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1 Introduction

Static, spherically symmetric black-hole solutions of N = 2 supergravity can be conve-

niently studied in the effective black-hole potential formalism originally developed by Fer-

rara, Gibbons and Kallosh [1] in four dimensions, later extended to arbitrary dimensions [2],

as well as to p-branes [3]. This is especially true for supersymmetric extremal solutions,

where expressing the effective potential by the central charge leads to the derivation of

first-order flow equations for the scalars (implied by the Killing spinor equations), whose

attractor fixed points (corresponding to the sets of values of scalars on the event hori-

zon) [4–7] are determined by critical points of the central charge.
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Even though not all extremal black holes are supersymmetric [8, 9] and all non-extremal

black holes break all supersymmetries, it turns out [10] that analogous flow equations may

be derived for four- [11] and five-dimensional extremal black holes [12], as well as for non-

extremal p-branes [13] and black holes [14]. This fact alone already hints at a possibility

that perhaps non-supersymmetric solutions could be obtained in a similar way to the su-

persymmetric ones. Indeed, at least in a class of four- [15] and five-dimensional [2, 19]

black holes and p-branes [3], the known supersymmetric solution can be deformed to a

unique non-extremal solution, from which both supersymmetric and non-supersymmetric

extremal solutions are recovered in the different limits in which the non-extremality pa-

rameter vanishes. This is, as far as we know, the only systematic method for constructing

general extremal non-supersymmetric black-hole solutions,1 in particular when the black-

hole potential has flat directions and the values of the scalar fields on the horizon have

some dependence on the asymptotic values [15].

That a deformation from a supersymmetric to a non-extremal solution must be possible

and that all static solutions with spherical symmetry can be treated in the same manner,

becomes clear in a new set of H-variables introduced in the 5-dimensional case in [19, 20]2

and in the 4-dimensional case in [21, 22]3 in which all static, spherically symmetric black-

hole solutions of a given model take the same, universal functional form, irrespective of

supersymmetry or extremality, although the radial profile of the H-variables themselves

will be different for the different kinds of solutions. These variables arise naturally in

the classification of the timelike supersymmetric solutions of these theories [23–27], to

which the supersymmetric black holes belong, but also occur in the classification of the

timelike supersymmetric solutions of more general theories (with hypermultiplets [28, 29],

gaugings [30] or both [32, 33] or with both and additionally tensor multiplets [34]) and

transform linearly under the duality transformations (subgroups of Sp(2n+ 2,R) in d = 4

and SO(n + 1) in d = 5, for n vector multiplets). These variables replace the scalars and

the metric function of the theory that appear on different footing in the effective action

and their use should, in principle, simplify and systematize the task of constructing explicit

solutions and general results.

In the present work we use the 5-dimensional version of this formalism to ask general

questions about the black-hole solutions of N = 2, d = 5 supergravity and to construct

some families of solutions. Furthermore, profiting from the recent extension of the FGK

formalism to p-branes in any number of dimensions, we extend the H-FGK formalism to

cover the case of black strings in these theories, introducing new H-variables inspired by

the classification of the null supersymmetric solutions of N = 2, d = 5 supergravities [23–

26, 29, 34, 35]. We then study the resulting system as we do with the one for black holes.

We start by reviewing the H-FGK formalism for black holes of N = 2, d = 5 super-

gravity coupled to vector multiplets in section 2.1. Following [21], we introduce the basic

1The fake superpotential governing non-supersymmetric extremal first-order flow equations can in prin-

ciple be constructed systematically [16–18], but there is no universal algorithm for integrating flow equations

to obtain explicit black-hole solutions by this method.
2A different derivation specific for N = 2 d = 5 supergravity theories was also given in [21].
3Again, the derivation of [21] makes heavy use of the formalism of N = 2, D = 4 supergravity.
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definitions concerning the theories we deal with, the metric ansatz and the H-variables. We

show how we can get the metric that covers the region lying between the inner (Cauchy)

horizon and the singularity (not discussed in [2, 3]) from the one that covers the exterior of

the outer (event) horizon in the present 5-dimensional case. This will allow us to compute

the “entropy” and “temperature” associated with the inner horizon.4

In section 2.2 we will apply the formalism just discussed to the study of extremal

(BPS and non-BPS) black holes under the reasonable assumption that, for extremal black

holes, all the H-variables are harmonic functions in the transverse space, defined by two

integration constants. We recover the results obtained in [19] and find some new ones.

We study how these integration constants can be determined as functions of the physical

parameters in general, finding that half of them are always determined by the asymptotic

values of the scalars, that can be fixed at will. The other half play the rôle of “fake charges”

and many physical quantities (mass, entropy) are determined by the fake central charge

(or superpotential) constructed by the standard formula with the charges replaced by the

fake charges. In the extremal case the fake charges can be determined by extremization

of the black-hole potential on the horizon, like in the original FGK formulation, but with

the actual black-hole potential now understood as a function of the fake and physical

charges, rather than of scalars and physical charges. The first-order flow equations for

extremal black holes are constructed in section 2.3 using the simple procedure proposed

in [36], which is valid for non-supersymmetric cases as well. The equations of motion of

an extremal black hole are reproduced when the fake black-hole potential (a function of

scalars and fake charges) is equal to the true one.

We then go on to study the non-extremal case in section 2.4, adopting for the H-

variables the exponential or hyperbolic ansatz of [2, 15, 19]. We show how the relation

between extremization of the black-hole potential and attractor behavior for the scalars

and the relation between entropy and black-hole potential on the horizon are modified in

the non-extremal case. In section 2.5 we demonstrate how the first-order equations for

non-extremal black holes can be brought to the form of the extremal flow.

Explicit solutions are given in section 3. The examples that we analyze include the

general non-extremal black holes with constant scalars, in section 3.1 (found earlier in [19] in

a different way), the STU model, in section 3.2, which we solve paying particular attention

to the possible signs of the charges, and in section 3.3 the models of the reducible Jordan

sequence, whose black-hole potential has flat directions and whose values of scalars on the

horizon, in some non-supersymmetric cases, are not completely fixed by the charges.

Finally, in section 4 we generalize this approach to black strings, using the extension,

recently constructed in [3], of the FGK formalism to p-branes, and introducing dual H-

variables (which we shall denote by K). Our study of this case follows what we did for

the black holes in the previous sections: we find the general solutions for non-extremal

black strings with constant scalars for any N = 2, d = 5 supergravity theory in section 4.2,

derive flow equations for black strings in section 4.1, and construct explicitly the extremal

black strings of the pure and the heterotic STU model in section 4.3.

Section 5 contains our conclusions.
4The inner horizon is also reached, albeit in a different way, in ref. [19].
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2 The H-FGK formalism in five dimensions

2.1 H-variables

We start by recalling the salient points of ref. [21]. N = 2, d = 5 supergravity [37–

39] coupled to n vector multiplets contains, apart from the metric, n scalar fields φx

(x = 1, . . . , n) and n+1 vector fields AI (I = 0, . . . n). The coupling between these fields is

specified by real special geometry, which in itself can be formulated in terms of a constant

completely symmetric real tensor CIJK and a section hI(φ) that obeys the fundamental

constraint

V(h) = CIJKhIhJhK = 1 . (2.1)

If we then define the derived objects

hI ≡ CIJKhJhK , hIx ≡ −
√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI
∂φx

, (2.2)

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 . (2.3)

The metric on the scalar manifold, gxy, and the vector kinetic matrix, aIJ , are given by

gxy = hIxh
I
y and aIJ = 3hIhJ − 2CIJKhK = hIhJ + hIxh

x
J . (2.4)

With these definitions we can write the bosonic part of the action for N = 2, d = 5

supergravity coupled to n vector supermultiplets as

I5 =
∫

5

(

R ⋆1 +
1

2
gxy dφ

x ∧ ⋆dφy − 1

2
aIJF

I ∧ ⋆F J +
1

3
√
3
CIJKF I ∧ F J ∧AK

)

. (2.5)

Having briefly detailed the relevant physical theory that we want to consider, we can discuss

the FGK formalism.

The starting point of the FGK formalism in 5 dimensions is the ansatz for a spherically

symmetric metric describing the exterior of the event horizon of a generic 5-dimensional

black hole, namely

ds2 = e2U(ρ)dt2 − e−U(ρ)

( B3

4 sinh3(Bρ)
dρ2 +

B
sinh(Bρ) dΩ

2
(3)

)

, (2.6)

where dΩ2
(3) is the round metric on the 3-sphere of unit radius and B is the so-called non-

extremality parameter, meaning that extremal solutions are obtained as the B → 0 limit. In

the employed coordinate system the asymptotic region lies at ρ = 0, whereas the putative

horizon is located at ρ → ∞: in order for the metric (2.6) to describe a non-extremal black

hole, the function U must have the following limiting behavior

lim
ρ→∞

e−U = eBρ, (2.7)

which ensures that the limiting spacetime is a 2-dimensional Rindler space times a 3-sphere.
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Although this was not realized in [2], the same general metric describes the interior of

the inner (Cauchy) horizon as well, just as it happens in d = 4 dimensions [15], although

in this case it is more difficult to see. Given a regular solution of the above form describing

the exterior of the black hole for ρ ∈ (0,+∞), by transforming5 that metric according to

ρ −→ −̺ , e−U(ρ) −→ −e−U(−̺) (2.8)

we can obtain the metric that has the same form, but describes the interior of the inner

horizon. The new radial coordinate takes values in the range ̺ ∈ (̺sing,+∞) because the

metric will generically hit a singularity before ̺ reaches 0: if the original e−U is always

finite for positive values of ρ, the transformed one will have a zero for some finite positive

value of ̺, as we will see in the examples. Since all parameters in the solution remain

unchanged and in the extremal limit the horizon has the same area as the extremal limit

of the horizon of the outer solution, it is reasonable to expect that this is indeed the metric

that covers the interior of the inner horizon.6

Being interested in spherically symmetric black hole solutions we take φx = φx(ρ) and

can solve the vector field equations of motion by putting

F I = −
√
3 e2UaIJ qJ dt ∧ dρ , (2.9)

where the q’s are the electric charges. Using the ansätze (2.6) and (2.9) in the remaining

equations of motion, we see that they all reduce to the following equations

Ü + e2UVbh(φ, q) = 0 , (2.10)

φ̈x + Γyz
xφ̇yφ̇z +

3

2
e2U∂xVbh(φ, q) = 0 , (2.11)

U̇2 +
1

3
gxyφ̇

xφ̇y + e2UVbh(φ, q)− B2 = 0 , (2.12)

where we used the over-dot to denote derivation with respect to ρ and we defined the black

hole potential by

Vbh(φ, q) ≡ −aIJqIqJ = −Z2
e − 3 ∂xZe ∂

xZe , (2.13)

and in the last step defined the (electric) central charge by Ze = Ze(φ, q) ≡ hIqI .

The equations (2.10) and (2.11) can be obtained from the FGK effective action

I[U, φx] =

∫

dρ
(

U̇2 + aIJ ḣI ḣJ − e2UVbh(φ, q) + B2
)

, (2.14)

where we made use of eqs. (2.2) and (2.4) to cast it into a more suitable form. Given this

action, eq. (2.12) can be interpreted as the constraint that the Hamiltonian corresponding

to eq. (2.14) be zero.

5This is not a coordinate transformation, because, among other reasons, it relates the metric in two

different, disjoint patches of the spacetime.
6At least as reasonable as in the well-known Reissner-Nordström case. The standard line element of

the Reissner-Nordström black hole describes actually three different metrics, since it is not valid on the

horizons. The only way to conclude that the two pieces that correspond to the interior can be connected

together and with the exterior metric is to construct its maximal analytical extension. Doing so for each of

the solutions that we are going to find is possible but complicated and we will not attempt it.
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At this point we introduce two new sets of variables, H̃I and HI , related to the original

ones (U, φx) by

e−U/2hI(φ) ≡ H̃I , (2.15)

e−UhI(φ) ≡ HI , (2.16)

and two new functions V and W

V(H̃) ≡ CIJKH̃IH̃JH̃K , W(H̃) = 2V(H̃) , (2.17)

but which are not constrained. Using the homogeneity properties of these functions we

find that

e−
3

2
U =

1

2
W(H) , (2.18)

hI = (W/2)−2/3HI , (2.19)

hI = (W/2)−1/3H̃I . (2.20)

We can use these formulae to perform the change of variables in the effective action

for static, spherically symmetric black holes of N = 2, d = 5 supergravity [2], which can

be rewritten in the convenient form

I[U, φx] =

∫

dρ
(

U̇2 + aIJ ḣI ḣJ + e2UaIJqIqJ + B2
)

. (2.21)

Thanks to the identity

aIJ = −2

3

(

W

2

)4/3

∂I∂J logW (2.22)

the above action, in terms of the HI variables, becomes

− 3

2
I[H] =

∫

dρ

(

∂I∂J logW
(

ḢIḢJ + qIqJ
)

− 3

2
B2

)

. (2.23)

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ
)

= 0 . (2.24)

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint7

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+
3

2
B2 = 0 , (2.25)

where the integration constant has been set to 3
2B2. Multiplying the equations of motion

by HK we obtain

∂I logW ḦI =
3

2
B2, (2.26)

which is the equation of U expressed in the new variables.

In the next subsections we shall use this formalism to study general families of solutions.

7The integration constant is fixed by comparing with the equations of motion (2.10)–(2.12).
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2.2 Extremal black holes

In the extremal black-hole case, B = 0, we expect the HI to be harmonic functions on the

transverse R
4 space, i.e. linear functions of ρ

HI = AI +BIρ , (2.27)

where the integration constants AI and BI are functions of the physical parameters (electric

charges qI and asymptotic values of the scalars φx
∞) to be determined by requiring that

the equations of motion are satisfied everywhere, i.e.

∂K∂I∂J logW(H)(BIBJ − qIqJ) = 0 , (2.28)

∂I∂J logW(H)(BIBJ − qIqJ) = 0 , (2.29)

and the physical fields are correctly normalized at spatial infinity (ρ → 0). We study these

conditions first.

Asymptotic flatness requires that W(H(0)) = 2, i.e.8

W(A) = 2 . (2.30)

In order to study the asymptotic behavior of the scalars it is convenient to introduce the

following model-independent definition for the n physical scalars of a generic N = 2, d = 5

theory:9

ϕx ≡ hx
h0

. (2.31)

The possible values of these scalars have to be determined model by model. We will ignore

in this general discussion all issues related to their possible signs, singular values etc. Other

choices amount to field redefinitions but eq. (2.31) allows us to write the solutions for the

physical scalars in terms of the functions HI in a generic way as

ϕx =
Hx

H0
. (2.32)

Hence, the asymptotic values of all HI , I 6= 0, are given by

Ax = ϕx∞A0 . (2.33)

Now, defining for convenience ϕ0 ≡ 1, we can write

W(ϕ) = W(H/H0) = H
−3/2
0 W(H) , (2.34)

and taking into account the normalization at spatial infinity, we find that

A0 = [W(ϕ∞)/2]−2/3. (2.35)

8
W(A) and other analogous expressions are to be understood as the functions one obtains when replacing

the HI by the constants AI .
9We use the symbol ϕ to distinguish scalars defined by eq. (2.31) from physical scalars in an arbitrary,

possibly different parametrization, which we denote by φ. For an explicit example see the paragraph after

eq. (3.28).

– 7 –
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Summarizing, we have shown that, in any model, the constants AI are given in terms of

the asymptotic values of the scalars by

AI = ϕI ∞[W(ϕ∞)/2]−2/3, (2.36)

ϕI ∞ =
AI

A0
. (2.37)

Finally, the mass, which in the extremal case is not an independent parameter, is given

by M = −U̇(0). In terms of the integration constants:

M = H̃I(A)BI . (2.38)

This expression can be rewritten as

M = hI∞BI ≡ Ze(ϕ∞, B) , (2.39)

by analogy with Ze(ϕ∞, q), the central charge of the theory. In general, the constants BI

will not be equal to the electric charges qI and the fake central charge Ze(ϕ∞, B) will differ

from the genuine supersymmetric central charge.

It is also possible and useful to derive generic expressions for the values of the scalars

on the horizon (ρ → ∞) and for the hyperarea A of the horizon (or the Bekenstein-Hawking

entropy S = A/4) using the homogeneity properties of W:

ϕI h =
BI

B0
, (2.40)

A
2π2

=
W(B)

2
. (2.41)

Let us now study the equations of motion. First of all, notice that BI = ±qI always

solves all the equations. These solutions may not be physically acceptable for certain sign

choices, depending on the range of values that the scalars can take and the particular

model.

The equation for U (2.26) is automatically satisfied when the HI are harmonic. The

near-horizon limit of the Hamiltonian constraint (2.25) reads

∂I∂J logW(B)qIqJ = ∂I∂J logW(B)BIBJ = −3/2 , (2.42)

where the last step follows from homogeneity. The first term is equal to 3
2 [W(B)]−4/3

Vbh(H, q)|h, where Vbh(H, q)|h = Vbh(B, q) is the value of the black-hole potential as a

function of the HI , evaluated on the horizon. Then, using eq. (2.41) we find that the

entropy is given by the value of the black-hole potential on the horizon [1, 2]

A
2π2

= [−Vbh(B, q)]3/4. (2.43)

Similarly, in the near-horizon limit of the equations of motion we find that10

∂KVbh(B, q) = 0 , (2.44)

10As a function of the H-variables, the black-hole potential is scale-invariant, therefore this equation

determines the integration constants BI up to a common normalization factor which is, on the other hand,

irrelevant for the determination of the entropy or the values of the scalars on the horizon. The normalization

is fixed by the condition (2.42).

– 8 –
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so the coefficients of ρ in the harmonic functions are those that extremize the black-hole

potential as a function of the HI . From this result we can recover the known fact that

the values of the scalars on the horizon are those that extremize the black-hole potential

as a function of the scalars, using the fact that the black-hole potential is homogeneous of

degree zero in the HI .

The asymptotic limit (ρ → 0) of the Hamiltonian constraint gives

3

2
M2 − 1

3
∂I∂J logW(A)BIBJ + Vbh(A, q) = 0 . (2.45)

Comparing this expression with the general Bogomol’nyi bound [1, 2]

M2 +
2

3
gxy(φ∞)ΣxΣy + Vbh(φ∞, q) = 0 , (2.46)

we get
1

2
M2 − 1

3
∂I∂J logW(A)BIBJ =

2

3
gxy(ϕ∞)ΣxΣy. (2.47)

These last two equations could be useful insofar as the the scalar charges Σi = Σi(ϕ∞, q)

were known, which is never the case until the full solution is known.

2.3 First-order flow equations for extremal black holes

Following ref. [36] it is easy to derive first-order equations for extremal (supersymmetric and

non-supersymmetric) black holes for which the HI(ρ) are harmonic functions of the form

given in eq. (2.27), where the integration constants BI extremize the black-hole potential

as a function of the HI , according to eq. (2.44).11 We must insist on the fact that, due to

the scale invariance of Vbh(H), the extremal values BI are defined only up to an overall

multiplicative constant; this constant is, however, fixed by eq. (2.42).

We want to derive differential flow equations for the metric function U and for the

scalars φx (not necessarily parametrized as in eq. (2.31)). By virtue of eq. (2.3) and the

definition of the variables HI we can write

de−U = d
(

hIhIe
−U

)

= dhIhIe
−U + hId

(

hIe
−U

)

= hId
(

hIe
−U

)

= hIdHI . (2.48)

Using then the harmonicity of the H’s, eq. (2.27), we arrive at

de−U

dρ
= Ze(φ,B) . (2.49)

Note that the above equation is given in terms of Ze(φ,B) and not in terms of the theory’s

supersymmetric central charge Ze(φ, q).

Similarly we can write

dφx = hIxhIydφ
y = −

√
3hIx∂yhIdφ

y = −
√
3hIxdhI

= −
√
3hIxd

(

eUe−UhI
)

= −
√
3eUhIxdHI ,

(2.50)

11The question remains whether the HI must be harmonic for all extremal black holes in all models. In

section 3.2 we give a proof for static, spherically symmetric black holes of the STU model.
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which after a renewed call to the harmonicity of the H’s gives

dφx

dρ
= −3eU∂xZe(φ,B) . (2.51)

The fixed point of the flow, φh(B), determined by the fake charges BI through the extrem-

ization of the black hole potential, eq. (2.44), is commonly called an attractor.

The flow equations (2.49) and (2.51) imply second-order equations which are iden-

tical to the equations of motion of the 5-dimensional effective FGK action [2], i.e.

eqs. (2.10), (2.11), but with the scalar charges replaced in the black-hole potential by

the constants BI :

Ü + e2UVbh(φ,B) = 0 , (2.52)

φ̈x + Γyz
xφ̇yφ̇z +

3

2
e2UVbh(φ,B) = 0 , (2.53)

where we introduced the fake black hole potential

Vbh(φ,B) ≡ −aIJ BIBJ = −Z2
e (φ,B)− 3 ∂xZe(φ,B)∂xZe(φ,B) . (2.54)

This means that the equations of motion will be satisfied for all these configurations if and

only if the fake black-hole potential is equal to the true one:

Vbh(φ,B) = Vbh(φ, q) . (2.55)

Observe that this equation is, up to an overall factor, nothing but the Hamiltonian

constraint (2.29). Consequently, in the extremal case, if one finds values of BI (we could call

them attractor values, by transfering the notion from φh(B)) that extremize the (genuine)

black hole potential and satisfy the Hamiltonian constraint, then one has a solution of all

the equations of motion.

The above derivation of flow equations for extremal black holes differs from their earlier

treatment, e.g. in refs. [11, 12], in two aspects: Firstly, the vector of fake charges is not

assumed to be related to the vector of actual charges by a matrix, instead the derivation

is based on the assumption of harmonicity of the variables HI .
12 Secondly, expressing the

black hole potential directly by harmonic functions makes it possible to determine the fake

charges by extremization.

2.4 Non-extremal black holes

In the simple model studied in ref. [2] it was found that, as in the 4-dimensional case

considered in ref. [15], the non-extremal black-hole solutions of that model as functions of

the variables HI(ρ) are identical to the extremal ones. The difference is that, now, the

functions HI(ρ) are no longer harmonic (i.e. linear in ρ) but have the general form

HI(ρ) = AI cosh(Bρ) +
BI

B sinh(Bρ) , (2.56)

12In four dimensions a generalization of first-order equations that makes neither assumption was obtained

in [40].
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for some integration constants AI and BI that a priori could be different from those in the

extremal ansatz (2.27) and have to be determined by solving the equations of motion and

by imposing the normalization of the physical fields at spatial infinity.

It is interesting to see whether the non-extremal black-hole solutions of more general

models also share this generic form. We start by imposing the asymptotic boundary condi-

tions on the fields, using the generic definition for the physical scalars eq. (2.31). It is easy

to see that, again, asymptotic flatness implies eq. (2.30) and that the integration constants

AI are given by eq. (2.35), so they are actually the same as in the extremal ansatz. There-

fore we only have to determine the BI plus the non-extremality parameter B by imposing

the equations of motion.

We will also need the definition of the mass, which is given again by eqs. (2.38)

and (2.39), and the expressions for the horizon hyperarea and for the values of the scalars

on the outer and inner horizon horizon, which are now

ϕ±
I =

B±
I

B±
0

, (2.57)

A±

2π2
= W(B±)/2 , (2.58)

where we have defined the shifted coefficients (“dressed charges” [19])

B±
I ≡ BI ± BAI . (2.59)

Now, first of all, observe that the functions of eq. (2.56) satisfy

ḦI = B2HI , (2.60)

and then, substituting in eq. (2.26) and using the homogeneity properties ofW, we find that

it is identically satisfied. Substituting into the Hamiltonian constraint and the equations

of motion and using the same properties we can rewrite them in the form

∂I∂J logW(H)(B−
I B

+
J − qIqJ) = 0 , (2.61)

∂K∂I∂J logW(H)(B−
I B

+
J − qIqJ) = 0 . (2.62)

In the near-horizon limits, these equations, upon use of the formula (2.58) for the area

of the inner and outer horizons, lead to the following relations

A±

2π2
=

[

−
(

1∓ 4

3
BAI∂

I logW

)−1

Vbh

]3/4

(B±) , (2.63)

∂KVbh(B
±) = ±8

3

(A±

2π2

)4/3

BAI

[

∂I∂K logW +
2

3
∂I logW ∂K logW

]

(B±) , (2.64)

which generalize eqs. (2.43) and (2.44) to the non-extremal case. Since the right-hand

side of eq. (2.64) does not vanish in general for non-extremal black holes, we find that, in

general, the values of the scalars on the horizon do not extremize the black-hole potential.

In section 3.1 we are going to study a class of non-extremal black holes for which the
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right-hand side of eq. (2.64) does vanish, though. We will be able to give the general form

of this class of solutions for any model of N = 2, d = 5 supergravity.

For models with diagonal ∂I∂J logW (which, given that in N = 2 supergravity the

polynomial V must be homogeneous of degree 3, comprise only two models, apart from

minimal supergravity: STU , discussed in the next section, and ST 2) the equations of

motion (2.62) can be solved by [19]

BI = ±
√

q2I + B2A2
I (no summation), (2.65)

which completely determines the dressed charges, and thus the values of scalars on both

horizons, in terms of physical charges, the asymptotic values of the scalars, eq. (2.33) and

the non-extremality parameter:

B−
I = ±

√

q2I + (BA0ϕI∞)2 − BA0ϕI∞ , B+
I = ±

√

q2I + (BA0ϕI∞)2 + BA0ϕI∞ .

(2.66)

These expressions reduce to (± absolute values of) the actual charges when B → 0. As

expected, due to the dependence on ϕI∞ there is no attractor mechanism in the proper

sense, but from B−
I B

+
I = q2I we can make a new observation that the extremal attractor

value of a scalar is the geometric mean of the non-extremal horizon values:

(ϕx
h)

2 = ϕx
−ϕ

x
+ (no summation). (2.67)

2.5 First-order flow equations for non-extremal black holes

The derivation leading to eq. (2.49) can be followed straightforwardly with a small variation:

instead of the coordinate ρ, we need a new coordinate ρ̂ which is defined by13

ρ̂ ≡ sinh(Bρ)
B cosh(Bρ) , so that cosh(Bρ) = 1

√

1− Bρ̂2
≡ f(ρ̂) , (2.68)

which means that the ansatz for HI in eq. (2.56) now becomes the “almost extremal form”

HI = f(ρ̂)(AI +BI ρ̂) = f(ρ̂) ĤI . (2.69)

Taking into account the above expression in the derivation leading to eq. (2.49) we find that

∂e−Û

∂ρ̂
= Ze(φ,B) , (2.70)

where we introduced Û = U+log(f). The hatted variables still satisfy eÛ ĤI = eUHI = hI .

The analog of eq. (2.51) can be seen to be

∂φx

∂ρ̂
= −3 eÛ∂xZe(φ,B) . (2.71)

13This choice, like the parametrization of HI , is not unique. One could, for instance, take ρ̂ = e−2Bρ. An

advantage of the tanh parametrization is that the asymptotic values of scalars are still governed only by

AI , as in the extremal case.
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Since eqs. (2.70) and (2.68) have the same functional form as eqs. (2.49) and (2.51), we

immediately see that they lead to the FGK equations of motion, albeit with respect to the

new coordinate ρ̂ and the new function Û ,14 i.e.

∂2
ρ̂Û = −e2ÛVbh(φ,B) , (2.72)

∂2
ρ̂φ

x + Γyz
x∂ρ̂φ

y∂ρ̂φ
z = −3

2
e2Û∂xVbh(φ,B) . (2.73)

One can then ask oneself what the equivalent of eq. (2.55) is. To this end we shall rewrite

the FGK-equation for U in the ρ̂-coordinate and use eq. (2.70) to get rid of a term linear

in ∂ρ̂U :

− B2 + 2B2ρ̂ eÛZe(φ,B) = e2Û
(

f−2 Vbh(φ,B)− Vbh(φ, q)
)

. (2.74)

This equation is the Hamiltonian constraint written in the new coordinates ρ̂. To see this

we need

e−UZe(φ,B) =
2

3
BI∂

I log(W) . (2.75)

Performing the same operation on the FGK-equation for the scalar fields, we find that after

using eq. (2.71)

4B2 ρ̂ eÛ ∂xZe(φ,B) = e2Û
(

f−2 ∂xVbh(φ,B)− ∂xVbh(φ, q)
)

. (2.76)

The extra factor of 2 on the left-hand side of the above equation compared to eq. (2.74)

is surprising, but correct; indeed, differentiating eq. (2.74) with respect to ρ̂ and using the

flow equations (2.70) and (2.71) we find that

0 = ∂ρ̂φ
y gyx

[

4B2ρ̂ eÛ∂xZe − e2Û
(

f−2 ∂xVbh(B)− ∂xVbh(q)
)

]

. (2.77)

This implies that eq. (2.74) is a constant if eq. (2.76) is satisfied, whence we can evaluate

it at spatial infinity, i.e. ρ = 0 and also ρ̂ = 0. This gives

Vbh(φ∞, q)− Vbh(φ∞, B) = B2e−2U∞ = B2 (2.78)

by asymptotic flatness.

The flow (2.71) terminates at the horizon (ρ̂ → 1/B). In the extremal case (ρ̂ → ∞) or

in the non-extremal case with constant scalars, since ∂ρ̂φ
x|h = 0, the horizon value of the

scalars will be determined by the location of the fixed point (attractor) ∂xZe(B) = 0. For

a generic non-extremal solution the horizon value will be attained in a finite ρ̂, before a

fixed point is reached.15 We can still evaluate the relevant equations at the horizon to find

−B2 + 2B eÛhZe(φh, B) = −e2ÛhVbh(φh, q) , (2.79)

4B e−Ûh∂xZe(φh, B) = −∂xVbh(φh, q) . (2.80)

14Note that from U = U(H) and the scaling properties of W, we can see that Û = U(Ĥ).
15This in effect is the argument given in ref. [41] as to why the attractor mechanism cannot work for non-

extremal black holes; other arguments are given in ref. [42]. If we were to extend ρ̂ beyond 1/B to infinity,

the values of scalars would be again determined by the ratios of BI (this occurs between the horizons [19]),

the values of BI , however, now depend on the asymptotic boundary conditions.
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3 Example black-hole solutions

In this section we illustrate the use of the H-FGK formalism with some examples, two of

which have supersymmetric and non-supersymmetric attractors and flat directions. The

third one is a generic class of solutions whose main characteristic is that the physical scalars

are constants, and as such are a generalization of the doubly extremal black holes.

3.1 Non-extremal black holes with constant scalars

When all the scalar fields of an extremal black-hole solution are constant, it is known as

a doubly extremal black hole. It is natural to consider its non-extremal generalizations,

i.e. non-extremal black holes with constant scalars. For the general ansatz (2.56) and the

generic parametrization (2.31) of the physical scalars, this condition requires that

ϕI =
AI

A0
=

BI

B0
=

B±
I

B±
0

, (3.1)

and we can write

HI = AIH , H ≡ cosh(Bρ) + B0

A0B
sinh(Bρ) , (3.2)

so we have

W(H) = 2H3/2. (3.3)

The metric is, as expected, that of the 5-dimensional Reissner-Nordström black hole in all

cases.

The only integration constants that need to be found are B0 and B. It is convenient

to introduce in the problem the mass parameter, given by eq. (2.38). In this case, it is just

M =
B0

A0
. (3.4)

Then the Hamiltonian constraint and the equations of motion take the form

∂I∂J logW(A)
[

(M2 − B2)AIAJ − qIqJ
]

= 0 , (3.5)

∂K∂I∂J logW(A)
[

(M2 − B2)AIAJ − qIqJ
]

= 0 , (3.6)

and are solved if

B2 −M2 − Vbh(A, q) = 0 , (3.7)

∂KVbh(A, q) = 0 . (3.8)

The first equation is just the general Bogomol’nyi bound for constant scalars (vanishing

scalar charges) and the second, owing to the scale invariance of Vbh(H) tells us that the

scalars are not affected by the non-extremality parameter and everywhere take the values

that extremize the black-hole potential, which are the same as in the extremal case with the

same electric charges. The value of the black-hole potential (in particular, on the horizon)
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is also the same as in the extremal case with the same electric charges. Notice that this

implies that Vbh(A, q) is a function of the charges q only.

Using this information in eq. (2.63) and invoking the properties of W, we also obtain

an expression that relates the entropy to the entropy of the extremal black hole with the

same electric charges:

A±

2π2
=

(

− M ± B
M ∓ B Vbh(B

±)

)3/4

. (3.9)

Since Vbh(B
±) = Vbh(A), combining this expression with the Bogomol’nyi bound we get

the well-known formula A±

2π2
= (M ± B)3/2, (3.10)

which also admits the expression

A±

2π2
= Ze(ϕ∞,B±)3/2, (3.11)

and leads to the suggestive relation

A+

2π2

A−

2π2
= (M2 − B2)3/2 = [−Vbh(A, q)]

3/2 =

(Aext

2π2

)2

, (3.12)

where, as we stressed above, Vbh(A, q) is moduli-independent and Aext is hyperarea of the

extremal black hole with the same charges. We will refer to this property in what follows

as the geometric mean property.16

Summarizing, the solutions of this class, for any model, are obtained by finding first

the values (determined up to a common factor) of the B±
I that extremize the potential

∂KVbh(B
±) = 0. The scalars are then given by ϕI = B±

I /B±
0 , which, through eq. (2.36),

dictates the constants AI for these values of the scalars. The non-extremality parameter

is established by eq. (3.7), the metric function is e−U/2 = H with H as in eq. (3.2), and

the mass of this black hole is found from eq. (3.4).

3.1.1 Constant-scalar black holes from the flow equations

As one can see from eq. (2.71), constant scalars around a black hole satisfy

∂xZe(B) = 0 ⇒ ∂xVbh(φ,B) = 0 . (3.13)

We can then use eq. (2.70) to obtain

e−Û = 1 + Ze(B)ρ̂ , (3.14)

where we already imposed asymptotic Minkowskianity. It is also evident that the mass of

the solution is given by M = Ze(B). Plugging the conditions in eq. (3.13) into eq. (2.76)

we see that

∂xVbh(φ, q) = 0 , (3.15)

16A proof for the charged, rotating, asymptotically flat or anti-De Sitter black-hole solutions of a wide

class of theories (which does not include those that we are considering here) has been given in [43], following

earlier work [44–48]. A related result valid for horizons of arbitrary topology has been recently found in [49].
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which is the analog of eq. (3.8). Eq. (3.7) can be derived immediately from the Hamiltonian

constraint (2.78).

Eq. (3.13) says that, in terms of the fake charges, the constant scalars of a non-

supersymmetric solution have the same form as the scalars of the supersymmetric extremal

solution in terms of the real charges, whereas eq. (3.15) fixes the scalars directly in terms

of q’s.

3.2 The STU model revisited

The STU model in five dimensions is defined by

V(h·) = h0h1h2 = 1 . (3.16)

The corresponding unconstrained function in the H-FGK formalism is

V(H̃) = H̃0H̃1H̃2. (3.17)

The tilded variables are given in terms of the untilded ones by

H̃0 =

√

3H1H2

H0
, H̃1,2 =

3H2,1

H̃0
, (3.18)

so

W(H) = 2V(H) = 2
√

33H0H1H2 . (3.19)

This potential contains all the information that we need to find and construct all the

black-hole solutions of the model.

Due to the special form of W, the equations of motion (2.24) are completely separated

and read

HIḦI − Ḣ2
I + q2I = 0 (no summation). (3.20)

These equations can be integrated explicitly, with the general solution being of the form

HI = aI cosh(εIρ) + bI sinh(εIρ) . (3.21)

The Hamiltonian constraint, eq. (2.25), then imposes the condition
∑

I ε
2
I = 3B2. A further

constraint arises due to the fact that we are interested in building black holes as expressed

by eq. (2.7), which implies that
∑

I εI = 3B. In addition, we should also have scalar

fields that are regular on the horizon. We can do this by imposing the condition that

the ϕI be regular there, which also ensures the regularity of the physical scalars φx on

the horizon. Clearly this means that ε0 = ε1 = ε2 = B, reducing the general solution to

the ansatz (2.56). In other words, in the STU model, all black-hole solutions of the type

considered here must be described by this ansatz.

3.2.1 Extremal solutions

In the limit B → 0 the ansatz (2.56) reduces to eq. (2.27) and it follows from the argument

above that all extremal solutions to the STU model (at least of the kind we are analyzing)
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will be described by harmonic functions. The non-supersymmetric version of such solutions

has been first obtained in [12].

To determine the coefficients of the harmonic functions, let us first analyze the critical

points of the black-hole potential Vbh(H, q), which for the STU model takes the form

Vbh(H, q) =
2

3
(W/2)4/3∂I∂J logW qIqJ = −3(H0H1H2)

2/3
∑

I

(

qI
HI

)2

. (3.22)

The equations ∂KVbh(H, q)|h = 0 are solved by

(BI)
2 = α2(qI)

2, (3.23)

where α is an arbitrary constant, resulting from the scale invariance of the black-hole

potential as a function of the H’s. This constant does not affect the attractor points of the

physical scalars, which are given by quotients of H’s.

The above solutions correspond to

BI = sIqI , (3.24)

where the signs sI = ±1 can, in principle, be chosen at will and are independent of the

electric charges. Each choice of signs corresponds to a different kind of solution that may

or may not (we will carefully look into this point) be valid for various signs of the charges.

The reality and regularity of the metric and scalar fields will impose certain restrictions on

the possible signs, though. First of all, the reality of W(B) requires that

s0s1s2 sgn(q0) sgn(q1) sgn(q2) = +1 . (3.25)

The attractor values for the physical scalars, chosen as in eq. (2.31) for x = 1, 2, on the

horizon are

ϕxh = s0sxqx/q0 . (3.26)

In terms of these scalars the sections are given by

h0 =
1

3(ϕ1ϕ2)1/3
, h1 =

ϕ1

3(ϕ1ϕ2)1/3
, h2 =

ϕ2

3(ϕ1ϕ2)1/3
, (3.27)

h0 = (ϕ1ϕ2)
1/3, h1 =

(ϕ1ϕ2)
1/3

ϕ1
, h2 =

(ϕ1ϕ2)
1/3

ϕ2
. (3.28)

Observe that the scalars can be positive or negative but not zero. This means that

the theory has four branches (the scalar manifold has to be covered by four coordinate

patches) that can be labeled by the four possible combinations of the two signs of the

scalars: σx ≡ sgn(ϕx).
17 In terms of unconstrained scalars φx (customarily called for

this model S and T ) we would have ϕx ∼ σxe
φx . Since, in a regular solution for a given

branch (σ1, σ2), the above scalars will have the same sign everywhere and in particular

17In [12] the constrained scalars were chosen to be positive, hI > 0, which translates into the (+,+)

branch in our terminology.
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on the horizon, from eq. (3.26) we find that admissible extremal solutions satisfy besides

eq. (3.25) also

s0 sx = σx sgn(q0) sgn(qx) . (3.29)

This condition ensures that sgn(BI) = sgn(AI) for all I, so the functions HI do not vanish

for any positive value of the radial coordinate ρ, which is another condition for regularity

of the solution. In any given branch (σ1, σ2), for any of the eight possible choices of signs

of the charges, there is always a choice of sI that allows us to have a regular extremal

solution.

To find out which of these solutions are supersymmetric, we need to extremize the

central charge, given by

Ze(ϕ, q) = (ϕ1ϕ2)
−2/3(q0ϕ1ϕ2 + q1ϕ2 + q2ϕ1) . (3.30)

The extrema correspond to the horizon values

ϕSUSY
x h = qx/q0 . (3.31)

Comparing with eq. (3.26) we find that the supersymmetric branches are those where for

both x = 1, 2 it holds that

σx = sgn(q0) sgn(qx) . (3.32)

For each charge configuration there exists then a supersymmetric branch, as in the case

considered in ref. [2], and three non-supersymmetric branches of solutions, but within a

given branch supersymmetry is determined by the signs of charges (two charge configu-

rations give BPS solutions, whereas the six remaining ones break supersymmetry). All

possibilities are collected in table 1.

Combining the choices of sI with the signs of the charges, all the solutions can be

written in a unified way in terms of the harmonic functions

HI =
sgn(q0) sgn(q1) sgn(q2)

sgn(qI)

(

41/3

3

∣

∣

∣

∣

ϕI ∞

(ϕ1∞ϕ2∞)1/3

∣

∣

∣

∣

+ |qI |ρ
)

, (3.33)

which are manifestly non-vanishing for positive values of ρ and are valid for all four branches

and all eight combinations of the signs of the charges. Furthermore, in all cases and for all

choices of the signs of the charges, the metric function e−
3

2
U = W(H)/2 is real and regular.

The entropy, given by eq. (2.41), takes the explicit form

A
2π2

=
1

2

√

33|q0q1q2| , (3.34)

and the mass, given by eq. (2.39) becomes

M = (ϕ1∞ϕ2∞)−2/3
(

|ϕ1∞ϕ2∞ q0|+ |ϕ2∞ q1|+ |ϕ1∞ q2|
)

, (3.35)

which is always positive. It coincides with the supergravity central charge at infinity only

for certain signs of the charges that depend on the branch considered, as we have explained

before.
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sgn(q0, q1, q2) (s0s1, s0s2) branch (σ1, σ2) SUSY

(+,+,+)
(+,+) (+,+) yes

(+,−), (−,+), (−,−) (+,−), (−,+), (−,−) no

(+,+,−)
(+,+) (+,−) yes

(+,−), (−,+), (−,−) (+,+), (−,−), (−,+) no

(+,−,+)
(+,+) (−,+) yes

(+,−), (−,+), (−,−) (−,−), (+,+), (+,−) no

(+,−,−)
(+,+) (−,−) yes

(+,−), (−,+), (−,−) (−,+), (+.−), (+,+) no

(−,+,+)
(+,+) (−,−) yes

(+,−), (−,+), (−,−) (−,+), (+.−), (+,+) no

(−,+,−)
(+,+) (−,+) yes

(+,−), (−,+), (−,−) (−,−), (+.+), (+,−) no

(−,−,+)
(+,+) (+,−) yes

(+,−), (−,+), (−,−) (+,+), (−,−), (−,+) no

(−,−,−)
(+,+) (+,+) yes

(+,−), (−,+), (−,−) (+,−), (−,+), (−,−) no

Table 1. Possible sign combinations corresponding to different branches of extremal solutions,

labeled by the pair of signs of the two scalars, σx = sgn(ϕx). Due to the constraint (3.25), only two

out of three signs sI can be chosen independently. Sign flips effected by sI result in superpotentials

of the type discussed in section 5 of [12]. BPS solutions arise when all sI are equal.

3.2.2 Non-extremal solutions

For the present model the ansatz (2.56) is the general solution to the equations of mo-

tion (2.62) or (3.20) and they reduce to the following relation between the parameters:

B2
I = B2A2

I + q2I . (3.36)

Since the integration constants A are, according to the general arguments, given by

AI =
41/3

3

ϕI ∞

(ϕ1∞ϕ2∞)1/3
, (3.37)

the above equations immediately give the complete solution

BI = sI

√

q2I + B2A2
I , (3.38)

where we have to choose the signs sI so that the functions HI do not vanish for any value

of ρ > 0, i.e. so that sgn(BI) = sgn(AI) (assuming B > 0):

sI =
sgn(ϕ0∞) sgn(ϕ1∞) sgn(ϕ2∞)

sgn(ϕI ∞)
. (3.39)
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The regularity of the metric translates into manifest positivity of the mass, given by

eq. (2.39) and, explicitly, by

M =

√

[

(ϕ1∞ϕ2∞)1/3q0
]2

+ B2
[

(ϕ1∞ϕ2∞)1/3A0

]2

+

√

[

ϕ2∞

(ϕ1∞ϕ2∞)1/3
q1

]2

+ B2

[

ϕ2∞

(ϕ1∞ϕ2∞)1/3
A1

]2

+

√

[

ϕ1∞

(ϕ1∞ϕ2∞)1/3
q2

]2

+ B2

[

ϕ1∞

(ϕ1∞ϕ2∞)1/3
A2

]2

.

(3.40)

The non-extremality parameter can be solved in terms of the mass, asymptotic values

of the scalars and charges by solving a quartic algebraic equation in B2, but the expression

is too complicated to be useful.

The hyperareas of the horizons, given by the general formula (2.58), take the form

A±

2π2
=

1

2

[

33
∏

I

(
√

q2I + B2A2
I ± B|AI |

)

]1/2

. (3.41)

We can see explicitly that not only the values of scalars, as mentioned earlier, but also the

entropies S± = A±/4 satisfy the geometric mean property:

S−S+ = S2, (3.42)

where the mean value is that of the extremal black hole.

3.3 Models of the generic Jordan family

The models of the reducible Jordan sequence are defined by

V(h·) = h0ηijh
ihj = 1 , i = 1, . . . , n , (3.43)

where (ηij) = diag(−+ · · ·+) and the associated potential in the H-FGK formalism takes

the form

V(H̃) = H̃0H̃2, (3.44)

where we have defined

H̃2 ≡ H̃ iH̃i ≡ ηijH̃
iH̃j ≡ H̃ · H̃ . (3.45)

The relation between tilded and untilded variables is

H̃0 =
1

2

√

3H2

H0
, H̃ i = H i

√

3H0

H2
, (3.46)

so

W(H) = 2V(H) =
√

33H0H2 . (3.47)

The non-vanishing components of the Hessian of logW are

∂0∂0 logW = − 1

2H2
0

, ∂i∂j logW =
ηijH2 − 2H iHj

(H2)2
. (3.48)
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3.3.1 Extremal solutions

There are two kinds of critical loci of the black-hole potential: the discrete points

Bi = sqi , s2 = +1 , (3.49)

B2

B2
0

− q2

q20
= 0 , (3.50)

including those that correspond to supersymmetric black holes, and the (n−1)-dimensional

space described by the constraint

B · q = 0 , (3.51)

B2

B2
0

+
q2

q20
= 0 , (3.52)

which gives rise to non-supersymmetric solutions. We focus on the latter since we expect

the scalars on the horizon to depend on the values of the scalars at infinity.

The constraint eq. (3.51) is solved in a general way by

Bi = α
[

(C · q)qi − q2Ci

]

, (3.53)

for some constants Ci that are defined only up to shifts proportional to the charges qi and

up to a normalization constant α. The limit of the Hamiltonian constraint (2.29) on the

horizon is solved by

B2 = −q2, (3.54)

and then the second condition eq. (3.52) determines the integration constants B0

B2
0 = q20 ⇒ B0 = s0q0 , s20 = +1 . (3.55)

Plugging the general solution for Bi into B2 = −q2 we find that

α2 =
[

(C · q)2 − C2q2
]−1 ⇒ Bi = s

(C · q)qi − q2Ci
√

(C · q)2 − C2q2
, s2 = +1 , (3.56)

so the coefficients Bi have a highly non-linear dependence on the charges, something that

could make us think that theHi might be highly non-linear functions of harmonic functions.

Evidently, we have assumed from the onset the harmonicity of these variables and our

challenge is to prove that the ansatz solves all the equations of motion for this moduli

space of non-supersymmetric attractors.

The asymptotic limit of the Hamiltonian constraint (2.29) is solved if the constants Ci

are proportional to the Ai, whose value is known. We take the proportionality constant

to be 1 and then it becomes just a matter of calculation to see that eq. (2.29) is satisfied

everywhere. The K = 0 component of the equations of motion (2.28) is trivially satisfied

and, again, it is a matter of calculation to check that the K = k components, which have

the form
(

3η(ijHk)H2 − 4H iHjHk
)

(BiBj − qiqj) = 0 , (3.57)

are also identically satisfied for

Bi = s
(A · q)qi − q2Ai
√

(A · q)2 −A2q2
, s2 = +1 . (3.58)
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3.3.2 Non-extremal solutions

It is not too difficult to extend the extremal solutions to the non-extremal regime using

the ansatz (2.56). For that purpose it is convenient to introduce the mass parameter.

According to the general expression (2.39), it is given by

M =
2

3

(

B0

2A0
+

A ·B
A2

)

, (3.59)

and we can use this formula to express the combination A ·B as

A ·B =
A2

2

(

3M − B0

A0

)

. (3.60)

All the terms in the right-hand side of this expression are known in terms of physical

parameters except for B0, but this constant can be found by solving the K = 0 equation

of motion:

B0 = s0

√

q20 + B2A2
0 , (3.61)

so

A ·B =
A2

2

(

3M − s0
A0

√

q20 + B2A2
0

)

. (3.62)

In order to keep the expressions as simple as possible, we will not replace A ·B by its above

value in what follows.

The K = k equations of motion

(

3η(ijHk)H2 − 4H iHjHk
)(

BiBj − B2AiAj − qiqj
)

= 0 , (3.63)

upon use of the Hamiltonian constraint

H2(B2 − B2A2 − q2)− 2
[

(H ·B)2 − B2(H ·A)2 − (H · q)2
]

= 0 , (3.64)

can be expanded in a finite number of powers of tanhBρ and, requiring that all the coeffi-

cients vanish, we get two equations:

Ak(B2 − B2A2 − q2)− 2
[

Bk(A ·B)− B2AkA2 − qk(A · q)
]

= 0 , (3.65)

Bk(B2 − B2A2 − q2)− 2
[

BkB2 − B2Ak(A ·B)− qk(B · q)
]

= 0 . (3.66)

It can be checked that these two equations imply the Hamiltonian constraint, therefore

it is enough to solve only them. These equations contain two unknown combinations of

integration constants: B2 and B ·q, which can be found by multiplying the above equations

by Ak, Bk or qk. We get

B2 = B2A2 + q2 +
2

A2

[

(A ·B)2 − B2(A2)2 − (A · q)2
]

, (3.67)

B · q =
A ·B

(A · q)A2

[

q2A2 + (A ·B)2 − B2(A2)2 − (A · q)2
]

. (3.68)
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Substituting these expressions in the two equations above we obtain two different

equations for Bk in terms of the known objects (A ·B),B, Ak, A2, (A · q):

Bk =
[(A ·B)2 − (A · q)2]Ak +A2(A · q)qk

A2(A ·B)
, (3.69)

Bk =
(A ·B){A2(A · q)B2Ak + [q2A2 + (A ·B)2 − B2(A2)2 − (A · q)2]qk}

(A · q)[q2A2 + (A ·B)2 − (A · q)2] . (3.70)

These two solutions must be equal and one can see that this happens when the following

condition is satisfied:

(A2)2(A ·B)2B2 =
[

(A ·B)2 − (A · q)2
]2

+A2q2
[

(A ·B)2 − (A · q)2
]

. (3.71)

This condition, on account of eq. (3.62), is an equation that involves M,B2, AI and qI and,

in principle, may be used to express the non-extremality parameter as B2(M,ϕx∞, qI).

4 H-FGK formalism for black-string solutions

In this section we will develop a formalism analogous to the one in section 2, but for

obtaining string-like solutions; the derivation follows similar lines, the only difference being

the identification of the new variables. Indeed, as one can see from refs. [24–26, 33, 35], the

seed-functions for supersymmetric string-like solutions are not related to the hI as in the

black hole, but rather to the hI . As such, the formalism to be developed and illustrated in

this section will be based on new variables KI and K̃I , (I = 0, . . . , n), which we define by

KI ≡ e−UhI(φ) . (4.1)

By substituting this change of variables into the fundamental constraint of real special

geometry and defining

V(K) ≡ CIJKKIKJKK , we find that e−3U = V(K) . (4.2)

We can then introduce the dual variables K̃I by

K̃I = e−2UhI(φ) or equivalently K̃I =
1

3
∂IV(K) , (4.3)

but they will be used sparingly in this section.

The FGK formalism for black holes can be generalized to the case of branes [3]. The

generic metric for 5-dimensional black-string solutions is

ds2 = eU(ρ)−Bρdt2 − eU(ρ)+Bρdy2 − e−2U(ρ)

( B4

sinh4(Bρ)
dρ2 +

B2

sinh2(Bρ)
dΩ2

(2)

)

, (4.4)

where dΩ2
(2) denotes the round metric on the 2-sphere. Observe that the function U in

the above metric must satisfy limρ→∞(U + Bρ) = 0 in order for the metric to describe a

black string with a horizon located at ρ → ∞. If this condition is met, the near-horizon
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geometry for B 6= 0 is a 2-dimensional Rindler space times R × S2; in the extremal case,

B = 0, the near-horizon geometry is aDS3 × S2 as usual.

We consider purely “magnetic” black string solutions, meaning that we take F I ∼
⋆(5)(dρ ∧ dt ∧ dx), the implication of which is that we can safely ignore the Chern-Simons

term in the parent d = 5 supergravity action and straightforwardly Hodge-dualize the F I .

The resulting action reads

I5 =
∫

5

√
g

(

R+
1

2
gxy∂µφ

x∂µφy +
1

2 · 3!a
IJGIµνκG

µνκ
J

)

, (4.5)

where GI = dBI . The resulting equations of motion for the above action are

Rµν = −1

2
gxy∂µφ

x∂νφ
y − 1

4
aIJ

(

GIµκλGJν
κλ − 2

9
ηµνGI ·GJ

)

. (4.6)

Given the ansatz for the metric, the B equation of motion is readily solved to give

GI =
√
3 e2UaIJ p

Jdρ ∧ dt ∧ dx , (4.7)

where pI are the string charges and the
√
3 is inserted for convenience.

By simply substituting the ansatz into eq. (4.6) we find that

Ü = −e2UaIJp
IpJ , (4.8)

B2 = U̇2 +
1

3
gxyφ̇

xφ̇y − e2UaIJp
IpJ . (4.9)

We will not give the equations of motion for the scalars as the result should be obvious.

The resulting FGK action can then be seen with the aid of eqs. (2.2) and (2.4) to be

I[U, φx] =

∫

dρ
(

U̇2 + aIJ ḣ
I ḣJ − e2UVst + B2

)

, (4.10)

where we have defined the black string potential as

Vst ≡ −aIJ p
IpJ = −Zm − 3∂xZm∂

xZm , (4.11)

where in the last step we introduced the (magnetic) string central charge Zm = hIp
I ; B is

again a non-extremality parameter. In order to obtain the above action in the K-variables,

we will need the straightforward identity

− 3 e2UaIJ = ∂I∂J logV ≡ vIJ , (4.12)

which then enables us to write eq. (4.10) as

− 3 I[K] =

∫

dρ
(

vIJ
(

K̇IK̇J + pIpJ
)

− 3B2
)

. (4.13)

The Hamiltonian constraint can be expressed as

H ≡ vIJ
(

K̇IK̇J − pIpJ
)

+ 3B2 = 0 (4.14)
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and the equations of motion derived from the effective action are

∂IvKL

(

K̇KK̇L −KKK̈L − pKpL
)

= 0 . (4.15)

After contraction with KI and some minor manipulations they lead to

K̈I∂I logV = 3B2, (4.16)

which can be written as
(

K̈I − B2KI
)

∂IV = 0.

The resulting equations are very similar to the ones obtained in the black-hole case

(cf. eqs. (2.25), (2.24), (2.26)), we thus make the ansatz of the same type as eq. (2.56),

KI = AI cosh(Bρ) + BI

B sinh(Bρ) , (4.17)

which allows us to write eq. (4.14) in the more manageable form

vKL

(

BKBL − B2AKAL − pKpL
)

= 0 . (4.18)

In the same way we can write the equations of motion,

(∂IvKL)
(

BKBL − B2AKAL − pKpL
)

= 0 , (4.19)

which can be seen as an extremization condition for eq. (4.18).

In order to make further contact with the supergravity fields, we mimic the definition

of the scalar fields in eq. (2.31) by defining

ϕI ≡ hI

h0
=

KI

K0
, so that ϕ0 ≡ 1 . (4.20)

As before, we can then fix AI in terms of the asymptotic values of the scalar fields ϕI
∞ by

AI = V(ϕ∞)−1/3ϕI
∞ . (4.21)

Following ref. [3], we can calculate the string tension to be

T(1) = B +
3

4
B I
−ÃI , where B I

− ≡ BI − BAI (4.22)

and we defined ÃI = limρ→0 K̃I , which by eq. (4.21) satisfy AIÃI = 1. The values of

physical quantities on the (outer) horizon are given by the shifted components analogous

to the ones defined in eq. (2.59)

B I
+ = BI + BAI , (4.23)

which allows us to express the string’s tension as

T(1) =
3

4
B I
+ÃI −

1

2
B . (4.24)

The temperature of the black string is easily calculated to be

T+ =
4π√
2B

V
−1/2(B+) , (4.25)
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and ref. [3]’s entropy density S+ is18

S+ = V
2/3(B+) , whence

√
2B = 4πT+S3/4

+ , (4.26)

if full concordance with the general results obtained in ref. [3].

The metric (4.4), by an extension of the argument that we gave earlier for black holes,

can cover also the interior of the inner horizon, except that the rôles of coordinates t and

y become interchanged.19 We can then calculate the temperature and the entropy density

on the inner horizon to be

T− =
4π√
2B

V
−1/2(B−) , S− = V

2/3(B−) and
√
2B = 4πT−S3/4

− . (4.27)

4.1 Flow equations for black strings

As in section 2.3, we can derive general flow equations. In this case we can use hI =

eUKI = eÛK̂I , where K̂I is a function of a new coordinate ρ̂ such that

∂K̂I

∂ρ̂
= BI . (4.28)

Using then the completeness and orthogonality relations of real special geometry, we find

that the above equation is equivalent to the following system of flow equations

∂ρ̂Û = −eÛZm(B) , (4.29)

∂ρ̂φ
x = −3 eÛ∂xZm(B) , (4.30)

where we defined the fake magnetic (dual) central charge Zm(B) = hIB
I . Observe that

the above equations are, mutatis mutandis, identical to flow equations (2.70), (2.71) for the

black holes. This means that as long as we are considering the same kind of ansatz for the

seed functions, which is the case, we will find that the above flow equations will lead to a

solution of the FGK equations of motion as long as

4B2ρ̂ eÛ∂xZm(φ,B) = e2Û
[

f−2∂xVst(φ,B)− ∂xVst(φ, p)
]

, (4.31)

and the non-extremality parameter can be obtained from

Vst(φ∞, p)− Vst(φ∞, B) = B2e−2U∞ = B2. (4.32)

4.2 Non-extremal black strings with constant scalars

As in section 3.1, we can consider the non-extremal analog of the doubly extremal string

solution, by which we mean a black string-like solution with constant physical scalars.

Using the ansatz (4.17) and the shorthand notation of eq. (4.23), we see immediately that

AI

A0
=

BI

B0
=

B I
±

B0
±

. (4.33)

18
S± ≡ Area±/4, where Area± is the area of the 2-sphere in the near-outer (respectively near-inner)-

horizon geometry.
19It is perhaps useful to introduce the coordinate r by r · (1− e−2Bρ) = 2B, which takes the FGK metric

in eq. (4.4) to the standard form with a blackening factor.
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The general form of the K’s then becomes

KI = AI K , K = cosh(Bρ) + E
B sinh(Bρ) , (4.34)

with a constant of proportionality E = B0

A0 , which must be positive in order for the metric

to be well-defined:

e−U = [V(A)]1/3K = K , (4.35)

where we used asymptotic flatness: V(A) = 1. In this general case the tension, eq. (4.24),

and the entropy densities, eqs. (4.26) and (4.27), can be calculated to be

T(1) =
1

4
(3E + B) , S± = (E ± B)2. (4.36)

As always, the precise relation between various constants appearing in the solution,

notably E and B, has to be fixed by the equations of motion (4.19) and the Hamiltonian

constraint (4.19). For the case at hand they can be recast in the form

E2 + Vst(A, p) = B2, (4.37)

[∂IVst](A, p) = 0 . (4.38)

The evident similarity to eqs. (3.7) and (3.8) was to be expected.

4.3 Extremal strings

In this case we are interested in solutions for which B = 0. By defining

Vst(K,B) = −aIJB
IBJ and also Vst(K, p) = −aIJp

IpJ , (4.39)

where the K-dependence resides in aIJ through eq. (4.12), we can see that the equations

of motion and the Hamiltonian constraint can be written as

∂I
(

Vst(K,B)− Vst(K, p)
)

= 0 and Vst(K,B) = Vst(K, p) , (4.40)

the former being implied by the latter.

The above results are nothing new as they also follow from the flow equations, but it

is interesting to evaluate them on the horizon:20

[∂IVst](B, p) = 0 and vKL(B) pKpL = −3 . (4.41)

4.3.1 Extremal strings of the STU model

The 5-dimensional STU model can be obtained as a consistent truncation of a 6-torus

compactification of M-theory, meaning that any 5-dimensional solution can always be lifted

to M-theory. As is well-known, the supersymmetric black holes derived in section 3.2

correspond to the intersection of three M2-branes, which after a chain of dualities leads to

e.g. a D5-D1-F1 intersection that is used to calculate the microscopic entropy [50]. This

20These equations are analogous to eqs. (2.44) and (2.42).
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identification can also be used to explain the microscopic origin of the near-extremal black

holes [51]. The uplift of the supersymmetric strings is readily identified with an intersection

of three M5-branes and the general string solutions can be seen to be deformations of these

intersections.

The relevant polynomial reads

V(K) = K0K1K2, (4.42)

which, when comparing it to the W(H) in section 3.2 and remembering that the Hesse

metric is the second derivative of the logarithm of V, means that the problem is completely

analogous to the problem treated in section 3.2. It is therefore no great surprise to see that

the Hamiltonian constraint and the equations of motion are given respectively by

3B2 =
∑

I

K̈I

KI
, (4.43)

0 = KIK̈I − (K̇I)2 + (pI)2 (no summation). (4.44)

The general comments made in section 3.2 about the separability of the equations and

their solutions apply also in this case.

The extremal solutions, taking into account the branches and the signs, are given by

harmonic functions

KI = sI sgn(pI)
(

|AI |+ |pI |ρ
)

, (sI)2 = 1 , (4.45)

where the various signs have to satisfy

1 = s0s1s2 sgn(p0) sgn(p1) sgn(p2) and s0sx = σx sgn(p0) sgn(px) , (4.46)

which are completely analogous to eqs. (3.25) and (3.29). The supersymmetric extremal

solutions, i.e. the ones that extremize the string central charge Zm(φ, p), have signs that

satisfy

sgn(p0) = σx sgn(px) . (4.47)

Table 1, after replacing qI with pI and σx with σx, can be applied also to this case.

The entropy density for the extremal strings is

S = |p0p1p2|2/3. (4.48)

The string’s tension can be calculated from eq. (4.24) and reads

T(1) =
1

4|ϕ1
∞ϕ2

∞|2/3
(

|ϕ1
∞ϕ2

∞p0|+ |ϕ2
∞p1|+ |ϕ1

∞p2|
)

, (4.49)

when expressed in terms of the asymptotic values of the scalar fields ϕx.
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4.3.2 Extremal strings in the heterotic STU model

In this section we consider the extremal string solutions to the STU model with a correc-

tion, leaving the non-extremal ones for future work as they are much more involved.

The model that we want to consider can be obtained by compatifying heterotic string

theory on K3× S1 and the fundamental polynomial is given by [52]

V(h·) =
{

h0h1h2 + ℵ2

3 (h0)3 for h0 < h1,

h0h1h2 + ℵ2

3 (h1)3 for h0 > h1,
(4.50)

where ℵ = 1 has been introduced in order to be able to discuss the STU limit ℵ → 0. The

line h0 = h1 corresponds to the selfdual radius of the circle compactification, where extra

massless modes arise; h2 corresponds to the 5-dimensional dilaton [52]. We shall restrict

ourselves to the case when hI > 0, hence also ϕI > 0, and we shall furthermore restrict

ourselves to the wedge of moduli space where h1 > h0, or alternatively ϕ1 > 1, in order

not to have to deal with solutions that interpolate between the two wedges.21

Let us in passing mention that the BPS black holes based on this model were obtained

by Gaida in ref. [55], who showed that there is a quantum constraint on the electric charges.

This restriction arises as follows: by eq. (2.2) we see that

3h0 = h1h2 + ℵ2(h0)2, 3h1 = h0h2, 3h2 = h0h1, (4.51)

which can be inverted over the complex numbers to give

h1 =
3h2
h0

, h2 =
3h1
h0

,
2

3
ℵ2(h0)2 = h0 ±

√

h20 − 4ℵ2h1h2 . (4.52)

Since the h’s must be real,

(h0)
2 ≥ 4ℵ2h1h2 or dually:

(

h1h2 − ℵ2(h0)2
)2 ≥ 0 , (4.53)

to which we shall refer to as Gaida’s bound and which is a restriction originating from the

well-definedness of the model in real special geometry. As the restriction must also hold

on the horizon, the attractor mechanism implies Gaida’s constraint q20 ≥ 4ℵ2q1q2 [55].

The supersymmetric solutions can be found easily by extremizing the string central

charge Zm(p). To that end one would in principle need a parameterization of the h’s in

terms of the physical scalars φx, but it is advantageous to use the ϕx as physical scalars as

then the attractor equation

0 =
∂Zm(p)

∂ϕx

∣

∣

∣

∣

ϕx
h

, (4.54)

becomes readily solvable by seeing that hx = h0ϕx and (h0)−3 = V(ϕI). Perhaps surpris-

ingly, this equation has two solutions, namely:

21The interesting case of having a solution that switches from one wedge to another will not be considered

here. See e.g. [53, 54] for supersymmetric black hole and string solutions that do switch wedges.
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a) The first solution is given by

ϕ1
h =

B1

B0
=

p1

p0
, ϕ2

h =
B2

B0
=

p2

p0
, (4.55)

which is a solution for the chosen wedge if sgn(p1p0) = 1 and |p1| > |p0|.
The above fixes the scalars on the horizon, but does not give us the B-coefficients;

for that we need to solve eq. (4.32), which for generic charges gives B0 = s0p0, where

s0 = ±1 as is customary in this article. Given this identification we can then calculate

the entropy density, whose positivity implies that s0 = sgn(p0):

S3/2(p) = |p0p1p2|+ ℵ2

3
|p0|3. (4.56)

The sign of B0 together with the sign restrictions on the scalars determine the B’s

to be BI = |pI |.
Due to the fact that the magnetic charges must all have the same sign, the equations

of motion (4.19) are satisfied for all values of AI , so we can take KI = |AI |+ |pI |ρ to

ensure the regularity of the resulting solution and impose the normalization condition

V(|A|) = 1 in order to obtain an asymptotic Minkowski metric. The final constraint

comes from the fact that ϕ1(ρ) > 1: it is easily seen that this is satisfied if and only

if |A1| > |A0|.
A string in this class that saturates Gaida’s bound, satisfies p1p2 = ℵ2|p0|2, and the

resulting entropy density is

S|Gaida =

(

4

3

)2/3

|p0|2. (4.57)

b) The second solution has no classical, i.e. ℵ2 → 0, limit and exists if and only if

sgn(p1p2) = 1. It reads

ϕ1
h =

B1

B0
=

√

|p1|
|p2|ℵ

2 , ϕ2
h =

B2

B0
=

√

|p2|
|p1|ℵ

2 , (4.58)

which lies in the desired wedge if |p1| > |p2|. Observe that this solution saturates

Gaida’s bound on the horizon.

The Hamiltonian constraint on the horizon fixes

B0 =
1

2
s0 sgn(p0)

(

|p0|+ sgn(p0p1)
√

|p1p2|
)

. (4.59)

The equations of motion show that they are satisfied iff p1p2 = ℵ2|p0|2, which im-

mediately reduces this case to the Gaida solution of case a).

The extremal non-BPS solutions to this case are not as easy to find as in the STU

model,22 and one has to resort to a different approach: first we solve the equations (4.41)

22The system has a discrete symmetry with respect to the interchange of indices 1 and 2. The function V

has the more important scaling symmetry h1
→ eλh1 and h2

→ e−λh2, but it does not leave the equations

of motion in the H-formalism invariant.
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in order to find the relation between the B’s and the p’s and then solve the full equations

of motion. Clearly, solving the first of eqs. (4.41) for the B’s is challenging, but seeing

that it is quadratic in p’s, we first solve it to obtain p = p(B) and then try to invert this

relation.

Now there are four cases that solve the first of the eqs. (4.41), one of which corresponds

to the BPS solution above and three correspond to extremal non-BPS solutions:

i) The first case is given by

ϕ1
h =

B1

B0
= −p1

p0
− 2ℵ2p0

3p2
, ϕ2

h =
B2

B0
=

p2

p0
. (4.60)

For this solution to be valid in the chosen wedge we must have that sgn(p0) =

sgn(p2) = − sgn(p1) and the magnetic charges must be such that

|p1| > |p0|+ 2|p0|2
3|p2| . (4.61)

The normalization condition then gives (p0)2 = (B0)2 and we can calculate

S3/2 = B0

(

|p1p2| − ℵ2

3
|p0|2

)

. (4.62)

As one can see, due to the restriction on the charges, we have that the term between

the parentheses is positive, so we need to choose B0 = |p0|, implying

S3/2 = |p0p1p2| − ℵ2

3
|p0|3. (4.63)

Surprisingly, the Hamiltonian constraint does not impose any condition on A1 but

imposes the condition p2A0 = p0A2. We solve this condition by introducing a positive

number β and writing

A0 = β|p0| , A2 = β|p2| , thus ϕ2(ρ) =
|p2|
|p0| . (4.64)

Even more surprisingly, the equations of motion are identically satisfied by the above

relations between the coefficients A and B.

With the above information we can then calculate the metrical function

e−3U = |p0|(β + ρ)2
[

|p2|A1 +
ℵ2

3
β|p0|2 +

(

|p1p2| − ℵ2

3
|p0|2

)

ρ

]

. (4.65)

Its regularity becomes more manifest when we impose the asymptotic Minkowskianity

condition

|p2|A1 +
ℵ2

3
β|p0|2 = 1

β2|p0| , (4.66)

which allows us to express the metrical factor as

e−3U = (1 + β−1ρ)2
[

1 + β2

(

|p0p1p2| − ℵ2

3
|p0|3

)

ρ

]

. (4.67)
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The tension of this string is easily calculated to give

4T(1) = 2β−1 + β2

(

|p0p1p2| − ℵ2

3
|p0|3

)

= 2β−1 + β2S3/2, (4.68)

which is always positive, due to the restrictions imposed on the magnetic charges;

the minimal attainable tension occurs when β = S−1/2, from which we have that

T(1) ≥ 3
4S1/2.

We have seen that ϕ2(ρ) is just a constant and that it always satisfies ϕ2 > 0. The

situation with ϕ1 is slightly more complicated as it must satisfy ϕ1(ρ) > 1. Writing

out the constraint we see that

β|p0|2
(

|p2|+ ℵ2

3
|p0|

)

− β−2 ≤ ρ|p0p2|
(

|p1| − |p0| − 2|p0|2
3|p2|

)

. (4.69)

Since the term in brackets on the right-hand side is positive due to the condition for

the scalar on the horizon to be in the correct wedge and since ρ ∈ [0,∞), we see that

the left-hand side must in fact be smaller than zero, or

β3

(

|p0|2|p2|+ ℵ2

3
|p0|3

)

< 1 . (4.70)

ii) This case is readily obtained from case i) by using the obvious symmetry of the

equations of motion and the Hamiltonian constraint under the interchange of the

indices 1 and 2. What is not invariant under this change is the choice of wedge,

which means that the restrictions we need to impose will be different from the ones

imposed in case i). The solution to eq. (4.41) is

ϕ1
h =

B1

B0
=

p1

p0
, ϕ2

h =
B2

B0
= −p2

p0
− 2ℵ2p0

3p1
. (4.71)

The choice of wedge then implies that sgn(p1) = sgn(p0) and that |p1| > |p0|; the
fact that ϕ2 > 0 then implies that sgn(p2) = − sgn(p0) and

|p1| > |p0| and |p2| > 2ℵ2|p0|2
3|p1| . (4.72)

The normalization condition in eq. (4.41) gives B0 = s0p0 and as before the sign s0

is fixed by the entropy density to be s0 = sgn(p0); the resulting entropy density is

identical to the one in eq. (4.63) and is positive owing to the restrictions (4.72).

Similarly to what happened before, the Hamiltonian constraint and the equations

of motion impose no condition on A2, but impose the condition A1|p0| = A0|p1|.
We solve it by A0 = γ|p0| and A1 = γ|p1|, which immediately implies that ϕ1(ρ) =

|p1|/|p0| > 1, so there is no possibility of the solution leaving the chosen wedge of

moduli space.

Regularity of the warp factor in ensured by the asymptotic Minkowskianity condition,

which not only fixes

γ2|p0p1|A2 = 1− ℵ2

3
γ3|p0|3 (4.73)
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and brings the metrical factor to the form in eq. (4.67), but also means that the

tension of the string in this case is the one in eq. (4.68). The final ingredient then is

the condition that ϕ2(ρ) be strictly positive. This condition is easily calculated and

gives
ℵ2

3
γ3|p0|3 < 1 . (4.74)

iii) The third non-supersymmetric solution to eqs. (4.41) can be found by imposing

p1B2 = p2B1, from which one finds that ϕ1
h must satisfy the fourth-order equation

2p0p
2
1(ϕ

1
h)

4 + 7p21p2(ϕ
1
h)

3 − 3p0p1p2(ϕ
1
h)

2 − 3p1p
2
2ϕ

1
h − 3p0p

2
2 = 0 . (4.75)

The solutions are however too intricate to be of any real use and this case will,

therefore, not be treated.

5 Conclusions

We have extended the H-FGK formalism of [21] to black strings and applied it to find

examples of black-hole and black-string solutions in specific models, as well as re-derive a

non-extremal solution with constant scalars discussed earlier by [19], which is a solution to

any model of N = 2 supergravity in five dimensions, coupled to vector multiplets. Since

strings couple magnetically rather than electrically to the gauge fields, the rôles of primary

(untilded) and dual (tilded) H-variables are interchanged in comparison with the case of

black holes (for distinction we denoted the primary variables K when discussing strings).

In the STU model, however, the resulting equations for black strings are the same as for

black holes.

The model-independent relationship between a set of parameters appearing in the H-

formalism and the asymptotic values of the scalars is a significant simplification with respect

to the original FGK formulation (in physical variables), where the parameters need to be

determined in each case from complicated equations. For extremal solutions, the other

set of parameters, which can be called fake charges, is given by the condition that the

black hole potential be stationary, this way completing a simple procedure for constructing

extremal (supersymmetric and non-supersymmetric) black hole solutions.

The derivation of first-order flow equations for non-supersymmetric extremal black

holes and black strings presented here allows the relation between the fake and actual

charges to be non-linear, which is indeed the case in the specific example of the model from

a Jordan sequence. For non-extremal solutions, the hyperbolic ansatz makes it possible to

bring the flow equations to the same form as the extremal flow. On the other hand, one

could argue that once the harmonicity or hyperbolicity assumptions have been adopted,

the analysis of flow equations as such becomes perhaps superfluous, since the radial profile

of the scalars is already established by the respective ansätze.

We have demonstrated that for the STU model in five dimensions the hyperbolic (or

exponential) ansatz in the non-extremal case and the harmonic ansatz in the extremal

case correspond to the most general solutions of the equations of motion. We expect these
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ansätze for the variables H and K to be valid in all five- and four-dimensional models for

all static solutions with transverse spherical symmetry. For non-static black holes a less

restrictive ansatz is required, as the four-dimensional stabilization equations for general

extremal black holes suggest [40].
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