
ar
X

iv
:1

30
5.

54
88

v1
  [

he
p-

th
]  

23
 M

ay
 2

01
3

FPAUO-13/04

IFIC/13-18
IFT-UAM/CSIC-13-031

May 23rd, 2013

Black holes and equivariant charge vectors

in N = 2, d = 4 supergravity

Pablo Bueno♥ a, Pietro Galli♣ b, Patrick Meessen♠ c and Toḿas Ort́ın♥ d.
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Introduction

The intensive search for black-hole solutions of supergravity theories over the last 25 years has
been a very rewarding one in respect to the supersymmetric (also known as BPS in the literature,
even if this concept is not equivalent, but wider) ones. Eventhough the existence of extremal
non-supersymmetric black holes was discovered long time ago [1, 2] and we know that they
are subject to the same attractor mechanism as the supersymmetric ones [3], only a few general
families of solutions have been constructed for some classes of theories [4] and we are still far
from having a complete understanding of their structure andgeneral properties. The situation
w.r.t. non-extremal solutions, which some of us studied recently in [5, 6, 7, 8, 9] is even worse:
even if all extremal black-hole solutions may be deformed (i.e. heated up) to a non-extremal
one, then we do not know the non-extremal deformations of many of them; in general we don’t
know whether there are obstructions to such a deformation and what they are. We also don’t
know whether, in each theory, there is only one family of non-extremal black-hole solutions
from which all the extremal ones can be obtained by taken the appropriate limits, such as it
happens in the few models studied so far [10, 11, 5, 6, 7]. The (stringy) non-extremal black hole
landscape is a largely uncharted territory.

It is clear that to answer these questions new tools are needed since the first-order equations
associated to unbroken supersymmetry are of no help here andthe second-order equations of
motion of the FGK effective action [3] are still very hard to solve. Several approaches have been
proposed to this end. For instance, it has been shown that in general one can construct first-
order flow equations for extremal non-supersymmetric and non-extremal black holes Refs. [12,
13, 14, 15, 16, 17, 18, 19, 20] and many such equations have been constructed. From them one
can extract interesting information about the near-horizon and spacelike infinity limits (whence
about the entropy and mass of the solutions), but in practicethese equations are obtained when
the solutions are already known, which somewhat diminishestheir usefulness.

The most common approach to the search of stationary black-hole solutions, pioneered in
Ref. [21], consists in the dimensional reduction over the time direction. For 4-dimensional theo-
ries, this results in a 3-dimensional theory consisting of anon-linearσ-model coupled to gravity
(in 3 dimensions the vector fields can be dualized into scalars).1 When theσ-model corresponds
to a homogeneous space one can show that the system is integrable and use the standard tech-
niques to classify and obtain explicit black-hole solutions, seee.g. [22]. This approach has been
quite a successful one, but for the moment it has not providedcomplete answers to the above
questions.

More recently, a new approach for the 4- and 5-dimensionalN = 2, d = 4 supergravity
theories coupled tonV vector supermultiplets has been introduced in Ref. [23]2. This approach,
dubbed theH-FGK formalism, consists in using a convenient set of variables in the FGK effective
action. These variables arise naturally in the supersymmetric cases [27, 28], but it has been shown
that they can be used in more general (but always stationary)cases. The main virtue of the new
variables, when compared to the scalar fields present in the FGK effective action, is that they

1 Further assumptions (staticity plus an ansatz for the 3-dimensional metric) lead to the FGK effective action
with its characteristic effectiveblack-hole potential[3].

2A closely-related approach has been proposed in Ref. [24, 25, 26].
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transform linearly under the duality group (embedded inSp(2nV + 2;R) in thed = 4 case and
in SO(nV + 1) in d = 5 case).

In previous works [7, 9, 8, 29] we have investigated the description of the simplest families
of solutions (that we will callconventionalin Section 3) for which theH-variables are harmonic
functions (in the extremal case) or linear combinations of hyperbolic sines and cosines (in the
non-extremal case). We have also studied some general features of the formalism, like the invari-
ance of the effective action under local Freudenthal duality rotations [30], but thus far we have
not exploited the main feature of theH-variables, namely the linear equivariance under duality
transformations of the charges and moduli that characterize a given solution.

Our main goal in this paper is to study this aspect of the formalism and show how to exploit
the requirement of linear equivariance in order to find attractors and construct explicit extremal
solutions in some already well-studied models: the axidilaton and theCP

n
models. We also want

to make progress towards answering the questions posed at the beginning of this introduction
using these new tools. In theconventionalcases that we have studied so far, it is known how one
can arrive at (extremal) solutions described by harmonic function from (non-extremal) solutions
described by hyperbolic sines and cosines: we will apply ournew tools to anon-conventional
(non-supersymmetric) extremal solution of thet3 model not considered in our previous works
Refs. [7, 9]. This solution, which has been known for some time [31, 32, 19, 4], is characterized
by H-variables that contain anharmonic terms and its deformation into a non-supersymmetric
(finite-temperature) solution has proven elusive [33]. We think that, in order to search for this
non-extremal generalization (if it exists), it is necessary to know more about the structure of the
extremal solution and we will show how the new tools can help us to this end.

This paper is organized as follows: in Section 1 we briefly review the H-FGK formalism,
providing the definitions and relations that we will use in the rest of the article. In Section 2
we explain how equivariant charge vectors enter in black-hole solutions when we express them
in theH-variables of this formalism. In Section 3 we explain when the usual harmonic ansatz
becomes insufficient to write the general family of solutions associated to some attractor (ex-
pressed through an equivariant charge vector). This insufficiency indicates the need of adding
anharmonic terms to theH-variables giving rise to what we have calledunconventionalblack-
hole solutions. Then, in Section 4 we give a general form for the first-order flow equations of
any static black-hole solution of these theories that applies, in particular, to the unconventional
solutions. In Sections 5 and 6 we review the supersymmetric and non-supersymmetric extremal
solutions (which are completely conventional) of two simple models, studying their duality sym-
metries and their equivariant vectors. In Section 7 we turn to the t3 model, showing how its
extremal, non-supersymmetric solutions are non-conventional. We, then, construct and study
this unconventional family of solutions using a basis of equivariant vectors. Our conclusions and
comments on further directions of work can be found in Section 8.
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1 The H-FGK formalism for N = 2, d = 4 supergravity

As shown in Refs. [26, 23]3 the problem of finding static, single-center, black-hole solutions of
any ungaugedN = 2, d = 4 supergravity theory coupled ton vector multiplets can be reduced
to that of finding solutions to the effective action for the2(n+ 1) real variables4 HM(τ)

− IH-FGK[H ] =

∫

dτ
{

1
2
gMNḢ

MḢN − V
}

, (1.2)

subject to theHamiltonian constraint

1
2
gMNḢ

MḢN + V + r20 = 0 , (1.3)

wherer0 is thenon-extremality parameter. For later reference, we quote the equations of motion
that follow from the above action, taking into account that the metricgMN is not invertible
[26, 30]

gMNḦ
N + (∂NgPM − 1

2
∂MgNP )Ḣ

NḢP + ∂MV = 0 . (1.4)

The metricgMN(H) and the potentialV (H) of the H-FGK effective action are given in terms
of theHesse potentialW(H) by

gMN(H) ≡ ∂M∂N logW − 2
HMHN

W2
, (1.5)

V (H) ≡
{

−1
4
∂M∂N logW +

HMHN

W2

}

QMQN . (1.6)

The Hesse potential contains all the information characterizing theN = 2, d = 4 supergrav-
ity theory under consideration, and defines it (at least in this context) just as the canonically-
normalized covariantly-holomorphic symplectic section(VM) =

( LΛ

MΛ

)

does. The Hesse poten-
tial can be derived fromVM as follows:

1. Introduce an auxiliary complex variableX with the same Kähler weight asVM , we can
define the two Kähler-neutral real symplectic vectorsRM andIM

VM/X ≡ RM + iIM . (1.7)

3We will follow the notation and conventions of Ref. [23]. More information about this formalism and the
original FGK formalism can be found ine.g.Refs. [3, 5, 30].

4The indicesM,N are2(n + 1)-dimensional symplectic indices. We use the symplectic metric (ΩMN ) ≡
(

0 1

−1 0

)

andΩMPΩNP = δMN to lower and rise the symplectic indices according to the convention

HM = ΩMNHN , HM = HNΩNM . (1.1)
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The components ofRM can be expressed in terms of those ofIM (solving thestabilization
equationsa.k.a.Freudenthal duality equations[9]). The functionsRM(I) are characteris-
tic of each theory, but they are always homogeneous of first degree in theIM .

It can be shown that

X = 1√
2
eU+iα , (1.8)

whereeU is the metric function (or warp factor) andα is a completely arbitraryτ -dependent
phase which does not enter in the Lagrangian. Different choices ofα give different defini-
tions of the variablesHM which, nevertheless, describe the same physical variables. This
freedom gives rise to a local symmetry of the H-FGK action, known aslocal Freudenthal
duality [30], that will be discussed later.

2. Given those functions, theHesse potentialW(I) is just

W(I) ≡ RM (I)IM . (1.9)

It is, by construction, homogeneous of second degree inIM .

It is customary to relabel these variables

HM ≡ IM , H̃M ≡ RM , −→







VM/X = H̃M + iHM ≡ HM .

W(H) = H̃M(H)HM .

(1.10)

The relation between the tilded and untilded variables defines thediscrete Freudenthal duality
transformation of the theory [34, 35, 30]:̃HM is the Freudenthal dual ofHM . This duality
transformation turns out to be an anti-involution,i.e.

˜̃HM ≡ H̃M(H̃) = −HM , (1.11)

and, therefore preserves the Hesse potential

W(H̃) = W(H) , (1.12)

and also the full effective action Eq. (1.2). These discreteduality transformations are associated
to the constant shift of the phase ofX, α → α + π. The continuous, local, transformations
α → α+ f(τ)

H′M = eif(τ) HM , (1.13)
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leave invariant the effective action (1.2) and all the physical fields [30]. Since the central charge
of these theoriesZ(Z,Z∗,Q) is defined in terms of the canonically-normalized covariantly-
holomorphic symplectic sectionVM by5

Z(Q) ≡ VMQM , (1.14)

using the definition of theH-variables we find that6

Z(Q) =
e−iα

√
2W

HMQM , (1.15)

whence under Freudenthal duality

Z ′(Q) = eif(τ)Z(Q) . (1.16)

The definition of Freudenthal dual can be extended to any symplectic vector of a given theory7

and, in particular, to the charge vectorQM . We know that the black-hole potential, which is
related to the potentialV appearing in the H-FGK action by

Vbh = −W V , (1.17)

as a function of the variablesHM , is always extremized by the near-horizon valueBM = βQM

for any proportionality constantβ. Freudenthal symmetry implies that it is also extremized at
the same points in terms of the Freudenthal-dual variablesB̃M = βQM , which corresponds to
BM = −βQ̃M [35, 30]. Freudenthal duality can also be seen as a relation between black holes
with identical metrics (and, therefore, entropies) and scalar fields but different charges [34].

2 Explicit solutions and equivariant vectors

The main advantage of the H-FGK formalism is the linear behavior of the variables under trans-
formations of the electric-magnetic duality groupG of the theory:

HM ′ = SM
NH

N , (SM
N) ∈ G ⊂ Sp(2n+ 2;R) . (2.1)

This linear behavior can dramatically simplify the construction of explicit solutions to theories
with a non-trivial duality group as it implies that any solution must be of the form

HM(τ) = cσ(τ) UM
σ , (2.2)

5We will often use the lighter notationZ(Q) or Z(B) if we replace the charge vector by another equivariant
charge vector. Sometimes these equivariant charge vectorsare calledfake chargesin which caseZ(B) is referred
to asfake central charge.

6In what follows,W with no arguments will be assumed to beW(H).
7In some theories not all symplectic vectors have a Freudenthal dual. For instance, in the cubic models that we

are going to study, only when the Hesse potential, evaluatedon a particular vector, is different from zero, is the
Freudenthal dual well defined.
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where the functionscσ(τ) are duality invariant; the symplectic vectorsUM
σ are constant vectors

that may depend on the physical parameters of the theory (massM , electric and magnetic charges
QM and asymptotic values of the scalarsZ i

∞) and must beequivariantw.r.t. the duality group,
i.e.

UM
σ (M,Z ′

∞, Z∗ ′
∞,Q′) = SM

NU
N
σ (M,Z∞, Z∗

∞,Q) , (2.3)

with

Z i ′ ≡ F i
S(Z) , QM ′ = SM

NQN , (2.4)

whereF i
S(Z) is the non-linear realization of the duality transformation SM

N on the complex
scalars.

In some cases, the number of equivariant vectors of the theory can be greater than8 or equal
to the number of variablesHM . In that case, one does not win much by using the above ansatz.
In other cases, however, the number can be much smaller and wewill be left with a small number
of invariant functions to be determined.

In the near-horizon limit of extremal black-hole solutions, the value of the variablesHM will
be dominated by one equivariant vector that we denote byBM and that can be defined, in our
conventions, by9

BM ≡ lim
τ→−∞

−
√
2HM

τ
. (2.5)

The values of the scalars on the horizon,Z i
h, are completely determined by this equivariant vector

upon use of the general expression of the scalars as functions of the variablesHM [23]

Z i(H) =
H̃ i + iH i

H̃0 + iH0
, ⇒ Z i

h = Z i(B) , (2.6)

and also extremize the black-hole potentialVbh(H,Q) as a function of the variablesHM :

∂MVbh(H,Q)|H=B = 0 . (2.7)

The vectorsBM , which in this context can be called attractors, can also be written in the form

BM = bσUM
σ , (2.8)

where thebσ are duality-invariant constants such that the productsbUM have the same dimen-
sions as electric and magnetic charges.

Clearly these vector attractors must contain more information than the values of the scalars
on the horizonZ i

h (the standard attractors). On the other hand, when the modelhas a high degree

8If it is greater, we can eliminate some from the ansatz, sincethey will be linearly dependent on the rest.
9Observe that this definition is completely general: given the behavior of the 3-dimensional transverse metric

in the near-horizon limit as a function ofτ and the degree of homogeneity ofe−2U = W(H) as a function of the
H-variables, in regular black-hole solutions the functionsHM (τ) are dominated by these constant vectors in the
near-horizon limit.
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of symmetry the requirement of equivariance imposes strongconstraints on the possibilities and
it simplifies the task of finding the attractorsBM .

A similar discussion can be made for the values of the variablesHM at spatial infinity, which
in the employed coordinate system lies atτ = 0.

The amount of simplification introduced by the above observation that the variablesHM must
always be of the form Eq. (2.2) depends on our ability to find a sufficient number of equivariant
vectors; the Freudenthal dual of the charge vectorQ̃M is, by construction, a prime example
of equivariant vector, but there are other systematic ways of finding them. Let us consider, first,
equivariant vectors that only depend on the charges. They can be seen as an endomorphism of the
(2n+2)-dimensional vector space of charges and their equivariance is equivalent to the fact that
these endomorphisms commute with the duality transformations (which are also endomorphisms
of charge space). Thus, linear (not necessarily symplectic) transformations that commute withG
provide a second example of equivariant vectors.

To study non-linear cases, let us expand an equivariant vector and the duality transformations
around the identity

UM
σ (Q) ∼ QM + ξM(Q) , (SQ)M ∼ QM + αAηA

M(Q) , (2.9)

whereS ∈ G ⊂ Sp(2n+ 2;R) and, therefore,

ηA
M(Q) = (TA)

M
N QN , (2.10)

whereTA ∈ Sp(2n+ 2;R) are the generators of the duality group; the condition of equivariance
is equivalent to requiring that the Lie brackets of these twokinds of generators vanish10

[U, ηA] = 0 , ⇒ (TA)
M

NQN∂MUP = (TA)
P
RU

R , where ∂MUP ≡ ∂UP

∂QM
. (2.11)

On taking the derivative with respect toQP of both sides of this equation we find the integra-
bility condition

(TA)
M

NQN∂MP = 0 , P ≡ ∂MUM = ΩMN∂MUN . (2.12)

which implies thatP is an invariant function of the charges. Thus, equivariant vectors are asso-
ciated to invariants by the above equation. The simplest invariant is justP = 0 and equivariant
vectors such that∂[MUN ] = 0 are associated to it; clearly there may be more possibilities as
locally they must be of the formUM = ∂Mh for some non-vanishing invarianth (possibly up to
additive numerical constants) and one can check that the equivariance condition is automatically
satisfied. For instance, if we takeh = W/2, thenUM = Q̃M .

For equivariant vectors that depend (non-holomorphically) on the moduliZ i
∞, the equivari-

ance condition takes the form
10Obviously, alsoξ must be an equivariant vector, whence we can replaceξ byU in what follows for the purpose

of writing an equation characterizing equivariant vectors.
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(TA)
M

NQN∂MUP + kA
i∂iU

P + kA
∗ i∗∂i∗U

P = (TA)
P
RU

R , (2.13)

whereKA ≡ kA
i(Z)∂i + c.c. are the Killing vectors that generate the action of the duality group

G on the scalar manifold preserving the holomorphic and Kähler structures. Again,P ≡ ∂MUM

must be an invariant and a particularly simple case isP = 0 andUM = ∂Mh where, now,h is
required to be invariant only up to additive functions of themoduli. A recurring example is

h = log (Z(Q)) , (2.14)

whereZ(Q) is the central charge defined in Eq. (1.14). The associated (complex) equivariant
vector is

UM =
∂ h

∂QM
=

VM

Z(Q)
. (2.15)

The real and imaginary parts provide two real moduli-dependent equivariant vectors. It should
be obvious that one can use, instead of the central charge anyfake central charge, but the result
may not be a new equivariant vector.

The Lie bracket of two equivariant vectors is also an equivariant vector, so that the equivariant
vectors form a Lie algebra that commutes with that of the duality groupG.

Finally, in the cases that we are going to study, we will show how one can construct equiv-
ariant vectors by using other methods like solution-generating techniques.

3 Conventional and unconventional solutions

As explained in Ref. [23], contracting the equations of motion derived from the H-FGK action
Eq. (1.2) withHM and using the homogeneity properties of the different termsand the Hamilto-
nian constraint Eq. (1.3) one finds, in the extremal caser0 = 011, the equation

WH̃M ḦM + (ḢMHM)2 = 0 . (3.1)

In what we are going to call from now onconventionalextremal solutions (supersymmetric or
not) the variablesHM(τ) are harmonic functions,i.e. they satisfyḦM = 0. The above equation
implies that they also satisfy the constraint12

ḢMHM = 0 . (3.2)

Conventional extremal solutions have been intensively studied in Ref. [9]. However, how general
are these solutions? Can all the extremal black-hole solutions be written in a conventional form?
(The answer in the supersymmetric case is yes.) If not, what are the limitations and how can

11In this discussion we will only consider the extremal case because in the rest of the paper we are going to restrict
ourselves to it.

12The converse is not always true: the above constraint can be satisfied for extremal black-hole solutions which
are not given by harmonicHMs and that we will callunconventional.
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they be overcome as to obtain the most general extremal black-hole solutions that depend on the
maximal number of independent physical parameters?

To investigate these issues, it is convenient to review in detail the construction of conventional
extremal black-hole solutions: extremal black-holes are associated to values of the scalar fields
Z i

h (attractors) that extremize the black-hole potential [3].As explained in the previous section,
in the H-FGK formulation attractors appear as symplectic vectorsBM that extremize the black-
hole potential when written in terms of theH-variables. These attractorsBM are defined up
to normalization because the black-hole potential is invariant under rescalings of theHMs and
also up to global Freudenthal rotations. Furthermore, as functions of the charges and moduli,
the attractorsBM are equivariant under duality transformations. A family ofextremal black
holes closed under duality will be associated to a given equivariant vector expressed as a set
of functions of the charge components and moduliBM(Q, Z∞, Z∗

∞). We are going to focus on
moduli-independent attractors,i.e. the so-calledtrue attractors.

The attractorBM determines the near-horizon form of the solution. We can always construct
a solution describing the AdS2×S2 solution that describes the near-horizon geometry by choosing
the appropriate normalization ofBM : indeed, one can check that the harmonic functions

HM = − 1√
2
BMτ , (3.3)

always satisfy the equations of motion as long as the condition

Vbh(B,Q) = −1
2
W(B) , (3.4)

determining the normalization ofBM is met.
To construct a solution with the same near-horizon behaviorand with an asymptotically-flat

region we must add to theHM above a constant vectorAM . The condition Eq. (3.2) and the
normalization of the metric at infinity become two constraints forAM

BMAM = 0 , W(A) = 1 , (3.5)

that leave2n real constants, which is just the right amount to describe the asymptotic values of
then complex scalarsZ i

∞. Only if we cannot add a vectorAM satisfying these two constraints,
then the most general solution associated to the attractorBM cannot be conventional and we will
have to add anharmonic terms to theHM .

We can reformulate this question as follows: if we add to theHM in Eq. (3.3) an infinitesimal
vector εM satisfyingBMεM = 0, do we get another solution to the Hamiltonian constraint
Eq. (1.3) and equations of motion Eq. (1.4)? To first order inεM , the Hamiltonian constraint will
be solved by the perturbed solution

H ′M = HM + εM , HM = − 1√
2
BMτ , BMεM = 0 , (3.6)

if

εM
{

1
2
∂MgNP Ḣ

NḢP + ∂MV (H,Q)
}

= 0 . (3.7)
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Evaluating this equation at the near-horizon solutionHM , usingVbh(H,Q) = −W(B)V (H,Q),
the homogeneity properties of the different terms, the factthat∂MVbh(B,Q) = 0 and the condi-
tion (3.4), we arrive at

εM
{

1
4
BNBP∂M∂N∂P logW(B)− 1

2
∂M logW(B)

}

= 0 , (3.8)

which is an equation in the variablesBM (including the partial∂M derivatives, which should be
understood as partial derivatives with respect toBM ) and is identically satisfied on account of
the scale invariance oflogW(B).

The analogous condition on the equations of motion, Eqs. (1.4), reads

εM
{

∂MgNP Ḧ
P + ∂M (∂P gQN − 1

2
∂NgPQ)Ḣ

P ḢQ + ∂M∂NV (H,Q)
}

= 0 , (3.9)

and, after evaluation on the near-horizon solution we get a homogenous equation that, again,
can be read as an equation on the variablesBM . Using the same properties we used with the
Hamiltonian constraint plusBMεM = 0 we get a non-trivial equation forεM

MMNε
N = 0 , with MMN ≡ W(B)∂M∂N logW(B)+2

B̃M B̃N

W(B)
−∂M∂NVbh(B,Q) . (3.10)

We are interested in the number of independent solutions to this equation that satisfy the con-
straintBMεM = 0, i.e. in the rank ofMMN . The rank should be at most1 as this implies a single
linear constraint on the components ofεM , which should be equivalent toBMεM = 0. If the
rank ofMMN happens to be bigger than 1, then there are not enough unconstrained components
of εM for the family of solutions to have arbitrary values of the moduli and the most general
solution based on the chosen attractor, must necessarily contain anharmonic terms.

For cubic models, the need of anharmonic ansätze to construct the most general, generating,
non-supersymmetric, extremal, black-hole solution of [31] and [32] was first observed in [19]
and later confirmed in [4] and [33]. In the next sections we will see how the obstruction to the
fully harmonic ansatz arises in the particular case of thet3 model. For the non-extremal case of
these theories, the situation is still unclear [33].

4 The general first-order flow equations

The central charge of anN = 2, d = 4 supergravity theory is defined by Eq. (1.14) and, in terms
of theH-variables it takes the form of Eq. (1.15) which we copy here for convenience

Z(Q) =
e−iα

√
2W

(H̃M + iHM)QM . (4.1)

Let us consider a generalization of the central charge, denoted byZ(φ,
√
2DH), in which we

replace the second argument (the charge vector) by the Freudenthal-covariant derivative ofHM

introduced in Ref. [30],i.e.
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DHM ≡ ḢM + AH̃M , A ≡ ḢNHN

W
. (4.2)

SinceHMDHM = 0 andH̃MH̃M = 0 identically, we immediately find that

|Z(φ,
√
2DH)| = ±H̃MḢM

√
W

= ±∂MW ḢM

2
√
W

= ±d
√
W

dτ
= ±de−U

dτ
, (4.3)

which is the first-order equation for the metric function13. Observe thatHMDHM = 0 implies
that the phase ofZ(φ,

√
2DH) is equal to the phase of±X. The sign must be chosen so as to

make±H̃MḢM > 0 and, since the mass of the solution corresponding toe−2U = W(H) is given
by

M = −1
2

de−2U

dτ

∣

∣

∣

∣

τ=0

= −1
2
Ẇ

∣

∣

∣

τ=0
= − H̃MḢM

∣

∣

∣

τ=0
, (4.4)

we find that for regular solutions (with positive mass) we must choose the lower sign:

de−U

dτ
= −|Z(φ,

√
2DH)| . (4.5)

From Eq. (2.8) of Ref. [36] we have that

dZ i

dτ
= −2XGij∗Dj∗V∗

MḢM . (4.6)

We can rewriteḢM as

ḢM = DHM − AH̃M = DHM − A

(VM

2X
+ c.c.

)

, (4.7)

and plug it into the previous equation to get

dZ i

dτ
= −2XGij∗Dj∗Z∗(φ,DH) = 4Xe−iαGij∗∂j∗|Z∗(φ,DH)|

= 2eUGij∗∂j∗|Z∗(φ,
√
2DH)| ,

(4.8)

where we have used Eq. (1.8) and the equality of the phases of−X and|Z(φ,
√
2DH)|. This is

the second first-order equation14.
Some remarks are in order:

13This equation reduces to Eq. (5.9) of Ref. [19] in the extremal limit. Observe that the Freudenthal-covariant
derivative corresponds to Eq. (5.6) of the same reference.

14Again, this equation reduces to Eq. (5.10) of Ref. [19] in theextremal limit.

13



1. In these derivations we have assumed neither extremalityor non-extremality of the solu-
tions nor any explicit form of the variablesHM (harmonic or hyperbolic)15. Furthermore,
we have not assumed the Freudenthal gauge-fixing conditionḢNHN = 0. Only the prop-
erties of Special Geometry encoded in the H-FGK formalism have been used. Therefore,
the first-order Eqs. (4.5) and (4.8) apply to any static black-hole solution of ungauged
N = 2, d = 4 supergravity coupled to vector multiplets.

2. These first-order equations reduce to those found in the literature starting from Ref. [3] in
the extremal/harmonic (i.e.A = ḢNHN = 0) cases: ifHM = AM − 1√

2
BMτ for some

constant symplectic vectorsAM (which encode the values of the scalars at spatial infinity)
and the attractorBM , then

|Z(φ,
√
2DH)| = |Z(φ,B)| , (4.9)

which is known asfake central chargewhenBM 6= QM and coincides with the central
charge in the supersymmetric caseBM = QM .

3. In the general (non-supersymmetric) caseDH will be τ -dependent and its near-horizon
(τ → −∞) and spatial infinity (τ → 0−) limits, will not necessarily be equal: in the near-
horizon limitlimτ→−∞DHM ≡ − 1√

2
BM and in the spacelike infinity limitlimτ→0− DHM ≡

− 1√
2
EM and, generically,BM 6= EM .

M = − lim
τ→0−

de−U

dτ
= |Z(φ∞, E)| , (4.10)

S = π

[

lim
τ→−∞

de−U

dτ

]2

= π|Z(φh, B)|2 , (4.11)

whereφ∞ andφh are the values of the scalars at spatial infinity and on the horizon, respec-
tively. Different fake central chargesZ(φ,E) andZ(φ,B) drive the metric function in the
spatial-infinity and near-horizon regions, respectively.This behavior is present in the non-
supersymmetric extremal solutions of the cubic models studied in Refs. [31, 37, 38, 19, 4]
which have anharmonicHMs16.

4. In Ref. [14] and subsequent literature the first-order flowequations were given in terms of
superpotential functionsW (φ,B) which depend only on a constant fake charge vectorBM

and which has a structure similar, but not identical, to the central charge. Those first-order
equations must be completely equivalent to Eqs. (4.5,4.8),because the same variables, for

15Actually, we have writtensolutionsbut we have not used at any moment the fact that theHM solve the equations
of motion. The first-order equations that we have derived are, therefore, valid for any configuration of the variables
HM , although their use is essentially limited to solutions.

16TheHMs of those solutions do not satisfy the constraintḢMHM = 0. A change of Freudenthal gauge can
bring the solutions to thėHMHM = 0 gauge but cannot make theHM harmonic [30].
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the same solution, cannot obey two different sets of first-order equations. We do not know
how to prove this equivalence in general, and it will have to be checked case by case.

5 The axidilaton model

The axidilaton model is defined by the prepotential

F = −iX 0X 1 , (5.1)

and has only one complex scalar that we will denote byλ that is given by

λ ≡ iX 1/X 0 . (5.2)

In terms ofλ and in theX 0 = i/2 gauge, the Kähler potential and metric are

K = − lnℑmλ , Gλλ∗ = (2ℑmλ)−2 , (5.3)

and thereforeλ, which must take values in the upper half complex plane, parametrizes the coset
spaceSl(2;R)/SO(2).

The canonically-normalized covariantly-holomorphic symplectic sectionV is, in the gauge
in which the Kähler potential is given by Eq. (5.3),

V =
1

2(ℑmλ)1/2









i
λ

−iλ
1









, (5.4)

and the central charge and its holomorphic covariant derivative are

Z(Q) =
1

2
√
ℑmλ

[ (p1 − iq0)− (q1 + ip0)λ ] ,

DλZ =
i

4(ℑmλ)3/2
[ (p1 − iq0)− (q1 + ip0)λ∗ ] .

(5.5)

It is useful to define the fake charge and associated fake central charge

P ≡









p0

−p1

q0
−q1









, Z(P) ≡ 1

2
√
ℑmλ

[

(−p1 − iq0)− (−q1 + ip0)λ
]

, (5.6)

in terms of which

Gij∗DiZDj∗Z∗ = |Z(P)|2 , (5.7)

so that the black-hole potential takes the simple form
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− Vbh = |Z(Q)|2 + |Z(P)|2 . (5.8)

The black-hole solutions of this model have been exhaustively studied in Refs. [39, 40, 11, 5].
Our goal here is to illustrate the general results and methods described in the previous sections
using this well-known model. First, let us recall what are the symmetries of this model in its
original formulation.

5.1 The global symmetries of the axidilaton model

The full axidilaton model (and not just the axidilaton kinetic term) is invariant under global
Sl(2;R) transformations. Let us start by describing the action of this group on the axidilaton
field: parametrize a generic element ofSl(2;R) as

Λ ≡
(

a b
c d

)

, with ad− bd = 1 , (5.9)

then the axidilaton transforms as

λ′ =
aλ + b

cλ + d
. (5.10)

The scalar manifold metric admits 3 holomorphic Killing vectors which can be taken to be

K1 = λ∂λ + c.c. , K2 =
1
2
(1− λ2)∂λ + c.c. , K3 =

1
2
(1 + λ2)∂λ + c.c. , (5.11)

and satisfy the commutation relations of the Lie algebrasl(2;R)

[Km, Kn] = ǫmnqη
qpKp , ⇒ fmn

p = −ǫmnqη
qp, (m,n, . . . = 1, 2, 3) , (5.12)

whereǫ123 = +1 andη = diag(+ + −); η is proportional to the Killing metric ofso(1, 2) ≃
sl(2;R) ≃ sp(2;R). The infinitesimalSl(2;R) transformations ofλ can be written using these
Killing vectors as

δαλ = αmkm
λ = 1

2
(α2 + α3) + α1λ− 1

2
(α2 − α3)λ2 . (5.13)

The infinitesimal linear transformations associated to theabove choice of Killing vectors is, in
terms of the Pauli matrices

(

a b
c d

)

∼ 12×2 + αmTm , T1 = −1
2
σ3 , T2 = −1

2
σ1 , T3 =

i
2
σ2 , (5.14)

and satisfy the Lie algebra

[Tm, Tn] = −ǫmnqη
qpTp . (5.15)
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The action of the finiteSl(2;R) transformations on the Kähler potential and on the canonical
covariantly-holomorphic symplectic sectionV given in Eq. (5.4) is

K′(λ) ≡ K(λ′(λ)) = K(λ) + 2ℜef(λ) , (5.16)

V ′M(λ) ≡ VM(λ′(λ)) = e−iℑmf(λ) SM
NVN , (5.17)

where the holomorphic functionf(λ) of the Kähler transformation and the symplectic rotation
SM

N are given by

f(λ) = ln (cλ+ d) , (5.18)

(SM
N) =









d −c
a b

−b a
c d









. (5.19)

In this 4-dimensional representation the infinitesimal generatorsTm are given by

(T1
M

N) = −1
2

(

σ3

−σ3

)

, (T2
M

N ) = −1
2

(

σ3

σ3

)

, (T3
M

N ) =
1
2

(

1

−1

)

.

(5.20)
The same transformations act on all the symplectic vectors of the theory and, in particular, on

the variablesHM and the charge vectorsQM . In this formulation of the axidilaton system there
seem to be no further symmetries17.

5.1.1 Equivariant vectors of the axidilaton model

In this model there is no need to solve any equation to find 4 linearly independent equivariant
vectors: observe that the symplectic vector of charges is the direct sum of two realSl(2;R)
doubletsai andbi (i, j = 1, 2), namely

(ai) ≡
(

p1

q1

)

, (bi) ≡ (p0, q0) . (5.21)

These doublets transform respectively contravariantly and covariantly, that is

17 We will see, however, that there is an additional U(1) factor in the symmetry group that only has a non-
trivial action on objects with symplectic indices and that coincides with the continuous global Freudenthal duality
transformation. The scalars do not transform under this symmetry. On the other hand, only this U(1) symmetry is
also a local symmetry of the H-FGK formalism. We would like tothank Alessio Marrani for clarifying discussions
on this point.
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a′ i = Λi
j a

j , b′i = bj (Λ
−1)ji , (5.22)

where(Λi
j) is the matrix given in Eq. (5.9), which furthermore satisfies

(Λ−1)ij = Ωki Λl
k Ωlj , (Ωij) = (Ωij) =

(

0 1
−1 0

)

, (5.23)

becauseSl(2;R) ≃ Sp(2;R). We can use the symplectic metricΩ to raise and lower doublet
indices such asi andj using the same convention we use for the symplectic indices (see footnote
4), namelyai ≡ Ωija

j andbi = bjΩ
ji. The only non-vanishingSl(2;R) invariant that can be

built out of these two doublets is

aibi = p0p1 + q0q1 ≡ 1
2
W(Q) . (5.24)

Let us denote byQM (a, b) the standard symplectic charge vector seen as the direct sumof
the two doubletsa andb. Using the two doublets we can construct three further, up toa global
sign, inequivalent charge vectors that underSl(2;R) transform in the same way asQM(a, b), i.e.
equivariantly; the four equivariant charge vectors are

QM(a, b) ≡









p0

p1

q0
q1









, QM(b,−a) ≡









−q1
−q0
p1

p0









,

QM (−a, b) ≡









p0

−p1

q0
−q1









, QM (−b,−a) ≡









−q1
q0
p1

−p0









.

(5.25)

These equivariant vectors are generically linearly independent and provide a basis of equiv-
ariant vectors; any other equivariant vector, in particular the attractorsBM , can be expanded
w.r.t. this base,e.g.

BM = bσUM
σ , with {Uσ} = {Q, Q̃,P, P̃} . (5.26)

We will plug this general ansatz into the equation∂MVbh(H,Q)|H=B = 0 as to find the most
general attractor of the theory in Section 5.4, but at this point we already know some general
results: The standard charge vectorQM(a, b) will be the supersymmetric attractor, as usual, and
we are going to see,QM(b,−a) is its Freudenthal dual

QM(b,−a) = Q̃M (a, b) = Q̃M . (5.27)

On the other hand,QM (−a, b) is the non-supersymmetric attractorPM andQM(b, a) is its
Freudenthal dual

QM(−a, b) = PM , QM(b, a) = Q̃M(b,−a) = P̃M . (5.28)
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It is easy to see that

W(Q̃) = W(Q) = −W(P) = −W(P̃) . (5.29)

These four vectors are related bySp(4;R) transformations that however do not belong to
Sl(2;R) ⊂ Sp(4;R):

Q̃M = AM
NQN , (AM

N ) ≡
(

0 σ1

−σ1 0

)

, (5.30)

PM = BM
NQN , (BM

N) ≡
(

σ3 0
0 σ3

)

. (5.31)

The only non-vanishing symplectic contractions between these four vectors are

Q̃MQM = −P̃MPM = W(Q) . (5.32)

Apart from these moduli-independent equivariant vectors we can construct the generic moduli-
dependent ones by taking the real and imaginary parts of Eq. (2.15), in which we can replaceQ
by any of the other three equivariant vectors. Observe that when we use the Freudenthal dual
charge, we obtain the same complex equivariant vector but multiplied by−i.

5.2 H-FGK formalism

The solution of the stabilization equations of this theory is

RM(I) = AMNIN , (AMN) ≡
(

σ1 0
0 σ1

)

, (5.33)

whereσ1 is the standard Pauli matrix.A = (AMN) is a symplectic matrix:

AΩA = Ω , (5.34)

which is not surprising since it is just−MMN (F). It follows that (AM
N) = (ΩPMAPN) =

−ΩA is also a symplectic matrix.
By definition, the original and tilded,i.e. Freudenthal dual,H-variables are related by18

H̃M(H) = AMNH
N , H̃M(H) = AM

NH
N . (5.36)

18Explicitly, we have

(H̃M ) =

(

−σ1 ΛΣHΣ

σ1
ΛΣH

Σ

)

=









−H1

−H0

H1

H0









. (5.35)

This vector should be compared withQM (b,−a) in Eq. (5.25).
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Therefore in this simple model the Freudenthal duality transformation is linear and is, further-
more, a symplectic transformation. It is clearly a transformation that does not belong to the global
symmetries that act on the axidilaton (i.e.Sl(2;R) whose embedding intoSp(4;R) is given in
Eq. (5.19)), but it is a symmetry transformation that acts onobjects with symplectic indices such
as the vector fields and as such must be considered a part of theduality group of the model19.

As expected in Freudenthal duality

AM
P AP

N = −δMN . (5.37)

We can extend the Freudenthal duality transformation to allsymplectic vectors. The proper-
ties

X̃MY M = ỸMXM = −YMX̃M , ⇒ X̃M Ỹ M = XMY M , (5.38)

which hold in this particular model for any two symplectic vectorsXM andY M because Freuden-
thal duality is a symplectic transformation, will be used very often.

The Hesse potential is given by theSl(2;R) invariant discussed in earlier sections

W(H) ≡ H̃M(H)HM = AMNH
MHN = 2(H0H1 +H0H1) , (5.39)

and in accordance with the general formalism it determines the model completely: the effective
action can be constructed entirely from it and the metric function e−2U and the axidilatonλ are
related to the Hesse potential by

e−2U = W(H) , λ ≡ iZ = i
H̃1 + iH1

H̃0 + iH0
=

H1 + iH0

H1 − iH0
. (5.40)

The metricgMN(H) of this system can be written in the form

gMN = 2 NMNPQ
HPHQ

W2
, (5.41)

where we have defined the constant matrix

NMNPQ ≡ AMNAPQ − 2AMPANQ − ΩMPΩNQ . (5.42)

Using this notation, the derivatives of the metric take the form

∂MgPQ = −4
H̃M

W
gPQ + 4NPQ(MR)

HR

W2
, (5.43)

and the Christoffel symbols of the first kind are given by20

19See footnote 17.
20We remind the reader that the metricgMN (H) is not invertible, so we cannot use the standard Christoffel

symbolsΓPQ
M ≡ gNM [PQ,M ].
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[PQ,M ] = 2
H̃MgPQ − H̃P gQM − H̃QgPM

W

−[6APQAMR − 4AM(PAQ)R + 4ΩM(PΩQ)R]
HR

W2
.

(5.44)

It is easy to check that̃HM [PQ,M ] = 0, as required by Freudenthal duality invariance.
The potentialV can be written in the convenient form

W
2V (H,Q) = −1

2
W(Q)W + (HMQ̃M)2 + (HMQM )2 , (5.45)

and its derivative reads

∂MV = −4
H̃M

W

[

V + 1
4

W(Q)

W

]

+ 2(QMQN + Q̃M Q̃N)
HN

W2
; (5.46)

using the properties Eq. (5.38) it is easy to see thatH̃M∂MV = 0, which is the last requirement
for having local Freudenthal duality [30].

Observe that, in this model, a Freudenthal duality transformation of the charge vectorsonly
(that is: not of the variablesHM ), not only preservesW(Q) but also the complete potential and
black-hole potential,i.e.

W(Q̃) = W(Q) ⇒ V (H, Q̃) = V (H,Q) , and Vbh(H, Q̃) = Vbh(H,Q) . (5.47)

On the other hand, using the definition of the fake charge Eq. (5.6) one can show that for any
values ofHM

− Vbh(Q) = −1
2
W(Q) + 2|Z(Q)|2 = −1

2
W(P) + 2|Z(P)|2 = −Vbh(P) , (5.48)

|Z(P)|2 = |Z(Q)|2 − 1
2
W(Q) . (5.49)

(5.50)

The first identity means that, ifQ is an attractor, so willP. The fact that it is an identity for arbi-
trary values ofHM means that replacingQ by P in an extremal solution gives another extremal
solution with the attractorP. The second identity is a consequence of the first and impliesthat

W(Q) < 0 , ⇒ |Z(P)| > |Z(Q)| ,

W(Q) > 0 , ⇒ |Z(Q)| > |Z(P)| ,
(5.51)

for all values ofHM . The second case should correspond to the supersymmetric attractor in
which the evaporation process stops when the mass equals thelargest central charge, which in
this case is the true one.
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Finally, observe that this black-hole potential satisfies the curious interchange property

Vbh(H,Q) =
W(H)

W(Q)
Vbh(Q, H) . (5.52)

5.3 The symmetries in the H-FGK formalism

In Section 5.1 we discussed the global symmetries of the axidilaton model (more precisely, of its
scalar manifold metric) when it is described in terms of the standard fields and have studied the
embedding of these symmetries intoSp(4;R). It is in this form that we expect these symmetries
to be present in the H-FGK formalism. On the other hand, theremay be additional non-obvious
symmetries such as Freudenthal duality (which is in generalnon-linear) in the H-FGK formalism.

Let us consider first the kinetic term: if we consider only linear transformations of theHM

δHM = TM
NH

N , (5.53)

it is evident that they will leave the kinetic term invariantif they are symplectic transformations,
i.e.

ΩP (MT P
N) = 0 , (5.54)

and are furthermore symmetries of the Hesse potential

δW = 2H̃MδHM = 2H̃M TM
N HN = 0 −→ [ΩA, T ] = β14×4 , (5.55)

whereβ is a real constant that can vanish. It is not difficult to see that for infinitesimal symplectic
transformations,β must indeed vanish, and the only independent generators that solve the above
equation are the threeSl(2;R) generatorsTi given in Eq. (5.20) plus

T4 =
1
2
AΩ , (5.56)

which generates the Freudenthal transformations and commutes with the generators ofSl(2;R)21.
It can be checked that these symmetries leave invariant the metricgMN . Actually, the metric

is invariant under the constant rescalings of theHM

T5 ≡ 1
4
14×4 , (5.57)

which are not symplectic transformations and leave the Hesse potential invariant only up to a
multiplicative constant, in the same way as the Kähler potential is invariant under isometries of
the Kähler metric only up to Kähler transformations.

We can study now the invariance of the potential using the expression for∂MV given in
Eq. (5.46). The first term cancels fori = 1, 2, 3, 4 (we do not need to checki = 5: the potential
is homogeneous of degree−2 andδ5V = −2V 6= 0 in general) and the rest gives

21it is not difficult to see that the Hesse potential of the axidilaton model is not determined bySl(2;R) invariance
alone: one must require invariance under Freudenthal duality.
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δiV = −2HNTi
M

N(QMQN + Q̃M Q̃N)
HN

W2
, (5.58)

which vanishes only for the Freudenthal transformationi = 4 unless we also perform the same
transformation on the charge vector: this means thatSl(2;R) is only apseudo-symmetryof the
system, since the constants that enter the action are rotated. The charges appear as integration
constants of the solution of the equations of motion for the electrostatic and magnetostatic po-
tentials in Ref. [3] andSl(2;R) is probably a (standard) symmetry of the effective theory before
that.

There are no conserved quantities associated to pseudo-symmetries, whence there is only one
conserved current: the one associated to the Freudenthal duality. This current vanishes, however,
identically, which is a generic feature of the formalism.

5.4 Critical points

The critical points of this model are equivariant vectorsBM satisfying the equations

∂MVbh|H=B = −2
B̃M

W(B)

[

Vbh(B,Q)− 1
2
W(Q)

]

− 2(QMQN + Q̃MQ̃N )
BN

W(B)
= 0 . (5.59)

Using the basis of equivariant vectors{Uσ} = {Q, Q̃,P, P̃} constructed in Section 5.1.1,
we can write any such solution as

BM = aQM + ãQ̃M + bPM + b̃P̃M . (5.60)

The only non-vanishing symplectic products of the four basis vectors are

Q̃MQM = W(Q) , P̃MPM = −W(Q) , (5.61)

and a very simple calculation gives

∂MVbh|H=B =
−2

(a2 + ã2 − b2 − b̃2)

{

ã(b2 + b̃2)QM − a(b2 + b̃2)Q̃M

+b̃(a2 + ã2)PM − b(a2 + ã2)P̃M

}

= 0 ,

(5.62)

which only admits two non-trivial solutions:b = b̃ = 0 anda = ã = 0. The first solution,
up to global normalization (which is undetermined in this formalism because the black-hole
potential is scale-invariant), corresponds to a global Freudenthal rotation with arbitrary angle
of the standard supersymmetric attractorBM = QM and the second corresponds to a global
Freudenthal rotation of the standard non-supersymmetric attractorBM = PM [5].

We obtain the following relations
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Vbh(P,P) = −Vbh(Q,P) = Vbh(P,Q) = −Vbh(Q,Q) = 1
2
W(Q) , (5.63)

that are necessary to have the corresponding near-horizon solutions, see Eq. (3.4).

5.5 Conventional extremal solutions

As a first simple illustration of the methods proposed in the first section of this paper, we are
going to review the construction of the extremal solutions22 performed in Ref. [9].

From the results of that paper we know that all of them (including the extremal non-supersymmetric
ones) are going to be conventional, but it is important for usto understand why. Thus, we start
from the near-horizon solutions given by Eq. (3.3) whereBM takes the values of the attractors
found in the previous section, normalized so that (see Eq. (3.4))

Vbh(B,Q) = Vbh(B,B) = −1
2
W(B) . (5.64)

The attractors that satisfy these conditions are global Freudenthal rotations of the standard su-
persymmetric attractorQM and of the non-supersymmetric onePM , i.e.

either BM = cos θQM + sin θ Q̃M ,

or BM = cos θPM + sin θ P̃M . (5.65)

The results of Section (3) guarantee that Eq. (3.3) providesa near-horizon solution for these
choices ofBM . Now, to see if we can extend these solutions to asymptotically flat solutions by
adding an infinitesimal constant vector to theseHM as in Eq. (3.6), we have to compute the rank
of MMN in Eq. (3.10) to find how many independent solutionsεM exist.

It is enough to consider a charge configuration whose orbit covers the complete charge space
(see Appendix A) and, therefore, we setp0 = p1 = 0, getting, for the supersymmetric (+) and
non-supersymmetric (−) cases, the matrix

(MMN) =
1
2











1
q21

± 1
q0q1

0 0

± 1
q0q1

1
q20

0 0

0 0 0 0
0 0 0 0











. (5.66)

This matrix has rank 1 and, furthermore, the three independent solutions to Eq. (3.10) satisfy the
constraintBMεM = 0. This means that there is no obstruction to the addition of arbitrary (up
to normalizationW(A) = 1 and the conditionBMAM = 0) constantsAM to the near-horizon
harmonic functions, which now take the form

22The axidilaton model is a particular case (n = 1) of theCP
n

model. We will construct the most general
non-extremal solutions of that model (and, hence, of the axidilaton model) later.
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HM = AM − 1√
2
BMτ . (5.67)

The two independent components ofAM describe the two real moduli of this theoryℜe(λ∞) ,
ℑm(λ∞) andAM is given by [9]

AM =
√
2ℑm

(Z∗(φ∞, B)

|Z(φ∞, B)|V
M
∞

)

. (5.68)

To show that the equations of motion are satisfied for finite constantsAM (which is only
needed in the non-supersymmetric case) we can proceed as follows: from the linearity of the
HM it is possible to show that these configurations satisfy first-order flow equations [36]. These,
in turn can be shown to imply the standard second-order equations of motion if and only if the
identity

Vbh(H,Q) = Vbh(H,B) , (5.69)

is satisfied for arbitrary values ofH. This is evident forBM = QM (the supersymmetric at-
tractor) and has been shown forBM = PM (the non-supersymmetric attractor) in Eq. (5.8) and
the invariance of the black-hole potential under Freudenthal transformations of the charges ex-
tends this result to the other two (physically indistinguishable) attractors and proves that these
configurations are classical solutions of the model.

5.6 Unconventional solutions

We do not expect more extremal black-hole solutions to the axidilaton model since the solutions
constructed in the previous section already have the maximal number of independent physical
parameters (chargesQM and moduliλ∞) which are constrained only by the requirement that the
horizon has a non-vanishing area,i.e.W(B) > 0.

On the other hand, we can rewrite these solutions in an unconventional form (i.e. so that
ḢMHM 6= 0) by using local Freudenthal duality transformations, but in this case doing so merely
complicates the form of the solution in the H-FGK formalism.

6 TheCP
n

model

The prepotential of theCP
n

model is given by23

F = − i
4
ηΛΣX ΛXΣ , (ηΛΣ) = diag(+− · · ·−) . (6.1)

TheCP
n

model containsn scalar fields given by

Z i ≡ X i/X 0 , (6.2)

23The black-hole solutions of this model have been studied in [5].
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but it is convenient to addZ0 ≡ 1 and we define

(ZΛ) ≡
(

X Λ/X 0
)

= (1, Z i) , (ZΛ) ≡ (ηΛΣZ
Σ) = (1, Zi) = (1,−Z i) . (6.3)

The Kähler potential, the Kähler metric, the inverse Kähler metric and the covariantly holomor-
phic symplectic section read

K = − log (Z∗ΛZΛ) ,

Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

,

Gij∗ = −e−K (ηij
∗

+ Z iZ∗ j∗) ,

V = eK/2





ZΛ

− i
2
ZΛ



 .

(6.4)

It is also convenient to define the following complex charge combinations

ΓΛ ≡ qΛ + i
2
ηΛΣp

Σ , (6.5)

in terms of which the central charge, its holomorphic Kähler-covariant derivative and the black-
hole potential are

Z = eK/2ZΛΓΛ ≡ Z(Γ) ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

−Vbh = 2eK|ZΛΓΛ|2 − Γ∗ΛΓΛ .

(6.6)

We can extend this complex notation to any symplectic vector:

if (AM) =

(

aΛ

bΛ

)

then







AΛ ≡ bΛ + i
2
ηΛΣa

Σ ,

AΛ ≡ ηΛΣAΣ = ηΛΣbΣ + i
2
aΛ ,

(6.7)

and the symplectic product of two vectors becomes

AMBM = −2ℑm(AΛB∗Λ) , (6.8)

where of courseAΛB∗Λ = AΛB∗
Λ. We will use both notations, based on convenience.
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6.1 The global symmetries of theCP
n

model

Then complex scalars of theCP
n

model parametrize the symmetric coset spaceSU(1, n)/SU(n),
and the full theory is invariant under global SU(1, n) transformations24. If ΛΛ

Σ is a generic ele-
ment in the fundamental representation ofSU(1, n), i.e. if it satisfies

Λ∗Γ
Λ ηΓ∆ Λ∆

Σ = ηΛΣ , (or Λ†ηΛ = η) , det Λ = 1 , (6.9)

then its action on the scalars is given by

Z ′Λ =
ΛΛ

ΣZ
Σ

Λ0
ΣZΣ

, Z ′
Λ =

ΛΛ
ΣZΣ

Λ0
ΣZΣ

, (6.10)

where we have raised and lowered the indices of theSU(1, n) matrix with the metricη. In the
fundamental representation then(n+ 2) infinitesimal generators ofsu(1, n)

ΛΛ
Σ ∼ δΛΣ + αm Tm

Λ
Σ , (6.11)

are matrices such thatTmΛΣ = ηΛΓ Tm
Γ
Σ is anti-Hermitean. Substituting the infinitesimal linear

transformations in the non-linear transformation rules ofthe scalars, Eq. (6.10), we find that they
take the form

Z ′Λ = ZΛ + αmkm
Λ(Z) , (6.12)

wherekmΛ(Z), the holomorphic part of the Killing vectorsKm, is given by25

km
Λ(Z) = Tm

Λ
Σ ZΣ − Tm

0
Ω ZΩZΛ . (6.13)

The commutation relations of the generatorsTm and the Lie brackets of the Killing vectors are
related as usual:

[Tm, Tn] = fmn
p Tp , [Km, Kn] = −fmn

pKp . (6.14)

The action of the finiteSU(1, n) transformations on the Kähler potential and on the canon-
ical covariantly-holomorphic symplectic sectionV are given by the obvious generalization of
Eqs. (5.16) and (5.17) where now

f(Z) = log
(

Λ0
ΣZ

Σ
)

, (6.15)

(SM
N) =





ℜeΛΛ
Σ −2ℑmΛΛΣ

1
2
ℑmΛΛΣ ℜeΛΛ

Σ



 , (6.16)

24Actually, the coset space can also be described asU(1, n)/U(n), which would imply that the global symmetry
group of the model isU(1, n). As in the axidilaton model (then = 1 case), the extraU(1), that does not act on the
scalars, is the Freudenthal duality group (see footnote 17). We thank Alessio Marrani for clarifying discussions on
this point.

25TheΛ = 0 component vanishes, as it should, but it is useful to keep it.
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where once again we have raised and lowered the indices ofΛΛ
Σ with η. The conditionΛ†ηΛ = η

implies for the real and imaginary parts ofΛ

ℜeΛ∆Λ ℑmΛ∆
Σ = ℑmΛ∆Λ ℜeΛ∆

Σ , ℜeΛ∆Λ ℜeΛ∆
Σ + ℑmΛ∆Λ ℑmΛ∆

Σ = ηΛΣ , (6.17)

and implies that the matrix(SM
N) constructed above satisfiesSTΩS = Ω and therefore be-

longs toSp(2n+ 2;R). The infinitesimal generators in this representation,i.e. (Tm
M

N), can be
constructed in the same way, leading to

(Tm
M

N) =





ℜeTm
Λ
Σ −2ℑmTm

ΛΣ

1
2
ℑmTmΛΣ ℜeTmΛ

Σ



 . (6.18)

6.1.1 Equivariant vectors

The search for equivariant vectors is simplified by using thecomplex combinations defined
above: we look for vectorsBΛ behaving asΓΛ under duality transformations,i.e. such that its
complex conjugate transforms in the fundamental representation ofSU(1, n)

Γ∗ ′Λ = ΛΛ
Σ Γ∗Σ , ⇒ B∗ ′Λ = ΛΛ

Σ B∗Σ . (6.19)

Observe thatΓ∗ΛΓΛ andB∗ΛBΛ are duality invariants.
The simplest equivariant vectors are, up to a complex constant, just equal to the charge vector

ΓΛ. This constant is relevant because, as we will see, the complex form of the Freudenthal dual
of the charge vector

Q̃M =





−2 ηΣΛqΛ

1
2
ηΛΣp

Λ



 , (6.20)

is just Γ̃Λ = −iΓΛ, whence the phase of the constant corresponds to a global Freudenthal dual-
ity rotation. This immediately implies that theSU(1, n) invariantsΓ∗ΛΓΛ andB∗ΛBΛ are also
invariant under FreudenthalU(1) duality. There may be other equivariant vectors which are
functions of the charges only, but we will not need them.

We can use the moduliZΛ
∞ in order to construct more equivariant vectors. Again, up to

normalization, the only one we will need is the generic vector given in Eq. (2.15). Multiplying
it by the invariantΓ∗ΛΓΛ as to give it the right dimensions for later convenience, we have the
equivariant vector

ΣΛ ≡ Z∗Λ
∞

Z∗Σ
∞ Γ∗

Σ

Γ∗ΣΓΣ . (6.21)

We will see that in order to find the most general solutions of this model, it is enough to
consider complex linear combinations of the two equivariant vectors constructed thus far:
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BΛ = αΓΛ + βΣΛ , (6.22)

whereα andβ are complex duality invariants (including pure numbers).
Using this information we can see that in this model (for generic n), in distinction to the

axidilaton model, we cannot define a fake chargeBΛ and its associated fake central chargeZ(B)
such that

Gij∗DiZDj∗Z∗ = |Z(B)|2 = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ , (6.23)

or such that

Vbh(Q) = Vbh(B) , (6.24)

for arbitrary values of the scalars. This fact has importantimplications for the construction
of extremal non-supersymmetric solutions as the first-order equations do not imply the second
order ones, which therefore have to be solved explicitly. Inthis paper we are going to construct
directly the general non-extremal solutions from which allthe extremal ones can be obtained in
the appropriate limits.

6.2 H-FGK formalism

The stabilization equations of this model are solved by a linear relation betweenRM andIM , as
in the axidilaton case:

RM (I) = AMNIN , (AMN) =





1
2
ηΛΣ 0

0 2ηΛΣ



 , (6.25)

which implies that the Freudenthal dual can be expressed as

H̃M = AM
NH

N , (AM
N ) = (ΩPMAPN) =





0 −2ηΛΣ

1
2
ηΛΣ 0



 . (6.26)

As in the axidilaton case,AMN is a symplectic matrix, but, in contradistinction to that case,
AM

N is not. In terms of the complexH-variables26

HΛ ≡ HΛ + i
2
ηΛΣH

Σ , (6.27)

discrete Freudenthal duality is equivalent to multiplication by a factor of−i.
The Hesse potential reads

W(H) = AMNH
MHN = 1

2
ηΛΣH

ΛHΣ + 2ηΛΣHΛHΣ = 2H∗ΛHΛ , (6.28)

26Observe that, in his notation,HΛ ≡ ηΛΣHΣ butHΛ 6= ηΛΣHΣ.
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and the metric functione−2U and the scalarsZ i can be easily obtained from it as

e−2U = W(H) , Z i =
H̃ i + iH i

H̃0 + iH0
=

Hi +
i
2
H i

−H0 +
i
2
H0

=
H∗

i

H∗
0

. (6.29)

The metricgMN(H) and the potentialV (H) have the same structure as in the axidilaton
case when we write them in terms of the matrixAMN (which, evidently, is different). Then, the
expressions from Eq. (5.41) to Eq. (5.46) are also valid hereupon use of the new matrixAMN .

The central charge of the model, Eq. (6.6), takes in the H-FGKformalism the form

Z(H,Q) = −(H0 +
i
2
H0)

∣

∣H0 +
i
2
H0
∣

∣

(H̃M + iHM)QM

√

2W(H)
. (6.30)

It is easy to check that, like in the axidilaton case, this black-hole potential satisfies

Vbh(H,Q) =
W(Q)

W(H)
Vbh(Q, H) . (6.31)

6.3 Critical points

Using the complex notation we can write the equation for the critical pointsBΛ of the black-hole
potential of this model in the form

i
2
W(B) ∂∗

ΛVbh|H=B =
BΣΓ∗

Σ

W(B)

[

B∗∆Γ∆BΛ − B∗∆B∆ΓΛ

]

= 0 , (6.32)

and can be solved by

BΣΓ∗
Σ = 0 , or B∗∆Γ∆BΛ − B∗∆B∆ΓΛ = 0 . (6.33)

Inserting the general ansatz (6.22) into the first conditionwe find that it is satisfied for

α = −β , ⇒ BΛ = α(ΓΛ − ΣΛ) , (6.34)

which, up to normalization (which is not fixed in this approach), leaves us with one arbitrary
global phase associated to Freudenthal duality: this is themoduli-dependent attractor found in
Ref. [5].

Inserting our ansatz (6.22) into the second condition we getthe equation

β(α∗ + β∗)Γ∗∆Γ∆ΣΛ −
[

2ℜe(αβ∗) +
|β|2Γ∗ΣΓΣ

|Z∞(Γ)|2
]

Γ∗∆Γ∆ΓΛ = 0 . (6.35)

The coefficients of the two equivariant vectors must vanish separately, which can only happen
for β = 0, whenceBΛ = αΓΛ: up to normalization and the Freudenthal duality phase, this is the
supersymmetric attractor.
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6.4 Conventional non-extremal solutions

In this section we are going to show how the knowledge of the equivariant vectors of the model
simplifies the construction of solutions in the H-FGK formalism. We are going to see that the
most general solution can be written as

HΛ(τ) = a(τ)ΓΛ + b(τ)ΣΛ , (6.36)

wherea(τ) andb(τ) are two complex, duality-invariant functions ofτ to be determined. Already,
at this stage, we see that this ansatz reduces dramatically the number of real functions to be found,
from 2n+ 2 to just4, and all of this without any loss of generality.

First of all, we are going to impose the usual Freudenthal gauge-fixing conditionḢMHM = 0
[30] which in complex notation takes the form

ℑm(Ḣ∗ΛHΛ) = 0 . (6.37)

As shown in Ref. [30], assuming this condition, the contraction of the equations of motion with
HM leads to the equation

H̃M

(

ḦM − r20H
M
)

= 0 , (6.38)

which can always be solved by

ḦM = r20H
M , ⇒ ḦΛ = r20HΛ . (6.39)

This is not necessarily the only solution of Eq. (6.38), but as we are going to see it allows
us to solve the rest of the equations without imposing unnecessary constraints on the physical
parameters of the solution. This equation combined with theequivariant ansatz leads to

HΛ(τ) =
[

c1e
r0τ + c3e

−r0τ
]

ΓΛ +
[

c2e
r0τ + c4e

−r0τ
]

ΣΛ , (6.40)

so it only remains to determine the four complex invariantsci (i = 1, · · · , 4) in terms of the
chargesΓΛ, the moduliZΛ

∞ and the massM (or alternatively of the non-extremality parameter
r0).

These four constants can be constrained even further by requiring that the ansatz gives the
right asymptotic behavior for the physical fields in Eq. (6.29): requiring thatZΛ

∞ = H∗Λ
∞ /H∗ 0

∞
we get27

c1 + c3 = 0 . (6.41)

Asymptotic flatness requires thatH∗Λ
∞ HΛ,∞ = 1

2
which, upon use of the above condition, gives

|c2 + c4|2 −
|Z∞(Γ)|2
2(Γ∗ΛΓΛ)2

= 0 , (6.42)

27 In the (H-)FGK coordinate system, spatial infinity corresponds to the limitτ → 0−.
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whereZ∞(Γ) is the central charge at spatial infinity. The gauge-fixing condition (6.37) gives
(again, upon use of Eq. (6.41))

ℑm [c∗3(c2 + c4)] + ℑm [c∗2c4]
Γ∗ΛΓΛ

|Z∞(Γ)|2 = 0 . (6.43)

Finally, we can still make global Freudenthal duality rotations, which are not fixed by Eq. (6.37):
this freedom cannot be used to solve Eq. (6.43) but can be usedto simplify it by fixing the phase
of one of the constants to a convenient value.

Using the gauge-fixing condition (6.37), the Hamiltonian constraint takes the form

[

Ḣ∗ΛḢΛ − 1
2
Γ∗ΛΓΛ

]

H∗ΣHΣ − 2(Ḣ∗ΛHΛ)
2 +

∣

∣H∗ΛΓΛ

∣

∣

2 − r20(H∗ΛHΛ)
2 = 0 , (6.44)

and using the gauge-fixing condition plus Eq. (6.39) and the Hamiltonian constraint above, the
equations of motion take the form

H∗
Λ

[

2(Ḣ∗ΣHΣ)
2 −

∣

∣H∗ΣΓΣ

∣

∣

2
]

+ Γ∗
Λ(H∗ΣΓΣ)(H∗∆H∆)− 2Ḣ∗

Λ(Ḣ∗ΣHΣ)(H∗∆H∆) = 0 .

(6.45)
The coefficients of the two equivariant vectorsΓΛ andΣΛ must vanish independently, which
implies that we must solve the following equations

a∗
[

2(Ḣ∗ΣHΣ)
2 −

∣

∣H∗ΣΓΣ

∣

∣

2
]

+ (H∗ΣΓΣ)(H∗∆H∆)− 2ȧ∗(Ḣ∗ΣHΣ)(H∗∆H∆) = 0 , (6.46)

b∗
[

2(Ḣ∗ΣHΣ)
2 −

∣

∣H∗ΣΓΣ

∣

∣

2
]

− 2ḃ∗(Ḣ∗ΣHΣ)(H∗∆H∆) = 0 . (6.47)

The coefficients ofb∗ andḃ∗ in the last equation are real (on account of the gauge-fixing condi-
tion) and this implies that the phases ofc2 andc4 must be the same up toπ (the global sign) so
thatℑm(c∗2c4) = 0 . Then, Eq. (6.43) states that the phase ofc3 must be the same as that ofc2
andc4, again up toπ. We know that in the near-horizon limit (i.e. τ → −∞) of the extremal
non-supersymmetric case the phases ofc3 andc4 must differ byπ and, since this difference is
constant, this must always be the case. Furthermore, in the extremal non-supersymmetric case
Z∞(Γ) = 0 and Eq. (6.42) implies thatc2 andc4 must also have opposite global signs. Therefore
we find

arg(c3) = arg(c2) = arg(c4) + π ≡ θ , (6.48)

and, by making use of the global Freudenthal duality freedom

|c2| − |c4| = − |Z∞(Γ)|√
2Γ∗ΛΓΛ

. (6.49)

To simplify the calculations further, we introduce the constantA
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|c2|+ |c4| = − |Z∞(Γ)|√
2Γ∗ΛΓΛ

A , (6.50)

which allows us to rewrite Eq. (6.40) as

HΛ(τ) = eiθ
{

−2|c3| sinh r0τΓΛ +
|Z∞(Γ)|√
2Γ∗ΛΓΛ

[

(1 + A)e−r0τ + (1−A)er0τ
]

ΣΛ

}

. (6.51)

It is now straightforward to solve the equations of motion for the three constantsθ, A and|c3|,
for which it is convenient to express the final result using the massM (defined in Eq. (4.4))

M = r0

[

A + 2
√
2|c3||Z∞(Γ)|

]

. (6.52)

The final result is

|c3| =
|Z∞(Γ)|
2
√
2Mr0

, (6.53)

A =
M2 − |Z∞(Γ)|2

Mr0
, (6.54)

eiθ = ± Z∞(Γ)

|Z∞(Γ)| , (6.55)

M2r20 =
[

M2 − |Ẑ∞|2
]

[

M2 − |Z∞(Γ)|2
]

, (6.56)

which is precisely the result obtained in Ref. [5].
We do not expect any other Freudenthal-inequivalent solutions to this model since the solu-

tions we just found have the maximal number of independent physical parameters.

7 The t3 model

Thet3-model is characterized by the prepotential

F(X ) = −5
6

(X 1)3

X 0
. (7.1)

In terms of the coordinatet = X 1/X 0, the Kähler potential and the scalar-manifold metric are
given by

K = −3 lnℑm t− ln 20
3
, Gtt∗ = 3

4
(ℑm t)−2 ; (7.2)

the covariantly holomorphic symplectic section reads
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V(t, t∗) = eK/2









1
t

5
6
t3

−5
2
t2









, (7.3)

and the central charge, its covariant derivative, the black-hole potential and its partial derivative
read

Z ≡ e
1
2
KẐ , (7.4)

DtZ ≡ i
2

e
1
2
K

ℑm t
Ŵ , (7.5)

−Vbh = eK
[

|Ẑ|2 + 1
3
|Ŵ|2

]

, (7.6)

−∂tVbh = i
20
(ℑm t)−4

[

(Ŵ∗)2 + 3ŴẐ∗
]

, (7.7)

where we have defined

Ẑ = 5
6
p0t3 − 5

2
p1t2 − q1t− q0 , (7.8)

Ŵ = 5
2
p0t2t∗ − 5

2
p1t(t + 2t∗)− q1(2t+ t∗)− 3q0 . (7.9)

Observe that all these objects are well defined only iffℑm t > 0.

7.1 The global symmetries of thet3 model

The t3 model as a theory ofN = 2, d = 4 supergravity is invariant under globalSl(2;R)
transformations, just like the axidilaton model, since their Kähler metrics are identical up to a
numerical factor. The action ofSl(2;R) ont is identical to its action onλ, which was discussed in
Section 5.1. The transformations of the Kähler potential and covariantly-holomorphic symplectic
section Eqs. (5.16,5.17) are determined by the holomorphicfunctionf(t) and theSp(4;R)matrix
SM

N given by
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f(t) = 3 ln (ct+ d) , (7.10)

(SM
N) =





















d3 3d2c 6
5
c3 −6

5
dc2

bd2 (ad+ 2bc)d 6
5
ac2 −2

5
(2ad+ bc)c

5
6
b3 5

2
ab2 a3 −a2b

−5
2
b2d −5

2
(2ad+ bc)b −3a2c (ad+ 2bc)a





















. (7.11)

In this case the 4-dimensional representation of the generatorsTm are given by

(T1
M

N) =









3
1

−3
−1









, (T2
M

N) =









−3
−1 4/5

1
5 3









,

(T3
M

N) =









−3
1 4/5

−1
−5 3









.

(7.12)

As in the axidilaton model, the same transformations act on all the symplectic vectors of the
theory and, in particular onHM andQM . There are no more symmetries in this formulation of
the model.

7.1.1 Equivariant vectors of thet3 model

It is not difficult to see that, from the point of view ofSl(2;R), the symplectic vectors such as
the charge vectorQM transform as a quadruplet, i.e. a fully symmetric 3-index covariant tensor
Qijk = Q(ijk) (in the notation used in Section 5.1). The relation between the components of this
tensor and those of the charge vector is

Q111 = p0 , Q112 = −p1 , Q122 = −2
5
q1 , Q222 = −6

5
q0 . (7.13)

It is useful to observe that the contraction of two quadruplets is related to the symplectic product
by

AijkB
ijk = −6

5
AMBM . (7.14)

By definition, any newSl(2;R) quadruplet that we construct out oft∞ andQijk can be
transformed according to the above rules into an equivariant symplectic vector of thet3-model.
TheSl(2;R) index notation makes this construction easy, but, as we are going to see, insufficient.
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In order to constructSl(2;R) invariants and other quadruplets it is useful to define the matrix

mi
j ≡ QiklQjkl , (7.15)

whose components take the values

m1
1 = −m2

2 = −2
5
(p1q1 + 3p0q0) , m1

2 =
12
5
p1q0 − 8

25
(q1)

2 , m2
1 =

4
5
p0q1 + 2(p1)2 .

(7.16)
The square of this matrix is

mi
k m

k
j = −36

25
J4(Q) δij , (7.17)

where, sinceδij is an invariant tensor, the coefficientJ4(Q) must be an invariant of order four in
the charges; this quartic invariant is explicitly given by

J4(Q) ≡ 8
45
p0(q1)

3 + 1
3
(p1q1)

2 − (p0q0)
2 − 2p0q0p

1q1 − 10
3
(p1)3q0 . (7.18)

This is the only independent invariant that can be constructed from the charge alone. We
can construct invariants taking traces of powers ofm and taking also the determinant: the traces
of odd powers vanish and those of even powers are proportional to J4(Q). Furthermore, the
determinant is also proportional toJ4(Q), i.e.

det(m) = 36
25
J4(Q) . (7.19)

The simplest quadruplet that can be built out of the originaloneQijk is

Q(ij|l m
l
|k) . (7.20)

This tensor is necessarily proportional to the Freudenthaldual ofQijk since

Q(ij|lm
l
|k) =

1
4

∂Trm2

∂Qijk
= −18

25

∂J4(Q)

∂Qijk
. (7.21)

Using higher powers ofm does not give anything new as

Q(i|lmm
l
|jm

m
k) = Q(ij|lm

l
mm

m
|k) = −36

25
J4(Q) Qijk . (7.22)

We must use, therefore, contractions ofQijk such that the free indices are not those ofmi
j.

At cubic order inQijk there is only one possibility, which vanishes identically

Q(i|lmQ|j|n
lQ|k)

mn = 0 , (7.23)

due to the antisymmetry of the symplectic metricΩij . At order five inQijk we can consider

Qi,i1,i2Qj,j1,j2Qk,k1,k2Qi1,j1,k1Qi2,j2,k2 = −36
25

J4(Q) Qijk , (7.24)

Q(i|mnQ|j|pqQ|k)
mpmnq = 0 . (7.25)
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Up to at least order 9 there are no quadruplets other thanQijk and its Freudenthal dual that can
be constructed by these tensor methods.

To find more, we have to solve Eq. (2.11). Since this is a very complicated task, we are going
to restrict ourselves to a generating charge configuration with p0 = q1 = 0, i.e.

(QM) =









0
p1

q0
0









. (7.26)

This subspace is preserved by theSl(2;R) transformations withb = c = 0 andd = 1/a
(or equivalently by the infinitesimal transformations generated byT1), to which by analogy we
shall refer to as thesmall group. It is not difficult to see that by acting on this charge vec-
tor with the transformations with appropriate charge-dependent parametersb 6= 0 , c 6= 0 (or,
equivalently, by the infinitesimal transformations generated byT2 andT3) we can generate the
complete generic charge vector with four unrestricted charge components.

It should be clear that if we construct vectors in the subspacep0 = q1 = 0 that are equivariant
under the small group, then by acting on these vectors with the same transformations that gener-
ate the complete charge vector, we will obtain vectors that are equivariant under the full duality
group, i.e. Sl(2;R), and which reduce to the former when we setp0 = q1 = 0. Since dual-
ity transformations preserve linear independence, a base for the small-group-equivariant vectors
will be transformed into a base of the duality-group-equivariant vectors; seeing this reasoning
we shall refer to a small-group-equivariant vector as anequivariant-generating vector.

The equation that these equivariant-generating vectors have to solve is the restriction of
Eq. (2.11) to justT1 and allow for no dependence onp0 nor q1, i.e.

p1
∂UP

∂p1
− 3q0

∂UP

∂q0
= β(P )U (P ) , (βP ) =









3
1
−3
−1









, (7.27)

which is solved by

UP =
∑

i

a
(P )
i (p1)α

(P )
i (q0)

α
(P )
i

−β(P )

3 , (7.28)

for arbitrary constantsaPi , α
P
i (the parenthesis enclosing the indicesP indicate that they are not

summed over and the indexi runs over an arbitrary number of terms). For simplicity, we can
choose them to depend only onp1 (αP = βP ) or only onq0 (αP

i = 0) and take them to have only
one term:

UP = a(P )(p1)β
(P )

, UP = a(P )(q0)
−β(P )/3 . (7.29)

To avoid charges with fractional components, we choose the first option and get a basis of
equivariant-generating vectors
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Uσ
P ∼ δσ

(P )(p1)β
(P )

. (7.30)

We have found it convenient to normalize these vectors and give them names{R, S, U, V }

R ≡









10
3
(p1)3

0
0
0









, S ≡









0
0

(10
3
(p1)3)−1

0









, U ≡









0
p1

0
0









, V ≡









0
0
0

1/p1









. (7.31)

The only non-vanishing symplectic contractions of these four vectors are

RMSM = −1 , UMV M = −1 , (7.32)

and they satisfy the completeness relation

RMSN − SMRN + UMVN − V MUN = δMN . (7.33)

We can decompose any equivariant-generating vector, such as QM w.r.t. this basis and the
expression will have the same form after acting with the duality group. ForQM we find

RMQM = −10
3
(p1)

3q0 = J4(Q)|p0=q1=0 , VMQM = 1 , (7.34)

from which we find that in general

QM = UM − J4(Q)SM . (7.35)

The Freudenthal dual charge vector is (using the results of the next section) given by

Q̃M =
1

W(Q)
RM + 3

4
W(Q)V M , W(Q) = 2

√

J4(Q) . (7.36)

As for the moduli-dependent equivariant vectors, we can usethe generic construction in
Eq. (2.15) replacingQ with different equivariant vectors.

7.2 H-FGK formalism

The stabilization equations can be solved in a completely general way [41] and the result is
summarized by the Hesse potential which, in terms of the quartic invariant

J4(H) ≡ 8
45
H0(H1)

3 + 1
3
(H1H1)

2 − (H0H0)
2 − 2H0H0H

1H1 − 10
3
(H1)3H0 , (7.37)

can be expressed as

W(H) = 2
√

J4(H) . (7.38)
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It is convenient to introduce the fully symmetric rank-4K-tensor [42, 43], implicitly defined
by28

KMNPQH
MHNHPHQ ≡ J4(H) . (7.39)

Using this tensor, we can write

H̃M =
∂MJ4

W
= 4

KMNPQH
NHPHQ

W
, (7.40)

MMN(F) = −∂M∂NJ4

W
+ 2

∂MJ4∂NJ4

W3
= −12

KMNPQH
PHQ

W
+ 2

H̃MH̃N

W
, (7.41)

gMN = 24
KMNPQH

PHQ

W2
− 8

H̃MH̃N

W2
− 2

HMHN

W2
, (7.42)

and one can check (e.g.using a symbolic manipulation program) the following properties:

J4(H̃) = J4(H) , (7.43)

KMNPQH̃
NH̃P H̃Q = −1

4
WHM , (7.44)

KMNPQH̃
P H̃Q = KMNPQH

PHQ + 1
6
(HMHN − H̃MH̃N) , (7.45)

KMNPQH
P H̃Q = −1

6
H(M H̃N) . (7.46)

These properties (which hold for any symplectic vector withnon-vanishing quartic invariant
which implies the existence of the Freudenthal dual) imply the invariance under Freudenthal
duality of W, MMN(F) and the potentialV (H); the latter can be rewritten in the manifestly
Freudenthal-duality-invariant form

V (H) = −3W−2
{

KMNPQ

(

HPHQ + H̃P H̃Q
)

− 1
2

(

HMHN + H̃MH̃N

)}

QMQN . (7.47)

It is, however, not possible to express it in a form manifestly invariant under the Freudenthal
duality transformation of the charge vectorQM → Q̃M .

The physical fields are given in terms of theH-variables by the usual expressions

e−2U = 2W = 2
√

J4(H) , (7.48)

t =
H̃1 + iH1

H̃0 + iH0
= − 3H0H0 +H1H1

5(H1)2 + 2H0H1
+ i

3W

2 [5(H1)2 + 2H0H1]
. (7.49)

28In most of what follows, the exact form of theK-tensor will be irrelevant. The formulae and results obtained
will, therefore, be valid for anyN = 2, d = 4 theory with Hesse potential of the same generic form.
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7.2.1 Very small vectors

The vectorsRM andSM turn out to be very small charge vectors of this model [4, 44],owing to
the following properties:

KMNPQR
PRQ = −1

6
RMRN , KMNPQS

PSQ = −1
6
SMSN , (7.50)

that leads to (in obvious shorthand notation)

KMR3 = KMS3 = 0 , J4(R) = J4(S) = 0 . (7.51)

On the other hand, the vectorsUM andV M are both small vectors

J4(U) = J4(V ) = 0 . (7.52)

7.3 Critical points

The complexity of this model forces us to use a symbolic manipulation program and, further,
impose the restrictionp0 = q1 = 0 on the charges to search for the critical points of the black-
hole potential. Apart from the standard supersymmetric attractorBM = QM we find only one
physically acceptable attractor given by

(BM) =









0
p1

−q0
0









. (7.53)

It is an equivariant vector and we can write it in the form

BM = UM + J4(Q)SM = QM + 2J4(Q)SM . (7.54)

The quartic invariant for this vector can be computed readily using Eqs. (7.50–7.52), and

SMQM = 0 , Q̃MSM = −1/W(Q) , (7.55)

and, by Eq. (7.36), it reads

J4(B) = KB4 = K[Q+ 2J4(Q)S]4 = KQ4 + 8J4(Q)KQ3S

= J4(Q) + 2J4(Q)W(Q)Q̃MSM

= −J4(Q) .

(7.56)
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7.4 Conventional extremal solutions

The supersymmetric solutions of this model are constructedas usual, and we will focus on the
extremal non-supersymmetric ones which are associated to the attractorBM = UM +J4(Q)SM .
For the near-horizon solutions, theHM take the standard form Eq. (3.3) since Eq. (3.4) is sat-
isfied. Now we must investigate whether we can add constant terms AM to these harmonic
functions satisfying only the normalization conditionW(A) = 1 and the constraintBMAM = 0,
which is equivalent, at the infinitesimal level, to investigating the space of solutions to Eq. (3.10).
For simplicity, we work with a generating charge configuration with p0 = q1 = 0. We find for
the non-supersymmetric attractor

(MMN) =
1
2









21
20

q0
(p1)3

0 0 − 3
20

1
(p1)2

0 0 0 0
0 0 0 0

− 3
20

1
(p1)2

0 0 1
4

1
p1q0









, (7.57)

whose rank is 2. The solutions to Eq. (3.10) have the form(εM) =

(

0
ε1
ε0
0

)

and satisfyBMεM = 0

but we still have to impose the normalization conditionW(A) = 1 on the two non-vanishing
components, which leaves us with only one independent solution that can only describe one
independent real moduli; this modulus turns out to beℑm(t∞). It can be shown that the solution
takes the form [33]

(

HM
)

=



























0

s1
{√

3
10ℑm t∞

− 1√
2
|p1|τ

}

−s0

{

√

5(ℑm t∞)3

24
− 1√

2
|q0|τ

}

0



























, (7.58)

where we have defined

sM ≡ sgn(QM) , (7.59)

and where we have to requires1 = s0 for the solution to be regular.
Havingℜe t∞ = 0 poses a very important problem because even though the charge vector

with p0 = q1 can generate viaSl(2;R) duality transformations a complete charge vector with
four independent charges, it cannot at the same time generate an independentℜe t∞ 6= 0. In
other words, this solution is not agenerating solution; its orbit underSl(2;R) rotations will not
fully cover the space of parameters. A necessary and sufficient condition for a solution to be
generating is that all theSl(2;R) invariants of the theory are independent when evaluated on the
charges and moduli of that solution [45, 46]. As we show in detail in Appendix A.2, the solution
(7.58) does not satisfy this condition.
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In order to have a generating solution for the class of extremal non-supersymmetric black-
hole solutions associated to the attractorBM = UM + J4(Q)SM , we need to addℜe t∞ 6= 0
to the solution and it should be clear that this cannot be doneif we make a conventional,i.e.
harmonic, ansatz: theHM must contain anharmonic terms.

For future use, it is useful to have symplectic-covariant expressions for the constraints onAM

imposed by the equations of motion for a harmonic ansatz:

AMUM = 0 , AMSM = 0 . (7.60)

AMBM = 0 only imposes the weaker conditionAM(UM + J4(Q)SM) = 0. The above con-
straints imply thatAM has to take the form

AM = aUM + bSM , (7.61)

for some invariant coefficientsa andb, and it cannot contain terms proportional to the vectors
RM andV M .

7.5 Unconventional extremal solutions

The missing free parameter must be added to the above solution by adding anharmonic terms to
the harmonic ansatz: let us don the harmonic functions of theundeformed solution with hats, so
that

ĤM = AM − 1√
2
BMτ , (7.62)

whereBM is given by the attractor (7.54) andAM satisfies the constraints Eqs. (7.60) but is
otherwise arbitrary (up to asymptotic flatness normalization). Observe that this implies that

ĤMUM = ĤMSM = 0 , ⇒ Ĥ = a(τ)UM + b(τ)SM , (7.63)

wherea(τ) andb(τ) are duality-invariant harmonic functions ofτ . Terms proportional toRM

andV M are excluded if the coefficients are harmonic functions; a term proportional toV M can
always be eliminated by a local Freudenthal duality transformation, whence we expect that it
is enough to add a (necessarily anharmonic) term proportional to RM . It turns out that such a
solution [33]29 has the form30

HM = ĤM − χRM

RNHN
, (7.64)

29This solution can be obtained by truncation from the STU-model solution in Ref. [32] and is also a particular
case of the general extremal non-supersymmetric solutionsof cubic models of Ref. [4]. It has also been obtained by
using integrability methods in the action that one obtains in the approach of Ref. [21] (see also [20]): its derivation
can be found in Section 9.4 (page 76) of Ref. [47]. The solution belongs to the orbitO3

22 in the classification of
Ref. [48] (see Table 2 of that reference).

30This definition is not recursive becauseRNHN = RN ĤN .
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whereχ is another independent parameter, likeAM . The values ofχ andAM are determined by
requiring that the physical fields have the right asymptoticbehavior at spatial infinity (e−2U →
1 , t → t∞ whenτ → 0−) as follows: first of all, observe that as a consequence of Eq.(7.63)
the property

HMUM = 0 , (7.65)

is satisfied everywhere and in particular at spatial infinitywhere

HM τ→0−−→ HM
∞ = AM − χRM

RNAN
. (7.66)

Then, using the definition ofHM = IM , Eq. (1.7), in Eq. (7.65) plus Eq. (1.8) at spatial infinity
we find

0 = HM ∞UM = ℑm
(VM ∞

X∞

)

UM = ℑm
(Z∞(U)

X∞

)

=
√
2ℑm

(Z∞(U)

eiα∞

)

. (7.67)

This implies that

eiα∞ = ± Z∞(U)

|Z∞(U)| , (7.68)

which can be used again in the definition ofHM = IM to give

HM
∞ = ±

√
2ℑm

( VM
∞

Z∞(U)

)

|Z∞(U)| . (7.69)

To determine the overall sign we will demand that the functionsHM(τ) never vanish forτ ∈
[−∞, 0), a condition that is usually related to the positivity of themass. Contracting the above
result withSM and using Eq. (7.63) we get

χ

RNAN
= ±

√
2ℑm

(Z∞(S)

Z∞(U)

)

|Z∞(U)| , (7.70)

which, after substitution in Eq. (7.66) gives the value of the constantsAM , satisfying Eqs. (7.60),
as an equivariant symplectic vector, function of the physical parameters of the solution

AM = ±
√
2(δMN − RMSN)ℑm

( VM
∞

Z∞(U)

)

|Z∞(U)| . (7.71)

With this information we can computeRNA
N to find, from Eq. (7.70) the value of the invari-

ant parameterχ as a function of the physical parameters of the solution31

31In terms of the invariantsi1, · · · , i5 of the theory given in Eqs. (A.1)-(A.5)

χ = 1

4
(−J4(Q))−1/6







(

i1 + i2 −
(i1 − i2 /3)

3

J4(Q)
− 4 i3
√

−J4(Q)

)1/3

−
(

i1 + i2 −
(i1 − i2 /3)

3

J4(Q)
+

4 i3
√

−J4(Q)

)1/3






.

(7.72)

43



χ = −2ℑm
(Z∞(R)

Z∞(U)

)

ℑm
(Z∞(S)

Z∞(U)

)

|Z∞(U)|2 . (7.73)

Forp0 = q1 = 0, the solution takes the explicit (but not manifestly equivariant) form

(

HM
)

=





























−1
2

ℜe t∞
ℑm t∞

1

H0
,

s1
{√

3
10ℑm t∞

− 1√
2
|p1|τ

}

−s0

(

|t∞|
ℑm t∞

)2 {√
5ℑm t∞

24
− 1√

2
|q0|τ

}

0





























. (7.74)

The mass of this solution can be computed using the general formula Eq. (4.4). From the
definition ofH̃M we have

H̃M(0) = ±
√
2ℜe

( V∞M

Z∞(U)

)

|Z∞(U)| , (7.75)

and

ḢM(0) = − 1√
2

[

BM − χJ4(Q)

(RA)2
RM

]

, (7.76)

from which we get the covariant expression

M = ±|Z∞(U)|
{

1− 1
3
J4(Q)ℑm

(Z∞(V )

Z∞(U)

)[

ℑm
(Z∞(R)

Z∞(U)

)]−1
}

. (7.77)

This last expression reduces forp0 = q1 = 0 (selecting the upper sign in Eq. (7.69)) to

M = eK∞/2
(

|q0|+ 5
2
|t∞|2|p1|

)

. (7.78)

Observe that the value of the mass differs from the absolute value of the associated fake central
chargeBM :

M 6= |Z(φ∞, B)| . (7.79)

The above result should be compared to the mass of the supersymmetric black hole which is
given by the standard formulaM = |Z∞(Q)| and reduces forp0 = q1 = 0 to32 the following
expression,

32We have used thatp1q0 > 0 for the non-supersymmetric case andp1q0 < 0 for the supersymmetric one.
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M = eK∞/2

√

[

|q0| − 5
2
(ℜet∞)2|p1|

]2
+ 25

4
(ℑmt∞)4|p1|2 + 5(ℑmt∞)2|q0p1| , (7.80)

which can be rewritten in the equivalent form

M = eK∞/2

√

[

|q0|+ 5
2
|t∞|2|p1|

]2 − 10(ℜet∞)2|q0p1| , (7.81)

which shows that the mass of the supersymmetric black hole isalways smaller than the mass of
the non-supersymmetric one with charges of equal absolute value.

The entropy is given by the square of the fake central charge at the horizon

S = π|Z(φh, B)|2 = πW(B)/2 = π
√

−J4(Q) . (7.82)

As discussed in Section 4, an interesting characteristic ofthe unconventional solutions is that,
in distinction to what happens for the conventional ones, the flow of the black-hole metric func-
tion e−U from infinity to the horizon is not governed by a simple fake central chargeZ(φ,B)
since the near-horizon limit of the metric is related toZ(φh, B) but the spacelike infinity limit
is not related toZ(φ∞, B). The first-order flow equations for these black holes can be writ-
ten in terms of a superpotentialW (φ,B) or, equivalently, in terms of the “fake central charge”
Z(φ,

√
2DH) defined in Section 4.

It is possible to prove analytically that the general configuration Eq. (7.64) solves the equa-
tions of motion by using the duality-invariant properties of the equivariant vectorsAM , BM and
RM that appear in its definition (that is: not reducing the equations to thep0 = q1 case) and the
properties of theK-tensor of this model, see Eqs. (7.56). As an intermediate step, we derive the
following relations, which are valid only for theHMs of our ansatz:

KMNĤ
2 = 1

2
(V H)2R(MVN) +

1
2
(V H)(RH)VMVN + 1

18
(V H)2UMUN

−1
3
(V H)(RH)U(MSN) − 1

6
(RH)2SMSN , (7.83)

KMNĤQ = 1
2
(V H)R(MVN) +

1
4
[J4(Q)(V H) + (RH)]VMVN + 1

18
(V H)UMUN

−1
6
[J4(Q)(V H) + (RH)]U(MSN) − 1

6
J4(Q)(RH)SMSN , (7.84)

KMNĤR = −1
3
(RH)R(MSN) − 1

6
(RH)U(MVN) − 1

6
(V H)R(MUN) . (7.85)

Using these identities it is easy to show, for instance, that

J4(H) = J4(Ĥ)− χ2 , J4(Ĥ) = (V H)3 (RH) . (7.86)
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8 Conclusions

In this paper we have shown how the equivariance of theH variables under duality transforma-
tions translates into equivariance of the constant symplectic vectors that occur in their explicit
expressions. Using the H-FGK formalism we have studied under what conditions the extremal
solutions associated to a given attractor can be described,for all values of the charges and mod-
uli, by harmonicHs alone and when it is necessary to add anharmonic terms to them. We have
called these two kinds of solutions conventional, respectively unconventional.

As mentioned in the introduction, it is not known how unconventional extremal solutions
(which are necessarily non-supersymmetric, since we know that all the supersymmetric ones are
conventional) can be deformed into non-extremal solutions, with non-zero temperature but the
same values of the charges and moduli. The H-FGK formalism and the use of equivariant vectors
can help us to solve this problem and, as a first step, we have shown how to apply these methods
to well-known examples of theories with conventional and unconventional solutions.

In the case of the unconventional extremal solutions of thet3-model we have shown, first
of all, how the criterion found in Section 3 indicates the need for anharmonic terms and which
equivariant vectors these terms should depend on. We have then described the solution entirely
in terms of these objects and we have computed the general form of the mass and the entropy.
The second has a well-known form in terms of the near-horizonlimit Z(φh, B) of a fake central
charge,Z(φ,B), constructed from what we have called (in the context of the H-FGK formalism)
attractorBM . The mass instead is not given by the spacelike infinity limitof this fake central
chargeM = |Z(φ∞, B)| but rather by the spacelike infinity of a different oneZ(φ,E) with
EM 6= BM . The first-order flow equations that govern the system (whichhave been given
in Refs. [19, 4]) are written in term of non-standard fake central chargeZ(φ,

√
2DH) whose

second argument isτ -dependent and correctly interpolates betweenBM (on the horizon) and
EM (at spacelike infinity).

The behavior of the metric function in the unconventional solutions gets modified in the
asymptotic region but remains unchanged in the near-horizon region, where it is still governed
by the attractor mechanism. This behavior is reminiscent, but opposite, to that of the colored
non-Abelian supersymmetric black holes of Refs. [49] in which the near-horizon geometry is
modified by the non-Abelian effects while the asymptotic oneis unchanged by them.

The formalism and the methods presented in this paper can be applied to the problem of
finding the non-extremal generalization of the unconventional solutions studied in this paper.
Work in this direction is in progress.
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A Generating new solutions via duality

As mentioned in Section 7.5, a necessary and sufficient condition for a solution to be generating
is that all theSl(2;R) invariants of the theory are independent when evaluated on the charges
and moduli of that solution [50, 51, 45, 46]. In this appendixwe are going to study whether or
not and why the solution considered in that section is a generating one. We start by stating some
general properties which we, then, apply to the (toy) axidilaton model and then to thet3 model.

There are in general 5 independent invariants that characterize eachN = 2 symmetric super-
gravity model. They are [52]:

i1 = |Z|2 , (A.1)

i2 = Gij∗ZiZ∗
j∗ , (A.2)

i3 = −1
3
ℜe [ZN3(Z∗)] , (A.3)

i4 = 1
3
ℑm [ZN3(Z∗)] , (A.4)

i5 = Gij∗CijkC∗
i∗j∗k∗Gjl∗Gkm∗Gj∗lGk∗mZ∗

l∗Z∗
m∗ZlZm , (A.5)

whereZ is the central charge,Gij∗ the inverse Kähler metric,

Zi ≡ DiZ , (A.6)

are the “matter” central charges,

Cijk ≡ DiVMDjDkVM , (A.7)

and

N3(Z∗) ≡ CijkGil∗Gjm∗Gkn∗Z∗
l∗Z∗

m∗Z∗
n∗ . (A.8)

All these invariants are function of the charges and the scalars but their combination

J4(Q) = (i1 − i2)
2 + 4i4 − i5 , (A.9)
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depends quartically on the charges only. Sometimes it is advantageous to work withJ4(Q)
instead ofi5.

A.1 2-charge generating solutions of the axidilaton model

The minimal number of non-vanishing charges that are necessary for an extremal, supersymmet-
ric33, black hole of axidilaton theory to be regular is two. Takinginto account the form of the
Hesse potential Eq. (5.39) and of the axidilaton Eq. (5.40),it is easy to see that there are only
two possible non-singular 2-charge configurations, namely(p0, p1, 0, 0)T and(0, 0, q0, q1)T .

In this model, the tensorCijk vanishes identically, and so doesN3(Z∗) and the invariants
i3, i4, i5. The model is characterized by the two invariantsi1 andi2, which are, respectively, the
squares of the absolute values of the true and fake central charges at infinity

i1 = |Z(λ∞,Q)|2 , i2 = |Ẑ(λ∞,Q)|2 , (A.10)

and both are independent for any 2-charge solution (forℜe λ∞ = 0 or not) and, in principle, it
should be a generating solution. However, depending on our choice of harmonic functions, the
regular solutions with two charges may have a vanishingℜe λ∞ and the subgroup ofSl(2;R)
that generates a non-vanishingℜe λ∞, which consists of matrices of the form

(

1 β
0 1

)

do not leave
invariant the 2-charge configurations. Therefore, theSl(2;R) orbit of the regular 2-charge con-
figurations may not cover the full parameter space.

It is interesting to see how the impossibility of generatinga solution containing the maximal
number of independent parameters arises in practice in thissimple case, starting from a configu-
ration characterized by the charges(0, 0, q̂0, q̂1)

T and the modulîλ∞ = iℑm λ̂∞ (we reserve the
unhatted symbols for the final charges and moduli). This solution is determined by two harmonic
functions:

(ĤM) =

























0

0

s√
2

{

(ℑm λ̂∞)1/2 − |q̂0|τ
}

s√
2

{

(ℑm λ̂∞)−1/2 − |q̂1|τ
}

























, (A.11)

where

s ≡ sgn(q̂0) = sgn(q̂1) . (A.12)

TheSl(2;R) rotated solution will depend on the original physical parametersq̂0, q̂1,ℑm λ̂∞
plus the parameters of theSl(2;R) transformationa, b, c, d (only 3 of which are independent).

33The discussion can also be held for the non-supersymmetric solutions to this model, reaching the same conclu-
sions.
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We have to determinêq0, q̂1,ℑm λ̂∞, a, b, c, d in terms of the final physical parameters to write
the rotated solution in terms of its own physical parametersonly.

Sl(2;R) acts on the charge vector through the matrix Eq. (5.19) so








p0

p1

q0
q1









=









d −c
a b

−b a
c d

















0
0
q̂0
q̂1









=









−cq̂0
bq̂1
aq̂0
dq̂1









. (A.13)

From these relations we determinea, b, c, d in terms of the final and original charges:

a = q0/q̂0 , b = p1/q̂1 , c = −p0/q̂0 , d = q1/q̂1 . (A.14)

On the other hand, from the transformation rule Eq. (5.10) weget

ℜe λ∞ =
bd+ ac(ℑm λ̂∞)2

d2 + c2(ℑm λ̂∞)2
, ℑmλ∞ =

ℑm λ̂∞

d2 + c2(ℑm λ̂∞)2
, (A.15)

and replacing in these relations the transformation parametersa, b, c, d by the values in Eq. (A.14),
we get 2 equations that relate the 3 original to the 6 final physical parameters:

p0q0(q̂1)
2(ℑm λ̂∞)2 +

ℜe λ∞
ℑmλ∞

(q̂0q̂1)
2ℑm λ̂∞ − p1q1(q̂0)

2 = 0 , (A.16)

ℑmλ∞(p0)2(q̂1)
2(ℑm λ̂∞)2 − (q̂0q̂1)

2ℑm λ̂∞ + ℑmλ∞(q1)
2(q̂0)

2 = 0 . (A.17)

The invariance ofW implies that

q̂0q̂1 = p0p1 + q0q1 , (A.18)

and allows us to eliminatêq1 from the above two equations. We can solve (A.16) and (A.17) for
ℑm λ̂∞ as a function of the 6 final physical parameters andq̂0 and, for both equations, we find
ℑm λ̂∞q̂−2

0 as a function of those 6 parameters:

ℑm λ̂∞q̂−2
0 = f1(Q, λ∞) , ℑm λ̂∞q̂−2

0 = f2(Q, λ∞) . (A.19)

The consistency conditionf1(Q, λ∞) = f2(Q, λ∞) determines one of the two final real moduli
as a complicated function of the final charges. In other words: the final solution cannot have
6 independent physical parameters, which implies that the original solution is not a generating
solution.

On top of this, there seems to be another problem: we cannot solve separately the 3 original
physical parameters in terms of the 6 final ones. “Fortunately” only the combinationℑm λ̂∞q̂−2

0

appears in the rotated solution or, equivalently, in theHM variables. Using Eqs. (A.13,A.14) and
(A.18) we find the these are given by
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HM = AM − 1√
2
QMτ ,









A0

A1

A0

A1









=













s√
2
p0(ℑm λ̂∞q̂−2

0 )1/2

s√
2
p1(p0p1 + q0q1)

−1(ℑm λ̂∞q̂−2
0 )−1/2

s√
2
q0(ℑm λ̂∞q̂−2

0 )1/2

s√
2
q1(p

0p1 + q0q1)
−1(ℑm λ̂∞q̂−2

0 )−1/2













,

(A.20)
In the supersymmetric case we know that we can construct a newsolution which has, on top

of the two non-trivial harmonic functions, two constant ones. If we write all of them in the form

ĤM = ÂM − 1√
2
Q̂Mτ , (A.21)

then(Q̂M )T = (0, 0, q̂0, q̂1)
T and, according to the general results of Ref. [9],

(ÂM) =
1

√

2ℑm λ̂∞
ℑm















q̂1λ̂
∗
∞ − iq̂0

|q̂1λ̂∗
∞ − iq̂0|









i

λ̂∞
−iλ̂∞
1























. (A.22)

This solution has two independent charges at any generic point in moduli space and should
be a generating solution. The difference with the previous case is that, instead of the Eqs. (A.15),
we can invert (5.10) and use Eqs. (A.14) and (A.18) to get two independent real equations that
do not lead to constraints in the final physical parameters:

λ̂∞q̂−2
0 =

1

(p0p1 + q0q1)

q1λ∞ − p1

p0λ∞ + q0
. (A.23)

The only combinations of the 4 original physical parametersthat appear in the rotated solu-
tion are precisely the real and imaginary parts ofλ̂∞q̂−2

0 and we obtain a solution with 6 inde-
pendent physical parameters.

A.2 2-charge solutions of thet3 model

Again, the minimal number of non-vanishing charges that a regular, extremal, black hole of this
model can have is two. A choice of charge vector that leads to regular supersymmetric and
non-supersymmetric black holes is(0, p1, q0, 0)T . In the supersymmetric case, the coefficient of
− 1√

2
τ in HM (that we call attractor in the context of this formalism) is given by

(BM) = (QM ) =









0
p1

q0
0









, (A.24)

and in the non-supersymmetric one, by
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(BM) =









0
p1

−q0
0









. (A.25)

In order to see if these charge configurations lead to generating solutions, we study the values
of the invariants. For cubic models with prepotential of theform

F = 1
3!
dijk

X iX jX k

X 0
, (A.26)

one hasCijk = eKdijk. The prepotential of thet3 model is given in Eq. (7.1) and hasd111 = −5
soCttt = 3

4
(ℑmt)−3. For this model it can be proven that only three invariants are independent

and that the other two can be written as a their combination. Specifically, one finds that [53]

i4 = −
√

4
27
i32i1 − i23 , (A.27)

i5 = 3
4
i22 , (A.28)

and we can take, as independent basis of invariantsi1, i2 andi3 (which we can replace byJ4).
Now let us evaluate these invariants for the solutions with charge vector(0, p1, q0, 0)T . The

result is

i1 =
3

20(ℑm t∞)3
∣

∣−5
2
p1t2∞ − q0

∣

∣

2
, (A.29)

i2 =
1

20(ℑm t∞)3

∣

∣−5
2
p1t∞(t∞ + 2t∗∞)− 3q0

∣

∣

2
, (A.30)

i3 = − 1

75(ℑm t∞)6
ℜe
{

− i
8

(

−5
2
p1t2∞ − q0

) [

−5
2
p1t∞(t∞ + 2t∗∞)− 3q0

]3
}

, (A.31)

and it is easy to see that ifℜe t∞ = 0 (theaxion-freecase) they simplify to

i1 =
3

20(ℑm t∞)3
[

5
2
p1(ℑm t∞)2 − q0

]2
, (A.32)

i2 =
1

20(ℑm t∞)3
[

5
2
p1(ℑm t∞)2 + 3q0

]2
, (A.33)

i3 = 0 , (A.34)

We see then that in the axion-free case only two invariant areindependent and according to
the argument in [46] the solutions cannot be seed (generating) solutions.

It is necessary to haveℜe t 6= 0 for the the three invariantsi1, i2, i3 6= 0 to be independent
from each other and the two-charge solution to be a generating solution.
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