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1 Introduction

The AdS/CFT correspondence [2] provides a nonperturbative definition of string theory

(and M-theory) on various anti-de Sitter spacetimes in terms of conformal field theories on

flat Md+1 spacetimes, which can, in turn, be reformulated by means of the operator-state

correspondence on the R × Sd boundary of AdSd+2. Through the AdS/CFT correspon-

dence, the geometry and topology of the bulk spacetime physics must be encoded in the
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dual field theory. The idea that the macroscopic properties of spacetime are emergent and

not fundamental is neither new nor exclusively string theoretic. Gauge/string theory duali-

ties do, however, provide an excellent laboratory in which to test these ideas. In particular,

through studies of the many brane configurations in string theory and their dual field the-

oretic descriptions, tremendous progress has been made in understanding the encoding of

• the shape and local position of D-branes in spacetime [3–7];

• the supergravity geometries of multiple backreacting D-branes [8–13];

• open strings attached to D-branes, Gauss’ law for open string end-points and non-

planar integrability in the open string sector [14–19]

in the gauge theory. But there is much which still remains to be understood. Towards this

end, as in any laboratory, it is important to have a good sample of specimens to work with.

In this article, we build a catalogue of giant gravitons in the ABJM correspondence [20]:

a family of M-branes embedded into AdS4 × S7/Zk and their NS5/ D-cendents under the

compactification to type IIA superstring theory on AdS4 × CP3.

Indeed, a natural place to begin studying the emergence of geometry within the frame-

work of the AdS/CFT correspondence is to consider supersymmetric, geometrically non-

trivial membranes embedded into supergravity backgrounds with gauge theory duals. A

class of supersymmetric D3-branes in type IIB superstring theory on AdS5×S5, known as

giant gravitons in view of their interpretation as large momentum graviton excitations, has

proven particularly useful in this context. The simple example of a 1
2 -BPS giant graviton

wrapping an S3 embedded into S5 ⊂ C3 was originally studied in [21, 22] through a Dirac-

Born-Infeld (DBI) analysis and later reconstructed1 in [1] from holomorphic surfaces in C3,

as part of a larger class of D3-brane solutions which includes also 1
4 -BPS and 1

8 -BPS giant

gravitons.2 (Restricted) Schur polynomial operators [4, 14, 15], built from the three com-

plex Higgs fields in the N = 4 SYM supermultiplet, form a complete and orthogonal basis

of operators dual to (excited) collections of these 1
2 -BPS giant gravitons in AdS5×S5. The

operators dual to Mikhailov’s 1
4 -BPS and 1

8 -BPS giant gravitons embedded into S5 are not

as yet known, although progress has been made in [25] towards the construction of 1
8 -BPS

operators in N = 4 SYM theory at weak coupling. However, the geometric quantization

of the moduli space of 1
8 -BPS giant gravitons can be very well described by approximating

the holomorphic function by a holomorphic polynomial in C3 whose coefficients are the

moduli [26, 27]. The Hilbert space obtained in this way gives rise to precisely the partition

function over the classical chiral ring of 1
8 -BPS states in N = 4 SYM theory.

For these statements about the emergence of geometry in the AdS/CFT correspon-

dence to be taken seriously, though, it is important that they not just be statements about

AdS5/CFT4 dualities. More examples are needed, but, fortunately, with the discovery

1The holomorphic curve construction of [1] extends to a broader class of solutions which include, for

example, giant gravitons in the conifold, T 1,1. It has also been used to construct ‘wobbling’ dual giant

gravitons in AdS5 ⊂ C2,1 [23].
2Also of interest is the demonstration of [24] that electromagnetic waves can be introduced on the

worldvolumes of these giant gravitons in such a way as to preserve their supersymmetry.
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of various AdS4/CFT3 dualities, more are at hand. The construction of supersymmetric

membranes and giant gravitons in the ABJM correspondence [20] has, however, proven con-

siderably more problematic. The ABJM duality links M-theory on AdS4 × S7/Zk or type

IIA superstring theory on AdS4×CP3 with (two copies of) an N = 6 Super-Chern-Simons-

matter theory in 2+1 dimensions, with a U(N)×U(N) gauge group and level numbers k and

−k, respectively. This theory has a well-defined ’t Hooft coupling λ = N
k , and k � N1/5

and k � N1/5 are the M-theory and IIA string theory regimes. The relation between

this M-theory and type IIA superstring theory is well-known [28, 29]: the 11D SUGRA

geometry AdS4 × S7/Zk is obtained from AdS4 × S7 by an orbifold identification on the

fibre of the Hopf fibration S7 ←↩ CP3. The compactification of M-theory on AdS4×S7/Zk
along the Hopf circle to type IIA superstring theory on AdS4 × CP3 can then be imple-

mented as a large k limit of the orbifolding. Particular examples of 2-branes, 4-branes and

5-branes embedded into AdS4 × S7/Zk and AdS4 × CP3 were constructed in [30–36]. A

D2-brane giant graviton wrapping an S2 embedded into AdS4 was constructed in [30] and

studied in more detail in [31], while various 4-branes and 5-branes (including maximal giant

gravitons in S7/Zk and CP3) with angular momentum and/or D0-brane charge, were con-

structed in [33]. However, even a simple example of a CP3 giant graviton, being a D4-brane

wrapping a 4-manifold of variable size in CP3 and supported by its angular momentum in

this complex projective space, proved surprisingly difficult to construct. Nevertheless, one

such solution was eventually found and studied in some detail in [34] (and later also in [35]

in which an independent parameterization of the giant’s worldvolume facilitated the com-

putation of various holographic three-point functions). The shape of this object varies with

its size and its fluctuation spectrum was shown to exhibit a novel dependence on the size

parameter. This CP3 giant graviton factorizes at maximum size into two D4-branes wrap-

ping non-contractible CP2 ⊂ CP3 cycles, which are dual to dibaryon operators in the ABJM

model [37, 38]. Further discussions of the dual ABJM operators can be found in [39–44].

Beyond these particular examples, however, the general holomorphic surface construc-

tion of giant gravitons in S7/Zk and CP3 was, until now, unknown for arbitrary k ∈ Z+.

For k = 1, a class of 1
8 -BPS M5-brane giant gravitons embedded into S7 ⊂ C4 was con-

structed in [1] from holomorphic surfaces in the complex manifold C4. These solutions were

shown to exhibit a supersymmetry enhancement to 1
4 -BPS and 1

2 -BPS configurations in

special cases. Here we study these sphere giant gravitons3 under the orbifold identification.

In particular, we construct an entirely new class of 1
6 -BPS M5-branes embedded into the

orbifold compact space S7/Zk. We demonstrate that these orbifold giant gravitons also

enjoy a supersymmetry enhancement to 1
2 -BPS and 1

3 -BPS configurations in special cases

upon which we shall elaborate. A compactification then results in a further new class of
1
6 -BPS D4 or NS5-branes embedded into the complex projective space, which we shall call

CP3 descendants. The angular momentum along the eleventh fibre direction in the orbifold

space gives rise to D0-brane charge. The D4-branes carry some combination of angular

momentum in the complex projective space and D0-brane charge, while the NS5-branes are

3Note that sphere giant gravitons are so-called because they are embedded into the S7 compact space

rather than in reference to their shape - they are non-spherical objects and some may even be topologically

non-trivial.
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supported by D0-brane charge only, thus being simply dielectric branes [45]. A subclass

of D4-brane CP3 descendants supported entirely by angular momentum in the complex

projective space, genuine CP3 giant gravitons, is obtained in the special case in which the

holomorphic surface constraint is independent of the eleventh fibre direction. Now, for the

most part, the dual operators in the ABJM model are still unknown, except in the case

of these CP3 giant gravitons and at zero coupling [41, 42]. The construction of a more

general class of operators dual to orbifold giant gravitons and their CP3 descendants with

D0-brane charge must necessarily involve the inclusion of monopole charge, as discussed

for 1
2 -BPS operators in [39, 40], and remains an important open problem.

The organization of this article is as follows: section 2 opens with a brief review of

the construction of 1
8 -BPS M5-brane sphere giant gravitons following [1]. In the inter-

ests of brevity, we omit technical details of the holomorphic curve construction as well as

the associated supersymmetry analysis, included rather in appendix B. We then use this

construction to discover a new class of 1
6 -BPS M5-brane orbifold giant gravitons in sec-

tion 3, and discuss the NS5 and D4-branes to which they descend after a compactification

to type IIA string theory on AdS4 × CP3. A brief discussion of the relevant supergrav-

ity backgrounds can be found in appendix A. We then study the particular example of a

one-parameter family of 1
2 -BPS orbifold giants in section 4. The CP3 descendants of these

giant gravitons, either D4 or NS5-branes (depending on the parameter), are constructed in

section 5. The 1
2 -BPS NS5-brane solution is identical to the dielectric 5-brane configura-

tion of [33] up to a change of worldvolume coordinates. Both the D4 and the NS5-branes

pick up an additional coupling to a worldvolume field strength, F (1), constructed from the

RR 1-form potential and therefore associated with D0-branes ‘ending’ on the D4 or NS5-

brane worldvolume. This happens because the holomorphic function of the orbifold giant

graviton ancestor depends on the eleventh fibre direction. In order to correctly describe

the D4 and NS5-brane CP3 descendants we derive a new action with isometric transverse

and worldvolume directions, respectively. This action arises from the M5-brane through

a more general reduction ansatz in which the embedding coordinates may depend on the

M5-brane worldvolume direction on which the reduction takes place. Appendix C contains

the details of this construction. We present concluding remarks in section 6.

2 Sphere giant gravitons

2.1 Sphere giant gravitons from holomorphic surfaces

It is well-known that a large class of M5-branes, known as sphere giant gravitons, can

be embedded into the maximally supersymmetric 11D SUGRA background AdS4 × S7.

The worldvolume R × Σ(t) was built in [1] from a 5-manifold Σ(t) = C(t) ∩ S7, being the

intersection of a holomorphic surface C(t) in C4 with S7. Here the stationary holomorphic

surface C is defined by f(w1, w2, w3, w4) = 0 and is brought into motion,

C : f(w1, w2, w3, w4) = 0 −→ C(t) : f(w1 e
− i

2
ξ̇ t, w2 e

− i
2
ξ̇ t, w3 e

− i
2
ξ̇ t, w4 e

− i
2
ξ̇ t) = 0, (2.1)

by boosting the complex coordinates wa along a preferred direction e‖ (simply the overall

phase of the wa) with ξ̇ = ±1 related to the angular velocity. The direction of motion

– 4 –
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eφ of the giant graviton is then the component of the preferred direction e‖ orthogonal to

TΣ. This preferred direction e‖ = I e⊥ in TS7 is induced by the complex structure of C4

acting on the unit vector e⊥ in TC4 which is orthogonal to TS7. The complex structure

I is, in turn, fixed by our initial choice of coordinates wa = ρa e
iψa for the complex man-

ifold C4, which breaks the SO(8) symmetry of S7 ⊂ C4 down to SU(4). These M5-brane

giant gravitons have rigid, rotating geometries which depend on the parameters in the

holomorphic function. This holomorphic surface construction is described in more detail

in appendix B.1.

This class of M5-brane sphere giant gravitons was shown in [1] to be 1
8 -BPS (in special

cases there is a supersymmetry enhancement to 1
4 -BPS and 1

2 -BPS configurations) with

finite energy H = Pξ satisfying the usual BPS bound. The supersymmetry analysis relies

upon an embedding of AdS4 × S7 into the flat spacetime R2+3 × C4 and the projection of

a 32-component Majorana spinor Ψ out of a 64-component complex spinor Ψ+. A review

is provided in appendix B.2. The Killing-Spinor Equations (KSEs) in the flat spacetime

R2+3×C4 are simply DµΨ+ = 0 and the covariantly constant spinor solutions take the form

Ψ+ =MR2+3Mw
C4 Ψ0

+ ≡Mw Ψ0
+, (2.2)

with MR2+3 shown in (B.17) and the C4 dependence given by

Mw
C4 = e−

1
2
ψ1 γw5 γ

w
9 e−

1
2
ψ2 γw6 γ

w
10 e−

1
2
ψ3 γw7 γ

w
11 e−

1
2
ψ4 γw8 γ

w
12 . (2.3)

Here the flat γwa matrices are associated with the real coordinates (ρa, ψa), being the radii

and phases of the complex coordinates wa = ρa e
iψa . We also make use of flat γ0, . . . , γ4

matrices corresponding to the R2+3 coordinates (t, r, θ, ϕ, R̂) with γ̂ ≡ γ0γ1γ2γ3 as in ap-

pendix B.2. The 64-component complex constant spinor Ψ0
+ satisfies the conditions

γ0γ̂ Ψ0
+ ≡ −i ξ̇Ψ0

+ (γw5 γ
w
9 )(γw6 γ

w
10)(γw7 γ

w
11)(γw8 γ

w
12) Ψ0

− ≡ Ψ0
+ (2.4)

and hence encodes 32 real degrees of freedom. We can partially label the spinors Ψ0
+ by

the eigenvalues swi = ±1 of the three Dirac bilinears γw5 γ
w
9 , γw6 γ

w
10 and γw7 γ

w
11:

γw5 γ
w
9 Ψ0

+ = isw1 Ψ0
+ γw6 γ

w
10 Ψ0

+ = isw2 Ψ0
+ γw7 γ

w
11 Ψ0

+ = isw3 Ψ0
+, (2.5)

from which it automatically follows that

γw8 γ
w
12 Ψ0

+ = i (sw1 s
w
2 s

w
3 ) Ψ0

+, (2.6)

where each of the 8 partial labels (sw1 , s
w
2 , s

w
3 ) = (±,±,±)w encodes 4 real degrees of free-

dom. The w superscripts make explicit our choice of coordinates wa, and hence our choice

of complex structure for C4 and preferred direction e‖ in S7.

The solution of the R2+3 × C4 background KSEs becomes

Ψ+ = e−
1
2
t γ0γ̂ e−

1
2
ψ1 γw5 γ

w
9 e−

1
2
ψ2 γw6 γ

w
10 e−

1
2
ψ3 γw7 γ

w
11 e−

1
2
ψ4 γw8 γ

w
12 Ψ0

+, (2.7)

when pulled-back to R×C(t). The kappa symmetry conditions on the pull-back of the spinor

Ψ to the worldvolume R×Σ(t) of the M5-brane giant graviton, associated with the holomor-

phic surface C defined by f(w1, w2, w3, w4) = 0, are satisfied if we impose the conditions:

Γw̄a Ψ+ = 0, for all wa such that (∂waf) 6= 0, (2.8)

– 5 –
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on the pullback of Ψ+ to R × C(t), the lift of the worldvolume to R2+3 × C4. These are

additional constraints on (2.7), which can be rephrased as

Γw̄1Ψ+ = 0 ⇐⇒ γw5 γ
w
9 Ψ0

+ = iΨ0
+ if (∂w1f) 6= 0 (2.9)

Γw̄2Ψ+ = 0 ⇐⇒ γw6 γ
w
10 Ψ0

+ = iΨ0
+ if (∂w2f) 6= 0 (2.10)

Γw̄3Ψ+ = 0 ⇐⇒ γw7 γ
w
11 Ψ0

+ = iΨ0
+ if (∂w3f) 6= 0 (2.11)

Γw̄4Ψ+ = 0 ⇐⇒ γw8 γ
w
12 Ψ0

+ = iΨ0
+ if (∂w4f) 6= 0, (2.12)

corresponding to selecting the swi = +1 eigenvalues. For convenience we shall denote sw4 =

sw1 s
w
2 s

w
3 the eigenvalue of γw8 γ

w
12 (which is not one of our labels). If the first three conditions

are satisfied, the last condition is also automatically satisfied from the second of (2.4).

The classification of these sphere giant gravitons as 1
2 -BPS, 1

4 -BPS or 1
8 -BPS M5-branes

therefore simply involves whether our holomorphic surface C can be written in terms of a

function of one, two, three or four complex coordinates wa. In each of these cases, the labels

(sw1 , s
w
2 , s

w
3 ) associated with spinor solutions satisfying the kappa symmetry conditions are

shown below:

f(w1) : (+±±)w 16 of 32 spinors =⇒ 1
2 -BPS

f(w1, w2) : (+ +±)w 8 of 32 spinors =⇒ 1
4 -BPS

f(w1, w2, w3) : (+ + +)w 4 of 32 spinors =⇒ 1
8 -BPS

f(w1, w2, w3, w4) : (+ + +)w 4 of 32 spinors =⇒ 1
8 -BPS

These holomorphic surfaces C have an evident U(4) symmetry associated with transforma-

tions wa → Uabwb preserving both the C4 metric and the fixed complex structure. The

M5-brane sphere giant gravitons thus have an evident SU(4) symmetry after the intersec-

tion with S7. However, we might initially have chosen any set of complex coordinates wa
and complex structure I for C4, and so any preferred direction e‖ in S7. The full symmetry

group is still SO(8), although it is not immediately apparent from this construction.

2.2 Sphere giant gravitons as the zeros of holomorphic polynomials

It is possible to approximate any holomorphic function f(w1, w2, w3, w4) to arbitrary ac-

curacy by a holomorphic polynomial of degree n, if n can be made arbitrarily large. An
1
8 -BPS sphere giant graviton, when boosted into motion, can hence be approximated by

the intersection of S7 with solutions of
n∑
`=1

∑
n1,n2,n3,n4

n1+n2+n3+n4=`

cn1n2n3n4 e
− i

2
(n1+n2+n3+n4) ξ̇ t (w1)n1 (w2)n2 (w3)n3 (w4)n4 = 0. (2.13)

The coefficients cn1n2n3n4 are only defined up to an overall complex rescaling and are there-

fore elements of a complex projective space CPnC with nC the number of possible 4-tuples

(n1, n2, n3, n4) with n1 + n2 + n3 + n4 ≤ n, being the number of terms in the polynomial.

Note that polynomials with the same intersection with S7 result in the same M5-brane

giant graviton, which leads to an identification of polynomials which differ by factors with

trivial intersections with S7. Similar observations in AdS5 × S5 allowed [26, 27] to give a

detailed description of the geometric quantization of the phase space of a class of 1
8 -BPS

D3-brane sphere giant gravitons embedded into this type IIB 10D SUGRA background.

– 6 –
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3 Orbifold giant gravitons

3.1 Orbifold giant gravitons from holomorphic surfaces

Let us consider the 11D SUGRA background AdS4×S7/Zk described in appendix A. Here

S7 has been written as a Hopf fibration over CP3, with S7/Zk the result of an orbifold identi-

fication on the Hopf fibre. In the construction of giant gravitons from holomorphic surfaces,

it is clear that the orientation of the Hopf fibre direction with respect to the preferred direc-

tion now becomes important. We keep wa = ρa e
iψa as the complex coordinates of C4 asso-

ciated with our giant graviton construction. But we shall now define the new complex co-

ordinates za = ra e
iχa for the orbifold identification, with the Hopf fibre τ the overall phase

of the za. In this section we show that the choice (z1, z2, z̄3, z̄4) ≡ (w1, w2, w3, w4) of com-

plex coordinates (defined up to U(4) symmetry transformations) results in a new class of
1
6 -BPS M5-branes under the orbifold identification, which we shall call orbifold giant gravi-

tons, with no configuration losing all its supersymmetry. Indeed, there is a supersymmetry

enhancement to 1
2 -BPS and 1

3 -BPS configurations for certain simple holomorphic surfaces.

The holomorphic surface f(w1, w2, w3, w4) = 0 in C4 becomes f(z1, z2, z̄3, z̄4) = 0

under this coordinate change and is boosted into motion, as before, by taking

C : f(z1, z2, z̄3, z̄4) = 0 −→ C(t) : f(z1 e
− i

2
ξ̇ t, z2 e

− i
2
ξ̇ t, z̄3 e

− i
2
ξ̇ t, z̄4 e

− i
2
ξ̇ t) = 0, (3.1)

with ξ̇ = ±1. The orbifold identification za ∼ za e
2πi
k or, equivalently, τ ∼ τ + 2π

k results in

the time-dependent surface C(t)/Zk. Here τ̃ ≡ τ
k is the orbifold fibre which has the usual

2π periodicity. Notice that this new surface in C4/Zk may end up wrapped k times on

the orbifold fibre τ̃ , as well as possibly moving along it. The worldvolume R× Σ(t) of an

M5-brane giant graviton embedded into AdS4 × S7/Zk is built as the intersection Σ(t) =

C(t)/Zk ∩ S7/Zk of the moving surface C(t)/Zk in C4/Zk with the orbifold space S7/Zk.
Let us now reconsider our previous analysis of the kappa symmetry conditions on the

covariantly constant spinor solution Ψ+ of the KSEs in flat R2+3 × C4 spacetime and de-

termine which spinors are projected out under the orbifold identification to R2+3×C4/Zk.
Here

Ψ+ =MR2+3Mz
C4 Ψ0

+ ≡Mz Ψ0
+, (3.2)

with MR2+3 again given by (B.17) and

Mz
C4 = e−

1
2
χ1 γz5γ

z
9 e−

1
2
χ2 γz6γ

z
10 e−

1
2
χ3 γz7γ

z
11 e−

1
2
χ4 γz8γ

z
12 (3.3)

= e−
1
2
τ (γz5γ

z
9+γz6γ

z
10+γz7γ

z
11+γz8γ

z
12) e−

1
2
ϕ1 γz6γ

z
10 e

1
2
χ (γz7γ

z
11+γz8γ

z
12) e

1
2
ϕ2 γz8γ

z
12 . (3.4)

We make use of the real coordinates (ra, χa), the radii and phases of the za = ra e
iχa com-

plex coordinates, and then change to the new angular coordinates (τ, χ, ϕ1, ϕ2) discussed

in appendix A. We can again partially label the constant spinors Ψ0
+ by the eigenvalues sza

of the Dirac bilinears γz5γ
z
9 , γz6γ

z
10 and γz7γ

z
11:

γz5γ
z
9 Ψ0

+ = isz1 Ψ0
+ γz6γ

z
10 Ψ0

+ = isz2 Ψ0
+ γz7γ

z
11 Ψ0

+ = isz3 Ψ0
+, (3.5)

from which it automatically follows that

γz8γ
z
12 Ψ0

+ = i (sz1 s
z
2 s

z
3) Ψ0

+. (3.6)

– 7 –
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Recall that each of these partial labels is associated with 4 spinor degrees of freedom. Now

let us make the orbifold identification τ ∼ τ + 2π
k on the phases of the za. The spinor

solutions Ψ+ contain the explicit dependence

Mz ∼ e−
1
2
τ (γz5γ

z
9+γz6γ

z
10+γz7γ

z
11+γz8γ

z
12) = e−

1
2
τ̃
k

(γz5γ
z
9+γz6γ

z
10+γz7γ

z
11+γz8γ

z
12), (3.7)

on the fibre direction and therefore do not satisfy the usual periodic boundary conditions

(up to a sign) when sz1+sz2+sz3+sz1 s
z
2 s

z
3 6= 0. Thus, as argued in [30], the spinors associated

with the labels (+++)z and (−−−)z do not survive the orbifolding. By retaining only the

other 6 of 8 partial labels, we ensure the Killing spinors are well-defined on AdS4×C4/Zk.
These spinors Ψ+ can be projected onto solutions Ψ of the AdS4 × S7/Zk KSEs using the

projection described in appendix B.2. It thus follows that the 11D SUGRA background

AdS4 × S7/Zk retains 24 of the original 32 supersymmetries.

The pullback of these 24 covariantly constant spinors Ψ+ to R× C(t)/Zk is

Ψ+ = e−
1
2
t γ0γ̂ e−

1
2
χ1 γz5γ

z
9 e−

1
2
χ2 γz6γ

z
10 e−

1
2
χ3 γz7γ

z
11 e−

1
2
χ4 γz8γ

z
12 Ψ0

+ (3.8)

= e−
1
2
t γ0γ̂ e−

1
2
ϕ1 γz6γ

z
10 e

1
2
χ (γz7γ

z
11+γz8γ

z
12) e

1
2
ϕ2 γz8γ

z
12 Ψ0

+, (3.9)

with the χa phases (or the χ and ϕi phases) constrained to C(t)/Zk and hence to the world-

volume of the orbifold giant graviton. Although there is no explicit dependence on τ̃ , due

to our removal of the labels (+++)z and (−−−)z, there may be an implicit τ̃ -dependence

through the phases χ and ϕi. Under the orbifold identification, it is hence possible for the

pullback of the spinor (3.9) to pick-up non-periodic boundary conditions, with repetition

(up to a sign) only upon traversing the τ̃ circle k times. This is not inconsistent, however,

if we interpret it as an indication that the M5-brane has become wrapped k times on the

Hopf fibre direction τ̃ , leading to multi-valued Killing spinors on its worldvolume.

The kappa symmetry conditions on Ψ are satisfied if

Γz̄1Ψ+ = 0 ⇐⇒ γz5γ
z
9 Ψ0

+ = iΨ0
+ if (∂z1f) 6= 0 (3.10)

Γz̄2Ψ+ = 0 ⇐⇒ γz6γ
z
10 Ψ0

+ = iΨ0
+ if (∂z2f) 6= 0 (3.11)

Γz3Ψ+ = 0 ⇐⇒ γz7γ
z
11 Ψ0

+ = −iΨ0
+ if (∂z̄3f) 6= 0 (3.12)

Γz4Ψ+ = 0 ⇐⇒ γz8γ
z
12 Ψ0

+ = −iΨ0
+ if (∂z̄4f) 6= 0. (3.13)

Alternatively, simply note that (±,±,±)w = (±,±,∓)z, so we can make use of the original

kappa symmetry conditions and project out the partial labels (+ +−)w and (−−+)w. We
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obtain the following classification:

f(z1) : (+ +−)z (+−+)z (+−−)z 12 of 24 spinors =⇒ 1
2 -BPS

f(z̄3) : (−−+)z (−+−)z (−+ +)z 12 of 24 spinors =⇒ 1
2 -BPS

f(z1, z̄3) : (+ +−)z (+−−)z 8 of 24 spinors =⇒ 1
3 -BPS

f(z1, z2) : (+ +−)z 4 of 24 spinors =⇒ 1
6 -BPS

f(z̄3, z̄4) : (+ +−)z 4 of 24 spinors =⇒ 1
6 -BPS

f(z1, z2, z̄3) : (+ +−)z 4 of 24 spinors =⇒ 1
6 -BPS

f(z1, z̄3, z̄4) : (+ +−)z 4 of 24 spinors =⇒ 1
6 -BPS

f(z1, z2, z̄3, z̄4) : (+ +−)z 4 of 24 spinors =⇒ 1
6 -BPS

This construction has a U(4) symmetry associated with transformations preserving

both the metric and complex structure of C4 before the orbifold reduction:

(z1, z2, z̄3, z̄4)T → U(z1, z2, z̄3, z̄4)T , with U ∈ U(4), (3.14)

becoming an SU(4) symmetry when the surfaces C(t)/Zk are intersected with S7/Zk.

3.2 Orbifold giant gravitons as the zeros of holomorphic polynomials

The holomorphic function f(w1, w2, w3, w4), rewritten in terms of the za coordinates, is

given by f(z1, z2, z̄3, z̄4) and can again be approximated to arbitrary accuracy by a polyno-

mial of degree n, if n can be made arbitrarily large. The surface C(t) in C4, when boosted

into motion, can be approximated by the solution of

n∑
`=1

∑
n1,n2,n3,n4

n1+n2+n3+n4=`

cn1n2n3n4 e
− i

2
(n1+n2+n3+n4) ξ̇ t (z1)n1 (z2)n2 (z̄3)n3 (z̄4)n4 = 0. (3.15)

Let us now consider the orbifold reduction. We can rewrite the complex coordinates za in

terms of the radii ra and redefined phases τ , χ and ϕi. Setting τ = τ̃
k , where τ̃ has the

usual 2π periodicity, we then approximate the surface C(t)/Zk in C4/Zk by∑
n1,n2,n3,n4

cn1n2n3n4 e
− i

2
(n1+n2+n3+n4) ξ̇ t (r1)n1 (r2)n2 (r3)n3 (r4)n4

× e
i
2

(n1+n2−n3−n4) τ̃
k e

i
2

(n3+n4)χ e
i
2
n2ϕ1 e

i
2
n4ϕ2 = 0, (3.16)

which, when intersected with S7/Zk, gives the (spatial) worldvolume of an M5-brane orb-

ifold giant graviton. This polynomial is clearly dependent on the orbifold fibre, in general.

This allows for the possibility of motion along the eleventh fibre direction τ̃ and/or, if τ̃ is

a worldvolume direction, the M5-brane embedding coordinates becoming τ̃ -dependent.

It is only in the special case in which all the coefficients cn1n2n3n4 vanish, except those

with n1 + n2 = n3 + n4 ≡ m, that the holomorphic function is independent of τ̃ . There

– 9 –
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is then no motion along the orbifold fibre τ̃ and no dependence on the worldvolume direc-

tion τ̃ in the M5-brane orbifold giant graviton embedding coordinates. The ansatz is thus

considerably more straightforward:
n
2∑

m=1

m∑
n1=1

m∑
n3=1

cn1n2n3n4 e
−imξ̇ t (r1)n1 (r2)n2 (r3)n3 (r4)n4 e

i
2
mχ e

i
2
n2ϕ1 e

i
2
n4ϕ2 = 0, (3.17)

with n2 = m−n1 and n4 = m−n3. Here the polynomial depends only on the combinations

z1z̄3, z1z̄4, z2z̄3 and z2z̄4. There is an obvious link between this special subclass of 1
6 -BPS

orbifold giant gravitons and the restricted Schur polynomial operators built from composite

scalars A1B
†
1, A1B

†
2, A2B

†
1 and A2B

†
2 in the ABJM model, which were constructed in [42].

The operators dual to the more general class of 1
6 -BPS orbifold giant gravitons associated

with the ansatz (3.16) are not presently known.

3.3 CP3 descendants

The compactification on the orbifold fibre τ̃ , through which M-theory on AdS4×S7/Zk is re-

duced to type IIA superstring theory on AdS4×CP3, can be seen as the limit of large k. This

new class of 1
6 -BPS M5-brane orbifold giant gravitons therefore gives rise to a new class of

1
6 -BPS D4 and NS5-brane descendants, wrapping 4-manifolds and 5-manifolds in the com-

plex projective space, with the same supersymmetry as their M5-brane ancestors. These

so-called CP3 descendants are associated with surfaces f(z1, z2, z̄3, z̄4) = 0, boosted into

motion as in (3.1), but now involving the CP3 homogenous coordinates za, which are param-

eterized only by the phases χ, ϕ1 and ϕ2, and not by the overall phase τ ≡ τ̃
k . We expect the

CP3 descendants to pick up an additional D0-brane charge (as in [33, 36]), if the function f

depends on the eleventh fibre direction τ̃ . We do, indeed, observe a coupling in the D4 and

NS5-brane action of section 5 to a worldvolume field strength, F (1), associated with D0-

branes ‘ending’ on the worldvolume. We present explicit constructions of 1
2 -BPS orbifold

giant gravitons and their CP3 descendants in sections 4 and 5 to demonstrate this effect.

The special cases of M5-brane orbifold giant gravitons associated with functions of the

form f(z1z̄3, z1z̄4, z2z̄3, z2z̄4) have ansätze which remain unaltered by the orbifold identifi-

cation and subsequent compactification. The worldvolume R× Σ(t) can then be obtained

by boosting the surface Σ into motion,

Σ:f(z1z̄3, z1z̄4, z2z̄3, z2z̄4)=0 −→ Σ(t) : f(z1z̄3 e
−i ξ̇ t, z1z̄4 e

−i ξ̇ t, z2z̄3 e
−i ξ̇ t, z2z̄4 e

−i ξ̇ t)=0,

(3.18)

with ξ̇ = ±1. There is a supersymmetry enhancement from 1
6 -BPS to 1

3 -BPS when the

function f(z1z̄3) depends on only one combination, say z1z̄3. These surfaces Σ(t) may be

approximated to arbitrary accuracy by solutions of (3.17), with the za now the homogenous

coordinates of CP3. This special subclass of CP3 descendants, being D4-brane CP3 giant

gravitons supported entirely by their angular momentum in the complex projective space,

carry no extra D0-brane charge and are described by the standard DBI plus CS action.

One such example is the CP3 giant graviton of [34, 35], which we now view as the CP3

descendant of the 1
3 -BPS orbifold giant graviton associated with the polynomial function

f(z1z̄3) = z1z̄3 − (2R)2
√

1− α2
0 , (3.19)

– 10 –



J
H
E
P
0
8
(
2
0
1
3
)
1
0
9

with α0 ∈ [0, 1] the constant size parameter. This D4-brane CP3 giant graviton should, at

least at zero coupling, be dual to a Schur polynomial operator χR(A1B
†
1) constructed from

the composite scalar field A1B
†
1 and labeled by the totally anti-symmetric representation

R of the permutation group [41, 42].

4 1
2
-BPS orbifold giant gravitons

The simplest 1
2 -BPS sphere giant gravitons are associated with linear holomorphic polyno-

mial functions of a single complex coordinate

f(wa) = wa − (2R)
√

1− α2
0 , (4.1)

with α0 ∈ [0, 1] the radial size of the S5 ⊂ S7 worldvolume. After the orbifold identifica-

tion, the 1
2 -BPS orbifold giant gravitons associated with these linear functions will differ,

depending on the alignment between their directions of motion and the fibre direction τ̃ .

Ideally, we would like to describe a family of 1
2 -BPS orbifold giant gravitons parameterized

by the proportion of their motion along τ before the orbifolding.

Towards this end, let us modify the parameterization of appendix A by an overall

phase, which is dependent on a new parameter β ∈ [0, 1]:

z1 = r1 e
iχ1 = (2R) cos ζ sin

θ1

2
ei{τ−βϕ1}

z2 = r2 e
iχ2 = (2R) cos ζ cos

θ1

2
ei{τ+(1−β)ϕ1}

z3 = r3 e
iχ3 = (2R) sin ζ sin

θ2

2
ei{τ−χ−βϕ1}

z4 = r4 e
iχ4 = (2R) sin ζ cos

θ2

2
ei{τ−χ−ϕ2−β ϕ1}, (4.2)

with τ = τ̃
k after the orbifold identification. This is equivalent to shifting τ → τ −β ϕ1 and

thus does not change the metric of the complex projective space. Here now

A = − sin2 ζ dχ+ (cos2 ζ cos2 θ1

2
− β) dϕ1 − sin2 ζ cos2 θ2

2
dϕ2 (4.3)

is the only redefinition needed for the background spacetime (see appendix A).

We shall take as our holomorphic function

f(z2) = z2 − (2R)
√

1− α2
0 . (4.4)

The moving surface C(t) is f(z2 e
− i

2
ξ̇ t) = 0 which, when intersected with S7 describes the

(spatial) worldvolume of the sphere giant graviton and leads to the expression

cos ζ cos
θ1

2
ei{τ+(1−β)ϕ1} =

√
1− α2

0 e
i
2
ξ(t), where ξ(t) = ξ̇ t = ± t, (4.5)

with the other phases independent of the worldvolume coordinates. We set τ ≡ τ̃
k to ob-

tain the surface C(t)/Zk which must be intersected with S7/Zk. The worldvolume of the
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orbifold giant graviton is then described by the radial coordinates ζ ∈ [0, π2 ] and θi ∈ [0, π],

satisfying the constraint

cos2 ζ cos2 θ1

2
= 1− α2

0, (4.6)

and the angular coordinates σ, χ, ϕ2 ∈ [0, 2π] in terms of which the phases are

τ ≡ τ̃

k
=

1

2
β ξ(t) + (1− β)σ, ϕ1 =

1

2
ξ(t)− σ, χ and ϕ2. (4.7)

This M5-brane configuration is twisted on the Hopf fibre direction for all β 6= 1:

ϕ1 =
1

(1− β)

{
1

2
ξ(t)− τ

}
=

1

(1− β)

{
1

2
ξ(t)− τ̃

k

}
(4.8)

by which we mean that the embedding coordinate ϕ1(t, τ̃) depends on the eleventh fibre

direction. Here τ̃ ∈ [0, 2πk] may be regarded as an alternative worldvolume coordinate to

σ, after a coordinate redefinition involving a mixing with the worldvolume time t. The orb-

ifold giant graviton is wrapped on τ̃ and thus we expect its CP3 descendant (constructed

in section 5) to be a D4-brane giant graviton with D0-brane charge, as well as angular

momentum in the complex projective space.

The special case of β = 1 has

τ ≡ τ̃

k
=

1

2
ξ(t) and ϕ1 =

1

2
ξ(t)− σ (4.9)

with motion along τ̃ and ϕ1, but no wrapping on the fibre direction. The CP3 descendant

must therefore be an NS5-brane supported only by D0-brane charge.

4.1 R × S7/Zk background

We shall parameterize the R × S7/Zk ⊂ AdS4 × S7/Zk subspace, into which the 1
2 -BPS

orbifold giant is embedded, in terms of the anti-de Sitter time t, the angular coordinates

(τ̃ , χ, ϕ1, ϕ2) and the radial coordinates (α, u, z). Here we define

cos2 ζ = (1− α2u), cos2 θ1

2
=

(1− α2)

(1− α2u)
and cos2 θ2

2
= z. (4.10)

The parameter α0 ∈ [0, 1] has been promoted to a radial coordinate orthogonal to the

giant’s worldvolume, while u, z ∈ [0, 1] are radial worldvolume coordinates.

The metric can be written as

ds2 = R2
{
−dt2 + 4ds2

S7/Zk

}
= R2

{
−dt2 + ds2

rad + ds2
ang

}
, (4.11)

where the radial and angular parts are

ds2
rad =

4 dα2

(1− α2)
+

α2 du2

u (1− u)
+
α2u dz2

z (1− z)
(4.12)

ds2
ang = 4α2 (1− u)

{
1

k
dτ̃ − β dϕ1

}2

+ 4
(
1− α2

){1

k
dτ̃ + (1− β) dϕ1

}2

(4.13)
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+ 4α2u (1− z)
{

1

k
dτ̃ − dχ− β dϕ1

}2

+ 4α2uz

{
1

k
dτ̃ − dχ− dϕ2 − β dϕ1

}2

,

in terms of the new radial coordinates. The 7-form field strength is given by

F (7) = 96
1

k
R6α5u dα ∧ du ∧ dz ∧ dτ̃ ∧ dχ ∧ dϕ1 ∧ dϕ2 = dC(6), (4.14)

associated with the following 6-form potential:

C(6) = 16
1

k
R6α6u du ∧ dz ∧ dτ̃ ∧ dχ ∧ dϕ1 ∧ dϕ2. (4.15)

The constant form of integration has been chosen such that C(6) vanishes when α = 0.

4.2 M5-brane orbifold giant graviton solution

Let α be constant and choose the M5-brane worldvolume coordinates σa = (t, u, z, σ, χ, ϕ2).

The direction of motion is

χ2 =
τ̃

k
+ (1− β)ϕ1 =

1

2
ξ(t) (4.16)

and we shall take the ansätze (4.7) and (4.10) for the angular and radial coordinates.

The M5-brane action takes the form

SM5 = − 1

(2π)5

∫
d6σ

√
| det gab| ±

1

(2π)5

∫
d6σ εa1··· a6 C

(6)
a1··· a6 (4.17)

in the absence of any worldvolume gauge fields. Substituting our ansatz into this action,

we obtain

SM5 =

∫
dt L, with L = −kN

2

{
α5

√
α2 + (1− α2)

(
1− ξ̇2

)
− α6 ξ̇

}
(4.18)

the Lagrangian. Here N ≡ 2R6

kπ2 is the flux through the S7/Zk space, which is dual to the

rank of the ABJM gauge group.

The momentum conjugate to ξ is given by

Pξ ≡
kN

2
p =

kN

2


α5
(
1− α2

)
ξ̇√

α2 + (1− α2)
(

1− ξ̇2
) + α6

 , (4.19)

while the energy H = Pξ ξ̇ − L can be written as

H ≡ kN

2
h =

kN

2

α5√
α2 + (1− α2)

(
1− ξ̇2

) . (4.20)

Inverting the expression for the momentum as a function of the angular velocity gives

(
1− α2

)
ξ̇2 =

(
p− α6

)2[
(p− α6)2 + α10 (1− α2)

] (4.21)
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Figure 1. The (shifted) energy of the M5-brane configuration in units of kN2 , given by h−p, plotted

as a function of the (scaled) radius α ∈ [0, 1] of the M5-brane at fixed p = 0.5. The α = α0 = p1/4

finite size, degenerate minimum is clearly evident.

and hence the energy can be written as a function of the momentum and the size α as

follows:

H =
kN

2

1√
1− α2

√
(p− α6)2 + α10 (1− α2). (4.22)

Plots of the energy at constant angular momentum are shown in figure 1. The finite size

α = α0 = p1/4 minimum (the giant graviton) occurs when ξ̇ = 1 and is energetically

degenerate with the α = 0 solution (the point graviton). Notice that H = Pξ for the giant

graviton solution, indicating a BPS configuration, as expected.

5 1
2
-BPS CP3 descendants

5.1 R × CP3 background

We parameterize the R×CP3 ⊂ AdS4×CP3 subspace, into which the D4-brane is embedded,

in terms of the anti-de Sitter time t, the angular coordinates (χ, ϕ1, ϕ2) and the radial

coordinates (α, u, z). The metric is given by

ds2 = L2
{
−dt2 + 4ds2

CP3

}
= L2

{
−dt2 + ds2

rad + ds2
ang

}
(5.1)

where we define

ds2
rad =

4 dα2

(1− α2)
+

α2 du2

u (1− u)
+
α2u dz2

z (1− z)
(5.2)

ds2
ang = 4α2u

(
1− α2u

) [
dχ+

(
1− α2

)
(1− α2u)

dϕ1 + z dϕ2

]2

+
4α2

(
1− α2

)
(1− u)

(1− α2u)
dϕ2

1 + 4α2uz (1− z) dϕ2
2 (5.3)
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and the dilaton Φ satisfies e2Φ = 4L2

k2
. The field strength forms in this subspace are

F (2) = k dA = dC(1) (5.4)

F (6) = −24kL4α5u dα ∧ du ∧ dz ∧ dχ ∧ dϕ1 ∧ dϕ2 = dC(5) (5.5)

associated with the potential forms

C(1) = k
{

(1− β) dϕ1 − α2 [u dχ+ dϕ1 + uz dϕ2]
}

= kA (5.6)

C(5) = −4kL4α6u du ∧ dz ∧ dχ ∧ dϕ1 ∧ dϕ2. (5.7)

Here we have taken into account the shift τ → τ −β ϕ1 (or τ̃ → τ̃ −kβ ϕ1 after the orbifold

identification) in the eleventh fibre direction, discussed in section 4.

5.2 D4 and NS5-brane CP3 descendant solutions

Our 1
2 -BPS family of M5-brane orbifold giant gravitons is described by an ansatz (4.7)

with the angular coordinates τ̃(t, σ) and ϕ1(t, σ) generally dependent on time t and a

spatial worldvolume coordinate σ. Here σ plays the role of an isometric direction in the

dimensional reduction of the M5-brane in the orbifold S7/Zk to a D4 or NS5-brane in the

complex projective space CP3. The non-trivial dependence of ϕ1 on this direction forces us

to take a more general ansatz in which ∂σX
µ 6= 0 for µ ∈ {0, 1, . . . , 9} for this reduction.

We still impose the condition that these derivatives are σ-independent. For β ∈ [0, 1),

the M5-brane is wrapped on the eleventh fibre direction τ̃ and thus becomes a D4-brane

after the compactification of S7/Zk to CP3. The D4-brane is described by an action in

which σ has become a transverse isometric direction. When compared with the standard

action for a D4-brane, this new action contains extra couplings to a worldvolume scalar,

c(0), which forms an invariant field strength, F (1), with the RR 1-form potential. The D4-

brane can therefore carry D0-brane charge. For β = 1, there is motion along the eleventh

direction τ̃(t), but no wrapping on τ̃ . After the compactification, the M5-brane becomes

an NS5-brane, which again contains the σ direction as an isometric direction, in this case

lying on its worldvolume. The NS5-brane therefore spans an effectively 4+1 dimensional

worldvolume. The action that describes this NS5-brane is identical to the new action

of the D4-brane with an isometric direction. In particular, additional couplings to the

worldvolume scalar, c(0), and its invariant field strength, F (1), are again found, indicating

D0-brane charge dissolved on the NS5-brane worldvolume.

The reduction of the M5-brane action (4.17) in AdS4 × S7/Zk to a D4 or NS5-brane

action in AdS4×CP3 is described in appendix C. As already mentioned, this new action may

be seen (for β ∈ [0, 1)) as the action of a D4-brane with an isometric transverse direction or

(for β = 1) as the action describing an NS5-brane with an isometric worldvolume direction

after a dimensional reduction upon lµ = δµσ . Substituting the M5-brane orbifold giant

graviton ansatz (4.7) into the DBI action (C.1) gives

SDBI
D4/NS5 = − 1

(2π)4

∫
d5σ

k2 α

2L

√
|dethab| , (5.8)
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where

hab ≡ Gab +
e2φ l2

l2 + e2φ S2
(F (1))a (F (1))b (5.9)

with l2 = gσσ and

Gab = gab−
gaσgbσ
gσσ

, S = ∂σ c
(0) + ilC

(1) , F (1) ≡ dc(0) +

[
(C(1))a − S

gaσ
gσσ

]
dσa, (5.10)

as derived in appendix C. Here F (1) is the invariant field strength associated with D0-

branes ‘ending’ on the D4 or NS5-brane, with c(0) a worldvolume scalar whose origin is

the eleventh direction. Note that ċ(0) arises from the motion ˙̃τ along the fibre and ∂σc
(0)

is related to the twist ∂σ τ̃ on this eleventh direction. The CS action (C.3) becomes4

SCS
D4/NS5 = ± 1

(2π)4

∫
d5σ εa1··· a5

{
k (1− β) (C(5))a1··· a5 + ∂[a1c

(0) (C(5))ϕ1a2··· a5]

}
. (5.11)

The 1
2 -BPS M5-brane orbifold giant graviton ansatz (4.7) then yields the following

ansatz for the D4 or NS5-brane CP3 descendant: the radial coordinate α is set to a constant.

Then σa = (t, u, z, χ, ϕ2) are chosen to be either the worldvolume coordinates of the D4-

brane (for β ∈ [0, 1)) or the reduced worldvolume coordinates of the NS5-brane (for β = 1)

after a dimensional reduction on the isometric worldvolume direction lµ = δµσ . The second

term in the CS action arises from an interior product with this Killing vector. The direction

of motion in the complex projective space is ϕ1(t) = 1
2 ξ(t) and the worldvolume scalar takes

the form c(0)(t) ≡ 1
2 kβ ξ(t). We can then compute

htt = L2
[
−1 +

(
1− α2

)
ξ̇2
]

huu = L2

{
α2

u (1− u)

}
hzz = L2

{
α2u

z (1− z)

}
hχχ = L2

{
4α2u (1− u)

}
hϕ2ϕ2 = L2

{
4α2uz (1− uz)

}
hχϕ2 = L2

{
4α2uz (1− u)

}
, (5.12)

as well as

εa1··· a5
{
k (1− β) (C(5))a1··· a5 + ∂[a1c

(0) (C(5))ϕ1a2··· a5]

}
= −1

2
k ξ̇ (C(5))uzχϕ1ϕ2

= 2kL4α6u ξ̇. (5.13)

The D4 or NS5-brane action can now be simplified as follows:

SD4/NS5 =

∫
dt L, with L = −kN

2

{
α5

√
α2 + (1− α2)

(
1− ξ̇2

)
− α6 ξ̇

}
. (5.14)

This is identical in form to the action of the M5-brane orbifold giant graviton from which

it descends. Here N ≡ kL4

2π2 is the flux through the CP3 compact space. The energy plot

shown in figure 1 is still applicable. Now the momentum Pξ ≡ kN
2 p is fixed and the

energy is expressed in units of kN
2 . The α = α0 = p1/4 minimum occurs when ξ̇ = 1 and

4We choose the positive sign here for a brane (rather than an anti-brane) configuration.
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ċ(0) = kβ
2 . Note that 1

2Pϕ1 = (1−β)Pξ and 1
2 kPc(0) = Pξ, so the parameter β is related to

the momentum in the complex projective space. This momentum Pϕ1 vanishes precisely

when β = 1, being the case of the NS5-brane, which is supported only by D0-brane charge

and not by angular momentum. Since it is possible to view these D4 or NS5-brane CP3

descendants as M5-brane orbifold giant gravitons in the large k limit, we maintain that

this remains a 1
2 -BPS configuration, as the above action would also seem to suggest.

6 Discussion

This article is a comprehensive study of M5-brane giant gravitons and their various D4

and NS5-brane descendents. In addition to a survey of the literature of known giants, we

have also shown the existence of several new classes of giant gravitons, both in the orbifold

AdS4 × S7/Zk as well as in its dimensional reduction to AdS4 × CP3. A vital role in our

constructions is played by Mikhailov’s ingenious observation relating giant gravitons and

holomorphic surfaces [1]. Here we have extended this holomorphic surface construction of

giant gravitons to the ABJM correspondence by studying the effect of the orbifolding of

S7 by Zk on the (moving) worldvolume Σ(t) = C(t) ∩ S7 of the M5-brane giant graviton.

The direction of motion of this sphere giant graviton is the component of the preferred

direction orthogonal to the worldvolume. While this preferred direction in S7 induced

by the complex structure of C4 is purely arbitrary, once made, it does break the SO(8)

isometry of the 7-sphere down to SU(4) ∼= SO(6). This choice is crucial, however, on the

orbifold S7/Zk ⊂ C4/Zk. Here, the preferred direction of the giant graviton construction

must now be chosen carefully in relation to the Hopf fibre of the orbifolding. Indeed, it

is only for a particular choice of preferred direction that all the 1
8 -BPS sphere giant gravi-

tons become 1
6 -BPS orbifold giant gravitons, with none of the configurations losing all its

supersymmetry. In this language then, the worldvolume of the orbifold giant graviton is

Σ(t)/Zk = C(t)/Zk ∩ S7/Zk. To summarise our results, in addition to our generalization

of Mikhailov’s construction, we find and study in particular:

• A new class of M5-brane orbifold giant gravitons embedded into S7/Zk. These are

generically 1
6 -BPS, but enjoy a supersymmetry enhancement to 1

2 -BPS and 1
3 -BPS

configurations for certain simpler holomorphic surfaces. These orbifold giant graviton

solutions exhibit an SU(4) symmetry.

• A new class of D4 and NS5-branes, being CP3 descendants of the orbifold giant gravi-

tons under the compactification of M-theory on AdS4×S7/Zk to type IIA superstring

theory on AdS4×CP3, which may be implemented as the k →∞ limit of the orbifold

spacetime. These configurations will have the same 1
6 -BPS (possibly enhanced to 1

3 -

BPS or 1
2 -BPS) supersymmetry as their orbifold giant graviton ancestors. Included is

a subclass of 1
6 -BPS D4-brane CP3 giant gravitons, supported only by their angular

momentum in the complex projective space, with a supersymmetry enhancement to
1
3 -BPS configurations in special cases. One such special case is the solution of [34].

• A new, one-parameter family of 1
2 -BPS M5-brane orbifold giant gravitons embedded

into S7/Zk as an explicit example of the above construction. For this class of solutions

– 17 –
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the parameter β ∈ [0, 1] can be interpreted as a measure of how far away the direction

of motion of the orbifold giant graviton is from the fibre direction (where β = 1).

Some properties of these solutions are:

– For parameters β ∈ [0, 1), the orbifold giant graviton is moving and wrapped

on the orbifold fibre, as well as moving in CP3. The embedding coordinates

of the M5-brane are dependent on this eleventh fibre direction and its CP3

descendants are D4-branes with both D0-brane charge, Pc(0) = 2k−1Pξ, and

angular momentum, Pϕ1 = 2(1− β)Pξ, in the complex projective space.

– For the special case of β = 1, with no wrapping along the eleventh direction,

the CP3 descendant of the M5-brane orbifold giant graviton is an NS5-brane

carrying D0-brane charge, Pc(0) = 2k−1Pξ, only. This dielectric NS5-brane

(NS5-D0-brane bound state) is the same as that found in [33] up to a change of

worldvolume coordinates.

• A new action describing D4 and NS5-branes with a special U(1) isometric direction.

In the case of a D4-brane, this is transverse to the worldvolume, while for an NS5-

brane it lies on the worldvolume. This action describes the 1
2 -BPS CP3 descendants

in a unified way (both the D4 and NS5-branes), and contains an explicit coupling to

a field strength, F (1), constructed from the RR 1-form potential, which accounts for

D0-brane charge in these brane configurations.

We consider these configurations as an important step in the cataloguing of supersymmetric

branes in M-theory and string theory, and hope that they will eventually find their place

as indispensable entries in the AdS/CFT dictionary. Until then, there is much still left to

do. Most pressing is, no doubt, to gain an understanding of their dual description in the

gauge theory. We conclude this article with some thoughts on the dual ABJM operators

as a topic for further study in the near future.

The operators dual to the most general orbifold giant gravitons and their CP3 descen-

dants are not presently known. In the special case of D4-brane CP3 giant gravitons with

no D0-brane charge, whose ansätze lift directly from the complex projective space to the

orbifold, there seems to be a clear link with operators in the ABJM model constructed

from composite scalars of the form AiBj , as in [41–43], at least at zero coupling.5 We

anticipate that CP3 descendants with D0-charge will be dual to operators with additional

monopole charge, such as those discussed in [39, 40]. In the case of the simplest 1
2 -BPS

operators built from a single scalar field, Ai or Bi, with invisible monopole operators at-

tached to ensure gauge invariance, we suggest that linear combinations of the single trace

operators of [39] might be used to build Schur polynomials dual to the 1
2 -BPS orbifold

giant gravitons and their CP3 descendants constructed in this work. The requirement that

the monopoles must be equivalent to large gauge transformations (and thus unobservable)

implies that the ABJM operators should be built from the scalars (Ai)
k and (Bi)

k with

5As soon as one deviates from zero coupling λ, it becomes vital to consider the ordering of the ABJM

scalar field components, (Âi)
a
β and (B̂j)

α
b , in the dual operators and the problem gains an additional level

of complexity.
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monopoles attached. This is linked to the 1
2 -BPS orbifold giant gravitons being wrapped

k times on the eleventh fibre direction. But that, as they say, is a whole other story. . .
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A Backgrounds

A.1 AdS4 × S7 background

The AdS4 × S7 background is a maximally supersymmetric solution of the 11D SUGRA

equations of motion. In the Neveu-Schwarz sector, this solution has metric

ds2 = R2
{
ds2
AdS4

+ 4ds2
S7

}
, (A.1)

while the dilaton and B-field vanish. The Ramond-Ramond field strength forms are

F (4) = −3R3 vol(AdS4) (A.2)

F (7) = ∗F (4) = 3(128)R6 vol(S7). (A.3)

Let us embed S7 ⊂ C4 into a complex manifold with coordinates:

z1 = r1 e
iχ1 = (2R) cos ζ sin

θ1

2
eiχ1 = (2R) cos ζ sin

θ1

2
eiτ

z2 = r2 e
iχ2 = (2R) cos ζ cos

θ1

2
eiχ2 = (2R) cos ζ cos

θ1

2
ei(τ+ϕ1)

z3 = r3 e
iχ3 = (2R) sin ζ sin

θ2

2
eiχ3 = (2R) sin ζ sin

θ2

2
ei(τ−χ)

z4 = r4 e
iχ4 = (2R) sin ζ cos

θ2

2
eiχ4 = (2R) sin ζ cos

θ2

2
ei(τ−χ−ϕ2), (A.4)

in terms of χa ∈ [0, 2π] or, alternatively, in terms of τ, χ, ϕi ∈ [0, 2π] with τ the overall

phase. The AdS4 and S7 metrics are then given by

ds2
AdS4

= −
(
1 + r2

)
dt2 +

dr2

(1 + r2)
+ r2

(
dθ2 + sin2 θ dϕ2

)
(A.5)

ds2
S7 = (dτ +A)2 + ds2

CP3 (A.6)

with the metric of S7 written as a Hopf fibration S7 ←↩ CP3 over a complex projective

space. Here

A = − sin2 ζ dχ+ cos2 ζ cos2 θ1

2
dϕ1 − sin2 ζ cos2 θ2

2
dϕ2 (A.7)
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and

ds2
CP3 = dζ2 + cos2 ζ sin2 ζ

[
dχ+ cos2 θ1

2
dϕ1 + cos2 θ2

2
dϕ2

]2

+
1

4
cos2 ζ

(
dθ2

1 + sin2 θ1 dϕ
2
1

)
+

1

4
sin2 ζ

(
dθ2

2 + sin2 θ2 dϕ
2
2

)
(A.8)

is the Fubini-Study metric of the complex projective space CP3, parameterized by the ra-

dial coordinates (ζ, θi) and angular coordinates (χ, ϕi). It is evident that there are two

squashed S2’s with coordinates (θi, ϕi) embedded in CP3. The additional radial coordinate

ζ controls the radii of these two S2’s. The additional angular coordinate χ describes a fibre

direction. The field strength forms are explicitly given by

F (4) = −3R3r2 sin θ dt ∧ dr ∧ dθ ∧ dϕ (A.9)

F (7) = 24R6 sin3 ζ cos3 ζ sin θ1 sin θ2 dζ ∧ dθ1 ∧ dθ2 ∧ dτ ∧ dχ ∧ dϕ1 ∧ dϕ2. (A.10)

A.2 AdS4 × S7/Zk background

To obtain the orbifold AdS4×S7/Zk solution of the 11D SUGRA equations of motion, we

simply identify τ ∼ τ + 2π
k . Defining τ̃ = kτ (where τ̃ is an angular coordinate with the

usual 2π periodicity), the background metric becomes

ds2 = R2
{
ds2
AdS4

+ 4ds2
S7/Zk

}
, with ds2

S7/Zk =
1

k2
(dτ̃ + kA)2 + ds2

CP3 , (A.11)

and the non-vanishing field strength forms are

F (4) = −3R3 vol(AdS4) = −3R3r2 sin θ dt ∧ dr ∧ dθ ∧ dϕ (A.12)

F (7) = ∗F (4) = 3(128)R6 vol(S7/Zk)

= 24
1

k
R6 sin3 ζ cos3 ζ sin θ1 sin θ2 dζ ∧ dθ1 ∧ dθ2 ∧ dτ̃ ∧ dχ ∧ dϕ1 ∧ dϕ2. (A.13)

This orbifold background solution retains 24 of the original 32 solutions of the Killing-

Spinor equations, and is hence no longer maximally supersymmetric.

A.3 AdS4 × CP3 background

The AdS4 × CP3 solution of the IIA 10D SUGRA equations of motion can be obtained

from the AdS4 × S7/Zk 11D SUGRA solution [28, 29] via a Kaluza-Klein reduction on an

S1 described by the Hopf fibre τ̃ :

ds2 = R2
(
dsAdS4 + 4ds2

CP3

)
+

4

k2
R2 (dτ̃ + kA)2

= e−
2
3

Φ L2
{
ds2
AdS4

+ 4ds2
CP3

}
+ e

4
3

Φ (dτ̃ + kA)2 , (A.14)

which implies: R3 = 1
2kL

2 and e2Φ = 4L2

k2
. Moreover, F4 has no legs in the τ̃ direction, and

hence F4 and B2 = 0 remain unchanged by the reduction.

The AdS4 × CP3 solution has the metric

ds2 = L2
{
ds2
AdS4

+ 4ds2
CP3

}
, (A.15)
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with now a constant dilaton Φ in the Neveu-Schwarz sector. The Ramond-Ramond field

strength forms are given by

F (2) = k dA = k

{
−2 cos ζ sin ζ dζ ∧

[
dχ+ cos2 θ1

2
dϕ1 + cos2 θ2

2
dϕ2

]
− 1

2
cos2 ζ sin θ1 dθ1 ∧ dϕ1 +

1

2
sin2 ζ sin θ2 dθ2 ∧ dϕ2

}
(A.16)

F (4) = −3

2
kL2 vol(AdS4) = −3

2
kL2 r2 sin θ dt ∧ dr ∧ dθ ∧ dϕ (A.17)

F (6) = ∗F (4) =
3

2
(64)kL4 vol(CP3)

= 6kL4 cos3 ζ sin3 ζ sin θ1 sin θ2 dζ ∧ dθ1 ∧ dθ2 ∧ dχ ∧ dϕ1 ∧ dϕ2 (A.18)

F (8) = ∗F (2). (A.19)

This AdS4×CP3 background can be thought of as the large k limit of the orbifold AdS4×
S7/Zk background and also preserves 24 of 32 possible supersymmetries.

B Details of the holomorphic surface construction

Here we review the construction [1] of a large class of 1
8 -BPS M5-brane giant gravitons

embedded into S7 ⊂ C4 in the maximally supersymmetric 11D SUGRA geometry AdS4×S7

from holomorphic surfaces in the complex manifold C4.

B.1 Holomorphic surfaces

Let us define

wa ≡ ρa eiψa ≡ (2R)ua e
iψa (B.1)

to be four coordinates for the complex manifold C4 with metric

ds2 =
4∑

a=1

dwa dw̄a =
4∑

a=1

(
dρ2

a + ρ2
a dψ

2
a

)
=

4∑
a=1

(2R)2 (du2
a + u2

a dψ
2
a

)
(B.2)

and complex structure fixed by this initial choice of complex coordinates wa. Here the sub-

manifold S7 is obtained by setting (2R)2 =
∑

a ρ
2
a to a constant. The tangent space of the

complex manifold TC4 contains a single unit vector e⊥ = 1
2 ∂R orthogonal to the tangent

space of the submanifold TS7. The complex structure of C4 then induces a preferred direc-

tion e‖ = Ie⊥ = 1
2R ∂γ in TS7, with γ the overall phase of the complex coordinates wa ∼ eiγ .

We now consider a holomorphic surface C defined by f(w1, w2, w3, w4) = 0 in C4 with

f some holomorphic function. The intersection of this holomorphic surface C with the

submanifold S7 describes the (spatial) worldvolume Σ = C ∩ S7 of an M5-brane giant

graviton6 embedded into S7 ⊂ C4 at time t = 0. The surface Σ is then boosted into

motion by applying a (reverse) boost along the preferred direction wa → wa e
− i

2
ξ̇ t to the

complex coordinates before substituting them into the holomorphic function:

C(t) : f(w1 e
− i

2
ξ̇ t, w2 e

− i
2
ξ̇ t, w3 e

− i
2
ξ̇ t, w4 e

− i
2
ξ̇ t) = 0, with ξ̇ = ±1. (B.3)

6A collection of M5-brane giant gravitons is found if Σ is a collection of disjoint surfaces in S7.
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Here we are boosting along the overall phase γ → γ+ 1
2 ξ̇ t, so that the boost velocity is v‖ =

(2R)(1
2 ξ̇) = Rξ̇ on the great circle in S7 parameterized by γ and with radius 2R. This nat-

urally leads to the motion of the surface Σ, not along the preferred direction e‖, but rather

along the direction eφ, which is the component of e‖ orthogonal to the tangent space TΣ:

e‖ = − cosµ eφ ± sinµ eψ, with eψ ∈ TS7. (B.4)

The velocity of the surface Σ(t) along the direction of motion eφ is vφ = −Rξ̇ cosµ, with

µ ∈ [−π, π] a free parameter.

There is one other direction in TS7 (apart from the direction of motion eφ) orthogonal

to TΣ, since the surface Σ is two real dimensions lower than the submanifold S7. This is

defined to be a unit vector en which is also orthogonal to eφ. In addition, we shall need the

unit vector Ieφ, which is automatically orthogonal to both eφ and TΣ, and has components

along both en (within TS7) and along e⊥ (orthogonal to TS7):

Ieφ = cosµ e⊥ + sinµ en. (B.5)

Expressions for the unit vectors eφ and Ieφ can be written down explicitly in terms of the
derivatives (∂waf) of the holomorphic function, and the vectors ∂wa and ∂w̄a in the tangent
space TC4 of the complex manifold:

eφ =
1∣∣∣∣∑

c
(∂wc

f)wc

∣∣∣∣
1√∑

d

|∂wd
f |2

×

{[∑
a

(∂wa
f)wa

]∑
b

(
∂wb

f
)
∂wb
−

[∑
a

(
∂wa

f
)
w̄a

]∑
b

(∂wb
f) ∂w̄b

}
(B.6)

Ieφ =
1∣∣∣∣∑

c
(∂wc

f)wc

∣∣∣∣
i√∑

d

|∂wd
f |2

×

{[∑
a

(∂wa
f)wa

]∑
b

(
∂wb

f
)
∂wb

+

[∑
a

(
∂wa

f
)
w̄a

]∑
b

(∂wb
f) ∂w̄b

}
. (B.7)

The pullback of the AdS4×S7 metric to the worldvolume of the giant graviton is then

given by

ds2 = −
{
R2 − (vφ)2

}
dt2 + Σij dσ

idσj = −R2 sin2 µ dt2 + Σij dσ
idσj , (B.8)

with Σij(t, σ
k, µ) the metric on the spatial worldvolume Σ(t) at time t. The volume element

on the full worldvolume is√
|det gab| dt ∧ dσ1 ∧ dσ2 ∧ dσ3 ∧ dσ4 ∧ dσ5 = R |sinµ| dt ∧ vol (Σ) . (B.9)

It was argued in [1] that this M5-brane giant graviton satisfies a BPS bound E = Pξ,

indicating a supersymmetric configuration.
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B.2 Supersymmetry analysis

Let us now review the supersymmetry analysis of [1] for these M5-brane giant gravitons,

which relies upon an embedding of the 11D curved spacetime AdS4 × S7 into the 13D flat

spacetime R2+3 × C4. We derive the KSE’s and the kappa symmetry condition.

In this appendix, we will make use of the following convenient coordinate system for

the R2+3 × C4 spacetime:

xµ = (t, r, θ, ϕ, R̂) ∪ (σ1, σ2, σ3, σ4, σ5, xφ, xn, 2R), (B.10)

where the metric takes the form

ds2 = −dR̂2 + R̂2 ds2
AdS4

+ d(2R)2 + (2R)2 ds2
S7 = gµν dx

µ dxν . (B.11)

Here gµν = eαµ e
β
ν ηαβ with signature η = (−+ + +−)∪ (+ · · · +) in terms of the vielbeins

eαµ in these coordinates. The curved spacetime Γµ = eαµ γα matrices can be written in terms

of the flat space γα matrices.

The coordinates σi run over the spatial worldvolume Σ(t) of the M5-brane giant gravi-

ton, while xφ parameterizes the direction of motion eφ and xn the orthogonal direction en

also in (TC)⊥ ∩ TS7. Note that ∂R̂ is the unit vector in TR2+3 orthogonal to TAdS4 and

e⊥ = ∂2R is the unit vector in TC4 orthogonal to TS7. We make use of notation in which

Γv ≡ Γ(ev), where the coordinate xv is associated with some direction ev. For the unit

vectors eφ, en and e⊥, we obtain

γ10 = Γφ = Γ(eφ), γ11 = Γn = Γ(en) and γ12 = Γ2R = Γ(en). (B.12)

We project out a 32-component Majorana spinor Ψ from a 64-component complex spinor

Ψ+:

Ψ ≡ 1

2
(1− γ4γ12) Ψ+, so that γ4γ12 Ψ = −Ψ. (B.13)

Here γ̂ γ4γγ12 = 1, since there is no chirality condition in 13D, with γ̂ ≡ γ0γ1γ2γ3 and

γ ≡ γ5γ6γ7γ8γ9γ10γ11 for convenience.7 We also impose the condition8

γγ12 Ψ+ ≡ Ψ+, (B.14)

from which it follows that γ4 Ψ+ = −γ̂Ψ+ and γ12 Ψ+ = −γΨ+.

The KSEs in flat R2+3 × C4 spacetime, DµΨ+ = 0, imply that ∂R̂Ψ+ = ∂2RΨ+ = 0,

together with the KSEs in the AdS4 × S7 spacetime:(
Dµ +

1

2R
Γµ γ̂

)
Ψ+ = 0 and

(
Dµ −

1

4R
Γµ γ

)
Ψ+ = 0, (B.15)

7Note again that our conventions for the flat spacetime metric imply (γ0)2 = (γ4)2 = −1 and (γ1)2 =

· · · = (γ3)2 = (γ5)2 = · · · = (γ11)2 = +1.
8The 64-component complex spinor Ψ+ in 13D contains 128 degrees of freedom, while the 32-component

Majorana spinor Ψ in 11D onto which it is projected contains only 32 degrees of freedom. We are therefore

free to specify two consistent conditions on Ψ+: (B.14), and later also (B.22).
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for µ ∈ {0, . . . , 3} and µ ∈ {5, . . . , 11}, respectively. Here Dµ = ∂µ + 1
4(Ωµ)αβγαγβ are

now the supercovariant derivatives of AdS4 × S7, with R̂ = R taken to be constant. The

solutions of these R2+3 × C4 background KSEs take the form

Ψ+(xµ) =MR2+3 MC4 Ψ0
+, (B.16)

where the AdS4 ⊂ R2+3 dependence of the solution is explicitly given by

MR2+3(t, r, θ, ϕ) = e−
1
2
ρ γ1γ̂ e−

1
2
t γ0γ̂ e

1
2
θ γ12 e

1
2
ϕγ23 with r = cosh ρ, (B.17)

and the C4 dependence in MC4 is discussed in section 2.

The kappa symmetry condition for an M5-brane embedded into S7 takes the form

Γ Ψ = Ψ with Γ ≡ − 1

6!

εi0··· i5√
|det gab|

(∂i0X
µ0) · · · (∂i5Xµ5) Γµ0···µ5 (B.18)

pulled back to the worldvolume R × Σ(t). The sphere giant gravitons constructed from

holomorphic surfaces have
√
|det gab| = R | sinµ|

√
det Σab with worldvolume coordinates

(t, σi). Here also ẋφ = vφ = −R ξ̇ cosµ. Hence we can compute

Γ =
−1

| sinµ|
(γ0 − ξ̇ cosµ γ10) γ10 γ11 γ12 (γγ12) , (B.19)

and the kappa symmetry condition can be rewritten as(
−ξ̇ γ0γ4

)
γ10

{
ξ̇ | sinµ| γ11 (γγ12) + cosµγ12

}
Ψ = Ψ. (B.20)

Notice that the operator on the left-hand side of the above expression commutes with the

projection operator 1
2 (1− γ4γ12) and hence this condition is satisfied for Ψ if it is satisfied

for Ψ+. Using the additional properties of Ψ+, we shall thus insist that(
ξ̇ γ0γ̂

)
γ10

{
ξ̇ | sinµ| γ11 + cosµγ12

}
Ψ+ = Ψ+, (B.21)

with this spinor Ψ+ pulled-back to the holomorphic surface R×C(t) embedded and moving

in R2+3 × C4. Let us now choose µ ∈ [−π, π] such that ξ̇ | sinµ| = sinµ. We shall also

impose the extra condition

γ0γ̂ Ψ+ ≡ −i ξ̇ Ψ+. (B.22)

Here we have simply chosen the orientation of the M5-brane configuration and the eigen-

value of γ0γ̂ to be related to the direction of the motion ξ̇ = ±1 along eφ. Note that any

Dirac bilinear in the C4 space (for example, γ5γ9, γ6γ10 and γ7γ11), as well as γ1γ̂ and γ2γ3,

with eigenvalues which may be used to label the 32 degrees of freedom in the spinor Ψ+,

commute with γ0γ̂. It is therefore sensible to impose this constraint. The kappa symmetry

condition then reduces to

γ10 (sinµ γ11 + cosµ γ12) Ψ+ = iΨ+ (B.23)

and (B.5) allows us to rewrite it as

Γ(eφ) Γ(I eφ) Ψ+ = iΨ+. (B.24)
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From our expressions (B.6) and (B.7), we obtain

Γ(eφ) Γ(Ieφ) = i +
2 i∑

c
|∂wcf |

2

∑
a,b

(
∂waf

)
(∂wbf) Γwa Γw̄b . (B.25)

This kappa symmetry condition will be satisfied if we take

Γw̄a Ψ+ = 0 (B.26)

for all the complex coordinates wa such that (∂waf) 6= 0. It is already apparent that

we should expect supersymmetry enhancement for those giant gravitons associated with

holomorphic functions which are independent of several complex coordinates.

C The D4 and NS5-brane actions

Let us consider an M5-brane embedded into AdS4 × S7/Zk with worldvolume coordi-

nates σA = (t, u, z, χ, ϕ2, σ) ≡ (σa, σ). The embedding coordinates XM are labeled by

M ∈ {0, 1, . . . , 10}. Here we take the eleventh direction X10 = τ̃(t, σ) to be dependent

on the worldvolume time t and on the spatial worldvolume coordinate σ, with the ˙̃τ and

∂σ τ̃ derivatives σ-independent. Under the compactification to AdS4 ×CP3, this M5-brane

becomes either a D4-brane with worldvolume coordinates σa (if τ̃ depends on σ so that the

M5-brane is twisted on the eleventh direction) or an NS5-brane with worldvolume coordi-

nates σA (in the special case in which τ̃ is independent of σ) with embedding coordinates

Xµ labeled by µ ∈ {0, 1, . . . , 9}. Due to the fact that, in our ansatz (4.7), the CP3 angular

coordinate ϕ1 depends on σ, we are forced to make a more general reduction from eleven

dimensions in which we allow ∂σX
µ 6= 0. Still, we impose the condition that these deriva-

tives are σ independent. Then σ (or, equivalently, ϕ1) appears in the reduced action as a

special isometric direction which is transverse to the D4-brane and lies in the worldvolume

of the NS5-brane. In the D4-brane case, the resulting action thus differs from the standard

DBI plus CS action in that it contains this special isometric direction in the transverse

space. This allows, in fact, for the inclusion of an explicit coupling to the RR 1-form po-

tential, which indicates D0-brane charge in the configuration. For the NS5-brane, in turn,

we recover the action constructed in [33] describing an NS5-brane with a U(1) isometric

worldvolume direction. When compared with the action of the unwrapped NS5-brane in

type IIA superstring theory, constructed in [46, 47], we see that the self-dual 2-form field

of the latter is replaced by a vector, associated with D2-branes wrapping the isometric

direction. This allowed for a closed form for the reduced action to be given.

With this reduction ansatz the M5-brane DBI action becomes

SDBI
D4/NS5 = − 1

(2π)4

∫
d5σ e−2φ

√
l2 + e2φ S2

√∣∣∣∣det

(
P [G] +

e2φ l2

l2 + e2φ S2
(F (1))2

)∣∣∣∣ , (C.1)

for a vanishing worldvolume 3-form field strength. Here lµ = δµσ is an Abelian Killing vector

that points along the σ direction and G is the reduced metric with components Gµν = gµν−
l−2lµlν , where lµ = gµν l

ν . The scalar S has been defined such that S = ∂σ c
(0)+ilC

(1), with
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ilC
(p) the interior product of the C(p) potential with the Killing vector. The worldvolume

scalar field c(0) has its origin in the eleventh direction τ̃ and forms an invariant field strength

F (1) = dc(0) + P [C(1)]− S P
[
l1
l2

]
, (C.2)

when combined with the RR 1-form potential C(1) and the 1-form l1 with lµ components.

It is therefore associated with D0-branes ‘ending’ on the D4 or NS5-brane. Written in this

form, the action is manifestly isometric under translations along the Killing direction. Note

that the 4 transverse scalars, together with the worldvolume scalar c(0) and the vector field

that arises upon reduction of the worldvolume 2-form field of the M5-brane (which we have

omitted in this calculation), give the right counting of bosonic degrees of freedom, 8, on

the 5-dimensional worldvolume. In the case of the NS5-brane, since there is no wrapping

on τ̃ , ∂σ c
(0) vanishes. In this case the DBI action (C.1) coincides with the expression given

in [33] for vanishing 2-form field strength. The reader is referred to [33] for more details.

The M5-brane CS action reduces to

SCS
D4/NS5 = ± 1

(2π)4

∫ {
−P [ilB

(6)] + ∂σ c
(0) ∧ P [C(5)]− dc(0) ∧ P [ilC

(5)]
}
, (C.3)

where we integrate over σa = (t, u, z, χ, ϕ2) and B(6) denotes the Hodge dual of the NS-NS

2-form field. Note that, in the actions (C.1) and (C.3), the pullback P is taken with respect

to the σa worldvolume directions only. For example:

P
[
C(1)

]
= C(1)

µ (∂aX
µ) dσa, P

[
lµ

l2

]
= − gσµ

gσσ
(∂aX

µ) dσa, . . . (C.4)

We stress that this action is applicable to both D4 and NS5-branes: for the D4-brane, we

interpret δµσ as the isometric transverse direction upon which the M5-brane ancestor was

wrapped. For the NS5-brane, we interpret δµσ as an isometric worldvolume direction of the

M5-brane ancestor and of the NS5-brane descendant.
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