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Abstract—Steel processes are often of a complex nature and dif-
ficult to model. All information that we have at hand usually con-
sists of more or less precise models of different parts of the pro-
cess, some rules obtained on the basis of experience, and typically
a great amount of high-dimensional data coming from numerous
sensors and variables of process computers which convey a lot of
information about the process state. We suggest in this paper the
use of a continuous version of the Self-Organizing Map (SOM) to
project a high dimensional vector of process data on a 2D visual-
ization space in which different process conditions are represented
by different regions. Later, all sorts of information resulting from
the fusion of knowledge obtained from data, mathematical models
and fuzzy rules can be described in a graphical way in this visual-
ization space.

I. I NTRODUCTION

Process monitoring and control is a very wide field of study
and of a great importance in industry, nowadays and ever. The
requirements of accuracy and quality in manufacturing are rais-
ing rapidly due to an increasing competition in global markets,
triggering each year higher costs in control and maintenance
systems. Because of this, the development of new tools for pro-
cess monitoring and control has become essential.

Industrial processes are commonly very complex. The adjec-
tive “complex” comes mainly from the fact that they have many
variables with nonlinear relationships which also can change in
time. These characteristics make them difficult to model and
this becomes an important drawback in tasks like monitoring
and control of such processes. Several approaches have been
considered to accomplish these tasks and, specially, those ori-
ented to fault detection and diagnosis. Model-based techniques
use mathematical models of the process to generate residuals
which indicate faults in that process (analytical redundancy)
[1]. More recently, methods relying on artificial intelligence
(AI) approaches are appearing, concerning data-based models
founded on neural networks [2] and qualitative models founded
on fuzzy inference systems [3], [4], [5], and even combinations
of them [6].

Lately, AI techniques have been oriented to process mon-
itoring by means of visualization methods [7], [8], [9], [10],
[11] and nonlinear dimensionality reduction techniques in gen-
eral, which have received considerable attention for high-
dimensional data processing in many fields of sciences [12],
[13], [14]. These approaches, in some way, try to take advan-
tage of the visual-perception human skills, which are superior
to those of any machine.

This paper is structured as follows. In section II, the ba-
sic problems in process monitoring are formulated, with spe-
cial attention on steel processes. We also introduce the visu-
alization approach, and the example of a hot-rolling mill used
in subsequent sections is described. In section III, the idea of
dimensionality reduction for process monitoring is presented.
In section IV, several possibilities of process visualization are
outlined, and finally, in section V we give some concluding re-
marks and propose future research lines.

II. M ONITORING OF STEEL PROCESSES

Steel processes are difficult to model. Their behavior usually
depends on several tuning parameters, control algorithms, pre-
set values, lookup tables, nonlinear blocks, etc. which typically
suffer plenty of modifications along the process history. Most
of the times, we lack a global model which describes the whole
process behavior and the relationships among all the variables.
All information that we have at hand usually consists of more
or less precise models of different parts of the process, some
rules obtained on the basis of experience, and typically a great
amount of high dimensional data coming from numerous sen-
sors and variables of process computers which convey a lot of
information about the process state.

Thus, we need methods which allow to deal with all these
–heterogeneous– sources of knowledge, i.e. methods which:

a) allow to learn from data
b) allow to use the available prior knowledge about the pro-
cess (rules, partial models, etc.).

Some “learning algorithms” such as multilayer perceptrons
(MLP), or certain parametric statistical models allow to model
the process from the information conveyed by the data by learn-
ing functional relationships among groups of process variables.
However, they do not provide insight on the process and, hence,
they do not allow us to integrate the prior knowledge about the
process that we might have at hand in terms of models or rules.
In other words, they can not be used to reason and they do not
allow us to discover new features of the process behavior.

This paper is based on a idea initially proposed by Kohonen
for process condition monitoring [7], [15]. We suggest here the
use of a continuous extension of the Self-Organizing Map [16]
to project a high-dimensional vector of process data, or fea-
tures obtained from a previous feature extraction process, on a
2D visualization space in which different process conditions are
represented by different regions. This visualization space pro-
vides a unified framework of process representation in which
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Fig. 2. Codebook vectorsmi in the input (feature) space.

not only process variables, but also other forms of prior knowl-
edge about the process, such as validity of rules (fuzzy or crisp)
as well as validity of known models of the process, can be de-
scribed in a graphical way, in terms of regions, in the same way
as cartographic maps allow to represent population densities,
mountain elevations or rain-fall indices.

We illustrate this idea with data from a large DC motor of a
hot-rolling mill (see table I). Several variables were analyzed:
field currentif , armature currentia, speed!, and armature
voltage,Va. Also, different segments of data, corresponding
to different parts in the rolling of six coils, are labeled (see ta-
ble II). Each segment is labeled with a letter identifying the
coil (a,b,. . . , f) and two characters indicating start of rolling
(sr), the several segments during rolling (r1, r2,. . . ) or end of
rolling (er). Thenr means no-rolling.

TABLE I
DC MOTOR FEATURES.

Power: 6000 kW
Rated armature voltage: 700 V
Rated armature current: 9000 A
Rated field current: 150 A
Rated speed: 180 rpm
Max speed: 360 rpm
Location: Hot finishing mill
Stand: F2

TABLE II
LABELS AND FEATURES OF THE SIX DIFFERENT COILS.

COIL TIME THICKNESS WIDTH STEEL YIELD STR.
A 15:44:48 1.73 1010 B085G99 32
B 15:46:41 1.73 1010 B085G99 32
C 15:48:53 4.02 1010 B012F53 22
D 15:50:47 4.02 1010 B012F53 22
E 15:53:04 4.02 1010 B012F55 22
F 15:54:44 1.55 1010 B011B99 24
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Fig. 3. Regular SOM grid in the output (visualization) space formed by the
nodesgi.

III. V ISUAL ANALYSIS OF PROCESSES

It is not unusual that a process generate data even from hun-
dreds of variables. The value of these variables form a vector
v(t) at each timet and, therefore,v(t) is a trajectory of process
measures inRp , beingp the number of process variables. This
measures are function of the state variables of the process and,
though they are not likely to hold the whole state information,
if they are properly chosen, the measures contain useful infor-
mation about the process condition. Among all the measured
variables, a number of them are highly correlated and they con-
tain redundant information. Several of them may have a very
complex variation pattern or they may be mixed with noise. To
overcome all these problems, usually, the measured variables
are previously processed to obtain a set of features with a more
packed information content. After this feature extraction, which
transforms the measure space into a feature space, the informa-
tion about steady states of the process reflects itself as clusters
of data in the trajectory of featuresx(t) 2 Rn , and the transition
between them as data paths between clusters. This trajectory in
feature space can be thought of as a state trajectory.

Maybe, the most straightforward way of exploiting the in-
formation provided by the state trajectory is its visualization.
However, whenn > 3, beingn the number of process fea-
tures, this trajectory can not be graphically represented. A
method to project data with nonlinear relationships from a high-
dimensional space onto a visualization space is needed. In addi-
tion, this method must preserve the information about the pro-
cess state, i.e., it must project different states in different regions
of visualization space. Several methods have been proposed to
accomplish this task. Maybe, the best synergy between simplic-
ity and high performance is provided by the Self-Organizing
Map [17], [7], which can be combined with a General Regres-
sion Neural Network (GRNN) [18] in a technique called Ker-
nel Regression SOM (KR-SOM) [16] to overcome quantiza-
tion errors derived from the discrete character of the SOM. The
dimension-reduction scheme for process monitoring is shown
in fig. 1.

The Self-Organizing Map can be defined as a nonlinear map-
ping from a high-dimensional input space (here, the space of



Fig. 1. The idea of dimensionality reduction for process monitoring.

feature vectors)Rn , onto a low dimensional (typically 2D) rect-
angular grid (also calledvisualization space). The map is de-
fined by a set of points (codebook vectors)mi in the input space
and a corresponding set of nodes of a rectangular gridgi. A
training algorithm arranges the codebook vectorsmi so that
they acquire the same geometry of the input data in a smooth
and ordered fashion –see fig. 2 and 3; note the matching of
condition-related regions between both spaces–.

For each feature vectorx, the SOM projection is defined so
that the projection ofx is the 2D node positiongc correspond-
ing to the nearest codebook vectormc to the actual feature vec-
tor x in the input space. Because of this definition, everyx

in the Voronoi’s region ofmc projects ontogc, resulting in a
quantization errorqe = kx�mck.

IV. CONTINUOUS SOM PROJECTION

In the KR-SOM, the projection from input space onto vi-
sualization space (forward projection) is carried on using a
GRNN, which performs an approximation of continuous func-
tionSmi!gi : R

n �! R
2 by interpolation from a set of centers

mi 2 Rn and their correspondent centersgi 2 R2 , in this case,
the SOM codebook vectors and the grid units respectively:

y = Smi!gi(x) =

P
i�(kx�mik)giP
j �(kx�mjk) (1)

wherex 2 R
n andy 2 R

2 . In the same manner, there also
exists the possibility of performing the projection from visual-

ization space onto input space (backward projection) :

x = Sgi!mi
(y) =

P
i�(ky � gik)miP
j �(ky � gjk) (2)

where the kernel function� usually has the form:

�(kzk) = e�
kzk2

2�2 : (3)

Once a feature vector is projected onto a visualizable space,
the original knowledge available in feature space is not lost.
The visualization space can be used to provide further infor-
mation about the regions that the state trajectory goes through
along time in different process working conditions. This infor-
mation can be represented using colors or shades of gray, which
correspond to different values of any measurable property eval-
uated at each point of the input (feature) space. To achieve
it, each visualization space point is projected by means of the
backward projection and then it is colored in the visualization
space with a color or shade of gray proportional to the value of
the required property in the input space of the projected point.

A. Trajectory projection

The projection of the feature vector trajectory can be ob-
tained from direct application of the forward projection given
in (1):

y(t) = Smi!gi(x(t)): (4)
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Fig. 4. Trajectory in visualization space of an end of rolling process (der). It
goes from the rolling region (right) to the regeneration region (left).

In fig. 4, an example state trajectory corresponding to the
end of rolling of a coil (D) is projected onto the visualization
space. The methods to identify the regions that it spans will be
explained in subsequent sections.

B. Component planes

The values of the original coordinates in input space of a
point projected in visualization space are supplied by the com-
ponent planes. In fig. 5 the SOM planes for the motor example
are shown. The SOM component planes display in visualiza-
tion space the values of the process features at each point as a
gray shades (or colored pixels).
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Component planes are not restricted to be of variables used
in SOM training. Variables dependent of those can also be dis-
played in visualization space. In fig. 6, the SOM plane of torque
is displayed. It is not a variable included in SOM training, but
a variable derived from the expressionTe = K � ia � if , where
K is a constant.

The component planes themselves are an important source
of information about the process. However, to extract this in-
formation, the component planes must often be combined with
the knowledge about the process that the technician which uses
them possesses, sometimes in the form of mathematical models
or simply fuzzy rules. If the trajectory of fig. 4 were plotted on
the component plane of armature current, looking at it someone
who knows the rolling process of the example could infer that
the trajectory goes from a rolling region (relatively high arma-
ture current) to a motor braking regeneration region (negative
armature current). This can be made easy as will be explained
in the following sections.

C. Distance map

Another possibility, when representing information in visu-
alization space, is that some propertyDi is known only for the
SOM units. Then, an equation similar to those of (1) and (2)
can be used:

D(y) =

P
i�(ky � gik)DiP
j �(ky � gjk) (5)

whereD(y) is the value to color the pixely in visualization
space. IfDi is the mean distance in input space of SOM unit
i to its neighbor units, thenD(y) represents the interpolated
distance matrix.

The distance matrix shows in visualization space the actual
distances between points in input space. Dark zones point out a
region of the input space which is very compressed in the visu-
alization space. Points that appear close in visualization space
are actually close only if there are light shades between them
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Fig. 7. Activation map fornr6 data segment. The dark zone is the region
activated by this data set.

in distance matrix. Therefore, the distance matrix reveals data
clusters in input space, which are expected to correspond to dif-
ferent process conditions. In fig. 4, an example state trajectory
is projected onto the visualization space with the distance ma-
trix.

D. Activation maps

The labels displayed in the visualization space in fig. 4 show
up regions corresponding to data segments for each rolling of
table II. Analogously, regions which have been identified as
corresponding to certain process conditions can be labelled for
fast visual identification. This labeling can also be done in an
automated way. When the process condition corresponding to
a given data set is known, the easiest way to place the labels
is, as they were in this case, usingactivation maps, which are
obtained as follows. Letfxkgk=1;:::;K be a data set. The acti-
vation level of SOM uniti for that data set is defined as:

Ai =

P
k hc(k)i
PM

j=1 hij
i = 1; : : : ;M (6)

c(k) = argmin
i
fd(xk;mi)g (7)

whereM is the number of SOM units andc(k) is the index
of the winner SOM unit forxk. The continuous version is ob-
tained with (5). Activation maps show up which zones in visu-
alization space correspond to a certain data set of input space.
In fig. 7, the activation map corresponding to the data segment
nr6 (not rolling, segment six) is shown.

E. Residual vector

As it was mentioned in section IV-B, the component planes
give the feature values for the projection of a feature vector in
visualization space. However, this is only true when the SOM
models the projected point, i.e., when this point belongs to a
process condition present in SOM training. If this does not

happen, the projected point only shows the most similar pro-
cess condition that was present in SOM training data. An avail-
able method to detect this situations is themodeling error. The
modeling error is the difference between a point in input space
and the point that results when the former is projected in the vi-
sualization space and then back to input space. Here, the SOM
is a model of the process and this modeling error is a residual
vector:

e = x� x̂ = x� Sgi!mi
[Smi!gi(x)]: (8)

The values of the residual-vector components generated
through mappings (autoassociators) based on the support of the
data pdf hold a physically insightful relationship with the novel
process conditions[19]. Accordingly, a componentwise repre-
sentation of the residual vector reveals which features1 are most
susceptible to be involved in the fault, as well as the sign of the
deviations.

The residual vector can be represented as a graph for each
feature, but it can be also displayed with gray shades (see fig.
8), in which the horizontal axis is “time” and vertical axis corre-
sponds to the residuals of each process feature present in SOM
training. This way of displaying is very useful when the num-
ber of process features is large. Fig. 8 and 9 show a rolling with
steelB085G99 and target thickness4:06 that was not present
in SOM training data. From the state trajectory projection it can
be inferred that this rolling is more similar to those ofC, D and
E. However the residual vector unveils some differences of this
new rolling with respect to them at the first stages. The new sit-
uation projects over the border betweennr6, cr1 anddr1. Since
that is a zone of high neuronal distances, the condition signaled
by the KR-SOM seems to be an intermediate situation resulting
from the interpolation of the mentioned conditions, and with re-
spect to which the armature current is now higher and the field
current is slightly lower (the sign of the residuals is only distin-
guishable in the color version of the figure).
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Fig. 8. Residuals for a rolling with steelB085G99 and thickness 4.06. The
original is in color and the positive and negative residuals can be distinguished
in it.

F. Residual or model maps

We can incorporate knowledge in form of equations (and
mathematical models in general) in visualization space [20].

1Those whose residuals differ significantly from zero.
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Fig. 9. State trajectory for a rolling with steel B085G99 and thickness 4.06
not present in training data.

Residuals obtained from known models of the process can be
represented in visualization space asresidual mapsor model
maps. A “known model” is usually an equation, which can be
converted to the formf(x) = 0. The residual map for that
equation is obtained by evaluation of the following equation at
each pointy of the visualization space:

�(y) = f(x) = f(Sgi!mi
(y)): (9)

As an example, fig. 10 shows a regression line adjusted for pairs
of data armature voltage/speed in the control zone of speed
under its rated value. This regression line yields an equation
f(Va; !) = Va � 4:08! + 4:23 = 0, which corresponds to the
DC motor equation:

Va = Ra � ia + La
dia

dt
+K � if � ! (10)
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Fig. 10. Graph for speed - armature voltage. The line was adjusted by least
squares in the zone of speed control by armature voltage.
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Fig. 11. Residual map for the zone of speed control by armature voltage.
White zones are zero residuals.

TABLE III
FUZZY RULES FOR AN ESTIMATION OF SPEED.

if (Va is high) and (If is low) then (Speed is very-high)
if (Va is high) and (If is medium) then (Speed is high)
if (Va is high) and (If is high) then (Speed is medium)
if (Va is medium) and (If is high) then (Speed is low)
if (Va is low) and (If is high) then (Speed is very-low)

when it is in steady state and the armature current and the
field current are both constant. In points of visualization space
where this equation does not verify, the residual, namely� =
f(Va; !), is not zero (fig. 11). Therefore, residual maps point
out the regions in visualization space where a given equation
related to the process holds, and where it does not and in what
extent.

G. Fuzzy inference maps

Knowledge in form of fuzzy rules can also be added by
means of fuzzy inference maps [20]. Thus, ifg is a fuzzy in-
ference system (FIS) with one output� and as many inputs as
process features:

�(y) = g(x) = g(Sgi!mi
(y)): (11)

As an example, in fig. 12 (left) it is shown an estimation of
speed from the variables armature voltage and field current us-
ing the rules in table III. This figure is fairly similar to that of
the component plane of speed in fig. 5. A fuzzy inference map
can describe a degree of fulfilment of a process condition. For
example, typing the rules of table IV in a FIS, the regions of
the visualization space where the system is rolling are automat-
ically generated –see fig. 12 (right)–.

H. Correlation maps

Looking at the component planes in fig. 5 it can be noted that
the component plane for speed is the negative image of the com-
ponent plane for field current, except for those regions where ar-



TABLE IV
FUZZY RULES FOR“ROLLING” CONDITION.

if (Va is not low) and ((Ia is high) or (Ia is medium)) then (Rolling is true)
if (Va is low) or (Ia is zero) or (Ia is negative) then (Rolling is false)

      low

   medium

     high

Fuzzy Inference Map: Speed

false

     

 true
Fuzzy Inference Map: Rolling

Fig. 12. Fuzzy inference maps. Fuzzy map for speed: linguistic estimation
of speed from the variables armature voltage and field current. Fuzzy map for
rolling condition: in light regions the system is rolling.

mature voltage drops under its maximum value. This same con-
clusion can be reached at a glance in the corresponding correla-
tion map of fig. 14. The correlation maps [21] show up the local
correlation between process variables at each point of visualiza-
tion space. Correlation analysis is a powerful technique to dis-
cover linear relationships between pairs of variables, but tradi-
tionally is applied on a whole data set, providing only global in-
formation. However, this is not very useful in data from indus-
trial processes, which typically contain several working points
where the correlations between process variables may differ.
A local approach is possible by weighting data in input space
with a kernel functionwk(y) = e�

1

2
kxk�Sgi!mi

(y)k2=�2 . Each
point of the visualization-space gridy is projected onto input
space, and this imageSgi!mi

(y) is used as center of the ker-
nel function to calculate the local mean and the local covariance
matrix:

m(y) =

P
k xk � wk(y)P

k wk(y)
(12)

C(y) = (cij) =

P
k[xk �m(y)][xk �m(y)]Twk(y)P

k wk(y)
(13)

Then, the local correlation matrix aroundy is:

R(y) = (rij) where rij =
cijp
ciicjj

: (14)

Fig. 13. Field-weakening control scheme.

The correlation map for variablesxi andxj is represented by
the valuerij (or rji due to the symmetry of covariance and
correlation matrices) at each pointy of the visualization-space
grid. Note that fig. 14 represents indeed a generalization of a
correlation matrix, showing up the local distribution of correla-
tions.

In fig. 14, one can observe the direct correlation betweenVa
and! (white area) and the inverse correlation betweenif and!
(dark area) in complementary regions of the visualization space
due to the field-weakening control scheme depicted in fig. 13.

V. CONCLUSIONS AND FURTHER WORK

Steel processes are often complex and typically involve many
variables. Information about the process is often presented in
quite heterogeneous ways such as models, rules, big amounts
of data recorded from multiple sensors and stored in large
databases or just years of experience which just “stay” in the
minds of the technicians and which they do not even know how
to formulate. Most of the times none of these descriptions is
sufficient by itself and approaches taking advantage of all them
can become very useful.

In this paper we describe an approach to model the process
on the basis of a nonlinear projection of process data on a 2D
space, which can be visualized, while preserving the main ge-
ometrical relationships among variables in the input (feature)
space. This approach “translates” any reasoning mechanisms
(models, fuzzy rules, etc.), which take place in the feature
space, into visual metaphores in the visualization space, allow-
ing us to exploit our ability to infer conclusions in a visual way.

We show how to translate several of these “kinds of knowl-
edge” about the process into regions in the 2D space and use
them to establish conclusions in a typical steel process (a large
DC motor used in a hot-rolling mill).

We believe that this visual representation of knowledge can
provide an extremely powerful tool to model and understand
many other difficult steel processes. However, much further
work still remains to be done to exploit the capabilities of vi-
sualization, as well as to discover enhanced ways to represent
the available knowledge. Currently, these methods are being
tested to investigate the relationships between more than eighty
operating parameters in a tandem cold rolling mill and several
quality measures of the coils.
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