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1 Introduction

Gauged supergravity is a very useful tool in many areas of string theory such as flux

compactifications and the AdS/CFT correspondence (see [1] for a review). Due to these

applications, gauged supergravities in various dimensions as well as their Kaluza-Klein

(KK) dimensional reductions have been extensively explored. It is well known that lower-

dimensional gauged supergravities can be obtained from dimensional reductions of higher-

dimensional theories. Up to now, many examples have appeared and amongst them, [2,

3] and [5–8] are recognizable primary examples. In this paper, we are interested in

gauged supergravities in three dimensions in order to incorporate both the principle of

c-extremization and null-warped AdS3 solutions.
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The complete classification of Chern-Simons gauged supergravities in three dimensions

has been given in [9]. Most theories constructed in this formulation have no known higher-

dimensional origin. The three-dimensional gauged supergravities obtainable from dimen-

sional reductions form a small part, with non-semisimple gauge groups, in this classifica-

tion [10]. Unlike in higher-dimensional analogues, only a few examples of three-dimensional

gauged supergravities, which play an important role in AdS3/CFT2 correspondence, have

been obtained by dimensional reductions [11–13]. In this paper, we will extend this list

with more examples of gauged supergravities in three dimensions arising from wrapped

D3-branes in type IIB supergravity.

Recently, c-extremization for N = (0, 2) two-dimensional SCFT’s has been proposed

and various examples of gravity duals in five- and seven-dimensional gauged supergravities

exhibited [14, 15]. Recall that c-extremization is a procedure that allows one to single

out the correct U(1)R symmetry of the CFT from the mixing with other U(1) symme-

tries. Soon after, c-extremization was formulated purely in the context of the AdS3/CFT2

correspondence by explicitly showing that, in the presence of a gauged SO(2)R ∼ U(1)R
R symmetry, the so-called T tensor of the three-dimensional gauged supergravity can be

extremized leading to the exact central charge and R symmetry [16]. This realization is

similar to how a-maximization of four-dimensional SCFT’s [17] can be encoded in five-

dimensional gauged supergravity [18] in the context of the AdS5/CFT4 correspondence.1

Interestingly, in three dimensions, not only is the central charge reproduced, but the mo-

ment maps comprising the T tensor give information about the exact R symmetry. In this

work we will provide more details of the results quoted in [16] and also exhibit another

(related) example by considering twists of generic SCFT’s with Sasaki-Einstein duals.

In three dimensions, where a vector is dual to a scalar, the matter coupled super-

gravity theory can be formulated purely in terms of scalar fields resulting in a non-linear

sigma model coupled to supergravity. N = 2 supersymmetry in three dimensions requires

the scalar target manifold to be Kähler. Gaugings of the theory are implemented by the

embedding tensor specifying the way in which the gauge group is embedded in the global

symmetry group. In general, the moment map of the embedding tensor, given by scalar

matrices V , determines the T tensor which plays an important role in computing the scalar

potential and supersymmetry transformations. As a general result, N = 2 supersymmetry

allows any proper subgroup of the symmetry to be gauged. Furthermore, there is a possi-

bility of other deformations through a holomorphic superpotentialW . The scalar potential

generally gets contributions from both the T tensor and the superpotential. However, any

gauging of the R symmetry requires vanishing W .

The particular higher-dimensional theories we choose to reduce can all be motivated

from the perspective of ten dimensions. From either an analysis of the Killing spinor

equations [20], or by following wrapped D-brane intuition [21], it is known that supersym-

metric AdS3 solutions supported by the five-form RR flux of type IIB supergravity, or in

other words, those corresponding to wrapped D3-branes, have seven-dimensional internal

manifolds Y7 and bear some resemblance to Sasaki-Einstein metrics. More precisely, Y7

1A concrete realization is presented in [19].
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can be expressed locally in terms of a natural U(1) fibration (the R symmetry) over a

six-dimensional Kähler base that is subject to a single differential condition

�R =
1

2
R2 −RijR

ij , (1.1)

where R and Rij are, respectively, the Ricci scalar and Ricci tensor of the metric of the

Kähler manifold. Through the supersymmetry conditions [20, 21], the Ricci scalar R is

related to an overall warp factor for the ten-dimensional space-time.

Of course the above equation can be simplified considerably by assuming that the

Kähler manifold is also Einstein, but in general, solutions with non-trivial warp factors can

be difficult to find. A search for IIB solutions tailored to this context can be found in [22],

where a solution originally found in [23] was recovered. The challenges here are reminis-

cent of generalisations of direct-product AdS4 and AdS5 solutions to warped products. To

support this observation, we recall that, for an Ansatz covering the most general supersym-

metric warped AdS5 solutions of type IIB supergravity [24], the only warped geometry2

noted by the authors beyond the special case of Sasaki-Einstein was the Pilch-Warner solu-

tion [26]. On a more recent note, warped AdS4 solutions of eleven-dimensional supergravity

generalising Sasaki-Einstein have been found [27, 28]. In the face of these difficulties, it is a

pleasant surprise to witness the ease at which supersymmetric solutions with warp factors

can be constructed in five-dimensional supergravity through twisted compactifications on a

constant curvature Riemann surface Σg of genus g and how the principle of c-extremization

accounts for the central charge and exact R symmetry of the dual N = (0, 2) SCFT [14, 15].

c-extremization aside, we can further motivate the study of three-dimensional gauged

supergravities through the continued interest in “null warped” AdS3 space-times. Over the

last few years, we have witnessed a hive of activity surrounding warped AdS3 space-times

and their field theory duals [29], primarily in Topologically Massive Gravity (TMG) [30, 31].

Indeed, the mere existence of these solutions and the fact that they are deformations of

AdS3 with SL(2,R) × U(1) isometry, raises very natural questions about the putative

dual CFT. Since relatively little is known about these theories, the common approach

is to extract information holographically from warped AdS3 solutions. To date, in three

dimensions, warped AdS3 solutions have cropped up in a host of diverse settings, including

of course, solutions [29, 32, 33] to TMG, solutions [34] to New Massive Gravity [35], Higher-

Spin Gravity [36], topologically gauged CFTs [37] and three-dimensional gravity with a

Chern-Simons (CS) Maxwell term [38], where the latter is embeddable in string theory.

As we shall see, within the last class of three-dimensional theories, one also finds gauged

supergravities.

Indeed, “null warped” AdS3 are central to efforts to generalise AdS/CFT to a non-

relativistic setting, where holography may be applicable to condensed matter theory via

a class of Schrödinger space-times. Taking the catalyst from [39, 40], through fledgling

embeddings in string theory [41–44], various attempts have been made to provide a working

description of non-relativistic holography. On one hand, one may wish to start with a

2A class of solutions can be generated via TsT transformations [25] starting from AdS5 ×S5, but as the

transformation only acts on the internal S5, the final solution is not warped.
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recognisable theory with Schrödinger symmetry, such as a non-relativistic limit [45, 46]

of ABJM [47], but holographic studies [48–50] fail to capture the required high degree of

supersymmetry. On the other hand, if one starts from gravity solutions with Schrödinger

symmetry, one may be more pragmatic and obtain an effective description of the dual non-

relativistic CFT, valid at large N and strong coupling [51].3 Similar points of view were

also advocated in [55–57]. Whether the dual theory is a genuine CFT as proposed in [29],

or some warped CFT, is an open question drawing considerable attention.4

The structure of the rest of this paper is as follows. In section 2, we present an overview

of our knowledge of supersymmetric AdS3 geometries arising from wrapped D3-branes. In

section 2.2, we focus on geometries with a U(1) R symmetry dual to N = (0, 2) SCFT’s and

present known examples preserving at least four supersymmetries, all of which will corre-

spond to the vacua of the gauged supergravities we discuss later. In section 3, we provide

more details of the KK reduction reported in [16]. In section 4.1, we present the three-

dimensional gauged supergravity corresponding to a twisted compactification of an N = 1

SCFT with a generic Sasaki-Einstein dual. In section 4.2, we generalise the KK reduc-

tions discussed in [38] and identify the corresponding gauged supergravities. In section 5

we present some simple constructions of null-warped AdS3, or alternatively Schrödinger

geometries with dynamical exponent z = 2, before discussing some open avenues for future

study in section 6.

2 AdS3 from wrapped D3-branes

2.1 Review of wrapped D3-branes

In this section we review supersymmetric AdS3 geometries arising from D3-branes wrapping

calibrated two-cycles in manifolds with SU(2), SU(3) and SU(4) holonomy. To this end, we

follow the general ten-dimensional classification presented in [21] and later indicate where

particular explicit solutions fit into the bigger picture. The approach of [21] builds on

earlier work concerning wrapped M5-branes [59, 60] and M2-branes [61].

We recall that the general “wrapped-brane” strategy [59] involves first assuming that

AdS3 geometries start off as warped products of the form

ds210 = L−1ds2
(

R
1,1
)

+ ds2 (M8) , (2.1)

where both the warp factor L and the metric on M8 are independent of the Minkowski

factor. Here the Minkowski space-time should be regarded as the unwrapped part of the D3-

brane, and as expected, the D3-branes source a self-dual RR five-form flux F5 = Θ+ ∗10Θ
invariant under the symmetries of the Minkowski factor.

For the particular geometries of interest to us, the metric and the flux for the geometry

may be expressed as [21]

ds210 = L−1ds2
(

R
1,1
)

+ ds2 (M2d) + Lds2
(

R
8−2d

)

,

Θ = vol
(

R
1,1
)

∧ d
(

L−1J2d
)

, (2.2)

3Separately it has been argued [52, 53] that generic non-relativistic quantum field theories have a holo-

graphic description in terms of Hořava gravity [54].
4See [58] for a recent discussion.
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wrapped brane manifold supersymmetry R symmetry

Kähler 2-cycle CY2 N = (4, 4) SO(4)×U(1)

Kähler 2-cycle CY3 N = (2, 2) U(1)×U(1)

Kähler 2-cycle CY4 N = (0, 2) U(1)

Table 1. Wrapped D3-brane geometries and their supersymmetry.

where d = 2, 3, 4. In each case we require the existence of globally defined SU(d) struc-

tures, specified by everywhere non-zero forms J2d,Ω2d on M2d. The accompanying torsion

conditions follow from the SU(4)⋉R
8 case of [62], with the conditions for smaller structure

groups being determined through decompositions of the form

J2d+2 = J2d ± e2d+1 ∧ e2d+2,

Ω2d+2 = Ω2d ∧
(

e2d+1 ± ie2d+2
)

. (2.3)

As explained in detail in [21], the supersymmetry conditions for AdS3 space-times may

then be derived by introducing an AdS3 radial coordinate r, writing the (unit radius) AdS3
metric in the form

ds2 (AdS3) = e−2rds2
(

R
1,1
)

+ dr2, (2.4)

redefining the warp factor, L = e2rλ, and performing a frame rotation of the form

λ−
1

2dr = sin θ û+ cos θ v̂, (2.5)

where θ parametrises the frame-rotation, which is further assumed to be independent of the

AdS3 radial coordinate, and û, v̂ are respectively unit one-forms on M2d and the overall

transverse space.5 Omitting various technicalities associated to this frame-rotation one ar-

rives at a simple but effective derivation of the supersymmetry conditions for various AdS3
space-times of type IIB supergravity. A summary of the outcome may be encapsulated in

table 1 which we reproduce from [21].

As can be seen from the above table, in each case the cycle being wrapped is the same,

but as the dimensionality of the Calabi-Yau n-fold (CYn) increases, the preserved super-

symmetry decreases. For D3-branes wrapping Kähler two-cycles in CY2 manifolds, one can

generically have SO(4) × U(1) R symmetry provided the radial direction (2.5) involves a

rotation. Upon analytic continuation, one recovers the half-BPS LLM solutions [63] with

isometry R×SO(4)×SO(4)×U(1), however there appear to be no known AdS3 space-times

in this class. On the contrary, when θ = 0, i.e. when the radial direction is purely trans-

verse, one recovers the well known AdS3×S3×CY2 solution6 with R symmetry SO(4). In

either case the supersymmetry is N = (4, 4).

5For SU(4) structure manifolds there is no transverse space so there θ = π/2.
6Specialising to CY2 = T 4 and performing T-dualities we arrive at the usual form of the D1-D5 near-

horizon sourced by three-form RR flux. We also remark that the geometry sourced by five-form flux and

three-form flux are also related via fermionic T-duality [64] as explained in [65].
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For D3-branes wrapping Kähler two-cycles in CY3, supersymmetry is reduced to N =

(2, 2), while the associated R symmetry group is U(1) × U(1). Examples of these space-

times can be found in the literature [66, 67]. Finally, for D3-branes wrapping Kähler two-

cycles in CY4 the dual SCFTs preserve N = (0, 2) supersymmetry and the U(1) Killing

direction is dual to the R symmetry. A rich set of examples of these geometries exist in

the literature [14, 15, 22, 23, 67, 68]. In the notation of [21], the metric and flux may be

expressed as

ds210 = λ−1ds2 (AdS3) + λds2 (M6) + λ−1 (dψ +B)2 , (2.6)

Θ = vol (AdS3) ∧
[

d
(

λ−2(dψ +B)
)

− 2λ−1J
]

, (2.7)

where ∂ψ is the Killing vector dual to the R symmetry. The SU(3) structure manifold M6

is subject to the the conditions [21]:

dJ = 0, (2.8)

J2 ∧ dB =
2

3
λ2J3, (2.9)

dΩ = 2i (dψ +B) ∧ Ω . (2.10)

The first condition implies that M6 is a Kähler manifold, while the last condition simply

identifies the Ricci form R = 2dB.

2.2 D3-branes with N = (0, 2) SCFTs duals

Now that we have covered AdS3 space-times arising from D3-branes wrapping Kähler two-

cycles in Calabi-Yau manifolds in a general manner, here we focus on the particular case

where the manifold is CY4. Since this case preserves the least amount of supersymmetry,

it includes geometries dual to two-dimensional SCFTs with N = (2, 2) and N = (4, 4)

supersymmetry as special cases.

While the characterisation of wrapped D3-branes [21] presented in the previous section

offers a welcome sense of overview, henceforth we switch to the notation of [22], which is

itself based on the work of [20]. The generic AdS3 solutions corresponding to wrapped

D3-branes are then of the form [22],

ds2 = L2

[

e2Ads2 (AdS3) +
1

4
e2A (dz + P )2 + e−2Ads2 (M6)

]

,

F5 = L4 vol(AdS3) ∧
[

1

2
J − 1

8
d
(

e4A (dz + P )
)

]

+
1

16
L4

[

J ∧R ∧ (dz + P ) +
1

2
∗6 dR

]

, (2.11)

where L is an overall scale factor, ∗6 refers to Hodge duality with respect to the metric of the

Kähler space, dP = R, with R being the Ricci form on M6.
7 The warp factor is related to

7The Ricci form is defined by Rij = 1

2
RijklJ

kl, where Rijkl is the Riemann tensor. Recall also that the

Ricci scalar R and the Ricci tensor Rij may be expressed in terms of the Ricci form as R = J ij
Rij and

Rij = −J k
i Rkj .
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the Ricci scalar through 8e−4A = R, a relation that can be inferred from (2.9). The closure

of F5 leads to the differential condition on the curvature (1.1). Finally, to make direct

comparison with the previous incarnation of this solution (2.6), one can simply redefine

λ = e−2A, z = 2ψ, P = 2B, Ω = eizΩ̃ , (2.12)

where we have added a tilde to differentiate between complex forms. The five-form

fluxes (2.7) and (2.11) are related up to a factor of −4 and follow from the choice of nor-

malisation adopted in [20]. This point should be borne in mind when making comparisons.

Examples. To get better acquainted with the form of the general soution, we can con-

sider some supersymmetric solutions that will correspond later to the vacua of our gauged

supergravities. We begin with the well-known AdS3 × S3 × T 4 solution corresponding to

the near-horizon geometry of two intersecting D3-branes. Via T-duality it is related to the

D1-D5 near-horizon where the geometry is supported by a RR three-form.

To rewrite the solution in terms of the general description (2.11), we take

A = 0,

dz + P = (dφ3 − cosφ1dφ2) ,

ds2 (M6) = ds2
(

T 4
)

+
1

4

(

dφ21 + sin2 φ1dφ
2
2

)

, (2.13)

where φi parametrise the coordinates on the S3 normalised to unit radius, the same radius

as the AdS3 factor. Despite this solution fitting into the general ten-dimensional framework,

it preserves sixteen supercharges and is dual to a SCFT with N = (4, 4) supersymmetry.

Before illustrating the most general solution of [14, 15] in its ten-dimensional guise, we

can satisfy the required supersymmetry condition

a1 + a2 + a3 = −κ, (2.14)

where κ is the curvature of the Riemann surface Σg, more simply through setting all the ai
equal, ai =

1
3 , and taking the Riemann surface to be a unit radius Hyperbolic space, κ = −1.

This solution originally featured in [67]. With these simplifications the solution reads

ds2 =
4

9
ds2 (AdS3) +

1

3
ds2

(

H2
)

+
3
∑

i=1

dµ2i + µ2i

(

dϕi + Â
)2
, (2.15)

F5 = (1 + ∗)
[

−32

81
vol (AdS3) ∧ vol

(

H2
)

− 4

27
vol (AdS3) ∧

3
∑

i=1

d
(

µ2i
)

∧
(

dϕi + Â
)

]

,

where the µi are constrained so that
∑3

i=1 µ
2
i = 1. Note now that all Ai are equal,

Ai = Â, and dÂ = −1
3 vol(H

2). It is easy to determine the one-form K = 1
2e

2A(dz + P )

corresponding to the R symmetry direction

K =
2

3

[

3
∑

i=1

µ2i

(

dϕi + Â
)

]

, (2.16)
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and check that it has the correct norm K2 = e2A = 4
9 [20]. Taking into account the

factor of −4 in the definitions of the flux, and also setting L = 1, we then learn from

comparing (2.11) with (2.15) that

− 32

81
vol(H2)− 4

27

3
∑

i=1

d(µ2i ) ∧ (dϕi + Â) = −2J + d(e2AK). (2.17)

One can then determine J

J =
4

27
vol
(

H2
)

+
2

9

3
∑

i=1

d
(

µ2i
)

∧
(

dϕi + Â
)

, (2.18)

which comes with the correct factor of vol(H2),

ds2 (M6) =
4

27
ds2(H2) +

4

9

[

dµ21 + dµ22 + dµ23 + µ21µ
2
2 (dϕ1 − dϕ2)

2

+ µ21µ
2
3 (dϕ1 − dϕ3)

2 + µ22µ
2
3 (dϕ2 − dϕ3)

2

]

, (2.19)

so that vol(M6) =
1
3!J

3. Observe also that J is independent of K since µidµi = 0 follows

from the fact that the µi are constrained. In addition, the final difference in angular

coordinates ϕ2 − ϕ3 can be written as a linear combination of the other two, so we only

have four directions separate from those along the H2. As a further consistency check, we

have confirmed that the Ricci scalar for M6 is R = 8e−4A, in line with our expectations.

We can now repeat for general ai subject to the single constraint (2.14). This also

comprises the only example we discuss where the warp factor A is not a constant. In the

notation of [14, 15], the ten-dimensional solution is

ds2 = ∆
1

2

[

e2fds2 (AdS3) + e2gds2 (Σg)
]

+∆− 1

2

3
∑

i=1

X−1
i

(

dµ2i + µ2i
(

dϕi +Ai
)2
)

, (2.20)

F5 = (1+∗) vol (AdS3)∧
3
∑

i=1

e3f+2g

[

2Xi
(

X2
i µ

2
i−∆

)

vol (Σg)−
ai

2 e4gX2
i

d
(

µ2i
)

∧(dϕ+Ai)
]

,

where

∆ =
3
∑

i=1

Xiµ
2
i , X1X2X3 = 1, (2.21)

and as before the µi are constrained. The constrained scalars Xi can be expressed in terms

of two scalars ϕi in the following way

X1 = e
− 1

2

(

2
√

6
ϕ1+

√
2ϕ2

)

, X2 = e
− 1

2

(

2
√

6
ϕ1−

√
2ϕ2

)

, X3 = e
2
√

6
ϕ1 . (2.22)
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To give the full form of the solution one also needs to specify the values of the various

warp factors ef , eg and scalars Xi [14]:
8

ef =
2

X1 +X2 +X3
, e2g =

a1X2 + a2X1

2
,

X1X
−1
3 =

a1
a3

(a2 + a3 − a1)

(a1 + a2 − a3)
, X2X

−1
3 =

a2
a3

(a1 + a3 − a2)

(a1 + a2 − a3)
. (2.23)

From the higher-dimensional perspective afforded to us here, the canonical R symmetry

corresponds with the Killing vector [15]

∂ψ = 2
3
∑

i=1

Xi

X1 +X2 +X3
∂ϕi

. (2.24)

Again, one is in a position to determine the dual one-form

K = ef∆− 1

2

3
∑

i=1

µ2i (dϕi +Ai) , (2.25)

and confirm that it squares correctly K2 = e2A = ∆
1

2 e2f . Proceeding in the same fashion

as above, one can then determine J

J =
3
∑

i=1

1

4

[

− Θ

ai (2ai + κ)
e3fd

(

µ2i
)

∧ (dϕi +Ai) + 2ai (2ai + κ)
Θ

Π
µ2i e

3f vol (Σg)

]

, (2.26)

where we have adopted the notation of [15], namely

Θ = a21 + a22 + a23 − 2 (a1a2 + a1a3 + a2a3) ,

Π = (−a1 + a2 + a3) (a1 − a2 + a3) (a1 + a2 − a3) . (2.27)

The accompanying expression for the manifold M6 is

ds2 (M6) = ∆e2g+2fds2 (Σg) + e2f
[

X−1
1 dµ21 +X−1

2 dµ22 +X−1
3 dµ23

+
X3

∆
µ21µ

2
2 (X2Dϕ1 −X1Dϕ2)

2 +
X2

∆
µ21µ

2
3 (X3Dϕ1 −X1Dϕ3)

2

+
X1

∆
µ22µ

2
3 (X3Dϕ2 −X2Dϕ3)

2

]

, (2.28)

where we have further defined Dϕi = dϕi + Ai. One can check it is consistent with

the expression for J and furthermore that one recovers the previous expressions upon

simplification, i.e. setting ai =
1
3 , κ = −1.

These solutions will all be utilised later when we come to discuss three-dimensional

gauged supergravities with vacua corresponding to the above supersymmetric solutions. In

the next section, we begin by discussing an example of a generic reduction, in other words

one where the warp factor is not a constant, by providing further details of the reduction

and resulting three-dimensional N = 2 supergravity initially reported in [16].

8The solutions with g = 1 were studied in [69], while for g = 0, g > 1, modulo issues related to the

range of the parameters, the solutions can be mapped to (4.6) of [70] through interchanging the scalars

φ1 ↔ −φ2 and redefining the parameters accordingly ai = −ǫmi/(m1 +m2 +m3), where ǫ = 1 for Σg = S2

and ǫ = −1 for Σg = H2.
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3 An example of a generic reduction

In this section we illustrate an example of a generic reduction, where we use the word

“generic” to draw a line between dimensional reductions with non-trivial warp factors

from the ten-dimensional perspective, and those that are direct products. Recall that,

in addition to the famous KK reductions based on spheres [2, 3, 5–8], which give rise

to maximal gauged supergravities in lower dimensions, generic KK reductions based on

gaugings of R symmetry groups, notably gaugings of U(1) R symmetry [71, 72] and SU(2)

R symmetry [73, 74] exist despite the internal space not being a sphere. This observation

leads to the natural conjecture [72] that gaugings of R symmetry groups are intimately

connected to the existence of consistent KK dimensional reductions. Here should be no

exception, so we expect that one can gauge the existing U(1) R symmetry present in (2.11)

and reduce to three dimensions.

However, in contrast to similar reductions to four and five dimensions, for instance [71,

72], here in addition to retaining the gauge field from the R symmetry gauging, we also

require an additional scalar so that the three-dimensional gauged supergravity fits into the

structure of N = 2 gauged supergravity as laid out in [9]. More concretely, we require

an even number of scalars to constitute a Kähler scalar manifold. While the reduction we

discuss presently assumes additional structure for the M6, i.e. the existence of a Riemann

surface, it would be interesting to identify truly generic reductions without having to specify

the internal six-dimensional Kähler manifold.

Here we will present further details of the dimensional reduction from five-dimensional

U(1)3 gauged supergravity to three-dimensional N = 2 gauged supergravity reported

in [16]. While not being the most general reduction, from the ten-dimensional vantage

point it provides a neat example of a reduction where the warp factor, and the associated

Ricci scalar of the internal M6, is not a constant. We also do not need to address the full

embedding of the three-dimensional theory in ten dimensions, since we can work with the

U(1)3 gauged supergravity in five dimensions.

The bosonic sector of the action for five-dimensional U(1)3 gauged supergravity can

be found in [75]. It arises as a consistent reduction from type IIB on S5, so it is directly

connected to ten dimensions9 via the equations of motion, and corresponds to the special

case where only the SO(2)3 Cartan subgroup of SO(6) is gauged. The action reads

L5 = R ∗ 1− 1

2

2
∑

i=1

dϕi ∧ ∗dϕi −
1

2

3
∑

i=1

X−2
i F i ∧ ∗F i

+ 4g2
3
∑

i=1

X−1
i vol5+F

1 ∧ F 2 ∧A3, (3.1)

9The bosonic sector also appears as a reduction from D = 11 supergravity [76] where it is based on

the existence of near-horizon black holes [77]. Interestingly, one can start from D = 11 and reduce to

D = 4 U(1)4 gauged supergravity, which, for consistency, requires F i
∧ F j = 0. Taking a near-horizon

limit prescribed in [77] one finds the bosonic sector of D = 5 U(1)3 gauged supergravity, without such

a condition.
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where g is the gauge coupling and the constrained scalars Xi we have defined earlier (2.22).

From varying the potential with respect to the scalars it is easy to see that there is only a

single supersymmetric AdS5 vacuum at Xi = 1.

As commented in [75], or by inspection from the equations of motion in appendix C,

one can consistently truncate the theory by setting first ϕ2 = 0 implying that X1 = X2 =

X
−1/2
3 . This truncation is consistent provided F 1 = F 2. Furthermore, one can take an

additional step and set ϕ1 = 0 leading to minimal gauged supergravity in five dimensions.

Dimensional reduction. As it turns out, this dimensional reduction can be performed

consistently at the level of the action. Simply put, this means that we can adopt the

space-time metric Ansatz

ds25 = e−4Cds23 + e2Cds2(Σg) (3.2)

where Σg is a constant curvature Riemann surface of genus g and we have used C to denote

the scalar warp factor in five dimensions. In addition, we have orchestrated the warp factors

so that we arrive directly in Einstein frame in three dimensions.

The metric on the Riemann surface may be expressed as

ds2 (Σg) = e2h
(

dx2 + dy2
)

, (3.3)

where the function h depends on the curvature κ of the Riemann surface. It is respectively,

h = − log
(

(1 + x2 + y2)/2
)

(κ = 1), h = log(2π)/2 (κ = 0) and h = − log(y) (κ = −1),

depending on whether the genus is g = 0, g = 1, or g > 1. In addition, one takes the

following Ansatz for the field strengths,

F i = Gi − ai vol (Σg) , (3.4)

where closure of F i ensures that ai are constants and Gi is closed, Gi = dBi.

In doing the reduction at the level of the action the following expression for the five-

dimensional Ricci scalar is useful

R ∗ 1 = R ∗3 1− 6dC ∧ ∗3dC + 2κe−6C ∗3 1. (3.5)

The resulting three-dimensional action in Einstein frame is

L(3) = R ∗3 1− 6dC ∧ ∗3dC − 1

2

2
∑

i=1

dϕi ∧ ∗3dϕi −
1

2
e4C

3
∑

i=1

X−2
i Gi ∧ ∗3Gi

+

(

3
∑

i

[

4g2e−4CX−1
i − 1

2
e−8Ca2iX

−2
i

]

+ 2κe−6C

)

∗ 1+ L(3)
top , (3.6)

where the topological term takes the form

L(3)
top = a1B

2 ∧G3 + a2B
3 ∧G1 + a3B

1 ∧G2. (3.7)

We remark that the reduction and the resulting potential appeared previously in [78].

In appendix C, we have confirmed that it is indeed consistent.
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Dualising the action. Now that we have the action, we would like to rewrite it in the

form of a three-dimensional non-linear sigma model coupled to supergravity so that we can

make contact with three-dimensional gauged supergravities in the literature [9]. We take

our first steps in that direction by dualising the gauge fields, or more appropriately, their

field strengths, and replacing them with scalars:

G1 = X2
1e

−4C ∗DY1, DY1 = dY1 + a3B
2 + a2B

3,

G2 = X2
2e

−4C ∗DY2, DY2 = dY2 + a1B
3 + a3B

1,

G3 = X2
3e

−4C ∗DY3, DY3 = dY3 + a1B
2 + a2B

1. (3.8)

Through these redefinitions, we can recast the action (3.6) in the following form

L(3) = R ∗ 1− 6dC ∧ ∗dC − 1

2

2
∑

i=1

dϕi ∧ ∗dϕi −
1

2
e−4C

3
∑

i=1

X2
i DYi ∧ ∗DYi

+ L(3)
pot + a1B

2 ∧G3 + a2B
3 ∧G1 + a3B

1 ∧G2, (3.9)

where we have omitted the explicit form of the potential as it will play no immediate role.

We have also dropped all subscripts for Hodge duals on the understanding that we are

now confining our interest to three dimensions. Note that the Chern-Simons terms are

untouched and when we vary with respect to Bi we recover the duality conditions (3.8),

so it should be clear that the equations of motion are the same and we have just rewritten

the action.

At this point, before blindly stumbling on, we will attempt to motivate the expected

gauged supergravity. Firstly, we know from the Killing spinor analysis in [15] that the AdS3
solutions generically preserve four supersymmetries, meaning we are dealing with N = 2

supersymmetry in three dimensions. Indeed, for N = 2, we have precisely an SO(2) R

symmetry group under which the gravitini transform and in this case the target space is a

Kähler manifold with the scalars pairing into complex conjugates. Naturally, a prerequisite

for a Kähler manifold is that we have an even number of scalars, and we observe that after

dualising, this is indeed the case. So, we will now push ahead and identify some features

of the N = 2 gauged supergravity.

To identify the scalar manifold it is good to diagonalise the scalars by redefining them

in the following way

W1 = 2C +
1√
6
ϕ1 +

1√
2
ϕ2,

W2 = 2C +
1√
6
ϕ1 −

1√
2
ϕ2,

W3 = 2C − 2√
6
ϕ1 . (3.10)

In terms of the original Xi these new scalars are simply eWi = e2CX−1
i .

With these redefinitions, the Kähler manifold now assumes the simple form

L(3)
scalar = −1

2

3
∑

i=1

[

dWi ∧ ∗dWi + e−2WiDYi ∧ ∗DYi
]

(3.11)
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and we are in a position to identify it as [SU(1, 1)/U(1)]3. The Kähler structure of the scalar

target space can be made fully explicit through the introduction of the Kähler potential

of the form

K = −
3
∑

i=1

log (ℜzi) , (3.12)

where we have introduced complex coordinates zi = eWi + iYi. This means that the metric

for the manifold is gīi = ∂i∂īK = 1
4e

−2Wi , where ∂i = ∂zi , ∂ī = ∂z̄i .

Having identified the scalar manifold and the Kähler potential, we turn our attention to

the scalar potential. In the language of three-dimensional N = 2 gauged supergravity [9],

the scalar potential is comprised of two components, a T tensor and a superpotential W :

L(3)
pot = 8T 2 − 8gīi∂iT∂īT + 8eK|W |2 − 2gīieKDiWDīW̄ , (3.13)

where the Kähler covariant derivative is DiW ≡ ∂iW + ∂iKW and W is holomorphic, so

∂iW̄ = ∂īW = 0. While W plays a natural role when eleven-dimensional supergravity is

reduced on S2×CY3 to three dimensions [11], whenever the R symmetry is gauged, consis-

tency demands that W = 0. Thus, to make contact with the literature, we face the simpler

task of identifying the correct T tensor and making sure that the potential is recovered.

After rewriting the scalars, the potential takes the more symmetric form

L(3)
pot = 4g2

[

e−W1−W3 + e−W2−W3 + e−W1−W2

]

+ 2κe−W1−W2−W3

− 1

2

[

a21 e
−2(W2+W3) + a22 e

−2(W1+W3) + a23 e
−2(W1+W2)

]

. (3.14)

Note that in performing the reduction we have not been picky about supersymmetry and

a priori, neglecting the gauge coupling g, which can be set to one, the constants κ and ai
are unrelated. However, setting g = 1 for simplicity, one can find the appropriate T tensor

T = −1

4

[

a1e
−W2−W3 + a2e

−W1−W3 + a3e
−W1−W2

]

+
1

2

[

e−W1 + e−W2 + e−W3

]

, (3.15)

and check that it reproduces the potential on the nose provided (2.14) is satisfied. This is

precisely the condition identified in [14, 15] for supersymmetry to be preserved. Though

it happens that the existence of what is commonly referred to as a “superpotential”, in

this case T , could conceivably be related to some fake supersymmetry structure for the

theory, the fact that we recover the supersymmetry condition is reassuring. In fact, in

appendix C.1 we reduce some of the Killing spinor equations and show that they also lead

to the same T tensor. Thus, once the potential (and also T ) is extremised, the Killing

spinor equations are satisfied.

Central charge and exact R symmetry. At this stage it should be obvious that

we have a potential with a supersymmetric critical point provided condition (2.14) holds.

Furthermore, once we extremise T , we in turn extremise the potential and arrive at the

supersymmetric AdS3 vacuum. As discussed in [16], the extremization of the T tensor offers

a natural supergravity counterpart for c-extremization [14, 15]. Recall that c-extremization

has been proposed for SCFTs with N = (0, 2) supersymmetry as a means to identify the
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exact central charge and R symmetry where ambiguities exist due to the U(1) R symmetry

mixing with other global U(1) symmetries that may be present.

Like the trial c-function proposed in [14, 15], T is also quadratic and comes from

squaring the moment maps V i
T = 2V iΘijVj , (3.16)

contracted with the embedding tensor Θij [9], where the index i ranges over the various U(1)

symmetries, which for the immediate example, i = 1, 2, 3. In addition, since the embedding

tensor also appears in the Chern-Simons terms in the action, it also related to the ’t

Hooft anomaly coefficients which appear in the trial c-function for c-extremization [14, 15].

Indeed, for the class of wrapped D3-brane geometries discussed in [14, 15] this can all be

made precise through the relations [16]

cR = 3ηΣdGT
−1, R = 2V iT−1Qi , (3.17)

where cR is the exact central charge, R is the exact R symmetry, ηΣ is related to the volume

of the Riemann surface, ηΣ = 2π vol(Σg), dG is the dimension of the gauge group and Qi
denotes the charges corresponding to the U(1) currents.

All that remains to do is simply to identify the minimum of the potential by extremising

T . The critical point of T corresponds to the following values for the scalars:

W1 = ln

[

a2a3
a2 + a3 − a1

]

, W2 = ln

[

a1a3
a1 + a3 − a2

]

W3 = ln

[

a1a2
a1 + a2 − a3

]

. (3.18)

Once written in terms of C, ϕ1 and ϕ2 or in terms of C and Xi, this precisely gives the

AdS3 critical point of [14]. Then, slotting the critical value of T into the (3.17), we arrive

at the exact central charge and R symmetry,

cR = −12ηΣN
2a1a2a3

Θ
, (3.19)

R =
2ai (2ai + κ)

Θ
, (3.20)

where we have made use of (2.27) to display the result. In deriving (3.19) we have used

the fact that the dimension of the gauge group at large N is dG = N2, while for (3.20) it

is good to use the fact that the moment map is Vi = 1
4e

−Wi . The central charge and R

symmetry agree with those quoted in [14, 15] and reproduce the coefficients of the Killing

vector corresponding to the R symmetry (2.24).

4 Less generic reductions

Experience suggests that it is much easier to construct KK reduction Ansätze for direct

product solutions than those that are warped products. This should come as no surprise

since warped products are often more involved and consequently it may not be easy to iden-

tify a symmetry principle to guide the construction of a fitting Ansatz. For dimensional
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reductions from ten or eleven dimensions to five-dimensional gauged supergravities admit-

tingAdS5 vacua, the restrictions are quite clear. Starting with coset reductions [5–8, 79, 80],

through generic Sasaki-Einstein reductions [81–84] to the more general cases, the richness

of the reduced theory gradually decreases until one is left with minimal gauged supergrav-

ity [71, 72]. For warped AdS5 solutions, only reductions to minimal gauged supergravity

are known, with a notable exception being KK reductions [85] based on Y p,q spaces [86, 87],

which when uplifted to eleven dimensions, the vacua correspond to warped solutions.

In this section we will discuss KK reductions to three dimensions confined to the

special case where the Kähler manifold is a product of Kähler-Einstein spaces. As a direct

consequence, (1.1) simplifies to

R2 = 2RijR
ij . (4.1)

A nice treatment of this special case can be found in [22] which we follow. We take the

internal Kähler manifold to be a product of a set of two-dimensional Kähler-Einstein metrics

ds2 (M6) =
3
∑

i=1

ds2
(

KE
(i)
2

)

. (4.2)

Since M6 now has constant curvature, it is easy to satisfy (4.1). The Ricci form for M6

takes the form

R =
3
∑

i=1

liJi , (4.3)

where Ji are the Kähler forms of the constituent metrics and the constants li are zero,

positive or negative depending on whether the metric is locally that on T 2, S2 or H2. We

also have the one-form connection P =
∑

i Pi with dP =
∑

i liJi. Slotting (4.3) into (4.1)

we find a single constraint on the li

l1l2 + l1l3 + l2l3 = 0 , (4.4)

and discover that the overall warp factor is determined,

e−4A =
1

8
R =

1

4

∑

i

li . (4.5)

Finally, the expression for the five-form flux (2.11) simplifies and assumes the following form

F5 = (1 + ∗)L4 vol (AdS3) ∧
1

2
∑

i li

[

J1 (l2 + l3) + J2 (l1 + l3) + J3 (l1 + l2)
]

. (4.6)

We now can make some comments. Demanding that the ten-dimensional space-time

has the correct signature, we require R > 0 from (4.5). In the light of (4.4), this means

that the potential solutions are constrained to be either S2×T 4 or S2×S2×H2. The first

option here corresponds to the famous intersecting D3-branes solution, while the second

case was considered in [67]. We note that when the KE
(i)
2 space is H2, it is a well-known

fact that one can quotient the space without breaking supersymmetry leading to a compact

Riemann surface with genus g > 1. The Ricci tensor for these solutions can be found in

appendix D.
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4.1 Twists of SCFTs with Sasaki-Einstein duals

In this section we will discuss KK reductions on the first class of products of Kähler-

Einstein spaces by confining our attention to spaces with curvature, li 6= 0. For simplicity,

we will take l1 = l2, and the requirement that the scalar curvature of the internal M6 be

positive (4.5) subject to (4.4) means that there is only one case, namely M6 = H2×KE4,

where KE4 is a positively curved Kähler-Einstein manifold.10 For concreteness, we take

(l1, l2, l3) = (2, 2,−1) so that the H2 is canonically normalised.

Our next task is to construct a ten-dimensional Ansatz. While we could begin from

scratch, we can incorporate some results from the literature as, in the end, a natural

question concerns how they may be related. So we opt to kill two birds with one stone by

simply reducing the IIB reduction on a generic Sasaki-Einstein five-manifold SE5 [81–84]

further to three dimensions on a constant curvature Riemann surface (H2). We will follow

the notation of [82] and subsequent comments are in the context of that work.

To achieve our goal, we make two simplifications. Firstly, we truncate out the complex

two-form L2, since as our internal space is now six-dimensional, a complex (2, 0)-form,

Ω2, is less natural. We can easily replace it with a field coupling to the complex (3, 0)-

form Ω3 via the five-form flux, but this will simply give us an additional complex scalar.

More importantly, one can ask what is the fate of the complex scalars ξ and χ under

dimensional reduction. Recall that they feature prominently in embeddings of holographic

superconductors [88] (see also [89, 90]). However, since ξ, χ couple to the graviphoton A1,

it is not possible to twist A1 in the usual way to produce a supersymmetric AdS3 vacuum

without truncating out ξ and χ. As such, we will have nothing to say about models

for holographic superconductivity here. Moreover, as the same fields support the non-

supersymmetric Romans’ vacuum in five dimensions, we do not expect to find an analogue

in three dimensions that follows from the reduction procedure.

The five-dimensional action in Einstein frame can be found in (3.10) of [82]. With the

above simplifications taken onboard, for completeness, we reproduce the kinetic term

L(5)
kin = R vol5 −

28

3
dU ∧ ∗dU − 8

3
dU ∧ ∗dV − 4

3
dV ∧ ∗dV − 1

2e
2φda ∧ ∗da (4.7)

− 1
2dφ ∧ ∗dφ− 2e−8UK1 ∧ ∗K1 − e−4U−φH1 ∧ ∗H1 − e−4U+φG1 ∧ ∗G1

− 1
2e

8

3
(U+V )F2 ∧ ∗F2 − e−

4

3
(U+V )K2 ∧ ∗K2 − 1

2e
4

3
(2U−V )−φH2 ∧ ∗H2

− 1
2e

4

3
(2U−V )+φG2 ∧ ∗G2 − 1

2e
4

3
(4U+V )−φH3 ∧ ∗H3 − 1

2e
4

3
(4U+V )+φG3 ∧ ∗G3 ,

the scalar potential

L(5)
pot =

[

24e−
2

3
(7U+V ) − 4e

4

3
(−5U+V ) − 8e−

8

3
(4U+V )

]

vol5 , (4.8)

10Suitable choices for KE4 include S2
× S2, CP 2 and del Pezzo dPk, k = 3, . . . , 8.
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and the topological terms are given by the expression

L(5)
top = −A1 ∧K2 ∧K2 − (dk − 2E1 − 2A1) ∧ [dB2 ∧ (dc− 2C1) + (db− 2B1) ∧ dC2]

+A1 ∧ (dk − 2E1) ∧ [(db− 2B1) ∧ dC1 − dB1 ∧ (dc− 2C1)]

+ 2A1 ∧ dE1 ∧ (db− 2B1) ∧ (dc− 2C1) +A1 ∧ (db− 2B1) ∧ (dc− 2C1) ∧ F2

− 4C2 ∧ dB2 . (4.9)

In turn, the above fields can be written in terms of various potentials and scalars in five

dimensions

G1 = dc− 2C1 − adb+ 2aB1,

H1 = db− 2B1,

K1 = dk − 2E1 − 2A1,

F2 = dA1,

G2 = dC1 − adB1,

H2 = dB1,

K2 = dE1 +
1

2
(db− 2B1) ∧ (dc− 2C1) , (4.10)

thus ensuring the that ten-dimensional Bianchi identities (appendix A) for the fluxes hold.

In total we have 7 scalars U, V, k, b, c including the axion a and dilaton φ, 4 one-form

potentials A1, B1, C1, E1 and 2 two-form potentials B2, C2.

Dimensional reduction. Having introduced the five-dimensional theory, we are in a

position to push ahead with the same reduction as section 3 to three dimensions on a

constant curvature Riemann surface Σg. We consider the usual metric Ansatz11

ds25 = e−4Cds23 + e2Cds2 (Σg) , (4.11)

where warp factors have been chosen so that we end up in Einstein frame, and for the

moment, we will assume that we have a constant curvature Riemann surface and not

specify its curvature κ. Supersymmetry will later dictate that κ < 0. As for the rest of

the fields, the five-dimensional scalars reduce to three-dimensional scalars. The fact that

the field strengths H1, G1 appear in the Einstein equation mean that we cannot twist with

respect to B1 and C1 since such a twisting is inconsistent with the assumption that the

Riemann surface is constantly curved. This leaves A1 and E1, or their field strengths,

which we twist in the following way

K2 = −ǫ vol (Σg) + K̃2 ,

F2 = ǫ vol (Σg) + F̃2 , (4.12)

where tildes denote three-dimensional field strengths. ǫ is dictated to be a constant through

F2 = dA1 and no twisting along K1 imposes the requirement that we twist K2 in the

11Here C without subscript will denote the scalar warp factor and C1 is a one-form.
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opposite way. This latter point is also in line with our expectation that one can fur-

ther truncate the theory to minimal gauged supergravity through K1 = 0,K2 = −F2 in

five dimensions [82].

Since we are not twisting B1, C1, the field strengths G1, H1, G2, H2 reduce directly to

three dimensions. On the contrary, we can consider a decomposition for the three-form

field strengths G3, H3 on the condition that we respect the symmetries of Σg. So we can

decompose

C2 = e vol (Σg) + C̃2, B2 = f vol (Σg) + B̃2 , (4.13)

leading to two new scalars e, f in the process. The corresponding field strengths can then

be written as

G3 =M1 ∧ vol (Σg) + g vol3, M1 = de− adf +
1

2
ǫ (dc− 2C1 − adb+ 2aB1) ,

H3 = N1 ∧ vol (Σg) + h vol3, N1 = df +
1

2
ǫ (db− 2B1) . (4.14)

One can check that this choice is consistent with the closure of the Bianchi identities.

The scalars g, h are, up to an integration constants λ1, λ2, set by the equations

of motion

g = −4e−
4

3
(4U+V )−φ−8C (λ1 + f)

h = 4e−
4

3
(4U+V )+φ−8C (λ2 + e− a (λ1 + f)) . (4.15)

We will normalise these so that λi = 1.

We now reduce directly at the level of the action and take care to check in appendix E

that one gets the same result from reducing the equations of motion, thus guaranteeing the

consistency of the reduction. Dropping tildes, as only the three-dimensional fields remain,

the resulting kinetic terms are

L(3)
kin = R vol3−6dC∧∗dC− 28

3
dU∧∗dU− 8

3
dU∧∗dV − 4

3
dV ∧∗dV − 1

2
e2φda ∧ ∗da (4.16)

− 1

2
dφ ∧ ∗dφ− 2e−8UK1 ∧ ∗K1 − e−4U+φG1 ∧ ∗G1 − e−4U−φH1 ∧ ∗H1

− 1

2
e

4

3
(4U+V )+φ−4CM1 ∧ ∗M1−

1

2
e

4

3
(4U+V )−φ−4CN1 ∧ ∗N1−e−

4

3
(U+V )+4CK2 ∧ ∗K2

− 1

2
e

8

3
(U+V )+4CF2 ∧ ∗F2−

1

2
e

4

3
(2U−V )+φ+4CG2 ∧ ∗G2 −

1

2
e

4

3
(2U−V )−φ+4CH2 ∧ ∗H2 ,

while those of the scalar potential take the form

L(3)
pot = e−4C

[

2κe−2C + 24e−
2

3
(7U+V ) − 4e

4

3
(−5U+V ) − 8e−

8

3
(4U+V )

− 1

2
ǫ2e−4C

(

e
8

3
(U+V ) + 2e−

4

3
(U+V )

)

− 8e−
4

3
(4U+V )−φ−4C (1 + f)2

− 8e−
4

3
(4U+V )+φ−4C (1 + e− a (1 + f))2

]

vol3 . (4.17)
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The topological term is then given by the expression

L(3)
top = 2ǫA1 ∧K2 − 4 (1 + e)A1 ∧ dB1 + 4 (1 + f)A1 ∧ dC1

− ǫE1 ∧K2+2E1 ∧
[

df ∧ (dc−2C1)−de ∧ (db−2B1)+
3

4
ǫ (db−2B1) ∧ (dc−2C1)

]

+ 2k

[(

df +
1

2
ǫ(db− 2B1)

)

∧ dC1 −
(

de+
1

2
ǫ (dc− 2C1)

)

∧ dB1

]

. (4.18)

Now is an opportune time to identify the supersymmetric AdS3 vacuum. This can be

done by comparing directly with (6.9) of [22] (see also [23]). For concreteness we can take

KE4 = S2 × S2 to exhibit the explicit solution, but one can consider other choices. The

form of the space-time metric before rescaling is

ds2 = L2

[

2√
3
ds2 (AdS3) +

√
3

2

(

dx2 + dy2

y2

)

+

√
3

2

2
∑

i=1

1

2

(

dθ2i + sin2 θidφ
2
i

)

1

2
√
3

(

dz − dx

y
−
∑

i

cos θidφi

)2


 , (4.19)

where AdS3 is normalised to unit radius and all normalisations for the H2, parametrised by

(x, y), and two S2’s, parametrised by (θi, φi) are now explicit. We have also reintroduced an

overall scale factor L. We omit the five-form flux as it will not provide any new information

and it is enough to compare the ten-dimensional metrics.

To make meaningful comparison with the KK reduction Ansatz of [82], we need to

compare with the following space-time Ansatz

ds2 = e−
2

3
(4U+V )

[

e−4Cds23 + e2Cds2 (Σg)
]

+ e2Uds2 (KE4) + e2V (η +A1)
2 , (4.20)

where dη = 2J and the Kähler-Einstein metric gij with positive curvature is normalised

so that Rij = 6gij . To make the connection, we first rescale the KE4 factor in (4.19) by a

factor of three, take L2 = 2/
(

3
√
3
)

and make the following identifications

(η +A1) =
1

3

(

dz − cos θ1dφ1 − cos θ2dφ2 −
dx

y

)

. (4.21)

The supersymmetric AdS3 vacuum can then be identified

U = V = 0, C = −1

2
log 3, e = f = −1 , (4.22)

where κ = −1, since the H2 was normalised to unit radius, and ǫ = −1
3 follows from (4.21).

One can indeed check that this choice leads to a critical point of the potential and that the

AdS3 radius of the three-dimensional space-time is ℓ = 2
9 .

Further truncation & supergravity. In this subsection we consider the above action

with the three-form fluxes truncated out by setting b = c = B1 = C1 = B2 = C2 = 0,

e = f = −1. Even from the ten-dimensional perspective, it is known that it is always
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consistent to perform this truncation to just the metric, fields in the five-form flux and the

axion and dilaton.12

We now recast the simpler action in the more familiar language of three-dimensional

gauged supergravity. In part this will involve dualising the one-form potentials. To do so

we redefine the following fields

K2 = e
4

3
(U+V )−4C ∗DY2 , DY2 = dY2 + B̃2

F2 = e−
8

3
(U+V )−4C ∗DY3 , DY3 = dY3 + B̃3 , (4.23)

while, at the same time, adding the following additional CS terms

δL(3)
top = 2B̃2 ∧K2 + B̃3 ∧ F2 . (4.24)

The covariant derivatives are chosen so that the equations of motion are still satisfied once

B̃i are integrated out. We can then redefine K1

K1 =
1

2
DY1, DY1 = (dY1 − 4E1 − 4A1) , (4.25)

and finally introduce the following scalars

W1 = −4U, W2 =
2

3
(U + V )− 2C, W3 = −4

3
(U + V )− 2C . (4.26)

The scalar manifold is now [SU(1, 1)/U(1)]4, which should be familiar from previous anal-

ysis, and the kinetic term for the action becomes

Lkin = −1

2
dW1 ∧ ∗dW1 −

1

2
e2W1DY1 ∧ ∗DY1 − dW2 ∧ ∗dW2 − e2W2DY2 ∧ ∗DY2

− 1

2
dW3 ∧ ∗dW3 −

1

2
e2W3DY3 ∧ ∗DY3 −

1

2
dφ ∧ ∗dφ− 1

2
e2φda ∧ ∗da . (4.27)

We can thus introduce the complex coordinates

zi = e−Wi + iYi , i = 1, 2, 3, z4 = e−φ + ia , (4.28)

allowing us explicitly to write the Kähler potential K as

K = − log (ℜz1)− 2 log (ℜz2)− log (ℜz3)− log (ℜz4) . (4.29)

While we could have made this point earlier, it is now clear that the axion a and the

dilaton φ decouple completely and can be truncated out. They also do not feature in the

scalar potential.

In terms of the other scalars the potential takes the form

Lpot =

[

2κe2W2+W3 + 24eW1+W2+W3 − 4e2(W1+W2) − 8e2(W1+W3) (4.30)

−1

2
ǫ2
(

e4W2 + 2e2(W2+W3)
)

]

vol3 .

12In performing this truncation we remove the six scalars coming from the RR and NS three-form fluxes.

In general, it is possible to see that one always has an SU(1, 1)/U(1) factor, but it is not clear if the remaining

twelve scalars constitute a Kähler manifold. It is also possible that the vacuum spontaneously breaks N = 4

supersymmetry to N = 2, for example [82] in five dimensions. We leave this point to future work.
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We can then work out the corresponding T tensor in terms of ǫ and κ,

T = − ǫ
4
e2W2 − ǫ

2
eW2+W3 − eW1+W2 + eW1+W3 − κ

2ǫ
eW3 . (4.31)

We note that κ and ǫ are not independent and we require κ = 3ǫ so that the T tensor

reproduces the potential. Once they are identified in this way, and taking into account the

fact that κ < 0, ǫ < 0, one finds a vacuum at

W1 = 0, W2 =W3 = − log (−ǫ) ⇒ U = V = 0, C =
1

2
log (−ǫ) . (4.32)

Setting ǫ = −1
3 , we arrive at the result quoted previously.

Central charge and R symmetry. In fact we have already discussed the central charge

for this case as it corresponds to a particular example in section 3, namely ai =
1
3 , κ = −1,

thus ensuring that (2.14) is satisfied. However, to avoid the onerous task of rescaling

metrics and comparing solutions, we can simply recalculate the central charge using the

standard holographic prescription [91, 92]

cR =
3ℓ

2G(3)
, (4.33)

where ℓ is the AdS3 radius and G(3) the three-dimensional Newton’s constant. Using the

conventions of [14, 15] where G(3) = 1/(4ηΣN
2), one can check that the result agrees

with (3.19) when ai =
1
3 .

It is also of interest here to ask about the R symmetry? The ten-dimensional origin

of our reduction makes it clear that there is only a single U(1) R symmetry, so there is no

ambiguity. However, without this insight, we can ask what the three-dimensional theory

can tell us about the R symmetry. Once we truncate out K1, we have essentially two U(1)

symmetries and the moment maps V i associated to these can be worked out by comparing

the T tensor (3.16) with the CS term in the action. We find that the components of the

embedding tensor are Θ23 = 2ǫ,Θ22 = −2ǫ and, for agreement, the moment maps are

V2 =
1

4
eW2 , V3 = −1

4
eW3 , (4.34)

where i = 2, 3 label the U(1)’s associated to the gauge fields E1 and A1 respectively. We

can then extract the R symmetry

R = −2

3
U(1)2 +

2

3
U(1)3 , (4.35)

where we have again used indices to distinguish the U(1)’s. We can now compare to our

earlier result (3.20) by inserting ai = 1
3 and one arrives at the same numbers, up to a

relative sign. This relative sign can be traced to the relative sign in (4.12) and by simply

changing the sign of A1 in ten dimensions, one can find perfect agreement.
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4.2 Intersecting D3-branes

In this section we discuss dimensional reductions to three dimensions for intersecting D3-

branes. Some of the work presented here will not be new and will recover the recent work

of [38]. Although we could approach this task directly from a ten-dimensional Ansatz, it

is handier to make use of an intermediate reduction to six dimensions on a Calabi-Yau

two-fold [93], details of which can be found in appendix F.

As such, we adopt the same strategy as [38], but an important distinction is that

we will not impose truncations directly in six dimensions and then reduce. Instead, we

will reduce directly so that we can unify the reductions presented in [38]. In addition,

we will make statements about the underlying gauged supergravity, an aspect that was

overlooked in [38]. Note that it is expected that the three-dimensional gauged supergravity

be a theory with N = 4 supersymmetry, so that the scalar manifold is a product of

quaternionic manifolds [9], but this falls outside of our scope here and we hope to address

this question in future work. Finally, we remark that these reductions are related to those

of [11] via T-duality and uplift, a point that is fleshed out in appendix B.

So the task now is to perform the reduction on S3, written as a Hopf-fibration, from the

six-dimensional theory presented in [93] to extract a three-dimensional gauged supergravity.

Strictly speaking we are then doing a reduction on the D1-D5 near-horizon or its S-dual F1-

NS5, so further T-dualities along CY2 = T 2×T 2 will be required to recover the intersecting

D3-brane vacuum discussed previously. We will come to this point in due course.

Dimensional reduction. Starting from the six-dimensional theory in appendix F, we

adopt the natural space-time Ansatz

ds26 = e−4U−2V ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dz + P +A1) , (4.36)

where U, V are warp factors and A1 is a one-form with legs on the three-dimensional space-

time. Our Ansatz fits into the overarching description for supersymmetric AdS3 solutions

from wrapped D3-branes presented earlier with choice (l1, l2, l3) = (0, 0, 4). In contrast

to [38], this means that P = − cos θdφ so that dP = vol(S2) = 4J3. In addition, A = 0

follows from (4.5).

For the three-form fluxes, we consider the following Ansatz

F3 = G0
1

2
(dz + P +A1) ∧ J3 +G1 ∧ J3 +G2 ∧

1

2
(dz + P +A1) + ge−6U−3V vol3 (4.37)

H3 = sinα (dz + P +A1) ∧ J3 +H1 ∧ J3 +H2 ∧
1

2
(dz + P +A1) + he−6U−3V vol3 ,

where the Bianchi identities (see appendix A) determine the following:

G0 = 2 (cosα− sinαχ1) ,

G1 = dc− χ1db− 2 (C1 − χ1B1)− (cosα− sinαχ1)A1,

G2 = dC1 − χ1dB1,

H1 = db− 2B1 − sinαA1,

H2 = dB1 . (4.38)
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Here χ1 is the scalar axion of type IIB supergravity and we have introduced the constant

α, scalars b, c and one-form potentials B1, C1. The remaining scalars, φi, χi = 1, 2, of the

six-dimensional theory simply descend to become three-dimensional scalars.

We now plug our Ansatz into the equations of motion of the six-dimensional the-

ory (F.3)–(F.9), the details of which can be found in appendix F. In the process one

determines the form for g, h:

g = 2e−φ1+φ2−V−2U (cosα+ sinαχ2) , (4.39)

h = 2eφ1+φ2−V−2U [sinα− cosαχ2 + (cosα+ sinαχ2)χ1] , (4.40)

where we have normalised the integration constants for later convenience.

One finds that the equations of motion all come from varying the following three-

dimensional action:

L(3) = L(3)
kin + L(3)

pot + L(3)
top , (4.41)

where the kinetic term is

L(3)
kin = R vol3−

1

2
dφ1 ∧ ∗dφ1 −

1

2
e2φ1dχ1 ∧ ∗dχ1 −

1

2
dφ2 ∧ ∗dφ2

− 1

2
e2φ2dχ2 ∧ ∗dχ2 − 6dU ∧ ∗dU − 4dU ∧ ∗dV − 2dV ∧ ∗dV

− 1

2
e−φ1−φ2−4UH1 ∧ ∗H1 −

1

2
eφ1−φ2−4UG1 ∧ ∗G1 −

1

2
e−φ1−φ2+4UH2 ∧ ∗H2

− 1

2
eφ1−φ2+4UG2 ∧ ∗G2 −

1

8
e4U+4V F2 ∧ ∗F2 , (4.42)

and the scalar potential takes the form

L(3)
pot =

[

8e−6U−2V − 2e−8U − 2eφ1+φ2−8U−4V [sinα− cosαχ2 + (cosα+ sinαχ2)χ1]
2

− 2e−φ1+φ2−8U−4V (cosα+ sinαχ2)
2 − 2e−φ1−φ2−8U−4V sin2 α

− 2eφ1−φ2−8U−4V (cosα− sinαχ1)
2

]

vol3 . (4.43)

Finally, the topological term takes the simple form

L(3)
top = χ2 (H1 ∧G2 −G1 ∧H2)− (cosαC1 + sinαB1) ∧ F2 . (4.44)

When U = V = φi = χi = c = b = A1 = B1 = C1 = 0, the above scalar potential

has a critical point corresponding to either the D1-D5 near-horizon, its S-dual, or a one

parameter interpolating vacuum. We have chosen the integration constants so that an

SL(2,R) transformation, parametrised by the constant α,
(

C2

B2

)

→
(

cosα − sinα

sinα cosα

)(

C2

B2

)

(4.45)

takes one from the vacuum supported by a RR three-form flux (α = 0) to the vacuum

supported by a NS three-form flux (α = π
2 ). In each case the AdS3 radius is unity. It is

known more generally that the effect of an SL(2,R) transformation is simply to rotate the

Killing spinors [94],13 so supersymmetry is unaffected.

13In this immediate context, see [65].
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Ten-dimensional picture. As we have reached our three-dimensional theory through

the result of two steps, a reduction on a Calabi-Yau two-fold [93] and a further reduc-

tion generalising the recent work of [38], here we wish to pause to consider the higher-

dimensional picture. We would also like to recast the KK reduction Ansatz in terms of

the generic form of wrapped D3-branes. Specialising to CY2 = T 2 × T 2, we can perform

two T-dualities along the second T 2 leading to the following NS sector with the metric in

string frame:

ds210 = e
1

2
(φ1+φ2)

[

e−4U−2V ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dz + P +A1)

2

]

(4.46)

+ e
1

2
(φ1−φ2)ds2

(

T 2
1

)

+ e−
1

2
(φ1−φ2)ds2

(

T 2
2

)

,

H3 = [2 sinαJ3 +H2] ∧
1

2
(dz + P +A1) +H1 ∧ J3 + he−6U−3V vol3, (4.47)

φ̃ =
1

2
(φ1 + φ2) , (4.48)

where φ̃ is the new ten-dimensional dilaton. Note that the three-form fluxH3 is not affected

by the T-duality. The accompanying RR fluxes then take the form

F5 =
[

G0J2 ∧ J3 + geφ1−φ2+2U+V J1 ∧ J3
]

∧ 1

2
(dz + P +A1) + eφ1−φ2+4U ∗G2 ∧ J1 ∧ J3

+G1 ∧ J2 ∧ J3 +
[

G2 ∧ J2 − eφ1−φ2−4U ∗G1 ∧ J1
]

∧ 1

2
(dz + P +A1)

+G0e
φ1−φ2−8U−4V vol3 ∧J1 + ge−6U−3V vol3 ∧J2 ,

F3 = dχ1 ∧ J2 − dχ2 ∧ J1 , (4.49)

where J1=vol(T 2
1 ), J2=vol(T 2

2 ) and, as before, J3=
1
4 vol(S

2) and there is no axion, F1=0.

Further truncations. Even if we dualise the gauge fields in the action (4.42), since we

have an odd number of scalars and N = 2 supergravity in three dimensions has a Kähler

scalar manifold, one will need to truncate out some fields to find a gauged supergravity

description. In this subsection we consider some further truncations and make contact with

the work of [38] in the process.

Setting α = χi = c = A1 = C1 = 0, φ1 = φ2 = φ, U = −V , and finally employing the

following identification

B1 = Â (4.50)

one can check that our action can be brought to the form of (4.7) of [38]:

L(3) = R vol3+
(

4e−4U − 2e−8U
)

vol3−dφ ∧ ∗dφ− 4dU ∧ ∗dU

− 1

2
e−2φ−4UH1 ∧ ∗H1 −

1

2
e−2φ+4UH2 ∧ ∗H2 . (4.51)

Note we have set ℓ = 1 for simplicity, but this can be reinstated if one rescales the radius of

the Hopf-fibre S3 correctly. We have also retained the scalar field b, which one is required

to set to zero to make direct connection with [38].
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The reduction of [38], where the six-dimensional space-time is supported solely by RR

flux, involves setting φ1=−φ2=φ, χi=b=α=B1=0. Making the further identifications

C1 = −Â , A1 = 2A , (4.52)

one arrives at

L(3) = R vol3−dφ ∧ ∗dφ− 6dU ∧ ∗dU − 4dU ∧ ∗dV − 2dV ∧ ∗dV

− 1

2
e2φ−4U

(

dc+2
(

Â−A
))

∧∗
(

dc+2
(

Â−A
))

− 1

2
e2φ+4U F̂∧∗F̂− 1

2
e4U+4V F∧∗F

+
[

8e−6U−2V − 2e−8U − 2e−2φ−8U−4V − 2e2φ−8U−4V
]

vol3+2Â ∧ F . (4.53)

Once one sets c = 0 one can again confirm this is the same action as (4.17) of [38]. A

further truncation of action (φ = 0 = A,U = −V ) permits warped black string solutions,

the holographic interpretation of which was considered in [95].14

An obvious truncation not discussed in [38] is the truncation to just the NS sector. In

some sense this may be regarded as the S-dual of the truncation we have just discussed.

We can do this by setting α = π
2 , χi = c = C1 = 0 and φ1 = φ2 = φ̃. The resulting action is

L(3) = R vol3−dφ̃ ∧ ∗dφ̃− 6dU ∧ ∗dU − 4dU ∧ ∗dV − 2dV ∧ ∗dV

− 1

2
e−2φ̃−4UH1 ∧ ∗H1 −

1

2
e−2φ̃+4UH2 ∧ ∗H2 −

1

8
e4U+4V F2 ∧ ∗F2

+
[

8e−6U−2V − 2e−8U − 2e−2φ−8U−4V − 2e2φ−8U−4V
]

vol3−B1 ∧ F2 . (4.54)

Up to a rewriting, b = c, A1 = 2A,B1 = −Â, φ̃ = −φ, this action is identical to (4.53).

Rewriting the supergravity. Here we identify the underlying gauged supergravities.

As a warm-up we consider the action (4.51), but make a conversion from the three-

dimensional Yang-Mills (YM) Lagrangian to a Chern-Simons Lagrangian following gen-

eral prescriptions given in [9] (see also [10, 96]). This procedure replaces every YM gauge

field with two gauge fields and a new scalar field. This allows us to trade the following

Yang-Mills term in the action

L(3)
YM = −1

2
e−2φ+4UH2 ∧ ∗H2 (4.55)

with the terms

L(3)
CS = −1

2
e2φ−4UDφ̃ ∧ ∗Dφ̃+H2 ∧ B̃1 , (4.56)

where Dφ̃ = dφ̃− B̃1 and we now have two gauge fields B1, B̃1 and an additional scalar φ̃.

Varying with respect to B̃1 we get

H2 + e2φ−4U ∗Dφ̃ = 0 , (4.57)

which, on choosing the gauge φ̃ = 0, we can integrate out B̃1 to recover the original

Lagrangian. The equation of motion following from varying B1 now reads

dB̃1 + 2e−2φ−4U ∗H1 = 0 , (4.58)

14It is easier to start with the action in [95] and use the EOM for Â to find the form for the action above.

– 25 –



J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

which can be shown to be equivalent to that of the original Lagrangian once one im-

poses (4.57). The equation of motion for φ̃ is trivially satisfied through (4.57).

With these changes, the scalar kinetic term of the full Lagrangian (4.51) is given by

L(3)
kin = −dφ ∧ ∗dφ− 4dU ∧ ∗dU − 1

2
e−2φ−4UH1 ∧ ∗H1 −

1

2
e2φ−4UDφ̃ ∧ ∗Dφ̃ (4.59)

where as before H1 = db− 2B1. We redefine all of the scalars through

Y1 = φ̃, Y2 = b, W1 = φ− 2U, W2 = −φ− 2U, (4.60)

so that the scalar kinetic term becomes

L(3)
kin = −1

2

2
∑

i=1

[

dWi ∧ ∗dWi + e2WiDYi ∧ ∗DYi
]

. (4.61)

The corresponding scalar manifold is clearly [SU(1, 1)/U(1)]2 and the Kähler potential is

K = −∑i log(ℜzi), where zi = e−Wi + iYi. In terms of Wi, the scalar potential becomes

L(3)
pot =

[

4eW1+W2 − 2e2(W1+W2)
]

vol3 . (4.62)

The corresponding T tensor is found to be

T =
1

2

(

eW1 + eW2 − eW1+W2

)

(4.63)

with only one critical point at W1 =W2 = 0. Here it is not immediately obvious that this

is the only option. Recall that for N = 2 gauged supergravity, when the R symmetry is

gauged, no holomorphic superpotential can appear [9]. Now when the R symmetry is not

gauged, as is the case here, one can consider replacing the T tensor with the free energy

F = −T ± eK/2W . However, since eK = eW1+W2 , we can see that a problem arises with W

being holomorphic, so this does not appear to be an option.

We now move onto the second action that results from truncating out all the NS three-

form flux fields. Referring to (4.46), (4.49), this means that we set α = b = B1 = χi = 0.

With this simplification, one further observes that it is consistent to set φ1 = −φ2 = φ.

This is simply (4.53) with the scalar c reinstated and A1 and C1 rewritten accordingly,

A1 = 2A, C1 = −Â.
We can now diagonalise the scalars by redefining them

W1 = −φ− 2U, W2 = φ− 2U, W3 = −2U − 2V , (4.64)

leading to canonically normalised kinetic terms:

L(3)
kin = −1

2

3
∑

i=1

[

dWi ∧ ∗dWi + e2WiDYi ∧ ∗DYi
]

. (4.65)

In the process we have redefined Y2 = c so that DY2 = dY2 + 2(Â − A) and in addition

dualised the one-form potentials, A, Â so that

F̂ = e−2φ−4U ∗DY1, DY1 = dY1 +B1,

F = e−4U−4V ∗DY3, DY3 = dY3 +B3. (4.66)
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As should be customary at this stage, we have to add a corresponding CS term so the new

topological term is

L(3)
top = 2Â ∧ F +B1 ∧ F̂ +B3 ∧ F . (4.67)

Introducing complex coordinates in the usual fashion, zi = e−Wi + iYi, i = 1, 2, 3, the

Kähler potential for the scalar manifold is K = −∑i log(ℜzi).
In terms of our new scalars Wi, the potential takes a simple form and is symmetric in

all the scalars Wi:

L(3)
pot = 2

[

4eW1+W2+W3 − e2(W1+W3) − e2(W1+W2) − e2(W2+W3)
]

vol3 . (4.68)

A suitable choice for the corresponding T tensor is

T = −eW2 +
1

2

(

eW1+W2 − eW1+W3 + eW2+W3

)

, (4.69)

though symmetry dictates that there are other choices and we can sendW1 →W2 →W3 →
W1 to uncover the other options. Regardless of how we choose T , the critical point is located

atWi = 0. Since the R symmetry is gauged, we do not expect a holomorphic superpotential.

5 Null-warped AdS3 solutions

Recently, it has been noted that null-warped AdS3 solutions, or equivalently geometries

exhibiting Schrödinger symmetry with z = 2, can be found in three-dimensional theories

that arise as consistent reductions based on the D1-D5 (or its S-dual) near-horizon geome-

tries of type IIB supergravity [38]. In section 4.2, we identified the relevant theories in

the gauged supergravity literature and here we will discuss some of the solutions. Prior

to [38], it was noted that non-relativistic geometries with dynamical exponent z = 4 could

be found in an N = 2 gauged supergravity that is the consistent KK reduction of eleven-

dimensional supergravity on S2 × CY3 [11].15 We will now address a natural question by

scanning the other gauged supergravities we have identified for non-relativistic solutions

with dynamical exponent z.

Before doing so, we recall some facts about Schrödinger solutions in three dimensions.

Starting from an AdS3 vacuum, solutions with dynamical exponent z arise as solutions to

Chern-Simons theories where the relevant equation is

d ∗3 F +
κ

ℓ
F = 0 , (5.1)

with F = dA and ℓ denotes the AdS3 radius. Taking the derivative of (5.1), we see that κ

must be a constant. Adopting the usual form of the space-time Ansatz

ds2 = ℓ2
(

−λ2rzdu2 + 2rdudv +
dr2

4r2

)

, (5.2)

the Einstein equation, through the components of the Ricci tensor:16

R+− = − 2

ℓ2
, R++ =

λ2

ℓ2
2z (z − 1) rz−1, R−− = 0 , (5.3)

15These were mistakenly labelled null-warped AdS3, but this label should be reserved solely for the z = 2

case in the literature.
16We have used the dreibein e+ = ℓ r

1

2 du, e− = ℓ r
1

2

(

dv − 1

2
λ2rz−1du

)

, er = ℓ dr
2r
.
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determines the constant κ in terms of the dynamical exponent, κ = z. Observe here that

λ is an arbitrary constant that can either be set to unity through rescaling the metric, or

when set to zero, one recovers the unwarped AdS3 vacuum.

Now the task of searching for new solutions becomes a very accessible goal; one simply

has to identify ℓ and compare the equations of motion of the theory with (5.1) to extract

κ and thus z. For the gauged supergravity discussed in section 3, namely the theory given

by the action (3.6), the AdS3 radius is

ℓ =
1

2T
= −2a1a2a3

Θ
, (5.4)

which in general depends on the parameters ai. For simplicity, we confine our search to

the case where Gi = G, i.e. they are all equal. After changing frame to Einstein frame,

consistency of the three equations (C.5) then places constraints on ai:

{a1 = a2 = a3} ,
{

a1 = a2 =
2

7
a3

}

,

{

a1 = a3 =
2

7
a2

}

,

{

a2 = a3 =
2

7
a1

}

. (5.5)

Combining these with the condition for a supersymmetric vacuum (2.14), one reaches the

conclusion that good AdS3 solutions exist only for Σg = H2.17 The two independent

choices we find are

(a1, a2, a3) =

(

1

3
,
1

3
,
1

3

)

, (a1, a2, a3) =

(

7

11
,
2

11
,
2

11

)

, (5.6)

where one is free to consider various cyclic permutations of the latter. The first choice leads

to the non-integral value z = 4
3 with ℓ = 2

9 . The second choice does produce an integer,

namely z = 18 with ℓ = 8
11 . Thus, within the limited scope of our search, we do not find

any null-warped AdS3 (z = 2) solutions here.

Moving on, we can turn to the gauged supergravity corresponding to twisted com-

pactifications of N = 1 SCFTs, namely (4.16). A particular case of this we have already

covered above. Referring the reader to equations (E.1) and (E.6), if one truncates consis-

tently to just K1,K2 and F2, and regardless of how one further truncates to an equation

bearing resemblance to (5.1), one finds the dynamical exponent z = 4
3 . This should not

come as a surprise as once one truncates to these fields, the theory should correspond to

five-dimensional U(1)3 theory where one identifies two of the gauge fields and truncates

out a scalar.

However, for the action (4.16), we do have other options. As we are considering a null

space-time, it is consistent to truncate to just the scalar c and one-form C1 with the various

other scalars taking their vacuum values. Obviously, this is not a consistent truncation in

general, but since we assume G2 ∧ ∗G2 = G1 ∧ ∗G1 = M1 ∧ ∗M1 = 0 in this case, we do

not have to worry about the consistency of equations such as (E.5), (E.7) and (E.8). Note

that M1 is not independent and is related to G1, M1 = ǫ
2G1. This in turn means that, in

addition to the Einstein equation, we only have two flux equations

d ∗G1 = 0, d ∗G2 −
9

ℓ
∗G1 = 0 , (5.7)

17One can compare the values of ai against figure 1 of [15].
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where we have used ℓ = 2
9 and e2C = 1

3 . If we further truncate to set ∗G1 = −2
9G2, then we

can find null-warped AdS3 solutions with z = 2. This allows us to determine c which can

be set consistently to zero. In the notation of section 4.1, the solution may be expressed as

ds2 = ℓ2
(

−rzdu2 + 2rdudv +
dr2

4r2

)

,

C1 =
2

3
ℓ r du , (5.8)

where we have rescaled C1 so that λ = 1.

We can also consider deformations for AdS3 supported by the scalar b and one-form

B1. This involves consistently truncating the action (4.16) to N1, H1 and H2 and since this

may be regarded as the S-dual of the truncation presented immediately above, we recover

the same solution.

For some sense of completeness, we also touch upon the existence of solutions for the

theory arising from a dimensional reduction on S2 × T 4 from ten dimensions presented

in section 4.2. Schrödinger solutions based on the D1-D5 near-horizon, or its S-dual F1-

NS5, have already been the focus of considerable attention in the literature. Not only

have solutions been constructed directly in ten dimensions [55], but examples in the three-

dimensional setting have also been identified in [38]. Though not mentioned in [38], an

S-duality transformation is all that is required to generate an example supported purely

by the NS sector provided one starts with the RR supported two-parameter family of [38].

Rather than take this path, we will work directly with our reduced theory and employ an

appropriate Ansatz. We will also make use of a further truncation.

Starting from the action in section 4.2, we take α = π
2 and truncate out various fields

U = V = φi = χi = a = c = C1 = 0. This corresponds to setting the scalars to their AdS3
vacuum (ℓ = 1) values and the choice of α is appropriate for a vacuum supported solely

by NS flux. Further truncating out A1 leads to the condition ∗H1 = H2, leading to the

equations of motion:

d ∗H2 = −2H2 ,

Rµν = −2gµν +H2µρH
ρ

2ν , (5.9)

where we have used the fact that B1 is null. Note that the CS equation is now in the

accustomed form (5.1), so we can be confident we have a null-warped solution. It is then

a straightforward exercise to provide the explicit form of the solution that satisfies these

equations of motion:

ds2 = −rzdu2 + 2rdudv +
dr2

4r2
,

B1 = r du . (5.10)

It would be interesting to see if any solutions can be generated through applying

TsT [25] transformations, such as those considered in [97].

– 29 –



J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

6 Outlook

Our primary motivation for this work stems from [16] where five-dimensional U(1)3 gauged

supergravity was dimensionally reduced on a Riemann surface and the lower-dimensional

theory re-expressed in terms of the language of three-dimensional gauged supergravity [9].

As explained in section 3, the T tensor presents a natural supergravity counterpart to the

quadratic trial function for the central charge presented in [14, 15] and it is a striking feature

that the T tensor, through the embedding tensor, knows about the exact R symmetry.

Without recourse to the higher-dimensional solution, this provides a natural way to identify

the exact central charge and R symmetry directly in three dimensions.

Since any solution to this particular three-dimensional gauged supergravity uplifts to

the U(1)3 theory in five dimensions, which is itself a reduction of type IIB supergravity [75],

we have also taken the opportunity to step back and address consistent KK reductions to

three dimensions for wrapped D3-brane geometries. As reviewed in section 2, the origin of

supersymmetric AdS3 geometries in type IIB can be traced to D3-branes wrapping Kähler

two-cycles in Calabi-Yau manifolds, with CFTs of interest to c-extremization, namely those

with N = (0, 2) supersymmetry, resulting when a two-cycle in a Calabi-Yau four-fold is

wrapped. All AdS3 solutions of this form fall into the general classification of supersym-

metric geometries presented in [20] and at the heart of each supersymmetric geometry is a

six-dimensional Kähler manifold M6, satisfying the differential condition (1.1).

Not only does this condition appear in the flux equations of motion, but the Einstein

equation is satisfied through imposing this condition. This makes the task of finding a fully

generic KK reduction, in contrast to the case studied in section 3, where one assumes the

presence of a Riemann surface, an inviting problem. It is expected that one can gauge the

U(1) R symmetry and reduce to three dimensions in line with the conjecture of [72] that

gaugings of R symmetry groups always lead to consistent reductions to lower-dimensional

gauged supergravities. What is not clear at this moment is whether a truly “generic”

reduction - one working at the level of the supersymmetry conditions - on M6 exists, thus

mimicking general reductions to five dimensions discovered in [71, 72], or whether one needs

to specify more structure for the M6. An added subtlety here is that since the reduced

theory is expected to fit into N = 2 gauged supergravity, it is not enough simply to retain a

gauge field coming from an R symmetry gauging and an extra degree of freedom is required.

Naturally enough, what we have discussed here just pertains to D3-branes and AdS3
vacua also arise in eleven-dimensional supergravity arising from wrapped M5-branes. It is

then fitting to consider KK reductions from eleven dimensions to three-dimensional gauged

supergravity. While supersymmetric AdS3 solutions can be found by considering twists of

seven-dimensional supergravity [15, 98, 99], more general solutions are expected to fit into

the general classification of supersymmetric solutions presented in [59, 60]. A particular

case discussed in [15], namely seven-dimensional supergravity reduced on H2×H2, we have

already considered18 and we will report on M5-brane analogues in future work [100].

In addition to the c-extremization angle, another thread to our story concerns the

search for null-warped AdS3 or Schrödinger (z = 2) solutions. While it is likely that we

18It corresponds to N = 2 supergravity with Kähler manifold [SU(1, 1)/U(1)]4.
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have recovered some known solutions, and found solutions with more general z, we believe

that the solutions based on H2 × KE4 internal geometries are new. What remains is to

check whether they preserve supersymmetry, and indeed the identification of the Killing

spinor equations for the reduced theories in sections 4.1 and 4.2 needs to be considered

if one is to discuss supersymmetric solutions. The reduction in section 3 aside, we have

simply focused on the bosonic sector and the equations of motion. It may also be interesting

to study families of Schrödinger solutions interpolating between the D1-D5 vacuum and

F1-NS5 vacuum directly in three dimensions. This would presumably overlap with the

higher-dimensional examples presented in [55]. It is expected that some supersymmetry

is preserved.

Combining the principle of c-extremization [14, 15], which can be understood in terms

of three-dimensional supergravity [16], and the fact that null-warped AdS3 solutions clearly

exist, it is worth considering if c-extremization can be extended to warped AdS3. The most

immediate setting to address this question is the theory of section 3, however, as we have

seen, the simplest solutions appear to preclude solutions with z = 2. A more thorough

search for null-warped solutions is warranted. If they do not exist, one can imagine starting

from a more involved theory in five dimensions that includes the U(1)3 gauged supergravity.

Evidently, the more involved reductions based on H2 ×KE4 and S2 × T 4 allow solutions,

so it can be expected that this question can be addressed in future work.

It would equally be interesting to look for a holographic analogue of c-extremization in

two dimensions.19 Starting from eleven dimensions, one can reduce to four dimensions [75]

retaining the Cartan subgroup U(1)4 of the R symmetry group. Relevant solutions are

already known [70, 78], and the two-dimensional theory one gets from twisted compactifi-

cations on Riemann surfaces are likely to be in the literature, for example [101], and may

be related to BFSS matrix quantum mechanics [102]. At a quick glance, it looks like we

have some of the jigsaw pieces in place.

One of the potentially interesting avenues for future study is to explore the connection

between supersymmetric black holes in five dimensions and null-warped AdS3 space-times.

For non-relativistic geometries with z = 4, it was noted in [11] that these geometries

naturally appear when one considers a general class of five-dimensional supersymmetric

black holes and strings and then reduces on an S2. The corresponding picture for the

known null-warped solutions can also be worked out. It would be interesting to extend

recent studies of the classical motion of strings in warped AdS3 backgrounds [103] to

higher-dimensional black holes.

Finally, we are aware of string theory embeddings of holographic superconductors in

four and five dimensions [88–90], where an important element in the construction is the

presence of charged scalars that couple to the complex form of the internal Kähler-Einstein

manifold. To date, there is no example of an embedding of the bottom-up model considered

in [104], though strong similarities between the supersymmetric geometries here and Sasaki-

Einstein manifolds suggest that this may be a good place to look. So far we have been

unable to find a consistent reduction based on M6 = S2×T 4 or M6 = H2×KE4, but one

could hope to address the problem perturbatively. Such an approach was adopted in [105].

19We are grateful to N. Halmagyi for suggesting this possibility.

– 31 –



J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

Acknowledgments

We would like to thank P. Szepietowski for sharing his interest in generic reductions at an

initial stage of this project. We are grateful to N. Bobev, J. P. Gauntlett, N. Halmagyi,

J. Jeong, H. Lu and Y. Nakayama for correspondence on related topics. We have also en-

joyed further discussions with M. Guica, E. Sezgin and O. Varela. E Ó C wishes to thank
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A Type IIB supergravity conventions

Our conventions for type IIB supergravity follow those of [82], which for completeness, we

reproduce here. Restricting ourselves to the bosonic sector of type IIB supergravity, the

field content consists of RR n-forms F(n), n = 1, 3, 5, the NS form H(3), the dilaton Φ and

the metric. The forms satisfy the Bianchi identities

dF(5) + F(3) ∧H(3) = 0 , (A.1)

dF(3) + F(1) ∧H(3) = 0 , (A.2)

dF(1) = 0 , (A.3)

dH(3) = 0 , (A.4)

which can be satisfied through the introduction of potentials C(n−1), B(2). In terms of these

potentials, the forms are F(5) = dC(4) − C(2) ∧H(3), F(3) = dC(2) − C(0)H(3), F(1) = dC(0),

H(3) = dB(2). In addition to the self-duality condition on the five-form, ∗F(5) = F(5), the

equations of motion take the form:

d
(

eΦ ∗ F(3)

)

− F(5) ∧H(3) = 0 , (A.5)

d
(

e2Φ ∗ F(1)

)

+ eΦH(3) ∧ ∗F(3) = 0 , (A.6)

d
(

e−Φ ∗H(3)

)

− eΦF(1) ∧ ∗F(3) − F(3) ∧ F(5) = 0 , (A.7)

d ∗ dΦ− e2ΦF(1) ∧ ∗F(1) +
1

2
e−ΦH(3) ∧ ∗H(3) −

1

2
eΦF(3) ∧ ∗F(3) = 0 , (A.8)

RMN =
1

2
∂MC(0)∂NC(0) +

1

2
∂MΦ∂NΦ+

1

96
FMPQRSF

PQRS
N

1

4
e−Φ

(

H PQ
M HNPQ − 1

12
gMNH

PQRHPQR

)

,

1

4
eΦ
(

F PQ
M FNPQ − 1

12
gMNF

PQRFPQR

)

. (A.9)
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B Connection between [11] and [38]

In this section we will discuss the connection between two dimensional reductions from

higher-dimensional supergravities to three-dimensional theories that have appeared in the

literature. Both theories admit supersymmetric Schrödinger solutions, however, for those

based on the D1-D5 near-horizon [38] the dynamical exponent z = 2 appears, while the

dynamical exponent quoted in [11] is z = 4.

Recall that these theories support AdS3 vacua whose higher-dimensional manifesta-

tions are AdS3 × S3 × CY2 geometries of type IIB supergravity and AdS3 × S2 × CY3
geometries of eleven-dimensional supergravity, respectively. Specialising to the case where

the Calabi-Yau three-fold is a direct product involving a torus T 2, CY3 = CY2×T 2, it is a

well-known fact that the geometries are related via dimensional reduction and T-duality.

This raises a question about the difference in the quoted dynamical exponents. Here we

address that issue and show that a sub-truncation of [38] and [11] is common and that

amongst the z = 2 solutions presented in [38], one can also find a z = 4 solution.

We start by considering the KK reduction Ansatz from eleven-dimensions. The solution

appearing in [11] has a higher-dimensional manifestation of the form

ds211 = e−4Wds23 + e2Wds2
(

S2
)

+ ds2 (CY2) + dx25 + dx26 ,

G4 =
(

α vol(S2) +H2

)

∧ (JCY2 + dx5 ∧ dx6) , (B.1)

where we have consistently truncated out the fields f, V,B1 leaving just a scalar W and

one-form potential B2, where H2 = dB2. Here (x5, x6) label coordinates on the T 2 and

α is a constant. Plugging this Ansatz into the equations of motion of eleven-dimensional

supergravity one finds [11]

d
(

e4W ∗3 H2

)

= −2αH2 , (B.2)

d ∗3 dW =
1

2
eWH2 ∧ ∗3H2 +

(

e−6W − α2e−8W
)

vol3 , (B.3)

and the Einstein equation which we omit.

Dimensional reduction on x6 and T-duality on x5 leads to the following IIB KK re-

duction Ansatz

ds210 = e−4Wds23 + e2Wds2
(

S2
)

+ ds2 (CY2) + (dx5 − α cos θdφ+B2)
2 , (B.4)

F5 = (1 + ∗10)
[

α vol
(

S2
)

∧ JCY2 + JCY2 ∧H2

]

∧ (dx5 − α cos θdφ+B2) ,

where (θ, φ) parametrise the two-sphere S2 and all other fields, including the dilaton

are zero.

At this point it is easier to compare with the ten-dimensional uplift [93] of the six-

dimensional Ansatz considered in [38] to get our bearings. After rescaling the metric to

make the transition to string frame, the ten-dimensional space-time may be written as

ds210 = e
φ1
2
+

φ2
2 ds26 + e

φ1
2
−φ2

2 ds2 (CY2) ,

ds26 = e−4U−2V ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dψ + cos θdφ+ 2A)2 , (B.5)
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where we have set the length-scale ℓ corresponding to the AdS3 radius to unity for sim-

plicity. To compare the metrics we note that we require the following identifications:

φ = φ1 = φ2 = −2V, eW =
1

2
eU , 2x5 = ψ, α = −1

2
, B2 = A. (B.6)

While this places us in the class of consistent reductions in section 4.2 of [38], the added

condition that the dilaton φ is zero tells us that the scalars φ, V appearing in equations

(B.25) and (B.29) of [38] are zero. These equations together then tell us that the two gauge

fields appearing in [38] should be identified A = ±Â. For CY2 = T 4, the RR-sector is then

simply related via T-duality.

The choice A = Â immediately leads to the condition F 2 = 0 through (B.25), however

there is another option. We can choose A = −Â with the further relation

A =
1

4
e4U ∗3 F . (B.7)

With this relation one can then satisfy oneself that (B.27) and the U equation from (B.29)

of [38] can be identified with (B.2) and (B.3) above, meaning that this particular sub-

truncation of both reductions is the same.

Indeed, since the higher-dimensional AdS3 solutions can be related via dimensional

reduction and T-duality, it is expected that the KK reductions are also related at some level.

C Details of reduction of D = 5 U(1)3 gauged supergravity

Here we begin by recording the five-dimensional equations of motion one gets from varying

the action (3.1). The equations of motion for the gauge fields Ai, i = 1, 2, 3, are

d
(

X−2
1 ∗ F 1

)

= F 2 ∧ F 3,

d
(

X−2
2 ∗ F 2

)

= F 1 ∧ F 3,

d
(

X−2
3 ∗ F 3

)

= F 1 ∧ F 2, (C.1)

and those of the scalars are given by

d ∗ dϕ1 =
1√
6

(

X−2
1 F 1 ∧ ∗F 1 +X−2

2 F 2 ∧ ∗F 2 − 2X−2
3 F 3 ∧ ∗F 3

)

− g2
4√
6

(

X−1
1 +X−1

2 − 2X−1
3

)

vol5 , (C.2)

d ∗ dϕ2 =
1√
2

(

X−2
1 F 1 ∧ ∗F 1 −X−2

2 F 2 ∧ ∗F 2
)

− g22
√
2
(

X−1
1 −X−1

2

)

vol5 .

Finally, the Einstein equation reads

Rµν =
1

2

2
∑

i=1

∂µϕi∂νϕi +
1

2

3
∑

i=1

X−2
i

(

F iµρF
i ρ
ν − 1

6
gµνF

i
ρσF

i ρσ

)

− gµν
4

3
g2

3
∑

i=1

X−1
i . (C.3)
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The reduction at the level of the equations of motion is most simply performed be first

reducing on the internal space, in this case a Riemann surface Σg, and then rescaling the

external space-time to go to Einstein frame. Thus, here we consider the initial Ansatz for

the five-dimensional space-time

ds25 = ds23 + e2Cds2 (Σg) , (C.4)

where C is a scalar warp factor depending on the coordinates of the three-dimensional

space-time.

To reduce the gauge field strengths we consider the Ansatz (3.4). The equations of

motion for the gauge fields now reduce as

d
(

X−2
1 e2C ∗3 G1

)

= −
(

a3G
2 + a2G

3
)

,

d
(

X−2
2 e2C ∗3 G2

)

= −
(

a3G
1 + a1G

3
)

,

d
(

X−2
3 e2C ∗3 G3

)

= −
(

a1G
2 + a2G

1
)

. (C.5)

From the scalar equations of motion, we find

d
(

e2C ∗3 dϕ1

)

=
1√
6
e2C
[

X−2
1

(

G1 ∧ ∗3G1 + a21e
−4C vol3

)

+X−2
2

(

G2 ∧ ∗3G2

+ a22e
−4C vol3

)

−2X−2
3

(

G3 ∧ ∗3G3 + a23e
−4C vol3

)

]

− g2
4√
6
e2C

(

X−1
1 +X−1

2 − 2X−1
3

)

vol3,

d
(

e2C ∗3 dϕ2

)

=
1√
2
e2C
[

X−2
1

(

G1 ∧ ∗3G1 + a21e
−4C vol3

)

−X−2
2

(

G2 ∧ ∗3G2

+ a22e
−4C vol3

)]

− 2
√
2g2e2C

(

X−1
1 −X−1

2

)

vol3 . (C.6)

The Einstein equation along the Riemann surface presents us with another scalar

equation of motion, this time for C:

−∇µ∇µC − 2∂µA∂
µC + e−2Cκ =

1

2

3
∑

i=1

X−2
i

(

2

3
a2i e

−4C − 1

6
GiρσG

i ρσ

)

− 4

3
g2

3
∑

i=1

X−1
i ,

(C.7)

where κ is the curvature of the Riemann surface.

Finally, the Einstein equation in three dimensions may be written as

Rµν = 2 (∇ν∇µC + ∂µC∂νC) +
2
∑

i=1

∂µϕi∂νϕi +
1

2

3
∑

i=1

X−2
i

(

GiµρG
i ρ
ν − 1

6
gµνG

i
ρσG

i ρσ

)

− 1

6
gµν

3
∑

i=1

(

a2i e
−4CX−2

i + 8g2X−1
i

)

. (C.8)
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The above equations can be shown to result from varying the action

L(3) = e2C

[

R ∗3 1+ 2dC ∧ ∗3dC − 1

2

2
∑

i=1

dϕi ∧ ∗3dϕi −
1

2

3
∑

i=1

X−2
i Gi ∧ ∗3Gi

]

+

(

3
∑

i=1

[

4g2e2CX−1
i − 1

2
e−2Ca2iX

−2
i

]

+ 2κ

)

∗3 1+ L(3)
top , (C.9)

where the topological term is

L(3)
top = a1B

2 ∧G3 + a2B
3 ∧G1 + a3B

1 ∧G2 . (C.10)

Here Bi is the one-form potential for Gi, Gi = dBi.

Now, to go to Einstein frame we just need to do a conformal transformation, gµν =

e−4C ĝµν . This leads to the Einstein frame action (3.6) quoted in the text.

In checking the Einstein equation we have made use of the following Ricci tensor

components

Rµν = R̄µν − 2 (∇ν∇µC + ∂νC∂µC) ,

Rmn =
[

κe−2C −∇µ∇µC − 2∂µC∂
µC
]

δmn , (C.11)

where µ, ν label space-time directions and m,n correspond to directions on the

Riemann surface.

C.1 Killing spinor equations

We would like to confirm that the T tensor (3.16) can be extracted directly from the

Killing spinor equations via reduction. In a related context, a similar calculation appeared

in [19] and in that context assisted the identification of a five-dimensional prepotential.

Our motivation here is the same.

We adopt the conventions for the Killing spinor equations in D = 5 from (F.1) of [15]

(see also [66]), and in some sense, up to some additional fields, the calculation here is

almost identical to appendix F of [15]. We work with the natural vielbein

eµ = e−2C ēµ, ea = eC ēa , (C.12)

where µ = 0, 1, 2 label three-dimensional space-time directions and a = 3, 4 denote direc-

tions along the Riemann surface. Our Ansatz for the flux follows from (3.4).

For the Killing spinor we make the choice

ǫ = eβCξ ⊗ η , (C.13)

where β is a constant we will fix later. We use the following decomposition of the five-

dimensional gamma matrices

γµ = ρµ ⊗ σ3, γ3 = 1⊗ σ1, γ4 = 1⊗ σ2. (C.14)

As in [15], where one has γ34ǫ = iǫ, following decomposition, we have σ3η = η.
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Inserting the Ansatz into the Killing spinor equations we arrive at

2δψ3 =

[

γ µ
3 e

2C∂µC +

3
∑

i=1

(

Xiγ3 +
i

3
e−2CaiX

−1
i γ4 +

i

12
e4Cγ µν

3 X−1
i Giµν

)

]

eβCξ ⊗ η ,

(C.15)

√
6δχ(1) =

[

1

8

2
∑

i=1

X−1
i

(

e4CGiµνγ
µν − 2iaie

−2C
)

− 1

4
X−1

3

(

e4CG3
µνγ

µν − 2ia3e
−2C

)

+
i

2
(−X1 −X2 + 2X3)− i

√
6

4
e2C∂µϕ1γ

µ

]

eβCξ ⊗ η , (C.16)

√
2δχ(2) =

[

1

8
X−1

1

(

e4CG1
µνγ

µν − 2ia1e
−2C

)

− 1

8
X−1

2

(

e4CG2
µνγ

µν − 2ia2e
−2C

)

+
i

2
(−X1 +X2)− i

√
2

4
e2C∂µϕ2γ

µ

]

eβCξ ⊗ η . (C.17)

Note, in contrast to [15] where scalars with raised and lowered indices are employed,

here our Xi are simply those in (2.22). As a consistency check, (C.15), (C.16), (C.17) agree

with (3.20) of [15] when Gi = 0 and φi = φi(r), C = g(r).

Taking various linear combinations we can write

4γ3δψ3 +
2

3

√
6iδχ(1) + 2

√
2iδχ(2) = δǫλ

1 ⊗ η ,

4γ3δψ3 +
2

3

√
6iδχ(1) − 2

√
2iδχ(2) = δǫλ

2 ⊗ η ,

4γ3δψ3 −
4

3

√
6iδχ(1) = δǫλ

3 ⊗ η (C.18)

leading to the variations (constant β = −2)

δǫλ
1 =

[

ρµ∂µW1+
i

2
X−1

1 e2CG1
µνρ

µν+e−4C
(

2e2CX1−a2X−1
2 −a3X−1

3

)

]

ξ,

δǫλ
2 =

[

ρµ∂µW2+
i

2
X−1

2 e2CG2
µνρ

µν+e−4C
(

2e2CX2−a1X−1
1 −a3X−1

3

)

]

ξ,

δǫλ
3 =

[

ρµ∂µW3+
i

2
X−3

1 e2CG3
µνρ

µν+e−4C
(

2e2CX3−a1X−1
1 −a2X−1

2

)

]

ξ . (C.19)

Dualising Gi as instructed in the text, the above equations can be condensed into a single

equation

δǫλ
a = 2E a

i

(

ρµDµz
i − 2∂iT

)

, (C.20)

which is the expected form for the Killing spinor equation for the spinor fields [9, 11] and

we see that the T tensor (3.16) features. E a
i , a = 1, 2, 3, is the complex dreibein defined

through gīi = E a
i Eīa, where Eīa = (E a

i )∗.

D Curvature for Kähler-Einstein space-times

Working in Einstein frame, we adopt the following Ansatz for the space-time

ds210 = e2Ads2 (M3) + e2A
1

4
e2W (dz + P +A1)

2 + e−2A
3
∑

a=1

e2Vads2
(

KE
(a)
2

)

, (D.1)
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where A is a constant overall factor, we have dropped the overall scale L appearing in (2.11)

and W , Va, a = 1, 2, 3 denote scalar warp factors. A1 is a one-form living on the three-

dimensional space-time M3.

We adopt the natural orthonormal frame

eµ = eA ēµ, ez = eA+W
1

2
(dz + P +A1) , ei = e−A+Va ēi, (D.2)

where µ = 0, 1, 2 label AdS3 directions and i = 3, . . . , 8 correspond to directions along the

internal Kähler-Einstein spaces.

With constant A, the spin-connection for the metric may be written as

ωµν = ω̄µν −
1

4
e−A+W (F2)

µ
νe
z,

ωij = ω̄ij −
1

4
e3A+W−2Va la(Ja)

i
je
z,

ωµz = −e−A∂µWez − 1

4
e−A+W (F2)

µ
ρe
ρ,

ωiµ = e−A∂µVae
i,

ωiz = −1

4
e3A+W−2Va la(Ja)

i
je
j . (D.3)

Using the above spin-connection one can calculate the Ricci-form

Rµν = e−2A

[

R̄µν−(∇ν∇µW+∂µW∂νW )−
3
∑

a=1

2 (∇ν∇µVa+∂µVa∂νVa)−
1

8
e2WF2µρF

ρ
2 ν

]

,

Rzz =
1

8
e6A+2W

3
∑

a=1

e−4Va l2a − e−2A (∇µ∇µW + ∂µW∂µW )− 2∂µW
3
∑

a=1

e−2A∂µVa

+
1

16
e−2A+2WF2 ρσF

ρσ
2 ,

R11 = R22 = e−2A

[

−∇µ∇µV1−∂µW∂µV1−2∂µV1

3
∑

i=a

∂µVa

]

+l1e
2A−2V1 − 1

8
l21e

4A+2W−4V1 ,

R33 = R44 = e−2A

[

−∇µ∇µV2−∂µW∂µV2−2∂µV2

3
∑

i=a

∂µVa

]

+l2e
2A−2V2 − 1

8
l22e

4A+2W−4V2 ,

R55 = R66 = e−2A

[

−∇µ∇µV3−∂µW∂µV3−2∂µV3

3
∑

a=1

∂µVa

]

+l3e
2A−2V3 − 1

8
l23e

4A+2W−4V3 ,

Rµz = −1

4
e−2W−2(V1+V2+V3)∇ρ

(

e3W+2(V1+V2+V3)F ρ
2 µ

)

, (D.4)

where all other terms are zero.

E Details of reduction on H2 × KE4

In this section we record equations of motion of the dimensionally reduced three-

dimensional theory. This will be useful for testing the consistency of the reduction. We
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begin with the Bianchi identities. The Bianchi identities for the three-form fluxes F(3) and

H(3) are trivially satisfied using the expressions in the text. The Bianchi for F(5) is partially

satisfied, with the remaining equations being:

d
(

e−
4

3
(U+V )+4C ∗K2

)

− 4e−8U ∗K1 + ǫ (K2 − F2)−N1 ∧G1 −H1 ∧M1 = 0,

d
(

e−8U ∗K1

)

+
1

2
N1 ∧G2 −

1

2
H2 ∧M1 = 0 . (E.1)

The equations of motion for F(3) and H(3) give respectively the equations

d
(

e
4

3
(4U+V )+φ−4C ∗M1

)

− 4h vol3+2H2 ∧K1 − 2H1 ∧K2 = 0 ,

d
(

e
4

3
(2U−V )+φ+4C ∗G2

)

− 4e−4U+φ ∗G1 − ǫe
4

3
(4U+V )+φ−4C ∗M1

+ ge
4

3
(4U+V )+φ+8CF2 + 2N1 ∧K1 + 2e−

4

3
(U+V )+4CH1 ∧ ∗K2 = 0 ,

d
(

e−4U+φ ∗G1

)

−N1 ∧K2 + ǫh vol3+e
− 4

3
(U+V )+4CH2 ∧ ∗K2 + 2e−8UH1 ∧ ∗K1 = 0 ,

(E.2)

and

d
(

e
4

3
(4U+V )−φ−4C ∗N1

)

+ 4g vol3−2G2 ∧K1 + 2G1 ∧K2 − e
4

3
(4U+V )+φ−4Cda ∧ ∗M1 = 0,

d
(

e
4

3
(2U−V )−φ+4C ∗H2

)

− 4e−4U−φ ∗H1 − ǫe
4

3
(4U+V )−φ−4C ∗N1 + he

4

3
(4U+V )−φ+8CF2

− 2M1 ∧K1 − 2e−
4

3
(U+V )+4CG1 ∧ ∗K2 − e

4

3
(2U−V )+φ+4Cda ∧ ∗G2 = 0,

d
(

e−4U−φ ∗H1

)

+M1 ∧K2 − ǫg vol3−e−
4

3
(U+V )+4CG2 ∧ ∗K2 − 2e−8UG1 ∧ ∗K1

− e−4U+φda ∧ ∗G1 = 0 . (E.3)

The axion and dilaton equation are respectively

d
(

e2φ ∗ da
)

+e
4

3
(4U+V )+φ−4CN1 ∧ ∗M1−e

4

3
(4U+V )+φ+8Cgh vol3+e

4

3
(2U−V )+φ+4CH2 ∧ ∗G2

2e−4U+φH1 ∧ ∗G1 = 0 , (E.4)

and

d ∗ dφ− e2φda ∧ ∗da+ 1

2
e

4

3
(4U+V )−4C

[

e−φN1 ∧ ∗N1 − eφM1 ∧ ∗M1

]

− 1

2
e

4

3
(4U+V )+8C

[

e−φh2 − eφg2
]

vol3+
1

2
e

4

3
(2U−V )+4C

[

e−φH2 ∧ ∗H2 − eφG2 ∧ ∗G2

]

+ e−4U
[

e−φH1 ∧ ∗H1 − eφG1 ∧ ∗G1

]

= 0 . (E.5)

The equations of motion for A1, U and V are

d
(

e
8

3
(U+V )+4C ∗ F2

)

− 2ǫK2 − 8e−8U ∗K1 + e
4

3
(4U+V )+8C

[

e−φhH2 + eφgG2

]

= 0, (E.6)

d ∗ dU + e−8UK1 ∧ ∗K1 −
1

8
e

4

3
(4U+V )−4C

[

e−φN1 ∧ ∗N1 + eφM1 ∧ ∗M1

]

(E.7)

+
1

8
e

4

3
(4U+V )+8C

[

e−φh2 + eφg2
]

vol3 −
1

8
e

4

3
(2U−V )+4C

[

e−φH2 ∧ ∗H2 + eφG2 ∧ ∗G2

]

+
1

4
e−4U

[

e−φH1 ∧ ∗H1+e
φG1 ∧ ∗G1

]

+e−4C
(

−6e− 2

3
(7U+V )+2e

4

3
(−5U+V )+4e−

8

3
(4U+V )

)

=0,
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d ∗ dV − 1

8
e

4

3
(4U+V )−4C

[

e−φN1 ∧ ∗N1 + eφM1 ∧ ∗M1

]

+
1

8
e

4

3
(4U+V )+8C

[

e−φh2 + eφg2
]

vol3

− 1

2
e

8

3
(U+V )+4CF2 ∧ ∗F2 +

1

2
e−

4

3
(U+V )+4CK2 ∧ ∗K2 − e−8UK1 ∧ ∗K1

− 1

2
ǫ2e

8

3
(U+V )−8C vol3 +

1

2
ǫ2e−

4

3
(U+V )−8C vol3 +

3

8
e

4

3
(2U−V )+4C

[

e−φH2 ∧ ∗H2 + eφG2 ∧ ∗G2

]

− 1

4
e−4U

[

e−φH1 ∧ ∗H1 + eφG1 ∧ ∗G1

]

+ e−4C
(

−4e
4

3
(−5U+V ) + 4e−

8

3
(4U+V )

)

vol3 = 0 . (E.8)

F Details of reduction on S2 × T 4

IIB reduced on CY2. Here we briefly review the KK reduction Ansatz of type IIB on

a Calabi-Yau two-fold that featured in [93]. The KK Ansatz in Einstein frame is

ds210 = e
1

2
φ2ds26 + e−

1

2
φ2ds2 (CY2) ,

F(5) = vol (CY2) ∧ dχ2 + e2φ2 ∗6 dχ2 , (F.1)

and all other fields of type IIB supergravity simply reduce to six dimensions. This Ansatz

thus leads to extra scalars in addition to the axion χ1 and dilaton φ1 of type IIB super-

gravity, one corresponding to a breathing mode φ2, and another axion χ2 coming from the

self-dual five-form flux. The six-dimensional action is

e−1L = R−
2
∑

i=1

1

2
(∂φi)

2 −
2
∑

i=1

1

2
e2φi (∂χi)

2 − 1

12
e−φ1−φ2H2

3

− 1

12
eφ1−φ2F 2

3 − χ2dB2 ∧ dC2, (F.2)

where H3 = dB2 and F3 = dC2 − χ1dB2. Some sign changes relative to [93] follow from

the difference in conventions. The equations of motion are:

d
(

eφ1−φ2 ∗6 F3

)

− dχ2 ∧ dB2 = 0, (F.3)

d
(

e−φ1−φ2 ∗6 H3

)

− eφ1−φ2dχ1 ∧ ∗6F3 + dχ2 ∧ F3 = 0, (F.4)

d
(

e2φ1 ∗6 dχ1

)

+ eφ1−φ2dB2 ∧ ∗6F3 = 0, (F.5)

d
(

e2φ2 ∗6 dχ2

)

− dB2 ∧ dC2 = 0, (F.6)

d ∗6 dφ1 − e2φ1dχ1 ∧ ∗6dχ1 +
1

2
e−φ1−φ2H3 ∧ ∗6H3 −

1

2
eφ1−φ2F3 ∧ ∗F3 = 0, (F.7)

d ∗6 dφ2 − e2φ2dχ2 ∧ ∗6dχ2 +
1

2
e−φ1−φ2H3 ∧ ∗6H3 +

1

2
eφ1−φ2F3 ∧ ∗F3 = 0, (F.8)

Rµν =
1

2

2
∑

i=1

(

∂µφi∂νφi + e2φi∂µχi∂νχi

)

+
1

4
e−φ1−φ2

(

H3µρ1ρ2H
ρ1ρ2

3ν − 1

6
gµνH3ρ1ρ2ρ3H

ρ1ρ2ρ3
3

)

+
1

4
eφ1−φ2

(

F3µρ1ρ2F
ρ1ρ2

3ν − 1

6
gµνF3ρ1ρ2ρ3F

ρ1ρ2ρ3
3

)

. (F.9)
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Reduction to three dimensions. To reduce the above equations of motion to three

dimensions we substitute in our six-dimensional space-time Ansatz

ds26 = ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dz + P +A1) , (F.10)

and expressions for the three-form field strengths (4.37). From (F.3) and (F.4) we get

d
(

eφ1−φ2+2U+V g − 2χ2 sinα
)

= 0, (F.11)

d
(

eφ1−φ2+V−2U ∗G1

)

+ dχ2 ∧H2 = 0, (F.12)

d
(

eφ1−φ2−V+2U ∗G2

)

− 2eφ1−φ2+V−2U ∗G1+
1

2
geφ1−φ2+2U+V F2−dχ2 ∧H1 = 0 , (F.13)

and

d
(

e−φ1−φ2+V+2Uh
)

− eφ1−φ2+V+2Ugdχ1 +G0dχ2 = 0, (F.14)

d
(

e−φ1−φ2+V−2U ∗H1

)

− e−φ1−φ2+V−2Udχ1 ∧ ∗G1 − dχ2 ∧G2 = 0, (F.15)

d
(

e−φ1−φ2−V+2U ∗H2

)

− 2e−φ1−φ2+V−2U ∗H1 +
1

2
he−φ1−φ2+V+2UF2

− eφ1−φ2−V+2Udχ1 ∧ ∗G2 + dχ2 ∧G1 = 0 . (F.16)

We can now solve (F.11) and (F.14) to determine g and h

g = 2e−φ1+φ2−V−2U (cosα+ sinαχ2) , (F.17)

h = 2eφ1+φ2−V−2U [sinα− cosαχ2 + (cosα+ sinαχ2)χ1] . (F.18)

In the process we have chosen the integration constants for convenience.

From (F.5) and (F.6) we get the following two equations:

d
(

e2φ1+2U+V ∗ dχ1

)

+
[

2 sinαG0e
φ1−φ2−2U−V − gheφ1−φ2+2U+V

]

vol3

+ eφ1−φ2+V−2UH1 ∧ ∗G1 + eφ1−φ2−V+2UH2 ∧ ∗G2 = 0 , (F.19)

d
(

e2φ1+2U+V ∗ dχ2

)

+ [hG0 − 2 sinαg] vol3+H1 ∧G2 −G1 ∧H2 = 0 . (F.20)

The final two scalar equations give

d
(

e2U+V ∗ dφ1
)

− e2φ1+2U+V dχ1 ∧ ∗dχ1 +
1

2
e−φ2−2U−V

[

4e−φ1 sin2 α− eφ1G2
0

]

vol3

+
1

2
e−φ2−2U+V

[

e−φ1H1∧∗H1−eφ1G1∧∗G1

]

+
1

2
e−φ2+2U−V

[

e−φ1H2∧∗H2−eφ1G2 ∧ ∗G2

]

− 1

2
e−φ2+2U+V

[

e−φ1h2 − eφ1g2
]

vol3 = 0, (F.21)

d
(

e2U+V ∗ dφ2
)

− e2φ2+2U+V dχ2 ∧ ∗dχ2 +
1

2
e−φ2−2U−V

[

4e−φ1 sin2 α+ eφ1G2
0

]

vol3

+
1

2
e−φ2−2U+V

[

e−φ1H1∧∗H1+e
φ1G1∧∗G1

]

+
1

2
e−φ2+2U−V

[

e−φ1H2∧∗H2+e
φ1G2∧∗G2

]

− 1

2
e−φ2+2U+V

[

e−φ1h2 + eφ1g2
]

vol3 = 0 . (F.22)

– 41 –
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We now only have to work out the Einstein equation. Taking into account a change

in how we define scalars, namely W → V, V1 → U , we can use the Ricci tensor appearing

in (D.4). We simply have to take note of the fact that the S2 is normalised so that l1 = 4,

in which case A = 0.

From the Einstein equation, we get the following equations:

2e2V−4U vol3−d ∗ dV − dV ∧ ∗dV − 2dV ∧ ∗dU +
1

8
e2V F2 ∧ ∗F2 (F.23)

=

[

1

4
e−φ2−2V−4U

(

4e−φ1 sin2 α+ eφ1G2
0

)

+
1

4
e−φ2

(

e−φ1h2 + eφ1g2
)

]

vol3

+
1

4
e−φ2−2V

[

e−φ1H2∧∗H2+e
φ1G2∧∗G2

]

− 1

4
e−φ2−4U

[

e−φ1H1 ∧ ∗H1+e
φ1G1 ∧ ∗G1

]

(

4e−2U − 2e2V−4U
)

vol3−d ∗ dU − dU ∧ ∗dV − 2dU ∧ ∗dU (F.24)

=

[

1

4
e−φ2−2V−4U

(

4e−φ1 sin2 α+ eφ1G2
0

)

+
1

4
e−φ2

(

e−φ1h2 + eφ1g2
)

]

vol3

− 1

4
e−φ2−2V

[

e−φ1H2∧∗H2+e
φ1G2∧∗G2

]

+
1

4
e−φ2−4U

[

e−φ1H1 ∧ ∗H1+e
φ1G1 ∧ ∗G1

]

1

2
e−2U−2V d

(

e3V+2U ∗ F2

)

= 2 sinαe−φ1−φ2−4U−V ∗H1 +G0e
φ1−φ2−4U−V ∗G1

− e−φ1−φ2−V hH2 − eφ1−φ2−V gG2 . (F.25)
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[16] P. Karndumri and E. Ó Colgáin, Supergravity dual of c-extremization,

Phys. Rev. D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE].

[17] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a,

Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[18] Y. Tachikawa, Five-dimensional supergravity dual of a-maximization,

Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [INSPIRE].

[19] P. Szepietowski, Comments on a-maximization from gauged supergravity,

JHEP 12 (2012) 018 [arXiv:1209.3025] [INSPIRE].

[20] N. Kim, AdS3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094

[hep-th/0511029] [INSPIRE].

[21] J.P. Gauntlett and O.A. Mac Conamhna, AdS spacetimes from wrapped D3-branes,

Class. Quant. Grav. 24 (2007) 6267 [arXiv:0707.3105] [INSPIRE].

[22] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2 and Bubble Solutions,

JHEP 04 (2007) 005 [hep-th/0612253] [INSPIRE].

[23] J.P. Gauntlett, O.A. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric

AdS3 solutions, Phys. Rev. D 74 (2006) 106007 [hep-th/0608055] [INSPIRE].

[24] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of

type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].

[25] O. Lunin and J.M. Maldacena, Deforming field theories with U(1)×U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

[26] K. Pilch and N.P. Warner, A new supersymmetric compactification of chiral IIB supergravity,

Phys. Lett. B 487 (2000) 22 [hep-th/0002192] [INSPIRE].

[27] M. Gabella, D. Martelli, A. Passias and J. Sparks, N=2 supersymmetric AdS4 solutions of

M-theory, arXiv:1207.3082 [INSPIRE].

[28] N. Halmagyi, K. Pilch and N.P. Warner, On Supersymmetric Flux Solutions of M-theory,

arXiv:1207.4325 [INSPIRE].

[29] D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS3 Black Holes,

JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].

– 43 –

http://dx.doi.org/10.1016/S0550-3213(03)00569-8
http://arxiv.org/abs/hep-th/0303213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303213
http://dx.doi.org/10.1007/JHEP02(2011)031
http://arxiv.org/abs/1012.2145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2145
http://dx.doi.org/10.1007/JHEP09(2010)028
http://arxiv.org/abs/1006.4997
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4997
http://dx.doi.org/10.1016/S0550-3213(03)00534-0
http://arxiv.org/abs/hep-th/0212323
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212323
http://dx.doi.org/10.1103/PhysRevLett.110.061601
http://arxiv.org/abs/1211.4030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4030
http://dx.doi.org/10.1007/JHEP06(2013)005
http://arxiv.org/abs/1302.4451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4451
http://dx.doi.org/10.1103/PhysRevD.87.101902
http://arxiv.org/abs/1302.6532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6532
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304128
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.010
http://arxiv.org/abs/hep-th/0507057
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507057
http://dx.doi.org/10.1007/JHEP12(2012)018
http://arxiv.org/abs/1209.3025
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3025
http://dx.doi.org/10.1088/1126-6708/2006/01/094
http://arxiv.org/abs/hep-th/0511029
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511029
http://dx.doi.org/10.1088/0264-9381/24/24/009
http://arxiv.org/abs/0707.3105
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.3105
http://dx.doi.org/10.1088/1126-6708/2007/04/005
http://arxiv.org/abs/hep-th/0612253
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612253
http://dx.doi.org/10.1103/PhysRevD.74.106007
http://arxiv.org/abs/hep-th/0608055
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608055
http://dx.doi.org/10.1088/0264-9381/23/14/009
http://arxiv.org/abs/hep-th/0510125
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510125
http://dx.doi.org/10.1088/1126-6708/2005/05/033
http://arxiv.org/abs/hep-th/0502086
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502086
http://dx.doi.org/10.1016/S0370-2693(00)00796-6
http://arxiv.org/abs/hep-th/0002192
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002192
http://arxiv.org/abs/1207.3082
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3082
http://arxiv.org/abs/1207.4325
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4325
http://dx.doi.org/10.1088/1126-6708/2009/03/130
http://arxiv.org/abs/0807.3040
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3040


J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

[30] S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories,

Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].

[31] S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories,

Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406][Annals Phys. 281 (2000) 409]

[INSPIRE].

[32] K.A. Moussa, G. Clement and C. Leygnac, The black holes of topologically massive gravity,

Class. Quant. Grav. 20 (2003) L277 [gr-qc/0303042] [INSPIRE].

[33] A. Bouchareb and G. Clement, Black hole mass and angular momentum in topologically

massive gravity, Class. Quant. Grav. 24 (2007) 5581 [arXiv:0706.0263] [INSPIRE].

[34] G. Clement, Warped AdS3 black holes in new massive gravity,

Class. Quant. Grav. 26 (2009) 105015 [arXiv:0902.4634] [INSPIRE].

[35] E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions,

Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

[36] M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional

higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].

[37] U. Gran, J. Greitz, P.S. Howe and B.E. Nilsson, Topologically gauged superconformal

Chern-Simons matter theories, JHEP 12 (2012) 046 [arXiv:1204.2521] [INSPIRE].

[38] S. Detournay and M. Guica, Stringy Schrödinger truncations, JHEP 08 (2013) 121

[arXiv:1212.6792] [INSPIRE].

[39] D. Son, Toward an AdS/cold atoms correspondence: A geometric realization of the

Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

[40] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs,

Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

[41] C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography,

JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].

[42] J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with

non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].

[43] A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms,

JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].

[44] S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs,

JHEP 12 (2008) 071 [arXiv:0810.0298] [INSPIRE].

[45] Y. Nakayama, M. Sakaguchi and K. Yoshida, Non-Relativistic M2-brane Gauge Theory and

New Superconformal Algebra, JHEP 04 (2009) 096 [arXiv:0902.2204] [INSPIRE].

[46] K.-M. Lee, S. Lee and S. Lee, Nonrelativistic Superconformal M2-Brane Theory,

JHEP 09 (2009) 030 [arXiv:0902.3857] [INSPIRE].

[47] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].
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[78] S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdSD−2 × S2 to AdSD,

Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].

[79] D. Cassani and A.F. Faedo, A supersymmetric consistent truncation for conifold solutions,

Nucl. Phys. B 843 (2011) 455 [arXiv:1008.0883] [INSPIRE].

[80] I. Bena, G. Giecold, M. Graña, N. Halmagyi and F. Orsi, Supersymmetric Consistent

Truncations of IIB on T 1,1, JHEP 04 (2011) 021 [arXiv:1008.0983] [INSPIRE].

[81] D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed

Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].

[82] J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4

supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].

[83] J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on

Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].

[84] K. Skenderis, M. Taylor and D. Tsimpis, A Consistent truncation of IIB supergravity on

manifolds admitting a Sasaki-Einstein structure, JHEP 06 (2010) 025 [arXiv:1003.5657]

[INSPIRE].
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