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Abstract: The design of a novel band-pass filter with narrow-band features based on an 

electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and 

characterized in terms of transmission and reflection coefficient. The selective passband 

and suppression of the second harmonic make the filter suitable to be used in a C band 

frequency range for radar systems and satellite/terrestrial applications. To avoid substantial 

interference for this kind of applications, passive components with narrow band features 

and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with 

harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, 

less than 10% is sufficient. 

Keywords: band-pass filter; artificial magnetic conductor; dispersion diagram; second 

harmonic suppression; transmission coefficient 

 

1. Introduction 

In recent years, emerging applications have continued to challenge radio frequency (RF)/microwave 

filters’ designers with stringent simultaneous requirements such as high performance, light weight, low 

cost and miniaturization. As the electromagnetic spectrum is limited and has to be shared, small sized  

band-pass filters with narrow frequency response and high selectivity are used to confine the signals 

within assigned spectral limits and to reject the noise and interferences from adjacent channels. 
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To minimize the filter size, a practical strategy is to reduce the resonator circuit by modifying its 

physical structures [1–7]. Starting from the conventional parallel coupled band-pass filter [8–11] which 

has a simple synthesis procedure, and ending with U-shape resonators and open loops [12,13], hairpin 

filters [14] has helped progress in size reduction. However, with the rapid evolution of modern 

communication systems [15], the sizes of these resonators are still not small enough to be used. 

In this work, a novel low thickness band-pass filter based on a simple and compact size 

electromagnetic resonator without vias is presented. The novelty of this contribution relies on taking 

advantage of the predicted electromagnetic band-gap (EBG) properties of a resonator unit-cell with 

improved performance (by means of its dispersion diagram) to achieve the intended band-pass filter 

behavior. Moreover, the filter exhibits a narrow passband, high out-of-band rejection level, and second 

harmonic suppression. The paper is organized as follows. Section 2 outlines the study of the unit-cell 

resonator in terms of dispersion diagram. In Section 3, the design of the filter is presented based on the 

unit-cell resonator. Also, the possibility of suppressing of the second harmonic is discussed. Two 

filters are manufactured and measurements concerning the transmission coefficient are provided to 

show their performance results. 

2. Resonant Element Design 

The first step in the design of the band-pass filter (henceforth referred to as BPF) is the design of 

the resonant element. In [16], the resonant element—replicated to model an infinite resonant 

structure—is characterized as an Artificial Magnetic Conductor (AMC) material [17–20] and the  

in-phase reflection property was studied. This feature enables efficient radiation for antennas placed 

closed to the periodic structure. In this contribution the resonant structure is seen from another point of 

view: as a material that has the possibility to block the propagation of electromagnetic waves in certain 

frequency bands and guide them in a desired direction [i.e., electromagnetic band-gap (EBG)]. 

EBG structures [21,22] exhibit allowed and forbidden bands of modes’ propagation and can be 

characterized by the dispersion diagram. The dispersion diagram for a unit-cell of period W will show 

the relation between the wave number and frequency, giving information about the propagating modes 

and band-gaps that can potentially exist between such modes [23,24]. The eigenmode solver of High 

Frequency Structural Simulator (HFSS) together with proper boundary conditions along the sides of 

the unit-cell (resembling an infinite structure) is used in order to determine the dispersion diagram of 

the structure (see Figure 1a). Due to symmetry of the unit-cell, the dispersion diagram is computed 

along the lines connecting the R, X and M points, to form the irreducible Brillouin triangle. Thus the 

dispersion analysis of periodic structures is reduced to find only the propagation modes in the direction 

of the vectors of the irreducible Brillouin triangle. The dispersion characteristics, i.e., the position and 

width of the band-gap and the frequency of the propagating modes are primarily defined by the 

geometry of the unit-cell. ARLON25N with relative dielectric permittivity 3.28, loss tangent less than 

0.0025 and a thickness of 0.762 (30 mils) is used as dielectric substrate. The unit-cell dimensions are 

W × W = 11.52 mm × 11.52 mm and its geometry exhibits four symmetry planes. The metallization 

thickness is 18 μm. 

The dispersion diagram for three lowest modes is depicted in Figure 1b. The first mode propagates 

in the frequency range from 5 to 6.6 GHz, whereas the second mode propagates from 5 to 7 GHz.  
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The resonance frequency takes place between the first and second mode, being around 6 GHz. 

Moreover, the bandgap is presented in a frequency range from 7 to 7.8 GHz. Within the bandgap, the 

electromagnetic waves cannot propagate at any direction in the EBG structure. 

Figure 1. (a) Unit-cell resonator. The applied boundary conditions with the irreducible 

Brillouin triangle; and (b) Dispersion diagram of the periodic structure. 

 

3. Filter Design 

With the purpose of designing a band-pass filter having the same size as the unit-cell resonator, the 

propagation mode paths along the R-X-M triangle and predicted by the dispersion diagram could be 

followed. The frequency of the modes propagating along the edges of the Brillouin triangle have to be 

taken into account to define the filter passband, whereas the band-gap can be used to achieve the filter 

stopband. The computed dispersion diagram shows the propagation of the first mode in the frequency 

range from 5 to 6.6 GHz. In the present work, only the (M-R) region and part of the (X-M) region from 

the dispersion diagram were considered due to the fact that the authors’ goal was to obtain a selective 

band-pass filter. 

The distance between the metallization edge and the unit-cell edge influences the band-gap position. 

More precisely when the mentioned distance increases, the band-gap shifts to a higher frequency band 

whereas its width increases. The variation of the a2 and a3 parameters (see Figure 2) has the following 

effect: as a2 and a3 increase the band-gap shifts to a lower frequency band whereas the width of the 

band-gap increases. When a1 and a4 parameters decrease, meaning that the whole unit-cell size 

decreases, the band-gap shifts to a higher frequency band and its width increases. The thickness of the 

dielectric substrate also has an influence on the band-gap position. Increasing the thickness, the  

band-gap shifts to a lower frequency band and in the same time its width increases. 

The filter consists of a unit-cell resonator and two narrow lines coupled to the resonator. Each 

narrow line has a width of 0.1 mm and a length of 11.52 mm. The two narrow lines are placed 

symmetrically with respect to the unit-cell resonator. The gap between the coupling narrow line and 

unit-cell resonator is 0.1 mm. The filter is excited by a pair of non-orthogonal input/output 50 Ω 

microstrip feeding lines of 1.8 mm width and is printed on an ARLON25N substrate with a thickness 
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of 30 mils, relative dielectric permittivity of 3.28, cooper thickness 18 μm and loss tangent 0.0025. The 

layout of the filter in 6.4 GHz frequency band is presented in Figure 2. 

Figure 2. Layout of the band-pass filter (BPF) with its characteristic circuit model. 

 

In order to determine the characteristics of the BPF, two approaches could be followed. The first 

one is to model the BPF using its equivalent circuit (or at least a simplified version) as can be seen in 

Figure 2. The resonator unit-cell can be model based on transmission line theory [25] providing that 

the unit-cell size is electrically small enough. The presented unit-cell is λ0/5 so it can be considered not 

so small and being at the limit of application of such a model. In any case the model would comprise a 

series connection (L2 and C2) in parallel with the equivalent impedance of the parallel L3 and C3 

components. In series with the mentioned circuit the capacitance C1 (formed between the resonator and 

each narrow coupling line) and Ll and R components (modeling the transmission line) are placed. The 

second approach consists in explaining the physical phenomena under the filter behavior. To achieve 

this aim the modes propagation in the structure should be explained based on dispersion diagram so the 

second approach is followed. 

The dimensions of the filter are 29.8 × 11.52 × 0.762 mm
3
 (0.64λ0 × 0.25λ0 × 0.016λ0, λ0 is the  

free space wavelength, λ0 = 47 mm at 6.4 GHz) considering the input/output feeding lines and  

11.92 × 11.52 × 0.762 mm
3
 (0.25λ0 × 0.25λ0 × 0.016λ0) without the input/output feeding lines. From 

simulation results in Figure 3a, the 3dB passband of BPF without harmonic suppression goes from 

6.25 to 6.62 GHz, meaning 5.75% fractional bandwidth at the center frequency 6.44 GHz. The 

minimum insertion loss is 1.7 dB whereas the maximum return loss value is greater than 17 dB (see 

Figure 3b). 

Figure 3. (a) Simulation vs. measurement: Transmission coefficient of the BPF;  

(b) Simulation vs. measurement: Reflection coefficient of the BPF. 

 

a) b)
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Taking into account the position of the feeding lines with respect to the unit-cell geometry, the 

propagation follows a quasi-diagonal path, which coincides with the (M-R) region from the dispersion 

diagram as being together with part of the (X-M) region. Furthermore, from the (M-R) region, as well 

as part of the (X-M) region of the dispersion diagram resulted in the first mode propagating in a 

frequency spectrum of between 6 and 6.6 GHz. This band corresponds to the electromagnetic wave 

propagation through the BPF geometry whereas from 6.94 to 7.9 GHz the structure does not allow any 

mode propagation which corresponds to the stopband frequency region of the BPF. 

In Table 1, the 3 dB bandwidth together with the quality factor are presented. In a band-pass filter, 

the overall width of the passband between the upper and lower 3 dB levels of the filter determines the 

quality factor Q. The lower the value of the Q factor, the wider the bandwidth and, consequently, the 

higher the Q factor, the narrower and more selective the filter. 

Table 1. Simulated band-pass filter quality factor. 

Prototype 
3 dB 

fc 
BW(3 dB) 

Q 
Size  

(mm × mm) 

Size  

(mm × mm) flow(GHz) fhigh(GHz) GHz % 

BPF 6.25 6.62 6.44 0.37 5.57 17.40 29.80 × 11.52 * 11.92 × 11.52 

3-cells-oy BPF 6.45 6.61 6.52 0.16 2.45 40.75 29.80 × 34.56 * 11.92 × 34.56 

3-cells-ox BPF 6.55 6.67 6.62 0.12 1.81 55.16 52.84 ×11.52* 34.96 × 11.52 

Square BPF 6.13 7.30 6.70 1.17 17.4 5.72 29.80 ×11.52* 11.92 × 11.52 

* Considering the input/output feeding lines. 

According to the analysis shown in Table 1, if three resonators are cascaded in the OY direction 

(henceforth referred to as 3-cells-oy BPF) the 3 dB passband goes from 6.45 to 6.61 GHz, meaning 

2.45% fractional bandwidth at the center frequency 6.52 GHz, whereas in the OX direction (filter 

henceforth referred to as 3-cells-ox BPF) the 3 dB passband goes from 6.55 to 6.67 GHz, meaning  

1.8% fractional bandwidth at the center frequency 6.62 GHz. Moreover, using three cells in the 

direction of the current flow, the filter becomes more selective (see Figure 4a). The increment in the 

number of unit-cells in the OY direction has an influence only in the passband of the filter, which 

becomes narrower; meanwhile the slope in the stop bands remains the same. The benefit of the novel 

BPF over the square shaped resonator BPF is a quality factor three times greater. Figure 4b shows that 

the return loss increases with the number of unit-cells. 

Figure 4. (a) S21 simulation results; and (b) S11 simulation results. 

 

a) b)
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In order to suppress the second harmonic, several techniques have been reported in literature.  

In [26] two quarter wavelength open ended stubs are attached at the edges of the resonators in the main 

coupling path in order to have harmonic suppression, but this implies additional circuit elements 

against compact filter design. Another interesting alternative, such as using a continuous modulation in 

the coupled section of the filter [27,28] and using Koch fractal geometry [29], have also been 

considered, but both are time consuming due to the need of many parameters optimization. In this 

contribution, defected ground structures (DGS) are used to act as a low-pass filter. The slots are placed 

in the ground plane, directly under the input/output feeding lines [30]. 

The dimensions of the slots were chosen as c = 6.6 mm, d = 5 mm, f = 1.3 mm, g = 0.4 mm,  

l = 4.8 mm, m = 4.4 mm, n = 1.3 mm, x = 1.6 mm, y = 1.9 mm (see Figure 5a). The conductor strip of the 

microstrip line on the top plane has a width of 1.8 mm, corresponding to 50 Ω characteristic impedance. 

From simulation results in Figure 5b, the DGS structure under the microstrip transmission line 

exhibits a 3 dB cutoff frequency at 7.15 GHz and a center frequency of the stop band at 8.25 GHz with 

a maximum attenuation of 33 dB. 

Figure 5. (a) Topology of defected ground structures (DGS) section (bottom view); and 

(b) transmission coefficient of DGS section. 

 

The dimensions of the slots placed in the ground plane influence the 3 dB cutoff frequency and the 

attenuation. Figure 6 shows the parametric study of the most important parameters “x”, “l”, “m” and 

“c”. Only one parameter is changed at a time during the analysis. By increasing the “x” parameter, the 

3 dB cutoff frequency decreases whereas the attenuation is almost the same at 8.25 GHz. The “l” 

parameter controls both the attenuation at the center frequency of the stopband and the 3 dB cutoff 

frequency. On decreasing “l”, the center frequency of the stopband, the attenuation and the 3 dB cutoff 

frequency increase. The parameters “c” and “m” influence only the 3 dB cutoff frequency. The 3 dB 

cutoff frequency decreases when the parameters “c” and “m” decrease. 

  

a) b)
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Figure 6. Parametric analysis of the DGS. 

 

4. Results 

Prototypes of the band-pass filter with second harmonic suppression (henceforth referred to as  

BPF-DGS) and without harmonic suppression using one unit-cell resonator, have been manufactured 

using laser micromachining (see Figure 7). 

The results of measured transmission coefficient for the BPF-DGS and BPF prototypes are depicted 

in Figure 8a. The measured 3 dB bandwidth goes from 6.16 to 6.62 GHz, signifying 460 MHz (7.18%) 

for the BPF prototype. There is good agreement between measurement and simulation results for the 

filter without harmonic suppression. 

Regarding the BPF-DGS prototype, a 3 dB passband of 210MHz (3.32%) at the center frequency 

6.32 GHz is obtained in simulation whereas, in measurements, 175 MHz (2.76%) passband at 6.33 GHz 

resulted. In the stopband regions some slightly differences between measurement and simulation can 

be observed. The fact that commercial MoM software considers infinite extension of the dielectric 

substrate, together with manufacturing process tolerances and cables’ and connectors’ losses, explains 

the differences in the stopband region. Nevertheless, the simulations and measurement results are in 

good agreement and they meet the application requirements in the C band range. The filter with DGS 

exhibits approximately 50% less pass bandwidth than the BPF without harmonic suppression because 

of the reduced coupling generated. 
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Figure 7. Manufactured prototype band-pass filter with second harmonic suppression 

(BPF-DGS) (a) top view; (b) bottom view; and (c) cross-section view. 

 

 

Figure 8. (a) S21 simulation and measurement results; and (b) S11 simulation and 

measurement results. 

 

The absence of multilayer substrates and vias make the filters suitable to be used not only in 

satellite/terrestrial communication applications, but also in wearable applications where the prototypes 

could be shape adapted and bended. From Table 2, it can be easily seen that the size of the proposed 

BPF is minimized compared to band-pass filters with similar performance and substrate as used  

in [31–34], whereas the BPF-DGS shows a higher quality factor. 

a) b)
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Table 2. Comparison with other band-pass filters. 

Prototype 
3 dB 

fc 
BW(3 dB) 

Q 
Size  

(mm × mm) 

Size λ—wavelength  

at the corresp. fc flow (GHz) fhigh (GHz) GHz % 

BPF 6.25 6.62 6.44 0.37 5.75 17.40 
29.8 × 11.52 * 0.63λ × 0.25λ * 

11.92 × 11.52 0.25λ × 0.25λ 

BPF-DGS 6.23 6.40 6.33 0.17 2.76 36.38 29.8 × 11.52 0.63λ × 0.25λ 

[31] 5.46 5.84 5.65 0.38 6.72 14.80 46.2 × 11.5 0.87λ × 0.21λ 

[35] 5.58 5.83 5.71 0.25 4.46 22.80 40 × 10 0.76λ × 0.19λ 

[35] 5.39 6.02 5.71 0.63 11.14 9.06 40 × 10 0.76λ × 0.19λ 

[36] 5.88 6.12 6 0.24 4.05 25 15 × 13 0.3λ × 0.26λ 

[32] 6.63 6.96 6.8 0.33 4.9 20.6 20 × 22 0.45λ × 0.5λ 

[33] 5.09 5.35 5.25 0.26 4.9 20.2 45 × 14 0.79λ × 0.25λ 

[34] 5.14 5.38 5.25 0.24 4.57 21.8 19.8 × 17.9 0.35λ× 0.31λ 

[37] 4.78 5.61 5.2 0.83 16 6.26 26.3 × 9.9 0.45λ × 0.17λ 

[38] 5.54 5.86 5.7 0.32 5.6 17.81 26 × 8 0.5λ × 0.15λ 

[39] 1.36 1.49 1.42 0.13 9 10.9 22.14 × 5.08 0.1λ × 0.023λ 

[40] 2.84 4.2 3.4 1.36 40 2.5 20 × 15 0.22λ × 0.17λ 

* Considering the input/output feeding lines. 

The miniaturized BPF-DGS is demonstrated at 6.33 GHz, which is a higher frequency than the 

reported filter in [35]. If the proposed filter would be made to operate in the same frequency band as  

in [35], the filter would have a smaller size compared to [35]. 

In [37], the proposed filter renders a quality factor of 6.26, which is approximately three or six 

times lower compared to 17.4 of the BPF and 36.38 of the BPF-DGS. In [39], the upper conducting 

layer of the filter is connected through the bottom ground plane using vias. Even though in [39] a  

0.1λ0 × 0.023λ0 miniaturized band-pass filter is shown, with a lower quality factor, it has the 

disadvantage of high cost and a difficult manufacture process due to the use of vias which are 

vulnerable to environmental influences such as being insufficiently plated through or filled with solder. 

This may cause the delamination or cracking of the vias. 

5. Conclusions 

The design of a frequency selective band-pass filter with small dimensions and second harmonic 

suppression using an electromagnetic resonator has been presented. A prototype has been 

manufactured at 6.4GHz and characterized based on transmission loss measurements. Second 

harmonic suppression was obtained using a DGS topology. The filter presents a high selectivity with a 

sharp passband to stop band transition. The compact size, low cost, simple fabrication and integration 

with other components in the system make it appropriate for satellite/terrestrial communication and 

wearable applications. 
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