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Abstract

Random fuzzy numbers are becoming a valuable tool to model and handle fuzzy-
valued data generated through a random process. Recent studies have been devoted
to introduce measures of the central tendency of random fuzzy numbers showing
a more robust behaviour than the so-called Aumann-type mean value. This paper
aims to deepen in the (rather comparative) analysis of these centrality measures
and the Aumann-type mean by examining the situation of symmetric random fuzzy
numbers. Similarities and differences with the real-valued case are pointed out and
theoretical conclusions are accompanied with some illustrative examples.
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1 Introduction

Symmetric random variables sometimes appear exactly in real-life situations,
but they mainly correspond to either an idealized or an approximate model
for many of them. Symmetric random variables show several interesting prop-
erties, especially in connection with their central tendencies. More specifically,
the behaviour of the two most popular central tendency measures, the mean
and the median, in dealing with symmetric distributions of random variables
becomes one of the soundest arguments supporting their adequacy to summa-
rize the central tendency of these variables.
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On the other hand, in the last decades fuzzy data have been shown to be a
suitable tool in modeling imprecise data coming from judgements/opinions/
ratings/valuations/etc. The flexibility of fuzzy numbers allows us to capture
the intrinsic imprecision of such data by means of the use of [0, 1]-valued
functions, leading to a powerful and expressive way to ‘wording’ such rat-
ings/valuations... and to an ease-to-develop computation setting.

Random fuzzy numbers, as a special case of the so-coined fuzzy random vari-
ables by Puri and Ralescu [19] model a random mechanism generating fuzzy
data and extend real-valued random variables (and also random intervals) by
allowing data to be fuzzy-valued.

In Section 2 some preliminaries concerning random fuzzy numbers will be
recalled along with convenient extensions of the mean and median values for
them. Section 3 introduces and examines the notion of symmetric random
fuzzy number about a real value. In Section 4 a discussion is presented on the
values these centrality measures take on for symmetric random fuzzy numbers,
and the obtained conclusions are compared with those for the real-valued case.
In Section 5 a comparative study is developed to examine the proximity of
the central tendency measures to ‘central position’ values of some symmetric
random fuzzy numbers. The paper ends with some concluding remarks.

2 Preliminaries

Let Fc(R) denote the space of fuzzy numbers, where a fuzzy number (also
called bounded fuzzy number) is a mapping Ũ : R → [0, 1] so that for each
α ∈ [0, 1] the α-level set

Ũα =


{x ∈ R : Ũ(x) ≥ α} if α > 0

cl{x ∈ R : Ũ(x) > 0} if α = 0

is a nonempty compact interval.

Equivalently, Goetschel and Voxman [15] proved that a fuzzy number is a
mapping Ũ : R → [0, 1] such that

• inf Ũ(·) : [0, 1] → R is a bounded non-decreasing function,

• sup Ũ(·) : [0, 1] → R is a bounded non-increasing function,

• inf Ũ1 ≤ sup Ũ1,
• inf Ũ(·) and sup Ũ(·) are left-continuous on (0, 1] and right-continuous at 0.

When fuzzy data are described by means of elements in Fc(R), the statistical
data analysis involves the usual fuzzy arithmetic based on Zadeh’s extension
principle [29]. The two key operations, the sum and the product by a scalar,
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can be equivalently formalized as the level-wise extensions of the usual interval-
valued operations, i.e., for Ũ , Ṽ ∈ Fc(R) and λ ∈ R, for each α ∈ [0, 1]

(Ũ + Ṽ )α = (Minkowski sum of Ũα and Ṽα) = {y + z : y ∈ Ũα, z ∈ Ṽα}
= [ inf Ũα + inf Ṽα, sup Ũα + sup Ṽα],

(λ · Ũ)α = λ · Ũα = {λ · y : y ∈ Ũα} =


[λ inf Ũα, λ sup Ũα] if λ ≥ 0

[λ sup Ũα, λ inf Ũα] otherwise.

As a consequence of this arithmetic, if Ũ , Ṽ ∈ Fc(R), then the difference
Ũ − Ṽ can be immediately established by considering Ũ − Ṽ = U + (−1) · Ṽ .
At this point, it should be pointed out that Ũ − Ṽ + Ṽ ̸= Ũ . More precisely,
Ṽ − Ṽ ̸= 1{0}, but Ṽ − Ṽ = O

Ṽ
, where for any α ∈ [0, 1] corresponds to the

centrally symmetric about 0 interval given by

(O
Ṽ
)α = [ inf Ṽα − sup Ṽα, sup Ṽα − inf Ṽα],

whence O
Ṽ
is a symmetric fuzzy number about 0 which only reduces to 1{0}

if, and only if, Ṽ reduces to the indicator function of a singleton 1{v} (v ∈ R).

Random elements taking on intrinsic fuzzy number values can be suitably
formalized in terms of random fuzzy numbers, a notion which was coined
as fuzzy random variable and which was stated in a more general space of
fuzzy sets by Puri and Ralescu [19]. The particularization to the case of fuzzy
number-valued random elements lead to the following concept:

Definition 2.1 Given a probability space (Ω,A, P ) modeling a random ex-
periment, an associated random fuzzy number is a mapping X : Ω →
Fc(R) such that for all α ∈ [0, 1] the interval-valued α-level mapping Xα =
[inf Xα, supXα] is a compact random interval (that is, inf Xα and supXα are
two random variables satisfying that inf Xα ≤ supXα).

If X : Ω → Fc(R) is a random fuzzy number, then one can prove (see Colubi et
al. [5]) that it is a Borel-measurable mapping with respect to the Borel σ-field
generated on Fc(R) by the topology associated with several different metrics.
The Borel-measurability of random fuzzy numbers allows us to properly es-
tablish the induced distribution of a random fuzzy number, the independence
of random fuzzy numbers, and others.

Remark 2.1 It should be emphasized that, although the induced distribution
of a random fuzzy number is well-defined, one cannot universally characterize
it by means of a distribution function like in the real-valued case. This is due
to the fact that there is no ranking for fuzzy numbers which is universally
accepted. Indeed, one can define different complete orderings between fuzzy
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numbers, which show reasonable properties in many cases and being valuable
for problems inexcusably requiring a ranking, but none of them can be consid-
ered as generally acceptable. For this reason, there is no formal definition of
continuous random fuzzy numbers. However, one can consider a rather formal
approach to discrete random fuzzy numbers and one can also compute the
probability function by using the induced probabilities based on the Borel-
measurability.

In summarizing the central tendency of the distribution of a random fuzzy
number we can consider extensions of the two main measures in the real-
valued case, namely, the mean value and the median.

On one hand, the mean value is suitably extended by means of the Aumann-
type mean value of a random fuzzy number (Puri and Ralescu [19]), which for
integrably bounded random fuzzy numbers (i.e., for random fuzzy numbers X
such that inf X0 and supX0 are integrable w.r.t. the corresponding probability
space) are defined as follows:

Definition 2.2 Let (Ω,A, P ) be a probability space and let X : Ω → Fc(R) be
an associated integrably bounded random fuzzy number. The Aumann-type
mean value of X is the fuzzy number Ẽ(X ) ∈ Fc(R), if it exists, such that
for all α ∈ [0, 1](

Ẽ(X )
)
α
= Aumann integral of Xα in (Ω,A, P ) = [E(inf Xα), E(supXα)].

The Aumann-type mean value of a random fuzzy number is the Fréchet’s ex-
pectation with respect to many L2 metrics on Fc(R). In particular, it satisfies
that

Ẽ(X ) = arg min
Ũ∈Fc(R)

E
([

Dθ(X , Ũ)
]2)

,

with

Dθ(Ũ , Ṽ ) =

√√√√ ∫
[0,1]

([
mid Ũα −mid Ṽα

]2
+ θ

[
spr Ũα − spr Ṽα

]2)
dα

where mid Ũα = mid-point of Ũα = (inf Ũα+sup Ũα)/2, spr Ũα = radius of Ũα

= (sup Ũα− inf Ũα)/2 and θ ∈ (0, 1] is a weighting parameter (see Bertoluzza
et al. [2], for the first reference, and Näther [17], Trutschnig et al. [27] and Gil
et al. [11] for subsequent generalizations and studies).

The operator Ẽ is equivariant under ‘affine’ (in accordance with the usual
fuzzy arithmetic) transformations, it is additive, and it is coherent with the
usual arithmetic with fuzzy numbers. Ẽ(X ) is also supported by Strong Laws
of Large Numbers, so that the sample mean value is a strongly consistent
estimator of the population one.
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On the other hand, and because of the problems encountered in ranking fuzzy
numbers, the median has been already extended by considering some L1 met-
rics on Fc(R), based on some different representations of fuzzy numbers, as
the fuzzy number(s) minimizing the expected distance to the random fuzzy
number. With this purpose two approaches have been recently introduced. In
accordance with the first one (Sinova et al. [23]):

Definition 2.3 Given a probability space (Ω,A, P ) and an associated random
fuzzy number X : Ω → Fc(R), the 1-norm (inf/sup-type) median of X is
the fuzzy number M̃e(X ) ∈ Fc(R) such that for all α ∈ (0, 1](

M̃e(X )
)
α
= [Me(inf Xα),Me(supXα)] ,

where in case either Me(inf Xα) or Me(supXα) are not unique the usual cri-
terion of selecting the mid-point of the interval of medians is applied.

The 1-norm median satisfies that

M̃e(X ) = arg min
Ũ∈Fc(R)

E
(
ρ1(X , Ũ)

)
,

with

ρ1(Ũ , Ṽ ) =
1

2

∫
(0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+ ∣∣∣sup Ũα − sup Ṽα

∣∣∣) dα

(see Diamond and Kloeden [8]).

The operator M̃e is equivariant under ‘affine’ transformations and the sample
1-norm median is a strongly consistent estimator of the population one in the
ρ1 sense.

In accordance with the second approach (Sinova et al. [24]):

Definition 2.4 Given a probability space (Ω,A, P ) and an associated random
fuzzy number X : Ω → Fc(R), the 0.5-median of X is the fuzzy number

M̃e
0.5
(X ) ∈ Fc(R) such that for all α ∈ (0, 1](

M̃e
0.5
(X )

)
α
=

[
Me(midX0.5)−Me(ldev0.5 Xα),Me(midX0.5) + Me(rdev0.5Xα)

]
,

where ldev0.5 Xα = midX0.5 − inf Xα, rdev
0.5 Xα = supXα − midX0.5, and

where in case the involved median of a real-valued random variable is not
unique the usual criterion of selecting the mid-point of the interval of medians
is applied.

The 0.5-median satisfies that

M̃e
0.5
(X ) = arg min

Ũ∈Fc(R)
E

(
D0.5

θ (X , Ũ)
)
,
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with

D0.5
θ (Ũ , Ṽ ) = |mid Ũ0.5 −mid Ṽ0.5|

+
θ

2

∫
(0,1]

|ldev0.5 Ũα − ldev0.5 Ṽα| dα +
θ

2

∫
(0,1]

|rdev0.5 Ũα − rdev0.5 Ṽα| dα

(see Sinova et al. [24]).

The operator M̃e
0.5

is equivariant under ‘affine’ transformations and the sam-
ple 0.5-norm median is a strongly consistent estimator of the population one
in the D0.5

θ sense.

The two sample medians have shown a more robust behaviour than the Aumann-
type sample mean (see Sinova et al. [23,24]).

Remark 2.2 It should be pointed out that one of the main advantages of the
1-norm and the 0.5 median is that they can be computed on the basis of the
medians for certain real-valued random variables, and we can prove that they
both determine fuzzy numbers, as formally shown in Sinova et al. [23,24].

This makes computations rather easy-to-perform and, mainly, easy to imple-
menting and programming in R or others. Actually, there is no need to solve
a minimization problem to find the median of the random fuzzy number but
simply applying the general solution, which is known.

At this point, we should indicate that when the involved L1 metrics are re-
placed for some other ones, the minimization problem can become a very
difficult task, and often infeasible at least to get the exact solution. In this
respect, if we consider the L1 metric given by

Dθ(Ũ , Ṽ ) =
∫

[0,1]

(∣∣∣mid Ũα −mid Ṽα

∣∣∣+ θ
∣∣∣spr Ũα − spr Ṽα

∣∣∣) dα

one cannot reason as for ρ1 and D0.5
θ since there are not sufficient conditions

for the mid/spr representation of fuzzy numbers so that these conditions char-
acterize them. More concretely, if following the solutions for ρ1 and D0.5

θ one

is tempted to use as a possible solution minimizing E
([
Dθ(X , Ũ)

])
over Ũ ∈

Fc(R), the level-wise solution Mα = [Me(midXα)−Me(sprXα),Me(midXα)+
Me(sprXα)] for each α, the class {Mα}α does not define in general a fuzzy
number.

As a counterexample illustrating this assertion, we can consider the following:
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Example 2.1 Consider a random fuzzy number X taking with probability
0.2 each of five different values x̃i, i ∈ {1, . . . , 5} which, in accordance with
their horizontal view, are given by

(mid x̃1)α = 1− α/2, (spr x̃1)α = 1.1− α,

(mid x̃2)α =

 0.75 if α ≤ 0.5

1.25− α otherwise
, (spr x̃2)α = 1.1− α,

(mid x̃3)α = 0.6 + 0.3α, (mid x̃4)α = 0, (mid x̃5)α = 2,

(spr x̃3)α = (spr x̃4)α = (spr x̃5)α =

 0.75− α if α ≤ 0.5

0.4− 0.3α otherwise,

which are graphically displayed in Figure 1

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1. Five different values of a random set (that takes them with the same prob-
ability)

The value for the mean, 1-norm median and β = 0.5-median can be found
graphically displayed in Figure 2

Fig. 2. Mean, 1-norm median and 0.5 median of the random fuzzy number being
uniformly distributed on the set of fuzzy number values in Figure 1
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In this case we have that

Me(midXα) =

 0.75 if α ≤ 0.5

1− α/2 otherwise,
Me(sprXα) =

 0.75− α if α ≤ 0.5

0.4− 0.3α otherwise,

whence the intervals [Me(midXα)−Me(sprXα),Me(mid,Xα)+Me(sprXα)] do
not lead to a fuzzy number, but to the function in Figure 3.
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0

Fig. 3. Result of representing the function (fuzzy number?) with α-levels
[Me(midXα)−Me(sprXα),Me(mid,Xα)+Me(sprXα)], which is not a fuzzy number

3 Symmetric random fuzzy numbers

The notion of symmetry of a probability distribution can be naturally ex-
tended from the real- to the fuzzy-valued case. To formalize this extension in
the most general way one can state the following:

Definition 3.1 Let (Ω,A, P ) be a probability space, and let X : Ω → Fc(R)
be a random fuzzy number associated with (Ω,A, P ). X is said to be

symmetric about c ∈ R if, and only if, X − c
d
= c − X or, equivalently,

X d
= 2c−X ,

d
= denoting identity in distribution.

Obviously, X is a symmetric random fuzzy number about c if, and only if,
X − c is a symmetric random fuzzy number about 0. Consequently, if X
is a symmetric random fuzzy number about c, then it can be rewritten as
X = E + c, where E is a symmetric random fuzzy number about 0.
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To easily interpret this notion we can consider three examples. The first ex-
ample is a simple one which indicates a key divergence with respect to the
real-valued case.

Example 3.1 Let X be a random fuzzy number associated with a probability
space (Ω,A, P ) and let OX = X − X . For any ω ∈ Ω, we have that OX (ω) is
a symmetric random fuzzy number about 0.

The second example is based on the one supplied by Chou [7].

Example 3.2 In many social surveys, respondents are customarily asked by
means of a questionnaire to indicate their choices from a set of prefixed Likert-
type items. Many researchers consider Likert-type labels as fuzzy number-
valued ones, by identifying the generic response to a question with a fuzzy
linguistic variable (see, for instance, Serrano-Guerrero et al. [21], Porcel et
al. [18], for recent studies about). As indicated by Chou [7], “often the wording
of response levels clearly implies a symmetry of response levels about a middle
category; at the very least, such an item would fall between ordinal-level and
interval-level measurement... The use of fuzzy sets is central in computing with
words or labels as they provide a means of modeling the vagueness underly-
ing most natural linguistic terms (see, for instance, Zadeh [30]). The semantic
elements of the term set are given by fuzzy numbers defined on a bounded
interval (say [0, 1]). In practice, triangular fuzzy numbers are a uniformly dis-
tributed ordered set of linguistic terms, so they provide a relatively simple
way to capture the vagueness of linguistic assessments,...” like the ones which
are graphically displayed in Figure 4, where vd = strongly disagree,
d = disagree, sd = somewhat disagree, n= neither agree nor dis-
agree, sa= somewhat agree, a=agree and va = strongly agree.

vd d              sd n sa              a va

Fig. 4. Semantic elements of a term set given by 7 fuzzy triangular numbers
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Assume that the survey has been performed in a population/sample {ω1,
. . . , ω953} of 953 respondents and that the distribution of the random response
X is the following:

label VD D SD N SA A VA

absol. freq. 38 143 207 177 207 143 38

Since

vd = 1− va, d = 1− a, sd = 1− sa,

and

#{ωj : X (ωj) = vd} = 38 = #{ωj : X (ωj) = va},

#{ωj : X (ωj) = d} = 143 = #{ωj : X (ωj) = a},

#{ωj : X (ωj) = sd} = 207 = #{ωj : X (ωj) = sa},
then the random fuzzy set X is symmetric about c = 0.5.

The third example has been drawn from the so-called ‘characterizing fuzzy
representation’ of real-valued random variables (see González-Rodŕıguez et
al. [13]).

Example 3.3 Let X be a random variable associated with a probability
space and assume that X has a Binomial distribution Bin(4, 0.5). González-
Rodŕıguez et al. [13] have introduced a generalized fuzzy representation which
characterizes the distribution of a real-valued random variable by means of
the Aumann-type expected value of random fuzzy set corresponding to the
composition of the fuzzy representation and the random variable.
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Fig. 5. Values of a characterizing fuzzy representation of an RV taking on values 0,
1, 2, 3 and 4
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In this way, if X ∼ Bin(4, 0.5), then the random fuzzy number X = γ(2) ◦X
such that for all α ∈ [0, 1]

(γ(2)(x))α =



[
x− (1− α)1/(3−x), x+ (1− α)3−x

]
if x = 0, 1

[
x− (1− α)x−1, x+ (1− α)1/(x−1)

]
if x = 2, 3, 4

is a symmetric random fuzzy number about c = 2. Its five different values have
been graphically displayed on Figure 5 and their corresponding probabilities
are those associated with the five values of the Binomial.

The symmetry of a random fuzzy number entails that of all their α-level
random intervals. Thus,

Proposition 3.1 Let X be a random fuzzy number associated with a proba-
bility space (Ω,A, P ). If X is symmetric about c ∈ R, then for all α ∈ [0, 1],
the α-level random interval Xα is symmetric about c.

Proof. Indeed, whatever α ∈ [0, 1] and the compact interval K may be, we
have that

X−1
α (K) = {ω ∈ Ω : (X (ω))α = K}

=
∪

x̃∈X (Ω) : x̃α=K

{ω ∈ Ω : X (ω) = x̃} =
∪

x̃∈X (Ω) : x̃α=K

X−1
α ({x̃}),

(2c−X )−1
α (K) = {ω ∈ Ω : (2c−X (ω))α = K}

=
∪

x̃∈(2c−X )(Ω) : x̃α=K

{ω ∈ Ω : (2c−X )(ω) = x̃}

=
∪

x̃∈(2c−X )(Ω) : x̃α=K

{ω ∈ Ω : X (ω) = 2c− x̃}

=
∪

x̃∈(2c−X )(Ω) : x̃α=K

X−1
α ({2c− x̃})

whence, because of the symmetry of X about c, we can conclude that X−1
α (K)

a.s. [P ]
= (2c − X )−1

α (K) and, consequently, Xα and (2c − X )α are identically
distributed. �

The converse assertion is not true. Thus, if for each α ∈ [0, 1], the random in-
terval Xα is symmetric about c, the random fuzzy number X is not necessarily
symmetric about c. As a counterexample we can consider the following:

11



Example 3.4 Let Ω = {ω1, ω2, ω3, ω4}, A = P(Ω), and P being associated
with a uniform distribution on Ω. Let X be the random fuzzy number such
that

X (ω1)(x) =



x2/2 if x ∈ [0, 1]

−(x2 − 4x+ 2)/2 if x ∈ (1, 3]

(x− 4)2/2 si x ∈ (3, 4]

0 otherwise

X (ω2)(x) = Tri(0, 2, 4),

where Tri(a, b, c) denotes the triangular fuzzy number such that Tri(a, b, c)0
= [a, c], Tri(a, b, c)1 = {b},

X (ω3)(x) =



−x/2 if x ∈ (−1, 0]

−(x2 + 4x+ 2)/2 if x ∈ (−3,−1]

(x+ 4)/2 si x ∈ [−4,−3]

0 otherwise

X (ω4)(x) =



x2/2 if x ∈ (−1, 0]

−x/2 if x ∈ (−2,−1]

(x+ 4)/2 if x ∈ (−3,−2]

(x+ 4)2/2 si x ∈ [−4,−3]

0 otherwise

One can easily prove that, for all α ∈ [0, 1] the random interval Xα is symmetric
about 0. Thus,

• on one hand, for all α ∈ [0, 0.5]

Xα(ω1) = −Xα(ω4), Xα(ω2) = −Xα(ω3)

whence, because of P being associated with the uniform distribution on Ω,
Xα and −Xα are identically distributed, i.e., Xα is symmetric about 0;

• on the other hand, for all α ∈ (0.5, 1]

Xα(ω1) = −Xα(ω3), Xα(ω2) = −Xα(ω4)

whence, because of P being associated with the uniform distribution on Ω,
Xα and −Xα are identically distributed, i.e., Xα is symmetric about 0.

However, each of the four distinct values of X differ from the four distinct
values of −X , and hence X is not symmetric about 0.

12



4 Special features of the central tendency of symmetric random
fuzzy numbers

In the real-valued case a well-known and valuable result is that the two main
central tendency measures of a symmetric random variable, namely, the mean
and the median, coincide with the point the variable is symmetric about when-
ever the latter is unique.

This section aims to show that in case of considering random fuzzy numbers
this assertion should be slightly modified, due to the involved fuzziness. Thus,
the extended central tendency measures show a suitable central tendency be-
haviour since they lead to fuzzy numbers which are symmetric about the
symmetry point. Moreover, we will see that the fuzzy values of these measures
neither necessarily coincide nor correspond to any of the values the random
fuzzy number takes on.

The discussion about this failure starts with the analysis of the Aumann-type
mean value of a symmetric random fuzzy number.

Proposition 4.1 Let (Ω,A, P ) be a probability space, and let X be an in-
tegrably bounded symmetric random fuzzy number about c ∈ R. Then, the
Aumann-type mean value of X is a symmetric fuzzy number about c.

Proof. Since X d
= 2c − X , then Ẽ(X ) = Ẽ(2c − X ) whence, because of the

equivariance of the Aumann-type mean value under affine transformations, we
have that

Ẽ(X ) = 2c− Ẽ(X ).

By adding Ẽ(X ) to the two members in the last equality 2 Ẽ(X ) = 2c+ Ẽ(X )
− Ẽ(X ) and, hence,

Ẽ(X ) = c+
1

2
· O

Ẽ(X )
,

that is, for all α ∈ [0, 1]

(Ẽ(X ))α = [c− spr (Ẽ(X ))α, c+ spr (Ẽ(X ))α].

Consequently, Ẽ(X ) is a symmetric fuzzy number about c. �

The result in Proposition 4.1 is now illustrated by computing the mean values
of the symmetric random fuzzy numbers in Examples 3.2 and 3.3.
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Example 4.1 The Aumann-type mean value of the symmetric random fuzzy
number about 0.5 in Example 3.2 is graphically displayed in Figure 6:
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Fig. 6. Aumann-type mean (in black) of the 953 responses in Example 3.2

The Aumann-type mean expected value of the symmetric random fuzzy num-
ber about 2 in Example 3.3 is graphically displayed in Figure 7:
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Fig. 7. Aumann-type mean (in black) of the characterizing fuzzy representation of
the Bin(4, 0.5) in Example 3.3

The discussion about the median of a symmetric random fuzzy number de-
pends on the approach for the median we consider, but conclusions are the
same.

Proposition 4.2 Let (Ω,A, P ) be a probability space, and let X be a sym-
metric random fuzzy number about c ∈ R. Then, both the 1-norm median and
the β = 0.5-median of X are symmetric fuzzy numbers about c.
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Proof. Since X d
= 2c−X , then M̃e(X ) = M̃e(2c−X ) and M̃e

0.5
(X ) = M̃e

0.5
(2c

− X ), whence because of the equivariance properties of M̃e and M̃e
0.5

under
affine transformations, we have that

M̃e(X ) = 2c− M̃e(X ) and M̃e
0.5
(X ) = 2c− M̃e

0.5
(X ).

By adding M̃e(X ) and M̃e
0.5
(X ) to the two members in the last two equalities,

respectively, 2 M̃e(X ) = 2c+ M̃e(X )−M̃e(X ) and 2 M̃e
0.5
(X ) = 2c+ M̃e

0.5
(X )

− M̃e
0.5
(X ) and, hence,

M̃e(X ) = c+
1

2
· O

M̃e(X )
and M̃e

0.5
(X ) = c+

1

2
· O

M̃e
0.5

(X )
.

By arguing like in the proof of Proposition 4.1 we can immediately conclude

that both M̃e(X ) and M̃e
0.5
(X ) are symmetric fuzzy numbers about c. �

The result in Proposition 4.2 is now illustrated by computing the two medians
of the symmetric random fuzzy numbers in Examples 3.2 and 3.3.

Example 4.2 To compute the median of the symmetric random fuzzy num-
ber about 0.5 in Example 3.2 we should take into account that

label VD D SD N SA A VA

absol. freq. 38 143 207 177 207 143 38

infα 0 α
6

α+1
6

α+2
6

α+3
6

α+4
6

α+5
6

supα
1−α
6

2−α
6

3−α
6

4−α
6

5−α
6

6−α
6 1

mid0.5
1
24

4
24

8
24

12
24

16
24

20
24

23
24

ldev0.5α
1
24

1−α
6

1−α
6

1−α
6

1−α
6

1−α
6

3−4α
24

rdev0.5α
3−4α

6
1−α
6

1−α
6

1−α
6

1−α
6

1−α
6

1
24

whence, by developing a comparison of the values in each row as a function of
α, one can easily conclude that

M̃e(X ) = M̃e
0.5
(X ) = N.

To compute the median of the symmetric random fuzzy number about 2 in
Example 3.3 we should take into account that

15



label γ(2)(0) γ(2)(1) γ(2)(2) γ(2)(3) γ(2)(4)

probab. .0625 .25 .375 .25 .0625

infα − 3
√
1− α 1−

√
1− α 1 + α 3− (1− α)2 4− (1− α)3

supα (1− α)3 1 + (1− α)2 3− α 3 +
√
1− α 4 + 3

√
1− α

mid0.5
3√2−8
16 3√2

√
2−4
8
√
2

2 23
√
2+4

8
√
2

63 3√2+8
16 3√2

ldev0.5α
3√2+16 3√2(1−α)−8

16 3√2

8
√

2(1−α)−7
√
2−4

8
√
2

1− α 4−
√
2+8

√
2(1−α)2

8
√
2

8− 3√2−16 3√2(1−α)3

16 3√2

rdev0.5α
8− 3√2−16 3√2(1−α)3

16 3√2

4−
√
2+8

√
2(1−α)2

8
√
2

1− α
8
√

2(1−α)−7
√
2−4

8
√
2

3√2+16 3√2(1−α)−8
16 3√2

whence, by developing a comparison of the values in each row as a function of
α for the 1-norm median, one can easily conclude that

M̃e(X ) = γ(2)(2),

whereas by using an R function in line with the one in the SAFD package
(see Sinova et al. [25], Trutschnig and Lubiano [28]) the β = 0.5-median of
γ(2) ◦Bin(4, 0.5) has been graphically displayed in Figure 8, and it is very close
but not coincident with any random fuzzy number value.
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Fig. 8. The β = 0.5-median (in black) of the characterizing fuzzy representation of
the Bin(4, 0.5) in Example 3.3

Consequently, one can assert that for symmetric random fuzzy numbers about
c the two main central tendencies (i.e., the Aumann-type mean and the me-
dian, defined in accordance with the two approaches based on L1 metrics
between fuzzy numbers) are symmetric fuzzy numbers about c, but they do
not necessarily coincide.
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The above described examples show that the Aumann-type mean is not neces-
sarily a value of the symmetric random fuzzy number, even in case the number
of different values is an odd one, and the same happens (although not that
frequently) with the median. Anyway, the examined examples make us think
that the behaviour of the median seems to be closer to that of the real-valued
case than the behaviour of the mean value. The next section will present an
empirical discussion on this point.

5 Illustrative comparative study between the central tendency mea-
sures

This section aims to show, through some examples, that in measuring the
central tendency for symmetric random fuzzy numbers the medians (espe-
cially the 1-norm one) behave in a more suitable and advisable way than the
Aumann-type mean. Thus, in addition to provide us with more robust esti-
mates (see Sinova et al. [23] [24]) than the mean, the medians also lead to a
fuzzy value which is closer to the one which occupies the ‘central position’.

To illustrate this assertion we have considered three different random fuzzy
numbers that are symmetric about 0, assumption made for the sake of sim-
plicity and unification although not being relevant. These symmetric random
fuzzy numbers have been obtained by composing the already-mentioned char-
acterizing fuzzy representation (González-Rodŕıguez et al. [13]) given by

(γ(0)(x))α =



[
x− (1− α)1+x, x+ (1− α)1/(1+x)

]
if x ≥ 0

[
x− (1− α)1/(1−x), x+ (1− α)1−x

]
if x < 0

with three symmetric real-valued random variables: a standard normal X
∼ N (0, 1);, a uniform X ∼ Uniform(−0.5, 0.5); and a translated binomial
X ∼ Bin(5, 0.5)− 2.5.

After representing the (population) 1-norm median, 0.5-median and Aumann-
type mean of each of the random fuzzy numbers γ(0) ◦X graphically, distances
between each of the summary measures and the correspondent central position
value γ(0)(0) have been computed and graphically displayed (as functions of θ
when the distance is parameterized). Conclusions are now presented.

Figure 9 shows that when the considered random fuzzy number is γ(0)◦N (0, 1),
then the 1-norm median coincides with the central position value, and the 0.5-
median is quite close to it, whereas the Aumann-type mean is not that close.
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Fig. 9. Aumann-type mean (- - - -), 0.5-median (· · · · · ·) and 1-norm median= γ(0)(0)
(—–) of the random fuzzy number γ(0) ◦ N (0, 1)

This is also corroborated by computing the Dθ-, D
0.5
θ - and ρ1-distances be-

tween each summary measure and γ(0)(0), the two first distances as functions
of the weighting parameter θ. Thus,

ρ1
(
M̃e(γ(0) ◦ N (0, 1)), γ(0)(0)

)
= 0,

ρ1

(
M̃e

0.5
(γ(0) ◦ N (0, 1)), γ(0)(0)

)
= 0.0078,

ρ1
(
Ẽ(γ(0) ◦ N (0, 1)), γ(0)(0)

)
= 0.0751,

and the Dθ- and the D0.5
θ -distances have been displayed in Figure 10.

Fig. 10. Dθ-distance (on the left) and the D0.5
θ -distance (on the right) between

γ(0)(0) and the Aumann-type mean (- - - -), 0.5-median (· · · · · ·) and 1-norm median
(−·−·) of the random fuzzy number γ(0) ◦ N (0, 1) as functions of θ
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Analogously, Figure 11 shows that when the considered random fuzzy number
is γ(0) ◦Uniform(−0.5, 0.5), then the 1-norm median coincides with the central
position value, and the 0.5-median is quite close to it, whereas the Aumann-
type mean is not that close.

Fig. 11. Aumann-type mean (- - - -), 0.5-median (· · · · · ·) and 1-norm
median= γ(0)(0) (—–) of the random fuzzy number γ(0) ◦Uniform(−0.5, 0.5)

This is also corroborated by computing the Dθ-, D
0.5
θ - and ρ1-distances be-

tween each summary measure and γ(0)(0), the two first distances as functions
of the weighting parameter θ. Thus,

ρ1
(
M̃e(γ(0) ◦ Uniform(−0.5, 0.5)), γ(0)(0)

)
= 0,

ρ1

(
M̃e

0.5
(γ(0) ◦ Uniform(−0.5, 0.5)), γ(0)(0)

)
= 0.0034,

ρ1
(
Ẽ(γ(0) ◦ Uniform(−0.5, 0.5)), γ(0)(0)

)
= 0.1771,

and the Dθ- and the D0.5
θ -distances have been displayed in Figure 12.

Fig. 12. Dθ-distance (on the left) and the D0.5
θ -distance (on the right) between

γ(0)(0) and the Aumann-type mean (- - - -), 0.5-median (· · · · · ·) and 1-norm median
(−·−·) of the random fuzzy number γ(0) ◦Uniform(−0.5, 0.5) as functions of θ
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Remark 5.1 It should be emphasized that the coincidence M̃e(γ(0) ◦ X) =
γ(0)(0) is not at all casual. Whenever X has a either a symmetric continuous
distribution or a discrete one with an odd number of distinct values, then the
equality holds. This is due to the fact that both inf(γ(0)◦X)α and sup(γ(0)◦X)α
are strictly increasing functions of X, whence for each α ∈ [0, 1] we have that
Me( inf(γ(0) ◦X)α) = inf (γ(0)(0))α and Me( sup(γ(0) ◦X)α) = sup (γ(0)(0))α.

The above-mentioned coincidence does not hold in general when the number
of distinct values of X is even. In such a case, we cannot properly talk about
‘central position’ and conventions should be made, so the use of γ(0)(0) as the
central position value is not completely fair. Anyway, ir serves us to illustrate
that the behavior of the medians in contrast to that of the mean is preserved
although advantages for the 0.5-median are not so obvious.

Fig. 13. Aumann-type mean (- - - -), 0.5-median (· · · · · ·) and 1-norm
median= γ(0)(0) (—–) of the random fuzzy number γ(0) ◦ [Bin(5, 0.5)− 2.5]

In this way, Figure 13 shows the scenario when the considered random fuzzy
number is γ(0) ◦ [Bin(5, 0.5) − 2.5], a random fuzzy number symmetric about
0 and taking on 6 different values. In this case, the 1-norm median is very
close to γ(0)(0) (which does not exactly correspond to a central position) but
the 0.5-median is not very close to it, and the Aumann-type mean is not close
either.

This is better confirmed by computing the Dθ-,D
0.5
θ - and ρ1-distances between

each summary measure and γ(0)(0), the two first distances as functions of the
weighting parameter θ. Thus,

ρ1
(
M̃e(γ(0) ◦ [Bin(5, 0.5)− 2.5]), γ(0)(0)

)
= 0.0108,

ρ1

(
M̃e

0.5
(γ(0)[Bin(5, 0.5)− 2.5]), γ(0)(0)

)
= 0.0234,

ρ1
(
Ẽ(γ(0) ◦ [Bin(5, 0.5)− 2.5]), γ(0)(0)

)
= 0.0274,
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Fig. 14. Dθ-distance (on the left) and the D0.5
θ -distance (on the right) between

γ(0)(0) and the Aumann-type mean (- - - -), 0.5-median (· · · · · ·) and 1-norm median
(−·−·) of the random fuzzy number γ(0) ◦ [Bin(5, 0.5)− 2.5] as functions of θ

and the Dθ- and the D0.5
θ -distances have been displayed in Figure 14.

6 Concluding remarks

In this paper the adequacy of central tendency measures for random fuzzy
numbers has been discussed by considering their behaviour in case of sym-
metric distributions. Random fuzzy numbers are becoming an appealing tool
to statistically analyze imprecise data which can be suitably formalized by
means of fuzzy numbers. Several problems and techniques are being stud-
ied and developed along this century. For instance, testing about means (see
Colubi et al. [4], González-Rodŕıguez et al. [14] or the recent review by Blanco-
Fernández et al. [1]), regression analysis (see, for instance, Ferraro et al. [9],
Ferraro and Giordani [10]), clustering (see, for instance, González-Rodŕıguez et
al. [12]), Bayesian analysis (see Stein et al. [26]), actuarial developments, port-
folio selection and mathematical programming (see, for instance, Shapiro [22],
Li and Xu [16], Sakawa and Matsui [20]), and so on.

An open direction from the study in this paper would be extending the notion
of symmetry about a real number to that about a fuzzy number. Special care
should be put for this extension with the nonlinearity of the space of fuzzy
numbers when it is endowed with the usual fuzzy arithmetic, so the extension
is not a trivial task.
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2014. A distance-based statistical analysis of fuzzy number-valued data. Int. J.
Approx. Reas. (doi:10.1016/j.ijar.2013.09.020).

[2] Bertoluzza, C., Corral, N., Salas, A., 1995. On a new class of distances between
fuzzy numbers. Mathw. & Soft Comp. 2, 71–84.

[3] Casals, M.R., Corral, N., Gil, M.A., López, M.T., Lubiano, M,A,, Montenegro,
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