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1 Introduction

There has recently been a renewed interest in supersymmetric gauge theories in five

dimensions. On the one hand, these are strategically positioned between the familiar

four-dimensional supersymmetric gauge theories, about which we know a lot, and six-

dimensional superconformal theories, about which we know very little. Therefore 5d the-

ories might potentially incorporate features of the latter while allowing for the use of the

well understood techniques of the former. On the other hand, contrary to the naive expec-

tation, five dimensional gauge theories can be at fixed points [1, 2]. These fixed points can

have exotic properties such as E-type quantum-mechanically enhanced global symmetries

at the origin of the Coulomb branch, and are thus very interesting per se.

In one specific class of theories, a dual AdS6 geometry was found by engineering the

5d gauge theories using D4-branes in Type I’ string theory [3]. In [4], two of us argued for

the existence of additional 5d fixed points associated with supersymmetric quiver gauge

theories, obtained by orbifolding the Type I’ D4-brane configuration. One again finds AdS6

near-horizon geometries, which strongly suggests that the dual quiver gauge theories are at

fixed points. A number of non-trivial checks of these new AdS/CFT proposals have recently

been carried out in [5–7]. We should point out that 6d AdS backgrounds are quite rare

compared with other dimensions. A no-go theorem was in fact proposed in [8]. Although,

by allowing for more general spaces that arise from non-abelian T-duality transformations,

a new AdS6 background has been found in [9]. The field theory implications of the latter

have yet to be exposed.
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The superconformal index has emerged in recent years as a useful tool for studying

superconformal field theories [10]. This is the superconformal analog of the Witten index,

and is defined for a d-dimensional SCFT on Sd−1 × time by

I = Tr[(−1)F eµiqi ] , (1.1)

where qi are charges that commute with a chosen supercharge. This receives contributions

only from states that are invariant under the chosen supercharge, and therefore provides

information on the number of such states and their charges. This makes the index a

useful diagnostic tool for revealing hidden structures in SCFT’s such as enhanced global

symmetries. Furthermore, since the index is a property of short (BPS) multiplets, it is

protected from corrections due to continuous deformations of the theory that preserve

the chosen supercharge. This makes it useful for testing various dualities, and for studying

SCFT’s that do not have a known Lagrangian, but admit deformations into theories that do.

The study of superconformal indices in five dimensions was initiated in [11]. For a

specific choice of the supercharge Q, the index of a 5d N = 1 SCFT is defined by

I(x, y, z) = Tr
[

(−1)F e−β∆ x2 (j1+R) y2 j2 zQ
]

, (1.2)

where ∆ = {Q,S} = E0−2j1−3R, and E0 is the conformal dimension, which is the energy

in the radially quantized theory. The charges j1, j2 and R are associated, respectively, to

the Cartan U(1)’s of the spatial SU(2)1 × SU(2)2 ⊂ SO(5) and the SU(2)R R-symmetry.

The fugacities corresponding to the combinations that commute with Q are denoted by x

and y. Other commuting charges are denoted collectively by Q, and their corresponding

fugacities by z. This counts the 1/8 BPS operators, for which ∆ = 0, namely E0 = 3R+2j1.

Using localization, the 5d index was shown to admit a representation as an integral over

the gauge group of the product of a perturbative (one-loop) component and an instanton

component. In the following we will denote by q the instanton fugacities, while we will re-

serve z for other global commuting flavor-like fugacities. Then, the index can be written as

I(x, y, q, z) =

∫

[Dα] Iinst(x, y, q, z, α) Ipert(x, y, z, α) . (1.3)

The integral over the gauge group is represented by an integral over the holonomy

matrix α with the appropriate Haar measure. The perturbative component is given by (a

plethystic exponential)

Ipert(x, y, z, α) = PE[f(x, y, z, α)] = e
∑∞

n=1
f(xn,yn,zn,nα)

n , (1.4)

where f(x, y, z, α) is the sum of the single letter indices for the given theory. The instanton

component Iinst(x, y, q, z, α) is given by a product of contributions of instantons located

at the south pole of the S4 and anti-instantons located at the north pole, and is related

to Nekrasov’s 4d instanton partition function [12] (see [13] for a recent discussion). As
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its main application, the index was used in [11] to exhibit the enhanced ENf+1 global

symmetry of the SU(2) theory with Nf ≤ 5 flavors [1].1

In this paper we begin the exploration of the superconformal indices of the 5d quiver

theories introduced in [4]. Since these theories possess gravity duals it is most interesting

to study the large N limit of the index, and compare with the expectation from the gravity

picture. In this paper we will consider only the zero-instanton contribution to the index,

namely the perturbative superconformal index,

Ipert(x, y, z) =

∫

[Dα] Ipert(x, y, z, α) , (1.5)

although we will also comment in the end on a possible large N simplification of the instan-

ton contribution. Specifically, we will propose a general formula, motivated by AdS/CFT,

for the perturbative large N superconformal index of the 5d quiver SCFT’s.

In the remainder of the paper we will drop the subscript “pert”, and loosely refer to

the perturbative index as the index.

The outline for the rest of the paper is as follows. We will begin in section 2 with the

parent USp(2N) theory, and then consider the orbifold theories in section 3. Our proposal

for the index of the orbifold theories appears in section 3.1. In sections 3.2, 3.3 and 3.4 we

will perform consistency checks for this proposal by explicitly computing the index for the

Z2 and Z3 theories. In particular, we will see that the large N indices for the two different

Z2 orbifold theories are the same, in agreement with the dual supergravity prediction. We

will end in section 4 with some conclusions and future prospects.

2 The USp(2N) theory

The simplest class of 5d N = 1 fixed point theories with a known supergravity dual

have a USp(2N) gauge symmetry, an antisymmetric hypermultiplet, and Nf fundamental

hypermultiplets with Nf ≤ 7. This generalizes the SU(2) theory of [1]. For simplicity,

we will concentrate on the case Nf = 0. Since the antisymmetric representation of

USp(2N) is real, the antisymmetric hypermultiplet splits into two half-hypermultiplets,

which transform as a doublet under a global mesonic symmetry SU(2)M . There is an

additional global symmetry U(1)I associated with the instanton current of the gauge

group ∗Tr(F ∧ F ). The R-symmetry SU(2)R acts in the usual way on the components of

the vector multiplet and hypermultiplet.

The supergravity dual of this theory was found in [3], by realizing the corresponding

gauge theory on D4-branes in a Type I’ string theory background with orientifold 8-planes

and D8-branes. The dual geometry is a warped product of AdS6 and half of an S4, with a

metric and a dilaton given by

ds2 ∝ sin−
1
3 α

[

ds2AdS6
+

4

9
L2

(

dα2 + cos2 αds2S3

)

]

, eΦ ∝ sin−
5
6 α . (2.1)

1For Nf = 6, 7 some of the ENf+1 currents come from the two-instanton sector, where there are some

technical subtleties. There is also a problem in generalizing to USp(2N) with an antisymmetric hypermul-

tiplet, which is also expected to exhibit an enhanced global symmetry, related to the contribution of the

antisymmetric field to the Nekrasov partition function.
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Here α is the “polar” angle on the S4, which in this case ranges from 0 (the “equator”

S3) to π/2 (the pole). The warp factor reduces the symmetry of the compact piece to

that of the S3, namely to SO(4) ∼ SU(2)R × SU(2)M . The U(1)I symmetry is dual to

the RR 1-form, and the instantons are dual to D0-branes. Note that both the curvature

and the dilaton diverge at the boundary α = 0, signaling a breakdown of the perturbative

supergravity description. Indeed, the fixed point theory exhibits an enhancement of the

global symmetry SO(2Nf )×U(1)I → ENf+1, which is not seen at the classical supergravity

level. In the Type I’ string construction this enhancement is understood in terms of D0-

branes that become massless at the location of the orientifold [14–16], but this has not

been understood yet at the level of the dual supergravity description.

2.1 superconformal index

The perturbative superconformal index of the USp(2N) theory is given by

I1 =

∫

[Dα] PE[fV + fA] , (2.2)

where the subscript is there to remind us of the degree of the orbifold. The vector multiplet

contribution to the single-particle index is (x ≡ x, y)

fV = iV (x)
[

2
N
∑

i 6=j

cosαi cosαj + 2
N
∑

i

cos 2αi +N
]

, (2.3)

where αi ∈ [0, 2π] are the holonomies associated to the Cartan subgroup, and iV (x) is the

vector mulitplet index,

iV (x) = −
x (y + y−1)

(1− x y) (1− x y−1)
. (2.4)

The antisymmetric hypermultiplet contributes

fH = iH(x) (z + z−1)
[

2
N
∑

i 6=j

cosαi cosαj +N
]

, (2.5)

where z is the fugacity associated with U(1)M ⊂ SU(2)M , and iH(x) is the one particle

index of a half-hypermultiplet,

iH(x) =
x

(1− x y) (1− x y−1)
. (2.6)

The Haar measure for USp(2N) is

[Dα] =
∏

i

dαi e

∑N log sin2 αi+
1
2

∑N
i 6=j log sin

2

(

αi−αj

2

)

+ 1
2

∑N
i 6=j log sin

2

(

αi+αj

2

)

. (2.7)

One can then express the index as a partition function for a matrix model

I1 =

∫ N
∏

i

dαi e
−S , (2.8)

– 4 –



J
H
E
P
0
8
(
2
0
1
3
)
0
8
1

with

S = 2
∑

i, j,m

1− iV (x
m)− iM (xm)

m
cosmαi cosmαj +

∑

i,m

1− iV (x
m) + iM (xm)

m
cos 2mαi ,

(2.9)

where m is summed from 1 to ∞, and where, for convenience, we have defined iM (xm) ≡

iH(xm) (zm + z−m).

Since we are interested in the large N limit of the index, we introduce the eigenvalue

density

ρ(θ) =
1

N

N
∑

i

δ(θ − αi) (2.10)

and define

ρm =

∫ π

−π
dθ ρ(θ) cosmθ , m = 0, 1, 2, . . . (2.11)

We normalize the density such that
∫ π
−π dθ ρ(θ) = 1. The action becomes

S = 2N2
∞
∑

m=1

1− iV (x
m)− iM (xm)

m
ρ2m +N

∞
∑

m=1

1− iV (x
m) + iM (xm)

m
ρ2m . (2.12)

In the large N limit ρm become continuous variables, and we can replace the integrals over

αi with integrals over ρm. This amounts to performing a saddle point approximation for

the original integral. The action is minimized by

ρ2m+1 = 0 ρ2m = −
1

2N

1− iV (x
m) + iM (xm)

1− iV (x2m)− iM (x2m)
. (2.13)

Performing the Gaussian integrals over the fluctuations then gives2

I1 =
e

∑ 1
4m

(

[1−iV (xm)+iM (xm)]2

1−iV (x2m)−iM (x2m)
−1

)

∏

√

1− iV (xm)− iM (xm)
. (2.14)

In fact we can express the final result as a Plethystic exponential

I1 = PE[G1] , (2.15)

where G1 is given in eq. (A.4) in the appendix. In a precise sense, we can think of G1 as the

one-particle gauge-invariant index. By expanding in a power series in one of the fugacities,

we can express the index as a sum of contributions of gauge invariant operators of increasing

charge associated with the given fugacity. Expanding in x we find (to quadratic order):

I1 = 1 + [1]z x+
(

1 + 2[2]z + [1]y [1]z

)

x2 +O(x3) , (2.16)

where [n]z denotes the SU(2)M character in the spin n/2 representation, and similarly

for [n]y. We can identify the different terms in terms of gauge-invariant operators as

2The index is normalized by dividing by the volume of the gauge group
∫
[Dα].
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model gauge group matter global (non-R) symmetry

Z
(1)
2k USp× SUk−1 × USp ( i, i+1) U(1)M ×U(1)k−1

B ×U(1)k+1
I

Z
(2)
2k SUk ( i, i+1) + 1

+
k

U(1)M ×U(1)kB ×U(1)kI

Z2k+1 USp× SUk ( i, i+1) + k+1
U(1)M ×U(1)kB ×U(1)k+1

I

Table 1. 5d orbifold quiver gauge theories. The groups are USp(2N) and SU(2N).

follows. Let us denote the two complex scalar fields in the antisymmetric hypermultiplet

by Aα. In 4d N = 1 language, (A1, A2) is the pair of chiral superfields that make up the

hypermultiplet. The pair (A1, A2) then transforms as an SU(2)M doublet, and the pair

(A1, A
†
2) transforms as an SU(2)R doublet. The O(x) term in the index corresponds to the

basic meson operators TrAα ≡ (Aα)abJ
ab. The O(x2) term contains four contributions.

The SU(2)M singlet corresponds to the scalar component of the U(1)I current, given by the

gaugino bilinear Tr(λ̄λ). One of the SU(2)M triplets corresponds to Tr(AαAβ), which are

the scalar components of the SU(2)M currents, and the other corresponds to the double-

trace operators TrAαTrAβ.
3 All of these have R = 1 and j1 = j2 = 0. The fourth

contribution corresponds to operators of the form Tr(∂Aα), which have R = 1/2, j1 = 1/2

and j2 = ±1/2.

3 The orbifold theories

There are three classes of orbifold models that yield new 5d N = 1 fixed point theories [4].

These can be engineered by replacing the flat 4d space transverse to the D4-branes and

along the O8-D8 system with an orbifold C
2/Zn. Generically this reduces the isometry

to SU(2) × U(1). The resulting 5d theories are N = 1 quiver gauge theories with bi-

fundamental and antisymmetric matter, as well asNf fundamentals. We again takeNf = 0.

The three classes of theories and their global symmetries are shown in table 1.

The two classes of even orbifold theories Z
(1)
2k and Z

(2)
2k are associated with a discrete

choice in the action of world-sheet parity on the twisted sector of the orbifold [17]. The

corresponding closed string backgrounds are known as the orbifold with and without vector

structure, respectively. The orbifold theories generically have three types of global (non-R)

symmetries: a single overall mesonic matter symmetry U(1)M , identified with the U(1) part

of the isometry of C2/Zn, a number of baryonic matter U(1)B symmetries, and a number

of topological (instantonic) U(1)I symmetries. The number of the latter is of course the

number of gauge group factors. In the Z2 theories the mesonic symmetry is enhanced to

SU(2)M (as for the parent USp(2N) theory). In the Z
(1)
2 theory there is a bi-fundamental

hypermultiplet, which, since this is a real representation of the gauge group, splits into

two half-hypermultiplets forming an SU(2)M doublet. In the Z
(2)
2 theory there are two

SU(2N)-antisymmetric hypermultiplets, which form an SU(2)M doublet. (In this case the

3Note that the F-term condition on the chiral ring does not affect this result, since it simply relates

A1A2 = A2A1 [5].
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gauge group representation is complex, so there is no splitting). In either case, this is also

clear from the string theory construction, where it simply reflects the larger isometry of

C
2/Zn for n = 2.

The supergravity duals of these models are obtained by replacing S4 with S4/Zn,

where the Zn acts freely on the S3 base in (2.1), resulting in the lens space S3/Zn. The

symmetry is therefore reduced to SU(2) × U(1) (except for the case of n = 2), which

correspond respectively to SU(2)R and U(1)M in the field theory. The full compact space

S4/Zn has an An−1 fixed point singularity at the pole α = π/2, where one must include

additional fields corresponding to the twisted sectors of the string theory. In particular this

includes a massless vector field for each twisted sector. Taking into account the action of

worldsheet parity leaves k vectors for the odd orbifolds (n = 2 k−1) and the even orbifolds

(n = 2 k) with vector structure, and k − 1 vectors for the even orbifolds without vector

structure. These correspond to the additional U(1)I symmetries beyond the one dual to the

bulk RR 1-form. They can also be described as reductions of the RR 3-form on the shrunk

2-cycles of the An−1 singularity. In addition, the compact space has finite 2-cycles (dual

to the shrunk ones), that similarly give rise to the additional massless vectors dual to the

baryonic symmetries U(1)B. In all, there are n− 1 massless U(1) vector multiplets coming

from the 2-cycles, corresponding to the baryonic and relative-instantonic symmetries, one

from the RR 1-form corresponding to the overall instantonic symmetry, and one from the

isometry of S4/Zn (the latter is enhanced to SU(2) for n = 1, 2).

Focusing on the two even orbifold models, we see that they are dual to the same

metric-dilaton background, with the same number of massless vector fields. In fact they

are only distinguished by the presence of a trapped B2 flux on the k’th 2-cycle of the A2k−1

singularity in the orbifold without vector structure [18].

3.1 orbifolding the index

One could in principle compute the superconformal index of the orbifold theories directly

from their field content, but this becomes cumbersome for large n. However the AdS/CFT

correspondence suggests the following prescription [19, 20]. Starting with the USp(2N)

theory, we first want to project onto the operators that are invariant under the orbifold

action. Denoting by ω the generator of Zn, this amounts to replacing z → ωjz and summing

over j = 0, . . . n − 1. This corresponds on the supergravity side to projecting the KK

spectrum of the AdS6×S4 background. Then we need to add the contributions of additional

operators, also invariant under Zn, dual to the “twisted sector” fields associated to the 2-

cycles of the orbifold S4/Zn. Each cycle contributes a massless vector multiplet in AdS6,

and so we expect to see a contribution of a dimension 3 BPS primary scalar operator from

each such “twisted sector” (see for example [21, 22]). This motivates our conjecture, that

In = PE[Gn] Gn =
1

n

n−1
∑

j=0

G1(ω
j z) + (n− 1)∆ , (3.1)

– 7 –
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where ∆ is the contribution corresponding to a dimension 3 BPS scalar and its derivatives,

namely:

∆ =
x2

(1− xy)(1− xy−1)
. (3.2)

Expanding in x for n > 2 we find

In = 1 + (n+ 1)x2 +O(x3) . (3.3)

In particular, the contributions to x2 in (3.3) correspond to the n+1 conserved U(1) currents

of the Zn theory, including the U(1)M , the U(1)B’s and the U(1)I ’s. For n = 2 we get

I2 = 1 + (2 + [2]z) x
2 +O(x3) , (3.4)

which exhibits the enhancement of U(1)M to SU(2)M . We will be more explicit about the

operators corresponding to the x2 contributions below.

Note that our conjecture implies that the superconformal index of the two even orbifold

theories Z
(1)
2k and Z

(2)
2k is identical at large N . This is what we expect from AdS/CFT. Since

the two supergravity backgrounds differ only by a discrete B2 flux, the KK spectra should

be virtually identical.

As consistency checks, we will now compute the superconformal indices of the first

three orbifold theories directly.

3.2 Z
(1)
2 orbifold done explicitly

This theory has a USp(2N) × USp(2N) gauge symmetry and one bi-fundamental hyper-

multiplet. The global symmetry is SU(2)M × U(1)2I . We will associate the fugacity z to

the U(1)M ⊂ SU(2)M . Each Haar measure and vector multiplet contribution is a copy of

the USp(2N) case (2.3), (2.7). We will denote by αi and βi the holonomies associated to

the two USp(2N) groups. The contribution of the bi-fundamental hypermultiplet to the

single-particle index is given by

fH = 4 iH(x)(z + z−1)
N
∑

i, j

cosαi cosβj . (3.5)

Putting it all together, the matrix model action is given by

S =
∑

i,m

1− iV (x
m)

m
cos 2mαi +

∑

i,m

1− iV (x
m)

m
cos 2mβi

+2
∑

i, j,m

1− iV (x
m)

m
cosmαi cosmαj + 2

∑

i, j,m

1− iV (x
m)

m
cosmβi cosmβj

−4
∑

i, j,m

1− iM (xm)

m
cosmαi cosmβj , (3.6)
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where, as before iM ≡ (z+ z−1)iH . Introducing the two eigenvalue densities ρα and ρβ for

the two gauge groups, one finds at large N :

S = N
∑

m

1− iV (x
m)

m
ρα2m +N

∑

m

1− iV (x
m)

m
ρβ2m + 2N2

∑

m

1− iV (x
m)

m
(ραm)2

+2N2
∑

m

1− iV (x
m)

m
(ρβm)2 − 4N2

∑

m

1− iM (xm)

m
ραmρβm . (3.7)

The action is minimized by

ρα2m+1 = ρβ2m+1 = 0 ρα2m = ρβ2m = −
1

2N

1− iV (x
m)

1− iV (x2m − iM (x2m)
. (3.8)

Performing the Gaussian integrals then gives

I
(1)
2 =

e

∑ 1
2m

(

[1−iV (xm)]2

1−iV (x2m)−iM (x2m)
−1

)

∏

√

1− iV (xm)− iM (xm)
√

1− iV (xm) + iM (xm)
. (3.9)

As in the case of the parent USp(2N) theory, this result can be expressed as a plethystic

exponential

I
(1)
2 = PE[G2] , (3.10)

withG2 given in eq. (A.5) in the appendix. It is straightforward to verify that the expression

for G2 agrees with (3.1).

Let us now identify the gauge-invariant operators in this model corresponding to the

O(x2) contributions in (3.4). The two SU(2)M singlets are the scalar components of the

two U(1)I current multiplets, Tr(λ̄1λ1 ± λ̄2λ2), where λ1, λ2 are the gauginos of the two

USp(2N) factors. Denoting the two scalars of the bi-fundamental hypermultiplet asXα, the

SU(2)M triplet contribution corresponds to Tr(XαXβ) ≡ (Xα)
a
b (Xβ)

c
dJacJ

bd, which are the

scalar components of the SU(2)M current multiplets.4 Note that the quantum Z2 symmetry

of the orbifold acts in the gauge theory by exchanging the two gauge groups. This shows

that the operator Tr(λ̄1λ1− λ̄2λ2) is dual to a twisted sector state of the orbifold, whereas

the others are dual to untwisted sector states. Therefore we can associate the contribution

of the former to (the O(x2) term in) ∆ (3.2).

3.3 Z
(2)
2 orbifold done explicitly

This theory has an SU(2N) gauge symmetry and two antisymmetric hypermultiplets. The

global symmetry is U(2)×U(1)I , where the U(2) is associated to the two complex matter

multiplets. This naturally splits into a baryonic U(1)B and a mesonic SU(2)M . We will

denote the baryonic fugacity by b, and the mesonic U(1)M fugacity by z.

In computing the index, it is simpler to consider the closely related U(2N) theory. At

large N the indices are the same up to the contribution of the extra U(1) vector multiplet.

4As before, this result is not affected by the F-term condition X1JX2J = X2JX1J [5].
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In particular, the saddle point will coincide with that of the SU(2N) theory for large N

(see for example [6]). The Haar measure is given by

[Dα] =

[

2N
∏

i=1

dαi

]

e
1
2

∑2N
i 6=j log sin2

(

αi−αj

2

)

. (3.11)

The vector multiplets contribute

fV = iV (x)
[

2N
∑

i, j

cos(αi − αj)− 1
]

, (3.12)

where we have subtracted the contribution of the U(1) vector multiplet, and the hyper-

multiplets contribute

fH = iM (x) b
2N
∑

i<j

ei (αi+αj) + iM (x) b−1
2N
∑

i<j

e−i (αi+αj) . (3.13)

At large N we introduce the eigenvalue density ρ and define

ρm =

∫

dθ ρ(θ) cosmθ σm =

∫

dθ ρ(θ) sinmθ . (3.14)

After making a convenient change of variables,5

un = (b
n
2 + b−

n
2 )σn − i (b

n
2 − b−

n
2 ) ρn vn = (b

n
2 + b−

n
2 ) ρn + i (b

n
2 − b−

n
2 )σn , (3.15)

we find

S = N2
∑

m

1− iV (x
m) + iM (xm)

4m
u2m +N2

∑

m

1− iV (x
m) + iM (xm)

4m
v2m

+N
∑

m

iM (xm)

2m
v2m −

∑

m

iV (x
m)

m
. (3.16)

The action is minimized by

un = v2n+1 = 0 v2n = −
2

N

iM (xn)

1− iV (x2m − iM (x2m)
, (3.17)

and the integrals yield

I
(2)
2 =

e

∑

[

1
2m

(iM (xm))2

1−iV (x2m)−iM (x2m)
−

iV (xm)

m

]

∏

√

1− iV (xm)− iM (xm)
∏

√

1− iV (xm) + iM (xm)
. (3.18)

Using the explicit forms of iV (x) and iM (x), it is straightforward to show that the numer-

ators of (3.18) and (3.9) are equal, and therefore that the large N indices of the two Z2

5The Jacobian of the transformation to un, vn is just a constant, so we can neglect it.
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theories are identical, as they should be. In other words the large N index of this theory

is also given by

I
(2)
2 = PE[G2] , (3.19)

in agreement with (3.1).

Note that at large N all the non-zero modes in (3.16) are sharply peaked around 0,

so that ρ(θ) = 1/(2π) + O(1/N). This implies in particular that
∫ π
−π dθ θρ(θ) = 0, and

therefore that
∑2N

i αi = 0, as we should expect for the group SU(2N).

Note also that the baryonic fugacity b drops out from the index in the large N limit.

This is consistent with the fact that gauge-invariant baryonic operators have O(N) dimen-

sions, and therefore contribute to the index with ∼ b xN . Since |x| < 1, at large N their

contribution vanishes. This is also what would be seen in a dual supergravity computation

of the index, since baryons are dual to wrapped branes which become infinitely massive

in the weak coupling limit. In the large N limit the superconformal index of the CFT

includes only KK supergravity states.

The expansion in x is of course the same as in the Z
(1)
2 model (3.4), but the inter-

pretation in terms of gauge-invariant operators will be different. In this case one of the

SU(2)M singlets is Tr(λ̄λ), the scalar component of the single U(1)I current multiplet.

The other singlet and the triplet correspond to mesonic operators. Let us denote by Aα

the two complex scalars in the first antisymmetric hypermultiplet, and by A′
α the two in

the second. In 4d N = 1 language, (A1, A2) is the pair of chiral superfields that makes

up the first hypermultiplet, and likewise for the second. The charge assignment of the

fields follows the discussion in [5]. The pairs (A1, A
′
1) and (A′

2, A2) transform as SU(2)M
doublets, and the pairs (A1, A

†
2) and (A′

1, A
′†
2 ) transform as SU(2)R doublets. In addition

A1, A
′
1 carry baryon charge B = +1

2 , and A2, A
′
2 have B = −1

2 . The four other opera-

tors contributing to the index at O(x2), with R = 1 and j1 = j2 = 0, are therefore the

SU(2)M singlet Tr(A1A2−A′
1A

′
2), associated to the baryon current, and the SU(2)M triplet

{Tr(A1A
′
2),Tr(A

′
1A2),Tr(A1A2 +A′

1A
′
2)}, associated to the SU(2)M current.6

In this case the quantum Z2 symmetry exchanges the two hypermultiplets (and mul-

tiplies the vector multiplet by −1), so here we associate the operator Tr(A1A2 −A′
1A

′
2) to

the twisted sector contribution ∆.

3.4 Z3 orbifold

As a final consistency check of our formula for the large N limit of the index of the

orbifold CFT’s (3.1), we now consider the Z3 orbifold. This theory has a gauge sym-

metry SU(2N) × USp(2N), a hypermultiplet in the antisymmetric of SU(2N), and a bi-

fundamental hypermultiplet. We will use the convention that i, j run from 1 to N , and

I, J run from 1 to 2N . As usual, the index is re-written as a matrix model. The Haar

6Again, this is unaffected by the F-term conditions. Note that these conditions were incorrectly stated

in [5]. The correct 4d superpotential is W = Tr(A1ΦA2 − A′
1ΦA

′
2). For U(2N) this gives the F-term

constraints A1A2 − A′
1A

′
2 = 0, which appear to eliminate the SU(2)M singlet operator associated with the

baryon current. However for SU(2N) the trace should be removed, namely A1A2 −A′
1A

′
2 −

1
2N

Tr(A1A2 −

A′
1A

′
2) = 0. This imposes no constraints on the above operators.
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measure and vector contribution of the USp(2N) piece together give

SUSp = −
∑

i,m

1− iV (x
m)

m



cos 2mαi + 2
∑

j

cosmαi cosmαj



 . (3.20)

The analogous contributions of the SU(2N) (or actually U(2N)) piece give

SSU = −
∑

I,J,m

1− iV (x
m)

m
[cosmβI cosmβJ + sinmβI sinmβJ ]−

∑

m

iV (x
m)

m
. (3.21)

For brevity let us set both the mesonic and baryonic fugacities to one, z = b = 1 (the

baryonic fugacity will anyway drop out as before). The bi-fundamental hypermultiplet

contributes

SBif =
∑

i,J,m

4 iH(xm)

m
cosαi cosβJ , (3.22)

and the SU(2N)-antisymmetric hypermultiplet contributes

SAnti =
∑

I,J,m

iH(xm)

m
[cosmβI cosmβJ − sinmβI sinmβJ ]−

∑

I,m

iH(xm)

m
cos 2mβI . (3.23)

Introducing the appropriate eigenvalue densities and taking the continuum large N

limit, the total action becomes

S = Sρ + Sσ −
∑

m

iV (x
m)

m
, (3.24)

where

Sσ = − 4N2
∑

m

1− iV (x
m) + iH(xm)

m
(σβ

m)2 (3.25)

and

Sρ = −N
∑

m

1− iV (x
m)

m
ρα2m − 2N

∑

m

iH(xm)

m
ρβ2m − 2N2

∑

m

1− iV (x
m)

m
(ραm)2

−4N2
∑

m

1− iV (x
m)− iH(xm)

m
(ρβm)2 + 2N2

∑

m

4iH(xm)

m
ραm ρβm . (3.26)

The contribution of Sσ to the index is simple to evaluate, and one finds

Iσ =

∫

dσβ eSσ =
1

∏

√

1− iV (xm) + iH(xm)
. (3.27)

To compute the contribution of Sρ it is convenient to first separate the odd and even modes

of ρα,β , and then perform the integrals. The final result is

I3 = e−
∑ iV (xm)

m Iσ Iρ (3.28)

=
PE[f(x)− iV (x)]

∏

√

1− iV (xm) + iH(xm)
∏

m

√

[1− iV (xm)] [1− iV (xm)− iH(xm)]− 2 iH(xm)2

– 12 –
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where

f(x) =
[1−iV (x)]

2 [1−iV (x
2)−iH(x2)]+2[1−iV (x

2)]iH(x)2+4[1−iV (x)]iH(x)iH(x2)

4
[

[1−iV (x2)][1− iV (x2)−iH(x2)]−!2iH(x2)2
] .

(3.29)

Although this is certainly a rather cumbersome expression, one can check that it can be

expressed as

I3 = PE[G3] , (3.30)

with G3 given in eq. (A.6) (with z = 1) in the appendix. One can also show that that

expression for G3 also agrees with with the n = 3 (and z = 1) version of eq. (3.1), namely

G3 =
1

3

2
∑

j=0

G1(e
2πij/3) + 2∆ . (3.31)

4 Conclusions

In this paper we have proposed a general formula (3.1) for the large N perturbative su-

perconformal index of the 5d N = 1 quiver gauge theories introduced in [4]. In very much

the same spirit as in the case of orbifolds of 4d N = 4 SYM [19, 20], the index for the

5d orbifold theories is produced by projecting the parent theory to the invariant sector,

and adding the contribution of the twisted sectors. In particular, this procedure gives the

same large N index for the two classes of even orbifolds. This agrees with the expecta-

tion from the supergravity duals, which have identical geometries, and differ only in the

presence of a trapped flux of the NSNS field B2 through the cycle corresponding to the

middle twisted sector. One still needs to perform the complete KK analysis in supergravity

in order to compare with the full index, but the consistency of our general formula (3.1)

with regards to the twisted sector contributions already serves to reinforce the AdS/CFT

dualities proposed in [4].

The next natural step in this investigation is to compute the instanton contributions.

The authors of [11] did this to some extent for the parent USp(2N) theory, by including

the 1-instanton contribution. This led to a beautiful verification of the enhancement of the

global symmtery to ENf+1 for USp(2) = SU(2). The first question that comes to mind

is whether this enhancement extends to USp(2N) and to the quiver theories as well. The

Type I’ brane construction suggests an enhancement, but it would be interesting to see it

at the level of the index. This requires including the instanton contributions to the index

of these theories. The results of [11] suggest that at large N there may be a simplification.

The large N limit of their result for the USp(2N) 1-instanton index is

Ik=1
inst

N→∞
−−−−→

x2

(1− xz)(1− xz−1) (1− xy) (1− xy−1)
. (4.1)

where z is the fugacity corresponding to the global SU(2)M symmetry. This suggests

that the full large N instaton contribution, i.e. Iinst(x, y, q, z, α) in eq. (1.3), is given by

– 13 –
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PE[(q+ q−1)Ik=1
inst ], which would manifestly exhibit symmetry enhancement since q appears

through SU(2) characters.

It would also be very interesting to identify the supergravity duals of the instanton

states responsible for the symmetry enhancement. Since in the Type I’ brane construction

these states correspond to D0-branes located on the orientifold plane, it is natural to

propose that in the near-horizon background they correspond to D0-branes located at the

boundary α = 0 of the half-S4. Although the background is singular there, it is conceivable

that some states are well-behaved. This was the case, for example, for the dual giant

gravitons on the Higgs branch [5]. A D0-brane moving in AdS6 and on S4 would naturally

account for the denominator in (4.1), however the overall x2 factor seems mysterious. We

hope to report on these questions in the near future.
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A Some explicit formulas

The single particle index for a vector multiplet and a half-hypermultiplet are given respec-

tively by

iV (x, y) = −
x (y + y−1)

(1− x y) (1− x y−1)
iH(x, y) =

x

(1− x y) (1− x y−1)
. (A.1)

For convenience we also define the single particle mesonic index as iM (x, y, z) ≡ iH(x, y)(z+

z−1), where z is the fugacity associated with the mesonic symmetry, which is present in all

the models we discuss. Using the identity

∏

n

1

(1− xn)s
= e

∑ 1
m

sxm

1−xm = PE

[

sx

1− x

]

, (A.2)

we can express various products appearing in the expressions for the superconformal indices

in terms of Plethystic exponentials. For example, the denominator in eq. (2.14) is

1
∏

√

1− iV (xm)− iM (xm)
= PE

[

1

2

(

xz

1− xz
+

xz−1

1− xz−1
−

xy

1− xy
−

xy−1

1− xy−1

)]

.

(A.3)

Therefore we can express the entire index as a Plethystic exponential, I1 = PE[G1], with

G1 =
1

4

(

[1− iV (x) + iM (x)]2

1− iV (x2)− iM (x2)
− 1

)

+
1

2

(

xz

1− xz
+

xz−1

1− xz−1
−

xy

1− xy
−

xy−1

1− xy−1

)

=
x(z + z−1) + x3(y + y−1)

(1− xz)(1− xz−1)(1− xy)(1− xy−1)
. (A.4)
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Doing the same for the denominators in eqs. (3.9) and (3.28) we get

G2 =
x2(3 + z2 + z−2) + x3(y + y−1)− x4(z2 + z−2) + x5(y + y−1) + x6

(1− xy)(1− xy−1)(1− x2z2)(1− x2z−2)
, (A.5)

and

G3 =
4x2 + x3(y + y−1 + z3 + z−3) + x4 + x5(y + y−1 − 2z3 − 2z−3) + x7(y + y−1) + x8

(1− xy)(1− xy−1)(1− x3z3)(1− x3z−3)
.

(A.6)
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