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Abstract—Steel processes are often of a complex nature and dif-  This paper is structured as follows. In section Il, the ba-
ficult to model. All information that we have at hand usually con-  sjc problems in process monitoring are formulated, with spe-

sists of more or less precise models of different parts of the pro- g5 gitention on steel processes. We also introduce the visu-
cess, some rules obtained on the basis of experience, and typically

a great amount of high-dimensional data coming from numerous f”ll'zat'on approach,_and _the example of a ho'F-roIIIng m'”_ used
sensors and variables of process computers which convey a lot ofin subsequent sections is described. In section Ill, the idea of
information about the process state. We suggest in this paper the dimensionality reduction for process monitoring is presented.

use of a continuous version of the Self-Organizing Map (SOM) to |n section IV, several possibilities of process visualization are

project a high dimensional vector of process data on a 2D visual- tjined, and finally, in section V we give some concluding re-
ization space in which different process conditions are represented h
marks and propose future research lines.

by different regions. Later, all sorts of information resulting from
the fusion of knowledge obtained from data, mathematical models
and fuzzy rules can be described in a graphical way in this visual- T

N . MONITORING OF STEEL PROCESSES
ization space.

Steel processes are difficult to model. Their behavior usually
depends on several tuning parameters, control algorithms, pre-
set values, lookup tables, nonlinear blocks, etc. which typically
suffer plenty of modifications along the process history. Most

Process monitoring and control is a very wide field of stud9f the times, we lack a global model which describes the whole
and of a great importance in industry, nowadays and ever. TRi@cess behavior and the relationships among all the variables.
requirements of accuracy and quality in manufacturing are rafll information that we have at hand usually consists of more
ing rapidly due to an increasing competition in global market8! less precise models of different parts of the process, some
triggering each year higher costs in control and maintenani¢ées obtained on the basis of experience, and typically a great
systems. Because of this, the development of new tools for pegnount of high dimensional data coming from numerous sen-
cess monitoring and control has become essential. sors and variables of process computers which convey a lot of

Industrial processes are commonly very complex. The adjdaformation about the process state.
tive “Comp|ex” comes main|y from the fact that they have many ThUS, we need methods which allow to deal with all these
variables with nonlinear relationships which also can changeifheterogeneous—sources of knowledge, i.e. methods which:
time. These characteristics make them difficult to model and a) allow to learn from data
this becomes an important drawback in tasks like monitoring b) allow to use the available prior knowledge about the pro-
and control of such processes. Several approaches have beencess (rules, partial models, etc.).
considered to accomplish these tasks and, specially, those 8tme “learning algorithms” such as multilayer perceptrons
ented to fault detection and diagnosis. Model-based techniqis.P), or certain parametric statistical models allow to model
use mathematical models of the process to generate residttadsprocess from the information conveyed by the data by learn-
which indicate faults in that process (analytical redundanciyg functional relationships among groups of process variables.
[1]. More recently, methods relying on artificial intelligenceHowever, they do not provide insight on the process and, hence,
(Al) approaches are appearing, concerning data-based modeds do not allow us to integrate the prior knowledge about the
founded on neural networks [2] and qualitative models found@docess that we might have at hand in terms of models or rules.
on fuzzy inference systems [3], [4], [5], and even combinatioms other words, they can not be used to reason and they do not
of them [6]. allow us to discover new features of the process behavior.

Lately, Al techniques have been oriented to process mon-This paper is based on a idea initially proposed by Kohonen
itoring by means of visualization methods [7], [8], [9], [10],for process condition monitoring [7], [15]. We suggest here the
[11] and nonlinear dimensionality reduction techniques in gease of a continuous extension of the Self-Organizing Map [16]
eral, which have received considerable attention for higte project a high-dimensional vector of process data, or fea-
dimensional data processing in many fields of sciences [18]res obtained from a previous feature extraction process, on a
[13], [14]. These approaches, in some way, try to take advaZb visualization space in which different process conditions are
tage of the visual-perception human skills, which are superimpresented by different regions. This visualization space pro-
to those of any machine. vides a unified framework of process representation in which

I. INTRODUCTION
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Fig. 2. Codebook vectom; in the input (feature) space. Fig. 3. Regular SOM grid in the output (visualization) space formed by the
nodesg;.

not only process variables, but also other forms of prior knowl-

edge about the process, such as validity of rules (fuzzy or crisp)
as well as validity of known models of the process, can be de-It is not un_usual that a process generate_data even from hun-
scribed in a graphical way, in terms of regions, in the same wg{eds of variables. The value of these variables form a vector

as cartographic maps allow to represent population densitig!) at €ach time and, thereforey (#) is a trajectory of process

We illustrate this idea with data from a large DC motor of gneasures are funcﬂqn of the state variables of thg process and,
gjough they are not likely to hold the whole state information,

hot-rolling mill (see table ). Several variables were analyzeq: : X
. gmi ( ) yzef they are properly chosen, the measures contain useful infor-
field currentiy, armature current,, speedw, and armature

voltage. V.. Also. different seaments of data. corres Ondinmation about the process condition. Among all the measured

A9E, Va- ! - SEgme ) ' P \9ariables, a number of them are highly correlated and they con-
to different parts in the rolling of six coils, are labeled (see t?éin redundant information. Several of them may have a very
ble Il). Each segment is labeled with a letter identifying the '

: S . complex variation pattern or they may be mixed with noise. To
coil (a,b,..., f) and two characters indicating start of rollmg0 Il th bl v, th d variabl
(sr), the several segments during rollind.(r2,...) or end of vercome all these problems, usually, the measured variables
roIIi’n (er). Thenr means no-rollin A are previously processed to obtain a set of features with a more

9 ' 9- packed information content. After this feature extraction, which
transforms the measure space into a feature space, the informa-

IIl. VISUAL ANALYSIS OF PROCESSES

TABLEI tion about steady states of the process reflects itself as clusters
DC MOTOR FEATURES of data in the trajectory of featuresgt) € R, and the transition
between them as data paths between clusters. This trajectory in

Power: 6000 kw feature space can be thought of as a state trajectory.
Rated armature voltage: 700 V Maybe, the most straightforward way of exploiting the in-
Rated armature current: 9000 A formation provided by the state trajectory is its visualization.
Rated field current: 150 A However, whenn > 3, beingn the number of process fea-
Rated speed: 180 rpm tures, this trajectory can not be graphically represented. A
Max speed: 360rpm method to project data with nonlinear relationships from a high-
Location: Hot finishing mill dimensional space onto a visualization space is needed. In addi-
Stand: F2 tion, this method must preserve the information about the pro-

cess state, i.e., it must project different states in different regions
of visualization space. Several methods have been proposed to
accomplish this task. Maybe, the best synergy between simplic-
ity and high performance is provided by the Self-Organizing
Map [17], [7], which can be combined with a General Regres-

TABLE Il
LABELS AND FEATURES OF THE SIX DIFFERENT COILS

COIC T TIME T TRICKNESS | WIDTH T STEEC T VIELDSTR. sion Neural Network (GRNN) [18] in a technique called Ker-
A | 154448 173 1010 | BO85GY9 32 nel Regression SOM (KR-SOM) [16] to overcome quantiza-
B 15:46:41 1.73 1010 B085G99 32 H : H
—tTodsss 55 Toio— Bomars3 s tlpn errors denved_ from the discrete character qf th_e SQM. The
D | 15:50:47 4.02 1010 | BO12F53 22 dimension-reduction scheme for process monitoring is shown
E 15:53:04 4.02 1010 B012F55 22 in flg 1.

F 15:54:44 1.55 1010 B011B99 24

The Self-Organizing Map can be defined as a nonlinear map-
ping from a high-dimensional input space (here, the space of



The Dimension Reduction Approach
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Fig. 1. The idea of dimensionality reduction for process monitoring.

feature vectorsR™, onto a low dimensional (typically 2D) rect- ization space onto input space (backward projection) :
angular grid (also calledisualization spacde The map is de-
fined by a set of pointspdebook vecto)an; in the input space X = Sg. s (¥) = > @(|ly — gill)m;
and a corresponding set of nodes of a rectangular gjtidA S > 2y — &l
training algorithm arranges the codebook vectors so that
they acquire the same geometry of the input data in a smod¢Aere the kernel functio® usually has the form:
and ordered fashion —see fig. 2 and 3; note the matching of "
condition-related regions between both spaces—. ®(||z||) = e 207 . 3)
For each feature vecter, the SOM projection is defined so
that the projection ok is the 2D node positiog. correspond-  Once a feature vector is projected onto a visualizable space,
ing to the nearest codebook vectar. to the actual feature vec- the original knowledge available in feature space is not lost.

tor x in the input space. Because of this definition, every The visualization space can be used to provide further infor-
in the Voronoi's region ofm, projects ontag,., resulting in a mation about the regions that the state trajectory goes through

)

S

quantization errog, = ||x — m.||. along time in different process working conditions. This infor-
mation can be represented using colors or shades of gray, which
IV. CONTINUOUS SOM PROJECTION correspond to different values of any measurable property eval-

In the KR-SOM, the projection from input space onto Viyated at each point of the input (feature) space. To achieve

sualization space (forward projection) is carried on using |t3L each visualization space point is projected by means of the

GRNN, which performs an approximation of continuous funCtgackward projection and then it is colored in the visualization

0nSy, ., B — E bynerplatonirom st ofceners, 2% 17 50 o she ofcray properiona) 6 e e of
m; € R” and their correspondent centggisc R?, in this case, q property putsp Proj pont.

the SOM codebook vectors and the grid units respectively:

> 2(]|x — myl|)g;
Y = Sm;og (%) = 2 1) The projection of the feature vector trajectory can be ob-
=80 = 5 [ — my ) proj jectory

tained from direct application of the forward projection given

wherex € R* andy € R2. In the same manner, there alsdn (1):
exists the possibility of performing the projection from visual- Y(t) = Sm; g (x(1)). 4

A. Trajectory projection
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Fig. 4. Trajectory in visualization space of an end of rolling process (der). It
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goes from the rolling region (right) to the regeneration region (left).
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Fig. 6. SOM plane of torqué.

Component planes are not restricted to be of variables used
in SOM training. Variables dependent of those can also be dis-
played in visualization space. In fig. 6, the SOM plane of torque

In fig. 4, an example state trajectory corresponding to tfigdisplayed. Itis not a variable included in SOM training, but
end of rolling of a coil ) is projected onto the visualizationa variable derived from the expressibp = K -i, - iy, where
space. The methods to identify the regions that it spans will Be is a constant.

explained in subsequent sections.

B. Component planes

The component planes themselves are an important source
of information about the process. However, to extract this in-
formation, the component planes must often be combined with
the knowledge about the process that the technician which uses

The values of the original coordinates in input space ofthem possesses, sometimes in the form of mathematical models
point projected in visualization space are supplied by the comrsimply fuzzy rules. If the trajectory of fig. 4 were plotted on

ponent planes. In fig. 5 the SOM planes for the motor examplée component plane of armature current, looking at it someone
are shown. The SOM component planes display in visualizaho knows the rolling process of the example could infer that

tion space the values of the process features at each point @seatrajectory goes from a rolling region (relatively high arma-
gray shades (or colored pixels).
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ture current) to a motor braking regeneration region (negative
armature current). This can be made easy as will be explained
in the following sections.

C. Distance map

Another possibility, when representing information in visu-
alization space, is that some propeRy is known only for the
SOM units. Then, an equation similar to those of (1) and (2)
can be used:

5, #(ly —&l)D:
PO =58y — el

whereD(y) is the value to color the pixef in visualization
space. IfD; is the mean distance in input space of SOM unit
i to its neighbor units, the®(y) represents the interpolated
distance matrix.

The distance matrix shows in visualization space the actual
distances between points in input space. Dark zones point out a
region of the input space which is very compressed in the visu-
alization space. Points that appear close in visualization space
are actually close only if there are light shades between them

®)



g happen, the projected point only shows the most similar pro-
cess condition that was presentin SOM training data. An avail-
5¢ 1 able method to detect this situations is thedeling error The
modeling error is the difference between a point in input space
and the point that results when the former is projected in the vi-
sualization space and then back to input space. Here, the SOM
is a model of the process and this modeling error is a residual
20p 1 vector:

101 b

151 b

® 1 e=X—X=X-— Sgi*}mi [Smi%gi (X)] (8)

¥ 1 The values of the residual-vector components generated

% il through mappings (autoassociators) based on the support of the
data pdf hold a physically insightful relationship with the novel
40 7 process conditions[19]. Accordingly, a componentwise repre-

sentation of the residual vector reveals which feafumes most
susceptible to be involved in the fault, as well as the sign of the
o s 1w 15 ® 5 @ % @ & deviations.
The residual vector can be represented as a graph for each
Fig. 7. Activation map fomr6 data segment. The dark zone is the regiofeature, but it can be also displayed with gray shades (see fig.
activated by this data set. 8), in which the horizontal axis is “time” and vertical axis corre-
sponds to the residuals of each process feature present in SOM

in distance matrix. Therefore, the distance matrix reveals d&f@ining. This way of displaying is very useful when the num-
clusters in input space, which are expected to correspond to §F of process features is large. Fig. 8 and 9 show a rolling with
ferent process conditions. In fig. 4, an example state traject&i€/B085G99 and target thicknes&06 that was not present

is projected onto the visualization space with the distance m{8-SOM training data. From the state trajectory projectionit can
trix. be inferred that this rolling is more similar to those@fD and

E. However the residual vector unveils some differences of this
new rolling with respect to them at the first stages. The new sit-
uation projects over the border betwew8, crl anddrl. Since

The labels displayed in the visualization space in fig. 4 shawat is a zone of high neuronal distances, the condition signaled
up regions corresponding to data segments for each rollingiafthe KR-SOM seems to be an intermediate situation resulting
table Il. Analogously, regions which have been identified ggm the interpolation of the mentioned conditions, and with re-
corresponding to certain process conditions can be labelled §gject to which the armature current is now higher and the field

fast visual identification. This labeling can also be done in &yrrent is slightly lower (the sign of the residuals is only distin-
automated way. When the process condition correspondinggi@ishable in the color version of the figure).

a given data set is known, the easiest way to place the labels
is, as they were in this case, usiagtivation mapswhich are : : : : 1

45 T

D. Activation maps

obtained as follows. Lefx;}r=1,. x be a data set. The acti-
vation level of SOM unit for that data set is defined as:
0.5
h .
4; = L’;w (Wi =1, M 6 Va ‘
Zj:l hij 0

clk) = arg miin{d(xk, m;)} 7 itk

. . . . _05
where M is the number of SOM units ang k) is the index
of the winner SOM unit forx;. The continuous version is ob-
tained with (5). Activation maps show up which zones in visu- 100 200 200 400 500 1
alization space correspond to a certain data set of input spac.. time
Infig. 7, theT activation map c_orrespondlng to the data segmenf g Residuals for a rolling with steB085G99 and thickness 4.06. The
nré (not rolling, segment six) is shown. original is in color and the positive and negative residuals can be distinguished

in it.

E. Residual vector

As it was mentioned in section IV-B, the component plangs Residual or model maps

give the feature values for the projection of a feature vector iN\we can incorporate knowledge in form of equations (and

visualization space. Hovyeve.r, this is only true.when the SO athematical models in general) in visualization space [20].
models the projected point, i.e., when this point belongs to a

process condition present in SOM training. If this does not! Those whose residuals differ significantly from zero.
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Fig. 9. State trajectory for a rolling with steel BO85G99 and thickness 4.08g. 11. Residual map for the zone of speed control by armature voltage.

not present in training data. White zones are zero residuals.
TABLE Il
Residuals obtained from known models of the process can be FUZZY RULES FOR AN ESTIMATION OF SPEED

represented in visualization spacerasidual mapsor model
« " : : if (Va is high) and (If is low) then (Speed is very-high)
maps A “known model” is usually an equgtlon, which can be it (Va is high) and (If is medium) then (Speed is high)
converted to the formf(x) = 0. The residual map for that if (Va is high) and (If is high) then (Speed is medium)
; ; P ; ; : if (Va is medium) and (If is high) then (Speed is low)
equatlon is obtalneq by gva!uatlon of the following equation at it (Va is low) and (If is high) then (Speed is very-low)
each pointy of the visualization space:

e(y) = f(x) = [(Sgiam:(¥))- (9  when it is in steady state and the armature current and the
Féd current are both constant. In points of visualization space
ere this equation does not verify, the residual, namety
Eva,w), is not zero (fig. 11). Therefore, residual maps point
out the regions in visualization space where a given equation
related to the process holds, and where it does not and in what

As an example, fig. 10 shows a regression line adjusted for pa{l
of data armature voltage/speed in the control zone of spe
under its rated value. This regression line yields an equati
f(Va,w) =V, —4.08w + 4.23 = 0, which corresponds to the
DC motor equation:

extent.
di
Vo= Ry ia+ Lo + K iy w (10) .
dt G. Fuzzy inference maps
Knowledge in form of fuzzy rules can also be added by
800 w w w w means of fuzzy inference maps [20]. Thusgifs a fuzzy in-
00 ] ference system (FIS) with one outpuind as many inputs as
process features:
600 1
7(¥) = 9(x) = 9(Sgi—m; (¥))- (11)
500 b
As an example, in fig. 12 (left) it is shown an estimation of
s 400 1 speed from the variables armature voltage and field current us-
>° | ing the rules in table Ill. This figure is fairly similar to that of

300
the component plane of speed in fig. 5. A fuzzy inference map

1 can describe a degree of fulfilment of a process condition. For
example, typing the rules of table IV in a FIS, the regions of
the visualization space where the system is rolling are automat-
] ically generated —see fig. 12 (right)—.

200

100

-100 ‘ ‘ ‘ ‘ .
0 50 100 150 200 250 H. Correlation maps

@pm) Looking at the component planes in fig. 5 it can be noted that

Fig. 10. Graph for speed - armature voltage. The line was adjusted by Ik component plane for speed is the negative image of the com-
squares in the zone of speed control by armature voltage. ponent plane for field current, except for those regions where ar-



TABLE IV The correlation map for variables andz; is represented by

FUZZY RULES FOR"ROLLING” CONDITION. the valuer;; (or r;; due to the symmetry of covariance and
if (Va is not low) and ((la is high) or (la is medium)) then (Rolling is true) cqrrelatlon matrlpes) at each pO!}’ﬂDf the VISU&“Z&IIOI;\-SP&CG
if (Va is low) or (la is zero) or (Ia is negative) then (Rolling is false) grid. Note that fig. 14 represents indeed a generalization of a
correlation matrix, showing up the local distribution of correla-
Fuzzy Inference Map: Speed Fuzzy Inference Map: Rolling tions

true

In fig. 14, one can observe the direct correlation betwiéen
andw (white area) and the inverse correlation betwigeandw
(dark area) in complementary regions of the visualization space
due to the field-weakening control scheme depicted in fig. 13.

high

medium

V. CONCLUSIONS AND FURTHER WORK

low

false

Steel processes are often complex and typically involve many
Fig. 12. Fuzzy inference maps. Fuzzy map for speed: linguistic estimatiy@riables. Information about the process is often presented in
of s_peed frqr_n the_ v.’:_lriables_armature voltag_e and_ field current. Fuzzy mapqmte heterogeneous ways such as models, rules, big amounts
rolling condition: in light regions the system is rolling. of data recorded from multiple sensors and stored in large
databases or just years of experience which just “stay” in the

mature voltage drops under its maximum value. This same c#Rinds of the technicians and which they do not even know how
clusion can be reached at a glance in the corresponding corréfaformulate. Most of the times none of these descriptions is
tion map of fig. 14. The correlation maps [21] show up the locgHfficient by itself and approaches taking advantage of all them
correlation between process variables at each point of visuali£&h become very useful.

tion space. Correlation analysis is a powerful technique to dis-In this paper we describe an approach to model the process
cover linear relationships between pairs of variables, but tra@ the basis of a nonlinear projection of process data on a 2D
tionally is applied on a whole data set, providing only global insPace, which can be visualized, while preserving the main ge-
formation. However, this is not very useful in data from indugmetrical relationships among variables in the input (feature)
trial processes, which typically contain several working poinfPace. This approach “translates” any reasoning mechanisms
where the correlations between process variables may diffépodels, fuzzy rules, etc.), which take place in the feature
A local approach is possible by weighting data in input spaé@ace, into vis_ual meta_lphore_s in the visua_llizat_ion space, allow-
with a kernel functionuy, (y) = e—3lIxk—=Sg;~m; M)I?/o> Egch NG US to exploit our ability to infer conclusions in a visual way.
point of the visualization-space gridis projected onto input e show how to translate several of these “kinds of knowl-
space, and this imag8y, _,m, (y) is used as center of the ker-€dge” about the process into regions in the 2D space and use

nel function to calculate the local mean and the local covarianig®m to establish conclusions in a typical steel process (a large
DC motor used in a hot-rolling mill).

matrix:
We believe that this visual representation of knowledge can
m(y) = >k Xk wi(y) (12) Provide an extremely powerful tool to model and understand
dorwr(y) many other difficult steel processes. However, much further
S xk — m(y)][xe — m(y)]Twi(y) work still remains to be done to exploit the capabilities of vi-
Cly) = (cij) = S, wi(y) (13)  sualization, as well as to discover enhanced ways to represent
k the available knowledge. Currently, these methods are being
Then, the local correlation matrix arougds: tested to investigate the relationships between more than eighty
o operating parameters in a tandem cold rolling mill and several
R(y) = (ry where 71 = —2—. (14) quality measures of the coils.
( ) ( ZJ) t) m
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