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1 Introduction

Interacting quantum field theories in 5d are non-renormalizable and therefore do not gener-

ically exist as microscopic theories. Nevertheless there is compelling evidence that there

exist N = 1 supersymmetric interacting fixed point theories in 5d, some of which have

relevant deformations corresponding to ordinary gauge theories with matter [1–5]. This

follows from the special properties of gauge theories with eight supersymmetries in five di-

mensions, namely that the pre-potential function of the low-energy effective theory on the

Coulomb branch F(φ) is one-loop exact and at most cubic. The effective gauge coupling

is then schematically given by

1

g2
eff(φ)

=
∂2F
∂φ2

=
1

g2
0

+ c|φ| , (1.1)

where the number c has both tree-level contributions, related to a bare 5d Chern-Simons

term, as well as one-loop contributions coming from integrating out massive gauge and

matter degrees of freedom. If c > 0 one can remove the UV cutoff, namely take g0 →
∞, without encountering a singularity on the moduli space. Since geff(0) → ∞, this

corresponds to a strongly-interacting fixed point. All the gauge groups and matter content

satisfying this condition were classified in [4].

A number of these theories can be realized using brane configurations in string theory.

For example D4-branes in Type I’ string theory realize a 5d N = 1 gauge theory with

an Sp(N) gauge group, a hypermultiplet in the antisymmetric representation, and Nf

hypermutiplets in the fundamental representation, where Nf is the number of D8-branes

near the D4-branes [1]. For Nf ≤ 7 the background can be arranged such that the effective

Yang-Mills coupling diverges at the origin of the Coulomb branch, and this corresponds

to the superconformal fixed point theory. The Type I’ construction suggests that these

theories exhibit a non-perturbative enhancement of the global symmetry from SO(2Nf )×
U(1)T to ENf+1, where U(1)T is the topological symmetry associated to the instanton

number current jT = ∗Tr(F ∧ F ).

This was recently confirmed from the field theory viewpoint by computing the 5d

superconformal index via localization [6]. This is a remarkable computation, which required

taking into account non-perturbative contributions from instanton operators in the gauge

theory. In the final result, the index can be expressed in terms of characters of ENf+1,

beautifully showing the enhanced global symmetry. The results of [6] can also be extended

to other 5d superconformal gauge theories, such as the so-called Ẽ1 theory, which does not

exhibit enhancement [7, 8]. In this paper we will use the superconformal index to study

several other 5d superconformal gauge theories, some of which exhibit non-perturbatively

enhanced global symmetries.

Another useful tool in the study of N = 1 5d theories has been (p, q)5-brane web con-

figurations in Type IIB string theory [5]. These configurations can describe both ordinary

gauge theories with 5d UV fixed points, as well as superconformal theories that do not have

a gauge theory description. In this construction the parameters and moduli of the gauge

theory are described by the relative positions of the 5-branes. This allows one to consider
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a continuation “past infinite coupling” in the gauge theory by appropriately shifting the

positions of the 5-branes. In some cases this leads to another gauge theory, which we will

refer to as the dual gauge theory. Thus a single strongly-interacting superconformal theory

may be deformed to two different weakly-interacting IR gauge theories. This is different

from the usual sense of duality in lower dimensions, which relates different UV theories

that flow to the same IR theory.

Quiver gauge theories, namely theories with product gauge groups and bifundamental

matter fields, are examples where the idea of continuation past infinite coupling is relevant.

Such theories were originally ruled out by the argument based on (1.1), since they always

become strongly coupled somewhere out on the Coulomb branch [4]. On the other hand

5-brane web constructions of quiver theories indicate that in some cases a continuation past

infinite coupling is possible, and leads to a different gauge theory which is finitely-coupled

on its Coulomb branch [5, 9].1

While these dualities are well-motivated by 5-brane webs, they have not been system-

atically studied, and the full extent of their meaning has not been explored.2 For example

the mapping of the symmetries and charges between dual theories has not been carried

out. Here too, the superconformal index should provide a useful diagnostic. The index

essentially counts BPS operators in the superconformal theory, and is therefore protected

from continuous deformations [12]. Therefore the dual theories, corresponding to opposite

deformations of the fixed point theory, should have the same index. Furthermore, by com-

paring the contributions to the index with given charges in the two cases, we can derive

the precise map between them. Our present interest is in the quiver theories corresponding

to D4-branes in orbifolds of Type I’ string theory [10], specifically the even orbifolds with

vector structure, for which there exist 5-brane web constructions. We will study a number

of examples with low rank gauge groups and a small number of matter fields. In each

case, the 5-brane web description will suggest the identity of the dual gauge theory beyond

infinite coupling. We will then proceed to compute the index for the two theories as a test

of the conjectured duality.

The outline for the rest of the paper is as follows. In section 2 we will review some

basic properties of 5-brane webs, and their interpretation in terms of 5d N = 1 gauge

theories, paying close attention to the case with parallel external 5-branes. In section 3

we will review the general strategy for computing the superconformal index for 5d gauge

theories via localization, as developed in [6]. We will also point out some problems with this

approach related to the contribution of instantons as obtained from the Nekrasov partition

function. In section 4 we will study a set of examples of webs with parallel external 5-branes

corresponding to SU(N) gauge theory with a level ±N Chern-Simons term, and show that

these theories have an enhanced SU(2) global symmetry. In section 5 we study the simplest

quiver theory, SU(2)× SU(2) + (2, 2), and confirm that its dual is SU(3) + 2 · 3. We also

show that variants of the quiver theory exhibit global symmetry enhancement to SU(3) and

1The existence of certain quiver theory fixed points is also supported by the existence of large N super-

gravity duals [10].
2A certain family of dual theories was considered in [11]. The lowest rank example coincides with one

of our examples.
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SU(4). In section 6 we study a number of generalizations to higher rank, extra flavor and

an extra quiver node. In each case we will compare the superconformal indices, including

instanton corrections, and show that they are equal. Section 7 contains our conclusions,

and the appendices contain the explicit formulas for the instanton partition functions that

we use and the explicit expressions for the superconformal indices to the highest order that

we computed.

2 5-brane web basics

5-brane webs provide a very general approach to realizing 5d quantum field theories in the

context of string theory [5, 9]. These are planar configurations of connected (p, q)5-branes

in Type IIB string theory, where some of the 5-branes are internal, having a finite extent

on the plane, and others are external, being semi-infinite on the plane. The charges must

sum to zero at the vertices, and the 5-branes are oriented such that 1/4 of the background

supersymmetry is preserved. This gives, at low energy, a 5d N = 1 quantum field theory

living on the internal 5-branes. In many cases this is a gauge field theory with a known

action. The relative positions of the external 5-branes correspond to parameters of the

field theory, or equivalently to VEVs of scalars in background vector multiplets associated

to the global symmetries of the theory. The number of real parameters is given by the

number of external 5-branes minus 3. Overall translations of the web in the plane give the

same theory, and the position of one external 5-brane is fixed by the positions of all the

others. Deformations of the web that keep the planar positions of the external 5-branes

fixed correspond to the moduli of the theory. Those that move the external 5-branes in

directions transverse to the plane are Higgs branch moduli, and those that do not are

associated with the Coulomb branch. The latter are identified with the number of faces in

the web. In cases where the web becomes singular, with all external 5-brane lines meeting

at a point, it describes a 5d superconformal theory. However, if any external 5-branes

intersect away from the origin of the Coulomb branch the theory is not well-defined.

The simplest example of a 5d superconformal theory is the pure supersymmetric SU(2)

theory. The 5-brane web of this theory, together with the bare and effective coupling and

Coulomb modulus, is shown in figure 1a.3 This web corresponds to a particular SL(2,Z)

frame, in which the charges of the external 5-branes are (0, 1) and (2,−1). (We have also

fixed gs = 1 and the 10d Type IIB axion to zero.) In other frames, related by SL(2,Z)

to this one, the web looks different but the theory is identical. An SL(2,Z)-inequivalent

SU(2) web is shown in figure 1b. This web describes a different fixed point theory known

as the Ẽ1 theory [2], in which the global symmetry is not enhanced. The difference in the

gauge theories is the value of a discrete θ parameter associated with π4(SU(2)) = Z2 [3].

The E1 theory corresponds to θ = 0, and the Ẽ1 theory to θ = π. There is actually one

3This web is related to the Type I’ configuration by T-duality. The O8-plane becomes two O7-planes at

antipodal points on the circle, and the D4-brane becomes a pair of D5-branes wrapping it. Each O7-plane

is then resolved into a pair of 7-branes, resulting in the 5-brane web, with the four external 5-branes ending

on the four 7-branes. The charges of the 7-branes depend on the SL(2,Z) frame.
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(a) (b)

Figure 1. SU(2) webs. (a) SU(2)0 “E1 theory”, (b) SU(2)π “Ẽ1 theory”.

(a) (b) (c)

Figure 2. SU(3) webs with CS level κ = 0, 1, 2.

more SL(2,Z)-inequivalent web, which has parallel external 5-branes. We will discuss it

below.

This construction can be easily generalized to SU(N) by including more internal D5-

branes. In this case the different SL(2,Z) equivalence classes correspond to different CS

levels κ for the SU(N) gauge field. In figure 2 we show the webs for pure SU(3) with

κ = 0, 1, 2.4 The webs for κ < 0 are related to those with κ > 0 by a π rotation. This

corresponds to charge conjugation in the gauge theory, under which κ → −κ. Note that

the web identified with κ = 0, figure 2a, is invariant under this operation. The κ = N case

is analogous to the additional SU(2) web, which we will discuss below.

Adding matter is also straightforward. Matter hypermultiplets (usually) correspond

to external D5-branes. We will see several examples below, including one where the matter

comes from other (p, q)5-branes.

2.1 Continuation past infinite coupling

A web describing SU(N) with Nf matter multiplets has Nf + 1 real parameters. These

can be identified with the gauge coupling parameter m0 = 1/g2
0 and the Nf masses of

the hypermultiplets. We denote the coupling parameter m0 to stress that it too is a real

mass parameter, corresponding to the mass of the instanton particle at the origin of the

Coulomb branch. These mass parameters correspond to relevant deformations of the 5d

superconformal theory. Giving any of them nonzero values, by moving external 5-branes,

generates an RG flow to a different theory in the IR, which in many cases is a free 5d

supersymmetric gauge theory. In some cases the IR theory is another interacting SCFT.

4The identification of the CS level associated to the web is analogous to the 3d case, where the gauge

theory on D3-branes suspended between an NS5-brane and a (1, κ)5-brane has a level κ CS term [13, 14].
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Figure 3. Positive and negative deformations of the SU(2) theories.

In 5d all mass parameters are real, and can take both positive and negative values.

In particular one can deform the SCFT with a negative value for the mass parameter

corresponding to the Yang-Mills coupling. This can be thought of as a continuation past

infinite coupling of the gauge theory coming from the positive mass deformation. In some

cases this leads to a different gauge theory whose coupling is identified with minus the

mass. This is seen in the example of the E1 theory. The two deformations of the E1 web,

figure 3a, are related by SL(2,Z), and therefore describe the same IR-free SU(2) SYM

theory. In other words, the 5d N = 1 SU(2) YM theory with θ = 0 is self dual. On the

other hand for θ = π, the continuation past infinite coupling leads to the interacting E0

fixed point, figure 3b.

2.2 Parallel external legs

The case of webs with parallel external 5-branes, e.g. figure 4, is special. Originally, the

question was raised about whether these actually describe well-defined fixed point theories,

since there are light states associated to the parallel external 5-branes that do not obviously

decouple from those on the internal 5-branes [9]. We would like to argue that these states

do indeed decouple from the theory described by the rest of the web. The reason is basically

that they are uncharged under the gauge symmetry of the web. This is seen explicitly in

the webs in figure 4, in that the distance between the parallel external 5-branes, which

controls the mass of the states in question, does not depend on the size of the face, namely

on the Coulomb modulus. We will exhibit this more explicitly for a class of webs with

parallel external 5-branes below. This decoupling has also been argued recently from the

point of view of M theory and the toric geometry dual to the 5-brane web, where the extra

states correspond to M2-branes wrapping 2-cycles that are orthogonal to all the 2-cycles

dual to the internal 5-branes [15, 16].

The fixed point theories corresponding to webs with parallel external 5-branes are

expected to exhibit enhanced global symmetry. For parallel D5-branes, as in figure 4b, this

is seen at the classical level, and is simply the flavor symmetry associated with multiple

massless matter hypermutiplets in identical representations. However for other (p, q)5-

branes, as in figure 4a, the enhancement of the global symmetry will only be apparent once

one includes non-perturbative (instanton particle) corrections. We will encounter several

examples of this phenomenon in the rest of the paper.

– 5 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
2

(a) (b)

Figure 4. Webs with parallel external 5-branes. The dashed line corresponds to the decoupled

state.

3 5d superconformal index basics

The bosonic part of the 5d superconformal group is SO(5, 2)×SU(2)R. The representations

are labeled by the highest weights of the SO(5)×SU(2)R subgroup. We label the two weights

of SO(5) as j1, j2, and that of SU(2)R as R. The 5d superconformal index is defined as [6]

I = Tr (−1)F x2 (j1+R) y2 j2 qQ , (3.1)

where x, y are the fugacities associated with the superconformal group, and q represents

fugacities associated with other commuting conserved charges Q. The latter are usually

associated with flavor or topological symmetries.

Given a Lagrangian description of the field theory, the index can be computed from the

path integral on S4×S1 using localization. For 5d theories this was carried out for several

cases in [6]. The general result is expressed in terms of two parts. The first is perturbative,

and comes from the one loop determinant. This depends on the gauge group and the

matter content of the theory. Each gauge vector multiplet contributes a one-particle index

fvector(x, y, α) = −
x(y + 1

y )

(1− xy)(1− x
y )

∑
R

e−iR·α , (3.2)

and each matter hypermultiplet contributes

fmatter(x, y, α) =
x

(1− xy)(1− x
y )

∑
w∈W

Nf∑
i=1

(eiw·α+imi + e−iw·α−imi) . (3.3)

Here mi are the flavor chemical potentials, and α is the gauge holonomy matrix. The sum

in (3.2) is over the roots of the gauge group, and the first sum in (3.3) is over the weights

of the flavor representations. The full perturbative contribution is given by the plethystic

exponential of the one particle contributions:

PE[f(·)] = exp

[ ∞∑
n=1

1

n
f(·n)

]
, (3.4)

where the dot represents all the variables in f , namely the fugacities.

The second part of the index comes from instantons localized at either the north pole

or south pole (for anti-instantons) of the S4. The localization conditions allow for such
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configurations, and therefore they must be included in the index computation. This is done

by integrating over the Nekrasov partition function [17, 18]. The full index is given by

I(x, y,mi, q) =

∫
[Dα] PE[fvector + fmatter] |Zinst|2 , (3.5)

where Zinst is expressed as a power series in the instanton number k,

Z inst = 1 + qZ1 + q2Z2 + · · · , (3.6)

where Zk is the 5d k-instanton partition function. Computing these is generally the trick-

iest part of the calculation. The instanton partition function Zk is generally expressed as

an integral over the “dual gauge group” of the instanton moduli space.5 The integrand

has contributions both from the gauge multiplet and from the charged flavor hypermuti-

plets. The integral is evaluated using the residue theorem, which in general requires a pole

prescription. The explicit formulas for the instanton partition functions that we will use,

including the pole prescriptions, are given in appendix A.

3.1 Issues for instanton partition functions

There are a number of subtle issues in computing the instanton partition functions which

we would like to discuss here. Some of these have known analogs in 4d, and others are

specific to 5d.

3.1.1 SU(N) vs. U(N)

Strictly speaking, the Nekrasov partition function assumes a U(N) gauge symmetry.

Naively, one can then reduce to SU(N) by restricting Tr(α) = 0, namely by setting the

fugacity of the overall U(1) to 1. However the result retains some remnants of this U(1),

and we must remove them in order to obtain the SU(N) instanton partition function.

One way to expose these remnants is by studying cases in which SU(N) has an alter-

native description, e.g. SU(2) = Sp(1) or SU(4) = SO(6), which allows for an independent

computation of the instanton partition functions that can be compared with the U(N)

formalism.6

As our test case, let us consider an SU(2) theory with Nf flavors, and compare the k-

instanton partition function in the U(2) description to that in the Sp(1) description. First,

we find an overall sign difference which is consistent with a factor (−1)k(κ+Nf/2), where κ

is the U(2) CS level. The combination κ +
Nf
2 is the full quantum CS level. As usual, for

an odd number of flavors κ must be half-odd-integer. This factor remains after we enforce

the zero-trace condition, and is one remnant of the difference between U(2) and SU(2).

The latter, of course, does not admit a CS term. We have not fully understood the source

5In Type IIA string theory, the 5d instanton is a D0-brane inside a stack of D4-branes. The “dual gauge

group” for k instantons is the gauge group living on k D0-branes.
6The instanton moduli space is realized differently in the two descriptions, and this leads to different

dual gauge groups and different integrands in the instanton partition functions. Nevertheless, the resulting

partition functions must agree.
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of this factor, but we believe, due to the dependence on the instanton number k, that it

comes from the mixed CS term in U(2), and more generally in U(N):

Smixed CS ∝ κ

∫
Â ∧ Tr(F ∧ F ) . (3.7)

We will include this factor in all SU(N) partition functions, and in particular in SU(2)

partition functions computed via U(2).

For Nf > 2 there is another discrepancy. The instanton partition function computed

using Sp(1) exhibits the SO(2Nf ) flavor symmetry, but in the U(2) formalism it exhibits

only a U(Nf ) subgroup. A similar problem was encountered in 4d [19], where it was claimed

to be due to the non-decoupling of the overall U(1) gauge sector.

Consider the SU(2) theory with Nf = 3. By expanding the two partition functions

computed using the U(N) and Sp(N) formalisms (given in appendix A) in powers of x, a

pattern emerges that suggests the relation

ZSp(1)+3
inst = PE

[
q x2 e

i
2

(m1+m2+m3)

(1− xy)(1− x
y )

]
ZU(2)+3

inst , (3.8)

where q is the instanton number fugacity. For the U(2) computation we took κ = 1
2 . The

sign factor in this case is (−1)k(κ+Nf/2) = +1. Alternatively we could have taken κ = −1
2

and replaced mi → −mi. In this case the sign factor would be (−1)k. We checked this

relation up to instanton number 3. A similar relation is found for SU(2) with Nf = 4:

ZSp(1)+4
inst = PE

q x2
(
e
i
2

∑4
i=1mi + e−

i
2

∑4
i=1mi

)
(1− xy)(1− x

y )

ZU(2)+4
inst . (3.9)

In using the U(N) formalism for SU(2) we need to include such a correction factor whenever

the effective number of flavors is greater than two, for example for the (1, 1) instanton of

the SU(2)× SU(2) linear quiver with an extra fundamental flavor (see section 6.2).

This discrepancy is related more generally to the issue of parallel external 5-branes

discussed in section 2.2. For Nf > 2 the SU(2) web necessarily has parallel external

NS5-branes. The correction factor in fact corresponds precisely to the contribution of the

decoupled U(1) instanton state. This state contributes to the instanton partition function

for U(N), which includes the overall U(1) factor, and its contribution remains after setting

Tr(α) = 0. We must therefore remove it by hand, by dividing by its partition function.

For example for any SU(N) web with a pair of parallel external NS5-branes, we have7

ZSU(N)
inst =

ZU(N)
inst

ZU(1)
inst

. (3.10)

It is straighforward to verify, referring to appendix A for the U(1) instanton partition

function, that this reproduces the factors in (3.8) and (3.9).

7This was recently also observed from the topological vertex perspective in [15, 16].
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The U(1) factor is not invariant under the flavor symmetry, or under x→ 1/x, which

is part of the conformal symmetry. This is true more generally for the U(N) instanton

partition function. However the ratio in (3.10) is invariant under both. This provides us

with useful consistency checks for the final results, which must respect both symmetries.

3.1.2 Antisymmetric and bifundamental matter

The inclusion of matter in the antisymmetric representation presents a problem. This is

apparent already in the results of [6] for Sp(N) with an antisymmetric hypermultiplet (see

eq. (A.14)–(A.16) in appendix A). The problem is that the contribution of the antisym-

metric matter to the instanton partition function includes an infinite tower of states with

growing representations under the SU(2)M matter global symmetry. This is possible only if

there exists an SU(2)M charged bosonic zero mode in the instanton moduli space. However

this is in conflict with the ADHM construction, in which matter multiplets contribute only

fermionic zero modes, leading to a finite number of representations under the matter global

symmetry. For example, this is what is seen for matter in the fundamental representation.

The authors of [6] argued, for a different reason, that one must subtract a particular

term from the instanton partition function for Sp(N) with an antisymmetric hypermulti-

plet. Recall that this is the theory described by D4-branes in Type I’ string theory. In

this picture the instantons correspond to D0-branes. The point made in [6] is that in

addition to the Higgs branch corresponding to the instanton moduli space, the D0-brane

quantum mechanics also has a Coulomb branch, namely an extra bosonic zero mode, whose

contribution should be removed. Removing it leads to a finite number of representations.

The same problem appears for Sp-type quiver theories with bifundamental matter, in

evaluating partition functions for di-group instantons. This is not surprising, since these

theories correspond to orbifolds of the Sp(N) theory with antisymmetric matter. However

it is not clear how to deal with the problem in these cases. For Sp(1) quivers we can use

the U(2) formalism to deal with such instanons, but for higher N we do not yet have a

solution.

A similar problem arises for SU(N) with antisymmetric matter (see eq. (A.5) in ap-

pendix A). In this case the matter contribution to the instanton index contains an infinite

tower of increasing representations of both the global and gauge symmetry. The resolution

in this case is not known either. Some of the examples we discuss below are of this form.

In these examples we are not able yet to incorporate instanton contributions.

4 Enhanced global symmetry in SU(N) theory

As our first interesting application we consider pure SU(N) theory with a CS level κ = N .

The corresponding 5-brane web, figure 5, has a pair of parallel external NS5-branes. The

N = 1 case, figure 5a, is an empty theory. The N = 2 case, figure 5b, is the third SL(2,Z)-

inequivalent SU(2) web. It describes an SU(2) theory with θ = 2π ∼ 0, which is equivalent

to the E1 theory [7].

We argued previously that the light state corresponding to the D-string between the

external NS5-branes decouples from the interacting fixed point theory. An instructive way
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(a) (b) (c)

Figure 5. Webs for SU(N)N with N = 1, 2 and 3.

(a) (b)

Figure 6. Embedding SU(N)N ×U(1)−1 ⊂ SU(N + 1)N−1.

to explain this is to embed the SU(N)N web inside a larger web with an extra internal

D5-brane and no parallel external NS5-branes, figure 6a. This describes an SU(N + 1)N−1

theory at a generic point on its Coulomb branch. A continuation beyond infinite coupling

for this theory leads to an SU(N)N ×U(1)−1 theory, figure 6b, where the U(1) gauge group

factor is associated with the extra rectangular face. The gauge multiplets that become

massive correspond to the open fundamental string in the U(1) face. The shifted CS levels

of the unbroken gauge groups are a result of integrating out the massive gauginos. From

the point of view of the SU(N) theory this corresponds to two fermions in the fundamental

representation, so the CS level is shifted by 1 to N . From the U(1) point of view there

are 2N fermions, so the resulting CS level is −1. It is apparent from the web that this

deformation generates a flow to an interacting fixed point associated to SU(N)N plus an IR

free SU(2) theory. The D-string that becomes massless is just the W -boson of this SU(2)

(it carries U(1) electric charge due to the CS term), and is therefore completely decoupled

from the dynamics of the SU(N)N fixed point theory.

As we will now show, the SU(N)N fixed point theory exhibits a non-perturbatively

enhanced global symmetry E1 = SU(2) for all N .

4.1 The SU(N)N superconformal index

The full global symmetry of the SU(N)N theory will be revealed by examining its super-

conformal index, and specifically the coefficient of the x2 term, which gets contributions

from the conserved current multiplets.

The perturbative contribution has the form

I
SU(N)
pert = 1 + x2 + O(x3) . (4.1)
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This is, of course, independent of the CS level. The perturbative index exhibits only the

U(1)T symmetry. For N = 1 the theory is empty, and therefore I
SU(1)
pert = 1.

The instanton contribution is given by a sum of k-instanton partition functions (3.6).

Let us first concentrate on the 1-instanton contribution. For CS level κ this is given by

(see appendix A)

Z
U(N)
1 =

1

2πi

∮
(1− x2) uκ+N−1 du

(1− xy)(1− x
y )
∏N
j=1(u− xeiαj )(u− eiαj

x )
, (4.2)

where we have projected out the overall U(1) by setting
∑

i αi = 0, and included the sign

factor (−1)κ. This can be evaluated using the residue theorem. For the “SU(1)1” theory

this gives

Z
U(1)1
1 = − x2

(1− xy)(1− x
y )

. (4.3)

We interpret this as the contribution of the decoupled D-string state. For the “SU(2)′′2
theory we find

Z
U(2)2
1 =

x4
(
e2iα + 1 + e−2iα − x2

)
(1− xy)(1− x

y )(1− x2e2iα)(1− x2e−2iα)
. (4.4)

As we claimed previously, these partition functions are not invariant under x → 1/x,

and therefore do not respect the superconformal symmetry. We need to remove the

contribution of the decoupled state (4.3). For the “SU(1)1” theory this obviously gives

Z
SU(1)1
1 = 0, as it should for an empty theory. For SU(2)2 we get

Z
SU(2)2
1 = Z

U(2)2
1 +

x2

(1− xy)(1− x
y )

=
x2(1 + x2)

(1− xy)(1− x
y )(1− x2e2iα)(1− x2e−2iα)

, (4.5)

which is x → 1/x invariant. In fact it is the same as the 1-instanton partition function

of the SU(2)0 theory, which has an enhanced E1 global symmetry. The extra conserved

currents come from the (subtracted) decoupled state. Again, this is what we expect, since

this theory is really the SU(2) theory with θ = 2π ∼ 0 [7].

Getting the explicit result for SU(N)N with N > 2 is a bit cumbersome and not very

illuminating. The lack of x→ 1/x invariance of (4.2) for κ = N is due to the existence of

an additional pole at u → ∞ in this case, as compared with κ < N (for κ = −N there is

an additional pole at u = 0). Since we assume that x � 1, the transformation x → 1/x

implies that we should change our pole prescription, and sum the residues of the poles

outside the unit circle. The contributions of all the other poles respect the symmetry since

they come in pairs that are interchanged under x→ 1/x. But the extra pole violates this

symmetry. The change in the partition function is related to the residue at the extra pole:

Z
U(N)±N
1 [x]− Z

U(N)±N
1

[
1

x

]
= Res[u = 0]−Res[u→∞]

=
1− x2

(1− xy)(1− x
y )

. (4.6)
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Note that this is independent of N . Indeed it is the same for N = 1. Therefore by subtract-

ing the N = 1 partition function, thereby removing the decoupled state, superconformal

invariance is restored. Thus the 1-instanton partition function for SU(N)N is given by

Z
SU(N)N
1 = Z

U(N)N
1 +

x2

(1− xy)(1− x
y )

, (4.7)

generalizing the N = 1, 2 cases above.

One can easily see from (4.2) that the leading contribution in the first term on the

r.h.s. of (4.7) is O(x2N ). The extra conserved current comes from the second term. Adding

the contribution of the anti-instanton, the full index up to k = 1 has the form

ISU(N)N = 1 + x2

(
q + 1 +

1

q

)
+ O(x3) . (4.8)

The coefficient of x2 is precisely the adjoint character of SU(2), which implies that the

global symmetry is enhanced from U(1)T to E1 = SU(2) for all N . The same holds for the

SU(N)−N theory.

In fact one can show that the full index can be expressed in terms of SU(2) characters.

Since [Zinst(x, y, α, q)]∗ = Zinst(x, y,−α, 1/q), the general expression for the index (3.5) can

be written in this case as

ISU(N)±N (x, y, q) =

∫
[Dα] PE[fvector]Zinst(x, y, α, q)Zinst

(
x, y,−α,

1

q

)
=

∫
[Dα] PE[fvector]Zinst(x, y,−α, q)Zinst

(
x, y, α,

1

q

)
, (4.9)

where in the second line we changed the integration variables from α→ −α and used the

invariance of fvector and the Haar measure. Therefore the full index is invariant under

q → 1/q, implying that it can be expressed in terms of SU(2) characters spanned by q.

4.1.1 Comments on higher instantons

Let us make a few observations about the contributions from higher instanton number.

Our result for k = 1 suggests that the full instanton contribution for SU(N)N is given by

ZSU(N)N
inst = PE

[
q x2

(1− xy)(1− x
y )

]
ZU(N)N

inst , (4.10)

where the plethystic exponential removes the decoupled state contribution from the full

partition function. This is consistent with what we found for SU(2) by comparing with

Sp(1) in section 3.1.1. Let us test this at the 2-instanton level. In this case there are two
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integration variables u1, u2, and we find

Z
U(N)N
2 [x]− Z

U(N)N
2

[
1

x

]
= −Res[u1 →∞, u2 →∞]−Res[u1 = xu2y, u2 →∞]

−Res[u1 =
xu2

y
, u2 →∞]−

N∑
i=1

Res[u1 = xeiαi , u2 →∞]

−
N∑
i=1

Res[u1 →∞, u2 = xeiαi ]

=
1− x2

(1− xy)(1− x
y )

Z
U(N)N
1 −

x(1− x2)(y + 1
y − x− x3)

(1 + xy)(1 + x
y )(1− xy)2(1− x

y )2
.

(4.11)

On the other hand, collecting the q2 terms in (4.10) we find that:

Z
SU(N)N
2 = Z

U(N)N
2 + ∆ , (4.12)

where

∆ =
x2

(1− xy)(1− x
y )

Z
U(N)N
1 +

x4(1 + x2)

(1 + xy)(1 + x
y )(1− xy)2(1− x

y )2
. (4.13)

Using (4.6) one can easily show that ∆[x]−∆[ 1
x ] is also given by (4.11), and therefore that

Z
SU(N)N
2 is invariant under x→ 1/x. It would be interesting to prove this for all instanton

numbers.8

5 The SU(2) × SU(2) quiver theories

The simplest example of a non-trivial quiver theory in 5d is the SU(2)×SU(2) linear quiver,

which has a single matter hypermultiplet in the bifundamental representation. We can

think of this as the Z2 orbifold of an Sp(2) theory with an antisymmetric hypermutiplet.

The global symmetry of the theory is SU(2)M × U(1)T × U(1)′T , where SU(2)M is the

“mesonic” symmetry associated to the bifundamental matter multiplet (which, since it is

real, can be decomposed into two half-hypermultiplets that are rotated by SU(2)M ), and

the two U(1)T ’s are the two topological symmetries associated with the instanton currents

of the two SU(2) factors.

There are four SU(2)× SU(2) theories corresponding to the values of the two discrete

θ parameters, (θ1, θ2) = (0, 0), (0, π), (π, 0), or (π, π). The second and third theories

are related by exchanging the two gauge group factors. Note that the θ parameters are

physical in this theory since the bifundamental multiplet contains an even number of real

massless fermions. The corresponding 5-brane webs are shown in figure 7.9 The correct

identification of the θ parameters of each web is made clear by deforming the web in a

way corresponding to turning on a mass term for the bifundamental multiplet. For a large

8For the SU(2)2 case a multi-instanton calculation and comparison with SU(2)0 was done in [20].
9As in the case of the SU(2) theories, there are additional SL(2,Z) inequivalent webs that correspond

to the same theories. We have not included these.
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(a) (b) (c)

Figure 7. SU(2)× SU(2) linear quivers with (θ1, θ2) = (0, 0), (0, π) and (π, π).

Figure 8. Step-by-step mass deformation (by “flops”) of the SU(2)π × SU(2)π theory.

enough mass this should reduce to two decoupled SU(2) theories, with the corresponding

values of θ. This is shown for the case of the (π, π) theory in figure 8.

5.1 Symmetry enhancement

The existence of parallel external NS5-branes in the webs for the (0, 0) and (0, π) theories

suggests a non-perturbative enhancement of the global symmetry in those cases. We will

exhibit this explicitly in terms of the superconformal index. But we can actually infer what

the enhanced symmetry has to be by the group theoretic properties of the instantons.

Consider a single instanton of one of the SU(2)’s, say the (1, 0) instanton. The analysis

for the (0, 1) instanton is identical. This will have the properties of an instanton of SU(2)

with two flavor hypermultiplets. Recall that for this theory the perturbative global symme-

try SO(4)F ×U(1)T is enhanced to E3 = SU(2)× SU(3) at the fixed point. Let us express

the SO(4)F flavor symmetry as SU(2)F × SU(2)′F . The additional conserved currents are

provided by the instanton (and anti-instanton), which transforms as (2, 1)+1 of the global

symmetry. From the point of view of the quiver gauge theory one of the flavor SU(2)’s

is identified with the second gauge group, and the other with the global SU(2)M symme-

try. There are therefore two cases to consider. In one case the instanton is charged under

SU(2)M and leads to an enhancement of the global symmetry, SU(2)M ×U(1)T → SU(3).

In the other case the instanton is charged under the second SU(2) gauge group and does

not lead to enhancement. The two cases are in one-to-one correspondence with the θ

parameter of the first SU(2) gauge group. For θ1 = 0 the (1, 0) instanton provides an

additional conserved current, and for θ1 = π it does not. The same conclusion holds also

for the (0, 1) instanton and the value of θ2. Therefore we assert that in the (0, π) and (π, 0)

theories, described by the web in figure 7b and its rotation by π, the global symmetry is
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enhanced to SU(3) × U(1)T , where the U(1)T is associated to the gauge group that has

θ = π. In the (0, 0) theory both instantons will contribute conserved currents, and we

expect an enhancement to SU(4).

Let us now verify these claims by examining the superconformal index. For the sake of

brevity, we present our results only to O(x3), although they have been computed to O(x7).

The perturbative part of the index is common to all four theories, and is given by

I
SU(2)×SU(2)
pert = 1 + x2

(
1

z2
+ 3 + z2

)
+ x3

(
1

y
+ y

)(
1

z2
+ 4 + z2

)
+O(x4) , (5.1)

where z is the fugacity associated to the Cartan subgroup of the SU(2)M symmetry. The

x2 term clearly shows the classical global symmetry, since z2 + 3 + z−2 = χ3(z) + 2,

corresponding to SU(2)M and the two U(1)T ’s. Indeed all terms can be expressed in terms

of characters of SU(2)M . Incorporating the instanton corrections requires us to deal with

the issues described in section 3.1. In particular, to avoid the problem associated with

bifundamental matter in the Sp(N) formalism we will use the U(N) formalism. However

this will require us to properly remove the U(1) contributions. Let us analyze the two

theories in turn.

5.1.1 The (0, π) theory

In the U(N) formalism the θ parameter corresponds to the CS level. In this case the

U(2) × U(2) CS levels are (κ1, κ2) = (1, 0). Note that due to the bifundamental matter

multiplet, this is reversed relative to the identification in the SU(2) theory, where θ = 0, π

corresponds to κ = 0, 1, respectively.

The 5-brane web, figure 7b, has a pair of parallel external NS5-branes. By analogy with

the other cases of parallel NS5-branes, we must remove the contribution of the decoupled

D-string state. In this case

ZSU(2)0×SU(2)π
inst = PE

[
q1 z x2

(1− xy)(1− x
y )

]
ZU(2)1×U(2)0

inst , (5.2)

where q1 is the fugacity associated with the instanton number of the first SU(2). The z

dependence is due to the fermionic zero modes from the bifundamental hypermultiplet.

In addition, the contributions of instantons of the second SU(2) are corrected by the sign

factor (−1)k2(κ+Nf/2) = (−1)k2 . As a consistency check of this formula, we have verified

that all the instanton partition functions we computed exhibit the full classical global

symmetry, as well as x → 1/x invariance. They also agree with the Sp(N) formalism,

when that can be used.

The instanton partition functions for U(2) × U(2) have contributions from the two

gauge multiplets and from the bifundamental hypermultiplet. The contribution of the

gauge multiplets is basically two copies of the gauge multiplet contribution for U(2). The

contribution of the bifundamental hypermultiplet is given in eq. (A.6) in appendix A. To

O(x3) there is only a contribution from the (1, 0) instanton. The correction to the index
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to this order is given by

I
SU(2)0×SU(2)π
(1,0) = x2

(
q1 +

1

q1

)(
z +

1

z

)
+ x3

(
y +

1

y

)(
q1 +

1

q1

)(
z +

1

z

)
+O(x4) .

(5.3)

Adding this to the perturbative contribution (5.1), the full index to this order can be

expressed in terms of SU(3) characters

ISU(2)0×SU(2)π = 1 + x2
(

1 + χ
SU(3)
8 [q1, z]

)
+ x3χ

SU(2)
2 [y]

(
2 + χ

SU(3)
8 [q1, z]

)
+O(x4) . (5.4)

Here the basic SU(3) characters are given by χ3[q1, z] = q
1/3
1 (z + 1

z ) + q
−2/3
1 and χ3[q1, z] =

q
−1/3
1 (z + 1

z ) + q
2/3
1 . The characters for the other SU(3) representations can easily be

obtained from these. This shows the enhanced SU(3) global symmetry. In particular the

x2 term exhibits the SU(3)×U(1)T conserved current multiplets.

Other instanons contribute to higher order terms in the index. For example the (0, 1)

instanton enters only at O(x4):

I
SU(2)0×SU(2)π
(0,1) = x4 + x5

(
y +

1

y

)
+O(x6) . (5.5)

As explained above, the instanton of one of the gauge SU(2) factors is charged either under

the other gauge SU(2) or under the global SU(2)M . This depends on the θ parameter

associated with the instanton. In the present case the (0, 1) instanton is charged under

the first gauge SU(2), and can therefore only contribute when combined with the anti-

instanton. This is what we see in (5.5). The contribution begins at O(x4), and does not

depend on the (0, 1) instanton fugacity. By contrast, the (1, 0) instanton contributes at

O(x2), and its contribution depends on both the instanton fugacity q1 and the SU(2)M
fugacity z (5.3), since it is gauge invariant.

We have extended the computation of the index to O(x7), which includes contributions

from (1,0), (0,1), (2,0), (1,1), (0,2), (3,0) and (1,2) instantons. Other instantons with total

instanton number 3, like the (0, 3) instanton, have partition functions that enter at this

order, but do not contribute to the index due to non-trivial gauge charges. The final result,

expressed in terms of SU(3) characters, is given in appendix B.

5.1.2 The (0, 0) theory

For the theory with θ parameters (0, 0) the U(2) × U(2) CS levels are either (1, 1) or

(1,−1). The web in figure 7a corresponds to (κ1, κ2) = (1, 1). There is an inequivalent

web that describes the same SU(2)× SU(2) theory, but which corresponds to U(2)×U(2)

CS levels (1,−1). That web has two pairs of parallel external NS5-branes, instead of three

parallel NS5-branes. This is analogous to the two webs that describe the SU(2) theory

with θ = 0. We will focus on the web shown in figure 7a, namely on U(2)1×U(2)1, because

the calculation turns out to be technically easier in this case. Of course the final result

should be the same in the other case, as it was for the two SU(2)0 webs. The removal of
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the decoupled states is achieved by10

ZSU(2)0×SU(2)0
inst = PE

[
x2(q1z + q2

z + q1q2)

(1− xy)(1− x
y )

]
ZU(2)1×U(2)1

inst , (5.6)

where the three terms in the numerator correspond to the D-strings between any two of

the three parallel external NS5-branes.

As before, we have verified that all partition functions that we computed exhibit the

complete classical symmetry, including x → 1/x, and that they agree with the Sp(N)

formalism when available. We have also verified, at least to total instanton number 4, that

the results using (κ1, κ2) = (1, 1) and (1,−1) agree.

To O(x3) there are contributions from the (1, 0), (0, 1) and (1, 1) instantons. These

combine to a correction given by

I
SU(2)0×SU(2)0
(1,0)+(0,1)+(1,1) = x2

((
z +

1

z

)(
q1 +

1

q1
+ q2 +

1

q2

)
+ q1q2 +

1

q1q2

)
+x3

(
y +

1

y

)((
z +

1

z

)(
q1 +

1

q1
+ q2 +

1

q2

)
+ q1q2 +

1

q1q2

)
+O(x4) . (5.7)

The x2 term exhibits ten additional conserved currents. Adding to the five in the pertur-

bative index (5.1), this gives the fifteen of the enhanced SU(4) symmetry. Indeed the full

index can be expressed in terms of SU(4) characters:

ISU(2)0×SU(2)0 = 1 + x2χ
SU(4)
15 [q1, q2, z] + x3χ2[y](1 + χ

SU(4)
15 [q1, q2, z]) +O(x4) , (5.8)

where we have used that the character in the fundamental representation of SU(4) is given

by χ4[q1, q2, z] = (q1/q2)1/4(z+ 1
z )+(q2/q1)1/4(

√
q1q2+ 1√

q1q2
). This shows the enhancement

of the global symmetry at the fixed point from SU(2)M ×U(1)T ×U(1)′T to SU(4).

We have carried out the computation of the superconformal index to O(x7), which

requires including instantons with charges (1,0), (0,1), (2,0), (0,2), (1,1), (3,0), (2,1), (1,2),

(0,3), (2,2), (3,1), (1,3), (3,2), (2,3) and (3,3). The contributions of the (2, 3), (3, 2) and

(3, 3) instantons were evaluated only using (κ1, κ2) = (1, 1). In this case the computation

is somewhat easier, in that these contributions come solely from the plethystic exponential

factor in (5.6), and there was no need to carry out the lengthy computation of the U(2)1×
U(2)1 instanton partition functions. The final result, which we present in appendix B, can

be expressed in terms of SU(4) characters, confirming the enhancement.

5.2 Duality

Let us now concentrate on the (π, π) theory, figure 7c. The singularity on the Coulomb

branch is clearly visible in the web, figure 9a. However at this point we have already gone

10For U(2)1 ×U(2)−1 we would instead need to take

ZSU(2)0×SU(2)0
inst = PE

[
(q1 + q2) z x2

(1− xy)(1− x
y

)

]
ZU(2)1×U(2)−1

inst ,

where the two terms in the numerator correspond to the D-strings between the parallel NS5-branes.
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(a) (b)

Figure 9. Duality: (a) SU(2)× SU(2) with (2, 2), (b) SU(3) with Nf = 2.

Figure 10. Mass deformation of SU(3) + 2 with m1,2 < 0.

beyond infinite bare coupling for one of the SU(2)’s. As realized in [5], the theory is now

more appropriately described in terms of the S-dual web, figure 9b, which gives SU(3) with

two matter multiplets in the fundamental representation.

In general, the 5d SU(3) theory can have a CS term. However the CS level of this theory

is zero, since the web, or more precisely the external 5-branes of the web, are unchanged

under a π rotation, namely under charge conjugation. Another way to see this is to deform

the web by moving the external D5-branes to infinity, corresponding to giving the flavors

an infinite mass. This leaves a pure SU(3) theory with a CS level

κ = κ0 +
1

2

2∑
i=1

sign(mi) , (5.9)

where κ0 is the bare CS level of the SU(3)+2 theory. We can then read off κ by comparing

the resulting pure SU(3) sub-web with figure 2, though we may need to use SL(2,Z). For

example, moving both D5-branes down we get the web in figure 10. The SU(3) part of

the web is related by the T-transformation of SL(2,Z) to the web in figure 2b, which

corresponds to κ = 1. Therefore κ0 = 0. The basic duality proposal is then

Duality 1: SU(2)π × SU(2)π + ( , )←→ SU(3)0 + 2 .

The global symmetries of the two theories agree. The SU(3) + 2 theory has a U(2) ∼
SU(2)M×U(1)B flavor symmetry, and an additional U(1)T topological symmetry. Evidently

the SU(2)M part should agree with that of the SU(2) × SU(2) theory, and the baryonic

and instantonic charges of the SU(3) theory should map to the two instantonic charges of

the SU(2) × SU(2) theory. Denoting the former as B and I, and the latter as I1 and I2,

it is reasonable to guess that I ∝ I1 + I2 and B ∝ I1 − I2. But in order to determine the

precise map, as well as to confirm the lack of symmetry enhancement in both theories, we

will need the superconformal indices.
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The discrete symmetries of the two theories also agree. In particular, the quiver theory

has a Z2 symmetry that exchanges the two gauge groups. This is the quantum symmetry

in the orbifold construction. There is no such symmetry on the SU(3) side. On the other

hand the SU(3) theory has a Z2 symmetry with no analog in the SU(2) × SU(2) theory,

charge conjugation. All the fields in the quiver theory are real, so charge conjugation acts

trivially. Clearly the duality should relate these two.11 This is consistent with our guess

about the charge map above, since on the quiver side I1 ↔ I2, and on the SU(3) side

B → −B. Note that it is crucial that the CS level of the SU(3) theory vanishes, since the

5d CS term is odd under charge conjugation.

5.2.1 Comparing indices

Let us then compare the superconformal indices of the two theories. We begin with the

perturbative contributions. The perturbative index of the SU(2)×SU(2) theory was already

given, to O(x3), in (5.1). We reproduce it here to O(x4), since that is where it differs from

the SU(3) theory:

I
SU(2)2

pert = 1 + x2

(
1

z2
+ 3 + z2

)
+ x3

(
1

y
+ y

)(
1

z2
+ 4 + z2

)
+x4

((
1

y2
+y2

)(
1

z2
+4+z2

)
+

1

z4
+

3

z2
+7+3z2+z4

)
+O(x5) . (5.10)

For SU(3) with Nf = 2 we find

I
SU(3)+2
pert = 1 + x2

(
1

z2
+ 3 + z2

)
+ x3

(
1

y
+ y

)(
1

z2
+ 4 + z2

)
+x4

((
1

y2
+y2

)(
1

z2
+4+z2

)
+

1

z4
+

3

z2
+9+3z2+z4

)
+O(x5) . (5.11)

The perturbative indices agree to O(x3), which is consistent with the agreement of the

global symmetries. However they start to differ at O(x4).

If the duality is correct the difference should be accounted for by instanton corrections.

ToO(x4) only the 1-instanton contributes in the SU(3) theory, and only the (1, 0), (0, 1) and

(1, 1) instantons contribute in the SU(2)× SU(2) theory. The corrections to the respective

indices are given by

I
SU(3)0+2
1 = x3

(
1

q
+ q

)(
1

z
+ z

)
+ x4

(
1

q
+ q

)(
1

y
+ y

)(
1

z
+ z

)
+O(x5) , (5.12)

where q is the SU(3) instanton fugacity, and

I
SU(2)2π
(1,0)+(0,1)+(1,1) = x3

(
q1q2 +

1

q1q2

)(
z +

1

z

)
+x4

[
2 +

(
y +

1

y

)(
q1q2 +

1

q1q2

)(
z +

1

z

)]
+O(x5) , (5.13)

11We thank Nathan Seiberg for pointing this out to us.
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where q1, q2 are the instanton fugacities associated with the two SU(2) factors. The con-

tributions of the (1, 0) and (0, 1) instantons can be computed in either the U(N) or Sp(N)

formalism. In this case there is no U(1) factor, since there is no decoupled state to re-

move. These instantons carry gauge charge, and therefore contribute only in instanton-

anti-instanton combinations starting with the “2” at O(x4). The contribution of the (1, 1)

instanton was computed in the U(N) formalism, using U(2)0 ×U(2)0, due to the problem

related to the bifundamental matter. This instanton contributes from O(x3).

Comparing the full indices to O(x4) we find a perfect agreement if we identify q = q1q2,

namely the SU(3) instanton charge is given by the sum the two instanton charges of the

quiver theory, I = I1 + I2.

To see baryonic states in the SU(3) + 2 theory we need to go to at least O(x5).12

This requires taking into account several higher instanton number contributions on both

sides. We have done the computation to O(x7), which includes the contributions of the

1-instanton and 2-instanton of the SU(3) theory, and the (1,0), (0,1), (1,1), (2,0), (0,2),

(2,1), (1,2) and (2,2) instantons of the SU(2)× SU(2) theory. Setting q = q1q2 the indices

agree to O(x4). At O(x5) we find

ISU(2)2π = · · · + x5

{
χ4[y](3 + χ3[z]) + χ2[y](χ5[z] + 5χ3[z] + 6) (5.14)

−
(

q1

q2
+

q2

q1

)
χ2[z] +

(
q1q2 +

1

q1q2

)
(χ3[y]χ2[z] + χ4[z] + χ2[z])

}
+O(x6) ,

and

ISU(3)0+2 = · · · + x5

{
χ4[y](3 + χ3[z]) + χ2[y](χ5[z] + 5χ3[z] + 6) (5.15)

−
(

b3 +
1

b3

)
χ2[z] +

(
q +

1

q

)
(χ3[y]χ2[z] + χ4[z] + χ2[z])

}
+O(x6) .

Setting q = q1q2 we then find perfect agreement if b3 = q1/q2, which means that the charges

are related as B = 3(I1 − I2). The agreement extends to O(x7) (see appendix B). This

completes our derivation of the charge map between the two theories.

6 Generalizations

In this section we will consider four simple generalizations of the SU(2) × SU(2) quiver

theory, gotten by increasing the ranks, adding flavor, or adding another SU(2) factor. We

will focus just on the theories that have potential gauge theory duals, namely on those

whose rotated 5-brane webs describe a Lagrangian gauge theory. These are the analogs of

the SU(2)π × SU(2)π theory. The other cases are also interesting from the point of view of

enhanced global symmetries, but we leave them out for the sake of compactness.

12Since there are only two flavors the simplest baryonic operator εαβγQaαQ
b
βQ

c
γ vanishes. The lowest

dimension non-trivial baryonic operator is schematically Bc ∼ εαβγεabQ
a
αQ

b
β∂+∂−Q

c
γ , and variants where

some of the derivatives are replaced by contractions with the gaugino, for which 2(R+ j1) = 5.
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(a) (b)

Figure 11. 5-brane webs for (a) Sp(2)× SU(2) quiver, (b) Sp(2)× Sp(2) quiver.

6.1 Higher ranks

The most natural higher-rank generalization of the SU(2) × SU(2) quiver is an Sp(N) ×
Sp(N) quiver, corresponding to N D4-branes in the Type I’ Z2 orbifold. More generally

one can consider Sp(N + M)× Sp(N), corresponding to N whole D4-branes and M frac-

tional D4-branes. The global symmetry is again SU(2)M × U(1)T × U(1)′T . Here we will

concentrate on the two simplest generalizations, Sp(2)×SU(2) and Sp(2)×Sp(2). We will

comment on higher N generalizations in the conclusions.

The 5-brane webs for the theories we are interested in are shown in figure 11. Note that

the intersections of 5-branes in these webs cannot break. Each pair of coincident external

5-branes should be considered as ending on the same 7-brane. This implies that they must

connect to different D5-branes, as required by the s-rule. This is also consistent with the

dimensions of the Coulomb and Higgs branches of these theories (see [10]). For example,

the web for Sp(2) × SU(2), figure 11a, has three independent faces corresponding to the

three Coulomb moduli.

The first question to address concerns the values of the θ parameters (θ1, θ2). As before

we can determine these by mass-deforming the web into two sub-webs corresponding to the

two gauge group factors. The deformations of the webs of figure 11 are shown in figure 12.

For the SU(2) part in the Sp(2) × SU(2) theory clearly θ = 0, since the SU(2) sub-web is

related by SL(2,Z) to the SU(2)0 web of figure 1c. For the Sp(2) sub-webs the situation is

less obvious. Clearly the two sub-webs in the Sp(2)× Sp(2) case have the same θ, and the

Sp(2) sub-web in the Sp(2)× SU(2) case has a different θ from that. We claim that in the

former case θ = π and in the latter case θ = 0. This can be understood by going on the

Coulomb branch of the Sp(2) factor so that it is broken to SU(2)× U(1). The adjoint 10

representation of Sp(2) decomposes on the Coulomb branch as 3 + 2 · 2 + 3 · 1. The SU(2)

part corresponds to the internal face in the Sp(2) sub-web (figure 12). One can see that

the θ parameter for this SU(2) is π in the Sp(2)×SU(2) theory, and 0 in the Sp(2)×Sp(2)

theory. On the other hand the SU(2) θ parameter on the Coulomb branch is the opposite

of the Sp(2) θ parameter at the origin, because the effective theory on the Coulomb branch

involves integrating out two vector multiplets of opposite mass in the 2 representation of

SU(2). Therefore (θ1, θ2) = (0, 0) for our Sp(2) × SU(2) theory, and (θ1, θ2) = (π, π) for

our Sp(2)× Sp(2) theory.

Therefore we do not expect an enhancement of the global symmetry in the Sp(2)×Sp(2)

theory. On the other hand, for the Sp(2)×SU(2) theory we expect some enhancement. This
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(a) (b)

Figure 12. Mass deformation of (a) Sp(2)× SU(2) quiver, (b) Sp(2)× Sp(2) quiver.

is also hinted by the parallel external 5-branes. Following the same logic as in section 5.1,

we can determine the nature of the enhancement. The (0, 1) instanton has the properties

of an instanton of SU(2) with four flavors. In this theory there is an enhancement of the

perturbative global symmetry SO(8)F ×U(1)T to E5 = SO(10). The SO(8)F part contains

both the Sp(2) = SO(5) gauge symmetry as well as the SU(2)M global symmetry of the

quiver theory. Indeed SO(5)× SU(2) is a maximal subgroup of SO(8). The extra currents

in SO(10) provided by the instanton transform in one of the two spinor representations of

SO(8), 8s or 8c. In terms of Sp(2)× SU(2)M ×U(1)T this decomposes either as (5, 1)+1 +

(1, 3)+1 or as (4, 2)+1. This reflects the choice of the θ parameter for the SU(2) part, θ2.

Only the former case contains a gauge-invariant component, the (1, 3)+1, which (together

with its complex conjugate) should lead to an enhancement of SU(2)M × U(1)T → Sp(2).

This corresponds to the choice of θ2 = 0. We will confirm our assertion about (θ1, θ2) for

both theories, and exhibit the above enhancement, in the index computation.

As before, the continuation past infinite coupling instructs us to view the webs side-

ways. This suggests that the dual gauge groups for Sp(2) × SU(2) and Sp(2) × Sp(2)

are SU(4) and SU(5), respectively. But what is the matter content? For the SU(5) the-

ory, figure 11b viewed sideways, one might conclude that the two external D5-branes give

two matter multiplets in the fundamental representation of SU(5), as in the SU(3) theory

previously. For the SU(4) theory, figure 11a, the situation is less clear, since instead of ex-

ternal D5-branes the web has an additional (1,1)5-brane and an additional (1,-1)5-brane.

Actually, in both cases the two matter multiplets are in the rank 2 antisymmetric tensor

representation.13 We can understand this indirectly by going to a generic point on the

Higgs branch, shown in figure 13. This clearly shows the unbroken symmetry in both cases

to be SU(2) × SU(2), consistent with the pattern of symmetry breaking for two antisym-

metric hypermultiplets.14 By contrast, two fundamental hypermutiplets would generically

leave an unbroken symmetry SU(3) in the SU(4) case, and SU(4) in the SU(5) case.

13This is the other natural generalization of the SU(3) + 2 theory, since for SU(3) the fundamental and

rank 2 antisymmetric representations are equivalent.
14SU(4) with two antisymmetrics, namely 6’s, is equivalent to SO(6) with two vectors. This breaks SO(6)

to SO(4) ∼ SU(2)× SU(2).
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(a) (b)

Figure 13. Webs on the Higgs branch (a) SU(4) + 2, (b) SU(5) + 2.

Figure 14. Mass-deformed SU(4) + 2.

Finally, let us determine the CS levels of the dual theories. For the SU(5) + 2 theory

clearly κ0 = 0 since the web is invariant under a π rotation. For the SU(4) + 2 theory

κ0 6= 0, and we can find its value by considering a mass deformation. Turning on negative

masses for the matter fields in the SU(4) theory corresponds to moving the middle external

5-branes in figure 11a to the left. Turning the resulting web on its side yields the web in

figure 14. The effective CS level in this case is κ = 2. In 5d, the contribution to κ of

a matter multiplet in a given representation is scaled up from the contribution of the

fundamental representation by the cubic index of that representation. The cubic index of

the antisymmetric representation of SU(N) is N−4. So for SU(4) we find that κ = κ0 = 2.

Our two new duality conjectures are therefore:

Duality 2: Sp(2)0 × SU(2)0 + ( , ) ←→ SU(4)2 + 2

Duality 3: Sp(2)π × Sp(2)π + ( , ) ←→ SU(5)0 + 2 .

In Duality 3 both the classical global SU(2)M × U(1)2
T symmetry and the discrete

Z2 symmetry agree. In Duality 2 the classical global symmetries do not agree. Since

SU(4) ∼ SO(6), and the antisymmetric representation is real, the flavor symmetry of the

SU(4) + 2 theory is enhanced from U(2)F to Sp(2)F . But as we argued above, we expect

the classical SU(2)M symmetry of the Sp(2)× SU(2) theory to be enhanced, together with

the U(1)T associated to the SU(2) instantons, to Sp(2) as well. The discrete symmetries

also match: there is no exchange symmetry in the quiver theory, and charge conjugation

is violated by the non-zero CS level in the SU(4)2 theory.

– 23 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
2

6.1.1 Comparing indices

We begin with the Sp(2) × Sp(2) and SU(5) + 2A theories. In this case the perturbative

indices begin to differ at O(x6):

I
Sp(2)×Sp(2)
pert = 1 + x2

(
1

z2
+ 3 + z2

)
+ x3

(
1

y
+ y

)(
1

z2
+ 4 + z2

)
(6.1)

+x4

[(
1

y2
+ y2

)(
1

z2
+ 4 + z2

)
+

2

z4
+

6

z2
+ 14 + 6z2 + 2z4

]
+x5

(
1

y
+ y

)[(
1

y2
+ y2

)(
1

z2
+ 4 + z2

)
+

2

z4
+

10

z2
+ 18 + 10z2 + 2z4

]
+x6

[
3

(
1

y2
+y2

)(
1

z4
+

5

z2
+11+5z2+z4

)
+

(
1

y4
+y4

)(
1

z2
+4+z2

)
+

2

z6
+

10

z4
+

32

z2
+ 58 + 32z2 + 10z4 + 2z6

]
+x7

(
1

y
+ y

)[(
1

y4
+ 1 + y4

)(
1

z2
+ 4 + z2

)
+ 3

(
1

y2
+ y2

)(
1

z4
+

6

z2
+ 12 + 6z2 + z4

)
+

3

z6
+

19

z4
+

49

z2

+ 74 + 49z2 + 19z4 + 3z6

]
+ O(x8)

and

I
SU(5)+2A
pert = 1 + x2

(
1

z2
+ 3 + z2

)
+ x3

(
1

y
+ y

)(
1

z2
+ 4 + z2

)
(6.2)

+x4

[(
1

y2
+ y2

)(
1

z2
+ 4 + z2

)
+

2

z4
+

6

z2
+ 14 + 6z2 + 2z4

]
+x5

(
1

y
+ y

)[(
1

y2
+ y2

)(
1

z2
+ 4 + z2

)
+

2

z4
+

10

z2
+ 18 + 10z2 + 2z4

]
+x6

[
3

(
1

y2
+ y2

)(
1

z4
+

5

z2
+ 11 + 5z2 + z4

)
+

(
1

y4
+ y4

)(
1

z2
+ 4 + z2

)
+

2

z6
+

10

z4
+

34

z2
+ 62 + 34z2 + 10z4 + 2z6

]
+x7

{(
1

y
+ y

)[(
1

y4
+ 1 + y4

)(
1

z2
+ 4 + z2

)
+ 3

(
1

y2
+ y2

)(
1

z4
+

6

z2
+ 12 + 6z2 + z4

)
+

3

z6
+

19

z4
+

51

z2

+ 78 + 51z2 + 19z4 + 3z6

]
−
(

b5 +
1

b5

)(
z +

1

z

)(
z2 +

1

z2

)}
+ O(x8) ,

where we have indicated in boldface the differing terms. Note that baryonic states in the

SU(5) + 2A theory begin to contribute at O(x7), corresponding to an operator of the form

εα1···α5εβ1···β5A1
α1α2

A1
α3α3

A2
β1β2

A2
β3β4

∂+∂−Aa
α5β5

, or variants with different flavor numbers,

derivative placement and replacement of some derivatives with gaugino contractions.
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The computation of the instanton corrections is made complicated by the issues dis-

cussed in section 3.1.2. We are only able to compute instanton partition functions for

(k1, 0) and (0, k2) instantons in the Sp(2) × Sp(2) theory, since these can be treated as

instantons of an Sp(2) theory with four flavors. The (1, 0) and (0, 1) instantons contribute

I
Sp(2)2π
(1,0)+(0,1) = 2x6

(
1

z
+ z

)2

(6.3)

+x7

(
2

(
1

z
+ z

)2(1

y
+ y

)
−
(

q1

q2
+

q2

q1

)(
1

z
+ z

)(
1

z2
+ z2

))
+ O(x8) .

For k1 > 1 or k2 > 1 the contributions begin at higher orders. As expected, these instantons

contribute only in instanton-anti-instanton combinations, since for θ = π they are charged

under the other gauge group. The O(x6) term precisely makes up the difference between

the perturbative indices at O(x6). Then the O(x7) term precisely makes up the difference

at O(x7) if we identify b5 = q1/q2, which means that the charges in Duality 3 are related

as B = 5(I1 − I2).

We are not able to compute the contributions of instantons in the quiver theory with

both k1, k2 6= 0, or of instantons in the SU(5) theory, so we cannot confirm the second part

of the charge map I = I1 + I2. However it is reassuring that the superconformal indices

agree to O(x7) with both of these contributions omitted (see appendix B for the complete

expression).

Let us now turn to the Sp(2)× SU(2) and SU(4) + 2A theories, and to Duality 2. Not

surprisingly, in this case the perturbative indices begin to differ already at O(x2), since

the classical global symmetries are different. The perturbative index of the Sp(2)× SU(2)

theory is given by

I
Sp(2)×SU(2)
pert = 1 + x2

(
1

z2
+ 3 + z2

)
+ x3

(
y +

1

y

)(
1

z2
+ 4 + z2

)
+O(x4) , (6.4)

and that of the SU(4) + 2A theory is given by

I
SU(4)+2A
pert = 1 + x2

[
2 +

(
1

z2
+ 1 + z2

)(
1

l2
+ 1 + l2

)]
+ x3

(
y +

1

y

)[
3 +

(
1

z2
+ 1 + z2

)(
1

l2
+ 1 + l2

)]
+O(x4) . (6.5)

where z and l span the Sp(2)F flavor symmetry.

As in the previous case, we are only able to compute the corrections due to (k1, 0)

and (0, k2) instantons in the quiver theory. As we will now see, the latter are sufficient

to reproduce the perturbative index of the SU(4) theory. The contribution of the (0, 1)

instanton is given by

I
Sp(2)0×SU(2)0
(0,1) = x2

(
q2 +

1

q2

)(
1

z2
+ 1 + z2

)
+ x3

(
q2 +

1

q2

)(
y +

1

y

)(
1

z2
+ 1 + z2

)
+O(x4) . (6.6)
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Adding this to (6.4) we reproduce (6.5) upon identifying q2 = l2. This confirms Duality 2 to

this order, and in particular shows that the global symmetry of the quiver theory is indeed

enhanced from SU(2)M ×U(1)T to Sp(2). The (0, 2) and (0, 3) instanton contributions are

given by

I
Sp(2)0×SU(2)0
(0,2) = x4

(
1

q2
2

+ q2
2

)(
1

z2
+ 1 + z2

)(
1

z2
+ z2

)
+x5

(
1

q2
2

+ q2
2

)(
y +

1

y

)(
1

z2
+ 1 + z2

)2

+x6

{(
1

q2
+ q2

)(
1

z6
+

2

z4
+

5

z2
+ 5 + 5z2 + 2z4 + z6

)
+

(
1

q2
2

+ q2
2

)(
1

z2
+ 1 + z2

)[(
y2 +

1

y2

)(
2

z2
+ 1 + 2z2

)
+

1

z4
+

5

z2
+ 4 + 5z2 + z4

]}
+x7

(
y +

1

y

)(
1

z2
+ 1 + z2

){(
1

q2
+ q2

)(
2

z4
+

3

z2
+ 7 + 3z2 + 2z4

)
+

(
1

q2
2

+ q2
2

)[
2

(
y2 +

1

y2

)(
1

z2
+ 1 + z2

)
+

2

z4
+

9

z2
+ 9 + 9z2 + 2z4

]}
+O(x8) , (6.7)

and

I
Sp(2)0×SU(2)0
(0,3) = x6

(
1

q3
2

+ q3
2

)(
1

z6
+

1

z4
+

2

z2
+ 2 + 2z2 + z4 + z6

)
+x7

(
1

q3
2

+ q3
2

)(
y +

1

y

)(
1

z6
+

2

z4
+

4

z2
+ 4 + 4z2 + 2z4 + z6

)
+O(x8) . (6.8)

Setting q2 = l2 these lead to a complete agreement with the the perturbative index of

SU(4) + 2A to O(x7) (see appendix B for the complete expression in terms of Sp(2)F
characters). Note that the θ parameter of Sp(2) does not enter into these computations,

since they do not include Sp(2) instantons.

Completing the duality map requires the Sp(2) instantons on the quiver side and the

SU(4) instantons on the other side. In particular the Sp(2) instanton number should be

related to the SU(4) instanton number. However, due to the issues that we raised, we

are not able to compute the contributions of the latter. In particular this means that

our computation so far has been insensitive to the SU(4) CS level. In principle, we can

compute the contributions of pure Sp(2) instantons in the quiver theory, but we do not

have anything to compare them with.

6.2 Extra flavor

Going back to the SU(2) × SU(2) quiver, let us now add a single matter multiplet in the

fundamental representation of one of the SU(2) factors. The 5-brane webs for the two
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Figure 15. SU(2)× SU(2) quiver with Nf = 1.

possibilities are shown in figure 15. The θ parameter of the flavored SU(2) is irrelevant.

For the flavorless SU(2) we keep θ = π.

Viewing these webs sideways we are led to the proposal that the dual theory is SU(3)

with three fundamental matter hypermultiplets. Because there is an odd number of flavors,

there is an anomaly unless we shift the quantization condition of the CS level by one-half.

This is the 5d analog of the parity anomaly in 3d. The two possibilities in figure 15a,b

correspond to κ0 = ±1/2. So our conjecture in this case is:

Duality 4: SU(2)× SU(2)π + ( , ) + ( , 1)←→ SU(3)± 1
2

+ 3 .

The classical global symmetries of the two theories do not agree. The quiver theory has

SU(2)M ×U(1)T ×U(1)′T ×U(1)F , whereas the SU(3) theory has U(3)F ×U(1)T . But as we

are now accustomed to, the existence of parallel external NS5-branes suggests that there is

an instanton-led enhancement of the global symmetry in the quiver theory. In particular,

the instanton of the flavored SU(2) sees effectively three flavors, and therefore, if not for

the other SU(2) gauge group, would enhance the global symmetry from SO(6)F ×U(1)T =

SU(4)F × U(1)T to E4 = SU(5). The SO(6)F contains the SU(2)M × U(1)F part of the

global symmetry of the quiver theory, together with the unflavored SU(2) gauge group,

as a maximal subgroup. The instanton transforms as a 4 of SO(6)F , which decomposes

as (2, 1) + (1, 2). We see that we have the correct gauge-invariant states to enhance

SU(2)M × U(1)T → SU(3), making the global symmetries agree. We will confirm this

below using the superconformal index.

The discrete symmetries also agree. There is no extra Z2 in either theory.

6.2.1 Comparing indices

We begin as usual with the perturbative indices of the two theories. We present the results

to O(x3), since all the information is contained to that order. The final result to O(x5) is

given in appendix B. For the SU(2)× SU(2) + 1 theory

I
SU(2)2+1
pert = 1 + x2

(
1

z2
+ 4 + z2

)
+ x3

(
1

y
+ y

)(
1

z2
+ 5 + z2

)
+O(x4) , (6.9)
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and for the SU(3) + 3 theory

I
SU(3)+3
pert = 1 + x2

[
1

z2
+ 4 + z2 +

(
1

z
+ z

)(
1

p
+ p

)]
+x3

[(
1

y
+ y

)[
1

z2
+ 5 + z2 +

(
1

z
+ z

)(
1

p
+ p

)]
+ b3p +

1

b3p

]
+O(x4) , (6.10)

where we have assumed the following decomposition for the U(3)F flavor symmetry:bz 0 0

0 b
z 0

0 0 bp

 . (6.11)

We will also denote the flavor fugacity of the SU(2)× SU(2) + 1 theory as l. Naturally it

does not appear in the perturbative index, since all flavored states are necessarily charged

under the flavored SU(2).

As expected, the perturbative indices differ already at O(x2). The SU(2)× SU(2) + 1

index exhibits the classical global symmetry SU(2)M×U(1)2
T×U(1)F , whereas the SU(3)+3

index exhibits U(3)F×U(1)T . The classical quiver theory is missing four conserved currents.

We turn next to the instanton contributions. We use the U(N) formalism to compute

instanton partition functions in the quiver theory due to the complication related to the

bifundamental hypermultiplet. We must therefore remove the decoupled state associated

with the parallel external NS5-branes. Taking into account the different fermionic zero

modes of the decoupled D-string, this is achieved by

ZSU(2)×SU(2)π+1
inst = PE

[
q1x

2

z
√

l(1− xy)(1− x
y )

]
ZU(2)−1/2×U(2)0+1

inst , (6.12)

where q1 is the instanton fugacity for the flavored SU(2), which we took to be the first

SU(2). We have also taken κ1 = −1/2 for the first U(2) on the r.h.s. . For κ1 = +1/2 the

flavor factor z
√

l in the plethystic exponential would appear in the numerator, as explained

below eq. (3.8) in section 3.1.1.

To O(x3) there are contributions from the (1, 0), (0, 1) and (1, 1) instantons in the

quiver theory:

I
SU(2)×SU(2)π+1
(1,0)+(0,1)+(1,1) = x2

(
1

z
+ z

)(√
l

q1
+

q1√
l

)

+x3

{[(
1

y
+ y

)(
1

z
+ z

)(√
l

q1
+

q1√
l

)
+

(
1

q2
+ q2

)(
1

l
+ l

)]

+

(
1√

lq1q2

+
√

lq1q2

)(
1

z
+ z

)}
+O(x4) . (6.13)

Note that only the (1, 0) instanton contributes at O(x2). This is for the same reason as

in the SU(2)0 × SU(2)π theory, namely that only this instanton is gauge invariant. The
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(a) (b)

Figure 16. SU(2)π × SU(2)0 × SU(2)π linear quiver.

four extra conserved currents leading to the enhanced SU(3) global symmetry are clearly

visible in the O(x2) term, once we identify
√

l/q1 = p.

To this order there is also a contribution from the SU(3) instanton:

I
SU(3)1/2+3

1 = x3

[
q

√
p

b
+

1

q

√
b

p
+

(
1

z
+ z

)(
q√
bp

+

√
bp

q

)]
+O(x4) , (6.14)

where q is the SU(3) instanton fugacity, and we have chosen κ = +1
2 (the choice κ = −1

2

differs by taking q → 1
q ). Taking all the O(x3) contributions, and setting

√
l/q1 = p, we

find a complete agreement if we also identify b3 =
√

l q1/q2 and q/
√

bp = q1q2

√
l.

We have extended the comparison to O(x5), which requires including also the contri-

butions from the (0, 2) and (1, 2) instantons. We find a complete agreement of the indices

of the two theories. The result is shown in appendix B.

6.3 Extra node

As our final generalization, let us add another SU(2) node to the quiver. The theory is thus

SU(2)× SU(2)× SU(2), with matter mutiplets in (2, 2, 1) + (1, 2, 2). We will consider the

theory whose 5-brane web realization is shown in figure 16a. The θ parameters are easily

extracted by mass deforming the web, as in figure 16b. Clearly (θ1, θ2, θ3) = (π, 0, π).

Our proposal for the dual theory, figure 17a, is SU(4) with four matter multiplets.

But again we must raise the question of the representations of the matter fields: are they

fundamentals, antisymmetrics, or something else? Going to the Higgs branch, figure 17b,

we see that the unbroken gauge group is SU(2). This is the correct result for four funda-

mental hypermutiplets. On the other hand for four antisymmetrics we would get SO(2).

Our conjecture is therefore

Duality 5: SU(2)π × SU(2)0 × SU(2)π + ( , , 1) + (1, , )←→ SU(4)0 + 4 .

The CS level clearly vanishes, since charge conjugation is respected. The discrete symme-

tries agree.

This is another example where the global symmetry of the quiver theory should be

enhanced. The classical symmetry is SU(2)M ×SU(2)′M ×U(1)T ×U(1)′T ×U(1)′′T , whereas

that of the SU(4) + 4 theory is U(4)F ×U(1)T . There are three types of instantons in this
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(a) (b)

Figure 17. SU(4) + 4 (a) Coulomb branch, (b) Higgs branch.

theory. The (1, 0, 0) and (0, 0, 1) instantons do not induce enhancement, since θ = π for

the first and last SU(2) factors. The (0, 1, 0) instanton is similar to the case discussed in

section 6.1, since it sees effectively four flavors. In this case the quiver theory realizes a

maximal subgroup of SO(8)F given by SO(4)M × SO(4)gauge, where SO(4)M ∼ SU(2)M ×
SU(2)′M , and SO(4)gauge ∼ SU(2)π×SU(2)π. There are two inequivalent decompositions of

the 8s, corresponding to the extra currents in E5 = SO(10): (2, 2)+(2′, 2′) or (4, 1)+(1, 4).

The latter is the relevant one, since θ2 = 0, and leads to the required enhancement of

SO(4)M ×U(1)T → SU(4). We will also see this below in the superconformal index.

6.3.1 Comparing indices

We will need to go to O(x4) to see baryonic states in the SU(4)+4 theory. The perturbative

index of the quiver theory to this order is given by

I
SU(2)3

pert = 1 + x2

(
1

z2
+

1

z′2
+ 5 + z′2 + z2

)
+ x3

(
y +

1

y

)(
1

z2
+

1

z′2
+ 6 + z′2 + z2

)
+x4

[(
z′2 +

1

z′2

)(
z2 +

1

z2

)
+

(
y2 +

1

y2

)(
z′2 +

1

z′2
+ z2 +

1

z2
+ 6

)
+

1

z4
+

5

z2
+ 5z2 + z4 +

1

z′4
+

5

z′2
+ 5z′2 + z′4 + 16

]
+O(x5) ,

(6.15)

where z and z′ are the fugacities associated to SU(2)M and SU(2)′M , respectively. The

adjoint characters of SU(2)M × SU(2)′M × U(1)3
T are clearly visible in the x2 term. With

the privilege of hindsight, we will use the following decomposition of the global U(4)F
symmetry of the SU(4) + 4 theory:


bz
h 0 0 0

0 b
zh 0 0

0 0 bz′h 0

0 0 0 bh
z′

 . (6.16)
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In terms of these, the perturbative index of the SU(4) + 4 theory is given by

I
SU(4)+4
pert = 1 + x2

[
1

z2
+

1

z′2
+ 5 + z′2 + z2 +

(
h2 +

1

h2

)(
z′ +

1

z′

)(
z +

1

z

)]
+x3

(
y +

1

y

)[
1

z2
+

1

z′2
+ 6 + z′2 + z2 +

(
h2 +

1

h2

)(
z′ +

1

z′

)(
z +

1

z

)]
+x4

{
2

(
z′2 +

1

z′2

)(
z2 +

1

z2

)
+

(
y2 +

1

y2
+ 1

)[
z′2 +

1

z′2
+ z2 +

1

z2
+ 6

+

(
h2 +

1

h2

)(
z′ +

1

z′

)(
z +

1

z

)]
+

1

z4
+

6

z2
+ 6z2 + z4 +

1

z′4
+

6

z′2
+ 6z′2

+ z′4 + 17 +

(
h4 +

1

h4

)[
1 +

(
z′2 + 1 +

1

z′2

)(
z2 + 1 +

1

z2

)]
+ b4 +

1

b4
+

(
h2 +

1

h2

)[(
z′3 +

1

z′3

)(
z +

1

z

)
+

(
z′ +

1

z′

)(
z3 +

1

z3

)
+ 6

(
z′ +

1

z′

)(
z +

1

z

)]}
+O(x5) . (6.17)

The x2 term contains in fact the adjoint character of SU(4)F .

Turning our attention to the instanton contributions, we will again need to include

a correction factor for the quiver theory. By now, we can simply read it off from the

5-brane web:

ZSU(2)π×SU(2)0×SU(2)π
inst = PE

[
q2 x2(zz′ + 1

zz′ )

(1− xy)(1− x
y )

]
ZU(2)0×U(2)1×U(2)0

inst . (6.18)

The dependence on the two bifundamental fugacities can be understood from the depen-

dence of the mass of the D-string between the parallel NS5-branes on the masses of the

two bifundamental matter multiplets. This is basically the same as the SU(2) + 4 case in

eq. (3.9).

To O(x3) there is only a contribution from the (0, 1, 0) instanton of the quiver theory:

I
SU(2)3

(0,1,0) = x2

(
q2 +

1

q2

)(
z′ +

1

z′

)(
z +

1

z

)
+x3

(
y +

1

y

)(
q2 +

1

q2

)(
z′ +

1

z′

)(
z +

1

z

)
+O(x4) . (6.19)

Adding this to the perturbative result reproduces the SU(4) + 4 index to this order if

we identify q2 = h2. So indeed, it appears that the global symmetry is enhanced to

SU(4)F ×U(1)2
T in the quiver theory.

To complete the charge map we need to go to O(x4), which is where the baryonic

states enter in the SU(4)+4 theory. To this order there are contributions from the (0, 1, 0),
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(1, 0, 0), (0, 0, 1), (0, 2, 0), (1, 0, 1), (1, 1, 1) and (1, 2, 1) instantons. Their sum gives

ISU(2)3

many = · · · + x4

{(
q2 +

1

q2

)(
z′ +

1

z′

)(
z +

1

z

)(
1

z2
+

1

c2
+

1

y2
+ 5 + y2 + c2 + z2

)
+

(
z′ +

1

z′

)2(
z +

1

z

)2

+ 3 +
q1

q3
+

q3

q1

+

(
q2

2 +
1

q2
2

)[
1 +

(
z′2 + 1 +

1

z′2

)(
z2 + 1 +

1

z2

)]
+ q1q3 +

1

q1q3
+

(
q1q2q3 +

1

q1q2q3

)(
z +

1

z

)(
z′ +

1

z′

)
+ q1q

2
2q3 +

1

q1q2
2q3

}
+O(x5) . (6.20)

Other low number instantons, like the (1, 1, 0) instanton, do not contribute to this order

since they are gauge-charged. For the SU(4) + 4 theory, only the 1-instanton contributes

to this order:

I
SU(4)0+4
1 = x4

(
q +

1

q

)[
h2 +

1

h2
+

(
z′ +

1

z′

)(
z +

1

z

)]
+O(x5) . (6.21)

Including these contributions we find a complete agreement between the two theories if

we also identify b4 = q1/q3 and q = q1q2q3, in addition to q2 = h2. The calculation was

actually carried out to O(x5), and the indices agree with the above identifications. The

explicit result in terms of SU(4)F characters is given in appendix B.

7 Conclusions

In this paper we set out to explore properties of 5d superconformal field theories that can

be described as UV fixed points of N = 1 supersymmetric gauge theories. Our main tools

have been the 5-brane web constructions of [5], and the computation of 5d superconformal

indices via localization pioneered in [6].

We have uncovered several new cases of non-perturbatively enhanced global symme-

tries, analogous to the exceptional global symmetries of the SU(2) + Nf theories. In

particular we have shown that in the N = 1 SU(N) gauge theory with CS level κ = ±N ,

which sits on the borderline of well-defined fixed points in terms of the relation between κ

and N [4], the global topological U(1)T symmetry is enhanced to SU(2) at the fixed point.

Unlike the SU(2)+Nf examples, we do not have a stringy description of this enhancement.

This result can be generalized to SU(N)κ with Nf hypermultiplets in the fundamental

representation such that Nf +2|κ| = 2N . For 0 < |κ| < N , one combination of the topolog-

ical and baryonic U(1)’s, either the symmetric or antisymmetric combination, depending

on the sign of κ, is enhanced to SU(2). For κ = 0 and Nf = 2N , both combinations are

enhanced to SU(2)’s.

Our analysis suggests more generally that any theory described by a 5-brane web

with external parallel NS5-branes, or more generally 5-branes that are not D5-branes, will

exhibit a non-perturbatively enhanced global symmetry. Indeed we have shown this in

a number of other examples, starting with the SU(2) × SU(2) linear quiver theory with
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(θ1, θ2) = (0, π) and (0, 0). The former exhibits enhancement from SU(2)M × U(1)2
T to

SU(3) × U(1)T , and the latter to SU(4). There are several generalizations of this that

one can explore. For example, our studies indicate that the SU(2)n linear quiver theory

should exhibit enhanced global symmetries SU(2n), SU(2n − 1) and SU(2n − 2) for the

cases (θ1, . . . , θn) = (0, . . . , 0), (π, 0, . . . , 0) and (π, 0, . . . , 0, π), respectively.

We have also formulated a number of duality conjectures via a “continuation past infi-

nite coupling” as suggested by the 5-brane web construction, generalizing the one between

the SU(2) × SU(2) theory and SU(3) with Nf = 2, made in [5]. In each case we showed

that the superconformal index for the two theories was equal to a reasonably high order in

an expansion for small x. This provides very solid evidence for the conjectured duailties.

There are a number of further directions to explore. The dualities we proposed are

just the simplest generalizations of the one for SU(2) × SU(2). What is the more general

relation for rank N and Nf flavors?

The natural guess for the dual of the Sp(N) × Sp(N) theory is SU(2N + 1) with

two antisymmetrics and the natural guess for Sp(N + 1)× Sp(N) is SU(2N + 2) with two

antisymmetrics. What about Sp(N +M)×Sp(N) for M > 1? At large N these theories are

dual to Massive IIA supergravity on AdS6×S4/Z2 with and without vector structure, and

with some additional fluxes corresponding to fractional branes [10]. Can one understand

the field theory dualities from the point of view of these backgrounds?

Adding Nf flavors to the SU(2)×SU(2) theory, the natural guess for the dual is SU(3)

with Nf + 2 flavors. For the SU(3) theory a fixed point exists only if Nf + 2κ0 ≤ 4 [4].

This should also be observed on the SU(2)× SU(2) side. More generally, one might guess

that the dual of Sp(N) × Sp(N) with Nf flavors is SU(2N + 1) with two antisymmetrics

and Nf fundamentals.

One can also ask about the generalization to more nodes, SU(2)n. In this case the

5-brane web suggests that the dual is SU(n + 1) with 2n− 2 fundamentals. This is closely

related to the duality studied in [11]. One can go on and combine the different general-

izations. The problem is that as we increase the ranks, number of flavors and number of

nodes, the index computations become more and more cumbersome. Perhaps more efficient

techniques can be found.

We haven’t said anything about SO(N) theories. 5-brane webs provide a very nice

way to realize gauge theories with SU(N) and Sp(N) gauge groups, but to realize SO(N)

we would need to add orientifold planes. It would be interesting to study the continuation

past infinite coupling in these configurations, and then to compare with computations of

the superconformal indices, which should be possible for SO(N).

Another interesting direction to explore are relations of 5d dualities to 4d dualities,

along the lines of the relations between 4d and 3d dualities of [21].
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A Instanton partition functions

In this appendix we collect all the relevant expressions for the instanton partition functions

that we use in computing the instanton contributions to the superconformal indices. Some

of these results are taken from [6], and others where lifted from the 4d results of [18, 22,

23]. Each of these is given as a contour integral over the Cartan subgroup of the dual

gauge group, which depends on the gauge group and instanton number. We will express

everything in terms of fugacities. The fugacities associated with the gauge group will be

denoted by si ≡ eiαi , and those of the dual gauge group by ua. We will also denote by fn =

eimn the fugacities associated with flavor matter fields (in fundamental representations),

and by z the fugacity associated with either bifundamental or antisymmetric matter fields.

We assume that |x| � 1, so the relevant poles are the ones at ua ∝ xpositive. Generically,

the instanton partition function is given by

Zinst =

∮
[du] zG[ua]zM [ua] , (A.1)

where [du] denotes the Haar measure of the dual gauge group, zG denotes the contribution

of the gauge multiplet, and zM denotes the contribution of matter multiplets.

A.1 SU(N)

Strictly speaking, the instanton partition functions for SU(N) are really computed for

U(N), and then one sets
∏N
i=1 si = 1. As we mentioned in section 3.1.1, one often needs

to include an additional factor to remove remnants of the overall U(1) dependence.

For k instantons in U(N) the dual gauge group is U(k). The Haar measure for U(k)

is given by

[du] =
1

k!

k∏
a=1

dua
ua

k∏
a<b

(
ub
ua

+
ua
ub
− 2

)
. (A.2)

The contribution of the U(N) gauge multiplet is

zkG[ua] =

k∏
a=1

(1− x2)uκa

(1− xy)(1− x
y )
∏N
i=1(x + 1

x −
ua
si
− si

ua
)

×
k∏
a<b

( ubua + ua
ub
− x2 − 1

x2
)

( ubua + ua
ub
− xy − 1

xy )( ubua + ua
ub
− x

y −
y
x)

, (A.3)
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where κ is the U(N) CS level. For Nf matter multiplets in the fundamental representation,

the matter contribution is

zkF [ua] =
k∏
a=1

Nf∏
n=1

(√
uafn −

1√
uafn

)
. (A.4)

The computation of the contour integral gets quite involved for k > 1. There are

several poles to consider, some of which end up summing to a vanishing contribution. This

problem was solved in [17]. The poles can be classified by N Young diagrams with a total

of k boxes. For each set of N Young diagrams there is a corresponding set of poles. Each

box corresponds to one ua. The first box in each of the N diagrams corresponds to one of

the N basic poles at u = xsi. If a box representing ub appears below a box representing

ua their poles are related by ub = xua/y. If it appears to the right of the ua box the poles

are related as ub = xyua. Each set of Young diagrams actually gives k! equivalent sets of

poles, corresponding to permutations of {ua}, which cancels the k! in (A.2).

For example, for 1 instanton there are N possibilities for the position of the 1-box

diagram in the set, which correspond to the N poles at u = xsi. For 2 instantons, there are

three types of sets, the first containing two 1-box diagrams, and the two others containing

the two possible 2-box diagrams. The former has N(N − 1)/2 possibilities, corresponding

to poles at u1 = xsi, u2 = xsj . The latter has 2N possibilities, corresponding to poles of

the form u1 = xyu2, u2 = xsi and u1 = xu2/y, u2 = xsi.

The contribution of matter in the antisymmetric representation is a bit more involved

and is given by (lifting the 4d results from [22])

zkA[ua] = (−1)N
k∏
a=1

∏N
i=1

(√
uasiz − 1√

uasiz

)
u2
az + 1

u2az
− x− 1

x

×
k∏
a<b

(uaub + 1
uaub
− zy − 1

zy )(uaub + 1
uaub
− z

y −
y
z )

(uaub + 1
uaub
− zx− 1

zx)(uaub + 1
uaub
− z

x −
x
z )

. (A.5)

We did not actually use this, due to the problems mentioned in section 3.1.2.

For quiver theories, the partition functions for di-group instantons will have a contri-

bution from bifundamental matter. A single bifundamental of U(N1)×U(N2) contributes

to the (k1, k2) instanton partition function integrand the factor (lifting this time from [23]):

zk1,k2BF [u, u′] =

k1,N2∏
a,j=1

√uaz

s′j
−

√
s′j

uaz

 k2,N1∏
b,i=1

√ u′b
zsi
−
√

siz

u′b

 k1,k2∏
a,b

uaz
u′b

+
u′b
uaz
− y − 1

y

uaz
u′b

+
u′b
uaz
− x− 1

x

,

(A.6)

where si, s
′
j are the fugacities associated with the two gauge groups U(N1), U(N2), and

ua, u
′
b are the fugacities associated with the two dual gauge groups U(k1), U(k2). This

contributes additional poles to the integral, and one must give a pole prescription. We

follow [6], and ignore these poles.
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A.2 Sp(N)

For k Sp(N) instantons the dual gauge group is O(k). The instanton partition function

consists of two parts associated with the two disconnected components of O(k), O(k)+ =

SO(k) and O(k)−. There are two possible combinations corresponding to the two possible

values of the discrete θ parameter [7]:

Z
Sp(N)
k =


1
2(Z+

k + Z−k ) θ = 0

(−1)k

2 (Z+
k − Z−k ) θ = π .

(A.7)

The even and odd k cases are qualitatively different, so we will present them separately.

The Haar measures in the different cases are given by

[du] =



(−1)n

2nn!

∏n
a=1

(ua+ 1
ua
−2)dua

ua

∏n
a<b

(
ua + 1

ua
− ub − 1

ub

)2
k = 2n + 1, O+

1
2n−1n!

∏n
a=1

dua
ua

∏n
a<b

(
ua + 1

ua
− ub − 1

ub

)2
k = 2n, O+

1
2nn!

∏n
a=1

(ua+ 1
ua

+2)dua

ua

∏n
a<b

(
ua + 1

ua
− ub − 1

ub

)2
k = 2n + 1, O−

(−1)n

2nn!

∏n
a=1

(u2a+ 1

u2a
−2)dua

ua

∏n
a<b

(
ua + 1

ua
− ub − 1

ub

)2
k = 2n + 2, O−

(A.8)

The contributions of the gauge multiplet in the different cases are given by

z2n+1
G+ [ua] =

(−1)nx(1− x2)n

(1− xy)n+1(1− x
y )n+1

∏N
i=1(x + 1

x − si − 1
si

)

n∏
a=1

(ua + 1
ua
− x2 − 1

x2
)

(ua + 1
ua
− xy − 1

xy )(ua + 1
ua
− y

x −
x
y )(u2

a + 1
u2a
− xy − 1

xy )(u2
a + 1

u2a
− y

x −
x
y )

n∏
a=1

N∏
i=1

1

(ua + 1
ua
− xsi − 1

xsi
)(ua + 1

ua
− si

x −
x
si

)
(A.9)

n∏
a<b

(uaub + 1
uaub
− x2 − 1

x2
)(uaub + ub

ua
− x2 − 1

x2
)

(uaub + 1
uaub
− xy − 1

xy )(uaub + ub
ua
− xy − 1

xy )(uaub + 1
uaub
− y

x −
x
y )(uaub + ub

ua
− y

x −
x
y )

z2n
G+[ua] =

n∏
a=1

[
(1− x2)

(1− xy)(1− x
y )(u2

a + 1
u2a
− xy − 1

xy )(u2
a + 1

u2a
− y

x −
x
y )

×
N∏
i=1

1

(ua + 1
ua
− xsi − 1

xsi
)(ua + 1

ua
− si

x −
x
si

)

]
(A.10)

n∏
a<b

(uaub + 1
uaub
− x2 − 1

x2
)(uaub + ub

ua
− x2 − 1

x2
)

(uaub + 1
uaub
− xy − 1

xy )(uaub + ub
ua
− xy − 1

xy )(uaub + 1
uaub
− y

x −
x
y )(uaub + ub

ua
− y

x −
x
y )
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z2n+1
G− [ua] =

x(1− x2)n

(1− xy)n+1(1− x
y )n+1

∏N
i=1(x + 1

x + si + 1
si

)

n∏
a=1

[
(ui + 1

ui
+ x2 + 1

x2
)

(ui + 1
ui

+ xy + 1
xy )(ui + 1

ui
+ y

x + x
y )(u2

i + 1
u2i
− xy − 1

xy )(u2
i + 1

u2i
− y

x −
x
y )

×
N∏
i=1

1

(ua + 1
ua
− xsi − 1

xsi
)(ua + 1

ua
− si

x −
x
si

)

]
(A.11)

n∏
a<b

(uaub + 1
uaub
− x2 − 1

x2
)(uaub + ub

ua
− x2 − 1

x2
)

(uaub + 1
uaub
− xy − 1

xy )(uaub + ub
ua
− xy − 1

xy )(uaub + 1
uaub
− y

x −
x
y )(uaub + ub

ua
− y

x −
x
y )

z2n
G−[ua] =

(−1)n−1x2(1 + x2)(1− x2)n−1

(1− xy)n(1− x
y )n(1− x2y2)(1− x2

y2
)
∏N
i=1(x2 + 1

x2
− s2

i −
1
s2i

)

n−1∏
a=1

 (u2
a + 1

u2a
− x4 − 1

x4
)

(u2
a + 1

u2a
− xy − 1

xy )(u2
a + 1

u2a
− y

x −
x
y )(u2

a + 1
u2a
− x2y2 − 1

x2y2
)(u2

a + 1
u2a
− y2

x2
− x2

y2
)

×
N∏
i=1

1

(ua + 1
ua
− xsi − 1

xsi
)(ui + 1

ua
− si

x −
x
si

)

]
(A.12)

n−1∏
a<b

(uaub + 1
uaub
− x2 − 1

x2
)(uaub + ub

ua
− x2 − 1

x2
)

(uaub + 1
uaub
− xy − 1

xy )(uaub + ub
ua
− xy − 1

xy )(uaub + 1
uaub
− y

x −
x
y )(uaub + ub

ua
− y

x −
x
y )

The contribution of matter multiplets in the fundamental representation of Sp(N) is

given by:

zkF [ua] =

Nf∏
r=1

n∏
a=1

(
fr +

1

fr
− ua −

1

ua

)
×


∏Nf
r=1

(√
fr ∓ 1√

fr

)
k = 2n + 1, O±

1 k = 2n, O+∏Nf
r=1

(
fr − 1

fr

)
k = 2n + 2, O−

(A.13)

Note that in the presence of matter multiplets in the fundamental representation the effect

of the θ parameter can be absorbed into the sign of the mass. Replacing fr → 1/fr for an

odd number of flavors has the effect of exchanging the two cases in (A.7).

The contribution of a matter multiplet in the rank 2 antisymmetric representation of

Sp(N) is given for the O(k)+ part by:

z2n+χ
A+ [ua] =

[∏N
i=1(z + 1

z − si − 1
si

)

z + 1
z − x− 1

x

n∏
a=1

(ua + 1
ua
− yz − 1

yz )(ua + 1
ua
− y

z −
z
y )

(ua + 1
ua
− xz − 1

xz )(ua + 1
ua
− x

z −
z
x)

]χ
n∏
a=1

(z + 1
z − y − 1

y )
∏N
i=1(ua + 1

ua
− zsi − 1

zsi
)(ua + 1

ua
− z

si
− si

z )

(z + 1
z − x− 1

x)(u2
a + 1

u2a
− xz − 1

xz )(u2
a + 1

u2a
− x

z −
z
x)

(A.14)

n∏
a<b

(uaub + 1
uaub
− zy − 1

zy )(uaub + 1
uaub
− z

y −
y
z )(uaub + ub

ua
− zy − 1

zy )(uaub + ub
ua
− z

y −
y
z )

(uaub + 1
uaub
− zx− 1

zx)(uaub + 1
uaub
− z

x −
x
z )(uaub + ub

ua
− zx− 1

zx)(uaub + ub
ua
− z

x −
x
z )
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where χ = 0, 1 correspond to k = 2n, 2n + 1, respectively. For the O(k)− part, the

contributions of the antisymmetric multiplet are given by:

z2n+1
A− [ua] =

∏N
i=1(z + 1

z + si + 1
si

)

z + 1
z − x− 1

x

n∏
a=1

(ua + 1
ua

+ yz + 1
yz )(ua + 1

ua
+ y

z + z
y )

(ua + 1
ua

+ xz + 1
xz )(ua + 1

ua
+ x

z + z
x)

n∏
a=1

(z + 1
z − y − 1

y )
∏N
l=1(ua + 1

ua
− zsi − 1

zsi
)(ua + 1

ua
− z

si
− si

z )

(z + 1
z − x− 1

x)(u2
a + 1

u2a
− xz − 1

xz )(u2
a + 1

u2a
− x

z −
z
x)

(A.15)

n∏
a<b

(uaub + 1
uaub
− zy − 1

zy )(uaub + 1
uaub
− z

y −
y
z )(uaub + ub

ua
− zy − 1

zy )(uaub + ub
ua
− z

y −
y
z )

(uaub + 1
uaub
− zx− 1

zx)(uaub + 1
uaub
− z

x −
x
z )(uaub + ub

ua
− zx− 1

zx)(uaub + ub
ua
− z

x −
x
z )

for k = 2n + 1, and

z2n
A−[ua] =

(z + 1
z + y + 1

y )(z + 1
z − y − 1

y )n−1
∏N
i=1(z2 + 1

z2
− s2

i − 1
s2i

)

(z + 1
z + x + 1

x)(z + 1
z − x− 1

x)n+1
(A.16)

n−1∏
a=1

(u2
a+ 1

u2a
−z2y2− 1

z2y2
)(u2

a+ 1
u2a
− z2

y2
− y2

z2
)
∏N
i=1(ua+ 1

ua
−zsi− 1

zsi
)(ua+ 1

ua
− z
si
− si

z )

(u2
a+ 1

u2a
−z2x2− 1

z2x2
)(u2

a+ 1
u2a
− z2

x2
− x2

z2
)(u2

a+ 1
u2a
−zx− 1

zx)(u2
a+ 1

u2a
− z
x−

x
z )

n−1∏
a<b

(uaub + 1
uaub
− zy − 1

zy )(uaub + 1
uaub
− z

y −
y
z )(uaub + ub

ua
− zy − 1

zy )(uaub + ub
ua
− z

y −
y
z )

(uaub + 1
uaub
− zx− 1

zx)(uaub + 1
uaub
− z

x −
x
z )(uaub + ub

ua
− zx− 1

zx)(uaub + ub
ua
− z

x −
x
z )

for k = 2n.

For an Sp(N1)× Sp(N2) quiver theory the di-group instanton partition functions will

get a contribution from the bifundamental matter multiplet. In this case there are many

expressions since there are four disconnected components of O(k1)×O(k2), and even and

odd k’s are different. These can be evaluated using the methods and results in [6, 22].

The results for the (+, +) component can also be lifted from the result from the 4d

expression in [24]. These are given by

zk1,k2BF++[u, u′] =

[
N1∏
i=1

(
z +

1

z
− si −

1

si

) n1∏
a=1

(z + 1
z − yua − 1

yua
)(z + 1

z −
y
ua
− ua

y )

(z + 1
z − xua − 1

xua
)(z + 1

z −
x
ua
− ua

x )

]χ2

N2∏
j=1

(
z+

1

z
−s′j−

1

s′j

)
n2∏
b=1

(z + 1
z − yu′b −

1
yu′b

)(z + 1
z −

y
u′b
− u′b

y )

(z + 1
z − xu′b −

1
xu′b

)(z + 1
z −

x
u′b
− u′b

x )

χ1[
z + 1

z − y − 1
y

z + 1
z − x− 1

x

]χ1χ2

n1,n2∏
a,b=1

(z+ 1
z−yuau

′
b−

1
yuau′b

)(z+ 1
z−

yu′b
ua
− ua
yu′b

)(z+ 1
z−

yua
u′b
− u′b
yua

)(z+ 1
z−

y
uau′b
− uau′b

y )

(z+ 1
z−xuau′b−

1
xuau′b

)(z+ 1
z−

xu′b
ua
− ua
xu′b

)(z+ 1
z−

xua
u′b
− u′b
xua

)(z+ 1
z−

x
uau′b
− uau′b

x )

n1,N2∏
a,j=1

(
z+

1

z
−uas

′
j−

1

uas′j

)(
z+

1

z
−ua

s′j
−

s′j
ua

)
n2,N1∏
b,i=1

(
z+

1

z
−u′bsi−

1

u′bsi

)(
z+

1

z
−

u′b
si
− si

u′b

)
,

(A.17)

where k1 = 2n1 + χ1, k2 = 2n2 + χ2, where χ1,2 being either 0 or 1. For the (+,−)
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component we separate the odd and even k2 cases:

zk1,2n2+1
BF+− [u, u′] =

N2∏
j=1

(
z+

1

z
−s′j−

1

s′j

)
n2∏
b=1

(z+ 1
z−yu′b−

1
yu′b

)(z+ 1
z−

y
u′b
− u′b

y )

(z+ 1
z−xu′b−

1
xu′b

)(z+ 1
z−

x
u′b
− u′b

x )

χ1

[
z+ 1

z+y+ 1
y

z+ 1
z+x+ 1

x

]χ1 N1∏
i=1

(
z+

1

z
+si+

1

si

) n1∏
a=1

(z+ 1
z+yua+ 1

yua
)(z+ 1

z+ y
ua

+ ua
y )

(z+ 1
z+xua+ 1

xua
)(z+ 1

z+ x
ua

+ ua
x )

(A.18)

n1,n2∏
a,b

(z+ 1
z−yuau

′
b−

1
yuau′b

)(z+ 1
z−

yu′b
ua
− ua
yu′b

)(z+ 1
z−

yua
u′b
− u′b
yua

)(z+ 1
z−

y
uau′b
− uau′b

y )

(z+ 1
z−xuau′b−

1
xuau′b

)(z+ 1
z−

xu′b
ua
− ua
xu′b

)(z+ 1
z−

xua
u′b
− u′b
xua

)(z+ 1
z−

x
uau′b
− uau′b

x )

n1,N2∏
a,j

(
z+

1

z
−uas

′
j−

1

uas′j

)(
z+

1

z
−ua

s′j
−

s′j
ua

)
n2,N1∏
b,i

(
z+

1

z
−u′bsi−

1

u′bsi

)(
z+

1

z
−

u′b
si
− si

u′b

)

and

zk1,2n2

BF+−[u, u′] =

N2∏
j=1

(
z+

1

z
−s′j−

1

s′j

)
n2−1∏
b=1

(z+ 1
z−yu′b−

1
yu′b

)(z+ 1
z−

y
u′b
− u′b

y )

(z+ 1
z−xu′b−

1
xu′b

)(z+ 1
z−

x
u′b
− u′b

x )

χ1

[
z2+ 1

z2
−y2− 1

y2

z2+ 1
z2
−x2− 1

x2

]χ1 N1∏
i=1

(
z2+

1

z2
−s2

i−
1

s2
i

) n1∏
a=1

(z2+ 1
z2
−y2u2

a− 1
y2u2a

)(z2+ 1
z2
− y2

u2a
− u2a
y2

)

(z2+ 1
z2
−x2u2

a− 1
x2u2a

)(z2+ 1
z2
− x2

u2a
− u2a
x2

)

n1,n2−1∏
a,b

(z+ 1
z−yuau

′
b−

1
yuau′b

)(z+ 1
z−

yu′b
ua
− ua
yu′b

)(z+ 1
z−

yua
u′b
− u′b
yua

)(z+ 1
z−

y
uau′b
− uau′b

y )

(z+ 1
z−xuau′b−

1
xuau′b

)(z+ 1
z−

xu′b
ua
− ua
xu′b

)(z+ 1
z−

xua
u′b
− u′b
xua

)(z+ 1
z−

x
uau′b
− uau′b

x )

n1,N2∏
a,j

(
z+

1

z
−uas

′
j−

1

uas′j

)(
z+

1

z
−ua

s′j
−

s′j
ua

)
n2−1,N1∏
b,i

(
z+

1

z
−u′bsi−

1

u′bsi

)(
z+

1

z
−

u′b
si
− si

u′b

)
,

and similarly for the (−, +) component. Finally, for the (−,−) component the contributions

are given by

z2n1+1,2n2+1
BF−− [u, u′] =

N2∏
j=1

(
z+

1

z
+s′j+

1

s′j

)
n2∏
b=1

(z+ 1
z+yu′b+

1
yu′b

)(z+ 1
z+ y

u′b
+
u′b
y )

(z+ 1
z+xu′b+

1
xu′b

)(z+ 1
z+ x

u′b
+
u′b
x )[

z+ 1
z−y− 1

y

z+ 1
z−x− 1

x

]
N1∏
i=1

(
z+

1

z
+si+

1

si

) n1∏
a=1

(z+ 1
z+yua+ 1

yua
)(z+ 1

z+ y
ua

+ ua
y )

(z+ 1
z+xua+ 1

xua
)(z+ 1

z+ x
ua

+ ua
x )

(A.19)

n1,n2∏
a,b

(z+ 1
z−yuau

′
b−

1
yuau′b

)(z+ 1
z−

yu′b
ua
− ua
yu′b

)(z+ 1
z−

yua
u′b
− u′b
yua

)(z+ 1
z−

y
uau′b
− uau′b

y )

(z+ 1
z−xuau′b−

1
xuau′b

)(z+ 1
z−

xu′b
ua
− ua
xu′b

)(z+ 1
z−

xua
u′b
− u′b
xua

)(z+ 1
z−

x
uau′b
− uau′b

x )

n1,N2∏
a,j

(
z+

1

z
−uas

′
j−

1

uas′j

)(
z+

1

z
−ua

s′j
−

s′j
ua

)
n2,N1∏
b,i

(
z+

1

z
−u′bsi−

1

u′bsi

)(
z+

1

z
−

u′b
si
− si

u′b

)
,
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z2n1+1,2n2

BF−− [u, u′] =

N2∏
j=1

(
z+

1

z
+s′j+

1

s′j

)
n2−1∏
b=1

(z+ 1
z+yu′b+

1
yu′b

)(z+ 1
z+ y

u′b
+
u′b
y )

(z+ 1
z+xu′b+

1
xu′b

)(z+ 1
z+ x

u′b
+
u′b
x )

(A.20)

[
z2+ 1

z2
−y2− 1

y2

z2+ 1
z2
−x2− 1

x2

]
N1∏
i=1

(
z2+

1

z2
−s2

i−
1

s2
i

) n1∏
a=1

(z2+ 1
z2
−y2u2

a− 1
y2u2a

)(z2+ 1
z2
− y2

u2a
− u2a
y2

)

(z+ 1
z−x2u2

a− 1
x2u2a

)(z+ 1
z−

x2

u2a
− u2a
x2

)

n1,n2−1∏
a,b

(z+ 1
z−yuau

′
b−

1
yuau′b

)(z+ 1
z−

yu′b
ua
− ua
yu′b

)(z+ 1
z−

yua
u′b
− u′b
yua

)(z+ 1
z−

y
uau′b
− uau′b

y )

(z+ 1
z−xuau′b−

1
xuau′b

)(z+ 1
z−

xu′b
ua
− ua
xu′b

)(z+ 1
z−

xua
u′b
− u′b
xua

)(z+ 1
z−

x
uau′b
− uau′b

x )

n1,N2∏
a,j

(
z+

1

z
−uas

′
j−

1

uas′j

)(
z+

1

z
−ua

s′j
−

s′j
ua

)
n2−1,N1∏
b,i

(
z+

1

z
−u′bsi−

1

u′bsi

)(
z+

1

z
−

u′b
si
− si

u′b

)
,

and similarly for (k1, k2) = (2n1, 2n2 + 1), and

z2n1,2n2

BF−− [u, u′] =

N2∏
j=1

(
z2+

1

z2
−s′2j −

1

s′
2

j

)
n2−1∏
b=1

(z2+ 1
z2
−y2u′2b −

1
y2u′2b

)(z2+ 1
z2
− y2

u′2b
− u′2b

y2
)

(z2+ 1
z2
−x2u′2b −

1
x2u′2b

)(z2+ 1
z2
− x2

u′2b
− u′2b

x2
)[

z2+ 1
z2
−y2− 1

y2

z2+ 1
z2
−x2− 1

x2

]
N1∏
i=1

(
z2+

1

z2
−s2

i−
1

s2
i

) n1−1∏
a=1

(z2+ 1
z2
−y2u2

a− 1
y2u2a

)(z2+ 1
z2
− y2

u2a
− u2a
y2

)

(z+ 1
z−x2u2

a− 1
x2u2a

)(z+ 1
z−

x2

u2a
− u2a
x2

)

n1−1,n2−1∏
a,b

(z+ 1
z−yuau

′
b−

1
yuau′b

)(z+ 1
z−

yu′b
ua
− ua
yu′b

)(z+ 1
z−

yua
u′b
− u′b
yua

)(z+ 1
z−

y
uau′b
− uau′b

y )

(z+ 1
z−xuau′b−

1
xuau′b

)(z+ 1
z−

xu′b
ua
− ua
xu′b

)(z+ 1
z−

xua
u′b
− u′b
xua

)(z+ 1
z−

x
uau′b
− uau′b

x )

n1−1,N2∏
a,j

(
z+

1

z
−uas

′
j−

1

uas′j

)(
z+

1

z
−ua

s′j
−

s′j
ua

)
n2−1,N1∏
b,i

(
z+

1

z
−u′bsi−

1

u′bsi

)(
z+

1

z
−

u′b
si
− si

u′b

)
.

As explained in section 3.1.2, there is a problem in evaluating the contribution of

bifundamentals to the partition functions of di-group instantons. For the SU(2) × SU(2)

theories we have the option of using the U(N) formalism, which we do. In this formalism

the SU(2) θ parameters correspond to the U(2) CS levels.

For the contributions of single group instantons there is no problem, since one can treat

them as Sp(N) instantons with flavors in the fundamental representation. The second

Sp(N) gauge group is embedded in the flavor symmetry in a way determined by the θ

parameter.

In the presence of a sufficiently large number of fundamentals (for example, if Nf > 2

for SU(2)), there is a problem related to the existence of parallel external NS5-branes.

This manifests itself in the instanton partition function by the appearance of extra poles

at zero or infinity. As shown in section 4.1, this also leads to a lack of invariance under

x → 1/x. A pole prescription must be chosen for these additional poles. The difference

between including them and excluding them corresponds to the correction associated with

the decoupled state. We have chosen to include them.
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B Explicit superconformal indices

Here we present the explicit expressions for the superconformal indices of all the theories

discussed in the paper, to the highest order in x that we computed.

B.1 SU(2)× SU(2)

There are three inequivalent cases corresponding to the values of the two θ parameters.

For (θ1, θ2) = (0, π):

ISU(2)0×SU(2)π = 1+x2
(

1+χ
SU(3)
8

)
+x3χ2[y]

(
2+χ

SU(3)
8

)
+x4

(
χ3[y]

(
2+χ

SU(3)
8

)
+χ

SU(3)
27 +χ

SU(3)
8 +1

)
+x5

(
χ4[y]

(
2+χ

SU(3)
8

)
+χ2[y]

(
χ

SU(3)
27 +χ

SU(3)
10 +χ

SU(3)

10
+4χ

SU(3)
8 +2

))
+x6

(
χ5[y](2+χ

SU(3)
8 )+χ3[y](2χ

SU(3)
27 +χ

SU(3)
10 +χ

SU(3)

10
+7χ

SU(3)
8 +6)

+χ
SU(3)
64 +χ

SU(3)
27 +χ

SU(3)
10 +χ

SU(3)

10
+4χ

SU(3)
8 +2

−q
2/3
1 q2

2 χ
SU(3)
3 −q

−2/3
1 q−2

2 χ
SU(3)

3

)
+x7

(
χ6[y](2+χ

SU(3)
8 )+χ4[y](2χ

SU(3)
27 +2χ

SU(3)
10 +2χ

SU(3)

10
+10χ

SU(3)
8 +7)

+χ2[y](χ
SU(3)
64 +χ

SU(3)
35 +χ

SU(3)

35
+5χ

SU(3)
27 +2χ

SU(3)
10 +2χ

SU(3)

10

+9χ
SU(3)
8 +7−q

2/3
1 q2

2 χ
SU(3)
3 −q

−2/3
1 q−2

2 χ
SU(3)

3
)
)

+O(x8), (B.1)

where q2 is the fugacity associated with the instanton number of the second SU(2). This

shows enhancement of the global symmetry to SU(3)×U(1)T . The fugacity of the remaining

global U(1)T symmetry is given by q
2/3
1 q2

2.

For (θ1, θ2) = (0, 0):

ISU(2)0×SU(2)0 = 1+x2χ
SU(4)
15 +x3χ2[y](1+χ

SU(4)
15 )

+x4
(
χ3[y](1+χ

SU(4)
15 )+χ

SU(4)
20 +χ

SU(4)
84

)
+x5

(
χ4[y](1+χ

SU(4)
15 )+χ2[y](χ

SU(4)
20 +χ

SU(4)
84 +2χ

SU(4)
15 +χ

SU(4)
45 +χ

SU(4)

45
)
)

+x6
(
χ5[y](1+χ

SU(4)
15 )+χ3[y](2χ

SU(4)
20 +2χ

SU(4)
84 +4χ

SU(4)
15

+χ
SU(4)
45 +χ

SU(4)

45
+2)+χ

SU(4)
300 +χ

SU(4)
175 +χ

SU(4)
45 +χ

SU(4)

45
+3χ

SU(4)
15

)
+x7

(
χ6[y](1+χ

SU(4)
15 )+χ4[y](2χ

SU(4)
20 +2χ

SU(4)
84 +6χ

SU(4)
15

+2χ
SU(4)
45 +2χ

SU(4)

45
+2)+χ

SU(4)
300 +χ

SU(4)
256 +χ

SU(4)

256
+2χ

SU(4)
175

+3χ
SU(4)
84 +2χ

SU(4)
45 +2χ

SU(4)

45
+2χ

SU(4)
20 +5χ

SU(4)
15 +3

)
+O(x8), (B.2)
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which shows the enhancement to SU(4). Note that there are some different SU(4) repre-

sentations that have the same dimension. Specifically the 20 above is the (0, 2, 0) repre-

sentation, the 84 is the (2, 0, 2), and the 300 is the (3, 0, 3) when expressed in terms of the

Cartan weights.
For (θ1, θ2) = (π, π) we find:

ISU(2)π×SU(2)π = 1+x2(2+χ3)+x3

(
χ2[y](3+χ3)+χ2

(
q+

1

q

))
(B.3)

+x4

(
χ3[y](3+χ3)+χ5+χ3+3+χ2[y]χ2

(
q+

1

q

))
+x5

(
χ4[y](3+χ3)+χ2[y](χ5+5χ3+6)−b3χ2−

1

b3
χ2

+

(
q+

1

q

)
(χ3[y]χ2+χ4+χ2)

)
+x6

(
χ5[y](3+χ3)+χ3[y](2χ5+9χ3+12)−χ2[y](b3χ2+

1

b3
χ2)

+χ7+χ5+6χ3+8+

(
q+

1

q

)[
χ4[y]χ2+2χ2[y](χ4+χ2)−b3− 1

b3

]
+

(
q2+

1

q2

)
χ3

)
(B.4)

+x7

(
χ6[y](3+χ3)+χ4[y](2χ5+12χ3+16)−(χ3[y]+1)

(
b3χ2+

1

b3
χ2

)
+χ2[y](χ7+5χ5+15χ3+19)+

(
q+

1

q

)[
(χ5[y]χ2+χ3[y](3χ4+8χ2)

−χ2[y]

(
b3+

1

b3

)
+χ6+2χ4+5χ2

]
+

(
q2+

1

q2

)
χ2[y](1+χ3)

)
+O(x8), (B.5)

where q = q1q2 and b3 = q1/q2. This is also the index of SU(3) with two fundamental

hypermultiplets. From this point of view b is the baryonic fugacity and q is the instantonic

fugacity.

B.2 Sp(2)× SU(2)

Here we considered only the case with θ2 = 0, and included only the contributions of the

(0, 1), (0, 2) and (0, 3) instantons. In particular, the result is independent of θ1.

ISp(2)0×SU(2)0 = 1+x2(1+χ10)+x3χ2[y](2+χ10) (B.6)

+x4
(
χ3[y](2+χ10)+χ(4,0)[35]+χ[14]+χ[10]+χ[5]+2

)
+x5

(
χ4[y](2+χ10)+χ2[y](χ(4,0)+χ(2,1)+χ14+3χ10+2χ5+1)

)
+x6

(
χ5[y](2+χ10)+χ3[y](2χ(4,0)+χ(2,1)+2χ14+4χ10+3χ5+3)

+χ84+χ81+χ(4,0)+2χ(2,1)+χ14+5χ10+χ5+1
)

+x7
(
χ6[y](2+χ10)+χ4[y](2χ(4,0)+2χ(2,1)+2χ14+7χ10+3χ5+4)

+χ2[y](χ105+χ84+2χ81+5χ(4,0)+6χ(2,1)+5χ14+12χ10+5χ5+8)
)

+O(x8).
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The index is written in terms of the characters of the enhanced global Sp(2) = SO(5)

symmetry. This is also the perturbative part for the index of SU(4) with two antisymmetric

hypermultiplets. Note that the two Sp(2) representations with weights (4, 0) and (2, 1) are

both 35-dimensional, which is why we chose to label them using their weights.

B.3 Sp(2)× Sp(2)

Here we considered only the case with (θ1, θ2) = (π, π), and included only the contributions

of the (1, 0) and (0, 1) instantons.

ISp(2)π×Sp(2)π = 1 + x2(2 + χ3) + x3χ2[y](3 + χ3)

+x4
(
χ3[y](3 + χ3) + 2χ5 + 3χ3 + 5

)
+x5

(
χ4[y](3 + χ3) + χ2[y](2χ5 + 8χ3 + 8)

)
+x6

(
χ5[y](3 + χ3) + χ3[y](3χ5 + 11χ3 + 15) + 2χ7 + 5χ5 + 12χ3 + 10

)
+x7

(
χ6[y](3+χ3)+3χ4[y](χ5+5χ3+6)+χ2[y](3χ7+16χ5+32χ3+27)

− b5χ4 −
1

b5
χ4

)
+O(x8), (B.7)

where b5 = q1/q2. This is also the perturbative part of the index of SU(5) with two

antisymmetric hypermultiplets.

B.4 SU(2)× SU(2) + 1

Only the θ parameter of the unflavored gauge group is relevant, and we took that to

be θ = π. The index is expressed in terms of characters of the enhanced SU(3) global

symmetry, and in terms of the instantonic and baryonic fugacities of the dual SU(3) gauge

theory with three fundamental hypermultiplets.

ISU(2)×SU(2)π+1 = 1 + x2(2 + χ8)

+x3

(
χ2[y](3 + χ8) + b3p +

1

b3p
+ q
√

b3p χ3 +
1

q
√

b3p
χ3̄

)

+x4

[
χ3[y](3 + χ8) + χ2[y]

(
b3p +

1

b3p
+ q
√

b3pχ3 +
1

q
√

b3p
χ3̄

)

+ 3 + 2χ8 + χ27

]

+x5

[
χ4[y](3 + χ8) + χ2[y](6 + 6χ8 + χ10 + χ10 + χ27)

+ (1 + χ3[y])

(
b3p +

1

b3p
+ q
√

b3p χ3 +
1

q
√

b3p
χ3̄

)

+ q
√

b3pχ15 +
1

q
√

b3p
χ15

]
+O(x6). (B.8)
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B.5 SU(2)× SU(2)× SU(2)

Here we take (θ1, θ2, θ3) = (π, 0, π). We express the result in terms of the enhanced SU(4)

global symmetry, and in terms of the instantonic and baryonic fugacities of the dual SU(4)

gauge theory with four fundamentals hypermultiplets.

ISU(2)3 = 1 + x2(2 + χ15) + x3χ2[y](3 + χ15)

+x4

(
χ3[y](3 + χ15) + χ84 + χ20 + 2χ15 + 3 + b4 +

1

b4
+

(
q +

1

q

)
χ6

)
+x5

[
χ4[y](3 + χ15)

+ χ2[y]

(
χ84 + χ45 + χ45 + χ20 + 6χ15 + 6 + b4 +

1

b4
+

(
q +

1

q

)
χ6

)]
+O(x6). (B.9)

There are some different SU(4) representations that have the same dimension. Specifically

the 20 above is the (0, 2, 0) representation and the 84 is the (2, 0, 2) when expressed in

terms of the Cartan weights.
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