Bottom view,
three slot DGS design. (c) Bottom view, five slot design.

than 14◦, which is acceptable for the separate evaluation of the antenna array
radiation pattern.

On the other hand, when the array is controlled by the fourth harmonic oscil-
lators, as schematised in Figure 5.1, the transversal power divider is not needed,
and the phase of the input signals of the row dividers can be arbitrarily var-
ied. Thus, through an adequate tuning of the control signals, the average phase
deviation between the different row dividers can be subsequently compensated.
Although the phase errors between the outputs of a specific divider cannot be
corrected, not very significant deviations are observed in Figure 5.14(b), with a
maximum under 8◦.

5.3.6. Final 4 × 4 Antenna Array Prototype

Using the individual antenna element that has been described, a prototype of
the 4× 4 antenna array has been manufactured. The optimised five slot defected
ground structure has been introduced to reduce the mutual coupling between the
antenna elements aligned along their E plane, which are separated 0.6λ.

An image of the manufactured prototype is shown in Figure 5.15(a). The
multilayer structure is aligned and held together through 2 mm nylon screws.

As has been commented, the elements on each row of the array will be fed with
a uniform amplitude and phase distribution through the power divider networks
that have been presented, which will be connected to a fourth harmonic oscillator.
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(a) (b)

Figure 5.11: Microscope photographs of the manufactured DGS designs. (a)
Three slot design. (b) Five slot design.

In order to evaluate the performance of the antenna array prototype sepa-
rately, the 4HSOM circuits have been replaced by an additional power divider,
designed to feed the four divider inputs with equal amplitude and phase. An
image of the complete prototype is shown in Figure 5.15(b).

The three-dimensional radiation pattern of the antenna array prototype, with
the fixed uniform feeding network, has been measured in the anechoic chamber
at 10 GHz. The prototype has been mounted on the rotary platform according
to the coordinate reference established in Figure 5.2, which will be preserved for
the radiation pattern.

Different formats can be employed for the representation of the radiation
intensity in the different directions in the three-dimensional space. In the UV
space, the unit vector in any given direction—specified by its spherical coordi-
nates θ and φ—is represented by its projection onto the XY plane, in such a way
that the x and y components are referred to as u and v, respectively, as follows:

u = sin θ cosφ

v = sin θ sinφ
(5.1)

Note that, in order for the relation (5.1) to be unambiguous, the representation
must be restricted to one semispace: either z > 0 or z < 0.

The measured radiation pattern for z > 0 has been represented in the three-
dimensional UV space in Figure 5.16. The height above the UV plane represents
the magnitude of the radiation pattern, in dB. Similarly, a 2D UV representation,
in which the magnitude is indicated by the colour scale, is shown in Figure 5.17.
Finally, the conventional 3D radiation pattern, in which the magnitude in a given
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Figure 5.12: Measured S21 parameter of the two element antenna array with the
optimised DGS designs, compared to the results without DGS.

direction is indicated by the distance to the origin in that direction, is shown in
Figure 5.18.

The array shows a pencil beam pointed at the bore sight direction z > 0, with
a side lobe level lower than −10 dB. As expected, beamwidth in the XZ plane
is narrower than in the Y Z plane, due to the difference in the element spacings
that has been mentioned (dx = 0.7λ and dx = 0.7λ).

5.4. Auxiliary Networks

In addition to the functional blocks that have hitherto been described, certain
interconnection networks are required, in order to complete the system block
diagram presented in Figure 5.1.

The required microwave networks have been developed in microstrip technol-
ogy and implemented in 0.75 mm thick Rogers 3003 substrate laminate, whose
datasheet specification was summarised in Table 4.1.

5.4.1. Synchronisation Power Divider

The external synchronisation signal, at fs = 2.5 GHz must be delivered to
each of the 4HOSC circuits independently, with equal power level and phase.
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Figure 5.13: Manufactured power dividers: row dividers on the right side and
transversal divider on the left side.

The same topology presented in Section 5.3.5 for the antenna array feeding
network has been used for the synchronisation power divider. The two stage
Wilkinson based network is shown in Figure 5.19(a).

Since the operating frequency of the synchronisation divider, is significantly
lower than that of the antenna array feeding network, the fabrication errors in
this case lead to negligible deviations. The measured output amplitude deviation
is lower than 0.1 dB and the phase variation remains under 1◦.

Isolation levels higher than 25 dB have been measured between the output
ports. Due to the low synchronisation power level required by the 4HOSC cir-
cuits, the isolation could be further improved—if necessary—at the expense of
increasing the network losses, without significantly degrading the overall system
efficiency.

A straightforward method to increase the isolation is to connect an attenuator
to each of the output ports of the power divider. Thus, while the power required
from the synchronisation generator is risen by the attenuator value, the isolation
between ports increases twice as much, with regard to the separate performance
of the power divider.

Although the isolation could be alternatively improved through the careful
design of the power dividers, four 10 dB π-type resistor attenuators have been
manufactured to reduce the circuit interaction in the prototype. Since the syn-
chronisation power levels required by the circuits are very low, the absolute power
loss due to the attenuators is not very significant.
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(a) (b)

Figure 5.14: Measured transmission coefficients of the power dividers at 10 GHz.
(a) Normalised amplitude (b) Relative phase.

5.4.2. Output Sampling Directional Couplers

For system monitoring purposes, low power samples need to be extracted
separately from the output signal of each of the 4HOSC circuits.

The sampling networks will be implemented through microstrip coupled line
directional couplers, like those employed in Section 2.5.2 for an analogous appli-
cation.

The directional couplers, shown in Figure 5.19(b), were designed for a tap
loss of 16 dB at 10 GHz, although the measured values are slightly higher. The
variation of the magnitudes or phases of the samples extracted by the different
couplers is not a critical parameter, as it can be subsequently compensated for
through calibration.

Nonetheless, the main design requirement for the directional couplers is that
they exhibit similar insertion loss values, as they would otherwise result in an
amplitude tapering of the antenna array feeding signals. The insertion losses
observed on the prototypes are about 2 dB, with a variation of less than 0.5 dB.

5.5. Experimental Results

The individual parts that compose the active antenna array based on fourth
harmonic oscillators have been separately designed and experimentally validated
in the foregoing sections.

The purpose of this section is to set about the development of a prototype of
the complete system and to evaluate its practical performance through measure-
ments.
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(a) (b)

Figure 5.15: Images of the manufactured prototype. (a) Top view of the two-
dimensional antenna array. (b) Antenna array with feeding network.

5.5.1. Prototype Assembly

The different composing parts of the active antenna array based on fourth har-
monic oscillators, according to the schematic diagram shown in Figure 5.1, have
been manufactured in separate circuit boards, provided with SMA end launchers,
for network interconnection. The prototype has therefore been assembled using
SMA plug-plug straight adaptors.

In order to limit the mechanical stress undergone by the RF connectors and to
enable its suspension in the anechoic chamber, the prototype has been mounted
on an adapted wooden support structure, as shown in Figure 5.20(a).

A close-up of the prototype is presented in Figure 5.20(b). The power divider
located on the left hand side of the image, delivers the synchronisation signal to
the four independent 4HOSC circuits. The output of these circuits, is sampled
through directional couplers and finally delivered to the antenna array. The
sample signals are collected through the blue RF cables routed underneath the
prototype.

In order to prevent the spurious radiation produced by the circuitry from
interfering with the antenna array radiation pattern, the prototype has been
surrounded with absorbing material. In the final design, the circuitry must be
provided with an appropriate shielding enclosure to block these emissions.
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Figure 5.16: Measured radiation pattern of the 4 × 4 microstrip antenna array
with fixed feeding network, represented in three-dimensional UV space.

Figure 5.17: Planar UV space representation of the measured radiation pattern
of the 4 × 4 microstrip antenna array with fixed feeding network.
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Figure 5.18: Measured three-dimensional radiation pattern of the 4×4 microstrip
antenna array with fixed feeding network.

(a) (b)

Figure 5.19: (a) Synchronisation power divider. (b) Coupled line directional
couplers.
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(a)

(b)

Figure 5.20: (a) Active antenna array prototype mounted on wooden frame. (b)
Close-up of the prototype.
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Figure 5.21: Schematic diagram of the measurement set-up.

5.5.2. Measurement Set-up

The experimental characterisation of the active antenna array based on fourth
harmonic oscillators has been evaluated using the measurement set-up outlined
schematically in Figure 5.21.

The fundamental equipment and accessories that compose this set-up are
briefly described in the following:

DC Power Supplies Hameg HM7044 and HM7042-5: In order to
control the three DC bias signals of each of the 4HOSC circuits indepen-
dently, 12 separate power supply channels are required. The ammeters of
the power sources enable the real time monitoring of the power consump-
tion of the circuits, which is closely related to their operating points.

Agilent N5247A PNA-X 4 Port Vector Network Analyser: Using
this piece of equipment, the low power samples extracted from the output
signals of the 4HSOM circuit are simultaneously monitored. In order to
enable an accurate measurement of the 10 GHz output signal—especially
in phase—any movement of the cables must be suppressed. Therefore, a
support structure has been built to sustain the vector network analyser on
the rotary platform. The measured data was remotely accessed through a
wired network connection.

Microwave Signal Generator Rohde & Schwarz SMR40:: This gen-
erator produces the synchronisation signal for the circuits at fs = 2.5 GHz.
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This generator, also located on the rotary platform, is controlled by the
vector network analyser through a GPIB interface. The phase locked loops
of all the generation and measurement equipment share a 10 MHz reference
signal which sets a common phase reference.

Pyramidal Horn Antenna: Used as a probe antenna to receive the signal
radiated by the system.

Spherical Range in Anechoic Chamber: In order to minimise the
impact of reflections and spurious signals in general, the complete mea-
surement process has been carried out in an anechoic environment.

Vector Network Analyser Rohde & Schwarz ZVK 10 MHz–40

GHz: This analyser is part of the equipment of the anechoic chamber
and, as such, it is triggered by the control system of the different rotary
platforms.

DC wiring: For the independent power supply and control of the 4HOSC
circuits, multiple DC circuits are required. A purpose-built VGA cable was
used to route these circuits and a VGA jack was installed on the support
structure to simplify the connection and disconnection.

Ethernet cabling: Required in order for the equipment located inside
the anechoic chamber to be controlled from the outside through a network
connection.

An image of the prototype suspended on the azimuthal positioner of the
anechoic chamber is shown in Figure 5.22(a). The prototype has been wrapped
in absorbing material to prevent the spurious radiation produced by the control
circuitry from interfering with the antenna radiation pattern.

The measurement equipment—also covered with absorbing material—has
been placed on the base on the rotary platform, as shown in Figure 5.22(b).
The RF cables have been clamped to the post of the rotary platform to min-
imise their movement during the measurement process, as can be observed in the
close-up of the front part presented in Figure 5.22(c).

5.5.2.1. Set-up Calibration

The measurement set-up has been designed to evaluate the radiation pattern
of the active antenna array system, while the output signals of the four active
circuits are simultaneously monitored. For this purpose, directional couplers
have been inserted in the output port of each of the circuits, to extract low
power samples.
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(a)

(b) (c)

Figure 5.22: (a) Prototype suspended on the anechoic chamber. (b) Overview
of the rotary platform. (c) Close-up of the equipment located on the base of the
rotary platform.
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Figure 5.23: Schematic diagram of the measurement set-up calibration procedure.

However, due to the relatively high operating frequency—about 10 GHz—the
slightest fabrication error may lead to appreciable changes in the performance,
especially in terms of phase. Note the differences in the behaviour of the power
dividers that feed the antenna array, that have been observed in Figure 5.14.
Furthermore, since the RF cables that deliver the sample signals to the 4 port
PNA-X vector network analyser are not identical, they also contribute to perturb
the measurement.

Hence, a calibration process needs to be carried out to derive a relationship
between the signals radiated by the antenna elements controlled by each of the
4HOSC circuits, and its corresponding sample signal, as it is delivered to the 4
port PNA-X.

Since each of the active circuits controls four antenna array elements through
a power divider, the radiated signal cannot be directly accessed. The signal de-
livered to each power divider could be considered instead, neglecting the effect
of each particular power divider and assuming they are identical. However, in
addition to the differences in the behaviour of the dividers that have been com-
mented, this technique would require the disconnection of the antenna array,
together with its feeding network, to perform the calibration. The subsequent
reconnection of this part might result in mechanical alterations of the prototype
that would invalidate the calibration.

In order to be able to perform the calibration without partially disassem-
bling the prototype, the procedure shown schematically in Figure 5.23, has been
employed.

It is important to notice that the two-dimensional antenna array is positioned
on the azimuthal positioner of the anechoic chamber in such a way that the rows
driven be each 4HOSC circuit are vertically oriented, as is the rotation axis. Thus,
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each of these uniformly fed linear arrays exhibit a main lobe pointed at the bore
sight direction in the vertical plane and, when they are simultaneously excited by
the 4HOSC circuits, a pencil beam that can be scanned in the horizontal plane
is synthesised. Since the probe is placed at the same height as the antenna array,
it receives the maximum of the radiation pattern in the vertical plane.

In the diagram shown in Figure 5.23, the signals at different parts of the
system have been represented with voltage phasors, labelled with the letter V .
Similarly, the relationship between some of these phasors—indicated with an
arrow and referred to with the letter g—have been calculated as complex voltage
transfer functions, as follows:

gct1 =
Vd1
V1

, (5.2)

assuming the linearity and invariance of the microwave networks involved. The
subindex 1 indicates that these magnitudes correspond to the first row of the
array, connected to 4HOSC1.

The purpose of the calibration is to obtain a relationship between the sample
signals delivered to the ports of the PNA-X, Vsoi

, i ∈ {1, . . . , 4}, and the signal
radiated by the corresponding array elements, which cannot be directly accessed.
Nonetheless, after the propagation to the receiving probe, accounted for by the
propagation gain terms gpi

, these signals are available at the output port of the
pyramidal horn.

The calibration technique shown schematically in Figure 5.23, relies on the
dedicated RF cable that connects the Rx probe with the PNA-X, labelled as
calibration cable. The transfer function gi that relates the sample signal available
at the PNA-X port, Vsoi

, to the output of the calibration cable Vcc, when only
4HOSCi is operating, can be written as:

gi =
Vcc
Vsoi

=
gdi
gcti

gcigcdi

gpi
gcc. (5.3)

The terms gcc and gpi
represent the transfer function of the calibration cable

and the propagation effects to the output of the probe antenna, respectively.
While the former term is constant, regardless of the particular 4HOSC circuit
that is operating, the latter varies in each case—especially in phase—due to
the differences in the propagation distance. This variation is minimum when
the probe lies in the perpendicular drawn from the centre of the two-dimensional
antenna array and therefore, the calibration process is performed in this position.

Under these conditions, the variation of the gpi
parameters is primarily de-

termined by the distance between the probe and the antenna array. As long as
the measurement is carried out within the far field region of the antenna array,
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which starts at a distance of about1 0.6 m, the maximum phase variation of the
gpi

parameters is, by definition, lower than π/8 rad.

Since, in this case, the probe is separated from the antenna array about 5 m,
the range of variation of the gpi

parameters will be much smaller (of the order of
2.7◦), and will therefore be neglected, considering the parameters identical gpi

=
gpj

, ∀i, j ∈ {1, . . . , 4}. In any case, the error introduced by this approximation
is the same assumed by measuring the radiation pattern with this experimental
set-up.

Consequently, considering that the output of the calibration cable is related to
the radiated signal by the terms gpi

gcc of (5.3), and assuming these are constant
regardless of the particular 4HOSC circuit operated, the ratio between the mea-
sured sample signal Vsoi

and the corresponding radiated signal can be calculated
from the measured transfer function gi, as gi/gpi

gcc.

Nonetheless, as far as the the radiation pattern is concerned, it is sufficient
to determine the relative amplitude and phase radiated by the elements of the
antenna array, rather than their absolute value. The relationships gi, between
the output of the calibration cable, Vcc, and the measured sample signal Vsoi

are
measured by sequentially operating one of the 4HOSC circuits at a time.

Thus, taking one of the transfer functions as a reference, e.g. g1, the ratio
gi/g1, i ∈ {2, . . . , 4}, will represent the relationship between the signal radiated
by the subarrays i and 1, when the corresponding measured samples, Vsoi

and
Vso1, are equal. By correcting the measured sample relationships Vsoi

/Vso1 , i ∈
{2, . . . , 4} with the inverse factor g1/gi, the corrected sample ratios will be equal
to 1 when the signals radiated by the subarrays i and 1 are identical in both
amplitude and phase.

An additional limitation lies in the fact that only four ports are available
in the vector network analyser, making it impossible to measure the four trans-
fer functions gi simultaneously. However, this is overcome by substituting the
calibration cable for the sample cable associated with the fourth circuit and mea-
suring the transfer functions g4

1 , g
4
2 and g4

3 , in a first stage, and then substituting
it for the sample cable three and measuring g3

1 , g3
2 and g3

4 , in a second stage.

The superindices indicate the sample port to which the calibration cable has
been connected in either case. The connection of the calibration cable to a
different port changes its position and may affect the associated response gcc,
resulting in differences in the transfer functions measured with both configura-
tions, i.e. g4

1 6= g3
1 and g4

2 6= g3
2 . However, when considering the ratio gi/g1, the

differences cancel out and it is in fact verified that g4
2/g

4
1 = g3

2/g
3
1 .

1The Fraunhofer region is considered when the following conditions are fulfilled:
d >> λ = 30 mm
d ≥

2D2

λ
≈ 601 mm

D = 95 mm is the maximum dimension of the antenna array.



276 Chapter 5. Transmitting Active Antenna Array based on 4HOSC

As opposed to the calibration cable, which is a provisional, very long and
loosely laid cable, the sample cables are securely fastened to the rotary platform
and have restricted movements. Therefore, the successive connection and discon-
nection of the sample cables 3 and 4 to carry out the calibration process should
not significantly affect their response, and this potential change has been over-
looked. After the calibration process, the calibration cable is no longer needed
and is thus removed from the experimental set-up.

5.5.3. Radiation Pattern Measurements

Using the experimental set-up that has been described, the radiation patterns
of the active antenna array based on 4HOSC circuits have been measured for
different progressive phase shift distributions.

When the circuits are at the selected operating regime and injection locked
to an external signal of power Ps = −40 dBm, the control voltages of the circuits
are tuned until the desired phase shift distribution—-measured in real time by
the PNA-X vector network analyser—is obtained. The radiation pattern is sub-
sequently measured by rotating the prototype, by means of the azimuth rotary
platform, as the relative power received by the pyramidal horn, located in the
far field region of the antenna array, is registered.

The measured normalised radiation patterns at 10 GHz, for several steering
angles of the main beam θm: 0◦, ±5◦, ±10◦, ±15◦, ±20◦, ±25◦, ±30◦ and ±35◦,
are shown in Figure 5.24.

The main lobe can be successfully scanned in the range −25◦ ≤ θm ≤ 30◦

with a side lobe level lower than −10 dB. For θm = −30◦, the side lobe level is
slightly over the −10 dB threshold and, as expected according to the simulations,
this level is exceeded for higher steering angles |θm| > 30◦.

Finally, the prototype has been rotated 90◦ about the perpendicular drawn
from the centre of the antenna array in order to evaluate the H plane radiation
pattern. The measured radiation pattern in the H planes is compared to that of
the E plane, when the elements are fed in phase, in Figure 5.25.

In accordance with the design criteria, the pencil beam is narrower in the
H plane, with a 3 dB beamwidth BW3dB = 18◦, owing to the greater element
spacing dy = 0.7λ in that plane, with regard to the beamwidth in the E plane,
which is about BW3dB = 21◦, due to the smaller separation dx = 0.6λ in that
direction.

5.6. Conclusions

A transmitting two-dimensional active antenna array based on fourth har-
monic oscillators has been presented. Each row of the array is fed with progres-
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Figure 5.24: Normalised E plane radiation Patterns (NP), in dB, measured at
10 GHz, for different steering angles of the main lobe θm: 0◦, ±5◦, ±10◦, ±15◦,
±20◦, ±25◦, ±30◦ and ±35◦.
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Figure 5.25: E and H plane Normalised radiation Patterns (NP), measured at
10 GHz, corresponding to a steering angle θm = 0◦.

sive amplitude and phase distributions through a power divider network, which
is subsequently controlled by an injection locked fourth harmonic oscillator.

A 4 × 4 antenna array composed of probe fed individual elements has been
designed. The individual element is a microstrip design with two stacked patches
exhibiting over 1.5 GHz bandwidth centred about 10 GHz.

In order to prevent the potential appearance of undesired synchronisations
between circuits, that might perturb their operation in the practical prototype,
a defected ground structure for mutual coupling reduction between antenna ele-
ments has been optimised, attaining a coupling reduction of about 8 dB.

The radiation pattern of the complete prototype has been assessed through
anechoic chamber measurements. The pencil beam can be effectively steered in
the E plane in the range −25◦ ≤ θm ≤ 30◦, with a side lobe level lower than
−10 dB.
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6.1. Introduction

Multiple oscillator based circuits, together with their practical application in
active antenna systems, have been presented in the previous sections.

Harmonic self oscillating mixers offer a complete set of functionalities which
makes them a very attractive solution for receiving topologies [1], even providing
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Figure 6.1: Frequency bands involved in the operation of the FDSOM circuit.

positive conversion gain over relatively wide bandwidths [2] . On the other hand,
the low power fourth harmonic oscillator that has been described in Chapter 4,
has experimentally proved to constitute a an efficient stand-alone front end for
the control of antenna array elements transmitting phase modulated signals.

The purpose of this chapter is to introduce a design that can manage both
the transmission and the reception simultaneously, enabling the control of full
duplex communication systems.

The proposed topology is based on a self oscillating mixer that downconverts
the reception channel and upconverts the transmission channel, using as local os-
cillator the fundamental oscillatory solution of the circuit, which will be injection
locked to an external reference signal to improve, its stability and phase noise
properties.

The operation of the Full Duplex Self Oscillating Mixer (FDSOM) is shown
schematically in Figure 6.1. The circuit is designed to oscillate at f0 = 10 GHz
and injection locked to an external signal at the same frequency. An RF channel
is defined for the reception, between 13 and 13.5 GHz, which will be downcon-
verted to the corresponding IF band, between 3 and 3.5 GHz. The signal for
the transmission will be delivered to the circuit at the IF band between 4 and
4.5 GHz, which will be upconverted to the associated RF band, between 14 and
14.5 GHz.
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Note that, since the circuit is injection locked at the fundamental oscillation
component, the maximum phase shift range that will be theoretically available
is limited to 180◦, which is not sufficient for the complete control of an antenna
array. Therefore, the FDSOM circuit has been conceived to be injection locked
to the output of a low power fourth harmonic oscillator, in a two stage topology.

The fourth harmonic oscillator circuit provides an output at 10 GHz, whose
phase shift can be easily tuned in a very wide phase shift range, with a low power
consumption. Furthermore, since the power required for the synchronisation of
a second stage ought not to be very high, the power consumption of the 4HOSC
circuit could probably be further reduced using the techniques applied in Chapter
4.

As has been discussed, the presence of signals with relatively high power
level in an oscillator based circuit complicates the design process extraordinarily.
Thus, since a limited power level will be obtained for the transmission, the use
of this topology will be restricted to short range low power communications.

6.2. Circuit Topology

The electrical diagram of the proposed full duplex self oscillating mixer design
that will be addressed in the present chapter is shown schematically in Figure 6.2.
Given the multiple signals that need to be managed by the circuit, moderately
complex input and output networks will be required to combine and separate
those signals. The topology of the circuit is otherwise analogous to other designs
described in the previous sections, and it comprises following fundamental parts:

Transistor: A Hewlett-Packard ATF-36077 Pseudomorphic High Electron
Mobility Transistor (pHEMT) has been chosen for this design, owing to its
ultra low noise performance capabilities in its operating band, from 2 to 18
GHz.

Series Feedback: A resonant network is connected to the source terminal
of the transistor in order to synthesise the required oscillation start-up
conditions at the operating frequency f0 = 10 GHz. A varactor diode is
integrated in this series feedback network, enabling the fine tuning of the
oscillation frequency f0.

Varactor: The chosen device is a Microsemi-GC15007, which provides a
capacitance range between 0.2 and 2.8 pF, for control voltages from 20
to 0 V.

Multiharmonic Loads: In order for the accurate control and optimisa-
tion of the harmonic content present in the circuit, transmission line newt-
works whose frequency response can be precisely tailored, are required.



284 Chapter 6. Full Duplex Self Oscillating Mixer

Figure 6.2: Schematic topology of the proposed full duplex self oscillating mixer.

Two of these components, implemented through arbitrarily width modu-
lated transmission line segments, will be connected to transistor gate and
drain terminals.

The full duplex self oscillating mixer design will be implemented in a Rogers
3003 substrate laminate, whose properties were summarised in Table 4.1.

The circuit topology, as shown schematically in Figure 6.2, includes additional
networks, such as the input multiplexer and the output diplexer, which could be
considered auxiliary and overlooked in the design process. Nevertheless, since
oscillator based circuits tend to be extremely sensitive on the loads that are
connected to them, those networks have been modelled through electromagnetic
MoM simulations and taken into account in the whole design process. Those
components, together with the required bias structures are described in detail in
the following dedicated subsections.

6.2.1. Multiharmonic DC Bias Network Based on Arbitrarily

Width Modulated Microstrip Line

The full duplex self oscillating mixer is an active circuit and, as such, it
requires an external power supply to operate, which is generally provided through
the connection of a DC source. However, since the connection of that source may
disturb the normal operation of the circuit, it must thus be performed through
a bias network.

The bias network must be designed to present high input impedance values at
the frequencies of operation of the circuit, preventing the RF power from being
delivered to the DC source. As has been described, multiple bands are involved
in the operation of the FDSOM circuit: the IF bands from 3 to 3.5 GHz and from
4 to 4.5 GHz, the self oscillation component at 10 GHz, along with the RF bands
between 13 and 13.5 GHz and between 14 and 14.5 GHz. Three such networks
will be required to bias each of the transistor terminals: gate, drain and source.
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The implementation of the DC bias network has been addressed using Arbi-
trarily Width Modulated Microstrip Line (AWMML) structure, analogous to the
design that has been described in Section 4.2.1, for the fourth harmonic oscillator
circuit.

In fact, the design procedure that has been followed in this case is equivalent:
a set of N = 200 trapezium shaped microstrip sections is employed and the con-
tinuity of the modulating function is imposed, leading to the same number N , of
degrees of freedom. Also, the structure is completed with a narrow transmission
line segment on the RF side, and with a DC pad for the connection of the power
supply at the opposite end.

The structure is initially simulated using the distributed element models in-
cluded in the ADS circuit simulation libraries, and the design parameters are
adjusted through a nominal optimisation process, to produced the desired block-
ing behaviour throughout the bands of operation of the circuit.

Nonetheless, the various frequency bands that must be covered by the bias
network constitute a stringent set of requirements that must be imposed on its
performance, significantly complicating the design process, with regard to the
case of the 4HOSC circuit.

Therefore, the requirements in terms of minimum input impedance have had
be relaxed to |Zin,min| < 400 Ω, evaluated from the RF side of the network, with
the DC terminal connected to ground.

The convergence of the optimisation process has been found to be easier to
achieve by merging the two IF and the two RF sub-bands, and imposing the
design requirements on three bands: between 3 and 4.5 GHz, between 9.5 and
10.5 GHz for the fundamental oscillation, and from 13 up to 14.5 GHz.

(a) (b)

Figure 6.3: (a) Shape of the final optimised design. (b) Prototype for the exper-
imental validation of the arbitrarily width modulated feeding network.

Once the optimisation process converges and the design requirements are ful-
filled, the performance of the entire network is evaluated through Method of Mo-
ments (MoM) electromagnetic simulations. Minor deviations from the expected
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behaviour can generally be corrected by fine tuning certain parameters of the
network. The shape of the final optimised design is shown in Figure 6.3(a). The
input impedance values, calculated both using library components and through
electromagnetic simulations are compared in Figure 6.4.

Figure 6.4: Simulated input impedance |Zin| in the bands of interest, both us-
ing library components and through the MoM electromagnetic simulation of the
complete structure. The yellow hatched areas indicate the design requirements
for the optimisation process.

Although higher peak values are obtained in the simulations using library
transmission line models, the results of the MoM simulations meet the design
requirements throughout the specified frequency bands.

According to the diagram shown in Figure 6.3(a), the optimised bias network
that has been obtained, presents a relatively high aspect ratio, which might make
it difficult to accommodate it in the circuit layout. Therefore, the design has been
folded up, giving rise to a nearly square footprint.

For the experimental validation of the folded optimised design, the proto-
type shown in Figure 6.3(b) has been manufactured, in which the structure is
connected to a transmission line segment terminated with a port at either end.

The insertion loss introduced by that topology has been assessed both exper-
imentally and through MoM electromagnetic simulations. The results that have
been obtained in the bands of interest when connecting the DC pad to ground,
both directly and through a 10 kΩ resistor, are compared in Figure 6.5.

The insertion loss values that have been obtained through both approaches
are very low and, more importantly, nearly independent on the load connected to
the DC pad. Consequently, the bias network exhibits the desired behaviour: the
RF power in the bands of interest delivered through the structure is negligible
due to the high input impedance, regardless of the load connected to the DC
pad.
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Figure 6.5: Measured |S21| parameter of the prototype shown in Figure 6.3(b),
connecting the DC pad to ground through two different resistor values RDC =
0 Ω and 10 kΩ.

6.2.2. Input Multiplexer

The full duplex self oscillating mixer topology receives three input signals:
the external reference for injection locking, the IF input for the upconversion
operation and the RF input for the downconversion operation. Since those three
input signals need to be delivered to the circuit branch directly connected to the
transistor gate terminal, a multiplexer has been designed.

Taking advantage of the fact that the input signals are located at three sepa-
rate frequency bands, bandpass filters can be used to select the appropriate band
at each of the input ports, while rejecting the others. The layout of the final
multiplexer design, in which the port corresponding to each of the input signals
has been indicated, is shown schematically in Figure 6.6.

Firstly, each of the filters must be individually designed to meet the required
design criteria. For this first prototype of the full duplex self oscillating mixer
design, particularly strong requirements in terms of rejection of the undesired
signals have been imposed, in order to minimise the presence of undesired signals
that might disturb the normal operation of the circuit. The main characteristics
of the individual filters that have been designed are described next.

Synchronisation Input

As has been described, the FDSOM circuit must be designed to be injection
locked at the fundamental oscillation frequency f0 = 10 GHz. In order to ensure
the purity of the reference signal, the output filter designed for the fourth har-
monic oscillator topology that has been addressed in Chapter 4 will be reused
for this design, taking advantage of its high selectivity properties.

Downconversion RF Input

The input RF band, between 13 and 13.5 GHz, will be selected through a parallel
coupled bandpass filter with half wavelength resonators, that has been realised
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Figure 6.6: Layout of the final input multiplexer design. The port labelled as 1
corresponds to the output of the multiplexer, that will be connected to the input
port of the circuit.

using the design equations summarised in [3]. To obtain a sharp roll-off charac-
teristic on the upper end of the passband, giving rise to high attenuation levels
on the neighbouring upconversion RF band, starting at 14 GHz, an eight order
implementation has been adopted for this design. The method of moments sim-
ulation of the filter is shown in Figure 6.7(a). The filter introduces attenuation
levels higher than 45 dB in between 14 and 15 GHz, and higher than 35 dB at
10 GHz.

Upconversion IF Input

The corresponding input IF band, between 4 and 4.5 GHz, must be selected
while introducing high attenuation levels at the adjacent downconverted IF out-
put, from 3 to 3.5 GHz, as well as at the oscillation frequency f0 = 10 GHz and
at the RF bands. In order to properly reject the downconverted IF output, a
five order maximally flat parallel coupled bandpass filter with half wavelength
resonators [3] has been designed. The MoM simulation of the filter, presented
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in Figure 6.7(b), shows that attenuation is higher than 35 dB between 3 and
3.5 GHz. Nevertheless, since the quarter wavelength coupled line sections that
have been employed show similar performance at frequencies corresponding to
3λ/4, 5λ/4, etc., additional passbands will appear approximately at odd har-
monic components of the main passband. In this case, as shown in Figure 6.7(b),
a spurious passband is observed close to the downconversion RF input, at 13 GHz.

In order to remove that additional passband, a stepped impedance low-pass
filter has been designed, according to [4]. An eight section topology with a
maximally flat response and a cut-off frequency of 6 GHz, has been adopted.
The simulated performance (Figure 6.7(b)) exhibits very low insertion losses at
the desired passband, while introducing attenuation levels of nearly 40 dB at
13 GHz. The respose of the final filter, obtained by cascading both sections, is
also represented in Figure 6.7(b).

(a) (b)

Figure 6.7: Method of moments simulations of the filter designs used in the
input multiplexer (a) Downconversion RF input. (b) Upconversion IF input.
The stepped impedance low-pass filter and the coupled line bandpass filter are
simulated separately, as well as together in the final design.

The performance that has been obtained in the simulations of the individual
filter designs corresponds to a 50 Ω port impedance. Nonetheless, when the out-
put ports are connected together in the multiplexer topology, the load impedance
seen by the filters may not be the same, giving rise to potential variations in their
behaviour.

In order to minimise the variations in the performance of the filters, each of
them has been connected to the common point through a matching line, whose
width and length have been subsequently optimised. The multiplexer has been
designed for a load impedance of 50 Ω at the output (port 1 in Figure 6.6).
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Figure 6.8: Image of the manufactured input multiplexer.

For the experimental validation of the final input multiplexer, the prototype
of the optimised design shown in Figure 6.8 has been manufactured and mea-
sured. The measurements of the manufactured prototype are compared with the
corresponding MoM electromagnetic simulation results in Figure 6.9(a) for the
reflection coefficients, and in Figure 6.9(b) for the transmission coefficients. The
port numbering has been assigned according to Figure 6.6.

A return loss greater than 10 dB has been obtained at both the IF upconver-
sion and the synchronisation inputs, whereas, for the RF downconversion input
port, the measured impedance matching is poorer than in simulation.

With regard to the transmission coefficients, a separate band is clearly se-
lected at each of the three input ports, while introducing high attenuation levels
at the remaining bands. The insertion losses have slightly increased with regard
to the simulation results, especially a the synchronisation and RF downconversion
inputs. Nevertheless, very sharp roll-off characteristics have been attained at the
upconversion IF and downconversion RF inputs, introducing attenuation levels
higher than 30 dB at the neighbouring downconversion IF and upconversion RF
outputs.

6.2.3. Output Diplexer

According to the operation principles that have been described, two output
signals are extracted from the FDSOM circuit: the downconverted IF (between
3 and 3.5 GHz) and the upconverted RF (from 14 to 14.5 GHz) outputs. Since
those two signals are located far apart in frequency, they could be easily separated
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(a) (b)

Figure 6.9: Comparison between MoM simulations and measurements of the
manufactured prototype of the final input multiplexer design. (a) Reflection
coefficients. (b) Transmission coefficients.

using low order filters. However, as was the case with the input multiplexer, the
output diplexer must also reject the signals at the adjacent upconversion IF (4 to
4.5 GHz) and downconversion RF (13 to 13.5 GHz) bands, which are also present
in the circuit.

Therefore, the filters must exhibit sharp cut-off characteristics, which signif-
icantly strengthens their design requirements. Once again, the filters are sepa-
rately designed to meet the specifications, prior to connecting them in the diplexer
topology shown schematically in Figure 6.10. The main features of the filters that
have been obtained are commented next:

Upconverted RF Output

The main design challenge of this filter is that it must select the band between
14 and 14.5 GHz, while properly rejecting the neighbouring downconversion RF
band, from 13 to 13.5 GHz. Those requirements are seemingly analogous to those
imposed on the input RF filter, which was effectively implemented in the previous
section using a parallel coupled bandpass filter with half wavelength resonator.
However, as can be verified in Figure 6.7(a), this type of structure—even with
high order realisations—generally produces a far sharper roll-off characteristic on
the upper end of the passband, than it does on lower end. That behaviour was
acceptable for the downconversion RF input, where the closest band to reject
was higher in frequency. Conversely, in this case, the passband spans between 14
and 14.5 GHz, while the undesired downconversion RF band extends from 13 up
to 13.5 GHz.
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Figure 6.10: Layout of the final output diplexer design. The port labelled as 1
corresponds to the input of the network, that will be connected to the output
port of the circuit.

In order to increase the attenuation of the adjacent downconversion RF band,
a filter design based on an arbitrarily width modulated microstrip line has been
designed. The 200 section structure has been optimised to reduce the insertion
loss in the passband, while maximising the attenuation levels between 13 and
13.5 GHz.

The output diplexer will be connected to the transistor drain terminal, whose
DC bias constitutes the fundamental power supply of the circuit. Therefore, due
to the DC electrical continuity of the AWMML filter, the transistor bias current
might be sunk through that structure and dissipated in the load connected to the
upconversion RF output port. This potential problem is dealt with by cascading a
first order coupled line filter with the AWMML structure, as shown schematically
in Figure 6.10, thus breaking the electrical continuity of the network.

The MoM simulation of the complete filter structure is shown in Figure
6.11(a). The insertion loss in the passband has slightly increased to about 4 dB.
On the other hand, a sharp roll-off characteristic has been attained at the lower
end of the passband, reaching attenuation levels greater than 30 dB in the band
between 13 and 13.5 GHz, as well as at 10 GHz and from 3 to 4.5 GHz.
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(a) (b)

Figure 6.11: Method of moments simulations of the filter designs used in the
output diplexer (a) Upconverted RF output. (b) Downconverted IF output.
The stepped impedance low-pass filter and the coupled line bandpass filter are
simulated separately, as well as together in the final design.

Downconverted IF Output

An interesting solution to select the downconverted IF band is to use a parallel
coupled bandpass filter with half wavelength resonators. A sixth order topology
with a maximally flat response has been designed for this purpose. The simulated
response has been represented in Figure 6.11(b).

As was the case with the input multiplexer design, this type of filter struc-
ture based on quarter wavelength coupled line sections brings about additional
passbands at odd multiples of the main passband frequency. In this particular
design, low attenuation levels are obtained at 10 GHz—corresponding to the self
oscillation frequency—as well as at the downconversion RF band, at 13 GHz.

In order to improve the rejection of those important bands, the filter that
has been described will be complemented with a low-pass design. As opposed
to the case upconversion IF input of the input multiplexer, the coupled line
filter designed here shows very poor attenuation levels (about 10 dB) at 10 GHz.
Hence, since the FDSOM can be expected to exhibit a relatively high power level
at the fundamental oscillation component in the output port, a more selective
low-pass filter will be required for this design.

Using a low-pass topology based on open circuited stubs, a compact im-
plementation for a thirteen pole response has been obtained, whose simulated
behaviour is shown in Figure 6.11(b). A cut-off frequency of 6 GHz has been
selected to avoid the introduction of additional insertion losses in the passband.
The attenuation level is higher than 45 dB at 10 GHz and higher than 30 dB
between 14 and 14.5 GHz.
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The final filter design is obtained by cascading both stages. Its simulated
response, represented in Figure 6.11(b), shows a well defined passband with in-
sertion losses lower than 1 dB between 3 and 3.5 GHz, while attenuation levels
higher than 40 dB are attained at the other frequency bands coexisting in the
system.

The final diplexer, shown schematically in Figure 6.10, is obtained by con-
necting the input port of the filters to a common port. In order to minimise
the impact the interconnection of the filters has in their individual performance,
either filter is connected through a matching line, whose width and length are
subsequently optimised.

Figure 6.12: Image of the manufactured output diplexer.

The prototype of the final diplexer shown in Figure 6.12 has been manufac-
tured and measured for the experimental validation of the design. The measured
scattering parameters are compared with the results of the MoM simulations in
Figure 6.13(a), for the reflection parameters, and in Figure 6.13(b), for the trans-
mission parameters. The port numbering has been assigned according to Figure
6.10.

The input port (port 1) is matched to 50 Ω with a return loss higher than
10 dB in the band from 3 to 3.5 GHz, and in most of the band between 14 and
14.5 GHz. The output ports are also matched at their corresponding bands.

With regard to the transmission coefficients, apart from a slight increase in the
insertion loss in their respective passbands, the measurements are in agreement
with the simulation results. Although the introduction of the AWMML based
filter for the upconverted RF output has increased the insertion loss to about
5 dB, it has also enabled the obtention of a sharp roll-off characteristic on the
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(a) (b)

Figure 6.13: Comparison between the MoM simulation of the output diplexer
and the measurements of the manufactured prototype. (a) Reflection coefficients.
(b)Transmission coefficients.

lower frequency end of the passband, giving rise to attenuation levels higher than
30 dB between 13 and 13.5 GHz.

6.3. Oscillator Design

The FDSOM circuit topology relies on an autonomous oscillatory solution,
that will be used as the local oscillator for the full duplex mixing operations.
Therefore, the first step in the design process is to obtain a stable periodic steady
state solution at the desired frequency, in this case f0 = 10 GHz.

The individual networks that have been described in the foregoing sections
have already been optimised for their particular purpose and will not be modified
during design process of the complete circuit.

Therefore, in order to obtain an accurate model of those networks, that will
be used in the subsequent simulations of the circuit, full wave method of moments
electromagnetic simulations of those individual components have been performed.
The frequency plan used for those simulations covers the IF and RF bands, from
0 to 1 GHz and 1 GHz bandwidth around the first 4 harmonic components of the
fundamental oscillation, all with a 1 MHz step. Additionally, the range between
0 and 40 GHz is covered with a 250 MHz step.

The models for the individual components as well as for the transistor device,
that have been obtained through these simulations will be the base for all the
analyses that will be conducted in the following sections.
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6.3.1. Oscillation Start-up

The circuit topology shown in Figure 6.2 intrinsically presents a trivial non-
oscillatory solution, which must be unstable to enable the onset of a stable peri-
odic steady state solution.

The stability of the trivial solution is evaluated by perturbing the drain ter-
minal of the transistor with a small amplitude current source, and calculating
a single input single output transfer function that relates the node voltage Vn,
with the perturbing current In, at a given frequency ω, as follows:

Zn(ω) =
1

Yn(ω)
=
Vn
In

∣

∣

∣

∣

ω

. (6.1)

The fulfilment of the oscillation start-up conditions, which can be straight-
forwardly checked by observing the behaviour of the input admittance associated
with (6.1), generally indicates the existence of a pair of complex conjugate poles
with positive real part that makes the trivial solution unstable.

The design parameters of the series feedback network of the circuit has been
adjusted to fulfil of the oscillation star-up conditions at f0 = 10 GHz. Conse-
quently, the trivial non-oscillatory solution of the circuit will not be practically
observable, as any perturbation would trigger a transient with growing ampli-
tude, that will take the circuit to a stable steady state, although that steady
state cannot be determined with this analysis.

6.3.2. Periodic Steady State Solution

Once the trivial solution has been destabilised, the circuit parameters must be
adjusted to synthesise a periodic steady state autonomous solution at the desired
frequency. The non-linear analysis of such regime will be performed through
harmonic balance simulations, duly initialised through a non-perturbing voltage
auxiliary generator, connected to the transistor drain terminal. A frequency
basis including the first four harmonic components of fundamental oscillation
frequency will be used for those simulations.

For the simulation of free running oscillators, the phase of the auxiliary gen-
erator can be arbitrarily set to 0. The frequency is set to fAG = 10 GHz and
the amplitude to VAG = 1.5 V, although the transistor is biased with DC volt-
age VDS = 1.9 V. A nominal optimisation varying the parameters of the circuit
modelled with library components is performed to fulfil the non-perturbation
conditions of the auxiliary generator. When that optimisation converges, the
circuit will possess a periodic steady state solution with the desired amplitude
and frequency, although no information is obtained regarding the stability of that
solution.
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The power spectrum of the circuit, simulated as output power level delivered
through the synchronisation port Ps, has been represented in Figure 6.14. A
dominant fundamental component with amplitude Ps = −0.56 dBm has been
obtained at 10 GHz, while the other three harmonic components exhibit signifi-
cantly lower levels.

Figure 6.14: Power spectrum delivered through the synchronisation port.

6.4. Mixing Operations

The final FDSOM design must be optimised to efficiently perform the mixing
operations of the two input channels with the self oscillating solution that has
been synthesised in the previous section.

For the simulation of the mixing operations, additional components must be
introduced in the harmonic balance frequency basis, corresponding to the new
input signals, along with the intermodulation products they generate. As has
been pointed out, the mixing operation will be optimised under the assumption
that the input signals have low power levels and thus, the circuit exhibits a linear
behaviour with regard to them, not generating harmonic components.

Initially, the optimisation of the upconversion and downconversion operations
can be tackled separately. The power level at the intermodulation product asso-
ciated with either channel that is delivered to the corresponding output port is
maximised, while preserving the properties of the oscillatory solution. Therefore,
the harmonic balance simulations can be performed with a reduced frequency
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basis, consisting of the first four harmonic components of the fundamental oscil-
lation, together with one single additional fundamental at the considered input
frequency—which is subsequently swept throughout the associated channel—and
the intermodulation products of order 2.

Nonetheless, after certain point in the described process, the separate opti-
misation of either channel starts to disturb the performance of the other and
consequently, this simplified approach can no longer be employed. After that
point, the global performance of the circuit needs to be taken into account in the
simulations, which substantially increases their computational complexity.

The frequency basis required is composed of the first four harmonic com-
ponents of the fundamental oscillation at f0 = 10 GHz, along with the two
components associated with the input signals, in the IF upconversion and the
RF downconversion bands. Although those inputs are considered to operate in
a small signal regime and their harmonic components are hence neglected, the
intermodulation products of order two also need to be included in the basis.

The extension of the frequency basis brings about an increase in the com-
putation time for every simulation and, taking into account the fact that the
input frequencies must be swept throughout the corresponding bands, giving rise
to multiple simulations for each frequency sweep. Moreover, the optimisation
algorithm will require several sweeps for every iteration, leading to a very heavy
process, from a computational viewpoint.

For the optimisation, both input signals are swept together, from 4 to 4.5 GHz
and from 13 to 13.5 GHz, considering five simulation points, uniformly distributed
throughout those ranges. The input power levels that have been chosen are
−30 dBm for the IF upconversion input, and −40 dBm for the RF downconversion
signal. Although the optimisation has been performed for those specific values,
the input power levels could in principle be varied in practice, as long as they do
not disturb the oscillatory solution.

After the optimisation process the conversion gain values, calculated as the
ratio of output to input power in either band is represented in Figure 6.15.
In order to simplify the comparison between upconversion and downconversion
performance, both characteristics have been represented versus the offset from the
centre frequency of the associated input band fc, which are 4.25 and 13.25 GHz,
respectively.

Through the appropriate selection of the optimisation goals, a higher peak
conversion gain is obtained in the upconversion direction, exceeding 6 dB. A
slightly lower peak value is obtained in the downconversion channel, although
the response is less frequency selective. A positive conversion gain, throughout
a bandwidth wider than 250 MHz, has been attained in both channels.
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Figure 6.15: Simulated conversion gain of the optimised FDSOM circuit, as a
function of the frequency offset from the centre of the corresponding input band
fc.

6.5. Experimental Results

For the experimental validation of the optimised design, the prototype of the
FDSOM circuit shown in Figure 6.16, has been manufactured.

The potential fluctuation of the DC bias signals might have a detrimental
effect on the circuit performance. Therefore, those signals have been stabilised
by connecting a 100 pF and a 100 nF chip capacitors in parallel with each of the
DC pads, along with a 100 µF electrolytic capacitor. The performance of the
circuit will be assessed in the following through different types of measurements.

6.5.1. Operation as a Voltage Controlled Oscillator

A varactor diode has been embedded in the FDSOM circuit topology shown
in Figure 6.2, in order to provide certain degree of frequency tuning, which can
be controlled through the varactor bias voltage Vc.

The frequency tuning capabilities of the circuit have been evaluated using a
Rohde & Schwarz FSP 40 spectrum analyser, while sweeping the varactor bias
voltage Vc, in the continuous range between 5.5 and 16.2 V.

The power spectrum of the oscillator has been measured through the syn-
chronisation filter at 18 operating point corresponding to oscillation frequencies
uniformly spaced throughout the frequency tuning range. The measured spectra
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Figure 6.16: Image of the manufactured full duplex self oscillation mixer.

are shown in Figure 6.17(a), and the oscillation frequency is represented as a
function of the varactor control voltage Vc, in Figure 6.17(b).

The oscillation frequency can be varied approximately between 10.28 and
10.2886 GHz, while the amplitude barely changes over that range.

However, the whole tuning range has shifted in frequency more than 280 MHz,
in such a way that the design operation frequency f0 = 10 GHz is not included
in that range. Moreover, the power level of the fundamental component has
significantly decreased from the simulated value—approximately −0.5 dBm—to
about −12 dBm.

Since the circuit was conceived to oscillate at f0 = 10 GHz, with a given
amplitude, the design parameters of the topology were adjusted for the circuit
to deliver the power level required to sustain the oscillation at that frequency.
Although the practical realisation of the design presents a stable periodic steady
state solution at a higher frequency, the circuit cannot readily deliver the required
power level at that new frequency, leading to a lower oscillation amplitude.

6.5.2. Mixing Operations

The performance of the circuit as a mixer will be evaluated using an Agilent
N5247A PNA-X Vector Network Analyser. The input signals, with a power level
Pin = −12 dBm, will be varied in a 2 GHz range, rather than strictly at the
designated bands, in order to obtain a better characterisation of the behaviour.
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(a) (b)

Figure 6.17: (a) Power spectrum measured through the synchronisation port
for different varactor bias voltages Vc. (b) Oscillation frequency versus control
voltage.

For the upconversion operation, the input IF signal has been swept between 3
and 5 GHz, while the power delivered to the RF output port at the corresponding
harmonic component. The measured results are shown in Figure 6.18(a). Note
that, due to the shift that has been observed in the oscillation frequency, the
upconversion operation will be equally shifted.

(a) (b)

Figure 6.18: Measured conversion gain. (a) Upconversion. (b) Downconversion

The signal introduced through the input IF filter between 4 and 4.5 GHz will
be upconverted to a range approximately between 14.28 and 14.78 GHz. Since
upconversion RF filter does not feature a particularly sharp roll-off characteristic
on the upper side of the passband, the portion outside the designated band is
not excessively attenuated.
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Nonetheless, the peak conversion gain level that has been obtained is ap-
proximately −6 dB, nearly 13 dB under the simulated result. This disagree-
ment may be explained by the reduction in the level of the oscillatory solution
(about 12 dB) since, under linear operating conditions, that reduction in the
local oscillator level would bring about a tantamount decrease in the associated
intermodulation product.

With regard to the downconversion operation, an input RF signal in the
band between 12 and 14 GHz has been introduced, while measuring the power
delivered to the IF output port at the corresponding downconverted frequency.
The results are shown in Figure 6.18(b).

Due to the shifted oscillation frequency, the RF signal introduced in the
assigned band, between 13 and 13.5 GHz, would be downconverted to the band
between approximately 2.72 and 3.22 GHz. The sharp cut-off characteristic of
the downconversion RF filter on the upper side of the passband can be recognised
in the downconverted signal, between 3.25 and 3.5 GHz.

Once again, the peak conversion gain value that has been measured—about
−10 dB—has decreased around 12 dB with regard to simulated results. This
behaviour is consistent with the explanation that has been given for the upcon-
version, whereby this degradation has been caused by the observed reduction in
the level of the autonomous self oscillation.

6.5.3. Input-Output Characteristic

The linearity of amplifiers and mixers is generally described through the rep-
resentation of the output power level of the device as a function of the input
power, which is commonly referred to as input-output characteristic.

The input-output characteristic has been measured at the centre of the des-
ignated output frequency bands: 14.25 GHz for the upconversion and 3.25 GHz
for the downconversion. The results that have been obtained are represented in
Figure 6.19.

The input power in the corresponding frequency band has been swept between
−30 and 0 dBm, obtaining a linear behaviour in both channels. For the upcon-
version operation, when the input power is increased over the −8 dB threshold,
the oscillation signal is abruptly perturbed. Similarly, for the downconversion
operation the input power level must not exceed 0 dBm.

Therefore, the mixing operation is performed in a linear regime, that is limited
by the perturbation of the oscillatory solution for high input power values, rather
than by the appearance of saturation effects.
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Figure 6.19: Input-output characteristic of the FDSOM circuit, calculated at the
centre of the designated output frequency band, for either channel.

6.6. Conclusions

A full duplex self oscillating mixer topology has been proposed. Since the
circuit is injection locked at the fundamental component of the oscillation, which
is used for the mixing operations, it cannot be effectively used as a phase shifter.
Therefore, the topology is intended to be injection locked to a low power fourth
harmonic oscillator, which provides the phase shifting operation.

The circuit has been designed using non-linear optimisation techniques, to
efficiently carry out both mixing operations. Positive conversion gain values in
both channels have been obtained in simulation, over a 250 MHz bandwidth.

A preliminary prototype of the optimised design has been manufactured and
measured. The oscillation frequency has shifted upwards in frequency about
280 MHz and, the amplitude of the oscillation has decreased about 12 dB.

A similar reduction has been observed in the conversion gain in both channels,
which might be originated by the variation in the level of the oscillation. Peak
conversion gain levels of −6 dB have been measured in the upconversion, and of
about −10 dB, in the downconversion.

The mixing operation behaves linearly with regard to both input signals, al-
though input levels higher than −8 dBm for the upconversion, and 0 dBm for the
downconversion cannot be introduced as they seriously perturb the autonomous
solution.
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General Conclusions

In this work the application of several multifunctional oscillator based circuit
topologies to the control of general purpose active antenna systems has been
studied, and experimentally evaluated.

Firstly, Injection Locked Third Harmonic Self Oscillating Mixers (IL3HSOM)
circuits are employed to control a four element receiving phased antenna array,
performing several functions, such as the generation of the local oscillator signal,
harmonic mixing with gain, and phase shifting in a continuous range that exceeds
the generally required 360◦. The design is validated by experimental results
obtained through the fabrication and measurement of a prototype, in which a
continuous beam scanning range between −23.5 and 23.5◦, has been achieved.

The same circuit topology has been employed for the implementation of a
receiving polarisation agile active antenna, in which two IL3HSOM circuits are
used to control of the two orthogonal linearly polarised radiating modes of a
microstrip antenna. The manufactured prototype enables the sectiong of the
antenna polarisation state in a continuous range comprising both right and left
hand circular polarisation, along with two orthogonal linear polarisation states.

A novel fourth harmonic oscillator has been developed for transmitting
topologies, and optimised to reduce its power consumption. A prototype of the
optimised design has been manufactured, exhibiting a 6 mW power consumption.
Its phase noise performance has been analysed under different operating condi-
tions, as well as the dynamics of the circuit when employed for the transmission
of phase modulated signals through two different approaches.

The fourth harmonic oscillator design is applied to the control of a trans-
mitting 4×4 active antenna array. The usability of this type of multifunctional
oscillator based circuits is demonstrated through the realisation and experimental
characterisation of a prototype of a transmitting active antenna array system.

Finally, a novel multifunctional circuit topology is proposed for active an-
tennas operating as both transmitter and receiver, for low power short range
communications. The full duplex self oscillating mixer solution is intended to be
used in a two stage implementation, together with the low power fourth harmonic
oscillator, providing several functionalities for the full duplex system. The steady
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state solutions of the circuit as well, as the desired mixing operations have been
optimised, obtaining positive conversion gain values. However, a disgreement
has been found between the amplitude and frequency of the oscillatory solution
observed in the preliminary manufactured prototype and the simulated results.
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Español de la URSI 2009, pages 1–4, September 2009.

Other Publications

International Journal Papers

[1] C. Vazquez, C. Garcia, Y. Alvarez, S. Ver-Hoeye, and F. Las-Heras. Near
field characterization of an imaging system based on a frequency scanning an-
tenna array. Antennas and Propagation, IEEE Transactions on, 61(5):2874–
2879, 2013.

[2] Y. Alvarez, C. Garcia Gonzalez, C. Vazquez Antuna, S. Ver-Hoeye, and
F. Las-Heras. Frequency scanning based radar system. Progress In Electro-
magnetics Research, 132:275–296, 2012.

[3] Rene Camblor, Samuel Ver Hoeye, Carlos Vázquez, George Hotopan, Miguel
Fernández, and Fernando Las Heras. Frequency scanning array composed of
antipodal linearly tapered slot antennas. Journal of Electromagnetic Waves
& Applications, 26:468–479, 2012.

[4] M. Fernandez, S. Ver Hoeye, C. Vazquez, Hotopan G., Camblor R., and
F. Las Heras. New non-linear approach for the evaluation of the linearity
of high gain harmonic self-oscillating mixers. Progress in Electromagnetics
Research, 126:149 – 168, 2012.

[5] M. Fernandez, S. Ver Hoeye, C. Vazquez, Hotopan G., Camblor R., and
F. Las Heras. Non linear optimization technique for the reduction of the
frequency scanning effect in a phased array based on broadband injection-
locked third harmonic self-oscillating mixers. Progress in Electromagnetics
Research, 127:479 – 499, 2012.

[6] M. Fernandez Garcia, S.V. Hoeye, C. Vazquez, G.R. Hotopan, R. Camblor,
and F. Las Heras. Analysis of the locking range of rationally synchronized
oscillators with high reference signal power. Microwave Theory and Tech-
niques, IEEE Transactions on, 60(8):2494–2504, 2012.



312 International Journal Papers

[7] Y. Alvarez, C. Garcia Gonzalez, C. Vazquez Antuna, S. Ver-Hoeye, and
F. Las-Heras. Measurement setup for imaging applications using frequency
scanning illumination. Instrumentation and Measurement, IEEE Transac-
tions on, 61(11):3014–3023, 2012.

[8] Laviada J., Y. Alvarez, C. Garcia Gonzalez, C. Vazquez Antuna, S. Ver-
Hoeye, Fernandez M., Hotopan G., Camblor R., and F. Las-Heras. A novel
phaseless frequency scanning based on indirect holography. Journal of Elec-
tromagnetic Waves and Applications, pages 1–9, 2012.

[9] Rene Camblor, Samuel Ver Hoeye, Carlos Vázquez, George Hotopan, Miguel
Fernández, and Fernando Las Heras. Sub-millimeter wave frequency scan-
ning 8 x 1 antenna array. Progress in Electromagnetics Research, 132:215–
232, 2012.

[10] M. Fernandez, S. Ver Hoeye, C. Vazquez, Hotopan G., Camblor R., and
F. Las Heras. Design and analysis of a multi-carrier tx-rx system based on
rationally synchronized oscillators for localization applications. Progress in
Electromagnetics Research, 120:1 – 16, 2011.

[11] M. Fernandez, S. Ver Hoeye, C. Vazquez, Hotopan G., Camblor R., and
F. Las Heras. Optimization of the synchronization bandwidth of rationally
synchronized oscillators based on bifurcation control. Progress in Electro-
magnetics Research, 119:299 – 313, 2011.

[12] Hotopan G., S. Ver Hoeye, C. Vazquez, Camblor R., M. Fernandez, and
F. Las Heras. Millimeter wave microstrip mixer based on graphene. Progress
in Electromagnetics Research, 118:57 – 69, 2011.

[13] Rene Camblor, Samuel Ver Hoeye, Carlos Vázquez, George Hotopan, Miguel
Fernández, and Fernando Las Heras. Microwave frequency tripler based
on a microstrip gap with graphene. Journal of Electromagnetic Waves &
Applications, 25:1921–1929, 2011.

[14] S.V. Hoeye, M.G. Corredoiras, M. Fernandez Garcia, C. Vazquez Antuna,
L. Ontanon, and F. Las-Heras Andres. Harmonic optimization of ratio-
nally synchronized oscillators. Microwave and Wireless Components Letters,
IEEE, 19(5):317–319, 2009.

[15] L.F. Herran, S.V. Hoeye, M. Fernandez, C. Vazquez, and F. Las Heras.
Analysis of phase distribution errors in mutually coupled harmonic self-
oscillating mixers. Microwave Theory and Techniques, IEEE Transactions
on, 57(12):2853–2861, 2009.



List of Publications 313

[16] L.F. Herran, S.V. Hoeye, M. Fernandez, C. Vazquez, and F.L. Heras. Nonlin-
ear analysis of mutually coupled harmonic self-oscillating mixers. Microwave
and Wireless Components Letters, IEEE, 18(9):614–616, 2008.

International Conference Papers

[1] S. Ver Hoeye, R. Camblor, C. Vazquez, M. Fernandez, G. Hotopan, and
F. Las Heras. Terahertz frequency scanning 8x1 antenna array for imaging
applications. In Wireless Information Technology and Systems (ICWITS),
2012 IEEE International Conference on, pages 1–4, 2012.

[2] M. Fernandez, S. Ver Hoeye, C. Vazquez, G.R. Hotopan, R. Camblor, and
F. Las Heras. Experimental characterization of a coherent multi-carrier tx-rx
system based on rationally synchronized oscillators. In Wireless Information
Technology and Systems (ICWITS), 2012 IEEE International Conference
on, pages 1–4, 2012.

[3] Ortiz C., Suarez M., S.and de Cos E. Ver Hoeye, M. Fernandez, Vazquez
C., R. Camblor, G. Hotopan, Hadarig R., F. Las Heras, and Menendez J.L.
Synthesis of flexible polymer-ceramic composites for rfid tagging of people.
In European Polymer Congress (EPC2011), 2011.

[4] Suarez M., Ortiz C., S.and de Cos E. Ver Hoeye, M. Fernandez, Vazquez
C., R. Camblor, G. Hotopan, Hadarig R., F. Las Heras, and Menendez J.L.
New materials for rfid tagging of people and metallic objects. In MATCOMP
2011, 2011.

[5] C. Vazquez, S. Ver Hoeye, R. Camblor, M. Hotopan, G.and Fernandez,
and F. Las Heras. Millimetre wave frequency scanning probe for imaging
applications. In 6th ESA Workshop on Millimetre-Wave Technology and
Applications and 4th Global Symposium on Millimeter Waves, pages 1–4,
2011.
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