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1 Introduction

The case of 5d gauge theories has been poorly studied, at least compared to other di-

mensionalities. It is therefore interesting to study their relatively unexplored landscape.

Moreover, 5d gauge theories lie in between of the most familiar and well understood case

of 4d gauge theories and the mysterious 6d (2, 0) CFT, thus potentailly incorporating fea-

tures of the latter accessible by means of the well-understood techniques developed for the

former. Indeed, over the very recent past we have seen quite a lot of developments along

this direction [1–8]. Furthermore, through dimensional reduction interesting connections

among theories in different dimensions emanating from 6d and passing through the 5d case

have been recently developed (see e.g. [9–14]).

On the other hand, 5d gauge theories are interesting by themselves. In particular,

they can be at fixed points with rather remarkable properties such as enhanced exceptional

global symmetries [15–17]; see also [18, 19]. Moreover, for some of those CFT’s, the gravity

dual for the large N limit has been found [20, 21] (see also [22, 23]) and quite non-trivial

tests of the duality have been performed [24–27].

Very recently, a very powerful set of exact techniques have been developed to study

gauge theories in diverse dimensions. By using the power of localization, partition func-

tions and indices for a very wide variety of theories in different dimensions have been

computed. In this paper we will concentrate on indices for 5d gauge theories. Although

indices are, in a sense, very coarse observables as only very particular and protected oper-

ators contribute, they provide very solid information. We can however have more refined

information by putting the theory on more complicated backgrounds. As the index will

be sensitive to the background geometry, computing indices in a variety of spaces leads to

a deeper understanding of the theory. In particular, global properties of the gauge group

which determine the set of allowed line defects [28] are expected to emerge in a manifest

way as the theory is placed in a non-trivial background [29]. In this paper, following this

strategy, we will compute indices for gauge theories on orbifolds.

More precisely, we will consider gauge theories on S1 × S4/Zn, which is conformally

equivalent to the compactification of R×C
2/Zn. Note that π1(S

3/Zn) = Zn, and so there

can be a non-trivial monodromy of the gauge field. This is similar in spirit to the so-called

lens space index for 4d gauge theories recently considered in [29, 30].

The unorbifolded, n = 1 case has been studied in [18], where it was shown that

the index can be computed as an integral over the gauge holonomies with the appropriate

Haar measure of a function containing a perturbative factor with the plethystic exponential

of a single-letter index and a non-perturbative factor which coincides with the Nekrasov

instanton partition function. In this paper we will extend these results to the general

orbifold case. While the structure of the index will be analogous to the unorbifolded case,

we need to determine the effect of the orbifold on each term. This requires to specify the

degree of the orbifold n as well as its action on both spacetime and gauge fugacities. The

latter is determined by the choice of a vector r of weights of the gauge fugacities which

encodes the monodromy of the gauge field.

Since the background geometry contains two circles, namely the orbifolded one and

the “time” S1, it is natural to consider reductions of the index for a given theory along
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them. Reducing along the “time” S1 produces the partition function of the 4d version of

the theory on S4/Zn. On the other hand, we will find evidence that reduction along the

orbifolded S1, implemented by taking the large orbifold limit n → ∞, leads to the 4d ’t

Hooft index of [31, 32].

The structure of this paper is as follows. In section 2 we describe the salient features of

5d gauge theories and the computation of their index when placed on the orbifold geometry.

It is then easy to see that the reduction along the “time” S1 immediately recovers the 4d

results for the 4d partition function on an ALE space. In section 3 we perform the large

orbifold reduction and show evidence that we recover the ’t Hooft line index. Inspired by

this result, in section 4 we study the 4d ’t Hooft line index, focusing on the nonperturbative

contribution due to monopole bubbling. Interestingly, we find that for a given monopole

and a given bubbling, the bubbling index is computed by the Hilbert series of the moduli

space of an instanton specified by the chosen monopole and bubbling, this along the lines

of Kronheimer’s correspondence between instantons and monopoles [33]. In section 5 we

summarize our results and discuss open issues, in particular the fate of monopole bubbling

as in 5d. Finally, we postpone to appendix A some explicit results for monopole bubblings

in pure U(N) gauge theory.

2 Indices for 5d gauge theories on orbifolds

In 5d the minimal supersymmetry contains 8 supercharges. The basic building blocks for

the theories of interest are the vector multiplet –containing the gauge field, a real scalar

and a symplectic-Majorana gaugino– and the hypermultiplet –containing 4 real scalars

and a complex Dirac fermion–. One salient feature of gauge theories in 5d is that, in

addition to other possible global currents, there is a topologically conserved global current

j = ⋆TrF ∧ F associated to each vector multiplet. The electrically charged excitations

are particle-like solitons with instanton charge in a codimension 1 submanifold. These

particles are usually called instanton particles and the topologically conserved current

instanton current. This current can be gauged by adding a Chern-Simons term to the

action
∫
A∧F ∧F . Note that the 5d Chern-Simons term, being cubic, is proportional to the

third order Casimir of the gauge group, and hence automatically vanishes for USp groups.

It is also worth mentioning that the effective action for 5d gauge theories on their Coulomb

branch can be exactly computed, as it follows from a prepotential severely constrained by

gauge invariance. In addition, a similar effect to the 3d parity anomaly whereby upon

integrating out a massive Dirac fermion a sign(m)
2 shift of the Chern-Simons coefficient is

produced, also plays a key role in determining the exact prepotential on the Coulomb

branch. We refer to [15–17] for further details on the dynamics of 5d gauge theories.

In order to compute the index for the 5d theories, one considers the Euclidean theory

in radial quantization, which amounts to put it on S1×S4/Zn. More explicitly, we consider

a 5d gauge theory on (euclidean) R×C
2/Zn. Introducing complex coordinates (z1, z2) on

C
2, the orbifold will act as

(z1, z2) ∼ (ω z1, ω
−1 z2) , ωn = 1 . (2.1)

– 3 –
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Note that the cases n = 1, 2 are special, since they preserve SU(2) × SU(2), while

for n > 2 the symmetry is U(1) × SU(2). Besides, all supercharges are preserved by this

orbifold action.

Writting the R× C
2/Zn space metric as ds2 = dx20 + dr2 + r2 dΩ2

S3/Zn
–here dΩ2

S3/Zn

is the standard metric on the lens space– and upon defining x0 = e−τ cosα and r =

e−τ sinα, α ∈ [0, π] and compactifying τ into an S1, the metric becomes conformally

equivalent that of S1 × S4/Zn. One then chooses a supercharge Q and its complex con-

jugate, so that only primary operators annihilated by this subalgebra contribute to the

index weighted by their representation under all other commuting charges. Starting by

the unorbifolded case, in 5d the bosonic part of the N = 1 superconformal algebra is

SO(2, 5) × SU(2)R, where SU(2)R is the R-symmetry. In turn SO(2, 5) contains the di-

latation operator as well as a compact SO(5)L acting on the S4. The maximal compact

subgroup is [SU(2)1 × SU(2)2]L × SU(2)R. Calling the U(1) Cartans respectively j1, j2, R,

the generators commuting with the chosen supercharge are j2 and j1+R. Then, the index

reads [18, 34]

I = Tr (−1)F e−β∆ x2 (j1+R) y2 j2 qQ , ∆ = ǫ0 − 2 j1 − 3R , (2.2)

where Q collectively stands for all other commuting global symmetries — including the

instanton current — with associated fugacities collectively denoted by q. As the index does

not depend on β, only states whose scaling dimension satisfies ǫ0 = 2 j1 + 3R contribute.

In [18] it was shown that the index admits a path integral representation obtained by com-

puting the supersymmetric partition function with the appropriate boundary conditions

for fermions upon adding chemical potentials for the global symmetries. This partition

function is technically computed by adding a Q-exact term to the action, which has the

effect of localizing the theory on the saddle points of this Q-deformed action. As shown

in [18], the final result for the index is

I =

∫
[dα] Ip Iinst , (2.3)

where
∫
[dα] stands for the integration over the gauge group with the suitable Haar measure,

while Ip and Iinst stand respectively for the perturbative and instantonic contributions to

the index. The perturbative contribution can be thought as the plethistic exponential of the

single-letter indices associated to each multiplet present in the theory, that is, schematically

Ip = PE

[ ∑

V ∈vectors
fVvector +

∑

H∈hypers
fHmatter

]
(2.4)

being fvector, fmatter the single-letter contributions to the index. In the cohomological

formulation, such single-letter indices are basically given by the Atiyah-Singer index of the

appropriate complex depending on the type of multiplet [18, 35] (see section 2 for explicit

expressions). In turn, the instanton part is associated with instantonic particles and it

coincides with the 5d Nekrasov instanton partition function.

In the orbifolded case n ≥ 2 the [SU(2)1 × SU(2)2]L Lorentz symmetry is generically

reduced to [U(1)×SU(2)]L. Nevertheless the localization computation is otherwise exactly
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analogous to the n = 1 case. Hence the structure of the index is exactly the same as

in the unorbifolded case, with the only difference that both the perturbative and non-

perturbative parts must be computed on the orbifold background. As for the perturbative

part, the single-letter contributions are given by the indices of the corresponding complexes

on the orbifold, which can simply be computed by projecting the unorbifolded case to

orbifold-invariants. In turn, as for the non-perturbative contribution, we should compute

the Nekrasov instanton partition function on the orbifold geometry.

In the following we will concentrate on U(N) gauge theories. It is therefore useful to

recapitulate the most salient features of the topological classification of U(N) bundles on

ALE spaces (see [36] and references therein for a more thorough review). A U(N) bundle

on C
2/Zn is topologically classified by n−1 first Chern classes and one second Chern class.

In addition, since π1(S
3/Zn) = Zn, we need to specify the monodromy of the gauge field,

labelled by a partition of N as N = (N1, · · · , Nn) such that
∑
Ni = N .

2.1 Perturbative contribution

The perturbative contribution to the index of the vector multiplet and hypermultiplet

can be read, respectively, from the self-dual complex and the Dirac complex [18]. The

respective contributions can be easily obtained by first computing the equivariant index of

the corresponding complex and then taking its plethystic exponential.

The relevant complexes will be the self-dual complex –related to the vector multiplet

contribution– and the Dirac complex –related to the hypermultiplet contribution–. As we

are interested on 5d gauge theories on C
2 they will depend on two spacetime fugacities

t1, t2 associated to the two C planes. The relation of these to the more standard {x, y}
used in [6] is simply

t1 = xy, t2 = xy−1 , (2.5)

where x and y are fugacities for U(1)× SU(2) isometry of C2 appearing in (2.2).

The action of the orbifold on the Lorentz fugacities is simply

t1 → ω t1 t2 → ω−1 t2 , (2.6)

Besides, let us call gauge symmetry fugacities by zα.
1 The orbifold will generically have a

non-trivial action also on them. Let us particularize now to the U(N) case, where we have

zα → ωrα zα , (2.7)

where α = 1, . . . , N and 0 ≤ rα ≤ n − 1 for all α. In fact, the rα are related to the

monodromy of the orbifold action on the gauge bundle N = (N1, · · · , Nn) as

Ni =
N∑

α=1

δrα,i (modn) , i = 1, · · · , n (2.8)

1Note that some of these fugacities might in the end not be gauged and thus correspond to global

symmetries. As an example, suppose a U(N) versus an SU(N) gauge theory, whose difference is the overall

U(1) being either a gauge symmetry or a global baryonic symmetry. We can, nevertheless, think of all

fugacites as gauged ones and decide wether to actually gauge them or not only at the end when integrating

over them or not.

– 5 –
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where α (mod n) runs over 0, . . . , n−1. Therefore, Ni is the number of times that i (mod n)

appears in the vector r. If we are interested on SU(N), since
∏N

α=1 zα = 1, we must impose

N∑

α=1

rα = 0 , for SU(N) . (2.9)

For example, for SU(2) gauge theory on C
2/Z2, corresponding to (N,n) = (2, 2), the

possibilities are

r = (0, 0) ⇒ N = (0, 2) ,

r = (1, 1) ⇒ N = (2, 0) .
(2.10)

A more extensive list is given in eqs. (2.65)–(2.70) in [36].

As shown in [6], the contribution of each type of multiplet is related to the Atiyah-

Singer index of a certain complex, denoted generically by ind[D(C2)](t1, t2, zα). Thus, the

index for the complex upon performing the orbifold projection can be done by implementing

such projection on the C
2 index. Explicitly

ind[D(C2/Z2)](t1, t2, zα) =
1

n

n−1∑

j=0

ind[D(C2](ωj t1, ω
−j t2, ω

j rα zα) . (2.11)

2.1.1 Vector multiplet contribution

The relevant complex for the vector multiplet is the self-dual complex. Let us borrow the

result for the unorbifolded case from [18] for the equivariant index of the self-dual complex

(we strip off gauge fugacities)

ind[DSD(C
2)](t1, t2) =

1 + t1 t2
(1− t1) (1− t2)

. (2.12)

Denoting the gauge holonomies αi and the adjoint character by χAdj, the contribution to

the index of the vector multiplet is then
∫ ∏

dαi PE[ind[−DSD(C
2)]χAdj]. Following [18],

the integrand can be manipulated as follows

PE[ind[−DSD(C
2)]χAdj] = PE[χAdj − ind[DSD]] PE[−χAdj] (2.13)

so that
∫ ∏

dαi PE[−χAdj] =
∫
[dα] becomes the gauge group integration with the Haar

measure, effectively leaving the contribution of the vector multiplet

H1-loop,C2

vector (t1, t2, z) = PE[fC
2

vector(t1, t2, z)] (2.14)

with

fC
2

vector(t1, t2, z) = (1− ind[DSD])χAdj(z) = − t1 + t2
(1− t1) (1− t2)

χAdj(z) . (2.15)

Writting this in terms of the x, y one recovers the vector multiplet contribution in [18].

– 6 –
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Reduction on S1. Before proceeding further, let us point out that we can reduce this

partHC2

vector(t1, t2, z) of partition function on the “time” circle S1. This reproduces the well-

known formula for one-loop contribution of the vector multiplet [37] (see also, e.g. (B.21)

of [38]). Let us denote by β the radius of the circle S1. The variables t1,2 are related to the

Ω-deformation parameters ǫ1,2 and gauge parameters aα (with α = 1, . . . , N) as follows:

t1 = xy = e−βǫ1 , t2 = xy−1 = e−βǫ2 , zα = e−βaα . (2.16)

and let us then focus on the limit β → 0.

Let us consider U(N) gauge group. From (2.15), we obtain

H1-loop,C2

vector (t1, t2, z) = PE

[
− t1 + t2
(1− t1)(1− t2)

χAdj(z)

]

= PE

[( ∑

1≤i,j≤N

zαz
−1
β

)( ∑

m,n≥1

tm1 t
−n
2 + t

(m−1)
1 t

−(n−1)
2

)]

=
∏

m,n≥1

1
∏

1≤i,j≤N{1− tm1 t
−n
2 zαz

−1
β }{1− t

(m−1)
1 t

−(n−1)
2 zαz

−1
β }

, (2.17)

Substituting into it (2.16) and taking limit β → 0, we obtain

1− tm1 t
−n
2 zαz

−1
β → mǫ1 − nǫ2 + aα − aβ

1− t
(m−1)
1 t

−(n−1)
2 zαz

−1
β → (m− 1)ǫ1 − (n− 1)ǫ2 + aα − aβ . (2.18)

We then use identities involving the logarithm of Barnes double gamma functions:2

γǫ1,ǫ2(x) = log Γ2(x+ ǫ+|ǫ1, ǫ2). (2.19)

where for ǫ1 > 0, ǫ2 < 0, we have an infinite product formula

Γ2(x|ǫ1, ǫ2) ∝
∏

m,n≥1

(x+ (m− 1)ǫ1 − nǫ2)
+1 . (2.20)

Thus we arrive at

Z1-loop,C2

vector,U(N)(a) =
∏

1≤α,β≤N

exp
[
− γǫ1,ǫ2(aα − aβ − ǫ1)− γǫ1,ǫ2(aα − aβ − ǫ2)

]
. (2.21)

This is in agreement with (B.21) of [38]. Similarly, for SU(N) gauge group,

Z1-loop,C2

vector,SU(N)(a) = exp
[
γǫ1,ǫ2(−ǫ1) + γǫ1,ǫ2(−ǫ2)

]
×

∏

1≤α,β≤N

exp
[
− γǫ1,ǫ2(aα − aβ − ǫ1)− γǫ1,ǫ2(aα − aβ − ǫ2)

]
. (2.22)

2We adopt the same convention for this function as in e.g. [37–39]; note that this is different from that

used in e.g. [40].
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The orbifold case. Let us now turn to the orbifold case, focusing for the sake of con-

creteness on the C
2/Z2 orbifold. Furthermore, for simplicity, we will consider the case

where the orbifold acts trivially on the gauge fugacities, that is, r = 0.3 Applying (2.11)

to project to orbifold-invariant states we find

ind[DSD(C
2/Z2)](t1, t2) =

(1 + t1 t2)
2

(1− t21) (1− t22)
χAdj(z) . (2.23)

Removing the Haar measure part the vector multiplet single-particle index becomes

f
C2/Z2

vector (t1, t2, z; r = 0) = (1− ind[DSD(C
2/Z2)])χAdj(z)

= − (t1 + t2)
2

(1− t21) (1− t22)
χAdj(z) . (2.24)

In general, for C2/Zn with r = 0, we obtain

f
C2/Zn

vector (t, z; r = 0) = − t
n
1 + tn2 + 2t1t2(1− tn−1

1 tn−1
2 )(1− t1t2)

−1

(1− tn1 ) (1− tn2 )
χAdj(z) . (2.25)

So far we have focused on trivial actions of the orbifold on the gauge fugacities. Com-

puting the vector multiplet index contribution for general action r is straightforward albeit

a bit more tedious. We discuss this issue for the large orbifold limit in section 3.

2.1.2 Hypermultiplet contribution

In the case of the hypermultiplet the relevant complex is the Dirac complex. In the unorb-

ifolded case, borrowing the result for the Dirac complex index from [18], we have (we strip

off gauge dependence)

ind[DDirac](C
2)(t1, t2) =

√
t1 t2

(1− t1) (1− t2)
(2.26)

For the matter multiplet the PE of the equivariant index of the complex is directly the

contribution to the single-particle index. Thus, the contribution of the hypermultiplet in

the representation R to the parition function is then given by

H1-loop,C2

matter,R (t1, t2, z, u) = PE[fC
2

R (t1, t2, z)u
+1/−1] (2.27)

with u a flavour fugacity, the power of u is −1 if R is the fundamental representation and

+1 for other representations, and

fC
2

R (t1, t2, z) = ind[DDirac](C
2)χR(z)

=

√
t1 t2

(1− t1) (1− t2)
χR(z) . (2.28)

Writting this with t1 = xy, t2 = xy−1, one recovers the contribution in [18].

3Note that this is equivalent to consider the U(1) case, as then the orbifold cannot act on the gauge

fugacity –nevertheless absent for the gauge field, being in the adjoint representation–.
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Reduction on S1. Using the variables as in (2.16) and taking

u = e−βµ (2.29)

where µ is the mass parameter, we see that the one-loop part of the matter contributions

in the 4d partition function are given as follows, upon the limit β → 0:

Z1-loop
fund (a, µ) =

∏

α

exp [γǫ1,ǫ2(aα − µ− ǫ+/2)] , (2.30)

Z1-loop
antifund(a, µ) =

∏

α

exp [γǫ1,ǫ2(−aα + µ− ǫ+/2)] , (2.31)

Z1-loop
bifund(a, b,m) =

∏

α,β

exp [γǫ1,ǫ2(aα − bβ −m− ǫ+/2)] , (2.32)

Z1-loop
adjoint, U(N)(a,m) =

N∏

α,β=1

exp [γǫ1,ǫ2(aα − aβ −m− ǫ+/2)] . (2.33)

These formulae matches the expressions in (B.22)-(B.24) of [38], with all mass parameters

µ and m shifted by ǫ+/2 with respect to those in [38].

The orbifold case. As for the case of the vector multiplet, let us, for concreteness,

concentrate on the case of C2/Z2 with trivial orbifold action r = 0 on the gauge fugacities.

Following the general recipe (2.11) we find

ind[DDirac(C
2/Z2)] =

√
t1 t2 (1 + t1 t2)

(1− t21) (1− t22)
χR(z) (2.34)

Thus the relevant fmatter reads

f
C2/Z2

R (t, z, u; r = 0) =

√
t1 t2 (1 + t1 t2)

(1− t21) (1− t22)
χR(z) . (2.35)

Again, for more complicated actions r of the orbifold on the gauge fugacities the corre-

sponding expression for the matter contribution will be slightly more involved. We discuss

this issue for the large orbifold limit in section 3.

2.2 Instanton contribution

As described above, the 5d index contains a contribution from instantonic operators. Con-

centrating first on the unorbifolded case, such contribution factorizes into the contribution

of instantons localized around the south pole and anti-instantons localized around the north

pole of the S4 [18]. Let us denote the instanton partition function for instantons around

the south pole by IS
inst. Denoting by q the instanton current fugacity, such function can be

expanded as

IS
inst =

∞∑

k=0

HC2

k qk , (2.36)
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so that HC2

k is the k-instanton partition function (of course, HC2

0 = 1). Note that the

explicit expressions of HC2

k are very complicated4 for larger values k, a closed form of the

summation (2.36) is not known.

On the other hand, the instanton index for anti-instantons localized around the north

pole can be easily obtained [18] as IN
inst(q) = IS

inst(q
−1). Then, the whole instanton contri-

bution to the index is just Iinst = IS
inst IN

inst. It is then clear that the quantities of interest

are the k-instanton partition functions HC2

k .

Before turning to the orbifold case, let us briefly review the computation of the instan-

ton contributions on C
2.

2.2.1 Instantons in gauge theories on C
2

For pure gauge theories, these can be computed as the appropriately covariantized Hilbert

series of the k-instanton moduli space [42]. More generically, the contribution associated to

the k-instanton for a generic theory can be computed using localization [43, 44], which fixes

the gauge field configuration such that the instantons are located at the origin. Such fixed

instantons are labelled by an N -tuple of Young diagrams, denoted by Y = (Y1, Y2, . . . , YN ).

We refer to each element by Yα, with α = 1, . . . , N , and we allow the cases in which there

exist empty diagrams. The instanton number k is given by the total number of boxes

k = |Y | :=
N∑

α=1

|Yα| . (2.37)

For a given box s at the a-th row and b-th column of a given Young diagram Y , one

can define aY (s) and lY (s), known as the arm length and the leg length, as follows:

aY (s) = λa − b , lY (s) = λ′b − a , (2.38)

where λ′b corresponds to the transpose diagram of Y , namely Y T = (λ′1 ≥ λ′2 ≥ . . .).

The contribution from the vector multiplet is given by

HC2

vector(t1, t2, z;Y ) = PE

[ N∑

α,β=1

∑

s∈Yα

(
zα
zβ
t
−lYβ (s)

1 t
1+aYα (s)
2 +

zβ
zα
t
1+lYβ (s)

1 t
−aYα (s)
2

)]
, (2.39)

Note that if s ∈ Yα but s /∈ Yβ , then lYβ
(s) can be negative. The contributions from the

fundamental and antifundamental hypermultiplets are given by

HC2

fund(t1, t2, z, u;Y ) = PE

[
u−1

N∑

α=1

zα
∑

(a,b)∈Yα

ta1t
b
2

]
, (2.40)

HC2

antifund(t1, t2, z, u;Y ) = PE

[
u

N∑

α=1

zα
∑

(a,b)∈Yα

ta−1
1 tb−1

2

]
, (2.41)

HC2

adjoint(t1, t2, z, u;Y ) = PE

[
u

N∑

α,β=1

∑

s∈Yα

(
zα
zβ
t
−lYβ (s)

1 t
1+aYα (s)
2 +

zβ
zα
t
1+lYβ (s)

1 t
−aYα (s)
2

)]
. (2.42)

where u denotes the fugacity for the flavour symmetry.

4Explicit expressions for k = 2 instantons on C
2 with various simple groups can be found in [41].
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The contribution from the instanton number k is given by

HC2

inst,k,U(N)(t, z,u) =
∑

Y :|Y |=k

HC2

vector(t, z;Y )

HC2

matter(t, z,u;Y )
. (2.43)

where the summation runs over all possible N -tuples of the Young diagrams whose total

number of boxes equal to the instanton number k.

Example: one instanton contribution to SU(2) with 4 flavours. In general, for

an SU(N) theory with Nf = 2N , the k-instanton contribution is

HC2

inst,k(t1, t2, z,u) =
∑

Y :|Y |=k

HC2

vector(t1, t2, z;Y )
∏N

i=1H
C2

antifund(t1, t2, z, ui;Y )
∏2N

j=N+1H
C2

fund(t1, t2, z, uj ;Y )
.

(2.44)

Focusing on the N = 2 case, the ordered pairs of Young diagrams that contribute to

the partition function are

(�, ∅) , (∅,�) . (2.45)

Here are the contributions for each part:

HC2

vector(t1, t2, z; (�, ∅)) = PE

[
t1 + t2 +

t1t2z1
z2

+
z2
z1

]
(2.46)

HC2

fund(t1, t2, z, u; (�, ∅)) = PE

[
t1t2z1
u

]
(2.47)

HC2

antifund(t1, t2, z, u; (�, ∅)) = PE [uz1] . (2.48)

The contribution from (∅,�) can be obtained from above by exchanging z1 and z2.

Therefore, the one-instanton contribution is given by

HC2

inst,k=1(t1, t2, z,u) = PE

[
t1 + t2 +

t1t2z1
z2

+
z2
z1

− t1t2z1
u

− uz1

]
+ (z1 ↔ z2) (2.49)

=

∏2
i=1(1− uiz

−1
1 )

∏4
j=3(1− t1t2z1u

−1
j )

(1− t1)(1− t2)(1− t1t2z1z
−1
2 )(1− z2z

−1
1 )

+ (z1 ↔ z2) . (2.50)

The 4d limit of this contribution is

ZC2

inst,k=1(ǫ1, ǫ2,a,µ)

= lim
β→0

HC2

inst,k=1(e
−βǫ1 , e−βǫ2 , e−βa, e−βµ)

=
(a1 + µ1) (a1 + µ2) (a1 + ǫ1 + ǫ2 − µ3) (a1 + ǫ1 + ǫ2 − µ4)

(−a1 + a2) ǫ1ǫ2 (a1 − a2 + ǫ1 + ǫ2)
+ (a1 ↔ a2) . (2.51)

This is in agreement with (A.7) of [39].
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2.2.2 Instantons in gauge theories on C
2/Zn

In the orbifold case we should compute the instanton partition functions on C
2/Zn. For a

given U(N) gauge theory on C
2/Zn, upon choosing the holonomy r, the instanton parti-

tion function with Kronheimer-Nakajima vector k for such a theory, denoted by H
C2/Zn

k, r ,

can be directly obtained from the case of C2. One simply needs to apply the following

implementations for the orbifold projection (see e.g. [45, 46]):

1. In eq. (2.43), the summation runs over a certain set R(k, r) of tuples of Young

diagram defined as follows. Given r and k, R(k, r) is a set of N -tuples of Young

diagrams such that all of the following conditions are satisfied:

(a) The total number of boxes in Y is given by |Y | :=∑N
α=1 Yα =

∑n
i=1 ki.

(b) Upon assigning the numbers rα + a − b (mod n) to all (a, b) boxes of every

non-trivial Young diagram Yα 6= ∅ for all α = 1, . . . , N , there must be precisely

kj boxes in total that are labelled by the number j (mod n) for all j = 1, . . . , n.

2. Only the terms inside the PEs in eqs. (2.39), (2.40), (2.41) and (2.42) that are

invariant under the actions (2.6) and (2.7) are kept; the other terms are thrown away.

(a) For the vector multiplet and adjoint hypermultiplet contributions, the summa-

tion over α, β and s in (2.39) and (2.42) are restricted to those satisfying

−rα + rβ + lYβ
(s) + aYα(s) + 1 = 0 (mod n) . (2.52)

(b) For the fundamental and antifundamental hypermultiplet contributions, the

summation over α and (a, b) in (2.40) and (2.41) are restricted to those satisfying

rα + a− b = 0 (mod n) . (2.53)

Explicitly,

H
C

2/Zn

vector (t, z;Y ; r) = PE

[ N∑

α,β=1

∑

s∈Yα

(
zα
zβ
t
−lYβ

(s)

1 t
1+aYα (s)
2 +

zβ
zα
t
1+lYβ

(s)

1 t
−aYα (s)
2

)
×

δ−rα+rβ+lYβ
(s)+aYα (s)+1 (mod n),0

]
, (2.54)

H
C

2/Zn

fund (t, z, u;Y ; r) = PE

[
u−1

N∑

α=1

zα
∑

(a,b)∈Yα

ta1t
b
2 δrα+a−b (mod n),0

]
, (2.55)

H
C

2/Zn

antifund(t1, t2, z, u;Y ; r) = PE

[
u

N∑

α=1

zα
∑

(a,b)∈Yα

ta−1
1 tb−1

2 δrα+a−b (mod n),0

]
, (2.56)

H
C

2/Zn

adjoint(t1, t2, z, u;Y ; r) = PE

[
u

N∑

α,β=1

∑

s∈Yα

(
zα
zβ
t
−lYβ

(s)

1 t
1+aYα (s)
2 +

zβ
zα
t
1+lYβ

(s)

1 t
−aYα (s)
2

)
×

δ−rα+rβ+lYβ
(s)+aYα (s)+1 (mod n),0

]
. (2.57)
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where u denotes the fugacity for the flavour symmetry. It is chosen in such a way that

the 4d limit is in accordance with the convention of [39]; see e.g. (2.73) below. Note

that in section 4, we make a redefinition of u so that the results are in agreement

with those in [31, 32].

3. The 5d instanton partition function (or Hilbert series) for U(N) gauge theory on

C
2/Z2 is given by

H
C2/Zn

k,r (t, z,u) =
∑

Y ∈R(k,r)

H
C2/Zn

vector (t, z;Y )

H
C2/Zn

matter(t, z,u;Y )
. (2.58)

Reduction on S1. Upon reduction along the “time” S1, the instanton contribution,

both in the orbifold and orbifolded cases, does go over to the known instanton partition

function for 4d theories on an orbifold. We refer to [36] and references therein for explicit

expressions. Note that in [36] the quantity computed is the Hilbert series of the instanton

moduli space. Nevertheless the Nekrasov instanton partition function directly follows up

to multiplication by the suitable factor of x [42]. Since this factor in the 4d limit simply

becomes 1, the reductions in [36] and the described matchings with the known expressions

in the literature for instantons on ALE spaces can be borrowed in the case at hand to

conclude that indeed the non-perturbative part of the 5d index, reduced along the time S1,

becomes the non-perturbative contribution to the partition function of the gauge theory

on the ALE space.

Thus, in view of the reduction of both the perturbative and non-perturbative contri-

butions to the 5d index on S1 × S4/Zn, all in all we find that the reduction along the

“temporal” S1 does indeed recover the partition function of the 4d version of the theory

on the ALE space.

A number of examples for instantons in N = 2 U(N) and SU(N) pure gauge theory

are presented in [36]. We shall not repeat them here; however, in the following, we present

some examples for gauge theories with matter.

2.2.3 Example: SU(2) theory with one hypermultiplet on C
2/Zn

1/2 pure instantons on C
2/Z2 with r = (1, 1): k = (1, 0)

The set R(k = (1, 0), r = (1, 1)) contains the following elements:

Y1 = (∅, ), Y2 = ( , ∅) . (2.59)

The contributions of the vector multiplet and the adjoint hypermultiplet are

H
C2/Z2

vector (t1, t2, z;Y2) = PE

[
t1t2z1
z2

+
z2
z1

]
, (2.60)

H
C2/Z2

adjoint(t1, t2, z, u;Y2) = PE

[
ut1t2z1
z2

+
uz2
z1

]
. (2.61)

For Y1, one only needs to exchange z1 and z2.
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Hence, the instanton partition function is given by

H
C2/Z2

inst;k=(1,0),r=(1,1)(t1, t2, z,u) =

(
1− uz1

z2

)(
1− ut1t2z2

z1

)

(
1− z1

z2

)(
1− t1t2z2

z1

) + (z1 ↔ z2) . (2.62)

The 4d limit of this expression is

Z
C2/Z2

inst;k=(1,0),r=(1,1)(ǫ1, ǫ2,a,µ) = lim
β→0

β−2H
C2/Z2

inst;k=(1,0),r=(1,1)(e
−βǫ1 , e−βǫ2 , e−βa, e−βµ)

=
(a1 − a2 + µ) (−a1 + a2 + ǫ1 + ǫ2 + µ)

(a1 − a2) (−a1 + a2 + ǫ1 + ǫ2)
+ (a1 ↔ a2)

= −2
[
(a1 − a2)

2 − (ǫ1 + ǫ2)
2 − (ǫ1 + ǫ2)µ− µ2

]

(a1 − a2 + ǫ1 + ǫ2) (−a1 + a2 + ǫ1 + ǫ2)
. (2.63)

We shall make use of eqs. (2.62) and (2.63) later in section 4.3.1.

2/3 pure instantons on C
2/Z3 with r = (1, 2): k = (1, 1, 0). The set R(k =

(1, 1, 0), r = (1, 2)) contains the following elements:

Y1 = (∅, (2)), Y2 = ((1), (1)), Y3 = ((1, 1), ∅) . (2.64)

The contributions of the vector multiplet and the adjoint hypermultiplet are

H
C2/Z3

vector (t, z;Yi) =

(
PE

[
z1
t2z2

+
t1t

2
2z2
z1

]
,PE

[
t1z1
z2

+
t2z2
z1

]
,PE

[
t21t2z1
z2

+
z2
t1z1

])
,

H
C2/Z3

adjoint(t, z, u;Yi) =

(
PE

[
u

(
z1
t2z2

+
t1t

2
2z2
z1

)]
,PE

[
u

(
t1z1
z2

+
t2z2
z1

)]
,

PE

[
u

(
t21t2z1
z2

+
z2
t1z1

)])
. (2.65)

Hence, the instanton partition function is given by

H
C2/Z3

inst;k=(1,1,0),r=(1,2)(t, z, u) =

(
1− ut2

1
t2z1
z2

)(
1− uz2

t1z1

)

(
1− t2

1
t2z1
z2

)(
1− z2

t1z1

) +

(
1− ut1z1

z2

)(
1− ut2z2

z1

)

(
1− t1z1

z2

)(
1− t2z2

z1

)

+

(
1− uz1

t2z2

)(
1− ut1t22z2

z1

)

(
1− z1

t2z2

)(
1− t1t22z2

z1

) . (2.66)

We shall make use of (2.66) later in section 4.3.2.

2.2.4 Example: U(2) gauge theory with 4 flavours on C
2/Z2

Instantons on C
2/Z2 with k = (1, 2) and r = (0, 0). The tuples of Young diagrams

that contribute to the partition functions are

Y1 = (∅, ), Y2 = ( , ∅) . (2.67)
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For example, the contribution of Y2 to the vector multiplet part is

HC2

vector(t1, t2, z;Y2) = PE

[
2t1 +

t21
t2

+ 2t2 +
t22
t1

+
t1t2z1
z2

+
t21t2z1
z2

+
t1t

2
2z1
z2

+
z2
z1

+
z2
t1z1

+
z2
t2z1

]
. (2.68)

After keeping only terms in the PE that are invariant under (2.6) and (2.7), the contribution

of the vector multiplet is

H
C2/Z2

vector (t1, t2, z;Y2) = PE

[
t1t2z1
z2

+
z2
z1

]
. (2.69)

Similarly, the contributions of the hypermultiplets are

H
C2/Z2

fund (t1, t2, z, u;Y2) = PE

[
t1t2z1
u

]
, (2.70)

H
C2/Z2

antifund(t1, t2, z, u;Y2) = PE [uz1] . (2.71)

For Y1, one only needs to exchange z1 and z2.

Thus, the one-instanton contribution is given by

H
C2/Z2

inst;k=(1,2),r=(0,0)(t1, t2, z,u)

= PE


 t1t2z1

z2
+
z2
z1

−
4∑

j=3

t1t2z1
uj

−
2∑

i=1

uiz1


+ (z1 ↔ z2)

=
(1− u1z1) (1− u2z1)

(
1− t1t2z1

u3

)(
1− t1t2z1

u4

)

(
1− t1t2z1

z2

)(
1− z2

z1

) + (z1 ↔ z2) . (2.72)

The 4d limit of this contribution is

Z
C2/Z2

inst;k,r(ǫ1, ǫ2,a,µ)

= lim
β→0

β−2H
C2/Z2

inst,k=(1,1)(e
−βǫ1 , e−βǫ2 , e−βa, e−βµ)

=
(a1 + µ1) (a1 + µ2) (a1 + ǫ1 + ǫ2 − µ3) (a1 + ǫ1 + ǫ2 − µ4)

(−a1 + a2) (a1 − a2 + ǫ1 + ǫ2)
+ (a1 ↔ a2) . (2.73)

This is in agreement with (A.8) of [39].

Instantons on C
2/Z2 with k = (0, 1) and r = (0, 0). The ordered pairs Ya (with

a = 1, 2) of Young diagrams that contribute to the Hilbert series are given by (2.59).

The contribution from the vector multiplet is given by (2.60). The contribution from the

fundamental hypermultiplet is

H
C2/Z2

fund (t, z, u;Ya) =

(
PE

[
t1t2z2
u

]
,PE

[
t1t2z1
u

])
, a = 1, 2. (2.74)
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The contribution from the anti-fundamental hypermultiplet is

H
C2/Z2

antifund(t, z, u;Ya) = (PE[uz2],PE[uz1]) (2.75)

The Hilbert series is given by

H
C2/Z2

inst;k=(0,1),r=(0,0)(t, z,u) =
2∑

a=1

H
C2/Z2

vector (t, z;Ya)
∏2

i=1H
C2/Z2

antifund(t, z, ui;Ya)
∏4

j=3H
C2/Z2

fund (t, z, uj ;Ya)

=
(1− u1z1) (1− u2z1)

(
1− t1t2z1

u3

)(
1− t1t2z1

u4

)

(
1− t1t2z1

z2

)(
1− z2

z1

)

+
(1− u1z2) (1− u2z2)

(
1− t1t2z2

u3

)(
1− t1t2z2

u4

)

(
1− z1

z2

)(
1− t1t2z2

z1

) . (2.76)

We shall make use of this result later in section 4.3.3.

3 Large orbifold limit and relation to the 4d ’t Hooft line index

Given that our theories are placed on a Zn orbifold background, it is natural to ask about

the large orbifold limit. Recall that we are considering theories on S1×S4/Zn. Let us look

more closely to the S4/Zn metric

ds2S4/Zn
= dα2 +

sinα2

4
(dψ − cos θ dφ)2 +

sinα2

4

(
dθ2 + sin2 θ dφ2

)
(3.1)

where ψ ∈ [0, 4π
n ]. Defining ψ̂ = n

2 ψ ∈ [0, 2π] we have

ds2S4/Zn
= dα2 +

sinα2

n2
(dψ̂ − n

2
cos θ dφ)2 +

sinα2

4

(
dθ2 + sin2 θ dφ2

)
(3.2)

Thus, in the large orbifold limit n→ ∞ we roughly find

ds2S4/Zn
→ dα2 +

sinα2

4

(
dθ2 + sin2 θ dφ2

)
(3.3)

thus obtaining a 3d space (albeit with two conical singularities at both poles α = 0, π).

Hence, since the large orbifold limit amounts to a dimensional reduction, we expect to

recover, in large n, results for indices of 4d gauge theories.

Note that, in contrast to the reduction along the “temporal” S1, since we are not

reducing along the S1 along which the supersymmetric boundary conditions are set, instead

of reducing the index to a partition function, in this case we should expect to find a 4d

index. This is in fact very similar to the lens space indices very recently discussed in [29, 30].

The large orbifold limit is to be implemented simultaneously on both the perturbative

and non-perturbative contributions to the 5d index. Unfortunately, computing the non-

perturbative part for a generic orbifold C
2/Zn is technically challenging, so let alone taking

the large orbifold limit. Thus, we will concentrate on the perturbative part obtaining quite

amusing results. In section 5 we will come back to this point and speculate on the properties

of the non-perturbative contribution.
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3.1 Perturbative part

Let us discuss the large orbifold limit of the perturbative contribution to the index. In this

limit, the discrete Zn action becomes a continuous U(1) action, whose fugacity is denoted

by w. The orbifold action on t1, t2 and zα (with α = 1, . . . , N) is therefore

t1 → wt1 , t2 → w−1t2 , zα → wrαzα . (3.4)

3.1.1 The case of r = 0 and the Schur index

Let us first consider the case of an orbifold acting trivially on the gauge group fugacities,
namely r = 0. Using (2.12) and (2.26), we see that in the large orbifold limit the self-dual
and Dirac complexes are

ind[DSD](C
2/Z∞) =

∮

|w|=1

dq

(2πi)w
ind[DSD(C

2)](wt1, w
−1t2) =

1 + t1t2
1− t1t2

(3.5)

ind[DDirac](C
2/Z∞) =

∮

|w|=1

dq

(2πi)w
ind[DDirac(C

2)](wt1, w
−1t2) =

√
t1t2

(1− t1)(1− t2)
. (3.6)

Therefore, the vector and matter multiplet contributions to the index are

f
C2/Z∞

vector (t, z; r = 0) =
(
1− ind[DSD](C

2/Z∞)
)
= − 2 t1t2

1− t1t2
χAdj(z) (3.7)

f
C2/Z∞

matter (t, z; r = 0) =

√
t1t2

1− t1t2
χR(z) , (3.8)

where we used the same notation as in section 2.1.2. Amusingly, this is the 4d Schur index

as described in (4.14) of [47].5

Note that this result is only valid for the case of an orbifold with trivial action on the

gauge group. The cases of general r are more involved, as we shall discuss below.

3.1.2 General r and the ’t Hooft line perturbative index

Let us start with the simple case of U(2). The generic action of the orbifold on the gauge

fugacities is

(z1, z2) → (ωr1 z1, ω
r2 z2) . (3.9)

We then have

• Vector multiplet

Starting with the C
2 self-dual complex, including the U(2) gauge character

ind[DSD](C
2) =

1 + t1t2
1− t1t2

(
(z1 + z2) (z

−1
1 + z−1

2 )
)

(3.10)

we find, in the large orbifold limit, the following index

ind[DSD](C
2/Z∞) =

1 + t1t2
1− t1t2

(t
|r1−r2|
1 z1 z

−1
2 + 2 + t

|r2−r1|
2 z2 z

−1
1 ) (3.11)

5The fugacity ρ (4.14) of [47] is identified to ours as ρ ≡ x.
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Had we considered the SU(2) case, we would have found

ind[DSD](C
2/Z∞) =

1 + t1t2
1− t1t2

(t
|r1−r2|
1 z1 z

−1
2 + 1 + t

|r2−r1|
2 z2 z

−1
1 ) (3.12)

Note that the difference between (3.11) and (3.12) is a factor of the U(1) self-dual

complex index6, which is precisely what one would expect.

• Hypermultiplets in the (anti-) fundamental representation

Starting now with the C
2 Dirac complex, including the U(2) character

ind[DDirac](C
2) =

√
t1 t2

(1− t2) (1− t2)
×
{
(z1 + z2) fundamental

(z−1
1 + z−1

2 ) anti-fundamental
(3.13)

we now find, in the large orbifold limit, the following index

ind[DDirac](C
2/Z∞) =

√
t1t2

1− t1t2
×
{
t
|r1|
2 z1 + t

|r2|
1 z2 fundamental

t
|r1|
2 z−1

1 + t
|r2|
1 z−1

2 anti-fundamental
(3.14)

• Hypermultiplets in the adjoint representation

Starting now with the C
2 Dirac complex, including the U(2) adjoint character

ind[DDirac](C
2) =

√
t1 t2

(1− t2) (1− t2)

(
z1 + z2)(z

−1
1 + z−1

2 )
)

(3.15)

we now find, in the large orbifold limit, the following index

ind[DDirac](C
2/Z∞) =

√
t1t2

1− t1t2
(t

|r1−r2|
1 z1 z

−1
2 + 2 + t

|r2−r2|
2 z2 z

−1
1 ) (3.16)

Again, had we considered the SU(2) case we would have found the same expres-

sion (3.16) only that with a 1 instead of a 2.

However, while the Dirac complex is directly the single-letter contribution to the index,

the self-dual complex contains information about the integration measure as described in

section 2. In the case at hand, note that both the adjoint hypermultiplet and the vector

multiplet contribute very similarly to the trivial monodromy case, only exchanging the

adjoint character by the slightly more complicated factor (t
|r1−r2|
1 z1 z

−1
2 +1+t

|r2−r1|
2 z2 z

−1
1 ).

Thus, it is natural to extract in this case the factor PE[−(t
|r1−r2|
1 z1 z

−1
2 +1+t

|r2−r1|
2 z2 z

−1
1 )]

from the self-dual complex index to find the vector-multiplet contribution. Note that for

the trivial action case r = 0 this recovers the adjoint character, and hence the result in 2.

Thus, the appropriate generalized measure is, in this case, given by7

∫
[dz]r =

1

2

∮

|z1|=1

dz1
2πiz1

∮

|z2|=1

dz2
2πiz2

(1− t
|r1−r2|
1 z1 z

−1
2 ) (1− t

|r2−r1|
2 z2 z

−1
1 ) (3.17)

6For U(1) the χAdj = 1, and hence there is no action of the orbifold on the gauge group. The contribution

to the index is just − 2 x2

1−x2 . This factor is indeed the difference between (3.11) and (3.12).
7The 1

2
ensures the correct normalization.
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While each multiplet’s contribution to the index are

f
C2/Z∞

vector (t, z; r) = − 2t1t2
1− t1t2

(
t
|r1−r2|
1 z1 z

−1
2 + 2 + t

|r2−r1|
2 z2 z

−1
1

)
,

f
C2/Z∞

adjoint (t, z; r) =

√
t1t2

1− t1t2

(
x|r1−r2| z1 z

−1
2 + 2 + x|r2−r1| z2 z

−1
1

)
,

f
C2/Z∞

fund/antifund(t, z; r) =

√
t1t2

1− t1t2
×
{
t
|r1|
2 z1 + t

|r2|
1 z2 fundamental

t
|r1|
2 z−1

1 + t
|r2|
1 z−1

2 anti-fundamental
. (3.18)

Note that this is in fact the same perturbative contribution as in section 3.6 of [32],

which suggest that non-trivial monodromies in the large orbifold limit correspond to inser-

tions of ’t Hooft lines in non-trivial representations. Of course, the trivial monodromy case

can be thought as no ’t Hooft line. Therfore, since in the general case the SUSY preserved

by the ’t Hooft line is that compatible with the Schur index [32], this explains why for no

’t Hooft line (or equivalently, r = 0) we recover the Schur index. Note also that supersym-

metry then requires the index to depend on a single Lorentz fugacity ρ = x =
√
t1 t2.

Example: 5d maximally supersymmetric U(2) gauge theory. As an explicit test,

we can write the large orbifold expression for the perturbative part of the index for the

maximally SUSY U(2) theory containing a vector multiplet and an adjoint hyper. Since

we have an adjoint hypers, we will have an extra global SU(2) symmetry, under which each

chiral in the hyper will have charge, respectively, 1 and −1. Calling the associated fugacity

u, the perturbative part of the index, together with the appropriate Haar measure, is
∫
[dz]r PE

[
f
C2/Z∞

vector (xy, xy−1, z; r) + (u+ u−1)f
C2/Z∞

adjoint (xy, xy
−1, z; r)

]

=
1

2

∮

|z1|=1

dz1
2πiz1

∮

|z2|=1

dz2
2πiz2

(1− x|r1−r2| z1 z
−1
2 ) (1− x|r2−r1| z2 z

−1
1 )

PE

[
(u+ u−1)x− 2x2

1− x2

(
x|r1−r2| z1 z

−1
2 + 2 + x|r2−r1| z−1

1 z2

)]
, (3.19)

where we set t1 = xy and t2 = xy−1. For |r1 − r2| = 2 and |r1 − r2| = 0 this is the

perturbative part of respectively the first and second lines in eq. (4.38) of [32] (see sections 4

and 5 below for the non-perturbative contribution Zmono).

Furthermore, note that both for the adjoint hyper and vector multiplets the corre-

sponding contribution to the indices is proportional to z2 = z1 z
−1
2 . In particular, it is

clear that the integral will factorize into an integral over dz of the SU(2) part times an in-

tegral corresponding to a maximally SUSY U(1) theory, i.e. a U(1) N = 4 vector multiplet

in 4d –in fact the integral is trivial since the U(1) adjoint is trivial, so we will simply get

an overall factor corresponding to this free multiplet–. Because of this, we can easily find

the SU(2) result
∮

|z|=1

dz

2πiz
(1− x|r1−r2| z) (1− x|r2−r1| z−1)

× PE

[
(u+ u−1)x− 2x2

1− x2

(
x|r1−r2| z + 1 + x|r2−r1| z−1

)]
(3.20)
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For the particular minimal case when |r1 − r2| = 1 this is

∮

|z|=1

dz

2πiz
(1− x z) (1− x z−1) PE

[
(u+ u−1)x− 2x2

1− x2

(
x z + 1 + x z−1

)]
(3.21)

This is the same result as in eq. (5.7) of [32].

General result for U(N) gauge group. The generalization to the U(N) case with

arbitrary action r = (r1, . . . , rN ) is now obvious. We assume without loss of generality that

0 ≤ r1 ≤ r2 ≤ . . . ≤ rN . (3.22)

Then, each multiplet’s contribution to the index are

ind[DSD(C
2/Z∞)] = − 2t1t2

1− t1t2

(
N +

∑

1≤α<β≤N

{t|rα−rβ |
1 zα z

−1
β + t

|rβ−rα|
2 zβ z

−1
α }
)
,

ind[DDirac(C
2/Z∞)]Adj =

√
t1t2

1− t1t2

(
N +

∑

1≤α<β≤N

{t|rα−rβ |
1 zα z

−1
β + t

|rβ−rα|
2 zβ z

−1
α }
)

ind[DDirac(C
2/Z∞)]� =

√
t1t2

1− t1t2

( N∑

α=1

trα2 zα

)
,

ind[DDirac(C
2/Z∞)]

�
=

√
t1t2

1− t1t2

( N∑

α=1

trα1 z−1
α

)
. (3.23)

For SU(N) gauge group, we simply impose the condition
∑N

α=1 rα = 0 (mod n), and replace

N in the first two equations in (3.23) by N − 1.

In terms of the x, y fugacities, and upon appropriately reabsorbing zα → y−rα zα, the

contribution of each multiplet is only x-dependent, as it should be due to supersymmetry.

f
C2/Z∞

vector (x, z; r) = − 2x

1− x2

(
N +

∑

1≤α<β≤N

{x|rα−rβ |zα z
−1
β + x|rβ−rα| zβ z

−1
α }
)
,

f
C2/Z∞

adjoint (x, z; r) =
x

1− x2

(
N +

∑

1≤α<β≤N

{x|rα−rβ |zα z
−1
β + x|rβ−rα| zβ z

−1
α }
)

f
C2/Z∞

fund (x, z; r) =
x

1− x2

( N∑

α=1

xrα zα

)
,

f
C2/Z∞

antifund(x, z; r) =
x

1− x2

( N∑

α=1

xrα z−1
α

)
. (3.24)

Thus, given a monodromy r, the required perturbative part for U(N) gauge theory

with matter is

Ip(x,u, z; r) = PE

[
f
C2/Z∞

vector (x, z) +
∑

R

∑

iR=1

f
C2/Z∞

matter;R(x, z)u
+1/−1
iR

]
, (3.25)
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where in the second term we sum over all matter present in the theory, uiR denote the

flavour fugacities for matter in the representationR, and the power +1/−1 takes the values

+1 if R is the fundamental representation and −1 for other representations. Besides, the

corresponding generalised measure is

∫
[dz]r =

1

N !

∫ N∏

i=1

dzα
2πizα

∏

1≤i≤j≤N

(
1− x|rα−rβ | zα z

−1
β

)(
1− x|rβ−rα| zβ z

−1
α

)
. (3.26)

This is in fact the same result as that obtained in [32]. Thus, all in all, we find that the

large orbifold limit of the perturbative part of the 5d index of a gauge theory reduces to

the perturbative part of the 4d index with the insertion of a ’t Hooft line defect whose

charge is given by the monodromy of the 5d gauge bundle r.

4 Monopole bubbling indices

In the previous section we have found that the perturbative part of the 5d index on C
2/Zn in

the large orbifold limit reproduces the perturbative part of the 4d index with the insertion of

a ’t Hooft line operator. This suggests that the full 5d index, in the large orbifold limit, can

be related to the ’t Hooft line index [31, 32]. A crucial ingredient of the latter is the so-called

monopole bubbling effect [48], which localizes the 4d ’t Hooft line indices on a set of saddle

points associated to screening by smooth monopoles. Each such saddle point comes with

both a perturbative contribution and a non-perturbative contribution. As discussed above,

the large orbifold limit of the 5d index reproduces the perturbative contribution to each sad-

dle point. Unfortunately, the non-perturbative contribution is technically very challenging.

Thus, although we cannot obtain cuantitative results, we expect a connection between the

large orbifold limit of the 5d non-perturbative contribution to the index and the monopole

bubbling index (see section 5 for some speculations about how this might happen).

Inspired nevertheless by this connection with the 4d ’t Hooft line index, in this section

we leave the 5d realm for a while and focus on the computation of the monopole bub-

bling contribution to the ’t Hooft line index. Recall that for a U(N) gauge theory in the

background of the ’t Hooft line TB classified by the representation B of U(N), the non-

perturbative part of the partition function receives a contribution from certain monopole

solutions; this is also known as the monopole bubbling effect, see e.g. section 10.2 of [48]. For

a given B, the non-perturbative saddle points are classified by the weights v of the repre-

sentation B. It was pointed out by Kronheimer [33] that there is a correspondence between

such monopole solutions and certain U(1)-invariant instanton solutions on a multi-centred

Taub-NUT space. The purpose of this section is to explicitly demonstrate Kronheimer’s

correspondence at the level of partition functions by identifying the monopole bubbling in-

dices, denoted by Zmono(B,v), with appropriate Hilbert series of instantons on ALE spaces.

Before turning into the detailed computation, let us briefly review the structure of the

’t Hooft line index [31, 32]. For a given representation B of U(N), let us denote by WB the

set of weights of B whose elements are denoted by v. The ’t Hooft line index is given by

I’t Hooft(B,v) =
∑

v∈WB

∫
[dz]v Ip(v)Zmono(B,v) , (4.1)
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where [dz]v is the generalised Haar measure given by (3.26), Ip(v) is the perturbative part
given by (3.25), and Zmono(B,v) is the monopole bubbling index. We have suppressed the

dependence on x, z and u of the functions Ip(v) and Zmono(B,v) in the right hand side.

We emphasise again that the ’t Hooft index depends on both the chosen representation B

and the chosen weight v.

For the highest weight v = B, the monopole bubbling index is such that

Zmono(B, B) = 1 . (4.2)

Thus, for the particular case in which we choose B = 0, i.e. no ’t Hooft line the sum in (4.1)

is absent, so that the non-perturbative contribution associated to monopole bubbling is

trivial and, as shown above, both the perturbative contribution and the measure go over

to the Schur index and Haar measure respectively, thus recovering the Schur index of [47].

In the following we turn to the computation of the monopole bubbling index.

4.1 Computing monopole bubbling indices

Let us summarize the computation of monopole bubbling indices presented in [31, 32]. The

non-perturbative fixed points corresponding to the monopole solutions discussed above are

governed by the vector K = (K1, . . . ,Kℓ) of length ℓ. According to eq. (5.6) of [31], it is

related to the Kronheimer’s U(1) actions and is determined by the following equation:

(
N∑

α=1

gBα

)
=

(
N∑

α=1

gvα

)
+ (g + g−1 − 2)

(
ℓ∑

s=1

gKs

)
, g ∈ U(1) . (4.3)

Observe that if v = B (i.e. v is the highest weight of B) or any permutation of

{Bα : α = 1, . . . , N}, then this equation admits no solution for K and the contribution

from the monopole bubbling is trivial, Zmono(B, v) = 1. A representation B of which

all of its weights v are permutations of {Bα} is referred to as a minuscule representation;

thus, for such a B, Zmono(B, v) = 1 for all v ∈ WB.

In order to compute the monopole bubbling indices, we consider the N -tuple of Young

diagrams Y = (Y1, . . . , YN ) that satisfy all of the following conditions:

1. The total number of boxes must equal to the length ℓ of vector K:

N∑

α=1

|Yα| = ℓ . (4.4)

2. Upon assigning the numbers vα(s)+ jα(s)− iα(s) to each box α(s) located at the iα(s)-

th row and jα(s)-th column in the Young diagram Yα, we select only Y such that the

following equality is satisfied:

Ks = vα(s) + jα(s) − iα(s) , for all s ∈ Yα . (4.5)

We denote by R(B,v;K) the set of all N -tuples of Young diagrams satisfying the above

conditions.
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Once the relevant Young diagrams have been identified, the contributions from the

vector multiplet and hypermultiplets can be derived from (2.39), (2.40), (2.41) and (2.42),

with the monomials in the PEs projected such that only terms that are invariant under

the following transformations are kept:

t1 → g−1t1, t2 → gt2, zα → gvαzα , g ∈ U(1) . (4.6)

Explicitly,

Zvector(t1, t2, z;Y ;v)

= PE

[ N∑

α,β=1

∑

s∈Yα

(
zα
zβ
t
−lYβ

(s)

1 t
1+aYα (s)
2 +

zβ
zα
t
1+lYβ

(s)

1 t
−aYα (s)
2

)
δaYα (s)−lYβ

(s)−1,vα−vβ

]
, (4.7)

Zfund(t1, t2, z, u;Y ;v) = PE

[
u−1

N∑

α=1

zα
∑

(a,b)∈Yα

ta1t
b
2 δvα−a+b,0

]
, (4.8)

Zantifund(t1, t2, z, u;Y ;v) = PE

[
u

N∑

α=1

zα
∑

(a,b)∈Yα

ta−1
1 tb−1

2 δvα−a+b,0

]
, (4.9)

Zadjoint(t1, t2, z, u;Y ;v)

= PE

[
u

N∑

α,β=1

∑

s∈Yα

(
zα
zβ
t
−lYβ

(s)

1 t
1+aYα (s)
2 +

zβ
zα
t
1+lYβ

(s)

1 t
−aYα (s)
2

)
δaYα (s)−lYβ

(s)−1,vα−vβ

]
. (4.10)

where u denotes the fugacity for the flavour symmetry. Note that in order to find an

agreement with the results in [31, 32], we need to make the following redefinitions for the

flavour fugacities:

u → u
√
t1t2 for the fundamental hypermultiplet

u → u−1
√
t1t2 for the anti-fundamental hypermultiplet

u → u√
t1t2

for the adjoint hypermultiplet.

(4.11)

In this section, we adopt such redefinitions.

Finally, the monopole bubbling index for the U(N) gauge theory is given by

ZU(N)
mono (B,v)(t, z,u) =

∑

Y ∈R(B,v)

Zvector(t, z;Y )

Zmatter(t, z,u;Y )
. (4.12)

4.2 Monopole bubbling indices for pure U(N) theories and the Hilbert series

of instantons in gauge theory on C
2/Zn

We now concentrate on the case of pure gauge theories. In this case, we make the following

observation on the relation between the monopole bubbling index for U(N) gauge theory

and the Hilbert series of instantons in SU(N) gauge theory on A-type ALE space [36].

Given a representation B = (n1, n2, . . . , nN ) of U(N) and a weight v of B, the

corresponding monopole bubbling index Z
U(N)
mono (B,v) is equal to the Hilbert
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series of instantons in SU(N) gauge theory on C
2/Zn, where n =

∑N
α=1 |nα|,

with the holonomy r = v and with the Kronheimer-Nakajima vector k such

that kj (with j = 1, . . . , n) is the number of times that the number j (mod n)

appear in the vector K in (4.3).

Upon such identifications, it is clear from (4.4)–(4.5) and (2.52)–(2.53) that we have

the same set of Young diagrams for instanton and monopole bubbling computations:

R(B,v) = R(k, r) . (4.13)

Moreover their contributions to (2.54)–(2.57) for instanton partition functions and

to (4.7)–(4.10) for monopole bubbling indices are equal:

H
C2/Zn

vector, matter(t, z;Y ; r) = Zvector, matter(t, z;Y ;v) (4.14)

Thus, the equality between the summations (2.58) and (4.12) can be established term

by term.

For the representation B = (n, 0, . . . , 0) of U(N), the corresponding Hilbert series is

that of pure8 SU(N) instanton on C
2/Zn with the monodromy v.

Note that in the special case of U(2), the representation B = (n, 0) of U(2) can also

be identified with the n+1 dimensional (or spin n/2) representation of SU(2). For a given

v = (p, n − p), with p = 0, . . . , n, the corresponding pure SU(2) instantons on C
2/Zn has

an instanton number k = p(n− p)/n.

It is important to stress that the ALE space on which the instanton whose Hilbert

series captures the monopole bubbling index lives should be viewed merely as an auxiliary

device, as in [33] (see also the appendix C of [31]). Hence such an ALE space should not

to be confused with the physical orbifold target space in which the 5d theory considered in

section 2 and 3 lives. Indeed, in the case at hand the orbifold degree corresponds to the ’t

Hooft monopole charge, so that the large orbifold limit corresponds simply to a large charge

monopole; this is in contrast to the 5d → 4d reduction in section 3. See appendix A for

monopole bubbling indices of large charge ’t Hooft operators.

Let us now turn to some specific examples.

4.2.1 N = 2 pure U(2) gauge theory: B = (2, 0)

Given the representation B = (2, 0) of U(2), the weights v are (2, 0), (1, 1) and (0, 2).

For v = (2, 0) or v = (0, 2), we obtain from (4.3)

ℓ∑

s=1

xKs = 0 ; (4.15)

and so there is no solution K for these v. Thus,

Zmono(B = (2, 0),v = (2, 0)) = Zmono(B = (2, 0),v = (0, 2)) = 1 . (4.16)

8Recall that by ‘pure instanton’, we mean the instanton bundle with vanishing first Chern class: β1 =

β2 = · · · = βn−1 = 0. This is not to be confused with instantons in a pure gauge theory.
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This agrees with the Hilbert series of SU(2) instanton on C
2/Z2 with r = (2, 0) ≡ (0, 2) ≡

(0, 0) modulo 2, and k = (0, 0).

For v = (1, 1), the solution to (4.3) is

K = (1) . (4.17)

The corresponding set R(B = (2, 0),v = (1, 1);K = (1)) is given by

R = {(∅,�), (�, ∅)} . (4.18)

The monopole bubbling index receives only the vector multiplet contribution:

Zmono(B = (2, 0),v = (1, 1))(t, z)

=
∑

Y ∈R
Zvector(t, z;Y ;v = (1, 1))

=
1(

1− t1t2z1
z2

)(
1− z2

z1

) +
1(

1− z1
z2

)(
1− t1t2z2

z1

)

=
1− (t1t2)

2

(1− t1t2)(1− t1t2z1z
−1
2 )(1− t1t2z

−1
1 z2)

. (4.19)

This is the Hilbert series of C2/Z2. This agrees with the Hilbert series of 1/2 pure SU(2)

instanton on C
2/Z2 with r = (1, 1) and k = (1, 0).

4.2.2 N = 2 pure U(2) gauge theory: B = (3, 0)

Given the representation B = (3, 0) of U(2), the weights v are

(3, 0), (1, 2), (2, 1), (0, 3) . (4.20)

For v = (3, 0) or v = (0, 3), there is no solution K in (4.3). Hence,

Zmono(B = (3, 0),v = (3, 0)) = Zmono(B = (3, 0),v = (0, 3)) = 1 . (4.21)

This agrees with the Hilbert series of SU(2) instanton on C
2/Z3 with r = (3, 0) ≡ (0, 3) ≡

(0, 0) modulo 3, and k = (0, 0).

For v = (1, 2) or v = (2, 1), there are two solutions: K = (1, 2) and K = (2, 1). For

each of such v, one has to sum over both solutions K.

For v = (1, 2), the sets R(B,v;K) are given by

R(B = (3, 0),v = (1, 2);K = (1, 2)) = {((1), (1)), ((2), ∅)} (4.22)

R(B = (3, 0),v = (1, 2);K = (2, 1)) = {(∅, (1, 1))} . (4.23)

The monopole bubbling index is then given by

Zmono(B = (3, 0),v = (1, 2))(t, z)

=
∑

K=(1,2),(2,1)

∑

Y ∈R((3,0),(1,2);K)

Zvector(t, z;Y ;v = (1, 2))

=
1(

1− t2z1
z2

)(
1− t1z2

z1

) +
1(

1− t1t22z1
z2

)(
1− z2

t2z1

) +
1(

1− z1
t1z2

)(
1− t2

1
t2z2
z1

) . (4.24)
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Setting t1 = xy, t2 = xy−1, we find that

Zmono(B = (3, 0),v = (1, 2))(x, x, z)

= 1 + t2 +

(
z1
yz2

+
yz2
z1

)
t3 + t4 +

(
z1
yz2

+
yz2
z1

)
t5 +

(
1 +

z21
y2z22

+
y2z22
z21

)
t6

+

(
z1
yz2

+
yz2
z1

)
t7 +

(
1 +

z21
y2z22

+
y2z22
z21

)
t8 + . . .

= gC2/Z3
(x, y−1/3z

1/3
1 z

−1/3
2 ) (4.25)

where the Hilbert series of C2/Z3 is given by

gC2/Z3
(t, z) =

1

3

2∑

j=0

1

(1− ωjtz)(1− ω−jtz−1)
, ω3 = 1 . (4.26)

This agrees with the Hilbert series of 2/3 pure SU(2) instanton on C
2/Z3 with r = (1, 2),

and k = (1, 1, 0). Setting z1 = z2 = 1, we obtain

Zmono(B = (3, 0),v = (1, 2))(x, x, 1, 1)

= 1 + x2 + 2x3 + x4 + 2x5 + 3x6 + 2x7 + 3x8 + 4x9 + 3x10 + . . . . (4.27)

Similarly, for v = (2, 1), it can be shown that

Zmono(B = (3, 0),v = (2, 1))(t1, t2, z) = Zmono(B = (3, 0),v = (1, 2))(t2, t1, z) . (4.28)

4.2.3 N = 2 pure U(2) gauge theory: B = (4, 0)

The weights of B = (4, 0) are (4, 0), (3, 1), (2, 2), (1, 3) and (0, 4). Similarly to the previous

examples, we know that

Zmono(B = (4, 0),v = (4, 0)) = Zmono(B = (4, 0),v = (0, 4)) = 1 ,

Zmono(B = (4, 0),v = (3, 1))(t1, t2, z) = Zmono(B = (4, 0),v = (1, 3))(t2, t1, z) . (4.29)

For v = (3, 1), the corresponding K are (1, 2, 3) and its permutations. The sets

R((4, 0), (3, 1);K) are

K = (1, 2, 3) : {(∅, (3))} ,
K = (3, 1, 2) : {((1), (2))} ,
K = (3, 2, 1) : {((1, 1), (1)), ((1, 1, 1), ∅)} ; (4.30)

other K give rise to empty sets. The monopole bubbling index for v = (3, 1) is then

given by

Zmono(B = (4, 0),v = (3, 1))(t, z)

=
∑

K: perms(1, 2, 3)

∑

Y ∈R((4,0),(3,1);K)

Zvector(t, z;Y ;v = (3, 1)) (4.31)

=
1(

1− t3
1
t2z1
z2

)(
1− z2

t2
1
z1

)+ 1(
1− t2

1
z1
z2

)(
1− t2z2

t1z1

)+ 1(
1− t1z1

t2z2

)(
1− t2

2
z2
z1

)+ 1(
1− z1

t2
2
z2

)(
1− t1t32z2

z1

) .
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Setting t1 = xy, t2 = xy−1, we find that

Zmono(B = (4, 0),v = (3, 1))(xy, xy−1, z)

= 1 + x2 +

(
1 +

y2z1
z2

+
z2
y2z1

)
x4 +

(
1 +

y2z1
z2

+
z2
y2z1

)
x6

+

(
1 +

y4z21
z22

+
y2z1
z2

+
z2
y2z1

+
z22
y4z21

)
x8 +

(
1 +

y4z21
z22

+
y2z1
z2

+
z2
y2z1

+
z22
y4z21

)
x10 + . . .

= gC2/Z4
(x, y1/2z

1/4
1 z

−1/4
2 ) (4.32)

where the Hilbert series of C2/Z4 is given by

gC2/Z4
(t, z) =

1

4

3∑

j=0

1

(1− ωjtz)(1− ω−jtz−1)
, ω4 = 1 . (4.33)

This agrees with the Hilbert series of 3/4 pure SU(2) instanton on C
2/Z4 with r = (3, 1),

and k = (1, 1, 1, 0).

For v = (2, 2), the corresponding K are (1, 2, 2, 3) and its permutations. The compu-

tation is similar to the previous example. We find that the monopole bubbling index can

be written in terms of an SU(2) character expansion:

Zmono(B = (4, 0),v = (2, 2))(xy, xy−1, z, 1/z)

=
1

1− t4
(
[2m2 + 2m4]zx

2m2+4m4 + [2m2 + 2m4 + 2]zx
2m2+4m4+6

)
, (4.34)

where [a]z denotes the character of the SU(2) representation [a] in terms of the variable z.

Observe that this does not depend on the fugacity y. This is in fact the Hilbert series of 1

SU(2) instantons on C
2/Z4 with r = (2, 2) and k = (1, 2, 1, 0). The unrefined index is

Zmono(B = (4, 0),v = (2, 2))(x, x, 1, 1) =
1 + x2 + 2x4 + x6 + x8

(1− x2)4 (1 + x2)2
. (4.35)

4.2.4 N = 2 pure U(3) gauge theory

The computations for the pure U(3) gauge theory are similar to the preceding section. Let

us summarise the matchings between the monopole bubbling indices and the Hilbert series

of instantons on C
2/Zn in table 1.

4.3 Adding matter

By restricting to the simplest case of pure gauge theories we have found a nice character-

ization of the monopole bubbling indices as Hilbert series of certain instantons. We now

extend this characterization to theories with matter.

4.3.1 N = 2∗ U(2) gauge theory: B = (2, 0)

Similarly to section 4.2.1, we find that for v = (2, 0) and v = (0, 2) the monopole bubbling

index is given by

Zmono(B = (2, 0),v = (2, 0)) = Zmono(B = (2, 0),v = (0, 2)) = 1 . (4.36)
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Monopole bubbling Hilbert series of instantons

B v Description r k Hilbert series

(2, 0, 0) (1, 1, 0) 1/2 SU(3) pure inst., C2/Z2 (1, 1, 0) (1, 0) C
2/Z2, (4.19)

(3, 0, 0) (2, 1, 0) 2/3 SU(3) pure inst., C2/Z3 (2, 1, 0) (1, 1, 0) C
2/Z3, (4.25)

(3, 0, 0) (1, 1, 1) 1 SU(3) pure inst., C2/Z3 (1, 1, 0) (2, 1, 0) 1+2x2+2x4+x6

(1−x2)6

(2, 1, 0) (1, 1, 1) SU(3) non-pure inst., C2/Z3 (1, 1, 1) (1, 0, 0) M̃1,SU(3),C2 , (2.1) of [49]
1+4x2+x4

(1−x2)4

(2, 2, 0) (2, 1, 1) SU(3) non-pure inst., C2/Z4 (2, 1, 1) (1, 0, 0, 0) C
2/Z2, (4.19)

Table 1. Matchings between the monopole bubbling indices for 4d N = 2 U(3) pure gauge theory

in the background of the ’t Hooft line TB and the Hilbert series of SU(3) instantons on C
2/Zn. In

the above, M̃1,SU(3),C2 denotes the reduced instanton moduli space of one SU(3) instanton on C
2.

For v = (1, 1), the set R of ordered pairs of the Young diagrams is given by (4.18). The

corresponding monopole bubbling index is

Zmono(B = (2, 0),v = (1, 1))(u, t, z)

=
∑

Y ∈R

Zvector(t, z;Y ;v = (1, 1))

Zadjoint(t, z, u;Y ;v = (1, 1))

=

(
1− u

√
t1
√
t2z1

z2

)(
1− uz2√

t1
√
t2z1

)

(
1− t1t2z1

z2

)(
1− z2

z1

) +

(
1− uz1√

t1
√
t2z2

)(
1− u

√
t1
√
t2z2

z1

)

(
1− z1

z2

)(
1− t1t2z2

z1

) . (4.37)

Indeed, this is in agreement with the instanton computation (2.62) on C
2/Z2, with k =

(1, 0) and r = (1, 1), after redefining u→ u√
t1t2

in the latter.

Comparison with [32]. The 5d partition function (2.62) can be equated with (4.44)

of [32] by redefining u→ u√
t1t2

and multiplying by an overall factor:

xu−1H
C2/Z2

inst;k=(1,0),r=(1,1)(x, x, z, ux
−1) =

1 + [1]ux− 2[2]zx
2 + [1]ux

3 + x4

(1− x2z1z
−1
2 )(1− x2z2z

−1
1 )

, (4.38)

where t1t2 = x2. In a similar way, (2.63) can be equated with (4.36) of [32] by shifing the

mass parameter by −ǫ+/2:9

Z
C2/Z2

inst;k=(1,0),r=(1,1)(ǫ1, ǫ2,a, µ− ǫ+/2)

=
(a1 − a2 + µ− ǫ+/2) (−a1 + a2 + µ+ ǫ+/2)

(a1 − a2) (−a1 + a2 + ǫ+)
+ (ǫi → −ǫi) . (4.39)

4.3.2 N = 2∗ U(2) gauge theory: B = (3, 0)

We proceed in a similar way to section 4.2.2. The monopole bubbling indices for v = (3, 0)

and v = (0, 3) are given by

Zmono(B = (3, 0),v = (3, 0)) = Zmono(B = (3, 0),v = (0, 3)) = 1 . (4.40)

9The Ω-deformation parameters ǫ1,2 are set to ρ in [32].
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For v = (1, 2), the relevant sets R((3, 0), (1, 2);K), with K being (1, 2) or (2, 1), are given

by (4.22) and (4.23). The corresponding monopole bubbling index is

Zmono(B = (3, 0),v = (1, 2))(u, t, z)

=
∑

K=(1,2),(2,1)

∑

Y ∈R((3,0),(1,2);K)

Zvector(t, z;Y ;v = (1, 2))

Zadjoint(t, z, u;Y ;v = (1, 2))

=

(
1− ut

3/2
1

√
t2z1

z2

)(
1− uz2

t
3/2
1

√
t2z1

)

(
1− t2

1
t2z1
z2

)(
1− z2

t1z1

) +

(
1− u

√
t1z1√
t2z2

)(
1− u

√
t2z2√
t1z1

)

(
1− t1z1

z2

)(
1− t2z2

z1

)

+

(
1− uz1√

t1t
3/2
2

z2

)(
1− u

√
t1t

3/2
2

z2
z1

)

(
1− z1

t2z2

)(
1− t1t22z2

z1

) (4.41)

Indeed, this is in agreement with the instanton computation (2.66) on C
2/Z3, with k =

(1, 1, 0) and r = (1, 2), upon a rescaling u→ u√
t1t2

in the latter.

Similarly, it can be shown that

Zmono(B = (3, 0),v = (2, 1))(u, t1, t2, z) = Zmono(B = (3, 0),v = (1, 2))(u, t2, t1, z) .

(4.42)

Comparison with [32]. Setting t1 = t2 = x, we find that

u−1xZmono(B = (3, 0),v = (1, 2))(u, x, x, z)

=

(
1
u + u

) (
x+ x3 + x5

)
+ 2

(
1− x2 − x4 + x6

)
− 3x3

(
z1
z2

+ z2
z1

)

(
1− x3z1

z2

)(
1− x3z2

z1

)

= 2 +

(
1

u
+ u

)
x− 2x2 +

(
1

u
+ u− z1

z2
− z2
z1

)
x3 +

(
−2 +

z1
uz2

+
uz1
z2

+
z2
uz1

+
uz2
z1

)
x4

+

(
1

u
+ u− 2z1

z2
− 2z2

z1

)
x5 + . . . . (4.43)

This is in agreement with (4.45) of [32].

4.3.3 N = 2 U(2) gauge theory with 4 flavours: B = (1,−1)

The vector B = (1,−1) corresponds to the adjoint representation with the weights v

(1,−1), (0, 0), (−1, 1) . (4.44)

For v = (1,−1) and v = (−1, 1),

Zmono(B = (1,−1),v = (1,−1)) = Zmono(B = (1,−1),v = (−1, 1)) = 1 . (4.45)

For v = (0, 0), the solution to (4.3) is K = (0) and hence the corresponding set

R(B = (1,−1),v = (0, 0);K = (0)) of ordered pairs of the Young diagrams is given
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by (4.18). The corresponding monopole bubbling index is

Zmono(B = (1,−1),v = (0, 0))(u, t, z)

=
∑

Y ∈R

Zvector(t, z;Y ;v = (0, 0))∏2
i=1 Zantifund(t, z, ui;Y ;v = (0, 0))

∏4
j=3 Zfund(t, z, uj ;Y ;v = (0, 0))

=

(
1−

√
t1
√
t2z1

u1

)(
1−

√
t1
√
t2z1

u2

)(
1−

√
t1
√
t2z1

u3

)(
1−

√
t1
√
t2z1

u4

)

(
1− t1t2z1

z2

)(
1− z2

z1

)

+

(
1−

√
t1
√
t2z2

u1

)(
1−

√
t1
√
t2z2

u2

)(
1−

√
t1
√
t2z2

u3

)(
1−

√
t1
√
t2z2

u4

)

(
1− z1

z2

)(
1− t1t2z2

z1

) . (4.46)

Indeed, this is in agreement with the instanton computation (2.76) on C
2/Z2, with k =

(0, 1) and r = (0, 0), upon the following rescalings in the latter:

ui → u−1
i

√
t1t2 , i = 1, 2 ,

uj → uj
√
t1t2 , j = 3, 4 .

(4.47)

Setting ti = e−βǫi , uj = e−βµj and zα = e−βaα and taking limit β → 0, we have

lim
β→0

β−2Zmono(e
−βµ, e−βǫ, e−βa)

=
(2a1 + ǫ1 + ǫ2 − 2µ1) (2a1 + ǫ1 + ǫ2 − 2µ2) (2a1 + ǫ1 + ǫ2 − 2µ3) (2a1 + ǫ1 + ǫ2 − 2µ4)

16 (−a1 + a2) (a1 − a2 + ǫ1 + ǫ2)

+ (a1 ↔ a2) ; (4.48)

this is in agreement with the last line of eq. (6.17) in [31].

5 Conclusions and speculations

In this paper we have studied indices for 5d theories on orbifold backgrounds of the form

S1 × S4/Zn. The 5d index contains both a perturbative and a non-perturbative contribu-

tion, whose orbifold version we have considered in section 2.

Since the space where the theories under consideration are placed contains two circles,

namely the “time” S1 and the orbifolded circle of S4/Zn, we can imagine dimensionally

reducing along either of them. Dimensionally reducing along the “time” S1 leads to the

partition function on S4/Zn of the 4d version of the theory. Such dimensional reduction

is implemented by the standard Nekrasov limit β → 0 on the 5d index. In turn, we can

implement the dimensional reduction along the orbifolded direction by taking the large

orbifold limit. Note that, since this procedure does not involve the “time” circle where

the supersymmetric boundary conditions are imposed, the resulting quantity must be an

index. Indeed, we find evidence that such dimensional reduction leads to the index of the

4d reduction of the theory in the presence of a ’t Hooft line. While such result is robust

for the perturbative sector (see section 3.1), the non-perturbative part of the 4d ’t Hooft

line index, namely the monopole bubbling index, which naively should arise from the large
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orbifold limit of the instanton part of the 5d index, is yet to be fully understood. This is

intimately related to the fact that the 5d analogue of the monopole bubbling effect in 4d

is still unclear.

The puzzle comes from the naive matching of parameters in the 5d instanton index

with those in the 4d monopole bubbling index. The 5d instanton index on an orbifold

can depend only on the monodromy r at infinity. From the perturbative part in the large

orbifold limit, the vector r becomes the weight v in 4d, as can be seen from Ip(v) in (3.25)

and (4.1). On the contrary, the Zmono(B,v) does depend on both weight v and the chosen

representation B. This mismatch of the parameters lead us to speculate the following

possibility to define the 5d analogue of the monopole bubbling.

For a 5d theory on C
2/Zn, it is not enough with choosing one single monodromy, but

we may need to sum over the whole set of other monodromies.10 Let us proceed along the

same way as for the 4d ’t Hooft line index (4.1). Take r to be a representation of U(N)

and take ρ to be a weight of r. We denote the set of weights of r by Wr. We speculate

that the 5d index reads

I5d(r,ρ) =
∑

ρ∈Wr

∫
[dz]ρ IC2/Zn

p (ρ) IC2/Zn
np (r,ρ) . (5.1)

We interpret IC2/Zn
np as the instanton contribution in 5d, and so it should depend only on

one monodromy at infinity; we take that to be ρ. One natural guess is to write (5.1) as

I5d(r,ρ) =
∑

ρ∈Wr

∫
[dz]ρ IC2/Zn

np (r) IC2/Zn
p (ρ) ÎC2/Zn

np (r,ρ) , ÎC2/Zn
np (r,ρ) =

IC2/Zn
np (ρ)

IC2/Zn
np (r)

.

(5.2)

Interpreting the “overall” IC2/Zn
np (r) as a “Casimir energy”,11 dropping it we find

Î5d(r,ρ) =
∑

ρ∈Wr

∫
[dz]ρ IC2/Zn

p (ρ) ÎC2/Zn
np (r,ρ) . (5.3)

It is then natural to conjecture that, in the large n limit, this quantity becomes the 4d ’t

Hooft line index. While the perturbative part of this quantity, together with the measure,

recovers the expected 4d perturbative result with the insertion of a ’t Hooft line, we would

conjecture that the quantity ÎC2/Z∞

np (r,ρ) becomes the monopole bubbling contribution.

Note that this proposal automatically incorporates that, for the highest weight ρ = r of

the representation r, ÎC2/Zn
np (r, r) = 1. Thus, we would identify the chosen representation

r with B and the weights ρ with the weights v in the large orbifold limit. Note also that

SUSY requires ÎC2/Z∞

np (r,ρ) to depend only on the product t1 t2.

As a direct test of this proposal, we can consider the trivial monodromy case r = 0

for an arbitrary 5d gauge theory. In this case, there is no sum and the 5d index is just

10Note however that fixing one single monodromy also seems a consistent procedure. As a consistency

check, upon choosing a single monodromy and reducing along the “time” S1 we find the 4d partition

function on an ALE space, where no bubbling effect has been described in the literature.
11Note it is not quite an overall factor, as it depends on gauge fugacities. Nevertheless, the gauge fugacity

dependence also occurs in the quantity in e.g. eq. (3.48) of [32], where they have been set to one.
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the product of the perturbative and the instanton contribution. In the large n limit, and

dropping the non-perturbative contribution due to (5.2), we just have the perturbative

part, whose large orbifold limit we know to reproduce the Schur index.

Note that another subtlety is the fact that, while the 5d instanton index will depend

on the instanton fugacity q [18] (see also (2.6) of [39]). Upon taking the large orbifold

limit we recover a 4d partition function (4.1) for which we do not expect such fugacity.

Thus we expect that the large n limit makes the explicit q-dependence to disappear.12 It

is instructive to consider the case of a 5d pure U(1) gauge theory on an orbifold. Note that

for the pure U(1) gauge theory the orbifold cannot act on the gauge fugacities. The exact

5d index on C
2 was computed in eq. (25) of [42]:

IC2

inst = PE
[
fC

2

vector + (q + q−1)fC
2

adjoint

]
= PE

[ −(t1 + t2)

(1− t1)(1− t2)
+

√
t1t2(q + q−1)

(1− t1)(1− t2)

]
, (5.4)

where the first term corresponds to the perturbative part and the second term corresponds

to the instanton contributions from the north and the south poles. Projecting it to orbifold-

invariants, in the large orbifold limit, we find that it reads

IC2/Zn

inst (t1, t2, q) = PE

[∮

|w|=1

dw

2πiw

−(wt1 + w−1t2) +
√
t1t2(q

1/n + q−1/n)

(1− wt1)(1− w−1t2)

]

= PE

[
− 2t1t2
1− t1t2

+

√
t1t2

1− t1t2
(q1/n + q−1/n)

]

∼ PE

[
− 2t1t2
1− t1t2

+
2
√
t1t2

1− t1t2

]
, n→ ∞ . (5.5)

Note that the first and second terms are the Schur index of the 4d U(1) vector field and

that of an extra hypermultiplet, respectively. Our proposal amounts to dropping the second

term, hence finding the Schur index of the pure U(1) theory in 4d.

It is not clear to us the underlying reason to our proposal. Note however that, as men-

tioned above, the large orbifold limit produces a singular space. It might well be that our

procedure amounts to effectively remove the effect of such singularity. Indeed, in the pure

U(1) example above, it’s tempting to identify the extra hyper with the produced singularity.

Another salient result of our work is that, by studying in detail the monopole bubbling

index we have found that it can be computed as the Hilbert series of a certain instanton

moduli space. Such instanton lives on an orbifold whose degree is specified in a precise way

by the charge B of the monopole which is being inserted, and whose modromy is given to

the bubbling v. We stress that this instanton on an orbifold construction is an auxiliary

device which allows to easily compute monopole bubblings in the spirit of Kronheimer’s

construction [33], and it should not be confused with the physical orbifold where the 5d

theory lives on.

One might also consider simultaneous reduction on the “time” S1 and the orbifolded

circle. Naively this would lead to the partition function of the 3d version of the theory in

12One way this might happen is due to the fact that instanton numbers on C
2/Zn are multiples of 1/n.

Hence large n is like effectively setting q = 1.
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the presence of a monopole operator. We leave for future work the study of this possibility.

Note that 5d theories with U(N) gauge group admit a 5d Chern-Simons term, whose effect

will enter the instanton part of the 5d index. We leave for future work the study of the

effect of such CS, in particular its effect in the reduced theories.

Lastly, we have mostly focused on the case of U(N) gauge theories, but a similar

analysis should be possible for other gauge groups. In particular, by carefully studying

the possible actions of the orbifold on the gauge group should be equivalent, through the

large orbifold limit, to the study of the allowed line defects for a given gauge group, hence

giving detailed non-perturbative information about the global structure of the theory in

question [28, 29].
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A Monopole bubbling indices for U(N) pure gauge theory

Using the correspondence found in section 4 we can obtain monopole bubbling indices by

computing Hilbert series for instanton moduli spaces following the techniques of [36]. In

this appendix we use such techniques to compute several exact results.

A.1 B = (n, 0N−1) and v = (1, n− 1, 0N−2)

These B and v correspond to the solution K = (1, 2, 3, . . . , n − 1) of (4.3). From sec-

tion 4.2, the monopole bubbling index is equal to the Hilbert series of (n − 1)/n pure

SU(N) instantons on C
2/Zn, correpsonding to k = (1n−1, 0) and r = (1, n− 1, 0N−2).13

13The superscript indicates the number of repetitions.
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As shown in [36], the moduli space of such instantons is C2/Zn. Hence, the monopole

bubbling index is

Zmono(B = (n, 0N−1),v = (1, n− 1, 0N−2))(x, z)

= gC2/Zn
(x, z)

= PE[x2 + xn(zn + z−n)− x2n]

=
1− x2n

(1− xnzn)(1− xnz−n)(1− x2)
, (A.1)

where gC2/Zn
(x, z) is the Hilbert series of C2/Zn. In fact, we have seen special cases of this

for N = 2, n = 2 in (4.19), for N = 2, n = 3 in (4.25) and for N = 3, n = 2 in table 1.

In the large n limit, the index reduces to the Hilbert series of C:

Zmono(B = (n, 0N−1),v = (1, n− 1, 0N−2))(x) ∼ 1

1− x
, n→ ∞ . (A.2)

A.2 B = (1,−1, 0N−2) and v = (0N )

These B and v correspond to the solution K = (0) of (4.3). From section 4.2, the required

monopole bubbling index is equal to the Hilbert series of SU(N) instantons on C
2/Zn, with

k = (0n−1, 1) and r = (0N ) or N = (0n−1, N).

As shown in [36, 49], the moduli space of such instantons is equal to the moduli space

of one SU(N) instanton on C
2, whose Hilbert series is given by [49]. Explicitly,

Zmono(B = (1,−1, 0N−2),v = (0N ))(x, z) =
∞∑

m=0

[m, 0, . . . , 0,m]zx
2m , (A.3)

where [1, 0, . . . , 0, 1]z denotes the character of the adjoint representation of SU(N).

A.3 U(2) theory with B = (n, 0) and v = (p, n− p)

These B and v correspond to the following solution of (4.3).

K =(11, 22, 33, . . . , pp, (p+ 1)p, (p+ 2)p, . . . , (n− p)p,

(n− p+ 1)p−1, . . . , (n− 3)3, (n− 2)2, (n− 1)1) . (A.4)

Hence, the required monopole bubbling index is equal to the Hilbert series of pure instan-

tons with

r = (p, n− p), k = (1, 2, 3, . . . , p− 1, pn−2p+1, p− 1, . . . , 1, 0, . . . , 0) ; (A.5)

this corresponds to the instanton number k = p(n− p)/n. Explicit expressions for Hilbert

series for certain (n, p) can be found, e.g. (4.32) for (4, 1) and (4.34) for (4, 2).
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The large orbifold limit. Let us consider the limit n → ∞. For r = (p,−p), with
p ≥ 0, we find that the Hilbert series for such instantons, or equivalently the required

monopole bubbling index is

Zmono(B = (n, 0),v = (p, n− p))(t1, t2)

∼
p∏

m=1

1

1− (t1t2)m
= PE

[
p∑

m=1

(t1t2)
m

]
= PE

[
t1t2

1− t1t2
{1− (t1t2)

p}
]
, n→ ∞ (A.6)

Note that there is no dependence on z in the large orbifold limit.
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