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Abstract

In the frame of density functional theory, first principles calculations were car-

ried out to determine pressure stability ranges of zinc-blende (B3), cinnabar

(Cinn), rock-salt (B1), orthorhombic (Cmcm), and cesium chloride (B2)

phases of CdTe. In agreement with experimental observations, we found

a B3 → Cinn → B1 → Cmcm pressure-induced sequence, and predict the

B2 phase as a potential high pressure polymorph. The equations of state of

all these polymorphs and the components of the elasticity tensor of the B3

phase at zero pressure were determined and microscopically analyzed in terms

of atomic contributions. The concept of local pressure allows for quantifying

differences in the role played by Cd and Te as regards the compressibility of

CdTe phases, and suggests the existence of a general behavior under pressure

for binary II-VI semiconductors.
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1. Introduction

CdTe is a II-VI semiconductor compound belonging to the cadmium

chalcogenide crystal family. This is a group of important materials for the

development of various modern technologies of solid state devices such as

solar cells [1]. In particular, CdTe has an ideal direct band gap energy of

1.45 eV and a high absorption coefficient, which makes a very thin layer of

this material sufficient for a high energy conversion efficiency [2]. Along with

the electronic properties, the mechanical behavior of CdTe has also been the

subject of many experimental studies, including pressure effects using Raman

spectroscopy [3] and transport measurements [4]. Special attention has been

paid to the structural changes of this compound in connection with the recon-

structive phase transition sequence exhibited by other binary chalcogenides

at high pressure [3, 4, 5, 6].

Using angle-dispersive techniques and image–plate detectors, Nelmes et

al. [6] rather unexpectedly found that CdTe undergoes a rich polymorphism

under applied high pressure. They found the transition sequence zinc-blende

(B3) → cinnabar (Cinn) → rock-salt (B1) → Cmcm with transition pres-

sures of 3.5 GPa (B3–Cinn), 3.8 GPa (Cinn–B1), and 10 GPa (B1–Cmcm),

respectively. According to this work, the cinnabar phase of CdTe only exists

in a narrow pressure range around 3.5 GPa, which explained why it had not

been found in previous experiments. This polymorphic sequence is now well

established and clarifies controversy regarding the existence of the cinnabar

phase for CdTe (see for example Ref. [7]). From the theoretical side, only a

few works have accurately simulated the correct sequence of pressure-induced

phase transitions for CdTe [8, 9, 10]. Moreover, there is still a lack of fun-
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damental understanding of several aspects regarding the role played by the

atomic constituents of these binary semiconductors in their compressibility

and in the corresponding transition pressures.

Though it is clear according to previous works (see for example Ref. [11]),

that macroscopic compressibility is one of the key parameters linked to poly-

morphic sequences, phase stability is ultimately determined by the crystalline

bonding network, and hence by the valence electrons of the particular atomic

constituents of the solid. To understand the complex factors connecting sta-

bility and equation of state (EOS) parameters of compounds, one appealing

route is to decompose macroscopic observable properties in terms of local

contributions, and more specifically, of meaningful chemical entities as the

atomic constituents of the materials. This is also of critical importance in

materials design and earth studies where a decomposition of compressibility

as a sum of atomic-like contributions allows one to rationalize trends and to

guide materials synthesis [12, 13]. A formalism that is best suited along this

line relies on the rigorous quantum-mechanical analysis of the topology of

the crystalline electron density provided by the Atoms in Molecules theory

(AIM) [14]. With this formalism, we have shown in previous works how the

partition of static thermodynamic properties like the bulk modulus can be

used, for example, to explain the uniform behavior of a number of cubic oxide

spinels under pressure [12, 13]. Greater fractional occupation of the oxide

anion sublattice and the greater compressibility of these anions (around 200

GPa) are the parameters that control the response to hydrostatic pressure

of all of these oxide spinels. More recently, Otero-de-la-Roza and Luaña also

proposed a feasible method for partitioning the non-isotropic elastic compo-
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nents into atomic contributions by means of the AIM formalism [15].

Further insight into the behavior of solids under pressure can be given

using a new definition of local pressure: the resistance exerted by an atom

against volume reduction when pressure is applied [16]. The way several

ZnX (X: S, Se, Te) polymorphs nicely follow a common trend when these

atomic-like (Zn and X) pressures are considered has been recently illustrated

[16]. An extension of our previous calculations to other polymorphs with a

different cation is desirable to test the performance of this new concept in

the binary II-VI semiconductor family.

In this contribution, our main goal is to clearly identify the role played

by Cd and Te in the polymorphic sequence exhibited by CdTe under hy-

drostatic pressure. To this end, we analyse the partition of the unit cell

volume of all observed CdTe polymorphs (plus the hypothetical B2 phase)

into well-defined, disjoint, and space-filling regions (basins) associated with

these atomic constituents, applying the AIM formalism to the crystalline

wave functions obtained after extensive first principles computations. Quan-

titative data of the pressure effects on the calculated atomic-like basins is

obtained through careful equation of state fittings. This information is used

to evaluate local pressures, compressibilities, and elastic constants for Cd and

Te. A comparison with our previous results in other binary chalcogenides is

also performed to check if our findings are general for this crystal family.

The rest of the paper is organized as follows. In Section 2, the com-

putational modeling is presented, giving details on the electronic structure

calculations, EOS fitting procedure, the scheme for the evaluation of the com-

ponents of the elasticity tensor, and a brief presentation of the topological
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partition formalism applied to the crystalline electron density. Results and

discussion in Section 3 are split into two subsections. The first one presents

bulk properties: EOS parameters, the phase transition diagram and elastic

constants. Comparison with available experimental data and results from

other theoretical calculations is included. The second one deals with the

microscopic partitioning of macroscopic properties focusing on the common

trend of atomic pressures for all polymorphs of the binary II-VI compounds

studied so far. A brief summary and the main conclusions are gathered in

Section 4.

2. Computational Modeling

Unlike simple theoretical calculations for cubic unit cell structures, some

of the phases belonging to the pressure-induced polymorphic sequence of

CdTe involve several structural parameters to optimize, and not only total

energy, but also atomic forces and stress tensor components have to be com-

puted. We have calculated the crystalline energy (E) at different volumes of

the unit cell (V ) for the following polymorphs: wurtzite (B4), zinc blende

(B3), cinnabar (Cinn), rock-salt (B1), orthorhombic (Cmcm), and cesium

chloride (B2); E and V always refer to one CdTe formula unit. B3 (F 4̄3m),

B1 (Fm3m), and B2 (Pm3̄m) are cubic structures and only the lattice pa-

rameter a has to be determined. B4 (P63mc) and cinnabar (P3121) are

hexagonal phases and both a and c lattice parameters are needed to deter-

mine the unit cell size. In addition, the z coordinate of Te (usually referred to

as u) for the B4 structure, and the x coordinate of Cd and Te non-equivalent

atoms (usually referred to as u and v, respectively) for the cinnabar structure
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need to be evaluated. Finally, the orthorhombic (Cmcm) unit cell is com-

pletely defined with the unit cell parameters a, b, and c, and the y coordinate

of Cd and Te non-equivalent atoms.

First-principles total-energy calculations at selected unit-cell volumes of

all the structures were performed under the formalism of the density func-

tional theory with the ABINIT code [17]. We used the Perdew-Burke-Ernzerhof

(PBE) exchange-correlation functional [18] and norm-conserving Troullier-

Martins pseudopotentials [19] with 12 and 6 valence electrons for Cd an Te,

respectively. Due to the existence of energetically competitive structures,

we ensured that the absolute total energies converged to 10−6 hartree/atom.

To this end, we used 8×8s×8, 6×6×8, and 4×8×6 Monkhorst-Pack meshes

[20] for the cubic, tetragonal and hexagonal, and orthorhombic lattices, re-

spectively and the plane-wave cutoff energy was set to 60 hartrees. Opti-

mization of the unit cell geometry and atomic positions at each volume was

performed via a Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization

(see Ref. [17]) of the total energy using the Hellmann-Feynman forces on the

atoms and the stresses on the unit cell. During the calculations, relaxations

of both the internal structural parameters and the cell shape were included.

The structural relaxation was performed until the residual forces and stresses

were less than 5×10−5 hartree/bohr and 5×10−7 hartree/bohr3, respectively.

The chosen computational parameters (cutoff energy, k-point meshes, force

tolerance, etc.) guarantee an accurate determination of the polymorphic

sequence and the corresponding structural and energetical properties.

For each polymorph, the equilibrium volume V0, the bulk modulus B0,

and its first pressure derivative B′0 (the 0 subscript meaning that all these
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quantities were evaluated at zero pressure) are then obtained by introducing

the corresponding energy-volume (per unit formula) (E,V ) points as input

to the gibbs code [21]. This is a well-tested computational code that imple-

ments a combined statistical numerical analysis with well-known analytical

EOS such as those of Vinet, Birch, Murnaghan, etc. (see Ref. [21] and

references therein). The standard strategy for the evaluation of the relative

stability of high-pressure phases at static conditions (zero temperature and

zero point vibrational contributions neglected) is based upon the examina-

tion of enthalpy (H = E + pV ) as a function of pressure (p) for different

phases. This task is also performed with the gibbs code.

Dynamical stability of high pressure cubic phases was also analyzed after

the determination of the phonon dispersion curves for the B1 and B2 phases.

We computed the interatomic force constants by Fourier transformation of

the dynamical matrices computed on 4×4×4 regular q-point grids. Due to

the metallic character of the high pressure phases of CdTe, the calculations

of the initial wave functions were performed on 16×16×16 k-point meshes

and including a cold smearing of 0.01 hartree. Whereas this parameter is

relevant to the evaluation of the phonon dispersion curves, we have checked

that it does not affect the energy-volume curves.

Concerning the calculation of the components of the elasticity tensor, the

subject was a matter of debate in the last decades (see for example Ref. [22]).

One elegant scheme, involving first derivatives of the stress and not second

derivatives of the energy, has been proposed by Le-Page and Saxe [23], and

illustrated by Hector et al. and others including pressure effects (see for

example [24, 25, 26, 27]). For the evaluation of these components just at
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zero pressure and in the cubic structure of the B3 phase of CdTe, we can

carry out a simple procedure described in Ref. [15] and detailed as follows.

Within the elastic domain of the crystal (i.e. infinitesimal deformations with

respect to the equilibrium configuration), stress (τ) and strain (ε) are related

by linear transformations:

τij =
∑
kl

cij,klεkl and εij =
∑
kl

sij,klτkl, (1)

where the indexes run over the three (x,y,z) cartesian coordinates and cij,kl

and sij,kl are the elastic constant and the elastic compliance components,

respectively. The bidimensional τ and ε tensors can be transformed into one

index of vectors using the Voigt [28] notation:

[τ11, τ22, τ33, τ23, τ31, τ12]⇒ [τ1, τ2, τ3, τ4, τ5, τ6] (2)

and

[ε11, ε22, ε33, ε23, ε31, ε12]⇒ [ε1, ε2, ε3, ε4, ε5, ε6]. (3)

Under the Voigt notation, and in the limit of infinitesimal deformations,

cij,kl and sij,kl can be expressed with just two indexes as follows:

cij =

(
∂τi
∂εj

)
ε′,0

and sij =

(
∂εi
∂τj

)
τ ′,0

, (4)

where primes and the zero subscripts indicate, respectively, that all other

strains (stresses) are null and the derivatives are evaluated at the equilibrium

geometry.

Alternatively, in terms of the total volume, Eq. 4 becomes:

cij =

(
∂τi
∂εj

)
ε′,0

=

(
∂τi
∂V

∂V

∂εj

)
ε′,0

. (5)

8



These equations will be further exploited below. Now, for the practical

calculation of the elastic constants, we recall the following expression for the

elastic energy of the crystal (see Ref. [15]):

φ =
E − E0

V0

=
1

2

∑
ij,kl

cijklεijεkl, (6)

where V0 and E0 are the equilibrium cell volume and energy, respectively.

In a cubic system, there are only three independent elastic constants

(compliances): c11(s11), c12(s12), and c44(s44). Using Eq. 6, the elastic con-

stants of the B3 cubic phase of CdTe have been obtained as follows. At

eleven values for each of the strains ε1, ε2 and ε4, ranging respectively from

-0.04 to 0.04, from -0.01 to 0.01, and from -0.06 to 0.06, we have calculated

the elastic energy of the corresponding unit cell including optimization of all

the free structural parameters that are compatible with the deformations.

In addition, we have carried out a microscopic analysis of the topology

of the electron density of all the CdTe polymorphs using Bader’s AIM for-

malism and the critic program [29]. To this end, calculated equilibrium

geometries have been considered. The AIM formalism allows for a chemical

characterization of a crystalline solid in terms of critical points where the

gradient of the electron density, ρ, is zero. Zones of charge depletion and

charge accumulation are associated with low values of ρ and positive Lapla-

cians and with high values of ρ and negative Laplacians, respectively. The

unit cell volume can be divided into well-defined, disjoint, and space-filling

regions, called basins, that are surrounded by a surface where the flux of the

gradient of the electron density is null. Thanks to the critic code [29], it is

possible to perform an unequivocal evaluation of the atomic volumes of Cd
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and Te in all the polymorphs at different pressures, thus providing the raw

data for the calculation of atomic-like equations of state.

3. Results and Discussion

3.1. Bulk properties

3.1.1. Total Energy and Equation of State

We start presenting the results obtained from total energy minimizations

with respect to all the unit cell parameters and internal coordinates at se-

lected sets of volumes for the six polymorphs of CdTe studied in this work.

This step is mandatory if we look for a microscopic partition of pressure. All

the calculated (E,V ) points can be described by means of smooth curves as

displayed in Fig. 1. From the corresponding data sets, the EOS parameters

(V0, B0, B
′
0) and the pressure-volume (p-V ) curves of all the polymorphs

have been calculated with the gibbs code [21]. We have completed extensive

numerical analyses in order to secure stability of the computed zero pressure

equilibrium values gathered in Table 1 against variations in sampling points

and fitting schemes.

According to our static calculations, B3 is predicted to be the stable

phase at zero pressure. As expected from their similar atomic environments,

wurtzite (B4) and B3 are almost degenerated showing a difference in energy

(∆E0) close to the accuracy of the calculation (10−5 hartree). In addition,

∆E0 (energy of each polymorph at equilibrium referred to the B3 phase) and

V0 values (see Table 1) follow monotonous trends suggesting the observed

pressure-induced polymorphic sequence: B3→ Cinn→ B1→ Cmcmn, with

a prediction of B2 for a potential phase at very high pressures. This issue will
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Figure 1: Calculated total energy versus volume per formula unit for several polymorphs

of CdTe

be discussed below. As regards the comparison with available experimental

data at room temperature, it is to be noticed that theory yields greater

volumes and lower bulk moduli, with discrepancies that are a little bit larger

than expected for GGA-type calculations. Notice, for example, that our B0

value for the ambient conditions stable B3 phase (34.5 GPa) lies within the

wide range of values quoted in Ref. [30] (from 13.3 GPa to 66 GPa) that

includes up to eighteen theoretical and experimental data. One of the values

quoted at 4 K (44.5 GPa) is close to the one quoted from X-ray diffraction

meassurements at room T (42 GPa), illustrating minor effects of temperature

on B0 in this T range. However, it is important to highlight that our focus
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Table 1: Calculated EOS parameters of CdTe polymorphs. ∆E0 refers to the minimum

energy of a given polymorph with respect to the B3 phase. For each property, the first

row lists calculated values in this work and, when present, the second row lists data from

experiments at room temperature or from other static calculations when experiments are

not available. Unit cell parameters in Å, V0 in Å3, B0 in GPa and ∆E0 in hartree.

B4 B3 Cinnabar B1 Cmcm B2

a, b, c 4.694, 7.699 6.647 4.641, 10.49 6.158 6.155, 6.006, 5.271 3.821

4.57a, 7.49a 6.48b 4.292c,10.235c 5.93c 5.573d, 5.960d, 5.284d 3.788e

u, v 0.3798 0.50, 0.83 0.16,0.63

0.641,0.564c 0.18d,0.65d

V0 73.53 73.46 65.31 58.38 57.08 55.89

B0 34.3 34.5 38.8 45.7 45.7 43.6

42.1f 42g 32g, 51.7h 69g 67h 45.9h

B′ 4.78 4.80 4.85 4.98 4.94 4.84

∆E0 0.0003 0.00 0.0073 0.0145 0.0202 0.0465
aRef. [31], bref. [32], cat 3.6 GPa, quoted in Ref. [10], dat 18.6 GPa, quoted

in Ref. [10], ecalculated, Ref. [10], f ref. [33], gquoted in Ref. [30],

hcalculated, quoted in Ref. [10].

is on the atomic contributions along the polymorphic sequence as pressure

is applied. Fortunately, these differences are not expected to affect the final

results of our microscopic analysis.

3.1.2. Phase Diagram

Our calculated E-V and p-V curves are the main source to evaluate how

the enthalpy, H, evolves as pressure is applied. In order to determine all pos-

sible pressure-induced phase transitions, we have evaluated how the difference
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between the enthalpies of all pairs of structures changes with pressure, and

have determined the transition pressure (pt) applying the equilibrium con-

dition ∆H=0. Results are displayed in Fig. 3. In spite of the number of

curves plotted, we believe that it is worth exploring all of the possibilities,

although only the most important results will be summarized here.

100 i

0

100

200

300

Γ X M R Γ M

ω
 (

c
m

−
1
)

 0

 50

 100

 150

 200

 250

 300

 350

 400

Γ X M R Γ M

ω
 (

c
m

−
1
)

 0

 20

 40

 60

 80

 100

 120

 140

 160

Γ X Γ L X W L

ω
 (

c
m

−
1
)

Figure 2: Calculated phonon dispersion curves for the B2 phase at 71 GPa (left) and 123

GPa (middle), and for the B1 phase at 5 GPa (right)

If we list the computed stable phases (lowest H) as pressure is applied, we

find the same polymorphic sequence as experimentally observed (in brackets

calculated pt values): B3 → Cinn (4.4 GPa), Cinn → B1 (5.1 GPa), and B1

→ Cmcm (22 GPa). Comparison with experimental pt values at room tem-

perature [6] shows some discrepancies (3.5 GPa, 3.8 GPa, and 10 GPa are the

observed transition pressures, though coexistence of phases within pressure

ranges of few GPa are detected and should also be considered) that are in

part due to our GGA level of calculation. Other phase transition properties

show the correct trend and quantitative agreement with previous theoretical

calculations, although it is difficult to make a direct comparison with avail-

able experimental data due to the different definitions and the disparity of

reported values. For example, our calculated (in brackets, theoretical results

from Ref. [8]) volume collapses with respect to the transition volume of the
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corresponding low pressure phase along the above transition sequence are

10.3% (13.1%), 9.5% (7.5%), and 2.2% (1.8%). The experimental values at

room temperature for the same transitions quoted in Ref. [8] are 14.3%, 3.7%

and a value lower than 1%.

In addition, the Cmcm → B2 phase transition is predicted at a pressure

above 70 GPa (not displayed in Fig. 3). In order to further validate the

dynamical stability of the B2 phase predicted from our static calculations, we

have determined phonon dispersion curves for this high-pressure structure.

Although the B2 phase presents an imaginary frequency in the vicinity of

the M point at 71 GPa (Fig. 2 (left)), it is metastable (positive frequencies

at Γ). Moreover, the imaginary frequency disappears at pressures close to

110 GPa and the phase becomes fully dynamically stable (Fig. 2 (middle)).

Additionally, phonon dispersion curves for the B1 phase were determined.

The abscence of imaginary frequencies in the whole Brillouin zone for the B1

phase at 5 GPa, within its experimental range of existence, informs on its

dynamical stability (Fig. 2 (right)).

It is even more important to highlight that the B3→ B1 and B3→ Cmcm

phase transitions are computed at 4.8 GPa and 6.2 GPa, respectively, which

is very close to the B3 → Cinn value of pt (see inset of Fig. 3). Therefore,

attention should be paid when comparing the calculated (thermodynamic)

polymorphic sequence with that observed experimentally. A number of fac-

tors involved in the kinetics of these transformations (defects, hysteresis,

thermal barriers, etc.) could favor, for example, the transition from the B3

phase into the B1 phase, thus masking the cinnabar phase. To this regard,

it is interesting to note that Mart́ınez-Garćıa et al. found in their energy
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dispersive X-ray experiments that, as temperature increases (above 773 K),

B3 transforms directly to B1, thus skipping the cinnabar phase [7]. We

are currently working on the definition of a transition path connecting B3,

cinnabar, and B1 phases that will lead to the evaluation of the corresponding

energy barriers following a martensitic-like approach as we did, for example,

for the zircon-scheelite transition in ZrSiO4 [34]. Similarly, other transfor-

mations, as the Cinn → Cmcm calculated at 8.1 GPa, might prevent the

occurrence of the B1 phase, though, as far as we know, this situation has

not been previously reported. To complete this discussion, we should point

out that (high) temperature could play an important role in the evaluation

of these phase boundaries. The quasiharmonic approximation constitutes

the computational strategy to follow as illustrated by Wrobel et al. [35] or

Otero-de-la-Roza and Luaña [36], though its application is out of the scope

and goals of this work.

3.1.3. Elastic Constants

As an example, Fig. 4 illustrates how the elastic energy of the B3 unit cell

departures from its equilibrium value (which is taken as 0 for reference) as

the cell is deformed following the unidimensional strains ε1 and ε4 involved,

respectively, in the elastic constants c11 and c44. Our GGA calculated values

for the elastic constants are compared with earlier experimental results [37] at

room temperature in Table 2. The discrepancy between our results and those

experimentally obtained is not higher than 20% for c11 and c12, whereas it is

about 10% for c44. In lanthanum-magnesium phases, a comprehensive study

comparing standard functionals with a critical analysis of their performance

under static and temperature conditions show that the calculated compone-

15



-250

-200

-150

-100

-50

 0

 50

 100

 150

 0  5  10  15  20  25  30  35  40

∆
G

 (
k
J
/m

o
l)

p (GPa)

B3-B1

B3-cmcm

B3-cinn
cinn-B1

B3-B2

cinn-B2

B1-B2

cmcm-B2

B1-cmcm

cinn-cmcm

-20

-10

 0

 10

 20

 4  5  6  7  8

Figure 3: Calculated ∆G energies for all phase transitions involving CdTe polymorphs.

The inset enhances a relevant pressure range with competitive phase transitions. Pressure

in GPa. Energy in kJ/mol.

nents of the elasticity tensor are not systematically affected by the type of

functional when comparing with the corresponding experimental values [35].

Additionaly, it is to be noticed that the mechanical stability conditions in-

volving the elastic constants in cubic crystals (c11 − c12 ≥ 0, c11 + 2c12 ≥ 0,

and c44 ≥ 0) are seen to be satisfied in our calculations (see Table 2).

In order to further test the consistency of our calculations, Table 2 also

lists the B0 value obtained from the EOS fitting in the previous section (last

column) and the one derived from the elastic constants relationship in cubic

crystals: B0,el=
1
3

(c11 + 2c12). A very good agreement is found between these
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involved, respectively, in the evaluation of the elastic constants c11 and c44.

two values (B0=34.5 GPa, B0,el=34.7). Given the different origin and fitting

schemes used in their evaluation, this result provides further reliability to

our computational procedures.

3.2. Local Properties

3.2.1. Local Pressure

Once the observed behavior of CdTe under pressure has been computa-

tionally simulated, we moved on to the microscopic interpretation in terms

of atomic-like contributions. The unit cell volumes of the CdTe polymorphs

have been topologically partitioned into Cd and Te basins, VCd and VTe, for

all the computed (E,V ) points by means of the AIM formalism. As a result,
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f c11 c12 c44 B0,el B0

Cd 0.3684 14.7 9.5 6.3 11.3 39.1

Te 0.6316 30.5 19.9 11.8 23.4 32.4

CdTe 1 45.2,53.5a 29.4,36.5a 18.1,19.9a 34.7 34.5

aRef. [37]

Table 2: Calculated local and bulk elastic constants of the zinc blende phase of CdTe.

Units in GPa. f stands for the fractional occupation.

the (E,VCd) and (E,VTe) curves can be readily plotted (see Fig. 5). It is

now easy to evaluate local atomic-like pressures from these curves using the

following definitions formally equivalent to the thermodynamic pressure [16]:

pCd = −
(
∂E

∂VCd

)
T

, pTe = −
(
∂E

∂VTe

)
T

. (7)

These equations provide information on the volume reduction of the

atomic constituents of the system for a given increase in the crytal energy due

to pressure. The higher the atomic pressure, the lower the volume reduction

of the corresponding atom. Thus, pi can be seen as the resistance of the i-th

atom to reduce the finite volume that it occupies in the unit cell according

to the AIM topological formalism. It becomes interesting to compare the

contribution that Cd and Te present in the CdTe polymorphs examined in

this work. A plot of the pCd and pTe values corresponding to different pres-

sures for all the CdTe polymorphs is displayed in Fig. 6 (left). Alternately,

1
pi

represents another illustrative microscopic property, that we call atomic

mechanical conductance, and is related to the easiness of an atom to reduce

its volume when pressure is applied. Obviously, it contains microscopic in-

formation that is analogous to the local pressure. It is plotted in Fig. 6
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Figure 5: Calculated total energy versus atomic and bulk volumes for several CdTe poly-

morphs. Symbols correspond to the same phases as in Fig. 1.

(right). After a simple manipulation of Eqs. 7, we arrive at 1
p
= 1

pCd
+ 1

pTe
,

which resembles the equation for a circuit of parallel resistors, pi playing here

the role of a mechanical resistor in agreement with our description above (see

Ref. [16] for a thorough discussion of this analogy).

In Fig. 6, we have also represented the corresponding values from our

previous calculations in some ZnX (X: S, Se, Te) polymorphs [16]. Several

results need to be clarified. Cd behaves as a cation and is clearly more resis-

tant than Te, the anion, as pressure is applied (Fig. 6 (left)). It is apparent

that straight lines can nicely connect the thermodynamic pressure (p) with

the atomic pressure of Cd (pCd) and Te (pTe). The slopes clearly demon-
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Figure 6: Calculated atomic pressures (left) and mechanical conductances (right) of Cd

and Te, and comparison with the corresponding local properties of Zn and X (X: S, Se,

Te) in CdTe (this work, solid symbols) and ZnX (Ref. [16], empty symbols) polymorphs.

strate the different mechanical resistances of both atoms, around 3.4 for Cd

and 1.4 for Te. As far as similarities are concerned, the lower the pressure,

the greater ability to reduce their volume both atoms show (Fig. 6 (right)).

We notice that all of these results are independent of the polymorph consid-

ered. Perhaps the most important conclusion from these plots is the fact that

not only all the points can be grouped in two very well defined curves, one

associated with Cd and one with Te, but that this behavior continues even if

we consider the calculated local pressures of the other binary chalcogenides

(ZnS, ZnSe, ZnTe) investigated in our previous work [16]. This regularity

calls for universal trends under pressure for all these semiconductors that

can be extended to other families. In fact, this kind of universal behavior

has been detected, for example, in the zinc blende-rock salt transition path of

several II-VI, III-V and IV-IV compounds [38]. It should be understood that

the similar mismatch between the local pressures of the metal and non-metal

elements of the semiconductors examined here leads to a similar behavior
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regarding the transition mechanism.

3.2.2. Atomic contributions to compressibility and elastic constants

Local compressibility associated with Cd and Te can be defined equiva-

lently to the compressibility of the whole crystal:

κ =
1

B0

= − 1

V

(
∂V

∂p

)
T

. (8)

Taking into account the partition of the cell volume into atomic contributions,

V = VCd + VTe, (9)

Eq. 8 becomes:

κ = fCdκCd + fTeκTe and
1

B0

= fCd
1

B0,Cd

+ fTe
1

B0,Te

(10)

where fCd = VCd/V and fTe = VTe/V are the occupation fractions of Cd and

Te, respectively, in the cell, and

κCd =
1

B0,Cd

= − 1

VCd

(
∂VCd

∂p

)
T

, κTe =
1

B0,Te

= − 1

VTe

(
∂VTe

∂p

)
T

. (11)

Therefore the bulk compressibility results from averaging the local com-

pressibilities in such a way that the contribution from a given atom is propor-

tional to the volume fraction occupied by the atom in the crystal [12]. From

these data we can illustrate how the bulk and local compressibilities evolve

along the polymorphic sequence (see Fig. 7). The comparison with previous

calculated data on ZnX (X: S, Se, Te) polymorhs [16] allows us to notice

that the same trend is observed for CdTe, with the cation (Cd or Zn) less

compressible than the anion (S, Se or Te) for each compound and polymorph.
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However, we observe that the same anion (Te) or the same cation (Zn) shows

compressibilities that depends on both the polymorph and the compound.

It is not possible to group, as we did above with the local pressure, cations

and anions in well–defined and separate universal behaviors if we use local

compressibilities.
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Figure 7: Calculated atomic and bulk compressibilities for several polymorphs of CdTe

(this work) and ZnX (X: S, Se, Te) (Ref. [16]). Phases are ordered according to the

pressure-induced polymorphic sequence. Stars, pluses and crosses stand, respectively, for

the anion (Te, Se, S), the bulk, and the cation (Cd, Zn). Units in 102 GPa−1.

Finally, we proceeded to the partition of elastic constants following a

similar strategy as the one used to calculate local compressibilities. That is,
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combining Eqs. 4 and 9:

cij =
∂τi
∂V

[
∂VCd

∂εj

∂VTe

∂εj

]
= cCd

ij + cTe
ij , (12)

with cCd
ij being:

cCd
ij =

[(
∂VCd

∂εj

)(
∂V

∂τi

)−1
]

ε′,0

, (13)

with an equivalent definition for cTe
ij . Notice that in this case no fractional

occupancies are explicitly involved in these equations since they are subsumed

in the partial derivatives.

We have computed the stress components, τi, for the same values of ε1,

ε2, and ε4 as the ones in the calculation of the elastic constants. Two types

of fittings were required. First, a low degree polynomial has been used to

describe how the unit cell volume changes with the stress components. Sec-

ond, a low degree polynomial was fitted to the atomic volumes. This way,

the necessary derivatives in Eq. 13 are obtained. Table 2 lists the calculated

(hypothetical) atomic-like elastic constants for both Cd and Te ions.

The first conclusion that can be drawn from the microscopic elastic con-

stants is that our topological partition is complete in the sense that all cij are

accurately reproduced as a sum of the two atomic contributions. As before,

this is a very satisfactory result since the fitting procedures and the com-

putational schemes to evaluate the local contributions and the bulk values

of the components of the elasticity tensor are independent. As a result, the

bulk modulus of the crystal is recovered by summing up the contributions

from each ion (see column B0,el in Table 2). The definition of the local bulk

modulus (last column of Table 2) as the inverse of the local compressibility
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does not contain the atomic occupation fraction and can not be compared

with the values obtained from the elastic constants. In fact, this column

agrees with the chemical intuition of greater bulk modulus associated with

the cation in comparison with the bulk modulus of the anion. The results

coming from the partition of the elastic constants provides the opposite re-

sult: the anion is the one with greater values. It should be noticed that the

expressions used to derive these values involve other factors, as the change in

the total cell volume with the applied stress, that prevent these microscopic

quantities from being considered as purely atomic. The topological partition

is not unique, but there are at least two equally well-defined forms that show

different behaviors and properties. Furthermore, both partitions complement

each other, i.e. from the partition of the compressibility the most and least

compressible ions are identified, while by using the partition of the elastic

constants the ion that contribute the most to the bulk modulus is found, as

fractional occupancies are already subsumed in their operative definition.

4. Summary and conclusions

The response of CdTe to hydrostatic pressure has been investigated by

means of first-principles methodologies. Equilibrium geometries, equation of

state parameters, and pressure ranges of thermodynamic stabilities have been

computed in fair agreement with available experimental data and previous

theoretical results. The polymorphic B3 → Cinn → B1 → Cmcm → B2

sequence has been obtained, thus predicting an eight-fold coordination for

Cd and Te at pressures above 70 GPa. This hypothetical B2 phase was

confirmed to be fully dynamically stable at pressures above 100 GPa. The
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calculation of the elastic constants of the B3 phase of CdTe provides results

that confirm the reliability of our computational procedures and allows for

the extension of our microscopic analysis of these observable properties.

One important conclusion of the paper is that in fact we can define atomic-

like pressures, compressibilities and local elastic constants without having

the total energy partitioned into local contributions, thus avoiding a not

unequivocal definition and calculation of local energies. Compressibility and

elastic constant partitions provide information on atomic contributions to

these properties and identify the cation (Cd) as the most difficult crystalline

consituent to compress. A general universal behavior is only found when

the local pressure concept is invoked. We have seen that all the cations

and anions follow well separated linear trends when their calculated local

pressures are plotted versus hydrostatic pressure for a number of pressure-

induced polymorphs of binary II-VI compounds. This result contributes to

the understanding of an unified picture for the transition path between the

zinc blende and rock salt phases of binary semiconductors [38].
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