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1 Introduction

Amazing progress in the computation of scattering amplitudes and in a deeper understand-

ing of their properties has been attained in the last years. Most of these advances have

been achieved in the realm of N = 4 SYM theory in four dimensions, however, in order

to gain a broader insight on the subject, it is worthwhile exploring amplitudes in other

contexts. Since the realization of the ABJM model [1, 2] in three dimensions, an exciting

new environment where one can study amplitudes was opened. Many results are now al-

ready available for N = 6 Chern-Simons matter theories: after the first investigation of [3],

the structure of tree level amplitudes was analyzed [4, 5], discovering an underlying dual

superconformal symmetry [6], which combined with the original superconformal invariance

of the model, gives rise to a Yangian [7]. This symmetry has been proven to extend to

all tree level amplitudes and loop integrands [8], by virtue of a three dimensional version

of recursive relations [9, 10], and was exploited to propose an orthogonal Grassmannian

integral formula [11], in close relationship with the N = 4 one [12].

While this appears to be a symmetry at weak coupling, a neat dual interpretation, like

the one of [13, 14] in four dimensions, is still lacking [15]–[21].

At higher order, amplitudes have been computed at one loop through unitarity [22]–

[24] and directly through Feynman supergraphs [25]. Such amplitudes are IR finite and

show a three dimensional version of the holomorphic anomaly [26].

At two loops the four-point amplitude was computed [27]–[29]. It exhibits dual confor-

mal invariance [30], duality with the bosonic four-cusped Wilson loop [31] computed in [32]

and there are hints that it may enjoy exponentiation, similarly to the BDS four dimen-

sional formula [33]. The two-loop four-point amplitude in ABJM strikingly resembles its

one-loop analogue in four dimensional N = 4 SYM, and a relation connecting the two, to

all orders in the dimensional regularization parameter expansion was determined in [34],

which might potentially extend to all loops, if the amplitudes do really exponentiate.

– 1 –



J
H
E
P
0
3
(
2
0
1
3
)
1
0
1

Furthermore the computation of the six-point amplitude at two-loops has been recently

carried out [35].

Apart from Chern-Simons theory, amplitudes have been studied in three dimensions

for supersymmetric Yang-Mills models. The Yang-Mills action being superrenormalizable

and having a dimensionful coupling, prevents the theory from being superconformal, and

therefore from having an AdS/CFT dual. Hence one may expect that the nice properties

of ABJM amplitudes may not be shared by SYM ones. Still, these theories may reveal

interesting aspects, since they are expected to flow to Chern-Simons matter theories in

the infrared.

In particular maximal supersymmetric Yang-Mills theory with gauge group U(N),

which describes the low-energy worldvolume theory of a stack of N D2-branes, is believed

to have ABJM U(N)1 × U(N)−1 as a conformal fixed point of its RG flow in the deep

infrared. In this phase the analysis is hampered by the inherently strongly coupled regime

of the two theories, nevertheless evidence of their equivalence has been pointed out in [36]–

[38], matching their partition functions and superconformal indices.

It is not clear how this may reflect on the structure of scattering amplitudes, how-

ever [39] showed how the SO(8) R-symmetry expected for N = 8 enhanced ABJM with

level one can be recovered at four points in maximally SYM scattering, and such an analysis

was extended in [40].

By analyzing tree level amplitudes of N = 8 SYM in on-shell superspace, and by means

of recursion relations, [41] proved that they enjoy dual conformal covariance. This also

applies to the integrands of loop amplitudes by means of unitarity, in a similar way to what

happens for maximally supersymmatric Yang-Mills theory in ten and six dimensions [42,

43]. Furthermore, that paper developed a prescription to go from four dimensional SYM

amplitudes to three dimensional ones by means of dimensional reduction, and used it to

show that N = 8 SYM amplitudes in three dimensions have helicity structure and that

beyond four-points, the amplitudes should have SO(7) R-symmetry.

In the same paper, the authors also argued that in maximal three dimensional SYM,

the loop integrands can be obtained from four dimensional N = 4 SYM and subsequently

showed that at one loop, all MHV amplitudes vanish and all non-MHV amplitudes are

finite. This is at least consistent with what occurs in ABJM. The authors in [41] also point

out that at two loops the four-point amplitudes of ABJM and N = 8 SYM might show

some similarity, motivated by their conjectured relation and by the fact that they share

dual conformal covariance.

In this short note we explore this possibility by explicitly computing the two-loop ratio

of the four-point amplitude to its tree level counterpart forN = 8 SYM in three dimensions.

Following dimensional reduction, this task may be accomplished by computing the

three dimensional scalar doublebox.

This computation is described in section 2, where we also give the final expression for

the amplitude.

As expected, this integral suffers from infrared divergences which we regulate through

dimensional regularization. It has to be stressed that dimensional regularization behaves

in a peculiar fashion when applied to loop integrals in three dimensions. One and two-loop

massless integrals are indeed linearly divergent in the infrared, therefore it is not straight-

– 2 –



J
H
E
P
0
3
(
2
0
1
3
)
1
0
1

forward that dimensional regularization is a proper tool to regulate them. For instance

one-loop triangles and boxes with massless legs turn out to be order ǫ in dimensional regu-

larization, although they would diverge linearly if regularized with an infrared cutoff. For

instance this implies that the one-loop four-point amplitude is subleading in ǫ.

A related issue emerges when dealing with unitarity, which requires the cuts of higher

loop amplitudes to be given by on-shell lower order amplitudes. For the two-loop four

point amplitude, it implies that a two particle cut separates it into a one-loop and a tree

level one. Being the former subleading in ǫ the way unitarity manifests is subtle, since it

involves taking care of higher order terms in the ǫ expansion of amplitudes. Nevertheless in

ABJM the two-loop four point amplitude has been computed both through unitarity [27]

and with off-shell methods [28], showing remarkable matching.

In section 3 we comment on the outcome. Given the dimensionful nature of the coupling

constant, we expect the ratio to have mass dimension −2 at two-loops, which is indeed the

case, due to an overall
(

s−1 + t−1
)

factor. The amplitude presents infrared singularities,

in the form of ǫ−2 poles, whereas subleading divergences may be absorbed into a proper

rescaling of the mass parameter of dimensional regularization. The finite part is made of a

squared logarithm of the ratio of Mandelstam invariants, a subleading logarithm multiplied

by an s↔ t antisymmetric combination, and a constant piece. In contrast to ABJM, this

amplitude does not exhibit uniform transcendentality.

Since the theory does not even possess conformal invariance one suspects that a duality

with light-like Wilson loops should not occur. We verify that this suspicion is correct by

computing the first order correction to the four cusped Wilson-loop, which is non-vanishing

in contrast to the result for the amplitude of [41]. At two loops we also check that not even

the UV divergences of the cusp in the light-like Wilson loop match the IR singularities of

the amplitude. Actually at two loops the Wilson loop only shows ǫ−1 UV poles, as a result

of milder short distance singularity, since the theory is superrenormalizable.

In the last section we compare the SYM amplitude with the ABJM one. Upon re-

defining the relative coupling constants in such a way that the effective YM parameter is

dimensionless, and that the coefficients in front of the infrared divergent piece coincide,

the two amplitudes exhibit some partial resemblance, spoiled by the presence of the term

proportional to log s/t, absent in the ABJM case. Quite interestingly, the maximal tran-

scendentality part of the constant coincides with that of ABJM. Taking the Regge limit

s/t → 0, the leading logarithm approximation reproduces exactly the ABJM case, in the

sense that the log2 s/t coefficient is precisely the same. For ABJM, thanks to the duality

with the Wilson loop, an anomalous conformal Ward identity [44, 45] fixes this coefficient

to be one half that multiplying the −ǫ−2 poles.

2 Computation of the amplitude: the three dimensional scalar double-

box

We consider N = 8 SYM theory in three dimensions, with unitary gauge group U(N),

whose rank we take large in the planar limit N ≫ 1, and coupling constant gYM , having

mass dimension 1/2.
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Figure 1. The scalar doublebox.

At weak coupling, and in the planar limit, we expand the color ordered four gluon

amplitude in the power series

A4 = A(0)
4

∞
∑

L=0

(

2 g2YMN e−γEǫµ2ǫ

(4π)3/2−ǫ

)L

M(L)
4 (2.1)

where ǫ = 3−d
2 is the dimensional regularization parameter and µ a mass scale.

We want to compute the two-loop correction to M4. Following the derivation in [41],

this amounts to borrowing the four dimensional result for the integrand and shifting the

dimension of the Feynman integrals to d = 3−2ǫ. This is motivated by the observation that

the integrands of three dimensional N = 8 SYM obey the same transformation properties

of those of N = 4 SYM in four dimensions, under dual inversion, and are thus the same.

Therefore we compute the three dimensional scalar massless doublebox1 in figure 1.

I(2)
4s = −e2γEǫ π−3+2ǫ

∫

d3−2ǫk d3−2ǫl

k2(k − p2)2(k + p1)2(k + l + p1 + p4)2(l + p4)2(l − p3)2l2
(2.2)

Note that this integral is not dual conformally invariant, a property which is prevented

because we have lowered the dimension of the integration measure to three. However it

inherits dual conformal covariance from four dimensions. Calling s/t ≡ x, its Mellin-Barnes

representation reads

I(2)
4s = − e2γEǫ

(−s)4+2ǫ
f (x, ǫ) (2.3)

1We follow the conventions of [33] for the normalization of the integral.
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where

f (x, ǫ) =
1

Γ(−2ǫ− 1)

∫ +i∞

−i∞

4
∏

i=1

dzi
2πi

Γ (−z1) Γ (z1 + 1)Γ (z1 − z4 + 1)

× Γ (−z2 − z3 − z4) Γ (z2 + z4) Γ (z3 + z4) Γ (z1 + z2 + z3 + z4 + 1)

× Γ

(

−ǫ−z1−z2−
3

2

)

Γ

(

−ǫ+z2 −
1

2

)

Γ

(

−ǫ− z1 − z3 −
3

2

)

Γ

(

−ǫ+ z3 −
1

2

)

× Γ
(

ǫ+ z1 − z4 +
5
2

)

Γ
(

ǫ+ z4 +
3
2

)

x−z1

Γ (z2 + z4 + 1)Γ (z3 + z4 + 1)Γ (−2ǫ+ z1 − z4)
(2.4)

The complex contour of integration in this four-fold Mellin-Barnes integral takes all vari-

ables in a straight line from −i∞ to i∞ with possible indentations, if necessary in order

to leave the whole series of poles coming from Gamma functions of the form Γ(. . .+ z) to

the left of the contour and the whole series of poles coming from Gamma functions of the

form Γ(. . .− z) to the right. Note that the contour of integration is well defined thanks to

the presence of the ǫ regulator inside the Gamma functions since it separates left and right

poles which would otherwise collide.

Since there is a Γ(−1− 2ǫ) in the denominator of (2.4), the expression could seem

of order ǫ at first sight; this is a common feature in the Mellin-Barnes representation of

Feynman integrals. Actually, due the phenomenon of colliding poles in the ǫ → 0 limit,

the integral itself has poles in ǫ producing a non vanishing result. The way of proceeding

is to analyze case by case where this situation is produced and deforming the contour

by picking up residues so as to avoid potentially colliding poles in the ǫ → 0 expansion.

Thanks to this method, the Mellin-Barnes integral becomes effectively at most two-fold,

since we discard O(ǫ) terms. This procedure is explained in full detail in the literature

(see for instance [46, 47]) and has been successfully applied to many four dimensional

examples [48]. In this case we employed the package MB.m [49], to automatically perform

the ǫ expansion and get a list of Mellin-Barnes integrals whose integrands are independent

of the regularization parameter. From this analysis, one can infer the functional form of

the result up to order ǫ0

I(2)
4s = − π e2γEǫ

(−s)4+2ǫ

[

1

ǫ2
(

a1 x
2 + a2 x

)

+
1

ǫ

((

a3 x
2 + a4 x

)

log(x) + a5 x
2 + a6 x

)

+
(

a7 x
2 + a8 x

)

log(x) + a9 x
2 + a10 x

]

+O(ǫ) (2.5)

where again x = s/t is the ratio between the Mandelstam kinematic variables and the π

factor has been collected for future convenience. It is straightforward to derive this func-

tional dependence on x, since due to the procedure of picking up poles in ǫ described above,

there is no explicit dependence on x in the Mellin-Barnes integrals, which therefore only

contribute to give numerical coefficients, but not functions of the kinematic variables. The

nontrivial logarithmic dependence of the result is indeed produced just by the ǫ expansion.

After the expansion is performed, we obtain a total of 108 one-fold and two-fold inte-

grals (a list may be found in the attached Mathematica notebook) needed to get the values
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of the coefficients ai. This computation is a little bit cumbersome, due to the large amount

of integrals, but in every case, after appropriate manipulations, they can all be reduced

to a form where some corollary of the Barnes’ first and second lemmas may be applied.

Almost all of the 108 integrals could be solved with the extensive list of Barnes’ lemmas

corollaries detailed in [46, 47]. Those which were not present in that list, are explained in

appendix B.

Following this procedure we analytically determined the value of the coefficients to be

a1 = 6 , a2 = 4 , a3 = 6 , a4 = 4,

a5 = 20− 12γE + 12 log 2 , a6 = 27− 8γE + 8 log 2,

a7 = 28− 12γE , a8 = 28− 8γE ,

a9 = − 28− 40γE + 12γ2E − 8π2 − 24 log2 2 + 80 log 2− 24γE log 2,

a10 = 46− 54γE + 8γ2E − 16π2

3
− 16 log2 2 + 52 log 2− 16γE log 2 (2.6)

Plugging these into (2.5) one gets the three dimensional scalar doublebox (in the s-channel)

up to O(ǫ).

In order to compute the whole four-point amplitude, we use the four dimensional

result [50] and plug the three dimensional integrals we compute

M(2)
4 =

1

4
st
(

s I(2)
4s + t I(2)

4t

)

(2.7)

where the latter integral can be obtained from the former by replacing s ↔ t. After some

algebra and suitably redefining the mass scale µ as

µ2 = µ′2 exp

(

47

20
+ log 2

)

(2.8)

we obtain the form of the two-loop 3d N = 8 four-point amplitude, which constitutes the

main result of the paper

M(2)
4 = 5π

s+ t

st

[

−
(

−s/µ′
)−2ǫ

(2 ǫ)2
−
(

−t/µ′
)−2ǫ

(2 ǫ)2
+

1

2
log2

(s

t

)

+ 4 ζ2 + 3 log2 2

+
1

5

(

log 2− 7

4

)

s− t

s+ t
log
(s

t

)

− 19

10
log 2 +

(

43

20

)2
] (2.9)

3 Properties of the result

We comment some relevant properties of the result. First we note that since M is the

coefficient in the perturbative series of powers in the coupling constant g2YM , which has mass

dimension 1, the two-loop ratio is dimensionful as well. The overall scale
(

1
s +

1
t

)

presents

single poles in the collinear regimes s→ 0 and t→ 0, in contrast with ABJM [27, 28].

Second we verify that infrared divergences appear at two loops. These are captured

by the 1/ǫ2 poles, whereas the subleading pole may be non-trivially reabsorbed by the
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scheme change (2.8). As expected from the planar limit, these divergences come from an

s channel and a t channel contributions. After reabsorbing the 1/ǫ pole the finite piece of

the amplitude becomes independent of the µ regularization scale.

Comparison to Wilson loops. As the theory obviously lacks both ordinary and dual

conformal invariance, one should not expect a WL/amplitude duality to work. To ascertain

this, we compute a four cusp light-like Wilson loop at one loop. The necessary tools for this

are given in appendix A. In order to get a real result we restrict to a light-like polygonal

contour with space-like non-vanishing invariants (the diagonals), and set s ≡ x213 < 0 and

t ≡ x224 < 0. We also remark that at one loop no UV divergences arise, so that the

calculation may be safely performed in d = 3 dimensions. Finally the expectation value of

this Wilson loop reads

〈W4〉 = 1− g2YMCF

π

√
s t√−s− t

ArcTanh

(

√

s (s+ t) +
√

t (s+ t)√
s t− s− t

)

+O(g4YM ) (3.1)

where CF = T aT a is the quadratic Casimir of U(N), which is N/2 in the fundamental

representation. Comparing it with the amplitude result, which vanishes at this order, we

verify that the duality already fails in the simplest case.

Not even the UV divergent piece of the light-like Wilson loop, which appears first at

two loops, resembles the IR divergences of the amplitude. We checked this by analyzing

planar corrections to a Wilson light-like line cusp at second order in perturbation theory,

from which the divergences of the polygonal Wilson loop arise. The computation parallels

the four dimensional one and we won’t go through it, but just state the result. The relevant

tools for it to be performed may be found in appendix A. We verified that by virtue of

the milder UV behavior of the gluon x-space propagator (A.2) in three dimensions, where

YM theory is superrenormalizable, the rainbow diagram2 as well as those involving the

cubic gluon interaction are finite. The only source of divergence comes from the gluon self

energy insertion. The one-loop corrected propagator (A.7) is indeed finite in momentum

space. However, on dimensional grounds, its dependence on p2 is through (−p2)−3/2−ǫ. In

dimensional regularization, its Fourier transform develops a single pole in ǫ, which accounts

for the UV divergence. In fact, once the corrected propagator is inserted in the Wilson

loop, no new singularities appear and the divergent piece of the Wilson loop reads

〈W4〉(2)
∣

∣

UV
= −g

4
YMCFN

25π2
1

ǫ
(−s− t) (3.2)

where s and t stand again for the diagonals of the WL contour.

Transcendentality. We observe that the result does not respect maximal transcenden-

tality, in contrast with ABJM. Once the integral is normalized as in (2.2), all γE factors

disappear, although leaving coefficients with mixed transcendentality, such as the one mul-

tiplying the log s/t piece, or the constant. Still, we point out that the maximal transcen-

dentality piece of the constant coincides with that of ABJM.

2The one obtained by expanding the Wilson loop exponential to fourth order and Wick contracting two

pairs of gluons lying on opposite edges of the cusp in a planar way.

– 7 –



J
H
E
P
0
3
(
2
0
1
3
)
1
0
1

4 Comparison to ABJM: the Regge limit

We want to make a comparison of the N = 8 SYM two-loop four-point ratio (2.9) with the

same result for ABJM, which we recall

M(2)ABJM
4 = −(−s)−2ǫ

(2 ǫ)2
− (−t)−2ǫ

(2 ǫ)2
+

1

2
log2

(

t

s

)

+ 4 ζ2 + 3 log2 2 (4.1)

The form of this amplitude coincide, up to rescalings and up to the constant, with the

one-loop amplitude of N = 4 SYM in four dimensions

M(1)N=4
4 = −(−s)−ǫ

ǫ2
− (−t)−ǫ

ǫ2
+

1

2
log2

(

t

s

)

+ 4 ζ2 (4.2)

Comparing (2.9) with (4.1), we find the following relation

π−1 st

s+ t
M(2)N=8

4 = 5 M(2)ABJM
4 +

(

log 2− 7

4

)

s− t

s+ t
log

s

t
+ C +O(ǫ) (4.3)

Curiously enough, written in this form, the part of the constant of the N = 8 SYM result

with maximal transcendentality coincides with the ABJM one and the difference are terms

with lower transcendentality, namely

C = −19

2
log 2 +

432

80
(4.4)

The relevant part of the amplitude which differs from the ABJM result is the extra piece

proportional to the logarithm of the ratio of the Mandelstam variables. This suggests that

we might compare the N = 8 result with that of ABJM in the Regge limit t/s ≪ 1, where

the leading logarithm approximation is pursued. To make the comparison sensible, we need

to deal with objects of the same dimension. While the perturbative expansion of ABJM

amplitudes is carried out in terms of the dimensionless ’t Hooft parameter λCS = N/k,

the Yang-Mills effective coupling constant in the planar limit is λYM = g2YMN , which in

three dimensions is dimensionful, having mass dimension one. While the Chern-Simons

coupling may be tuned to be small adjusting the rank and the level in such a way that

N ≪ k, in SYM the coupling constant has to be compared to another energy scale. In the

four-point amplitude there are two characteristic energies of the process associated to t and

s Mandelstam variables. Therefore perturbation theory is valid whenever g2YM ≪ √
s,
√
t.

We may further fix t to be the energy scale we are interested in, and study the small t/s

regime. In such a limit we can rescale the Yang-Mills coupling g2YM = g2eff
√
t, defining

a dimensionless effective coupling g2eff = g2YM/
√
t, which we take to be small geff

2 ≪ 1.

In this way we establish the hierarchy of energy scales we are interested in, which is

g2YM ≪
√
t ≪ √

s. In addition, to make the comparison more direct, we can focus on the

finite pieces of the SYM and ABJM amplitudes, rescaling the latter by the 5π factor, such

that the normalization of the infrared divergences coincides between the two. Having done
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Figure 2. Log-Log plot of N = 8 and ABJM amplitudes as functions of y = t/s.

this, and in terms of the dimensionless coupling, the N = 8 amplitude becomes

M(2)N=8
4

∣

∣

finite
= (1 + y)

[

1

2
log2 y + 4 ζ2 + 3 log2 2

+
1

5

(

log 2− 7

4

)

y − 1

y + 1
logy − 19

10
log 2 +

(

43

20

)2
]

(4.5)

where y = 1/x = t/s and λeff = g2effN .

In the Regge limit y ≪ 1 this becomes

M(2)N=8
4

∣

∣

finite

y≪1−−−→ 1

2
log2 y +O(logy) (4.6)

while ABJM, in the same limit becomes

M(2)ABJM
4

∣

∣

finite

y≪1−−−→ 1

2
log2 y +O(1) (4.7)

Ergo, the finite piece of both amplitudes coincide in the Regge limit if we identify their

dimensionless ’t Hooft couplings λ2CS ↔ λ2eff . In figure 2 we plot equation (4.5) and the

finite piece of (4.1) as functions of y = t/s in logarithmic scale to illustrate the coincident

Regge limit for small t/s.

Amplitudes in N = 6 CSM theory exhibit dual conformal invariance and, in the

four point case, duality to the light-like four-polygonal Wilson loop. This has dramatic

consequences on the dependence of the amplitude on the kinematic invariants, which has

to satisfy an anomalous conformal Ward identity. In the four-point case, at two loops, this

fixes the finite piece of the amplitude to have a log2 s/t form and its coefficient to be half

that governing the IR singularities. It is thus very pleasing that in Regge limit the leading

term of the finite piece of the MSYM amplitude is exactly log2 s/t, and its coefficient of

the form dictated by the anomalous conformal Ward identity.
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A Tools for the WL computation

We work in three dimensional Minkowski spacetime with metric gµν = diag (1,−1,−1).

We use dimensional regularization of momentum integrals d = 3 − 2ǫ, and introduce a

mass scale µ to keep the action dimensionless. The Wilson line operator is defined as

W [C] = 1

N
TrP ei g

∫
C
dxµ Aµ(x) (A.1)

The x-space propagator for the gluon in 3d SYM, in dimensional regularization and in the

Feynman gauge, reads

〈Aµ(x)Aν(0)〉 ≡ G(0)
µν (x) = −Γ(12 − ǫ)µ2ǫ

4π
3

2
−ǫ

gµν

(−x2)1/2−ǫ
(A.2)

The momentum space one-loop corrected gauge propagator reads

〈Aµ(p)Aν(−p)〉(1) ≡ G(1)
µν (p) =

(−i
p2

)

Π(1)
µν (p)

(−i
p2

)

(A.3)

where the gluon polarization operator evaluates, in dimensional regularization,

Π(1)
µν (p) = ig2

Γ
(

3
2 − ǫ

)

Γ
(

1
2 − ǫ

)

Γ
(

1
2 + ǫ

)

(4π)3/2−ǫ µ−2ǫ Γ (3− 2ǫ)
((7− 6ǫ)N − (2− 4ǫ)nf − ns)

p2gµν − pµpν

(−p2)1/2+ǫ

(A.4)

For N = 8 SYM, where nf = 4N and ns = 7N ,

G(1)
µν (p) = ig2N µ2ǫ

Γ
(

3
2 − ǫ

)

Γ
(

1
2 − ǫ

)

Γ
(

1
2 + ǫ

)

(4π)3/2−ǫ Γ (3− 2ǫ)
(−8 + 10ǫ)

1

(−p2)3/2+ǫ

[

gµν −
pµpν
p2

]

(A.5)

and Fourier transforming to x-space with

∫

ddp

(2π)d
e−ipx

(−p2)a =
i

4a πd/2
Γ
(

d
2 − a

)

Γ (a)
(−x2)a−d/2 (A.6)
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this becomes

D(1)
µν = µ2ǫ

∫

d3−2ǫp

(2π)3−2ǫ
e−ipxG(1)

µν (p)

= −g2N
(

µ2ǫ
)2 Γ

(

3
2 − ǫ

)

Γ
(

1
2 − ǫ

)

Γ
(

1
2 + ǫ

)

26 π3−2ǫ Γ (3− 2ǫ)
(−8 + 10ǫ)

×
[

Γ (−2ǫ)

Γ
(

3
2 + ǫ

)(−x2)2ǫ gµν −
1

4

Γ (−1− 2ǫ)

Γ
(

5
2 + ǫ

) ∂µ∂ν (−x2)1+2ǫ

]

(A.7)

B New corollaries

To complete the computation we also had to derive two corollaries of Barnes’ first lemma,

to solve the integrals (in the first λ1 + λ3 6= 0 is assumed)

1

2πi

∫ i∞

−i∞
dz Γ (z + λ1) Γ (z + λ2) Γ

∗∗ (−z − λ2 − 1) Γ (λ3 − z)ψ(0) (−z − λ2 − 1) ,

1

2πi

∫ i∞

−i∞
dz Γ (z − λ1 + 1)Γ∗ (z − λ2 − 1) Γ∗ (λ2 − z) Γ (λ1 − z)ψ(0) (λ2 − z)

These may be found from lemmas (D.12) and (D.14) of [46, 47]. To do this one may first

insert a fictitious regulator to avoid coincident left and right poles. Having done this one

takes a residue to shift the contour in such a way to remove one asterisk from the proper

Gamma function and bring the integral to a form where the aforementioned corollaries of

first Barnes’ lemma may be applied. Since the original integral was well-defined, the poles

in the regulator disappear in the sum of the two pieces and the limit where it approaches

zero can be safely taken, to get the final result. We thus obtain

1

2πi

∫ i∞

−i∞
dz Γ (z + λ1) Γ (z + λ2) Γ

∗∗ (−z − λ2 − 1) Γ (λ3 − z)ψ(0) (−z − λ2 − 1) =

1

12Γ (λ1 + λ3 − 1)

[

Γ (λ1 − λ2) Γ (λ1 + λ3 − 1) Γ (λ2 + λ3)

×
(

−12γψ(0) (λ1 − λ2) + 12γψ(0) (λ2 + λ3) + π2 + 6γ2
)

+ Γ (λ1 − λ2 − 1)
(

Γ (λ1 + λ3 − 1) Γ (λ2 + λ3 + 1)
(

−12(γ − 1)ψ(0) (λ1 − λ2 − 1)

+12(γ − 1)ψ(0) (λ2 + λ3 + 1) + π2 + 6γ2 − 12γ + 12
)

− Γ (λ1 + λ3) Γ (λ2 + λ3)

×
(

6ψ(0) (λ1 + λ3 − 1) 2 + 12(γ − 1)ψ(0) (λ1 + λ3 − 1)− 6ψ(0) (λ2 + λ3)
2

− 12ψ(0) (λ1 − λ2 − 1)
(

ψ(0) (λ1 + λ3 − 1)− ψ(0) (λ2 + λ3) + γ − 1
)

−6ψ(1) (λ1 + λ3 − 1)− 6ψ(1) (λ2 + λ3) + π2 + 6γ2 − 12γ + 12
))]

(B.1)
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1

2πi

∫ i∞

−i∞
dz Γ (z − λ1 + 1)Γ∗ (z − λ2 − 1) Γ∗ (λ2 − z) Γ (λ1 − z)ψ(0) (λ2 − z) =

1

12

[

Γ (λ1 − λ2) Γ (−λ1 + λ2 + 1)

×
(

12(γ−1)ψ(0) (λ1−λ2)−12(γ−1)ψ(0) (−λ1+λ2+1) + π2+6γ2−12γ+12
)

− Γ (λ1 − λ2 − 1)
(

12Γ (−λ1 + λ2 + 1)
(

ψ(0) (−λ1 + λ2 + 1) + 1
)

+ Γ (−λ1+λ2+2)
(

6ψ(0) (λ1−λ2−1) 2−12ψ(0) (−λ1+λ2+2)ψ(0) (λ1−λ2−1)

+ 6ψ(0) (−λ1 + λ2 + 2) 2 + 6ψ(1) (λ1 − λ2 − 1) + 6ψ(1) (−λ1 + λ2 + 2)

− π2 − 6γ2 + 12γ − 12
))]

(B.2)
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