
Sensors 2013, 13, 6032-6053; doi:10.3390/s130506032

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors
Article

A Methodology and a Web Platform for the Collaborative
Development of Context-Aware Systems

David Martín 1,*, Diego López-de-Ipiña 2, Aurkene Alzua-Sorzabal 1, Carlos Lamsfus 1

and Emilio Torres-Manzanera 3

1 Centre for Cooperative Research in Tourism, CICtourGUNE, Mikeletegi Pasalekua 71,
Donostia-San Sebastián 20009, Spain; E-Mails: aurkenealzua@tourgune.org (A.A.-S.);
carloslamsfus@tourgune.org (C.L.)

2 Faculty of Engineering, University of Deusto, Avda. De las Universidades 24, Bilbao 48007, Spain;
E-Mail: dipina@deusto.es

3 Department of Statistics, University of Oviedo, Avda. Luis Moya 261, Gijón 33003, Spain;
E-Mail: torres@uniovi.es

* Author to whom correspondence should be addressed; E-Mail: davidmartin@tourgune.org;
Tel.: +34-943-010-885; Fax: +34-943-010-846.

Received: 21 March 2013; in revised form: 24 April 2013 / Accepted: 6 May 2013 /
Published: 10 May 2013

Abstract: Information and services personalization is essential for an optimal user
experience. Systems have to be able to acquire data about the user’s context, process them
in order to identify the user’s situation and finally, adapt the functionality of the system to
that situation, but the development of context-aware systems is complex. Data coming
from distributed and heterogeneous sources have to be acquired, processed and managed.
Several programming frameworks have been proposed in order to simplify the development of
context-aware systems. These frameworks offer high-level application programming
interfaces for programmers that complicate the involvement of domain experts in the
development life-cycle. The participation of users that do not have programming skills but are
experts in the application domain can speed up and improve the development process of
these kinds of systems. Apart from that, there is a lack of methodologies to guide the
development process. This article presents as main contributions, the implementation and
evaluation of a web platform and a methodology to collaboratively develop context-aware
systems by programmers and domain experts.

OPEN ACCESS

Sensors 2013, 13 6033

Keywords: context-aware; toolkit; domain expert; development methodology

1. Introduction

Ubiquitous Computing is a paradigm whereby all the everyday objects will have an embedded computer
and they will be connected to the Internet, providing personalized services to users at any time and
place [1]. This vision is a reality in mobile environments. Our smartphones are connected to the Internet
and they can provide us with information and services everywhere. But this mobile environment is
different from a desktop one. For instance, the screen is smaller, users are on the move and they usually
require very specific information at a given time and place. This way, the customization of information
is essential for an optimal user experience, especially in these kinds of mobile environments.

Nowadays, there are more than four billion of mobile devices all over the World and it is expected
that by the year 2014, there will be more mobile devices connected to the Internet than desktop
computers. In addition to this, the 69% of global mobile phone users have a smartphone. These devices
are replacing cameras, music players and Global Positioning System (GPS) tools. The 47% of mobile
phone users have increased their data use over the year 2011. The 55% of them have reported having
downloaded a free mobile application and the 25% have paid for an application. In this manner, the
mobile device has become an open window to information and services at any time and place [2]. The
challenge is to provide users with personalized information and services while on the move.

One of the key points in order to provide an optimal user experience in ubiquitous computing
environments is the context in which the interaction between users and computers is carried out [3]. An
example of context information is the location of the user. Location Based Services (LBS) [4] use this
context parameter in order to filter the results of a mobile search. In this manner, the information is
automatically adapted based on the different context parameters on the move, providing the user with a
better search experience.

However, there are several challenges that have to be faced by the scientific community and the industry
in order to provide the users with context-aware systems. On the one hand, the development of
context-aware systems is not a trivial task for programmers. These systems have to be able to obtain
relevant context data in order to identify the situation of users at a given time and place and adapt the
behavior of the system to that situation. On the other hand, it can be difficult for programmers to
identify and parameterize the situations of the user that the system has to be able to detect, because
they do not usually have the needed knowledge about the specific domain where the system has to be
deployed. People that can overcome this drawback are domain experts, that is, people that are experts
in a specific domain, but not necessarily experts in computer science, who use computer environments to
perform their tasks [5]. They can better identify the relevant situations for the system to be developed.

Several software toolkits have been proposed in order to simplify the development of context-aware
systems, but there are still some gaps in the reviewed frameworks. On the one hand, not all of them are
designed to support users’ mobility. This is crucial since users’ location is the primary context parameter in
context-aware scenarios. On the other hand, the reviewed frameworks offer high-level application

Sensors 2013, 13 6034

programming interfaces for skilled programmers. This makes the involvement of non-technical
stakeholders in the development life-cycle, particularly domain experts, almost impossible.

Apart from that, there are no software development methodologies that can be used to guide the
implementation life-cycle of context-aware systems.

This article describes a Situation-Driven Development methodology and a context-aware development
platform supporting such methodology, called Context Cloud. The aim of the platform is to make the
development of context-aware systems easier, even for people that do not have technical skills. This
way, the platform provides a web front-end where all the features involved in the development of
context-aware systems can be easily configured without coding any programming line.

The methodology has been designed in order to guide the identification and parameterization of the
relevant situations that have to be detected by the context-aware system to be developed. The aim of
this methodology is to promote the collaboration between programmers and domain experts in the
development process. Both the platform and the methodology have been evaluated with real users. The
performance of the platform has been evaluated as well.

The article is organized as follows: in Section 2, the related work is presented. In Section 3, the
theoretical framework is described. Section 4 presents the development methodology. In Section 5, the
development platform is described. Section 6 presents the results and main contributions of this
research work. Finally, Section 7 concludes the paper with some brief concluding remarks.

2. Related Work

On the one hand, there are several software development methodologies that can be used in order to
implement context-aware systems [6] (e.g., waterfall, iterative) but all these methodologies are designed to
guide the development process of general software systems. There are other modern approaches like
agile methodologies [7] where the final user is involved in the development process. However, the
aforementioned methodologies do not consider the specific tasks that are related to the development of
context-aware systems. These tasks involve processes such as the context data identification, the
context sources selection, the situation parameterization and detection, and the definition of the final
system’s behaviour once a situation is detected.

Several authors have proposed development methodologies for the implementation of context-aware
systems. Henricksen and Indulska [8] proposed a methodology and a modeling language called
Context Modeling Language (CML). This language was developed for conceptual modeling of
databases that store context data. It has different constructs for capturing the needed classes and
context sources, the quality of context data and the dependencies and constraints between context fact
types. This way, system designers can specify the requirements of context data needed by the system.
The methodology is divided in five different stages: analysis, design, implementation, configuration of
the system and validation. Context-oriented Programming (COP) [9] is a programming model that
offers mechanisms to adapt the system to be implemented according to the gathered context data.
These approaches are focused on system designers and programmers and do not involve non-technical
users. In that way, domain experts cannot take part in the development process.

Sensors 2013, 13 6035

On the other hand, several architectures and frameworks have been proposed in order to support the
development of context-aware systems. One of the first implemented approaches is the Context
Toolkit [10]. This framework presents an architecture composed of different functional modules in
order to acquire, aggregate and interpret context information. It uses key/value pairs in order to model
context data. Other approaches like CASS [11] propose a layered middleware architecture that uses a
relational data model to represent context data. JCAF [12] is a framework and a runtime environment
to develop and deploy contextual computing applications. It uses an object oriented model to represent
context data. These three approaches use interpreters to convert acquired raw data into higher level context
data, but these transformations cannot be very complex because there is no inference mechanism.

The CoBra [13] middleware proposes a different approach where software agents are used in order
to acquire and process context data in a smart meeting room environment. SOCAM [14] and Semantic
Spaces [15] are also frameworks based on three different layers, namely a sensing layer, a middleware
layer and an application layer.

Mobile frameworks have also been developed in order to create applications that are executed in
mobile devices [16]. The main drawback of these frameworks is that they are not powerful enough to
support complex context management and reasoning. The number of context parameters used is also
low because they are limited to mobile device data sources.

Some authors have proposed visual approaches where domain experts can be involved in the
development life cycle. For instance, DiaSuite toolkit [17] comprises a domain-specific design language, a
compiler for this language and an editor to define simulation scenarios. The OPEN framework [18] is
an ontology-based programming environment for rapid prototyping of context-aware applications. It is
based on the configuration of semantic rules in order to trigger predefined actions.

Context Cloud differs from the above toolkits in the following respects. It is designed to promote
the collaboration between technical and non-technical users, guided by the designed development
methodology. It provides a web environment where context data can be managed using a graphical
interface without having to code anything. It also provides geospatial functionalities to manage
location context data and all the configurations can be extended at runtime.

3. Theoretical Framework

The literature review in the realm of context-aware computing shows that there is no consensus on a
definition for the notions of context and situation. The next sections describe the contributions of this
research work against the reviewed definitions for these two main concepts.

3.1. Context-Aware System

First, let us define a context-aware system. Some authors consider that these kinds of systems are able to
adapt their behaviour according to the location of use, the collection of nearby people and objects, as
well as changes to those objects over time [19]. Other authors consider that context-awareness is the
ability of the computer to sense and act upon information about its environment without explicit user
intervention [20,21]. This way, these definitions consider that context-aware systems are reactive
systems. In this research work a context-aware system is considered as a reactive hardware or
software system that adapts its behaviour to the gathered context data.

Sensors 2013, 13 6036

3.2. Context

In recent years, there have been several authors that have stated different context definitions. Some
of these definitions consider context as the surroundings of the interaction between the user and the
application [22]. Other authors consider the activity or the task of the user as the main context
information for the system [23]. A third group of authors consider that context is the needed
information to characterize the situation of an entity [10].

In this research work, context will be considered from a computing perspective, having into account
the third group of definitions mentioned before. This way, context is considered as any information
that can be obtained and processed by hardware or software systems, in order to identify the situation
of an entity and adapt the system’s behaviour to that situation. Extending the definition of context
provided by Dey [10], an entity can be a living being, a place or an object. The objective of this
definition is to provide an operative definition to be applied in the development of hardware and
software solutions that use context data in order to adapt their functionalities.

3.3. Situation

Apart from the aforementioned context descriptions, there are several definitions for the concept of
situation. These definitions have something in common: they consider context as low-level data, while
a situation is high-level data. This way, a situation is dependent on the context information and it can
be considered as an abstraction of it [24].

In the scope of this work, a situation is defined as the state of the current and past context at a
certain region in space and a concrete interval in time that are relevant to identify that situation. There
are two main principles that have been taken into account for this definition. The first one is the notion
of time. A situation can have temporal boundaries. It also can be related to past or current context
according to Allen’s temporal logic [25]. The other one is the notion of space, that is, the location
where the situation can be identified. For instance, the situation “cooking” could be detected when the
user is in the kitchen (space) and it is time to have launch (time). This new definition of situation is
more operative for the scope of this research than the ones analyzed in the literature review. Its aim is
to facilitate the modeling of situations.

3.4. Context and Situation

The previously described concepts of context and situation are graphically explained in the
following Figure 1.

Let us imagine that there is a collection of context data (c1, c2, c3, c4, c5, c6, c7, c8). These context
data can be obtained and processed by a computing system in order to identify several situations (S1,
S2, S3, S4) that are related to different entities (E1, E2, E3).

These context data can be grouped into different subsets, based on different regions in space or
areas (A1, A2, A3, A4) where this information is valuable to identify a certain situation at a given
interval in time (t1, t2, t3). Also, a situation (S3) can be composed of context data and other situations
(S2). A situation (S4) can also be identified using past context data or situations (H1, H2).

Sensors 2013, 13 6037

Figure 1. Context and situation.

4. Situation-Driven Development

In order to guide the development process of context-aware systems and involve non-technical
domain experts in collaboration with programmers, a methodology has been designed. This methodology
considers the different entities’ situations that are relevant to adapt the behavior of the system to be
developed. Also, it is based on the following premise: programmers have context-aware toolkits that
can detect user situations and these toolkits can be configured without programming skills.

Situations are the key element around which all the methodology has been designed. In order to
define a situation, five different characteristics derived from the definition of situation have been taken
into account. These are related to five different questions that define a situation: the name of the
situation (what), the entities that are related to the situation (who), the location where the situation can
be detected (where), the time and date range when the situation can be detected (when) and finally, the
needed context data in order to detect the situation (how) [26].

The methodology is divided into five different stages: analysis, configuration, development,
validation and maintenance. There are some stages where only the programmer can participate
because they require some kind of development.

4.1. Analysis

In the analysis stage, domain experts and programmers have to identify all the situations that can be
relevant for the system to be developed, specifying a name, a description and the desired behaviour of
the system once the situation is detected. Also, each of the identified situations have to be
parameterized with the entities that are involved in the situation, the location where the situation can be
identified and the interval of time when the situation can be detected. The needed inputs of context
data in order to detect the situation have to be specified as well, providing the objective, the conditions
and the restrictions for each data type. Finally, the needed outputs once a situation is detected have to
be specified. These outputs will be used by programmers in order to adapt the system’s behaviour
according to the previous specifications. In order to support the analysis stage, a spreadsheet has been
designed, where domain experts and programmers can discuss about the needed parameters of each of
the identified situations.

Sensors 2013, 13 6038

4.2. Configuration

Once the analysis stage is finished, the toolkit has to be configured with the specified parameters. In this
stage, the programmer has to identify and configure the context sources that can provide the defined
inputs of data, and configure or implement the providers that are going to obtain these data from the
identified context sources. The next step is the configuration of the areas where the situations could be
detected, the context data model that will store context data, the mappings between the obtained data
and the model, and the inference mechanisms in order to detect the needed situations. These
configurations should be done by domain experts with the collaboration of programmers, so the toolkit
has to provide configuration mechanisms in order to avoid the usage of programming languages.

4.3. Development

In the development stage, programmers have to implement the defined behaviours of the system,
processing the high-level outputs generated by the toolkit.

4.4. Validation

The system has to be tested and validated by domain experts and programmers. Also, the final user
could be involved in this stage. As shown in Figure 2, each situation has to be parameterized, the
toolkit has to be configured and the system has to be implemented and validated. This way, the system
is developed using an incremental approach, which has been inspired in agile development
methodologies like Scrum or XP [7].

Figure 2. Situation-Driven Development.

4.5. Maintenance

The final stage is the maintenance of the implemented system and the configurations of the toolkit.
The maintenance of the system has to be carried out by the programmer and the maintenance of the
toolkit should be also carried out by domain experts.

Sensors 2013, 13 6039

5. Context Cloud

This section describes the implemented platform for the development of context-aware systems.
The platform has been designed in order to overcome the drawbacks identified in these kinds of
toolkits. The previously described development methodology can be used with the platform as well.
Next sections present the followed design guidelines, the architecture and the main functionalities of
the platform. These functionalities are compared with the reviewed context-aware toolkits.

5.1. Design Guidelines

In order to design the platform, several requirements have been identified, which can be considered
as the foundations for a platform to develop context-aware systems by domain experts.

5.1.1. Data Model

In order to store the received context information a context data model is needed. This way, the
platform can manage data more effectively. There are several data models that can be used in order to
manage context information [27], but these have to fulfill the following requirements [28]:

• Heterogeneity. The context data model has to represent data coming from very different data
sources, which usually provide information in a heterogeneous way.

• Dependencies and properties. The relationships between different context entities and their
properties have to be modeled.

• Inference. Reasoning engines or inference systems have to be applied over the specified data
model. This way, high-level information (situations) can be detected.

• Flexibility. The defined model has to be flexible enough in order to be extended at runtime.
This way, the highly dynamic requirements of these kinds of systems can be supported.

• Spatial representation. Location is one of the main context parameters. The model has to
provide mechanisms in order to manage this information. Apart from that the model has to
have functionalities in order to manage areas or regions in space where the situations can
be identified.

• Time. The temporal boundaries when a situation can be detected are also relevant for the
context model.

5.1.2. Reasoning

As mentioned before, a reasoning engine is needed in order to infer high-level context and to detect
situations of entities. The reasoning engine has to be powered by logic rules. This way, domain experts
can specify the needed context data conditions to detect situations. Two of the main requirements for
the reasoning engine are spatial and temporal reasoning support. Spatial reasoning is needed in order to
trigger rules attached to regions in space where situations can be detected once an entity is
located inside one of these regions. Temporal reasoning is also needed in order to support Allen’s
temporal logic [24].

Sensors 2013, 13 6040

5.1.3. Automatic Context Data Life-Cycle Management

The management of context data involves several tasks. Data has to be transformed into the defined data
model, the instances of the model have to be inserted or updated in the knowledge base and data coming
from different sources have to be aggregated if they are related to the same entity instance. This data
management can be quite repetitive and mechanisms that can provide automations are needed.

5.1.4. Extensibility

The platform needs to be flexible enough in order to be extended at runtime [29]. In such dynamic
environments new context sources could be required in order to identify new situations. This way, the
platform has to allow the configuration of the data model and the defined rules according to new
context data requirements at runtime.

5.1.5. Mobility

Location is the main context parameter to be considered in order to personalize the behaviour of
context-aware systems [4]. The entities that can be involved in a certain situation can be on the move
(e.g., Person, Car and Device), so the architecture of the platform has to integrate a Geospatial
Information System (GIS) in order to manage their location. Also, this GIS service is needed in order
to manage the areas where situations can be identified and to detect the entities that are located inside
those areas.

5.1.6. Web Development Environment

The platform has to be a web application that can be configured at any time with any connected
device. It needs to provide the user with a visual environment in order to manage context data using
the user interface [30]. Like that, domain experts can easily access and modify all the configurations in
real time without having to install any development environment.

5.2. Architecture

The architecture of the platform is based on the common layers identified in the reviewed works [21]:
context sources layer, providers layer, data management layer and application layer. Even so, some
advances in complementary scientific and technological fields have been identified and applied to
improve the architecture of these kinds of toolkits. This way, three main ideas have been taken into
account in the design stage of the architecture: the Web of Things [31], Cloud Computing and
End-User Programming [32] paradigms.

The Web of Things principles can be applied to the sources layer. This way, context sources must
have a web end-point in order to get data from them and to interact with them in a RESTful way. In
this manner, these principles can provide a higher level of abstraction over the drivers and low-level
mechanisms that these sources expose in order to get data from them.

Cloud Computing has been considered in order to design the context data management layer. This
layer can be deployed in any web server and it can be configured using a web user interface. In this

Sensors 2013, 13 6041

manner, the platform can scale according to the requirements of the system. The maintenance of the
platform can be externalized as well.

The End-User Programming paradigm has been considered in order to involve domain experts in
the development process. The users of these toolkits must have the knowledge about what is happening
behind the scenes and they must have the control over the managed context data without having
programming skills [33].

As previously defined, context-aware systems are considered as reactive systems that adapt their
behavior to the detected situations of the entities. This way, the platform has been designed in order to
generate the needed high-level outputs that will be used by software or hardware systems in order to
have a reactive behaviour. There are several context processing patterns that have been identified in
the literature review [34], but they are not applicable to a scenario where domain experts configure the
system in order to manage context information and produce high-level outputs. In order to solve this
gap, the pattern shown in Figure 3 has been used.

Figure 3. Context data processing pattern.

Figure 4. Architecture of Context Cloud.

Sensors 2013, 13 6042

In this pattern, context data is obtained or received by the platform and it produces several outputs
with information about the identified situations. Also, the generated outputs can be used as high-level
inputs. The outputs (situations) can be modeled using rules that domain experts need to configure
based on their knowledge on the application domain.

Figure 4 shows the architecture of the platform, which is divided into four different layers: sources,
providers, management and application. This way, Context Cloud can be considered as a black box
that receives inputs from the identified context sources and produces outputs triggered by the defined
context rules. These rules are used to identify situations according to the obtained context data and the
defined data model.

5.2.1. Sources

The first layer is where all the context sources are. These sources are usually distributed and provide
heterogeneous data. This is the case of sensor networks, web services, mobile devices or data bases.
Situation identification from low-level data provided by these kinds of sources is a challenging task where
imperfections of context data source readings and context data uncertainty have to be managed [29].

Sources must be connected to the Internet and they must provide context data in XML or JSON
format in order to be processed by the platform. The programmer has to configure the context sources
in order to fulfil these requirements. For the scope of this research it is supposed that data coming from
the context sources have a reasonable quality.

5.2.2. Providers

Providers are software components that obtain or receive data from the identified context sources.
There are two types of providers: passive and active providers. The passive ones, wait until any
context source proactively sends an HTTP POST request with the needed context data. Active
providers can be configured in order to obtain context data making periodical HTTP GET requests to
the source. The interactions between the platform and the context sources are made in a RESTful way,
following the best practices established by the community of the Web of Things.

5.2.3. Management

The management layer is composed of several modules. The Context Model Data Base can store a
context data model based on context entities (e.g., Person, City, Museum) and properties (e.g., name,
temperature) that are internally modeled using Java Bean classes. This data model will be populated by
the received context data and transformed into events that are going to be saved (or updated) in the
Knowledge Base.

The transformation between data coming from the sources and the data model is performed by the
Mapping Engine, according to the user’s defined mappings. Every data that is received and
transformed into an instance of an entity is automatically considered as a new event for the system,
providing a timestamp to it. This way, rules can use temporal operators (e.g., after, before) in order to
manage these events.

Sensors 2013, 13 6043

The GIS component is used to store the created areas where situations can be identified. It also
translates location coordinates of context entities into registered area names. The platform provides a
context history of the last ten areas where an entity has been detected.

The Rule Engine validates and stores the Event Condition Action (ECA) rules [35] that are created
in order to identify the needed situations. It is also the responsible for firing all the rules against the
instances of entities that are stored in the Knowledge Base. Every time a new rule is created, it has to
be linked to an existing area. This way, the rules that are defined for a certain area, will only be fired if
any of the context entities that are specified in the rule condition are located in that area.

Thus, situations can be defined based on specific areas and the context data that is relevant to these
concrete areas. Furthermore, rules can produce outputs using HTTP POST requests in order to send
data about the detected situation in XML format.

The platform can be configured using the web front-end where programmers and domain experts
can create areas, rules, context entities, mappings between context sources and entities and they can
configure the context data gathering process from the identified context sources by the use of dialogs.

5.2.4. Application

Finally, the upper layer is the application layer. Here is where all the systems that use the produced
high-level outputs are. These systems can use the generated outputs in order to react to the detected
situations and personalize the behavior of the system.

5.3. Configuration of the Platform

Context Cloud has different features that can be configured using the web interface. As shown in
Figure 5, this interface is divided into different widgets that show information about the configured
items: providers, context model, mappings, areas and rules.

Figure 5. Configuration panel.

Sensors 2013, 13 6044

5.3.1. Providers

Context data acquisition from external context sources can be configured using the dialogs that are
available to create providers. Active providers can be configured in order to make periodic GET
requests to the selected context sources and get a document with the context data in response. Also,
passive providers can be configured. These providers can receive XML or JSON documents.

More than one provider can be used in order to get data for the same context entity type. This
facilitates the composition of context data coming from different sources. For instance, let us imagine
that two types of location data sources are being used, one based on WiFi (indoors) and the other one
based on GPS (outdoors). Then, two different providers could be configured in the platform in order to
obtain the location coordinates from these sources.

After that, the mappings for these two providers could be configured in order to store data in the
location properties of the same context entity type. Rules could be configured in order to prioritize
location data based on the quality of the source.

5.3.2. Context Model

The platform allows the creation of a context model defining entities with different typed
properties. Figure 6 shows the context entity creation dialog.

Figure 6. Entity creation dialog.

The entity name, the description and the properties can be created. Every entity must have an
identifier property in order to aggregate data coming from different sources that are related to the same
entity instance.

Sensors 2013, 13 6045

An entity can also be marked as a geo-referenced entity, which means that it will contain latitude
and longitude coordinates that are going to be managed by the platform’s GIS component. For
instance, these data coordinates could be received by a passive provider from a GPS device (context
source) in order to be stored in the Visitor’s latitude and longitude properties using a suitable data
mapping configuration.

5.3.3. Mappings

As aforementioned, in the mapping process the obtained context data can be mapped to context entity
properties. Context data is interpreted by the platform using the elements, properties and values of the
XML or JSON documents coming from the sources. For instance, Figure 7 shows a mapping dialog with
all the element s and property names that have been obtained from an XML document. To configure a
new mapping, the context source data, the entity and the property of that entity have to be specified.

Figure 7. Mapping configuration.

5.3.4. Areas

The platform also provides widgets in order to create areas defined by polygons over a Google
Maps layer. The created areas can be grouped into area types as well.

5.3.5. Rules

The rule creation dialog allows the configuration of the needed conditions in order to detect the
situations. To create a rule, it must be assigned to an area. Figure 8 shows the dialog to create rules. A
name and a description for the rule have to be provided. The dialog also has two text areas where the
rule conditions (when) and the rule actions (then) can be specified. These text areas can be edited
programmatically specifying the code for the rule or they can be edited using the controls on the right
side of the dialog. These controls will automatically translate the configurations into rules.

There are several controls that can be used in order to configure a rule. A calendar option is
available, where a date range can be specified for the rule. Also, the priority of the rule can be
specified, the higher the number, the higher the priority. The dialog shows all the available entities,
their properties and the conditions that can be applied to these properties.

Sensors 2013, 13 6046

Also, some useful functions are listed. The “log” functionality can be used to print a message in the
debugging console of the platform. The “POST” function can be included in the consequence of a rule
in order to trigger a POST request to any external web service end-point.

The rule that is shown in the example of Figure 8 has been created in order to detect that a visitor is
waiting for the bus. The situation can be detected when a visitor is inside a bus stop. Other relevant
context data are the visitor’s location, speed, date and time. This way, there is one primary context
source that has been used, the visitor’s mobile device.

The mobile device has been configured in order to send location coordinates and speed data from
the embedded GPS sensor to a passive provider that has been configured using the platform. The
context model is composed of a geo-referenced entity, “Visitor”, with some properties: name (id),
latitude, longitude and speed. The mappings have been configured and an area has been created around
the bus stop named “Bus Stop”.

This way, the configuration of the rule creates the following lines of code:

$visitor : Visitor(speed == 0)
$visitor: Area(name==“Bus Stop”) from $ visitor.currentAreas
eval(Rule.timeRange(8,20))

Figure 8. Rule creation dialog.

Several conditions have been defined. A date range (weekday) has been specified using the calendar
control. Also a time range has been specified using the function “time-range”. The first condition of
the rule indicates that the speed of the visitor must be zero.

The second condition has been automatically generated by the platform because the rule has been
created in order to be linked to the “Bus Stop” area. This condition is necessary in order to trigger the
rule only when the visitor is at the defined “Bus Stop” area.

Sensors 2013, 13 6047

The consequence of the rule has been configured with the “POST” function. In this case, if the rule
is triggered, it will send information about the Visitor entity instance to the specified web end-point.

An example of the XML document that the rule will send once the situation is detected is shown in
Figure 9. This document contains information about the Visitor entity instance, including all its context
data properties and values, and the information of the area where the situation was detected.

The name of the rule indicates the name of the situation that has been detected. Also, a timestamp
element is included with the last update time of the entity instance.

Figure 9. XML output.

5.4. Discussion

Some functionalities that would be needed in order to fulfil the presented theoretical framework and
to support the designed development methodology have been analysed over the reviewed frameworks.

Table 1. Comparison of context-aware development toolkits.

 a b c d e f g
Context Toolkit - - - - - x -

JCAF - - - - - x -
CASS - - - - - x -

SOCAM - - - - - x -
CoBra - - - - - x -

Semantic Spaces - - - - - x -
DiaSuite - - - x - x x
OPEN - - - x x x x

Context Cloud x x x x x x x

As shown in Table 1, Context Cloud presents more functionalities than the rest of the reviewed
toolkits. For instance, it is the only one that automatically manages context data life cycle (a). This
management involves the automatic conversion from gathered raw context data to the context data
model and automatic updates of current context data and storage of past context data. It also deletes
context entities instances from the knowledge base when a registered context source is unregistered or
it is no longer available. It is extensible at runtime (b), that is, the user can update the context model,

Sensors 2013, 13 6048

the rules and the areas whenever it is needed. Also, a geographic information system is included in
order to support user’s mobility (c). Visual programming is supported (d) and the platform can be
configured using a web front-end (e), which makes it accessible from any Internet connected device.
The platform is suitable not only for programmers (f) but also for domain experts (g).

6. Evaluation

The development methodology and the platform have been evaluated with real users. Apart from
that, the performance of the reasoning engine of the platform has been evaluated as well.

6.1. Reasoning Performance

The performance of the reasoning process in rule production systems may vary depending on
several factors and it can be a bottleneck for the rest of the system [36]. In order to evaluate the
performance of Context Cloud, and more precisely the reasoning performance, some tests have been
carried out in a controlled environment. As a reference, a maximum reasoning time of a second has
been considered in order to not affect the final user experience [37]. The following parameters have
been configured in the tests.

• The number of context entity instances, with a minimum of a thousand instances and a
maximum of 20 thousand instances.

• The context entity properties, where the number of properties per entity vary between one and five.
• The number of rules, between a hundred rules and five hundred rules.
• The number of entities used in the rule conditions, with one or two entities.

It has been used a laptop with 4 GB of RAM and 1 GB of memory reserved for the Java Virtual
Machine. The results of the designed tests are the following.

• The higher the number of entity instances in the knowledge base, the worst the performance of
the reasoning process.

• The higher the number of entity properties used in the rule conditions the better the
performance of the reasoning process.

• The higher the number of rules, the worst the performance of the reasoning process.
• The higher the number of entities used in the conditions of the rules, the worst the performance

of the reasoning process.

The conclusions of the reasoning performance tests are that the number of rules and the number of
instances should be minimized in order to have a good performance, while the number of properties
used in the rule conditions and the available RAM memory should be maximized. If this
considerations or advices are not enough, the platform could be configured in order to be deployed in a
server cluster because of the cloud nature of the platform. This way, the reasoning process could be
distributed between different server instances.

Sensors 2013, 13 6049

6.2. User Evaluation

The platform has been validated with 20 participants. The designed evaluation has been inspired in
a tourism scenario [38,39], so the non-technical users were experts in the tourism domain.

The participants carried out the evaluation in pairs composed by a tourism domain expert and a
programmer. A tourism expert has been considered as a person whose work is related to the tourism
industry or whose education is focused on social sciences. Due to the specific technical skills and
professional profiles that have been required in order to carry out the evaluation tests, the sample of
participants has been reduced. However, this sample can be considered as a sufficient sample
according to the results that are explained in next sections.

6.2.1. Methodology

First of all, the users were introduced to the Context Cloud platform and to the experiment’s
objectives. They were instructed on how to configure the platform and they were given an example on
how to identify a situation using the methodology. The participants were given a text document where
four different situations were described.

• Waiting for the bus (S1): the visitor waits for the bus at Bus Stop A and she receives an SMS
with the estimated time of arrival for the next bus.

• Sunbathing (S2): the visitor is at the beach when she receives an SMS advising her that she
should use sun cream because the temperature is higher than 30 °C.

• Waiting for the bus (S3): the visitor waits for the bus at Bus Stop B and she receives an SMS
with the estimated time of arrival for the next bus.

• Arriving to the hotel room (S4): the air conditioning is activated when the visitor goes into
the room.

The situations were simulated using the Siafu Context Simulator [40]. It was configured to send
context data about the visitor on the move to the platform. The simulator also provided some web
services in order to obtain the weather information and to access the air conditioning system of a simulated
Hotel. The participants had to configure the platform in order to detect the above mentioned situations.
During the test, an external observer annotated all the problems that the participants found using the
platform. Also, once a situation was detected, the time spent in its configuration was annotated.

After having completed the user experience, each participant had to fill out a questionnaire based on
a six-level likert scale, with values from 1 (totally disagree) to 6 (totally agree). The used survey was
designed on the Technology Acceptance Model (TAM) literature, and in particular, it was adapted
from David’s studies [41]. This way, three constructs were considered: Perceived Ease of Use (PEOU),
the Perceived Usefulness (PU), and the Behavioral Intention (BI).

6.2.2. Results

95% of the participants find that learning the methodology is easy and the 100% of them state that it
eases the collaborative work. Also, the 100% of the participants find that the methodology is useful to
work with the platform, and that it is useful to develop context-aware systems.

Sensors 2013, 13 6050

The 95% of the participants find that learning how to use the platform is easy. The 75% of the
participants find it easy to get Context Cloud to do what they want to do. However, the other 25%
disagree on that. The reason is that the participants were not used to work with these kinds of toolkits.
The 95% of the participants also find that the interaction with Context Cloud is clear and
understandable. The 90% of the non-programmers state that it would be easy for them to become
skillful at using the platform.

The perceived utility of the platform is also highly supported by domain experts. The 100% of the
domain experts state that using Context Cloud in their jobs would enable them to develop context-
aware systems more quickly and that it would make it easier to develop context-aware systems. Also,
all of the participants would recommend other users to use the platform and they would use it in future
developments. In addition to this, the 80% of them would pay for the system.

The average time spent by each of the pairs to solve the evaluation test was 89 min. It is relevant
that the they spent an average time of 37 min in order to solve the situation number one, while for the
rest of the situations, the average time was 17 min. This means that once they know how to configure
the platform in order to identify the first situation, it is easier for them to configure it for the rest of the
situations. This way, the learning curve is steep, that is, the participants learn in a very short period of
time how to use the platform successfully.

During the user evaluation, the external observer realized that the excel sheet promotes the
discussion between domain experts and programmers during the analysis stage of the methodology. In
the configuration stage, some of the non-programmers used the platform in order to configure some of
the situations. More precisely, 12 out of 40 situations were totally configured by domain experts. The
most difficult part of the learning process was to identify the needed context entities to create the
context model. Also, they had problems figuring out which were the needed outputs that the platform
needed to produce.

7. Conclusions

This research work describes a situation-driven development methodology designed to promote the
collaboration between programmers and domain experts in the implementation of context-aware
systems. In addition, a platform to ease the development of context-aware systems has been
implemented. This platform supports the designed methodology and it is particularly thought for non-
technical users. Both the methodology and the platform have been successfully evaluated and validated
with real users.

Thanks to the designed platform, users with no programming skills can actively participate in the
development life-cycle of context-aware services. This way, programmers can focus on the
interactions between the platform and the context sources, and the management of all the outputs that
are triggered by the rules in order to develop all the business logic of the service to be implemented.

The results of the user evaluation evidence that the platform can be used in order to implement
context-aware systems. It is clear that programmers become skillful users of the platform easier than
domain experts, but these also state that they could be skillful at using the platform easily as well.
Furthermore, these results evidence that domain experts can be involved in the configuration of the
platform, and thus, in the development process guided by the designed methodology.

Sensors 2013, 13 6051

The development methodology, the platform, and the results obtained from the user evaluation have a
fundamental implication in the evolution of Context-Aware Computing. The involvement of domain-
experts in the development process of context-aware systems is essential, which implies that the
methodologies and tools used to implement such systems have to be adapted to people that do not have
programming skills. This has a direct impact on both the design of the processes that have to be taken into
account in the development of context-aware systems and the design of toolkit architectures that support
the development of such systems. Only domain-expert and end-user involvement on the design and
implementation of context-aware systems can ensure that those actually address the end-user real needs.

As future work, the enhancement of the reasoning process is planned. This includes the study of
complementary reasoning algorithms based on Naïve Bayes classifiers, Bayesian networks or Hidden
Markov Models. There is also a degree of uncertainty in the reasoning process that has not been
considered in the implementation of platform. Being able to measure the probability with which a
certain situation may happen will be considered in future iterations of the development of the platform.

Acknowledgements

This research work has been supported by the Strategic Research Programme ETORTEK
(tourSpheres-IE10-290) of the Basque Government.

References

1. Weiser, M. The computer for the 21st century. Sci. Am. 1991, 265, 94–104.
2. Barron, K. Opportunity Calling: The Future of Mobile Communications-Take Two; Technical

Report; Oracle Communications: Redwood City, CA, USA, 2011.
3. Dey, A.K. Understanding and using context. Pers. Ubiquit. Comput. 2001, 5, 4–7.
4. Steiniger, S.; Neun, M.; Edwardes, A. Foundations of Location Based Services; Lecture Notes on

LBS, University of Zürich: Zürich, Switzerland, 2006.
5. Costabile, M.F.; Fogli, D.; Letondal, C.; Mussio, P.; Piccinno, A. Domain-Expert Users and their

Needs of Software Development. In Proceedings of the 2nd International Conference on Universal
Access in Human-Computer Interaction, Heraklion, Greece, 22–27 June 2003; pp. 232–236.

6. Green, D.; DiCaterino, A. A Survey of System Development Process Models; Technical Report;
Center for Technology in Government: Albany, NY, USA, 1998.

7. Scharff, C.; Verma, R. Scrum to Support Mobile Application Development Projects in a
Just-in-Time Learning Context. In Proceedings of the 2010 ICSE Workshop on Cooperative and
Human Aspects of Software Engineering, Cape Town, South Africa, 1–8 May 2010; pp. 25–31.

8. Henricksen, K.; Indulska, J. Developing context-aware pervasive computing applications: Models
and approach. Perv. Mob. Comput. 2006, 2, 37–64.

9. Hirschfeld, R.; Costanza, P. Context-oriented Programming. J. Obj. Technol. 2008, 7, 125–151.
10. Dey, A.; Abowd, G.; Salber, D. A Conceptual framework and a toolkit for supporting the rapid

prototyping of context-aware applications. Hum. Comput. Int. 2001, 16, 97–166.
11. Fahy, P.; Clarke, S. CASS-Middleware for Mobile Context-Aware Applications. In Proceedings

of the 2nd International Conference on Mobile Systems, Applications, and Services (MobiSys),
Boston, MA, USA, 6–9 June 2004.

Sensors 2013, 13 6052

12. Bardram, J.E. The Java Context Awareness Framework (JCAF)–A Service Infrastructure and
Programming Framework for Context-Aware Applications. In Proceedings of the 3rd International
Conference on Pervasive Computing, Munich, Germany, 8–13 May 2005; pp. 98–115.

13. Chen, H.; Finin, T.; Kagal, L.; Perich, F. Intelligent agents meet the semantic Web in smart
spaces. IEEE Int. Comput. 2004, 8, 69–79.

14. Gu, T.; Pung, H.; Zhang, D. A service-oriented middleware for building context-aware services.
J. Netw. Comput. Appl. 2005, 28, 1–18.

15. Hettiarachchi, S. Semantic space: An infrastructure for smart spaces. IEEE Perv. Comput. 2004,
3, 32–39.

16. Korpipää, P.; Mantyjarvi, J.; Kela, J.; Keranen, H.; Malm, E. Managing context information in
mobile devices. IEEE Perv. Comput. 2003, 2, 42–51.

17. Cassou, D.; Bruneau, J.; Consel, C. A Tool Suite to Prototype Pervasive Computing Applications. In
Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), Mannheim, Germany, 29 March–2 April 2010; pp. 820–822.

18. Guo, B.; Zhang, D.; Imai, M. Toward a cooperative programming framework for context-aware
applications. Pers. Ubiquit. Comput. 2010, 15, 221–233.

19. Schilit, B.N.; Theimer, M. Disseminating active map information to mobile hosts. IEEE Netw.
1994, 8, 22–32.

20. Brown, P.J. The Stick-E Document: A Framework for Creating Context-Aware Applications. In
Proceedings of the Sixth International Conference on Electronic Publishing, Document
Manipulation and Typography, New York, NY, USA, 24-26 September 1996; pp. 259–272.

21. Baldauf, M.; Dustdar, S.; Rosenberg, F. A survey on context-aware systems. Int. J. Ad Hoc
Ubiquit. Comput. 2007, 2, 263–277.

22. Chen, G.; Kotz, D. A Survey of Context-Aware Mobile Computing Research Time; Technical
Report Number TR2000-381; Dartmouth College, Department of Computer Science: Dartmouth,
UK, 2000.

23. Henricksen, K. A Framework for Context-Aware Pervasive Computing Applications.
Ph.D. Thesis, University of Queensland, Queensland, Australia, 2003.

24. Yau, S.S.; Huang, D. Mobile Middleware for Situation-Aware Service Discovery and
Coordination. In Handbook of Mobile Middleware; Bellavista, P., Corradi, A., Eds.; Auerbach
Publications: New York, NY, USA, 2006; pp. 1059–1088.

25. Allen, J.F. Maintaining knowledge about temporal intervals. Commun. ACM 1983, 26, 832–843.
26. Oh, Y.; Yoon, H.; Woo, W. Simulating Context-Aware Systems based on Personal Devices. In

Proceedings of the International Symposium on Ubiquitous Virtual Reality, Gwangju, Korea,
6–10 July 2006; pp. 49–52.

27. Strang, T.; Linnhoff-popien, C. A Context Modeling Survey. In Proceedings of the 6th
International Conference on Ubiquitous Computing, Workshop on Advanced Context Modelling,
Reasoning and Management, Nottingham, UK, 7–10 September 2004.

28. Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A.; Riboni, D.
A survey of context modelling and reasoning techniques. Perv. Mob. Comput. 2010, 6, 161–180.

29. Ye, J.; Dobson, S.; McKeever, S. Situation identification techniques in pervasive computing:
A review. Perv. Mob. Comput. 2012, 8, 33–66.

Sensors 2013, 13 6053

30. Whitehead, J. Collaboration in Software Engineering: A Roadmap. In Proceedings of the 7th
International Conference on Software Engineering, Workshop on the Future of Software
Engineering, Minneapolis, MN, USA, 23–25 May 2007; pp. 214–225.

31. Guinard, D.; Trifa, V.; Mattern, F.; Wilde, E. From the Internet of Things to the Web of Things,
Resource Oriented Architecture and Best Practices. In Architecting the Internet of Things;
Uckelmann, D., Harrison, M., Michahelles, F., Eds.; Springer Berlin Heidelberg: Berlin,
Germany, 2011, pp. 97–129.

32. Lieberman, H.; Paternó, F.; Klann, M. End-user development: An emerging paradigm.
End User Dev. 2006, 9, 1–8.

33. Bellotti, V.; Edwards, K. Intelligibility and accountability: Human considerations in
context-aware systems. Hum. Comput. Int. 2001, 16, 193–212.

34. Gwizdka, J. What’s in the Context? Comput. Hum. Int. 2000, 2000, 1–4.
35. López-de-Ipina, D.; Katsiri, E. An ECA Rule-Matching Service for Simpler Development of

Reactive Applications. In Proceedings of Middleware 2001 at IEEE Distributed Systems Online,
Heidelberg, Germany, 12–16 November 2001.

36. Lamsfus, C.; Martín, D.; Alzua-Sorzabal, A.; López-de-Ipiña, D.; Torres-Manzanera, E. Context-
based tourism information filtering with a semantic rule engine. Sensors 2012, 12, 5273–5289.

37. Miller, R.B. Response Time in Man-Computer Conversational Transactions. In Proceedings of
AFIPS Fall Joint Computer Conference, Washington, DC, USA, 9–11 December 1968; pp. 267–277.

38. Lamsfus, C.; Alzua-Sorzabal, A.; Martín, D.; Smithers, T. An Evaluation of a Contextual
Computing Approach to Visitor Information Systems. In International Conference on Information
and Communication Technologies in Tourism; Law, R.; Fuchs, M.; Ricci, F. Eds.; Springer
Vienna: Innsbruck, Austria, 2011; pp. 197–190.

39. Martín, D.; Alzua-Sorzabal, A.; Lamsfus, C. A Contextual Geofencing Mobile Tourism Service.
In International Conference on Information and Communication Technologies in Tourism; Law, R.;
Fuchs, M.; Ricci, F. Eds.; Springer Vienna: Innsbruck, Austria, 2011; pp.191–202.

40. Siafu: An Open Source Context Simulator. Available online: http://siafusimulator.org/ (accessed
on 3 March 2013).

41. Davis, F. Perceived usefulness, perceived ease of use, and user acceptance of lnformation
technology. MIS Quart. 1989, 13, 318–340.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

