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Introduction

The intensive search for black-hole solutions of supeitydlieories over the last 25 years has
been a very rewarding one in respect to the supersymmes@kaown as BPS in the literature,
even if this concept is not equivalent, but wider) ones. Elmugh the existence of extremal
non-supersymmetric black holes was discovered long tinee[Eg2] and we know that they
are subject to the same attractor mechanism as the supeetyimanes([3], only a few general
families of solutions have been constructed for some ctagEtheories|[4] and we are still far
from having a complete understanding of their structure gartkeral properties. The situation
w.r.t. non-extremal solutions, which some of us studieémdlg in [5,[6, 7, 8] 9] is even worse:
even if all extremal black-hole solutions may be deformieel (heated up) to a non-extremal
one, then we do not know the non-extremal deformations ofynodthem; in general we don't
know whether there are obstructions to such a deformatidrnvdrat they are. We also don't
know whether, in each theory, there is only one family of matremal black-hole solutions
from which all the extremal ones can be obtained by taken gpeogriate limits, such as it
happens in the few models studied so far [10, 11| 5| 6, 7]. $tm@y) non-extremal black hole
landscape is a largely uncharted territory.

It is clear that to answer these questions new tools are desdee the first-order equations
associated to unbroken supersymmetry are of no help her¢hangecond-order equations of
motion of the FGK effective action [3] are still very hard . Several approaches have been
proposed to this end. For instance, it has been shown tharergl one can construct first-
order flow equations for extremal non-supersymmetric andexremal black holes Refs. [12,
13,1415/ 16, 17, 18, 19, 20] and many such equations havedoestructed. From them one
can extract interesting information about the near-hariaod spacelike infinity limits (whence
about the entropy and mass of the solutions), but in prathiege equations are obtained when
the solutions are already known, which somewhat diminisiheis usefulness.

The most common approach to the search of stationary blalekdolutions, pioneered in
Ref. [21], consists in the dimensional reduction over theetdirection. For 4-dimensional theo-
ries, this results in a 3-dimensional theory consisting mba-linears-model coupled to gravity
(in 3 dimensions the vector fields can be dualized into ss)ﬂaNhen theo-model corresponds
to a homogeneous space one can show that the system is bitegra use the standard tech-
niques to classify and obtain explicit black-hole solusipseee.g.[22]. This approach has been
quite a successful one, but for the moment it has not providedplete answers to the above
guestions.

More recently, a new approach for the 4- and 5-dimensidak 2, d = 4 supergravity
theories coupled tey vector supermultiplets has been introduced in erfH.Z‘Bhis approach,
dubbed théd-FGK formalism consists in using a convenient set of variables in the FGdCave
action. These variables arise naturally in the supersymereetses [2/7, 28], but it has been shown
that they can be used in more general (but always statiosasgs. The main virtue of the new
variables, when compared to the scalar fields present in @i¢ &ffective action, is that they

1 Further assumptions (staticity plus an ansatz for the 3=dsional metric) lead to the FGK effective action
with its characteristic effectivblack-hole potential3].
2A closely-related approach has been proposed in Refl [226]5
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transform linearly under the duality group (embedde8i2ny + 2;R) in thed = 4 case and
in SO(ny + 1) in d = 5 case).

In previous worksl[7, 9,18, 29] we have investigated the dpson of the simplest families
of solutions (that we will calconventionaln SectioriB) for which thé7-variables are harmonic
functions (in the extremal case) or linear combinationsygienbolic sines and cosines (in the
non-extremal case). We have also studied some generaldsatithe formalism, like the invari-
ance of the effective action under local Freudenthal duabtations [30], but thus far we have
not exploited the main feature of thé-variables, namely the linear equivariance under duality
transformations of the charges and moduli that charaetergiven solution.

Our main goal in this paper is to study this aspect of the ftismaand show how to exploit
the requirement of linear equivariance in order to find attes and construct explicit extremal
solutions in some already well-studied models: the axioil@nd theCP" models. We also want
to make progress towards answering the questions posed attinning of this introduction
using these new tools. In tle®nventionatases that we have studied so far, it is known how one
can arrive at (extremal) solutions described by harmomiction from (non-extremal) solutions
described by hyperbolic sines and cosines: we will applyrew tools to anon-conventional
(non-supersymmetric) extremal solution of tHiemodel not considered in our previous works
Refs. [7,9]. This solution, which has been known for someet|B81,[32 19, 4], is characterized
by H-variables that contain anharmonic terms and its defoondtito a non-supersymmetric
(finite-temperature) solution has proven elusive [33]. Waek that, in order to search for this
non-extremal generalization (if it exists), it is neceggarknow more about the structure of the
extremal solution and we will show how the new tools can halpouthis end.

This paper is organized as follows: in Sectidn 1 we brieflyieevthe H-FGK formalism,
providing the definitions and relations that we will use ie tiest of the article. In Sectidn 2
we explain how equivariant charge vectors enter in bladk-Bolutions when we express them
in the H-variables of this formalism. In Sectioh 3 we explain whea tisual harmonic ansatz
becomes insufficient to write the general family of solui@ssociated to some attractor (ex-
pressed through an equivariant charge vector). This imsefficy indicates the need of adding
anharmonic terms to thH-variables giving rise to what we have calledconventionablack-
hole solutions. Then, in Sectidh 4 we give a general form lierfirst-order flow equations of
any static black-hole solution of these theories that agpin particular, to the unconventional
solutions. In Sectiorls 5 andl 6 we review the supersymmetda@n-supersymmetric extremal
solutions (which are completely conventional) of two sienplodels, studying their duality sym-
metries and their equivariant vectors. In Secfibn 7 we torthe > model, showing how its
extremal, non-supersymmetric solutions are non-conveati We, then, construct and study
this unconventional family of solutions using a basis ofieguant vectors. Our conclusions and
comments on further directions of work can be found in Sed@o



1 The H-FGK formalism for N = 2, d = 4 supergravity

As shown in Refs.[[26, ZEB]the problem of finding static, single-center, black-holkisons of
any ungaugedV’ = 2, d = 4 supergravity theory coupled tovector multiplets can be reduced
to that of finding solutions to the effective action for the: + 1) real variable@HM(T)

— Iyrek[H] = /dT {%QMNHMHN - V} ; (1.2)
subject to théHamiltonian constraint

%g]wNHMHN—i-V—FTg:O, (13)

wherer is thenon-extremality parameteFor later reference, we quote the equations of motion
that follow from the above action, taking into account tha metricg,,;n IS not invertible
[26,(30]

gunHY + (Ongpar — %aMgNP>HNHP +0ouV =0. (1.4)

The metricgy v (H ) and the potentidl’ (H) of the H-FGK effective action are given in terms
of theHesse potentidlV(H) by

HyH
gun(H) = 9ydylogW — 2= (1.5)
HyH
V(H) = {—iﬁMﬁNloquL ]\\/4V2N}QMQN. (1.6)

The Hesse potential contains all the information charattey the NV = 2,d = 4 supergrav-
ity theory under consideration, and defines it (at least is tntext) just as the canonically-
normalized covariantly-holomorphic symplectic sectipit!) = (fAAA) does. The Hesse poten-
tial can be derived fronv" as follows:

1. Introduce an auxiliary complex variahlé with the same Kahler weight a8", we can
define the two Kahler-neutral real symplectic vectBr$ andZ

VM X =RM 4-47M (1.7)

3We will follow the notation and conventions of Ref. [23]. Moimformation about this formalism and the
original FGK formalism can be found ie.g. Refs. [3] 5] 30].

4The indicesM, N are2(n + 1)-dimensional symplectic indices. We use the symplecticiméf ;) =
(% §) andQMPQyp = 6™ y to lower and rise the symplectic indices according to thevention

Hy = QunHY, HM = HyQNVM (1.1)



The components d® can be expressed in terms of thos@¢f (solving thestabilization
equationsa.k.a.Freudenthal duality equatior{8]). The functionsk* (Z) are characteris-
tic of each theory, but they are always homogeneous of figutedein theZ™ .

It can be shown that

X = Jzelrie, (1.8)

whereeV is the metric function (or warp factor) aads a completely arbitrary-dependent
phase which does not enter in the Lagrangian. Differentogsoofa give different defini-
tions of the variableg/™ which, nevertheless, describe the same physical variablés

freedom gives rise to a local symmetry of the H-FGK actiorgwn aslocal Freudenthal
duality [30], that will be discussed later.

2. Given those functions, thdesse potentialV(Z) is just

W(Z) = Ry (Z)ZV . (1.9)
It is, by construction, homogeneous of second degr&e’in

It is customary to relabel these variables

i VX = HM4+igM =HM.
HM =71M HM =RM — i (1.10)
W(H) = Hy(H)HM.

The relation between the tilded and untilded variables @sfihediscrete Freudenthal duality
transformation of the theory [34, 35,130}/ is the Freudenthal dual af*. This duality
transformation turns out to be an anti-involutiae,

HM = AM(H) = —HM (1.11)

and, therefore preserves the Hesse potential

W(H) = W(H), (1.12)

and also the full effective action Ed._(1.2). These discdeiglity transformations are associated
to the constant shift of the phase &f, « — « + 7. The continuous, local, transformations
a—a+ f(1)

7_[/]\/1 — eif(T) HZ\/I’ (113)



leave invariant the effective action (I1.2) and all the pbgkfields [30]. Since the central charge
of these theorieZ(Z, Z*, Q) is defined in terms of the canonically-normalized covahant
holomorphic symplectic section™ byl

Z(Q) = VoM, (1.14)
using the definition of thé/-variables we find th8t

—i

(&
Z(Q) = H M, 1.15
whence under Freudenthal duality
Z2(Q)=e'"Z(9). (1.16)

The definition of Freudenthal dual can be extended to any Bgtipvector of a given thedﬂy
and, in particular, to the charge vect@. We know that the black-hole potential, which is
related to the potentidl appearing in the H-FGK action by

Vin = -W V, (1.17)

as a function of the variabldg?, is always extremized by the near-horizon valt¥ = 3QM

for any proportionality constant. Freudenthal symmetry implies that it is also extremized at
the same points in terms of the Freudenthal-dual variaBlés= 30, which corresponds to
BM — _30M [35,[30]. Freudenthal duality can also be seen as a relagomden black holes
with identical metrics (and, therefore, entropies) andasdelds but different charges [34].

2 Explicit solutions and equivariant vectors

The main advantage of the H-FGK formalism is the linear badranf the variables under trans-
formations of the electric-magnetic duality groGpof the theory:

HM' = §M [N (SMy) € G C Sp(2n + 2;R). (2.1)

This linear behavior can dramatically simplify the constion of explicit solutions to theories
with a non-trivial duality group as it implies that any satut must be of the form

HM(1) = (1) UM, (2.2)

SWe will often use the lighter notatio&(Q) or Z(B) if we replace the charge vector by another equivariant
charge vector. Sometimes these equivariant charge ver®izlledfake chargesn which caseZ(B) is referred
to asfake central charge

8In what follows,W with no arguments will be assumed to\0& H ).

’In some theories not all symplectic vectors have a Freudédtral. For instance, in the cubic models that we
are going to study, only when the Hesse potential, evaluaited particular vector, is different from zero, is the
Freudenthal dual well defined.



where the functions’(7) are duality invariant; the symplectic vectdrg’ are constant vectors
that may depend on the physical parameters of the theorys(iiaslectric and magnetic charges
QM and asymptotic values of the scal&$) and must beequivariantw.r.t. the duality group,
i.e.

UMM,z , 7, Q) = SMNyUN(M, Z, 27, Q), (2.3)
with

Z“EF&(Z), QJM/ZS]MNQN, (24)

where Fi(Z) is the non-linear realization of the duality transformati®" 5 on the complex
scalars.

In some cases, the number of equivariant vectors of the ylezor be greater thEror equal
to the number of variable§" . In that case, one does not win much by using the above ansatz.
In other cases, however, the number can be much smaller andl e left with a small number
of invariant functions to be determined.

In the near-horizon limit of extremal black-hole solutiptige value of the variabled™ will
be dominated by one equivariant vector that we denot&dyand that can be defined, in our
conventions,

M
BMzhm—¢ﬂ{. (2.5)

T——00 T

The values of the scalars on the horiz&f, are completely determined by this equivariant vector
upon use of the general expression of the scalars as fuscifdhe variableg/ [23]

 H 44l
~ HO 4+ iHO
and also extremize the black-hole potentigl(H, Q) as a function of the variable$?/:

Z'(H) Zi = 7'(B), (2.6)

OniVon(H, Q)| y_p =0. (2.7)
The vectorsB™, which in this context can be called attractors, can alsoditéan in the form

BM =y UM (2.8)

where thel? are duality-invariant constants such that the prodtcts have the same dimen-
sions as electric and magnetic charges.

Clearly these vector attractors must contain more infoionahan the values of the scalars
on the horizor?Z] (the standard attractors). On the other hand, when the rhadel high degree

8If it is greater, we can eliminate some from the ansatz, sineg will be linearly dependent on the rest.

9Observe that this definition is completely general: givem llehavior of the 3-dimensional transverse metric
in the near-horizon limit as a function efand the degree of homogeneityof?’ = W(H) as a function of the
H-variables, in regular black-hole solutions the functiégh¥ () are dominated by these constant vectors in the
near-horizon limit.



of symmetry the requirement of equivariance imposes steongtraints on the possibilities and
it simplifies the task of finding the attractofs" .

A similar discussion can be made for the values of the vaggll' at spatial infinity, which
in the employed coordinate system lieg-at 0.

The amount of simplification introduced by the above obg@wdhat the variable& ™ must
always be of the form Eq._(2.2) depends on our ability to findffident number of equivariant
vectors; the Freudenthal dual of the charge ve@®f is, by construction, a prime example
of equivariant vector, but there are other systematic wayisading them. Let us consider, first,
equivariant vectors that only depend on the charges. Thepe&aeen as an endomorphism of the
(2n + 2)-dimensional vector space of charges and their equivagimnequivalent to the fact that
these endomorphisms commute with the duality transfoonatjwhich are also endomorphisms
of charge space). Thus, linear (not necessarily symp)dctinsformations that commute with
provide a second example of equivariant vectors.

To study non-linear cases, let us expand an equivariandivant the duality transformations
around the identity

U;1(Q) ~ QY +¢%(Q), (SQM ~ QM+ anaM(Q), (2.9)
whereS € G C Sp(2n + 2;R) and, therefore,

naM(Q) = (Ta)Vy OV, (2.10)

whereT, € Sp(2n + 2;R) are the generators of the duality group; the condition ofvegiance
is equivalent to requiring that the Lie brackets of these kimadls of generators vanith

P
[Unal =0, = (Ta)YNQY0ouU" = (Ta)"rU", where 0yU" = ggM .

(2.11)

On taking the derivative with respect @’ of both sides of this equation we find the integra-
bility condition

(Ta)" nQVOMP =0, P=0yUM =QMNoyUy. (2.12)

which implies that? is an invariant function of the charges. Thus, equivari&tters are asso-
ciated to invariants by the above equation. The simplestriant is justP = 0 and equivariant
vectors such that,;Uy; = 0 are associated to it; clearly there may be more possilsila&
locally they must be of the forrtv,; = 0,,h for some non-vanishing invariaht(possibly up to
additive numerical constants) and one can check that theagnce condition is automatically
satisfied. For instance, if we take= W /2, thenU,, = Qus.

For equivariant vectors that depend (non-holomorphigallythe moduliZ’_, the equivari-
ance condition takes the form

100pviously, alse must be an equivariant vector, whence we can regdmel/ in what follows for the purpose
of writing an equation characterizing equivariant vectors



(TOM N QN oMUY + ks 0UT + kg* " 0, UF = (T) U™, (2.13)

whereK 4 = k4'(Z)0; + c.c. are the Killing vectors that generate the action of the dyiglioup
G on the scalar manifold preserving the holomorphic and &aiructures. AgairR = 0,,UM
must be an invariant and a particularly simple case is 0 andU,,; = 0,;h where, now is
required to be invariant only up to additive functions of theduli. A recurring example is

h = log (2(Q)) . (2.14)

where Z(Q) is the central charge defined in EQ.(1.14). The associatadflex) equivariant
vector is

_on _ Vu (2.15)

oQM Z(Q)
The real and imaginary parts provide two real moduli-depabhé@quivariant vectors. It should
be obvious that one can use, instead of the central charglalygentral charge, but the result
may not be a new equivariant vector.

The Lie bracket of two equivariant vectors is also an eqiaveivector, so that the equivariant
vectors form a Lie algebra that commutes with that of theidugtoup G.

Finally, in the cases that we are going to study, we will shaw lone can construct equiv-
ariant vectors by using other methods like solution-gemagdechniques.

Um

3 Conventional and unconventional solutions

As explained in Ref.[23], contracting the equations of motderived from the H-FGK action
Eq. (1.2) withHZ* and using the homogeneity properties of the different texnusthe Hamilto-
nian constraint Eq[(1].3) one finds, in the extremal agse (4, the equation

Wy HY + (HMHy)?> = 0. (3.1)

In what we are going to call from now @onventionaéxtremal solutions (supersymmetric or
not) the variableg7 (1) are harmonic functions.e. they satisfyH" = 0. The above equation
implies that they also satisfy the constriint

HMH) =0. (3.2)

Conventional extremal solutions have been intensivelgistlin Ref. [9]. However, how general
are these solutions? Can all the extremal black-hole swisitbe written in a conventional form?
(The answer in the supersymmetric case is yes.) If not, wieathee limitations and how can

1n this discussion we will only consider the extremal caseslbse in the rest of the paper we are going to restrict
ourselves to it.

12The converse is not always true: the above constraint caatisfied for extremal black-hole solutions which
are not given by harmonif ™s and that we will calinconventional
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they be overcome as to obtain the most general extremal-blaleksolutions that depend on the
maximal number of independent physical parameters?

To investigate these issues, it is convenient to reviewtaiiée construction of conventional
extremal black-hole solutions: extremal black-holes asoaiated to values of the scalar fields
Z! (attractors) that extremize the black-hole potential B8.explained in the previous section,
in the H-FGK formulation attractors appear as symplectitaoes 3 that extremize the black-
hole potential when written in terms of thié-variables. These attractof3" are defined up
to normalization because the black-hole potential is iavarunder rescalings of thd"s and
also up to global Freudenthal rotations. Furthermore, astions of the charges and moduli,
the attractorsB™ are equivariant under duality transformations. A familyeotremal black
holes closed under duality will be associated to a givenvegiaint vector expressed as a set
of functions of the charge components and modiifi(Q, 7., Z* ). We are going to focus on
moduli-independent attractolisg. the so-calledrue attractors

The attracto3™ determines the near-horizon form of the solution. We camagdxconstruct
a solution describing the AdS S, solution that describes the near-horizon geometry by éhgos
the appropriate normalization & : indeed, one can check that the harmonic functions

HM = —%BMT, (3.3)

always satisfy the equations of motion as long as the camditi

Vin(B, Q) = —3W(B), (3.4)

determining the normalization d# is met.

To construct a solution with the same near-horizon behandrwith an asymptotically-flat
region we must add to th&* above a constant vectet’. The condition Eq.[(3]2) and the
normalization of the metric at infinity become two consttaifor AM

BMA, =0, W(A) =1, (3.5)

that leave2n real constants, which is just the right amount to descrilkeeafymptotic values of
then complex scalarg’_. Only if we cannot add a vectot! satisfying these two constraints,
then the most general solution associated to the attrétYocannot be conventional and we will
have to add anharmonic terms to tHé’.

We can reformulate this question as follows: if we add tofiHé in Eq. (3.3) an infinitesimal
vectoreM satisfying BMe,, = 0, do we get another solution to the Hamiltonian constraint
Eqg. (1.3) and equations of motion EgQ. (1.4)? To first order'inthe Hamiltonian constraint will
be solved by the perturbed solution

H'M =M M HM = —%BMT, BMey =0, (3.6)
if

11



Evaluating this equation at the near-horizon solutibt, usingVi,, (H, Q) = —W(B)V (H, Q),
the homogeneity properties of the different terms, thetfzato,, ;. (B, Q) = 0 and the condi-
tion (3.4), we arrive at

eM {1BNB"0)0n0p logW(B) — 1) logW(B)} =0, (3.8)

which is an equation in the variablégs” (including the partiab,,; derivatives, which should be
understood as partial derivatives with respecBtd) and is identically satisfied on account of
the scale invariance afg W(B).

The analogous condition on the equations of motion, Eqd),(deads

€Jw {6MngHP + 6]\/[(8139@]\7 — %6ngQ)HPHQ + GM(‘?NV(H, Q)} = 0, (39)

and, after evaluation on the near-horizon solution we gedradgenous equation that, again,
can be read as an equation on the varialilés Using the same properties we used with the
Hamiltonian constraint pluB¢,, = 0 we get a non-trivial equation far!

By By

Myney =0, with Myy = W(B)0y 0y logW(B)+2 W(B)

—O0pmOnVin(B, Q). (3.10)

We are interested in the number of independent solutioniscetjuation that satisfy the con-
straintBMe,; = 0, i.e.in the rank of0t,, . The rank should be at moshs this implies a single
linear constraint on the componentsadf, which should be equivalent t8Y ¢, = 0. If the
rank of9)t,, 5 happens to be bigger than 1, then there are not enough ureoestcomponents
of eM for the family of solutions to have arbitrary values of thedul and the most general
solution based on the chosen attractor, must necessantgiocanharmonic terms.

For cubic models, the need of anharmonic ansatze to cah$treimost general, generating,
non-supersymmetric, extremal, black-hole solution of] [@4d [32] was first observed in [19]
and later confirmed in [4] and [33]. In the next sections we gk how the obstruction to the
fully harmonic ansatz arises in the particular case oftthaodel. For the non-extremal case of
these theories, the situation is still uncleari [33].

4 The general first-order flow equations

The central charge of ak” = 2, d = 4 supergravity theory is defined by Ef. (1.14) and, in terms
of the H-variables it takes the form of Eq. (1]15) which we copy herecbnvenience

e—ia
V2W

Let us consider a generalization of the central charge, téeriy Z (¢, /2D H), in which we
replace the second argument (the charge vector) by the E&méhal-covariant derivative dff
introduced in Ref.[[30]i.e.

Z(Q) = (Hyy + iHy ) QM. (4.2)

12



: . HNH
DHM = HM + AHM | A== N (4.2)

SinceH D HM = 0 andH,,H" = 0 identically, we immediately find that

Hy HM oW HM dVW  de Y
=+ == == ’
VW 2v/W dr dr
which is the first-order equation for the metric funcidnObserve thatl,, D HM = 0 implies

that the phase of (¢, V29D H) is equal to the phase afX. The sign must be chosen so as to
make+H,, H" > (0 and, since the mass of the solution correspondingtt = W(H) is given

by

|Z(6,V2DH)| = + (4.3)

de=2V . ~
M=-1 =—-iW| =-HyH"] | (4.9)
ar |-, =0 =0
we find that for regular solutions (with positive mass) we tral®ose the lower sign:
de Y
— =12, V2D H)|. (4.5)
From Eq. (2.8) of Ref/[36] we have that
7! :
127 _ _yxgy D;- Vi HY . (4.6)
dt
We can rewriteH as
. . yM
HM =9HM — AHM =9HM — A (ﬁ + c.c.) , (4.7)

and plug it into the previous equation to get

A o

z. _ —2XGI" D2 (P, DH) = 4Xe™0GU 0, | 2% (¢, D H)|

dr (4.8)
= 2eYGU7 0| 2% (6, V2D H)|,

where we have used E@.(11.8) and the equality of the phaseadnd|Z(¢, v2D H)|. This is
the second first-order equatrdn
Some remarks are in order:

13This equation reduces to Eq. (5.9) of R&f.J[19] in the extrgingt. Observe that the Freudenthal-covariant
derivative corresponds to Eq. (5.6) of the same reference.
4Again, this equation reduces to Eq. (5.10) of Ref] [19] inekgremal limit.
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1. In these derivations we have assumed neither extrenmalitpn-extremality of the solu-
tions nor any explicit form of the variablg$? (harmonic or hyperboli@. Furthermore,
we have not assumed the Freudenthal gauge-fixing condiibf y = 0. Only the prop-
erties of Special Geometry encoded in the H-FGK formaliseehzeen used. Therefore,
the first-order Eqs[(4.5) an@d (4.8) apply to any static blacle solution of ungauged
N = 2, d = 4 supergravity coupled to vector multiplets.

2. These first-order equations reduce to those found in tirature starting from Ref. [3] in

the extremal/harmonid.e. A = HYHy = 0) cases: ifHM = AM — %BMT for some

constant symplectic vectors" (which encode the values of the scalars at spatial infinity)
and the attractoB, then
12(¢, V2D H)| = |Z(¢, B)|, (4.9)

which is known adake central chargavhen BM £ QM and coincides with the central
charge in the supersymmetric caB&/ = QM.

3. In the general (non-supersymmetric) casH will be 7-dependent and its near-horizon
(r — —o0) and spatial infinity £ — 07) limits, will not necessarily be equal: in the near-

horizon limitlim,_, ., ©OHM = —%BM and in the spacelike infinity limiim,_,,- ® HY =
—%EM and, genericallyB™ # EM,
de Y
M = — lim = |Z(¢oo, F)| , (4.10)
T—0~ dT
. de=U1? 9
S = m| lim = 7| Z(¢n, B)|”, (4.11)
r——c0 dT

where¢,, and¢y, are the values of the scalars at spatial infinity and on thedioyrespec-
tively. Different fake central charges(¢, £') andZ(¢, B) drive the metric function in the
spatial-infinity and near-horizon regions, respectivélyis behavior is present in the non-
supersymmetric extremal solutions of the cubic modelsistlith Refs. [[31, 3[7, 38, 19] 4]
which have anharmonigr €4,

4. In Ref. [14] and subsequent literature the first-order #oations were given in terms of
superpotential functiond’ (¢, B) which depend only on a constant fake charge veBtdr
and which has a structure similar, but not identical, to #n&@l charge. Those first-order
equations must be completely equivalent to Egsl[(4.5,B8e8)ause the same variables, for

5Actually, we have writteisolutionsbut we have not used at any moment the fact thatifesolve the equations
of motion. The first-order equations that we have derivedtasrefore, valid for any configuration of the variables
HM | although their use is essentially limited to solutions.

16The HM s of those solutions do not satisfy the constradiit H,; = 0. A change of Freudenthal gauge can
bring the solutions to thé’™ H,, = 0 gauge but cannot make ttf#&" harmonic[[30].
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the same solution, cannot obey two different sets of firdepequations. We do not know
how to prove this equivalence in general, and it will have@¢ahecked case by case.

5 The axidilaton model

The axidilaton model is defined by the prepotential

F = —ix%xt, (5.1)

and has only one complex scalar that we will denote ltlyat is given by

A=ix!/ X0, (5.2)

In terms of\ and in theX® = i/2 gauge, the Kahler potential and metric are

K=-1In %m)\, QM* = (2%‘[’(’1)\)_2 , (53)

and therefore\, which must take values in the upper half complex plane,mpatazes the coset
spaceSl(2; R) /SO(2).

The canonically-normalized covariantly-holomorphic gjettic section) is, in the gauge
in which the Kahler potential is given by Eq. (5.3),

l

1 A
V=@ | o | (5.4)
1

and the central charge and its holomorphic covariant divevare

1

(Q) 2\/@ [(p Z(]0) ((h p ) ]
. (5.5)
— # 1_ _ = 0 )k
D\Z = Jaoyee [P~ i) = (@A
It is useful to define the fake charge and associated fakeat@htarge
pO
p=| " 2P = —— (4 —it) ~ (i +N] . (66)
= , = — —1 — (= ] s .
% 2VBmx L LT T
-0
in terms of which
G D, 2ZDq 2 = |Z(P)|?, (5.7)

so that the black-hole potential takes the simple form
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— Vi = [Z(QP +Z(P). (5.8)

The black-hole solutions of this model have been exhaugtstadied in Refs.[[39, 40, 11] 5].
Our goal here is to illustrate the general results and matkedcribed in the previous sections
using this well-known model. First, let us recall what are fymmetries of this model in its
original formulation.

5.1 The global symmetries of the axidilaton model

The full axidilaton model (and not just the axidilaton kileeterm) is invariant under global
S1(2; R) transformations. Let us start by describing the action & ¢floup on the axidilaton
field: parametrize a generic elementsf2; R) as

AE(Z Z) with ad —bd =1, (5.9)
then the axidilaton transforms as
N = Z;iz (5.10)

The scalar manifold metric admits 3 holomorphic Killing t@s which can be taken to be

Ki =X +ce., Ky=3(1-X)0+cc, Kz=3i14XN) +cc., (5.11)

and satisfy the commutation relations of the Lie algeitf2; R)

KmaKn = €mn, PK, > = fmnp = —€mn qp’ m,n,...= 17 273 5 (512)
g p q’l

whereeps = +1 andn = diag(+ + —); 7 is proportional to the Killing metric oéo(1,2) ~
sl(2;R) ~ sp(2; R). The infinitesimall1(2; R) transformations o can be written using these
Killing vectors as

SuX = "k = Lo+ 0®) + o' = L(a® — a®)N°. (5.13)

The infinitesimal linear transformations associated toaheve choice of Killing vectors is, in
terms of the Pauli matrices

b .
< ‘C’ ; ) ~ oo+ a™T,, Ti=-1% Ty=—-lo' Ty=io®, (5.14)
and satisfy the Lie algebra
[Ty, Th) = —€mng1™T, . (5.15)
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The action of the finit&1(2; R) transformations on the Kahler potential and on the carabnic
covariantly-holomorphic symplectic sectidhgiven in Eq. [(5.4) is

K'(N)

KN(N) = K(A) + 2Re f(N) (5.16)

VM) = VYN(N) = e S M PN (5.17)

where the holomorphic functiofi(\) of the Kahler transformation and the symplectic rotation
SM  are given by

fA) = In(cA+4d), (5.18)
d —c
(") = | _, ¢, b (5.19)
c d

In this 4-dimensional representation the infinitesimalegators’;, are given by

(5.20)

The same transformations act on all the symplectic vecfdredheory and, in particular, on
the variabled7" and the charge vecto@" . In this formulation of the axidilaton system there
seem to be no further symmetﬁés

5.1.1 Equivariant vectors of the axidilaton model

In this model there is no need to solve any equation to find éalily independent equivariant
vectors: observe that the symplectic vector of chargeseagsditect sum of two reabl(2; R)
doublets:’ andb; (i, j = 1,2), namely
‘ p' 0
(a') = (Q1) , (b)) = (p’, qo) - (5.21)
These doublets transform respectively contravarianttyavariantly, that is

17 We will see, however, that there is an additiondll Yfactor in the symmetry group that only has a non-
trivial action on objects with symplectic indices and thaincides with the continuous global Freudenthal duality
transformation. The scalars do not transform under thisisgtry. On the other hand, only thiSU symmetry is
also a local symmetry of the H-FGK formalism. We would likethank Alessio Marrani for clarifying discussions
on this point.
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a'i = AZJ aj s b; = b] (A_l)ji, (522)

where(A’;) is the matrix given in Eq[(519), which furthermore satisfies

-1 0

becausesl(2;R) ~ Sp(2;R). We can use the symplectic metficto raise and lower doublet
indices such asand; using the same convention we use for the symplectic indgmsfootnote
4), namelya; = Q;;a’ andb’ = b;Q7*. The only non-vanishingl(2; R) invariant that can be
built out of these two doublets is

(A1), = Q4 AL Q mij):(ﬂ”):( 0 1), (5.23)

a'b; = ppl + qoqr = %W(Q) ) (5.24)

Let us denote by (a,b) the standard symplectic charge vector seen as the direcobum
the two doublets andb. Using the two doublets we can construct three further, upgdtobal
sign, inequivalent charge vectors that unglég; R) transform in the same way &" (a, ), i.e.
equivariantly; the four equivariant charge vectors are

0

pl —q1
Ma,b) = P , My, —a) = —4o ,
QMab) = |V Q¥ (b, ~a) i
0 P°
(5.25)
pol —q1
M(_qb) = —-p ’ M(_p — do
Q" (~a.b) v Q¥ (~b.~a) i
—q1 —p’

These equivariant vectors are generically linearly indeleat and provide a basis of equiv-
ariant vectors; any other equivariant vector, in partictiee attractors3™, can be expanded
w.r.t. this basee.g.

BM —pUM | with {U,} ={Q,Q,P,P}. (5.26)

We will plug this general ansatz into the equatidn Vi, (H, Q)| ,,_5 = 0 as to find the most
general attractor of the theory in Section]5.4, but at thistpee already know some general
results: The standard charge veo®Y (a, b) will be the supersymmetric attractor, as usual, and
we are going to se& (b, —a) is its Freudenthal dual

QM (b, —a) = QM (a,b) = OM . (5.27)

On the other hand@" (—a, b) is the non-supersymmetric attract®’ and Q™ (b, a) is its
Freudenthal dual

oM(—a,b) = PV, oM(b,a) = OM(b, —a) = PV . (5.28)
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It is easy to see that

W(Q) =W(Q) = -W(P) = —W(P). (5.29)

These four vectors are related By(4; R) transformations that however do not belong to
S1(2;R) C Sp(4; R):

—0

~ 1

QY = AMyQV, <AMN>E( " %)’ (5.30)

M M AN M a3 0

pM = BMON| (BY y) = R (5.31)
The only non-vanishing symplectic contractions betweesétfour vectors are

0y QM = —PyPM =W(Q). (5.32)

Apart from these moduli-independent equivariant vectasan construct the generic moduli-
dependent ones by taking the real and imaginary parts of EtB), in which we can replac@
by any of the other three equivariant vectors. Observe tihatvwve use the Freudenthal dual
charge, we obtain the same complex equivariant vector blitphed by —:.

5.2 H-FGK formalism

The solution of the stabilization equations of this theary i

Lo
Ru(Z) = AunI", (Aun) = ( % 5l ) , (5.33)
wherec! is the standard Pauli matri¥d = (A y) is a symplectic matrix:

AQA = Q, (5.34)

which is not surprising since it is just M ;v (F). It follows that(AY y) = (QPM Apy) =
—QA is also a symplectic matrix.
By definition, the original and tilded,e. Freudenthal duali/-variables are related E/

HM(H) :AMNHNa FIM(H) :AMNHN- (5-36)
BExplicitly, we have
—H,
- M —ol A —H,
(H]u) = ( O_Ol—AEI{EE ) = Hlo . (535)
HO

This vector should be compared wigh/ (b, —a) in Eq. (5.25).
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Therefore in this simple model the Freudenthal dualitygfammation is linear and is, further-
more, a symplectic transformation. Itis clearly a transfation that does not belong to the global
symmetries that act on the axidilaton (i%#(2; R) whose embedding intSp(4;R) is given in
Eq. (5.19)), but it is a symmetry transformation that act®bjects with symplectic indices such
as the vector fields and as such must be considered a partadaltiey group of the mod&i.

As expected in Freudenthal duality

AMp AP Ny = —6M 5. (5.37)
We can extend the Freudenthal duality transformation teyetiplectic vectors. The proper-
ties
XYM =y, x" = —vyx", = X,Y¥=Xx,Y", (5.38)

which hold in this particular model for any two symplectict@s X" andY because Freuden-
thal duality is a symplectic transformation, will be usedyveften.
The Hesse potential is given by tHE2; R) invariant discussed in earlier sections

W(H) = Hy(H)HY = AynHMHN = 2(H°H' + HyH,), (5.39)

and in accordance with the general formalism it determihesriodel completely: the effective
action can be constructed entirely from it and the metricfiom e =2V and the axidilaton\ are
related to the Hesse potential by

H'+iH'  H'+iH,

—2U:WH AN=17 = 1— = . 5.40
The metricg,,n(H) of this system can be written in the form
HYH®
gun = 2Nunpg W (5.41)
where we have defined the constant matrix

Nunpg = -AMN-APQ - 2AMPANQ — Qupng - (5.42)

Using this notation, the derivatives of the metric take et
) = 4F[M +4m i (5.43)

MIPQ = W arqQ PQ(MR) W2’ .

and the Christoffel symbols of the first kind are give@ay

19See footnote17.
20We remind the reader that the metiig, v (H) is not invertible, so we cannot use the standard Christoffel
symbolsl' po™ = ¢VM[PQ, M].
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f{MgPQ - ngQM - [:IQgPM
W

[PQ,M] = 2
(5.44)
HR
w2
It is easy to check that ™ [PQ, M] = 0, as required by Freudenthal duality invariance.
The potential/ can be written in the convenient form

—[6Apg AR — 4ANMP AR + 40 (PQ0)R]

W2V (H, Q) = —IW(Q)W + (HM Oy )? + (HMQur)?, (5.45)
and its derivative reads
H W(Q -~ _HN
oV = —a {v N ;%} +2(QuQx + Ou Oy ¢ (5.46)

using the properties Ed. (5J38) it is easy to see fi¥),,1 = 0, which is the last requirement
for having local Freudenthal duality [30].

Observe that, in this model, a Freudenthal duality trams&tion of the charge vectooly
(that is: not of the variable&?), not only preserve®/(Q) but also the complete potential and
black-hole potential,e.

W(Q)=W(Q) = V(H,Q) =V(H,Q), and Vi,(H,Q) = Vin(H, Q). (5.47)

On the other hand, using the definition of the fake chargel&z§) bne can show that for any
values of HM

—Von(Q) = —3W(Q) +2[Z(Q) = —3W(P) +2|Z(P)|* = —Vin(P), (5.48)
Z(P)P = |2(QF - 3W(Q). (5.49)
(5.50)

The first identity means that, @ is an attractor, so wilP. The fact that it is an identity for arbi-
trary values oft/ ™ means that replacing by P in an extremal solution gives another extremal
solution with the attractoP. The second identity is a consequence of the first and imghlas

W(Q) < 0, = [Z(P) > [2(Q),
(5.51)
W(Q) > 0, = [2(Q)] > [2(P),

for all values of H. The second case should correspond to the supersymmeéitsctat in
which the evaporation process stops when the mass equdbrglest central charge, which in
this case is the true one.
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Finally, observe that this black-hole potential satisfressd¢urious interchange property

Vi(H. Q) = % Vin(Q. H). (5.52)

5.3 The symmetries in the H-FGK formalism

In Sectiori 5.11 we discussed the global symmetries of thelatod model (more precisely, of its

scalar manifold metric) when it is described in terms of ttamdard fields and have studied the

embedding of these symmetries irtp(4; R). It is in this form that we expect these symmetries

to be present in the H-FGK formalism. On the other hand, theag be additional non-obvious

symmetries such as Freudenthal duality (which is in gemenadlinear) in the H-FGK formalism.
Let us consider first the kinetic term: if we consider onlyeln transformations of th&

sHM =T1M\ g™ | (5.53)

it is evident that they will leave the kinetic term invariafthey are symplectic transformations,
i.e.

QpuT ) =0, (5.54)

and are furthermore symmetries of the Hesse potential

OW = 2H ), 0HM =2, TMy HY =0 —  [QA,T] = fli, (5.55)

whereg is a real constant that can vanish. It is not difficult to se fibr infinitesimal symplectic
transformationsj must indeed vanish, and the only independent generatdrsdive the above
equation are the thre®(2; R) generatord; given in Eq. [5.2D) plus

T, = 1AQ, (5.56)

~ 2
which generates the Freudenthal transformations and coesmith the generators 6f(2; R).
It can be checked that these symmetries leave invariant gtieam;, . Actually, the metric
is invariant under the constant rescalings of ti¢

Ts = $14x4, (5.57)

which are not symplectic transformations and leave the ¢lpss$ential invariant only up to a
multiplicative constant, in the same way as the Kahler pidéis invariant under isometries of
the Kahler metric only up to Kahler transformations.

We can study now the invariance of the potential using theesgion ford,,V' given in
Eq. (5.46). The first term cancels foe= 1,2, 3,4 (we do not need to check= 5: the potential
is homogeneous of degree andj;V = —2V £ 0 in general) and the rest gives

2lit is not difficult to see that the Hesse potential of the daidin model is not determined I9§(2; R) invariance
alone: one must require invariance under Freudenthaltgiuali
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- ~ _HN
6V = —2H T,M v (QnOn + Qur QN)W ; (5.58)

which vanishes only for the Freudenthal transformatien 4 unless we also perform the same
transformation on the charge vector: this means $h@ R) is only apseudo-symmetmyf the
system, since the constants that enter the action are dotétee charges appear as integration
constants of the solution of the equations of motion for tleeteostatic and magnetostatic po-
tentials in Ref.[[3] andbl(2; R) is probably a (standard) symmetry of the effective theorfpitee
that.

There are no conserved quantities associated to pseudneyi®s, whence there is only one
conserved current: the one associated to the Freudentalgld@rhis current vanishes, however,
identically, which is a generic feature of the formalism.

5.4 Ciritical points
The critical points of this model are equivariant vectBr¥ satisfying the equations
By BN

O Voulpy—p = _2W [Vbh(Ba Q) - %W(Q)] —2(QuQn + QMQN)W =0. (5.59)

Using the basis of equivariant vectof&,} = {Q, Q, P, P} constructed in Sectidn 5.1.1,
we can write any such solution as

BM = aQM + aQM 4+ yPM + ppM (5.60)

The only non-vanishing symplectic products of the four basictors are

OmQY =W(Q),  PuPY =-W(9), (5.61)
and a very simple calculation gives

—2

wilis = T m {a(? + )Qu — at? + #)Qu

(5.62)
+Z~)(CL2 + dQ)PM - b(a2 + &2>75M} = 0,

which only admits two non-trivial solutionsi = b = 0 anda = @ = 0. The first solution,
up to global normalization (which is undetermined in thisnfalism because the black-hole
potential is scale-invariant), corresponds to a global&eathal rotation with arbitrary angle
of the standard supersymmetric attracid¥ = O and the second corresponds to a global
Freudenthal rotation of the standard non-supersymmeétracéor B = PM [5].

We obtain the following relations
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Vin(P,P) = =Vin(Q,P) = Vin(P, Q) = —Vin(Q, Q) = 3W(Q), (5.63)
that are necessary to have the corresponding near-hohatios's, see Eql(3.4).

5.5 Conventional extremal solutions

As a first simple illustration of the methods proposed in thet §ection of this paper, we are
going to review the construction of the extremal solu@mrformed in Ref/[[9].

From the results of that paper we know that all of them (iniclgdhe extremal non-supersymmetric
ones) are going to be conventional, but it is important fotausnderstand why. Thus, we start
from the near-horizon solutions given by Elg. (3.3) whBré takes the values of the attractors
found in the previous section, normalized so that (see[E4))(3

Vin(B, Q) = Vin(B, B) = —3W(B) . (5.64)

The attractors that satisfy these conditions are globaldeethal rotations of the standard su-
persymmetric attracta®™ and of the non-supersymmetric oRé’, i.e.

either BM = cosf QM +sing QM |

or BM = cos@PM +singPM . (5.65)

The results of Sectiori(3) guarantee that Eq.|(3.3) provadesar-horizon solution for these
choices ofBM. Now, to see if we can extend these solutions to asymptbtiftat solutions by
adding an infinitesimal constant vector to thés¥ as in Eq.[(3.6), we have to compute the rank
of M, in Eq. (3.I0) to find how many independent solutieffsexist.

It is enough to consider a charge configuration whose orbisothe complete charge space
(see AppendiX’A) and, therefore, we $8t= p' = 0, getting, for the supersymmetri¢-J and
non-supersymmetric{) cases, the matrix

L +L 00
qll qu(]l 0 0
+-1 4
9:)’{ :l q0q1 q2 566
Mav) =35 4 0 00 (5.66)
0 0 0 0

This matrix has rank 1 and, furthermore, the three indeparatdutions to Eq[(3.10) satisfy the
constraintB™¢,, = 0. This means that there is no obstruction to the addition loitrary (up
to normalizationW(A4) = 1 and the conditionB A,; = 0) constantsA* to the near-horizon
harmonic functions, which now take the form

22The axidilaton model is a particular case & 1) of the CP" model. We will construct the most general
non-extremal solutions of that model (and, hence, of thdilaton model) later.
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HM = AM _ %BMT. (5.67)

The two independent components4f describe the two real moduli of this thedRy (). ) ,
Im(As) andAM is given by [9]

Z" (¢, B)
AM = V2 3m ( : vg”g) : (5.68)
1Z(¢e0, B)|

To show that the equations of motion are satisfied for finitestantsA? (which is only
needed in the non-supersymmetric case) we can proceedl@sdolfrom the linearity of the
HM itis possible to show that these configurations satisfy-&irder flow equations [36]. These,
in turn can be shown to imply the standard second-order mosadf motion if and only if the
identity

Von(H, Q) = Vin(H, B) (5.69)

is satisfied for arbitrary values di. This is evident forBM = QM (the supersymmetric at-
tractor) and has been shown 8/ = PM (the non-supersymmetric attractor) in Eg.{5.8) and
the invariance of the black-hole potential under Freudartansformations of the charges ex-
tends this result to the other two (physically indistindpaile) attractors and proves that these
configurations are classical solutions of the model.

5.6 Unconventional solutions

We do not expect more extremal black-hole solutions to tldilakon model since the solutions
constructed in the previous section already have the maxiomaber of independent physical
parameters (charg&3" and moduli)..) which are constrained only by the requirement that the
horizon has a non-vanishing aréa, W(B) > 0.

On the other hand, we can rewrite these solutions in an uecdional form {.e. so that
HM H,; #+ 0) by using local Freudenthal duality transformations, buhis case doing so merely
complicates the form of the solution in the H-FGK formalism.

6 TheCP"' model

The prepotential of th€P" model is given b

F = —insxtx>, (nas) = diag(+ —---—). (6.1)

TheCP" model contains: scalar fields given by

Z'=X'X°, (6.2)

23The black-hole solutions of this model have been studie8]in [
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but it is convenient to add® = 1 and we define

(ZA) = (XA/XO) = (17 Zi)v (ZA> = (77AEZ2> = (17 Zz) = (17 _Zi)' (63)

The Kahler potential, the Kahler metric, the inverse kaimetric and the covariantly holomor-
phic symplectic section read

/C = —log (Z*AZA) s
gl]* = —GIC (?7@]* — €KZZ*Z]*) ,
Gt — _e K (nz‘j* + ZiZ*j*) : (6.4)
ZA
Y = /2
_%ZA

It is also convenient to define the following complex chargmbinations

LA = qa + inasp™, (6.5)

in terms of which the central charge, its holomorphic Kéloievariant derivative and the black-
hole potential are

Z = rPZAT, = Z(D),
D2 = NP7, — NPTy, (6.6)

_Vbh = 26K|ZAFA|2 - F*AFA .
We can extend this complex notation to any symplectic vector

_ i Ay = by + imama®
if (AM) = ( ; ) then (6.7)
A AN = 771\2/4E _ nAzbZJr%aA’
and the symplectic product of two vectors becomes
Ay BM = —23m(AxB*Y), (6.8)

where of coursed,5** = A*B*,. We will use both notations, based on convenience.
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6.1 The global symmetries of theCP" model

Then complex scalars of th€P" model parametrize the symmetric coset sg#iéel, n)/SU(n),
and the full theory is invariant under global SUf) transformatiori&. If Ay is a generic ele-
ment in the fundamental representatior8of(1, n), i.e. if it satisfies

ATanra A%y =may,  (or AfpA =n), detA =1, (6.9)
then its action on the scalars is given by
A Z% ApNEZ
A = 6.10
N7 AT N ZE (6.10)

where we have raised and lowered the indices ofSftiél, n) matrix with the metrie;. In the
fundamental representation thén + 2) infinitesimal generators afu(1, n)

A ~ 6y +a™ T, s, (6.11)

are matrices such thdt, »s. = nar 7, s is anti-Hermitean. Substituting the infinitesimal linear
transformations in the non-linear transformation rulethefscalars, EqL_(6.1.0), we find that they
take the form

7N =78 4 o™k, N (2), (6.12)
wherek,,*(7), the holomorphic part of the Killing vectors,,,, is given b@

kn™(2) =T, s 2% = T,,00 292" (6.13)

The commutation relations of the generatdysand the Lie brackets of the Killing vectors are
related as usual:

[TmaTn] = fmnp Tp7 [Kma Kn] - _fmnp Kp . (614)

The action of the finit&§U(1, n) transformations on the Kahler potential and on the canon-
ical covariantly-holomorphic symplectic sectidhare given by the obvious generalization of

Egs. [5.16) and (5.17) where now

f(Z) = log(A:2%), (6.15)

ReAly, —23mAA>
(SMy) = ; (6.16)
%%m/\/\z %QAAE

24pctually, the coset space can also be describdd(asn)/U(n), which would imply that the global symmetry
group of the model i¥7(1,n). As in the axidilaton model (the = 1 case), the extr&/(1), that does not act on the
scalars, is the Freudenthal duality group (see foolndte\We)thank Alessio Marrani for clarifying discussions on
this point.

2The A = 0 component vanishes, as it should, but it is useful to keep it.
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where once again we have raised and lowered the indicgoivith . The conditiom\fnA = p
implies for the real and imaginary parts f

%QAAA %mAAE = \smAAA %QAAE R %QAAA %QAAZ + %mAAA %mAAg = 1AL, (617)

and implies that the matrikS™ y) constructed above satisfiéd 2.S =  and therefore be-
longs toSp(2n + 2; R). The infinitesimal generators in this representatian,(7;," y), can be
constructed in the same way, leading to

ReT), N —23mT, A%
(T, ) = : (6.18)
%%me AD %QTmAZ
6.1.1 Equivariant vectors

The search for equivariant vectors is simplified by using ¢benplex combinations defined
above: we look for vector® behaving ag™ under duality transformationgg. such that its
complex conjugate transforms in the fundamental repraentofSU(1, n)

F*IA — AAE F*E . = B*IA _ AAE B*E ) (619)

Observe thal*T", andB**B, are duality invariants.

The simplest equivariant vectors are, up to a complex cahgtest equal to the charge vector
I'*. This constant is relevant because, as we will see, the @nfigim of the Freudenthal dual
of the charge vector

3 =274
oM — , (6.20)
% nAsz
is justT’* = —;I'*, whence the phase of the constant corresponds to a glohaldfréhal dual-

ity rotation. This immediately implies that ti#J(1,n) invariantsI'*AT'y andB**B, are also
invariant under Freudenthal(1) duality. There may be other equivariant vectors which are
functions of the charges only, but we will not need them.

We can use the modulf2 in order to construct more equivariant vectors. Again, up to
normalization, the only one we will need is the generic vegieen in Eqg. [2.15). Multiplying
it by the invariantl*T", as to give it the right dimensions for later convenience, aeehthe
equivariant vector

A 23 s
¥t = 755 *Iy. (6.212)

We will see that in order to find the most general solutionshig tnodel, it is enough to

consider complex linear combinations of the two equivdnectors constructed thus far:
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BA = o' 4+ pxh (6.22)

wherea and are complex duality invariants (including pure numbers).

Using this information we can see that in this model (for gene), in distinction to the
axidilaton model, we cannot define a fake chaideand its associated fake central chagyes)
such that

G D,EZD;Z" = |Z(B))? = | Z A2 — ATy, (6.23)

or such that

Vin(Q) = Vin(B) , (6.24)

for arbitrary values of the scalars. This fact has importenglications for the construction
of extremal non-supersymmetric solutions as the firstqoedgiations do not imply the second
order ones, which therefore have to be solved expliciththla paper we are going to construct
directly the general non-extremal solutions from whichtladl extremal ones can be obtained in
the appropriate limits.

6.2 H-FGK formalism

The stabilization equations of this model are solved by @dinelation betweeR ,; andZ", as
in the axidilaton case:

1
sas 0
Ru(ZT) = AunI™, (Aun) = ; (6.25)
0 2nAE

which implies that the Freudenthal dual can be expressed as

0 —QnAZ
oM = AM N HY ) (AMN) = (QPM-APN) = . (6.26)
A 0

As in the axidilaton cased,;y is a symplectic matrix, but, in contradistinction to thasea
AM y is not. In terms of the compIeH-variable@

Ha = Ha + i H™, (6.27)

discrete Freudenthal duality is equivalent to multiplicaty a factor of—.
The Hesse potential reads

W(H) = AynH"HY = inys HNH” + 20" HyHy, = 2H* M, (6.28)

260bserve that, in his notatiof{* = n**Hyx, but H* # n**Hy,.
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and the metric functioa—2V and the scalarg’ can be easily obtained from it as

 HviHY O Hi+iHTOH:

 HO+4H° —Ho+iHO Hy'
The metricgyv(H) and the potential’ (H) have the same structure as in the axidilaton

case when we write them in terms of the matdx, x (which, evidently, is different). Then, the

expressions from Ed. (5.41) to Ef. (5.46) are also valid bpon use of the new matrid ;.
The central charge of the model, Eg. (6.6), takes in the H-F@#alism the form

eV =W(H), A (6.29)

(Ho + %HO) (FIM + iHyr) QM

Z(H,Q)=— ‘ 6.30
(#, Q) |Ho + £HY| 2W(H) (6.30)
It is easy to check that, like in the axidilaton case, thi€kihole potential satisfies
W(Q
VinlH, Q) = ot Vin(Q. H). (631)

6.3 Ciritical points

Using the complex notation we can write the equation for titecal points5,, of the black-hole
potential of this model in the form

7 * BZF* * *
SW(B) 03 Vinlyep = Wi BE) [B*2TaABr — B*2Bal's] =0, (6.32)
and can be solved by
BTt =0, or B*“TaBy— B*2Bal'y =0. (6.33)

Inserting the general ansalz (6.22) into the first conditverfind that it is satisfied for

a=-3, = Br=aT*-3x, (6.34)

which, up to normalization (which is not fixed in this apprbadeaves us with one arbitrary
global phase associated to Freudenthal duality: this isrtheéuli-dependent attractor found in
Ref. [5].

Inserting our ansatz (6.22) into the second condition welgeequation

BT *T's
| Zee(1)?
The coefficients of the two equivariant vectors must vaneghasately, which can only happen

for 5 = 0, whenceB* = oI'*: up to normalization and the Freudenthal duality phass,isiihe
supersymmetric attractor.

Bla + B*)I*A0A%, — |2Re(af”) + [*ATal) = 0. (6.35)
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6.4 Conventional non-extremal solutions

In this section we are going to show how the knowledge of thevegiant vectors of the model
simplifies the construction of solutions in the H-FGK formsal. We are going to see that the
most general solution can be written as

HM7) = a(m)T™ +b(1)E", (6.36)

wherea(7) andb(r) are two complex, duality-invariant functions ofo be determined. Already,
at this stage, we see that this ansatz reduces dramatitaityimber of real functions to be found,
from 2n + 2 to just4, and all of this without any loss of generality.

First of all, we are going to impose the usual Freudenthaggdixing condition 7 H,; = 0
[30] which in complex notation takes the form

Sm(H*AHy) = 0. (6.37)

As shown in Ref.[[30], assuming this condition, the contmacbf the equations of motion with
H™ leads to the equation

Hy (HM . rgﬂM) —0, (6.38)
which can always be solved by

Y =gH" = HN =g (6.39)

This is not necessarily the only solution of EQ. (6.38), bsitwvee are going to see it allows
us to solve the rest of the equations without imposing ursssgg constraints on the physical
parameters of the solution. This equation combined witheth@variant ansatz leads to

HA(T) = [cle”’T + 03677“07] M+ [cgeroT + c4e”“°T] yA (6.40)
so it only remains to determine the four complex invariant§& = 1,---,4) in terms of the
charged’,, the moduliZ2 and the mas3/ (or alternatively of the non-extremality parameter

TQ).

These four constants can be constrained even further byriregithat the ansatz gives the
rightdaéymptotic behavior for the physical fields in Hgq. @:2requiring thatZ? = #H:A/#*0
weg

C1 + C3 = 0 . (641)
Asymptotic flatness requires that' A H , o, = % which, upon use of the above condition, gives

ESOI.

= 42

|CQ + C4|2 —

27 In the (H-)FGK coordinate system, spatial infinity corresgsto the limitr — 0.

31



where Z.(T") is the central charge at spatial infinity. The gauge-fixingdition (6.37) gives
(again, upon use of Ed. (6141))
Sm [ch(co + ¢ )]+C‘m[c*c]ﬂ—0 (6.43)
DR A (D R |
Finally, we can still make global Freudenthal duality ratas, which are not fixed by Ed. (6.37):
this freedom cannot be used to solve Eq. (6.43) but can betasaaplify it by fixing the phase
of one of the constants to a convenient value.
Using the gauge-fixing conditioh (6.37), the Hamiltoniansiwaint takes the form

[%*A%A — %F*AFA] H S Hs — 2H HA) + | HATA] = 2 HA)? =0, (6.44)

and using the gauge-fixing condition plus Eqg. (6.39) and tamHitonian constraint above, the
equations of motion take the form

H [2(7—1*27—[2)2 — yH*ErEﬂ + D3 (H ST ) (KA M) — 2H5 (H S Hy ) (H 2 HA) = 0.
(6.45)
The coefficients of the two equivariant vectdrs and >, must vanish independently, which
implies that we must solve the following equations

a* [2(%*2712)2 - }H*EFEH 4 (H D) (K AHA) — 20 (H SHe)(H 2 Ha) = 0, (6.46)

b [2(7{*2%2)2 - ]H*EFgﬂ — 2 (H S Hs ) (H*AHa) = 0. (6.47)

The coefficients ob* andb* in the last equation are real (on account of the gauge-fiximglic
tion) and this implies that the phasesmfandc, must be the same up to(the global sign) so
thatSm(cic,) = 0. Then, Eq.[(6.43) states that the phasesahust be the same as that@f
andc,, again up tor. We know that in the near-horizon limité. = — —oo) of the extremal
non-supersymmetric case the phases;aindc, must differ byr and, since this difference is
constant, this must always be the case. Furthermore, inxtneneal non-supersymmetric case
Z.,(I') = 0 and Eq.[(6.42) implies that andc, must also have opposite global signs. Therefore
we find

arg(cs) = arg(cy) = arg(cy) + 7 =96, (6.48)
and, by making use of the global Freudenthal duality freedom
[ Z0(1)]
_ - _ ' 6.49
|C2| = [ed] NI (6.49)

To simplify the calculations further, we introduce the dam$ A
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2]

: 6.50
JArAT, (6.50)

|ca| + Jea| =

which allows us to rewrite Eq{6.40) as

| Zo0 ()]
V2I#AT

It is now straightforward to solve the equations of motiontfee three constants A and|cs],
for which it is convenient to express the final result usirgyitiass\/ (defined in Eq.[(414))

HO (1) = € {—2|03| sinh ro7I* + [(1+ A)e™™ + (1 — A)e™7] ZA} . (6.51)

M = 7, [A+N§|c?,||zoo(r)|} . (6.52)
The final result is
| Zo0(1)]
_ 12l 6.53
‘C3| 2\/§M7’0 ( )
M? — 12, (1)
A = 6.54
Tt (6.54)
| Z.(T)
e = 27 (6.55)
| Zo0 ()]
MR = M2 = 2] [M? - |Zo(D)] | (6.56)

which is precisely the result obtained in Réf. [5].
We do not expect any other Freudenthal-inequivalent smatto this model since the solu-
tions we just found have the maximal number of independeysiphl parameters.

7 Thet? model

Thet3-model is characterized by the prepotential
(xh)?
Xo -

In terms of the coordinate= X' /X", the Kahler potential and the scalar-manifold metric are
given by

F(X) = —

(e[

(7.1)

K=-3n3mt—InZ, G- = 3 (Smt) > ; (7.2)

the covariantly holomorphic symplectic section reads
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1

i) =2 S| (7.3)
6
542
—5t
and the central charge, its covariant derivative, the blaalke potential and its partial derivative
read

Z = exfz, (7.4)

— 1 eélc A
DZ = 55 W, (7.5)
“Vin = S [IZP+ 5V (7.6)
—OVin = £ (Smt) [(W*)2+3W2*} , (7.7)

where we have defined

Z = 2% - SpM? — it — qo, (7.8)
W= 30— Bple(t 4 2t%) — ¢! (2t + 1) — 3¢°. (7.9)

Observe that all these objects are well defined onlgifft > 0.

7.1 The global symmetries of the* model

The t3 model as a theory aV' = 2,d = 4 supergravity is invariant under glob&l(2; R)
transformations, just like the axidilaton model, sincert&hler metrics are identical up to a
numerical factor. The action 61(2; R) ont is identical to its action on, which was discussed in
Sectiori5.0l. The transformations of the Kahler potentidl@ovariantly-holomorphic symplectic
section Eqs[(5.16,5.117) are determined by the holomofphition f (¢) and theSp(4; R) matrix
SM  given by
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f(t) = 3ln(ct+d), (7.10)
d? 3d?c 88 —3dc?
bd? (ad+2bc)d  Lac®  —2(2ad + be)c

(SMy) = : (7.11)
2p? 2ab? a’ —a’b

—2b?d —2(2ad + bc)b —3a’c  (ad + 2bc)a

In this case the 4-dimensional representation of the gesrsrg,, are given by

3 -3
1 u ~1 4/5
1

(7.12)

1 4/5
(") = Y
-5 3

As in the axidilaton model, the same transformations actlidh@symplectic vectors of the
theory and, in particular o&/™ and Q™. There are no more symmetries in this formulation of
the model.

7.1.1 Equivariant vectors of thet*> model

It is not difficult to see that, from the point of view 81(2; R), the symplectic vectors such as
the charge vecto@" transform as a quadruplet, i.e. a fully symmetric 3-indexaciant tensor
Qi = Qujr) (in the notation used in Sectién 5.1). The relation betwaercomponents of this
tensor and those of the charge vector is

Qi = poa Quiz = —pl ;o Qi = —391, Qor = —290- (7.13)
It is useful to observe that the contraction of two quadngakerelated to the symplectic product
by
Ay B7* = —SAM By, . (7.14)

By definition, any newSl(2;R) quadruplet that we construct out of and Q,;; can be
transformed according to the above rules into an equivesiamplectic vector of the*-model.
TheSl(2; R) index notation makes this construction easy, but, as weang ¢o see, insufficient.

35



In order to constructl(2; R) invariants and other quadruplets it is useful to define theima

mij = QW ijl, (7.15)
whose components take the values

mhy=—m’ ==2(p'q +3p°q), ma=Fp'e— (@), mh=3p"a+20)
(7.16)
The square of this matrix is

miy mF; = —38 J,(Q) &', (7.17)

where, sincé’; is an invariant tensor, the coefficieft(Q) must be an invariant of order four in
the charges; this quartic invariant is explicitly given by

Ji(Q) = £p%(q1)’ + 2 (0'a)* — (0°%0)* — 20°qop" ¢1 — R (p") 0 - (7.18)
This is the only independent invariant that can be consgttuftom the charge alone. We
can construct invariants taking traces of powers:wadnd taking also the determinant: the traces
of odd powers vanish and those of even powers are propoktion (Q). Furthermore, the
determinant is also proportional th(Q), i.e.
det(m) = 2.J4(Q). (7.19)
The simplest quadruplet that can be built out of the origomad Q, ;. is

Q(z’j\l ml‘k) . (720)
This tensor is necessarily proportional to the Freuderthal of Q;;;, since

LO0Trm? §3J4(Q)

Q(ijllml\k) 1 9Qiik — % gQik (7.21)
Using higher powers af: does not give anything new as
Qitmm | ;m™ iy = Qijum’mm™ iy = —22 J,(Q) Qiji - (7.22)

We must use, therefore, contractions@f;, such that the free indices are not thoserdf.
At cubic order inQ, ;. there is only one possibility, which vanishes identically

Quiim Qjin’ Q™ =0, (7.23)
due to the antisymmetry of the symplectic mefiig. At order five inQ;;;, we can consider

Qi,il,ig Qj,jl,jz Qk,kl,kg QivivkL gizgzky —% J4(Q) Qiij (724)

Qifmn Qilpg Q)" 'm™" = 0. (7.25)
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Up to at least order 9 there are no quadruplets other @anand its Freudenthal dual that can
be constructed by these tensor methods.

To find more, we have to solve EQ.(2111). Since this is a vemypliwated task, we are going
to restrict ourselves to a generating charge configuratitmg = ¢, = 0, i.e.

0
(QM) = gl . (7.26)
0
0

This subspace is preserved by t$i€2; R) transformations witth = ¢ = 0 andd = 1/a
(or equivalently by the infinitesimal transformations gexted by7;), to which by analogy we
shall refer to as themall group It is not difficult to see that by acting on this charge vec-
tor with the transformations with appropriate charge-aelemt parameteris £ 0, ¢ # 0 (or,
equivalently, by the infinitesimal transformations gemedaby 7, and73) we can generate the
complete generic charge vector with four unrestrictedgdaomponents.

It should be clear that if we construct vectors in the subsple- ¢, = 0 that are equivariant
under the small group, then by acting on these vectors witlséime transformations that gener-
ate the complete charge vector, we will obtain vectors thatguivariant under the full duality
group,i.e. SI(2;R), and which reduce to the former when we gét= ¢, = 0. Since dual-
ity transformations preserve linear independence, a lmegbd small-group-equivariant vectors
will be transformed into a base of the duality-group-equa vectors; seeing this reasoning
we shall refer to a small-group-equivariant vector ag@quivariant-generating vector

The equation that these equivariant-generating vectors t@msolve is the restriction of
Eg. (Z.12) to jusf} and allow for no dependence phnorq,, i.e.

: _gPupe) (g = | (7.27)

which is solved by

ICOIENCY
U =3 ") ()" (7.28)

for arbitrary constants?, o7 (the parenthesis enclosing the indideindicate that they are not
summed over and the indéxuns over an arbitrary number of terms). For simplicity, vea c
choose them to depend only ph(a” = 37) or only ong, (o’ = 0) and take them to have only
one term:

UP =a® Y UP = a®P)(g) P (7.29)

To avoid charges with fractional components, we choose tisé dption and get a basis of
equivariant-generating vectors
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U," ~ 6,0 (p")"". (7.30)

We have found it convenient to normalize these vectors arelthem name$R, S, U, V'}

T)? 0 0 0
_ 0 _ 0 _|r _ 0
R= 0 , S = (L1 | U= 0 , V= 0 (7.31)
0 0 0 1/pt
The only non-vanishing symplectic contractions of these feectors are
RySM = —1, UyVM = -1, (7.32)
and they satisfy the completeness relation
RMSy — SMRy +UMVy —VMUy = 6M . (7.33)

We can decompose any equivariant-generating vector, si¢h’aw.r.t. this basis and the
expression will have the same form after acting with the itggtoup. ForQ™ we find

Ry QY = _%(pl)BQO = J4(Q)|p0:q1:o g QY =1, (7.34)
from which we find that in general

QM = UM — J(Q)SM. (7.35)
The Freudenthal dual charge vector is (using the resultseonéxt section) given by
ANM 1 M 3 M
= RM 1 3wW(Q)VM, W(Q) = 21/ J4(Q). 7.36
Q" = g + IW(Q) (Q) = 2v/7i(Q) (7.36)

As for the moduli-dependent equivariant vectors, we cantheegeneric construction in
Eq. (2.15) replacing with different equivariant vectors.

7.2 H-FGK formalism

The stabilization equations can be solved in a completehegeg way [41] and the result is
summarized by the Hesse potential which, in terms of thetguavariant

Ji(H) = £HO(H,) + A (H'Hy)* — (H'Hy)* — 2HHoH'Hy — W(H'}*H,,  (7.37)

can be expressed as

W(H) = 2v/J4(H) . (7.38)



ét Is convenient to introduce the fully symmetric rank&dtensor [42| 43], implicitly defined
b

KyunpoHMHYNHYH? = J,(H) . (7.39)
Using this tensor, we can write

~ 8MJ4 KJMNPQHNHPHQ

H = =4 7.40
OnOnJs O JaOnJy KynpoHPH® — HyHy
- _ 2 =—-12 2 7.41
My (F) W T W W 2 (7.41)
K HPHQ  HyH HyH
guy = 24 MNPQ _gUMUN G HMUN ’ (7.42)

W2 W2 W2
and one can checle(g.using a symbolic manipulation program) the following prdjes:

Ju(H) = Ju(H), (7.43)
KunpoHVHPH? = —lwH,,, (7.44)
KunpoHPH? = KynpoHPHC + t(HyHy — HyHy), (7.45)
KunpoHPH? = —1HgHyy. (7.46)

These properties (which hold for any symplectic vector witn-vanishing quartic invariant
which implies the existence of the Freudenthal dual) imply invariance under Freudenthal
duality of W, M,y (F) and the potential/ (H); the latter can be rewritten in the manifestly
Freudenthal-duality-invariant form

V(H) = —3W~? {KMNPQ (HPHQ + ﬁP]f[Q> - % (HMHN + f{MlT:IN>} oMM, (7.47)

Itis, however, not possible to express it in a form manifestvariant under the Freudenthal
duality transformation of the charge vec@t — QM.
The physical fields are given in terms of thevariables by the usual expressions

eV = 2W =2\/J,(H), (7.48)

. H +iHt 3HH, + H'H, L 3W
frnd — = — VA .
HO + iHO 5(HY)2 +2HOH, ' 2[5(H"Y)2 + 2HH,]

(7.49)

281n most of what follows, the exact form of tHé&-tensor will be irrelevant. The formulae and results otedin
will, therefore, be valid for anyv" = 2, d = 4 theory with Hesse potential of the same generic form.

39



7.2.1 \ery small vectors

The vectorsR™ and S turn out to be very small charge vectors of this model [4, d4iing to
the following properties:

KunpoR"RY = —1Ry Ry, KunpgSHs9 = —18ySn, (7.50)

that leads to (in obvious shorthand notation)

Ky R =KyS*=0, Ji(R) = Jy(S) =0. (7.51)

On the other hand, the vectdrd? andV™ are both small vectors

J(U) = Jy(V) = 0. (7.52)

7.3 Ciritical points

The complexity of this model forces us to use a symbolic malaion program and, further,
impose the restrictiop” = ¢; = 0 on the charges to search for the critical points of the black-
hole potential. Apart from the standard supersymmetriaetivr 3 = Q™ we find only one
physically acceptable attractor given by

0
(BM) = _p; . (7.53)
0
0

It is an equivariant vector and we can write it in the form

BM = UM 4+ J,(Q)SM = oM +2J,(Q)SM . (7.54)
The quartic invariant for this vector can be computed rgagsing Eqs.[(7.50=7.52), and

SyuoM =0, QuSM = —1/W(Q), (7.55)
and, by Eq.[(7.36), it reads

Ji(B) = KB*=K[Q+2J,(Q)S]* = KQO" + 8.J,(Q)KQ3S
= J4(Q) + 2J4(QW(Q)QuSM (7.56)

= —Ju(Q).
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7.4 Conventional extremal solutions

The supersymmetric solutions of this model are construasedsual, and we will focus on the
extremal non-supersymmetric ones which are associatée @ttracto3" = UM + .J,(Q)S™.

For the near-horizon solutions, té&" take the standard form Ed._(B.3) since Hq.](3.4) is sat-
isfied. Now we must investigate whether we can add constamstd?’ to these harmonic
functions satisfying only the normalization conditidf{ A) = 1 and the constrainB A,; = 0,
which is equivalent, at the infinitesimal level, to investigg the space of solutions to EQ. (3.10).
For simplicity, we work with a generating charge configwatwith p° = ¢, = 0. We find for

the non-supersymmetric attractor

21 _q _3_1
20 (1910)3 00 20 (ph)2
0 00 0
(Murn) = 3 0 0 0 0 ; (7.57)
3 1 11
“wer 00 dpg

whose rank is 2. The solutions to EG.(3.10) have the farth) = <§;) and satisfyBMe,; = 0

but we still have to impose the normalization conditMiA) = 100n the two non-vanishing
components, which leaves us with only one independentisalghat can only describe one
independent real moduli; this modulus turns out t&e(t ). It can be shown that the solution
takes the form[33]

31{ 10%§1too - %|p1|7‘}
(HY) = , (7.58)

Smteo)?
_50{ 5( n;i ) —%|QO|T}

where we have defined

sM = sgn(QM), (7.59)

and where we have to requisé = s, for the solution to be regular.

Having Ret,, = 0 poses a very important problem because even though theechiacgor
with p° = ¢, can generate vi&l(2; R) duality transformations a complete charge vector with
four independent charges, it cannot at the same time genanaindependeritet,, # 0. In
other words, this solution is notgenerating solutionits orbit underSl(2; R) rotations will not
fully cover the space of parameters. A necessary and suificendition for a solution to be
generating is that all th&l(2; R) invariants of the theory are independent when evaluateden t
charges and moduli of that solution [45] 46]. As we show iradlé@t AppendiXA.2, the solution
(7.58) does not satisfy this condition.
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In order to have a generating solution for the class of exatemon-supersymmetric black-
hole solutions associated to the attrackdf = UM + J,(Q)S™, we need to adéRe ¢, # 0
to the solution and it should be clear that this cannot be diowe make a conventional,e.
harmonic, ansatz: thH* must contain anharmonic terms.

For future use, it is useful to have symplectic-covariaptrezsions for the constraints dri’
imposed by the equations of motion for a harmonic ansatz:

AyUM =0, AySM =0. (7.60)

Ay BM = 0 only imposes the weaker conditioty, (UM + J,(Q)SM) = 0. The above con-
straints imply thatd*! has to take the form

AM = qUM 4 pSM | (7.61)

for some invariant coefficients andb, and it cannot contain terms proportional to the vectors
RM andV¥,

7.5 Unconventional extremal solutions

The missing free parameter must be added to the above sohytiadding anharmonic terms to
the harmonic ansatz: let us don the harmonic functions ofitfieeformed solution with hats, so
that

HY = AM — BN, (7.62)

where BM is given by the attractof (7.54) and™ satisfies the constraints Eg5._(7.60) but is
otherwise arbitrary (up to asymptotic flathess normalagti Observe that this implies that

HyUM = HySM =0, = H=a(r)UY +b(r)sM, (7.63)

wherea(7) andb(r) are duality-invariant harmonic functions ef Terms proportional ta?
andV™ are excluded if the coefficients are harmonic functionsyim teroportional tol’*! can
always be eliminated by a local Freudenthal duality tramsédion, whence we expect that it
is enough to add a (necessarily anharmonic) term propaition2?. It turns out that such a
solution [33@ has the forr]

XRJM
RyHN’

HM = gM _ (7.64)

29This solution can be obtained by truncation from the STU-etsdlution in Ref.[[32] and is also a particular
case of the general extremal non-supersymmetric solutibtisbic models of Ref[[4]. It has also been obtained by
using integrability methods in the action that one obtainthe approach of Ref. [21] (see al§0][20]): its derivation
can be found in Section 9.4 (page 76) of Ref][47]. The satulielongs to the orbi®3, in the classification of
Ref. [48] (see Table 2 of that reference).

30This definition is not recursive becauBgy HY = Ry HY.
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wherey is another independent parameter, likE. The values ofc and AM are determined by
requiring that the physical fields have the right asymptbébavior at spatial infinitye( 2V —
1, t =ty WwhenT — 07) as follows: first of all, observe that as a consequence offEG3)
the property

HyUM =0, (7.65)
is satisfied everywhere and in particular at spatial infinibere

XRM
RyAN -
Then, using the definition af ™ = 7, Eq. [1.7), in Eq.[(7.65) plus Ed._(1.8) at spatial infinity
we find

0= HyooUM = Sm <];1};°°) UM = Sm (Z“(U)) = v/23m (Z“(U)) . (7.67)

HM 20 gM o gM (7.66)

This implies that

- Z(U)
giooe = 4 TRV (7.68)
| Z0(U)]
which can be used again in the definitionfét! = 7 to give

VM
HY = £/2$ = Z : 7.69
Y= avam (L) 12.(0) (7.69)
To determine the overall sign we will demand that the funei&/ (7) never vanish for €
[—00,0), a condition that is usually related to the positivity of thass. Contracting the above
result withS* and using Eql{7.63) we get

RNXAN = +/23m (;::Eii) |Z.o(U)], (7.70)

which, after substitution in E._(7.66) gives the value & tionstantst?, satisfying Eqs[(7.60),
as an equivariant symplectic vector, function of the phglgparameters of the solution

M

M __ M M o Voo
AM = +/2(6M y — RMSy)Sm (ZOO(U)) |Z.(U)]. (7.71)

With this information we can computey A” to find, from Eq.[(Z.7D) the value of the invari-
ant parametey as a function of the physical parameters of the solfion

31n terms of the invariants , - - - , i5 of the theory given in Eqs_(Al 1)-(Al5)

1/3 1/3
—1_ -1/6 i1+ 9 — (i1 — 2 /3)° B 4is — | i1 +i2 — (i — iz /3)° 1l
x = 3(=J1(Q)) {<1+ 2 7:(0) \/T(Q)> <1+ ? Q) —J4(Q)
(7.72)
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() (e om

Forp® = ¢, = 0, the solution takes the explicit (but not manifestly eqtiaat) form

=~
2 SMitoo HO )

1 3 1 1
o s — &'l

RACORUE SR

0

The mass of this solution can be computed using the generalfa Eq. [4.4). From the
definition of 4, we have

(7.74)

Hy(0) = £v/2%Re ( (U))\z ()], (7.75)
and
HY(0) = L {BM - f‘gﬁ) RM} , (7.76)

from which we get the covariant expression

= stz b (20 [am (2N @

This last expression reduces fdr= ¢; = 0 (selecting the upper sign in Eq.(7169)) to

M = =" (|go| + 3t *[p"]) - (7.78)

Observe that the value of the mass differs from the absohlte\of the associated fake central
chargeBV:

M # |Z(6w, B)|. (7.79)

The above result should be compared to the mass of the sop@esyic black hole which is
given by the standard formul/ = |Z..(Q)| and reduces fop’ = ¢, = 0 td® the following
expression,

32\We have used that' ¢y > 0 for the non-supersymmetric case artd, < 0 for the supersymmetric one.
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M = 5 Tlgo| - 3(Reto)2lp )" + 2(Smi)1|pH + 5(Smi 2laop| . (7.80)

which can be rewritten in the equivalent form

2
M = /2 go| + Bltac 2P (] = 10(Retoc)?lgop! |, (7.81)

which shows that the mass of the supersymmetric black halkvisys smaller than the mass of
the non-supersymmetric one with charges of equal abscélbe v
The entropy is given by the square of the fake central chartfeedorizon

S =r|Z(¢n, B)|* = 7W(B)/2 = 7/~ J4(Q). (7.82)

As discussed in Sectidn 4, an interesting characteristiveofinconventional solutions is that,
in distinction to what happens for the conventional ones flibw of the black-hole metric func-
tion e~ from infinity to the horizon is not governed by a simple fakatcal chargeZ (¢, B)
since the near-horizon limit of the metric is relatedZ¢y,,, B) but the spacelike infinity limit
is not related taZ(¢.., B). The first-order flow equations for these black holes can be wr
ten in terms of a superpotentidl (¢, B) or, equivalently, in terms of the “fake central charge”
Z(¢, V2D H) defined in Sectionl4.

It is possible to prove analytically that the general configion Eq. [7.64) solves the equa-
tions of motion by using the duality-invariant propertidshe equivariant vectord™ , B and
RM that appear in its definition (that is: not reducing the eiguatto thep’ = ¢, case) and the
properties of thék-tensor of this model, see Egs. (74.56). As an intermedia ste derive the
following relations, which are valid only for thB* s of our ansatz:

KunH? = Y(VH)’Ro Vi) + 3(VH)(RH)VaVy + & (VH)*Un Uy

1
2
—+(VH)(RH)USn) — §(RH)*Sy Sy (7.83)
KunvHQ = J(VH)RuVyy + HJW(Q)(VH) + (RH)|Vi Vi + w5 (VH) Uy Uy

~I(Q)(VH) + (RH)|Uqut Sy — 11 Q) (RH) S Sy (7.84)

KunHR = —3(RH)RuSn) — 2(RH)Un Vi) — 2(VH) R Uy - (7.85)
Using these identities it is easy to show, for instance, that

JW(H) = J(H)—x*,  Ji(H)=(VH) (RH). (7.86)
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8 Conclusions

In this paper we have shown how the equivariance ofiheariables under duality transforma-
tions translates into equivariance of the constant syniplgectors that occur in their explicit
expressions. Using the H-FGK formalism we have studied undhat conditions the extremal
solutions associated to a given attractor can be descifitvedl| values of the charges and mod-
uli, by harmonicHs alone and when it is necessary to add anharmonic termsrto ¥e have
called these two kinds of solutions conventional, resgeltiunconventional.

As mentioned in the introduction, it is not known how uncamenal extremal solutions
(which are necessarily non-supersymmetric, since we khawall the supersymmetric ones are
conventional) can be deformed into non-extremal soluti@nth non-zero temperature but the
same values of the charges and moduli. The H-FGK formalisifamuse of equivariant vectors
can help us to solve this problem and, as a first step, we havenshow to apply these methods
to well-known examples of theories with conventional andanventional solutions.

In the case of the unconventional extremal solutions oftth@odel we have shown, first
of all, how the criterion found in Sectidd 3 indicates thedhé@ anharmonic terms and which
equivariant vectors these terms should depend on. We hawed@tscribed the solution entirely
in terms of these objects and we have computed the genemaldbthe mass and the entropy.
The second has a well-known form in terms of the near-horiron Z(¢y,, B) of afake central
charge Z(¢, B), constructed from what we have called (in the context of tHeGK formalism)
attractorB*. The mass instead is not given by the spacelike infinity limhithis fake central
chargeM = |Z(¢.., B)| but rather by the spacelike infinity of a different og&¢, E') with
EM +£ BM_ The first-order flow equations that govern the system (whiate been given
in Refs. [19/4]) are written in term of non-standard faketcanchargeZ (¢, 2D H) whose
second argument is-dependent and correctly interpolates betwéh (on the horizon) and
EM (at spacelike infinity).

The behavior of the metric function in the unconventiondugons gets modified in the
asymptotic region but remains unchanged in the near-horegion, where it is still governed
by the attractor mechanism. This behavior is reminisceut,opposite, to that of the colored
non-Abelian supersymmetric black holes of Refs.| [49] in abhihe near-horizon geometry is
modified by the non-Abelian effects while the asymptotic aenchanged by them.

The formalism and the methods presented in this paper campiec to the problem of
finding the non-extremal generalization of the unconveratisolutions studied in this paper.
Work in this direction is in progress.
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A Generating new solutions via duality

As mentioned in Sectidn 4.5, a necessary and sufficient tondor a solution to be generating
is that all theS1(2; R) invariants of the theory are independent when evaluatedhercharges
and moduli of that solution [50, 51, 45,146]. In this appendix are going to study whether or
not and why the solution considered in that section is a geimgrone. We start by stating some
general properties which we, then, apply to the (toy) aatdih model and then to thé model.

There are in general 5 independent invariants that chaize®ach\' = 2 symmetric super-
gravity model. They are [52]:

a o= |27, (A.1)
in = GV ZZ, (A.2)
is = —3Re[ZN3(27)], (A.3)
iy = Sm[ZN5(Z27)], (A.4)
is = GYCiuCly G GGG 2L 2 22, (A.5)

whereZ is the central charg&;” the inverse Kahler metric,

are the “matter” central charges,
Cijk = DVuD DYV (A.7)
and
N3(Z%) = CpnG GI™ G 21 28 28 (A.8)

All these invariants are function of the charges and theassddut their combination
Ji(Q) = (iy — i2)2 +4ig — 15, (A.9)
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depends quartically on the charges only. Sometimes it iswgdgeous to work with/,(Q)
instead ofis.

A.1 2-charge generating solutions of the axidilaton model

The minimal number of non-vanishing charges that are nacg$sr an extremal, supersymmet-
rid®3, black hole of axidilaton theory to be regular is two. Takingp account the form of the
Hesse potential Eq._(5.89) and of the axidilaton [Eq. (5.403, easy to see that there are only
two possible non-singular 2-charge configurations, naélyp*, 0,0)T and(0, 0, gy, ¢1)* .

In this model, the tensag;;;, vanishes identically, and so do&§(Z*) and the invariants
13,14, 15. The model is characterized by the two invariaintandi,, which are, respectively, the
squares of the absolute values of the true and fake cenaedeh at infinity

i1 = |2\, Q)2, ir = |Z2(Mec, Q) (A.10)

and both are independent for any 2-charge solutiongiok,, = 0 or not) and, in principle, it
should be a generating solution. However, depending onlwice of harmonic functions, the
regular solutions with two charges may have a vanisiieag., and the subgroup d1(2;R)
that generates a non-vanishifig \.., which consists of matrices of the for(@ f) do not leave
invariant the 2-charge configurations. Therefore,3h@; R) orbit of the regular 2-charge con-
figurations may not cover the full parameter space.

It is interesting to see how the impossibility of generatngplution containing the maximal
number of independent parameters arises in practice isithigle case, starting from a configu-
ration characterized by the charg@s0, gy, ¢;)* and the moduli\,, = iSm Ay (we reserve the
unhatted symbols for the final charges and moduli). Thistewius determined by two harmonic
functions:

(FM) = , (A.11)

where

s = sgn(do) = sgn(qi) - (A.12)

The S1(2; R) rotated solution will depend on the original physical paegensqy, G;, Sm Ao
plus the parameters of th#(2; R) transformation, b, ¢, d (only 3 of which are independent).

33The discussion can also be held for the non-supersymmetritans to this model, reaching the same conclu-
sions.
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We have to determing, ¢;, Sm Mooy @, b, ¢, d in terms of the final physical parameters to write
the rotated solution in terms of its own physical parameteaiy.
S1(2; R) acts on the charge vector through the matrix Eg. (5.19) so

p° d —c 0 —cqo

p! _ a b 0 _ bq, (A.13)
4o —b a o ago |- '

0 c d Q1 dq

From these relations we determing, ¢, d in terms of the final and original charges:

a=q/d. b=p"/@, c=-0"/G, d=a/q. (A.14)
On the other hand, from the transformation rule Eq. (5.10y®ate

bd + ac(Sm Ay )2 N M Ao

= , SmA = - ,
d? 4+ 2(Sm A )? d? 4+ 2 (Sm A)?
and replacing in these relations the transformation patensie b, ¢, d by the values in Eql(A.14),
we get 2 equations that relate the 3 original to the 6 final jghyparameters:

Re Ao = (A.15)

. . Redoo . . “ .
PP40(d1)*(Sm A)” + == (GoG1)*Sm Ase = p'01(d0)* = 0, (A.16)
M Ao (2°)2(61)%(SM Aso)? = (God1)*IM Ao + SM Ao (61)%(G0)? = 0. (A.17)
The invariance oW implies that
Qo1 = " + 9041, (A.18)

and allows us to eliminatg from the above two equations. We can solve (A.16) and (A.477) f
Sm A as a function of the 6 final physical parameters gnend, for both equations, we find
Im Awod, 2 as a function of those 6 parameters:

Im Ay ? = f1(Q, o)+ Im Aoy 2 = f2(Q, Moo - (A.19)

The consistency conditiofy (9, A\s) = f2(Q, A\s) determines one of the two final real moduli
as a complicated function of the final charges. In other wotls final solution cannot have
6 independent physical parameters, which implies that tiggnal solution is not a generating
solution.

On top of this, there seems to be another problem: we canha separately the 3 original
physical parameters in terms of the 6 final ones. “Fortugateily the combinationym ;\Ooqu
appears in the rotated solution or, equivalently, inkhé variables. Using Eqd. (A 13,A114) and
(A.18) we find the these are given by
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A0 550" (Sm Ay ) 1/?
HM — AM _ 1M, Al _ %pl(popl + QO%)jl(%m Aol 2) 2
v Ao 5 00(Sm Ay ) ’
A S0 (PP + qoqr) 1 (SmAsedy?) 2
(A.20)

In the supersymmetric case we know that we can construct aakemon which has, on top
of the two non-trivial harmonic functions, two constant sné we write all of them in the form

HY = AM — 25QMr (A.21)
then(QM)T = (0,0, 4o, ¢ )* and, according to the general results of Ref. [9],

7
1 __Sm @1{\20_@0 )T(Zo
V23m Ao |1 A%, — o] —Zlkoo
This solution has two independent charges at any genenitt ppmoduli space and should
be a generating solution. The difference with the previ@seds that, instead of the Eds. (A.15),
we can invert[(5.10) and use Eqs. (A.14) and (A.18) to get tvdgpendent real equations that
do not lead to constraints in the final physical parameters:

( AM ) = (A.22)

< 1 1 A0 — D'
Moy ? = . (A.23)
0 (P°p' + qoq1) P°Ase + q0
The only combinations of the 4 original physical parametiesg appear in the rotated solu-
tion are precisely the real and imaginary parts\fj, > and we obtain a solution with 6 inde-

pendent physical parameters.

A.2 2-charge solutions of thet* model

Again, the minimal number of non-vanishing charges thagalee, extremal, black hole of this
model can have is two. A choice of charge vector that leadedalar supersymmetric and
non-supersymmetric black holes(is p!, qo, 0)”. In the supersymmetric case, the coefficient of

—%T in HM (that we call attractor in the context of this formalism) igem by

0

(BM) = (QM) = g) , (A.24)

0
and in the non-supersymmetric one, by
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0

pl
(BM) = : (A.25)
—4o
0
In order to see if these charge configurations lead to gengrsdlutions, we study the values

of the invariants. For cubic models with prepotential of fibwen

XXXk
X0 7
one ha<’;;;, = ¢d,;.. The prepotential of the’ model is given in Eq[{7]1) and hds;; = —5
SOCyy = %(Smt)*?’. For this model it can be proven that only three invarianésiadependent
and that the other two can be written as a their combinatipacifically, one finds that [53]

F= %dijk (A.26)

i = —\/35i8i1 — 13, (A.27)

iz, (A.28)

15 =

>

and we can take, as independent basis of invariantsandi; (which we can replace hy,).
Now let us evaluate these invariants for the solutions wlitarge vectof0, p, g0, 0)7. The
resultis

3

s 5,12 2
T 20(GmitL) 2 e = ol (A.29)
. 1 5 1 2
= ————— |—3P toll 2tF ) — A.30
() 20(%“17500)3 54 OO( ot oo) 3q0’ ) ( )
y 1 7 5,142 5,.1 * 3
13 = —m%e {—g (—529 loo — CJo) [—gp too(too + 2t5,) — 390} } , (A.31)
and it is easy to see that¥ife ¢, = 0 (theaxion-freecase) they simplify to
i o= 3 [2p"(Smits)? — o) (A.32)
20(Sm iy, )3 L2 ’
: 1 5,1 2 2
2T 20(SmiL ) [5p'(Smtx)® + 3q0] (A-33)
is = 0, (A.34)

We see then that in the axion-free case only two invarianiretependent and according to
the argument in [46] the solutions cannot be seed (gengjaoiutions.

It is necessary to havige ¢ # 0 for the the three invariants, i,, i3 # 0 to be independent
from each other and the two-charge solution to be a gengratilution.
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