
Research Article
Immune Modulating Capability of Two
Exopolysaccharide-Producing Bifidobacterium Strains
in a Wistar Rat Model

Nuria Salazar,1 Patricia López,2 Pablo Garrido,3 Javier Moran,3

Estefanía Cabello,3 Miguel Gueimonde,1 Ana Suárez,2 Celestino González,3

Clara G. de los Reyes-Gavilán,1 and Patricia Ruas-Madiedo1

1 Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de
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Fermented dairy products are the usual carriers for the delivery of probiotics to humans,Bifidobacterium and Lactobacillus being the
most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum
IPLA E44 were tested for their capability tomodulate immune response and the insulin-dependent glucose homeostasis usingmale
Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu
of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-𝛽 cytokine
occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats
fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory
IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting
the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells.
Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal
models.

1. Introduction

Probiotics, together with the prebiotic substrates that support
the growth of the beneficial intestinal microbiota, constitute
one of the largest segments of the worldwide functional
foodmarket. Fermented foods, and especially dairy products,
are the most popular carriers for the delivery of these
microorganisms in humans [1]. Probiotics are defined as
“live microorganisms that, when administered in adequate
amounts, confer a health benefit on the host” [2]. Strains
from Bifidobacterium and Lactobacillus are frequently used
as probiotics for humans; some of their species have the
“Qualified Presumption of Safety” (QPS) status [3] because
of their long history of safe consumption.

There are several reports supporting the fact that certain
ingested probiotics are able to impact the human health
by direct interaction with the host cells, or through the
modulation of the intestinal microbiota [4, 5]. The relevance
of this microbiota community is especially highlighted in
some chronic disorders of the gut in which a dysbiosis of
this microbial community has been detected [6]. In addition,
scientific evidence suggests an intricate relationship between
the intestinal microbiota and some extraintestinal disorders,
such as obesity. The modulation of the gut microbiota by
diet could be effective in improving the low-grade inflam-
mation associated with obesity and related diseases [7, 8].
Prebiotic and probiotic supplements couldmodify the altered
gut microbiota present in obesity-associated diseases by
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influencing gut barrier function, insulin sensitivity, systemic
inflammation, and host energy homeostasis [9, 10]. The
mechanism(s) by which probiotics interact with the host
remains to be completely understood, although some clues
have been obtained from studies performed using different
animal models [11–13].

Surface components of probiotic envelopes are claimed
to be the molecules that establish the initial interaction
with eukaryotic cells. In this scenario, exopolysaccharides
(EPS) produced by members of the intestinal microbiota, or
by beneficial microorganisms ingested with foods, can be
active players. There are a few works studying in vivo the
involvement of these polymers on bacteria-host interactions
[14–16]. Most of the evidence of the immune modulation
capability of EPS from probiotics has been obtained by in
vitro approaches. It seems that the physicochemical char-
acteristics, such as composition (mainly the presence of
charged substituents) and molecular weight (size), of these
polymers are the key parameters determining the capability
to induce a mild response (acid and small polymers) or
to reduce the production of cytokines (neutral and big
polymers) [17]. In parallel to the direct interaction with
immune cells of the host, the immunomodulation could
also be achieved through intervention on the intestinal
microbiota [18, 19]. Previously we have demonstrated that the
administration of the EPS-producing strains Bifidobacterium
animalis IPLA-R1 and Bifidobacterium longum IPLA-E44
to male Wistar rats modified their intestinal microbiota
by influencing the short chain fatty acid (SCFA) profile
and by increasing Bifidobacterium population levels in the
gut [15]. Therefore, the aim of the current study was to
check whether the oral intake of these two EPS-producing
bifidobacteria could modify some health-related parameters,
such as the systemic inflammatory profile and/or the insulin-
dependent glucose homeostasis, in healthy rats fed with a
standard diet. The final goal is to suggest target human
population(s) for the potential application of these strains as
probiotics.

2. Material and Methods

2.1. Experimental Design and Samples Collection. The animal
study design was previously reported [15] and was conducted
under the approval of the Animal Experimentation Ethical
Committee of Oviedo University (Asturias, Spain). The EPS-
producing strains B. animalis subsp. lactis IPLA-R1 and B.
longum IPLA-E44 were tested in adult, male Wistar rats.
Briefly, three groups of rats (8 per group) were fed daily,
through an intragastric cannula, with the delivery vehicle
(100 𝜇L skimmed milk, group V) or with 109 cfu per day (in
100 𝜇L skimmed milk) of the strains IPLA-R1 (group B1) or
IPLA-E44 (group B2). After an intervention period of 24
days, animals were anaesthetized with halotone and killed by
exsanguination. Additionally, a group of 8 rats was used as a
basal reference control (no intervention, group C) and killed
under the same conditions.

Blood samples (4mL) were collected from the jugular
vein into heparinized tubes and centrifuged at 1,000×g for

20min at 4∘C, and the plasma fraction was immediately
collected and stored frozen at −20∘C until it was assayed.
The gastrocnemius muscle and retroperitoneal adipose tissue
(100mg) were dissected, frozen in liquid nitrogen, and kept
at −80∘C until the analyses.

2.2. Immunoglobulins and Cytokine Profile in Plasma. The
cytokine levels in the plasma samples were quantified by
a “cytometric bead array” (CBA) using the BD FascCanto
II flow cytometer and the software FCAP (BD Biosciences,
San Diego, CA, USA). The CBA flex set (BD Biossciences)
included the cytokines IL-1a, IL-4, IL-6, IL-10, IFN𝛾, and
TNF𝛼, which were assayed under conditions recommended
by the manufacturer. The TGF𝛽 was measured by means
of the eBioscience platinum ELISA test (eBioscience, Ben-
der MedSystems GmbH, Vienna, Austria); the colorimetric
reaction was measured at 450 nm in the modulus microplate
photometer (Turner Biosystems, CA, USA). The limit of
detection was 4.0 pg/mL for IL-1a, 3.4 pg/mL for IL-4,
1.6 pg/mL for IL-6, 19.4 pg/mL for IL-10, 6.8 pg/mL for IFN𝛾,
27.7 pg/mL for TNF𝛼, and 8 pg/mL for TGF𝛽.

The levels of immunoglobulin (Ig) IgG and IgA were
determined by means of ELISA tests (GenWay Biotech,
Inc., San Diego, CA, USA) following the manufacturer’s
instructions. Additionally, IgA wasmeasured in supernatants
obtained after centrifugation from fecal samples homoge-
nized (1/10) with PBS.

2.3. Determination of Insulin, Glucose, and Calculation of
the HOMA-Index. The tail vein blood glucose levels were
measured using a portable device (Accu-Chek Aviva Nano
System, Roche Farma, S.A., Barcelona, Spain) while fast-
ing plasma insulin was measured by ELISA assay (Milli-
pore Ibérica, S.A., Madrid, Spain) following the manufac-
turer’s recommendations. Homeostasis Assessment Model-
(HOMA–) index was calculated using the following formula:
[insulin (𝜇U/mL) × glucose (mg/dL)]/2.43 [20].

2.4. Analysis of the Protein Kinase B (Akt) and the Glucose
Transporter Type 4 (Glut4). The content of total and phos-
phorylated Ser473 Akt kinase, as well as that of the insulin-
regulated glucose transporter type 4 (Glut4), was determined
by means of western-blot analyses in samples of crude intra-
cellular extracts and in cell-membrane fractions, obtained
from the muscle and retroperitoneal adipose tissues of the
rats as follows. To obtain the intracellular crude extracts, both
tissue types were homogenized in lysis buffer (50mM Tris-
HCl pH 7.5, 150mM NaCl, 1% Nonidet P40, 0.05% sodium
deoxycholate, sodium orthovanadate, 5mM EDTA, and 10%
glycerol) at 4∘C. The homogenized samples were centrifuged
at 21,800×g at 4∘C for 10min to collect the supernatants
(crude extracts) and its protein content was determined by
the Bradford method. To obtain cell membrane fractions, a
modification of the method described by Hirshman et al. [21]
was used. Briefly, a total of 500mg of tissues was homog-
enized with a Polytron operated at maximum speed for
30 s at 4∘C in a buffer containing 100mM Tris (pH 7.5),
20mM EDTA (pH 8.0), and 255mM sucrose (pH 7.6).
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The homogenate was then centrifuged at 1,000×g for 5min
and the resulting supernatant was centrifuged again at
48,000×g for 20min. The pellet from this centrifugation
was used for the preparation of the membrane fraction
that is enriched in the membrane marker Na+-K+-ATPase.
The pellet was resuspended in 20mM HEPES and 250mM
sucrose, pH 7.4 (buffer A). An equal volume of a solution
containing 600mM KCl and 50mM sodium pyrophosphate
was added and the mixture was vortexed, incubated for
30min on ice, and then centrifuged for 1 h at 227,000×g over
a 36% sucrose cushion in buffer A.The resulting interface and
the entire buffer above it were collected, diluted in an equal
amount of buffer A, and centrifuged for 1 h at 227,000×g.The
resulting pellet was used as the cell membrane fraction and
its protein content was determined by the Bradford method.

To carry out the western-blot analysis, proteins in the
crude tissue extracts or in the cell membrane fractions
were resolved by SDS-PAGE (10% Tris-Acrylamide-Bis) and
electrotransferred from the gel to nitrocellulose membranes
(Hybond-ECL, Amersham Pharmacia, Piscataway, NJ) as
described by Towbin et al. [22]. Nonspecific protein binding
to the nitrocellulose membrane was reduced by preincubat-
ing the filter with blocking buffer (TNT, 7% BSA); then,
membranes were incubated overnight with the primary
antibodies Glut4 (sc-7938, diluted 1 : 2,500), Akt (sc-7126,
diluted 1 : 2,000), and phosphorylated-Ser473-Akt (sc-101629,
diluted 1 : 2,500). All antibodies were obtained from Santa
Cruz Biotechnologies (Santa Cruz, CA). After incubation
with the primary antibody, the nitrocellulose membranes
were washed and incubated with the corresponding anti-
rabbit antibody coupled to horseradish peroxidase (HRP,
sc-2004, diluted 1 : 20,000), or the anti-goat antibody cou-
pled to HRP (sc-2768, diluted 1 : 20,000). Additionally, all
membranes were stripped and probed with monoclonal anti-
bodies used as reference controls: anti-𝛽-actin antibody (sc-
1615, diluted 1 : 2,500), anti-Na+-K+-ATPase 𝛼1-subunit anti-
body (sc-16041, diluted 1 : 5,000), or anti-GAPDH (sc-20356,
diluted 1 : 1,000). Immunoreactive bands were detected using
an enhanced chemiluminescence system (ECL, Amersham
Pharmacia Biotech, Little Chalfont, Bucks, UK). Films were
analyzed using a digital scanner Nikon AX-110 (Nikon,
Madrid, Spain) and NIH Image 1.57 software (Scion Corp.,
MD, USA). The density of each band was normalized to its
respective loading control (𝛽-actin, ATPase, or GAPDH). In
order to minimize interassay variations in each experiment,
samples from all animal groups were processed in parallel.

2.5. Statistical Analysis. The SPSS/PC 19.0 software package
(SPSS Inc., Chicago, IL, USA) was used for all statistical
analyses. After checking the normal distribution of the
parameters involved in the homeostasis of glucose, one-
way ANOVA tests were used to determine the differences
between the three groups of rats and the reference control.
Moreover, differences among the three experimental groups,
compared two by two, were also tested by means of one-way
ANOVA tests. These parameters were represented by mean
and standard deviation (SD).

Data of cytokines and Igs were not normally distributed;
thus, the nonparametricMann-Whitney test for two indepen-
dent samples was used to assess differences. The same com-
parisons among samples previously described were carried
out. Cytokine data were represented by median, interquartile
range andmaximum andminimumvalues (box andwhiskers
plot).

3. Results

3.1. Immune Parameters. Several proinflammatory and im-
mune-suppressor cytokines were measured in the blood
plasma obtained from the four groups of rats (Figure 1).
Levels of most cytokines (IFN𝛾, IL-1𝛼, IL4, IL-10, and TNF𝛼)
remained without significant variations in the four groups
of rats; this indicates that the daily intake for 24 days of the
two bifidobacteria, or the vehicle (milk), has not strongly
modified the immune response, since most of the cytokine
levels in the intervention groups (V, B1, and B2) were similar
to those found in the control group (C). In spite of this, the
oral intake of the two bifidobacteria significantly increased
the production of the suppressor-regulatory TGF-𝛽 cytokine,
the levels reached with the strain B. animalis subsp. lactis
IPLA-R1 (group B1) being the highest (𝑃 < 0.05). In addition,
this strain also induced the lowest (𝑃 < 0.05) production
of IL-6 as compared with the other two intervention (V
and B2) groups, although none of the three intervention
groups significantly differed from the control group. Thus,
it seems that the strain IPLA-R1 showed an in vivo immune
suppressive profile by reducing the proinflammatory cytokine
IL-6 and inducing the synthesis of the regulatory TGF-𝛽.

The levels of IgA were determined in blood plasma and
fecal homogenates and the amount of IgG was measured in
plasma. The oral intake of skimmed milk, alone or used as
vehicle for the bifidobacterial delivery, produced a signifi-
cantly higher (𝑃 < 0.05) ratio IgG/IgA in the three groups,
in comparison with the basal control group (Figure 2(a)).
No variations in secretory IgA were detected in the fecal
samples of the four groups of rats (Figure 2(b)), which is of
special relevance since this antibody plays a critical role in
maintaining the immune homeostasis in several mucosae,
including the intestinal mucosa. Therefore, (cow’s) milk
induced a humoral systemic response; this immune reaction
was not surprising since this food is not a current component
of a rat’s diet, and therefore these animals have not developed
oral tolerance to it.

3.2. Biochemical Parameters. The current setup of data
showed that the concentration of glucose and insulin in
plasma collected after a fasting period, as well as the HOMA
index, were not modified by the intervention study (Table 1).
The concentrations in the groups of rats treated for 24 days
with vehicle (skimmed milk), or with the two bifidobacteria,
were similar among them and with respect to the control
group.

To detect potential changes in the insulin-dependent
glucose signaling route, the levels of the protein Akt and the
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Figure 1: Cytokines measured in blood (plasma) samples of Wistar rats fed for 24 days with vehicle (100𝜇L of skimmed milk, V group) or
109 cfu per day of B. animalis subps. lactis IPLA-R1 (B1 group) or B. longum IPLA-E44 (B2 group). The control rats were not submitted to
the intervention study (C group). For each cytokine, the box and whiskers plot represents median, interquartile range and minimum and
maximum values obtained from 8 rats per group. The nonparametric Mann-Whitney test for two independent samples was used to compare
each treatment group with the control, and differences are indicated with asterisks ( ∗𝑃 < 0.05, ∗∗𝑃 < 0.01). Additionally, the same test was
used to assess differences among the treatment groups compared two by two. In this case, treatment groups that do not share the same letter
are statistically different (𝑃 < 0.05).
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Figure 2: Ratio IgG/IgA in blood (plasma) samples (a) and amount of IgA (𝜇g/mL) secreted in fecal samples (b) ofWistar rats fed for 24 days
with vehicle (100𝜇L of skimmed milk, V group) or 109 cfu per day of B. animalis subps. lactis IPLA-R1 (B1 group) or B. longum IPLA-E44
(B2 group). The control rats were not submitted to the intervention study (0 days). The same statistical treatment indicated in Figure 2 was
applied.

Table 1: Parameters related to the glucose homeostasis measured
in the plasma of Wistar rats fed for 24 days with vehicle (100𝜇L
of skimmed milk) or 109 cfu per day of B. animalis subps. lactis
IPLA-R1 (B1 group) or B. longum IPLA-E44 (B2 group). Control rats
were not submitted to the intervention study (0 days). The one-way
ANOVA analyses did not show statistical differences.

Rat group Mean ± SD
Glucose (mg/dL) Insulin (𝜇g/mL) HOMA

Control (0 d) 76.2 ± 15.4 0.0060 ± 0.0045 0.20 ± 0.091
Vehicle (24 d) 74.3 ± 12.3 0.0061 ± 0.0052 0.21 ± 0.093
B1 (24 d) 69.6 ± 12.3 0.0063 ± 0.0049 0.19 ± 0.089
B2 (24 d) 82.4 ± 7.9 0.0063 ± 0.0051 0.17 ± 0.090

glucose transporter Glut4 were quantified by western blot
(Figure 3). The levels of glucose transporter Glut4 located
in the cellular membrane of both retroperitoneal adipose
tissue and gastrocnemius muscle were similar in all groups
of rats (Figure 3(a)). Similarly, no statistical differences were
detected in the percentage of the intracellular kinase Akt,
phosphorylated in the serine 473 residue, in adipose tissue
(Figure 3(b)). However, the phosphorylated-Akt was signifi-
cantly (𝑃 < 0.05) lower in the gastrocnemius muscle of rats
fed for 24 days with B. animalis subsp. lactis IPLA-R1 (group
B1) in comparison with the other two intervention groups
(vehicle or B. longum IPLA E44 fed), as well as in comparison
with the control group.

4. Discussion

In recent years, there is an increasing evidence that some
specific probiotic strains are able to modulate the immune
response. In the case of Bifidobacterium genus, most strains
studied showed an anti-inflammatory profile in animal mod-
els geneticallymodified or challengedwith different factors to
induce an inflammatory process [23–25]. Our experimental
model was performed with standard, naı̈ve (not challenged)

Wistar rats that simulate a healthy state. Thus, this could be
the main reason why most cytokines tested were not signifi-
cantly modified by the ingestion of the two bifidobacteria, in
comparison with the placebo fed rats. However, it should also
be taken into account that both bifidobacteria are producers
of EPS; these are polymers that could mask other immune-
reactive molecules present in the bacterial surface and there-
fore allow them to escape the immune system survey. In this
regard, Fanning and coworkers [14] have demonstrated in a
näıve murine model that the EPS-producing Bifidobacterium
breve UCC2003 strain failed to elicit a strong immune
response in comparison to its EPS-deficient variant strains;
it seems that the EPS+ strain is able to evade the B-cell
response. We have recently demonstrated that bifidobacterial
EPS, differing in their physicochemical composition, in vitro
induced a variable cytokine production pattern by human
peripheral blood mononuclear cells [26]. In general, those
EPS having high molecular weight were those eliciting the
lowest production of any cytokine [27, 28]. Thus, it seems
that not only the presence/absence of the polymer, but also
the characteristics intrinsic to each EPS are relevant for their
capability to induce immune response. In this regard the
two bifidobacteria strains used in the current work produce
polymers of different chemical composition [15]; only the
group of rats receiving the strain B. animalis subsp. lactis
IPLA R1 showed a significantly reduced production of IL-6
and increased synthesis of TGF-𝛽. The differential immune
response elicited by the two strains cannot be exclusively
attributed to the production of different EPS, since other
strain-associated traits could also be responsible. Neverthe-
less, it seems that IPLAR1 strain is able to elicit an imunosup-
pressive profile in vivo after oral intake for a prolonged period
(24 days).

Regarding the glucose homeostasis, the levels of circulat-
ing glucose and insulin, as well as the HOMA index, were not
modified by the consumption of the two bifidobacteria in the
context of a standard (no high fat, no high carbohydrate) diet.
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Figure 3: Content of the cell-membrane Glut4 (a) as well as the intracellular Akt and phosphorylated-Ser
473

-Akt (b) in gastrocnemiusmuscle
and adipose tissues from rats fed daily for 24 days with delivery vehicle (100𝜇L of skimmed milk, V group) or 109 cfu per day of B. animalis
subps. lactis IPLA-R1 (B1 group) or B. longum IPLA-E44 (B2 group). Data were referred to those obtained in the control rats (C group) which
were not submitted to the intervention study. Bars represent mean and standard deviations obtained from 8 rats per group. Independent
one-way ANOVA tests were used to compare each treatment group with the control, and differences are indicated with asterisks ( ∗𝑃 < 0.05).
Additionally, the same test was used to assess differences among the treatment groups compared two by two. In this case, treatment groups
that do not share the same letter are statistically different (𝑃 < 0.05).

In this regard, it has been described that some probiotics can
improve the resistance to insulin in different animalmodels of
diet-induced diabetes or with different genetic backgrounds
[29–32]. Additionally, a double-blind, randomized interven-
tion study in humans showed that an intake of Lactobacil-
lus acidophilus NCFM for 4 weeks improved the insulin
sensitivity [33]. In most of these reports no mechanism of
action is proposed or is a general one suggested, such as the
modulation of the intestinal microbiota, or the modification

of the inflammatory state. In our study, we checked some
critical points in the cascade of the glucose uptake mediated
by insulin, such as the location of the glucose transporter
Glut4 and the levels of the active (phosphorylated) Akt kinase
[34].The two EPS-producing bifidobacteria strains tested did
not modify the insulin-regulated trafficking of the glucose
transporter Glut4 from intracellular vesicles (endosomes) to
the cell membrane of either adipose or muscular tissues. The
failure of this translocation in response to insulin is one of
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the steps in the development of insulin resistance and type 2
diabetes.Therefore, the presence of similar Glut4 levels in the
cellmembrane of tissues obtained from the four groups of rats
explains the absence of variations in the levels of circulating
glucose and insulin. One of the proteins involved in the
insulin-mediatedGlut4 trafficking is the phosphatidylinositol
32-kinase (PI 3K)-dependent Ser473 kinase Akt. In response
to insulin, Akt is activated by phosphorylation which directs
the traffic of Glut4 from vesicles to the cell membrane;
therefore, Akt acts as a regulator of glucose transport
[35]. In our experimental model, the intracellular levels
of phosphorylated-Akt in adipocytes were not significantly
modified by the intake of the two bifidobacteria; this result
is consistent with the absence of differences in the amount
of Glut4 located in the cell membrane, as well as the lack
of variation in circulating glucose, among the four groups
of rats. However, the percentage of phosphorylated-Akt was
significantly lower in the gastrocnemius muscle of rats fed
with the strain B. animalis subsp. lactis IPLA R1. Since, in rats
from this group, the glucose homeostasis parameters and the
content of the Glut4 located in the cell membrane of muscle
and adipose tissue remained without significant variations,
differences in the phosphorylated-Akt could be explained by
the participation of this kinase in othermetabolic routes apart
from the insulin-mediated glucose transport. In this regard, it
has been indicated that the PI 3K-dependent Ser/Thr kinase
Akt is a regulator that acts in many different metabolic
routes and several events related with the cellular cycle
[35].

Aiming to have a general picture of the differences
detected in our experimental model, which were mainly
driven by the strain B. animalis subsp. lactis IPLA R1, it
should be pointed out that levels of circulating IL-6 and
phosphorylated-Akt in muscle were directly related. In this
regard, the skeleton muscle and the adipose tissue are impor-
tant sources for systemic IL-6 [36]. In addition, during strong
exercise muscular cells are also targets for the action of IL-
6, where the insulin action is favored, among other events,
by enhancing the phosphorylation of Akt [37]. However, IL-
6 has adverse effects on other tissues that are targets for
insulin action, such as the liver and adipose tissue [38].
At present, we cannot establish a hypothesis to explain the
relationship between systemic IL-6 and phosphorylated-Akt
in muscle found in rats fed B. animalis subsp. lactis IPLA
R1. Nevertheless, recent articles show that Akt activity has a
role in regulating immune response since it is involved in the
differentiation and response of several cellular subsets, such
as T cells and macrophages [39, 40]. The activity of Akt in
signaling immune pathways is induced in some cases by the
presence of bacterial components, such as the lipopolysac-
charide from gram-negatives [41] or peptidoglycan from
gram-positives [42].This kinase also plays a role in the innate
immunity signaling, since it participates in the modulation
of mucin secretion by intestinal epithelial cells in response
to pathogens [43]. Furthermore, the activity of Akt has been
associated with dendritic cell differentiation and stimulation
driven by Gram-positive probiotics, such as the strain Bifi-
dobacterium breve C50 [44].

5. Conclusion

In this study, we found that the oral administration of the
EPS-producing B. animalis subsp. lactis IPLA R1 in healthy
rats is associated with an immune protective profile, since
this EPS producing strain can suppress the proinflammatory
cytokine IL-6 and promote the synthesis of the regulatory
cytokine TGF-𝛽. These results suggest that, in the future,
this bifidobacteria could be tested in experimental models of
low grade inflammation state, such as that linked to obesity.
Additionally, the capability of strain IPLA R1 to reduce
the systemic levels of IL-6, linked with a reduction in the
phosphorylated state of Akt in the muscle, without affecting
the glucose homeostasis, prompts us to propose the potential
application of this strain for sportspeople undertaking strong
exercise.
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