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ABSTRACT 17 

 18 

Accumulation of an intracellular pool of carbon (Ci pool) is one strategy by which 19 

marine algae overcome the low abundance of dissolved CO2 (CO2(aq)) in modern seawater. To 20 

identify the environmental conditions under which algae accumulate an acid-labile Ci pool, we 21 

applied a 14C pulse-chase method, used originally in dinoflagellates, to two new classes of 22 

algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside 23 

the cells without altering the medium carbon chemistry or culture cell density. We found that 24 

the diatom Thalassiosira weissflogii ((Grunow) G.Fryxell & Hasle) and a calcifying strain of 25 

the coccolithophorid Emiliania huxleyi ((Lohmann) W.W.Hay & H.P.Mohler) develop 26 

significant acid-labile Ci pools. Ci pools are measureable in cells cultured in media with 2 to 27 

30 µmol L-1 CO2(aq) , in these cultures corresponding to a medium pH of 8.6 -7.9. The absolute 28 

Ci pool was greater for the larger-celled diatoms. For both algal classes the Ci pool became a 29 

negligible contributor to photosynthesis once CO2(aq) exceeded 30 µmol L-1. Combining the 30 

14C pulse-chase method and 14C disequilibrium method enabled us to assess whether E. 31 

huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced 32 

the reliance on bicarbonate uptake with increasing CO2(aq). We showed that the Ci pool 33 

decreases with higher CO2:HCO3
- uptake rates.  34 

 35 
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Abbreviations 38 

α1, α2, temperature, salinity and pH dependent first order rate constants for CO2 and 39 

hydration; AA, added activity; C, carbon; CA, chase activity; CCF, carbon concentration 40 

factor; CCM, carbon concentration mechanism; CF, chase filter; Chla, chlorophyll a; Ci pool, 41 

intracellular pool of acid-labile carbon; CPM, counts per minute; D, dark; DBS, dextran 42 

bound sulfonamide; DIC, dissolved inorganic carbon; DPM, desintegrations per minute; eCA, 43 

extracellular carbonic anhydrase; f, fraction of DIC uptake attributable to HCO3
-; iCA, 44 

intracellular carbonic anhydrase; L, light; LD, light:dark; MIMS, membrane inlet mass 45 

spectrometry; P+C, pulse chase method; PEPC, phosphoenolpyruvate carboxylase; ∆SACO2, 46 

difference between initial and equilibrium values of specific CO2 activity;∆SAHCO3, difference 47 

between initial and equilibrium values of specific HCO3
- activity; SADIC, specific activity of 48 

dissolved inorganic carbon at equilibrium; SOC, silicon oil centrifugation method; SW, 49 

seawater; t, time; TZ, time zero; Vt, total rate of DIC uptake 50 

 51 
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INTRODUCTION 53 

In modern seawater, the ambient concentration of dissolved inorganic carbon (DIC) in 54 

the form of uncharged carbon dioxide (CO2(aq)) varies between 10 and 15 µmol L-1 at a pH ~ 55 

8.05. CO2(aq) is the required substrate of the enzyme RubisCO, which is responsible for the 56 

major part of carbon (C) fixation in the biosphere. This ancient highly conserved protein not 57 

only plays a central, but also limiting role during photosynthetic C assimilation, due to its 58 

catalytic inefficiency under modern atmospheric conditions (low CO2 and high O2 59 

concentrations). Because it evolved in an atmosphere with nearly 20 fold higher CO2(aq) levels 60 

compared to the present concentration (e.g. Tortell 2000), the poor catalytic efficiency 61 

hampers maximum carbohydrate production (KM of 20-70 µmol L-1, (Badger et al. 1998)). 62 

Consequently, at present CO2(aq) concentrations marine algae have to enrich CO2 actively at 63 

the catalytic site of RubisCO via operating carbon concentrating mechanisms (CCMs).   64 

During the last several decades, the diversity of CCMs in marine microorganisms and 65 

the variable efficiencies of different RubisCO enzyme types have been elucidated by a variety 66 

of methods(e.g. Badger et al. 1998, Giordano et al. 2005, Kaplan et al. 1980, Kaplan and 67 

Reinhold 1999, Roberts et al. 2007). An essential component of CCMs is an active influx of 68 

inorganic C across the cell membrane (Raven 1995). The active uptake of DIC across the 69 

plasmalemma and the hydration of CO2 inside the cytoplasm can result in enhanced 70 

intracellular DIC concentrations compared to the DIC concentrations in the medium (Badger 71 

et al. 1998), although CCMs do not necessarily result in an accumulation of inorganic C 72 

inside the cell, because of direct transfers of DIC to catalytic site of RubisCO. Several recent 73 

studies suggest that the most effective CCMs are those which rely on enhancement of DIC 74 

(or DIC-organic complexes) in the cell while maintaining cytoplasm CO2 concentrations 75 

which are not significantly elevated with respect to those of seawater to avoid strong leakage 76 

of CO2 through the cell membrane (e.g. Cassar et al., 2006, Hopkinson et al., 2011). In these 77 
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models, C is transported from the cytoplasm to the chloroplast as HCO3
-, and only within the 78 

chloroplast or pyrenoid region at the site of RubisCO, converted to CO2.  Likely, an 79 

intracellular carbonic anhydrase (iCA) is important in this conversion into CO2 (e.g. Giordano 80 

et al. 2005, Raven 2010, Trimborn et al. 2009). Alternatively, in some marine diatoms, C may 81 

be transported from the cytoplasm to the site of photosynthesis as a C4 compound (Morel et 82 

al. 2002, Reinfelder et al. 2000, Roberts et al. 2007). In addition, some algae species exhibit 83 

high extracellular carbonic anhydrase (eCA) activities, which catalyzes the equilibrium 84 

replenishment from seawater of CO2(aq) or bicarbonate (HCO3-) and minimizes depletion of 85 

CO2 in the cell´s boundary layer (Aizawa and Miyachi 1986, Berman-Frank et al. 1994, 86 

Spalding et al. 1983, Trimborn et al. 2008). 87 

Yet, the operation of CCMs comes at some energetic cost to the organism. The 88 

formation and maintenance of CCMs requires light energy as well as nutrients to make the 89 

key proteins for these reactions. These costs of the different types of CCMs may play a role in 90 

competitive interactions among taxa in the modern ocean in their biogeography and seasonal 91 

succession (Tortell 2000).  Due to the high impact of CCMs on the energetic metabolism and 92 

physiology of the cells, it is of particular interest to examine experimentally, if CCMs are 93 

reduced at higher concentrations of CO2(aq), whether two species belonging to different algal 94 

classes reduce the size of Ci pools at similar thresholds of CO2(aq) and how this influences 95 

algae growth.  C acquisition strategies of algae may be characterized by assessing the degree 96 

of accumulation of intracellular C, the proportion of each species of C (HCO3
- or CO2) used 97 

for photosynthesis, and the fluxes of each substrate into and out of the cell. Other 98 

characterizations include expression of key enzymes involved in CCMs, such as iCA and eCA 99 

or phosphoenolpyruvate carboxylase (PEPC).   100 

In this study, we concentrate on the existence and significance of intracellular C 101 

accumulation, considering total accumulation in the cell and considering the full acid-labile Ci 102 
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pool which subsequently contributes to photosynthesis.  We employ a 14C pulse-chase method 103 

which indirectly determines the Ci pools contributing to photosynthesis, and compare the size 104 

of the Ci pool  at varying pH values and CO2(aq) of two different microalgae species, a 105 

coccolithophorid and a diatom.   This pulse-chase method was first described by ter Kuile and 106 

Erez (1987, 1988) for measuring the Ci pools of benthic foraminifera, and was later used to 107 

characterize the Ci pool of dinoflagellates (Berman-Frank and Erez 1996) and brown 108 

macroalgae (Johnston 1991).  The pulse-chase method distinguishes the cellular content of 109 

acid-labile forms of C, which include free CO2, HCO3
- and CO3

-2  as well as C that may be 110 

bound or complexed to organic molecules.  The fraction of this acid-labile C which is 111 

subsequently incorporated into acid-stable forms via photosynthesis, is defined as the 112 

intracellular C (Ci) pool.  In this work, we extend the use of the pulse-chase method to two 113 

new algal classes, describing its first successful application to coccolithophorids and diatoms. 114 

This approach allows us to detect and estimate the size of the Ci pool in cultures at natural cell 115 

densities and in an identical water or media chemistry to which cells have been acclimated. 116 

Because no specialized equipment beyond that used for standard photosynthetic 14C uptake 117 

measurements (incubation of labeled medium, filtration system and scintillation counter) is 118 

required, the method might be especially suited for assaying the Ci pool of cells at an array of 119 

conditions or in shipboard measurement programs. Complementary experiments, using the 120 

14C disequilibrium method (Elzenga et al. 2000, Espie and Colman 1986, Rost et al. 2007), 121 

were used to describe the relationship between active HCO3
- uptake and the existence and size 122 

of the Ci pool.  123 

We investigate Ci pools in two algal classes, one a calcifying strain of the 124 

coccolithophorid Emiliania huxleyi ((Lohmann) W.W.Hay & H.P.Mohler), and the marine 125 

diatom Thalassiosira weissflogii ((Grunow) G.Fryxell & Hasle). E. huxleyi is well known as a 126 

cosmopolitan unicellular calcifying alga which is widely distributed with blooms known to 127 
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produce a large quantity of organic matter and calcite before sinking to the bottom of the sea. 128 

Therefore, E. huxleyi plays an important role in the global C cycle, and enhances the 129 

biological pump by transporting C from the sea surface to the sediment (Buitenhuis et al. 130 

2001).  Previous investigations demonstrated that blooms of E. huxleyi serve as a sink for 131 

atmospheric CO2 (Buitenhuis et al. 1996, Buitenhuis et al. 2001). T. weissflogii is a coastal 132 

nontoxic ubiquitous centric diatom. Evidence has recently emerged of a C4-like mechanism 133 

for photosynthesis operating as a biochemical CCM in some strains of T. weissflogii (Granum 134 

et al. 2005, Johnston et al. 2001, Morel et al. 2002, Reinfelder et al. 2000, Reinfelder et al. 135 

2004), underscoring the diversity of CCMs used within marine microorganisms. 136 

 137 
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EXPERIMENTAL METHODS 139 

 140 

Setup of the experiment 141 

Monospecific cultures of T. weissflogii (CCMP 1010) and E. huxleyi (RCC 1216) were 142 

maintained as dilute batch cultures in sterile filtered seawater in 1L acid washed and 143 

autoclaved Schott glass bottles. The growth medium was enriched with major nutrients 144 

(phosphorus, nitrogen, and silicon), trace metals and vitamins according to the K/5 recipe 145 

with or without silicon (Keller et al. 1987). Experiments were carried out under a light:dark 146 

(LD) cycle of 16:8 at a constant temperature of 18 °C under saturated light growth conditions 147 

(150 µmol·m-2·s-1 photon flux).  A homogeneous distribution of the cells was sustained by 148 

placing the cultures on a system providing continuous gentle rotation. The carbonate system 149 

was regulated by modifying the pH via additions of 0.5 mol L-1 freshly prepared NaOH or 150 

HCl solutions to attain medium at three pH ranges, 8.5, 7.9 and 7.4. The changes in 151 

extracellular CO2(aq) mediated by the addition of acid or alkali do not aim to simulate the exact 152 

changes in the ocean C system expected during the next centuries, which will entail both 153 

increased DIC as well as lower pH. Nevertheless, for  experiments like those in the current 154 

study, the type of pH manipulation we describe has been shown to produce comparable results 155 

as experiments bubbling cultures with air of variable CO2 concentrations (Hoppe et al. 2011, 156 

Schulz et al. 2009). The pH was checked during the course of the experiments to verify that 157 

increases of the pH did not exceed 0.2 pH units. Cells were acclimated to experimental 158 

conditions for 6-8 generations, which is in accordance with previous experiment investigating 159 

the impact of changes in the carbonate system on physiological parameters (e.g. Trimborn et 160 

al. 2008, 2009, Burkhardt et al. 2001).  161 
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Cell counts and cell volume calculations 162 

Live cell counts were made using a Fuchs-Rosenthal haemacytometer with 0.2 mm 163 

and 1/16 mm2 ruling. Two subsamples were counted for each experiment during the pulse and 164 

chase incubation (further explanation in the following paragraphs). The cell concentrations 165 

estimated for E. huxleyi were up to 40-fold higher than those for T. weissflogii (Table 3).  The 166 

incubations with 14C were initiated with cell densities in the range of 3,600 and 36,000 167 

cells·mL-1 for T. weissflogii and between 70,000 and 163,000 cells·mL-1 for E. huxleyi, as 168 

given in Table 3. 169 

The cell size and volume were measured using a “Nikon eclipse Ti” inverted light 170 

microscope. The shape, the volume, and surface calculations differ for both algae. T. 171 

weissflogii has cylindrical and E. huxleyi spherical cells (Hillebrand et al. 1999). 100 172 

individual cells were measured for each experiment (Table 3).  173 

Chla measurements 174 

Samples of 100 ml were filtered through Whatman GF/F filters (pore size 0.8 µm) and 175 

stored for not longer than 2 weeks at -20°C until further processing. Following Parsons et al. 176 

(1984) total chlorophyll a (chl a) concentration were estimated by extraction for 24 h in 90 % 177 

acetone for fluorometric determination (Turner Designs fluorometer) (excitation 450 nm, 178 

emission 670 nm). The concentrations were calculated after correction for phaeopigments 179 

(Holm-Hansen et al. 1965, UNESCO 1994). 180 

Carbonate system 181 

The pH measurements were obtained with a pH meter (Crison GLP-21), using a 182 

combined glass/ reference electrode type SE 100. The electrode was calibrated with technical 183 

buffers (DIN 19267) at pH 4.01, 7.00 and 9.21 and readings are precise to 0.01 units. Shortly 184 

before starting the experiment the pH of a subsample of the original culture (100 mL of 1 L) 185 

was measured. During the incubation the pH value was checked frequently (every 30 min at 186 
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least). Only minimal changes occurred within the pulse and chase incubation period (Table 3). 187 

Therefore the starting values were used for further calculations. Alkalinity samples were taken 188 

from the filtrate (25 mm GF/F Whatman, approximate pore size 0.8 µm), stored and poisoned 189 

with 0.5 mL of an HgCl2 solution (35 g L-1) in 150 mL borosilicate flasks at 4 °C. Total 190 

alkalinity (TA) was calculated according to Langmuir after quadruplicate potentiometric 191 

titration using a Crison TitroMatic 1S (Bradshaw et al. 1981, Brewer et al. 1986). The 192 

complete carbonate system was determined from temperature, salinity (36 PSU), pH, TA, 193 

phosphate and silicate concentrations (original medium concentrations were applied) using 194 

the program CO2sys (Lewis and Wallace 1998). Equilibrium constants of Mehrbach et al. 195 

(1973) refitted by Dickson and Millero (1987) were chosen. 196 

The manipulation of the carbonate system parameters and the use of different initial 197 

seawater media due to experiments conducted over the time period of one year led to a range 198 

of TA between 1,420 and 3,643 µmol kg SW-1 for T. weissflogii and between 937 and 2,773 199 

µmol kg SW-1 for E. huxleyi (Table 3). The seawater was sampled at different times during 200 

the year in the Bay of Biscay close to the Spanish coast. Variable circulation regimes and 201 

phytoplankton growth (e.g. Llope et al. 2007) result in temporal variation of surface water C 202 

chemistry. The reduction of the pH by one unit resulted in a more than 10-fold increase in 203 

CO2(aq) concentration (Table 3). 204 

14
C pulse-chase incubation – measurements of the Ci pool  205 

The set-up of the experiments followed that described by Berman-Frank and Erez 206 

(1996). A rough scheme, presented in Fig. 1 explains the major principles. In general, 207 

triplicate culture experiments were done for each setting and species (in total 18 experiments). 208 

250 mL of the cultured populations were spiked with NaH14CO3 (~ 1.7 to 6.4 x 104 Bq per 5 209 

mL of cell suspension). The acid-stable photosynthetic uptake of 14C was followed by 210 

filtering 5 mL aliquots on 25 mm GF/F Whatman filters, washed thoroughly 5 times with K/5 211 
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medium (Keller et al. 1987). Three filters were sampled at each time point during the pulse 212 

period. Subsequently, the filters were acidified over concentrated HCl fumes to eliminate 213 

residual inorganic 14C as well as unfixed (not incorporated) inorganic 14C inside the cell. 214 

Following this, 5 mL scintillation cocktail (Packard, Ultima Gold AB, using the solvent di-215 

isopropylnaphthalene (DIPN),) was added to the vials and the 14C was measured by standard 216 

liquid scintillation procedures on a Wallac 1409 Liquid Scintillation Counter.  To evaluate the 217 

potential for retention of 14C on the surface of cells but which was neither fixed nor part of 218 

intracellular Ci pool, individual blanks (time zero – TZ) were performed as follows: after 219 

adding the 14C spike to a small subsample of the original culture 4 times 5 ml were filtered 220 

immediately. The obtained value reflects the residual inorganic 14C, which was not removed 221 

by acidification. The obtained average value was subtracted from all samples (Table 1). 222 

To record the Ci pool, the remaining culture from the pulse incubation was 223 

concentrated and washed with non-labeled medium (~150 mL) on a 47 mm 3 µm 224 

polycarbonate filter (Millipore), using gentle vacuum. Washing with non-labeled medium 225 

assured the removal of cell surface-attached 14C tracer and remaining pulse medium. The 226 

washing procedure took less than 5 min and the cells were kept in suspension and were never 227 

allowed to dry over the filter in order to minimize any negative impacts by the washing 228 

procedure on physiological parameters. Finally, the cells were resuspended in ~150 mL of 229 

nonradioactive K/5 medium; silicate was added for the experiments with T. weissflogii, and 230 

reincubated at the same conditions as before. Cell counts conducted during the chase period 231 

confirmed that the washing routine did not damage cells, because cells counts remained the 232 

same within counting error as during the pulse period. Sampling, during this chase period, 233 

was conducted as described for the pulse period. The 14C levels in the medium were measured 234 

during the chase incubation to test for washing efficiency. For that propose, the medium was 235 

passed through a 0.2 µm Nuclepore filter and the filtrate was used to assay that the 14C levels 236 

were negligible during the chase (chase activity – CA), confirming that no further cellular 237 
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uptake of 14C labeled DIC could occur during the chase incubation (Table 1).. In addition, for 238 

12 of the 18 experiments, the CA was measured 5 times during the chase. These 239 

measurements revealed no increase of CA in the media during the chase, indicating no 240 

detectable leakage of labeled compounds from the cells. To further confirm that no cells were 241 

lost during the washing procedure, we determined the remaining labeled material on the 242 

washing filter (chase filter – CF). Consistent with data from cell counts, the proportion of the 243 

activity measured from the CF confirmed an insignificant decrease/loss of cells during the 244 

washing procedure (Table 1). Finally, in filters without cells we verified negligible retention 245 

of 14C label on filters following washing.  246 

In parallel, dark incubations were done for four experiments. These were used to 247 

ensure that the measured 14C incorporation during the main pulse chase incubations arose 248 

from the light dependent photosynthetic uptake. Therefore, a 60 ml subsample of the original 249 

culture was spiked and kept in the dark. The samplings proceeded after 5, 30 and 60 min of 250 

incubation. The results showed a dark incorporation of less than 3 % compared to the light 251 

incorporation (Table 2). 252 

The acid-stable incorporated 14C was used to calculate the photosynthetic C uptake per 253 

cell. The amounts of DIC, added activity (AA), blank values as well as the particular cell 254 

concentrations were included to estimate the cell-specific photosynthetic C uptake rate 255 

according to the following formula: 256 

[ ]






























×=
1-h 1-ml CPMAA 

 1-ml pmol DIC

1-mlion concentrat cell

1-h 1-ml CPM TZ - 1-h 1-ml CPMactivity  measured
 cell DIC pmol rate uptake DIC 1-  257 

The efficiency of the AA and the analyzed samples was equal and constant. Hence 258 

there was no need to apply quench correction or to include the efficiency in the equation. 259 

An increase of 14C activity during the chase period inside the acid stable fraction was 260 

measured for the pH settings ~ 8.5 and ~ 7.9 in the cultures of E. huxleyi and T. weissflogii. 261 
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This increase was interpreted to represent acid stable photosynthetic organic matter that was 262 

transferred from the acid-labile Ci pool.  263 

Due to the negligible 14C activity in the incubation medium during the chase (Table 1) 264 

the increase of 14C activity in the acid-stable photosynthetic organic matter during the chase 265 

must originate from the originally acid-labile intracellular Ci pool. Thus, the Ci pool size per 266 

cell is calculated from the difference in photosynthetically fixed acid stable C between the last 267 

measurement of the pulse and the maximum value during the chase incubation. This 268 

calculation reflects only a minimum estimate of the Ci pool because the sampling was not 269 

continuous and therefore the maximum peak during the chase might have been missed.  270 

Though our tests suggest only a minor loss of label from cells, the washing procedure may 271 

have also caused some leakage of 14C from the cells, and some 14C may be lost due to 272 

respiration and secretion of dissolved organic C.  In converting the absolute Ci pool to an 273 

estimated concentration in the cell, we use cell numbers and the total cellular volume.  While 274 

the CO2(aq) accumulation in eukaryotic algae is considered to be restricted to the chloroplast or 275 

even the pyrenoid (Badger et al. 1998),  the total degree of intracellular DIC enrichment is 276 

calculated as if the full cell volume (e.g. cytoplasm) hosted the Ci pool.  In part, this 277 

convention is adopted because the volume of the entire cell is much more tightly constrained 278 

than the volume of intracellular compartments(Badger and Lorimer 1976, Kaplan et al. 1980).  279 

This approach of not accounting for the possible localization of Ci in specific cellular 280 

compartments might result underestimating the relative enhancement at the site of RubisCO 281 

compared to concentration in the incubation medium.   282 

 283 

 284 
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We infer an operationally-defined Ci pool, which is the acid-labile C within the cell 285 

which is subsequently available as a substrate for photosynthesis.  The approach does not 286 

distinguish the form in which the C is stored within the cell, which could be as DIC or as an 287 

acid-labile organic complex.  However, in whatever form the C is present, it is subsequently 288 

available for conversion to CO2, the only substrate used by RubisCO during photosynthesis.  289 

14
C disequilibrium method 290 

The theory and methodology of this technique has been described extensively in 291 

several articles (e.g. Elzenga et al. 2000, Martin and Tortell 2006). The method is based on 292 

the slow interconversion between HCO3
- and CO2, which allows differential labeling of the 293 

DIC species with 14C over several minutes. In the Hepes buffered DIC spike solution (pH 7.0) 294 

14CO2 represents 20% of the total Ci pool. On the other hand, CO2 accounts for only 0.4 % of 295 

the total DIC in the Bicine buffered medium (pH 8.5) of the cell suspension. Therefore 296 

initially the specific activity (dpm mol-1) of CO2 in the spike solution is high and it decays 297 

exponentially to an equilibrium value over the duration of the assay. Phytoplankton species 298 

which base their growth on CO2 exclusively reflect these changes unaltered. In contrast, 299 

species relying predominantly on HCO3
- show a near constant 14C incorporation rate, resulting 300 

in a linear plot. The uptake curves are best modeled according to models calculated by 301 

Elzenga et al. (2000) and Rost et al. (2007).  302 

2
2t

DICHCO32t

1
1

DICCO21tt

))/e)(1/SASA(∆t)((V

/))1)(SA/SA(t)(1(VDPM

αα

αα
α
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−

−

−++

−∆+−=

f

ef t

 303 

Vt is the total rate of DIC uptake; f is the fraction of uptake attributable to HCO3-; α1 304 

and α2 are the temperature-, salinity-, and pH dependent first order rate constants for CO2 and 305 

HCO3
- hydration and dehydration (Espie and Colman 1986). Under the experimental 306 

conditions (18°C, salinity 36, pH 8.5) α1 and α2 are 0.0383 and 0.0456 s-1, respectively. 307 

∆SACO2 and ∆SAHCO3 are the differences between the initial and equilibrium values of the 308 
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specific activity of CO2 and HCO3
-, and SADIC is the specific activity of all inorganic C 309 

species at equilibrium. The values of ∆SACO2/SADIC and ∆SAHCO3/SADIC are set by the 310 

difference in pH between the 14C spike and seawater buffer. The values used during our 311 

experiments were 49 and -0.19 for ∆SACO2/SADIC and ∆SAHCO3/SADIC, respectively.  312 

The 14C disequilibrium method largely followed the experimental protocol described by Rost 313 

et al. (2007, 2006). First of all the culture was concentrated (roughly 20 fold, determined by 314 

measuring the chla content of the original culture and concentrated suspension, data not 315 

shown). During this process the original medium was exchanged with a BICINE buffered 316 

medium (BICINE 20 mmol L-1, pH 8.5). A 4 mL aliquot was directly transferred into a glass 317 

cuvette placed on a stirrer to maintain uniform distribution of the cells. Light and temperature 318 

were kept constant using an additional light source (150·µmol·m-2·s-1 photon flux) and 319 

connecting a water chiller to the glass cuvette. After a pre-incubation of about 10 min a 10 320 

µCi 14C spike of pH 7.0 (HEPES 50 mmol L-1) was injected. Afterwards, subsamples of 200 321 

µL were withdrawn at short time intervals and dispensed into 2.0 mL of HCl (6 mmol·L-1) to 322 

stop C incorporation. The residual 14C was removed by putting the subsamples for 8h on a 323 

shaker. Subsequently, 10 mL of the scintillation cocktail (Packard, Ultima Gold AB) was 324 

added and 14C was measured, using standard liquid scintillation procedures. Blanks, spike 325 

added to cell free buffers, were subtracted from all samples. To examine the CO2 : HCO3
- 326 

ratios taking into account the impact of eCA, the 14C disequilibrium method was run in two 327 

ways; one control run and one run where we added the membrane-impermeable inhibitor 328 

dextran-bound sulfonamide (DBS, Synthelec AB). The inhibitor was added to a final 329 

concentration of 50 µmol L–1 at least 10 min prior to the experiments. DBS is known to 330 

inhibit eCA effectively. This was proven by Moroney et al. (1985) using bovine carbonic 331 

anhydrase in a potentiometric assay. This inhibitor exhibits similar activities to AZ (Elzenga 332 

et al. 2000).  333 
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RESULTS 334 

 335 

Table 3 summarizes the carbonate system chemistry for the experiments. The 336 

experiments were conducted in February 2011 and December 2011, therefore different 337 

seawater was used during the incubations, and this caused some variations in the carbonate 338 

system. In all cases, the three pH levels clearly induced different CO2(aq) concentrations : pH ~ 339 

8.5: 1 to 9 µmol kg SW-1; pH ~ 7.9: 16 to 32 µmol kg SW-1; pH ~ 7.4: 34 to 85 µmol kg SW-1 340 

(Table 3). 341 

In general, cell concentrations of T. weissflogii and E. huxleyi differed among the 342 

species and the single experiments (Table 3). Experiments of E. huxleyi typically contained 10 343 

times higher cell concentrations than those of T. weissflogii. The cell volume of T. weissflogii 344 

varied between 960 µm3 and 2098 µm3 (Table 3). Significant correlations between cell 345 

volume and the applied pH settings could not be retrieved. The cell volume of E. huxleyi 346 

varied between 17.6 and 37.7 µm3 (Table 3), with larger cells at  lower pH values. 347 

Pulse chase method 348 

Because the pulse chase method was previously employed in only one other 349 

phytoplankton species (Berman-Frank and Erez 1996), we conducted several tests to examine 350 

the viability of this approach (Table 1 ). TZ samples acting as blanks were low, always less 351 

than 1 ‰ of the AA and never more than 5 % of the maximum uptake during the pulse period. 352 

Also the CA was small compared to the AA (< 1%) and no increase of the CA was detected 353 

during the chase. This and the negligible loss of cells (e.g. retained on the CF), demonstrated 354 

an effective washing without adverse effects on the cell population. In addition, we measured 355 

the dark C fixation (Table 2). Dark fixation rates in the acid stable particulate organic matter 356 

of T. weissflogii and E. huxleyi never exceeded 2.5 % of the light fixation. These values 357 
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confirm that photosynthetic fixation by RubisCO is the main mechanism for C incorporation 358 

into cellular material, with negligible surface absorption of label. 359 

The pH affected the gross 14C incorporation rates, measured during the pulse period of  360 

E. huxleyi (Fig. 2, Table 3), with highest uptake rates at the pH level of ~ 7.9. We found 361 

reduced rates at higher and lower pH values, indicating better growth conditions at the 362 

intermediate pH.  No clear trend in 14C incorporation rate with pH is evident in the diatom T. 363 

weissflogii, due to the high variability in incorporation rates in different replicate experiments. 364 

The fixation rates per cell are several orders of magnitude higher for T. weissflogii than for E. 365 

huxleyi, likely due to the much larger cell size and C demand of T. weissflogii.   366 

During the chase period, the fixed 14C per cell continued to increase for both species in 367 

all but the lowest pH condition ~7.4 (Fig. 3, 4). This implies a transfer of 14C from the acid 368 

labile reservoir to the acid stable matter inside the cell. The increase had to arise from an acid-369 

labile Ci pool, labeled with 14C during the pulse, because no further 14C supply occurred from 370 

the medium during the chase incubation. The degree of increase in fixed 14C per cell, relative 371 

to the total uptake of 14C during the pulse, defined the fraction of fixation supported by the Ci 372 

pool, which varied according to the extracellular pH/ CO2(aq) concentration (Table 3, Fig. 5). 373 

T. weissflogii showed a significant pool at high (0.5 – 2.1 nmol·cell-1) and intermediate (0.5 – 374 

1.4 nmol·cell-1) pH values (low and intermediate CO2(aq) levels (Fig. 5a, b)), and a negligible 375 

Ci pool at low pH or high CO2(aq). Beyond that, a positive correlation between the DIC 376 

concentration in the extracellular medium and the size of Ci pool of T. weissflogii was 377 

detected (Fig. 5c). E. huxleyi showed a significant Ci pool at high  and intermediate  pH 378 

levels, respectively low or intermediate CO2(aq) concentrations, too (Table 3). However, in E. 379 

huxleyi, there is no significant correlation between the extracellular DIC concentrations and 380 

the pool size (Fig. 5f). Only at the lowest CO2(aq) or highest pH of 8.5 (Figure 5d) did the E. 381 

huxleyi exhibit higher C pool size for high Ci media compared to lowest Ci. This trend is also 382 
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evident at both intermediate and high pH levels, for T. weissflogii. Overall, the cell-specific 383 

absolute Ci pool size of T. weissflogii was up to 230 fold higher than the one for E. huxleyi 384 

(Table 3, Fig. 5), consistent with the differences of total photosynthetic rate per cell and cell 385 

volume mentioned earlier. In contrast to previous investigations, the enhancement of 386 

intracellular acid-labile C pool vs. extracellular DIC was calculated based on culture media 387 

with natural seawater DIC concentrations in the culture medium rather than synthetic low DIC 388 

media.  The enhancement for T. weissflogii varied at pH ~ 8.5 between 2.5 and 14.3, at pH ~ 389 

7.9 between 1.1 and 4.4 and almost no enhancement was detected at pH ~ 7.4. E. huxleyi 390 

showed also three distinct levels of Ci accumulation inside the cell. We calculated following 391 

ratios: pH ~ 8.5 1.1 to 2.1 fold elevation, pH ~ 7.9 0.2 to 0.5-fold elevation, at pH ~ 7.4 no 392 

accumulation.  393 

In both species, the cellular Chla was reduced at the lowest pH, at which CO2 aq was 394 

highest (Fig. 6). As soon as a Ci pool in T. weissflogii cells was measured, the Chla content 395 

increased (Fig. 6b). Nonetheless the Chla content of E. huxleyi seemed to be related 396 

differently to the Ci pool.  Maximum Ci pool values coincided with intermediate Chla values, 397 

and no linear relationship between Chla concentrations and the Ci pool, was detected in this 398 

species (Fig. 6e). Normalizing the Chla content per cell to the cell volume does not 399 

significantly modify trends for either T. weissflogii or E. huxleyi (Fig. 6c, f). 400 

14
C disequilibrium method 401 

In addition, we applied the 14C disequilibrium method to reveal one part of the CCMs, 402 

active HCO3
- uptake vs. passive or active CO2 uptake used for photosynthesis. E. huxleyi 403 

showed decreasing HCO3
- uptake at high CO2 levels (low pH values) (Fig. 7c, d, e, 8). The 404 

acid-stable Ci uptake was dominated by HCO3
- (60 %) at a pH of 8.11, while at a pH of 7.49 405 

when no pool was detected, the photosynthetic C demand was mainly satisfied by CO2 (61.2 406 

% CO2, 38.8 % HCO3
-). Investigations using the 14C disequilibrium method on T. weissflogii 407 
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indicated similar proportion of HCO3
- and CO2 incorporation at a pH of ~7.5 and 7.9. In both 408 

conditions, the Ci uptake was dominated by CO2 (60 %) while HCO3
- contributed 40 % of C 409 

to photosynthesis (Fig. 7a, b, 8). In both the diatom and coccolithophorid, HCO3
- uptake, 410 

though not dominant, was still a significant source of C fixed by photosynthesis at the lowest 411 

pH, respectively highest CO2(aq) levels, even though no intracellular C enrichment could be 412 

measured (Table 3, Fig. 5).  413 

  414 
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DISCUSSION 415 

Application of the pulse-chase method 416 

The evaluation of CCMs and related changes of the intracellular C system of different 417 

phytoplankton species provide important information concerning species competition and 418 

success. Therefore, several approaches and methods were invented to detect and analyze the 419 

Ci pool during the past 30 years (e.g. Badger et al. 1980, Badger et al. 1985, ter Kuile and 420 

Erez 1987). To date, none have been extensively applied to evaluate response of CCMs over a 421 

range of naturally occurring C conditions. Our results, using the pulse chase method, give Ci 422 

accumulations which are comparable to those obtained by the silicone oil centrifugation 423 

method (SOC) or to measurements of mass spectrometry analysis (MIMS) (Table 4) (Badger 424 

et al. 1980, Badger et al. 1985, Kaplan et al. 1980).  425 

The pulse chase method provides several advantages compared to SOC or MIMS. 426 

Unlike SOC or MIMS, the pulse chase method is employed at ambient DIC concentrations. 427 

We used extracellular DIC concentrations similar to the natural DIC concentrations in the 428 

ocean (approximately 2000 µmol L-1,(e.g. Takahashi et al. 2002)), contrasting to most 429 

previous studies of C concentration factors inside the cell obtained with SOC or MIMS, 430 

conducted at much lower DIC concentrations of 100 to 1000 µmol L-1 in the incubation 431 

medium (Table 4). For SOC and MIMS analysis generally, the cells have to be transferred to 432 

DIC depleted medium (e.g. Badger et al. 1980, Badger et al. 1985, Rost et al. 2007).  Such 433 

large changes were reported to reduce the intracellular pH about 0.7 (~ 7 to 6.3) within 35 to 434 

40 min (Nimer et al. 1994). Recent investigations also shown that large increments of HCO3
- 435 

(concentrations up to 20 mmol L-1), result in lowering the intracellular pH of E. huxleyi within 436 

seconds (Suffrian et al. 2011). This causes changes of pH within the cell and alters the C 437 

speciation in the cytosol. Therefore, it is possible that even short time incubations at DIC 438 

depleted conditions affect the size and the measurements of Ci pools of unicellular algae, due 439 
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to enhanced or reduced diffusion of CO2 between cell compartments or the cell and the 440 

surrounding medium.  441 

The pulse chase method investigates Ci pools at the original culture cell density. We 442 

used the same cell concentrations as achieved at the end of the acclimation to the particular 443 

pH setting. In contrast, cell concentrations used for SOC and MIMS have to be strongly 444 

increased to obtain measurable signals even during short incubations (e.g. Dong et al. 1993, 445 

Nimer et al. 1994, Nimer et al. 1992, Tortell et al. 2000, Woodger et al. 2003). The short 446 

incubation time, 10 s for the SOC and 10 min for the MIMS analysis, again is caused by the 447 

DIC depleted medium used therein. Longer incubation would hamper photosynthesis and alter 448 

the analysis at these strongly modified conditions, whereas the pulse chase incubations 449 

proceded at DIC replete conditions and the incubation period last at least for 2 hours. 450 

Prolonging the incubation time increased the sensitivity and even lower cell concentrations 451 

still showed sufficient radioactive signals, when using the pulse chase method. In situ studies 452 

reported similar cell densities to those presented here for E. huxleyi (Berge 1962), while in 453 

situ concentrations for T. weissflogii are probably somewhat lower than the ones used here.  454 

Furthermore, the pulse chase method uses infrastructure which is already standard for 455 

routine measurements of primary production via 14C uptake, and therefore might be an 456 

optimal choice during seagoing field campaigns.   457 

Certainly, it is also required to discuss the drawbacks of the pulse chase method. It 458 

provides a smaller array of data than MIMS or SOC analysis, where e.g. it is possible to 459 

measure the photosynthetic oxygen evolution or half saturation constants of photosynthetic 460 

DIC uptake (e.g. Badger et al. 1985, Nimer et al. 1992, Spijkerman 2011). Beyond that, the Ci 461 

pool detection with SOC or MIMS can quantify changes inside the pool in less than 2 min., 462 

shown for Synechococcus sp or Anabaena variabilis (Kaplan et al. 1980, Miller et al. 1988), 463 

whereas, the pulse-chase Ci pool method can only be applied to species or phytoplankton 464 

Page 21 of 57 Physiologia Plantarum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[22] 
 

samples with relatively long pool turnover times (e.g. of order 10 minutes or longer). This 465 

stems from the non-continuous measurements via the filtration procedure (roughly every 466 

5 min), and the conservative assumption that a one point measurement is not sufficient, 467 

resulting in a typical 10 minute interval for calculating the Ci pool during the chase. 468 

Therefore, this method is suitable for eukaryotic phytoplankton or large prokaryotic ones. The 469 

detection limit depends on the DIC incorporation rate but higher DIC incorporation rates are 470 

usually associated with faster intracellular Ci turnover rates.  Turnover times are expected to 471 

be inversely proportional to cell surface area:volume , and therefore may be very fast for 472 

small cyanobacteria but much longer for the coccolithophorids or diatoms in this study whose 473 

surface area:volume ratios (Table 3) are nearly an order of magnitude larger than those 474 

reported for cyanobacteria (Popp et al., 1998).  The absence of detectable 14C label in the 475 

chase media in our coccolithophorid and diatom experiments is also consistent with a slow 476 

turnover of the Ci pool.   477 

In all cases, the pulse chase evaluations reflect a minimum estimate for the Ci pool. 478 

First of all because measurements were made every 5 min, and the maximum peak of 14C 479 

incorporation during the chase period might have occurred in between sampling.  In addition, 480 

though of minor importance, some 14C may be lost due to leakage of any labeled CO2, as well 481 

as respiration and secretion of dissolved organic C.  The estimate of the CCF is also likely to 482 

reflect a minimum estimate in all methods, because the Ci pool probably is restricted to one 483 

compartment of the cell, the chloroplast or pyrenoid, rather than the entire cell volume, as 484 

described in detail in the subsequent section. 485 

Evaluating calculated CCF 486 

The CCF is an indicator of the average enrichment of C in the cell because it considers 487 

the entire cell volume as hosting the Ci pool. In reality the Ci pool may be hosted in a much 488 

smaller volume at the site of RubisCO and therefore provide a much greater actual enrichment 489 
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of CO2 to RubisCO. Traditionally, the CCF has been calculated by using the ratio of Ci pool 490 

vs. extracellular DIC concentration (Badger et al. 1985, Kaplan et al. 1980, Spijkerman 2011). 491 

Because our natural seawater DIC concentrations were higher than many previous 492 

experiments, our CCFs are at the lower end or below those obtained in previous studies 493 

(Table 4), even though the absolute acid-labile Ci pool concentrations are much higher. E. 494 

huxleyi, for example, shows CCFs less than 1 at a pH of 7.9, nonetheless a Ci pool exists (Fig. 495 

3). We propose, that the calculated  intracellular acid-labile C concentrations up to 928 µmol 496 

L-1, though lower than the extracellular DIC concentration, cannot be maintained by passive C 497 

uptake, via CO2(aq) diffusion only. Published estimates on the CCF for the diatom T. 498 

weissflogii are lacking, although other diatoms, e.g. Phaeodactylum tricornutum are also 499 

known to increase intracellular DIC concentrations at low CO2(aq) concentrations (Badger et 500 

al. 1998, Colman and Rotatore 1995).  501 

Ci pool  502 

We showed a pH or CO2(aq) dependent Ci pool for T. weissflogii and E. huxleyi, with 503 

higher intracellular DIC concentrations at high pH levels corresponding to low CO2(aq) 504 

concentrations (Figure 5 a, b, d, e). The presence of a Ci pool in E. huxleyi and T. weissflogii 505 

at high pH or low CO2(aq) indicates that CCMs are active in both species, consistent with a 506 

broad array of CCM measurements (e.g. Burkhardt et al. 2001, Rost et al. 2003) CCMs 507 

evolved in relation to inorganic C limitation of photosynthesis (e.g. Giordano et al. 2005). 508 

Nevertheless, a Ci pool alone does not encourage photosynthesis: an additional mechanism 509 

(e.g. iCA, thylakoid CA) that converts the stored C at a rate sufficient to saturate the demand 510 

of RubisCO is required (e.g. Raven 1997).  Besides the positive correlation between pH and 511 

the size of the Ci pool, and the negative correlation between CO2(aq) concentration and the size 512 

of the Ci pool for both species, we also found a significant relation between extracellular DIC 513 

concentrations and the Ci pool for T. weissflogii (Fig. 5c) at intermediate and highest pH 514 
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conditions. This suggests the potential for bicarbonate regulation of the CCM in diatoms and 515 

merits further investigation. One mechanism might be that higher DIC facilitates greater 516 

HCO3
- uptake which is especially significant if T. weissflogii employs a C4 mechanism as part 517 

of its CCM (McGinn and Morel 2008, Reinfelder 2011, Reinfelder et al. 2000). In E. huxleyi, 518 

there is no clear evidence for a strong correlation between extracellular DIC concentration and 519 

the size of the pool (Fig. 5f).   520 

The Ci pool concentrations (Table 4) are higher than the range of previous values 521 

identified for E. huxleyi and many other marine phytoplankton species, using the SOC or 522 

MIMS approach, probably caused by our higher DIC concentrations in the culture medium 523 

(Table 3, 4).  This observation suggests that higher DIC values increase the absolute Ci pool.  524 

In addition, it might be possible that in contrast to the SOC and MIMS experiments, the 525 

longer incubation period with 14C in the pulse-chase approach permitted some fraction of 526 

cellular DIC uptake to be bound to organic compounds within the cell rather than remaining 527 

as free CO2, HCO3
-, or CO3

-2.  Because any intracellular C eventually reconverted to CO2 for 528 

photosynthesis is detected by the pulse-chase approach, the pulse-chase method may detect 529 

this broader array of acid-labile Ci components.  In contrast, SOC and MIMS measurements 530 

may detect only the free CO2, HCO3
-, or CO3

-2.   531 

Due to totally different media compositions between MIMS and SOC and the pulse 532 

chase method, the results of E. huxleyi cannot be directly compared with previous results 533 

summarized in Badger et al. (1998). Comparing our measurements of the enrichment inside 534 

the cell for E. huxleyi and T. weissflogii, it is obvious that the diatom exhibits greater 535 

elevation than the coccolithophorid (Table 3, 4). We assume that more effective CCMs result 536 

in higher intracellular DIC concentrations in diatoms. 537 

Previous investigations showed that diatoms evolved later than coccolithophorids and 538 

therefore might be adapted to lower atmospheric CO2 levels (Tortell 2000). It was supposed 539 
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that diatoms develop higher RubisCO specificity factors than coccolithophorids and therefore 540 

might not need a great Ci pool (Tortell 2000). Nonetheless, our data for the diatom T. 541 

weissflogii indicate that the CCMs employed by diatoms may also require Ci pools. 542 

We identified an important threshold of 30 µmol·L-1 CO2(aq) for the establishment of a 543 

detectable Ci pool in both E. huxleyi and T. weissflogii. The threshold for Peridinium 544 

gatunense was 15 µmol L-1 (Berman-Frank and Erez 1996). To date, thresholds for Ci pool 545 

development have not been widely investigated.  Our new data are among very few reported 546 

estimates of threshold for  Ci pool of phytoplankton species.  547 

CO2 vs. HCO3
-
 uptake 548 

Information available on the proportion of CO2 or HCO3
- used for photosynthesis has 549 

been provided by the 14C disequilibrium method and MIMS. These techniques have been used 550 

to assess changes in substrate as a function of environmental conditions both in cultures and 551 

natural populations. The intercomparison of both methods shows consistent results (Rost et al. 552 

2007). More recently both methods have also been in oceanographic field studies, 553 

demonstrating that HCO3
- is the major source of DIC to satisfy the demand of photosynthesis 554 

(Martin and Tortell 2006, Tortell et al. 2006).  555 

E. huxleyi is known to exhibit large strain-specific physiological responses (e.g. Hoppe 556 

et al. 2011, Langer et al. 2009). The strain of E. huxleyi used in our experiments appears to 557 

satisfy about 50 % of the photosynthetic DIC demand by HCO3
- when grown under present 558 

atmospheric conditions (Morel et al. 2002, Rost et al. 2007). Some other strains exhibit a 559 

lower proportion of HCO3
- to satisfy the photosynthetic DIC demand at present day CO2 560 

concentrations (Fig. 8; data from Rost et al (2003)). Nevertheless, different E. huxleyi strains 561 

showed similar trends of increased reliance on CO2 for photosynthesis as CO2 availability 562 

increased. Focusing on our 14C disequilibrium results, we observed even though no acid-labile 563 
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Ci pool was detected for E. huxleyi at a pH of 7.49, nearly 40 % of the photosynthetic DIC 564 

demand was covered by HCO3
-. That indicates that active transport of HCO3

- still supplies 565 

photosynthesis without appreciable intracellular accumulation. Such a mechanism has been 566 

described previously by Raven (1997), who suggested that autotrophic cells rely on an 567 

acidified thylakoid lumen and a high thylakoid CA activity, and suggested that this CA is a 568 

dominant element of the CCM in this pH range.  569 

T. weissflogii is known to satisfy the photosynthetic DIC demand with approximately 570 

70 % in the form of HCO3
- at present CO2(aq) concentrations (Burkhardt et al. 2001, Morel et 571 

al. 2002) (Fig. 6). The DIC acquisition of T. weissflogii follows the HCO3
- user model, in 572 

detail explained by Trimborn et al. (2008). Again, HCO3
- is not the dominant source at lowest 573 

pH 7.49, but high proportions of HCO3
- incorporation relative to total photosynthetic DIC 574 

incorporation imply an active transport of HCO3
-, supplying photosynthesis without 575 

appreciable intracellular accumulation.  576 

Photosynthetic DIC incorporation rates – Chla content 577 

Much effort has been invested in characterizing the response of algal growth rate to 578 

increasing CO2(aq), to assess whether reduced reliance on CCMs permits reallocation of 579 

resources to enhance growth. The DIC incorporation rates measured during the pulse (120 580 

min) may not be representative of average steady state growth rates integrated over several 581 

days (Hurd et al. 2009).  The enormous difference of 1000 in magnitude for the DIC 582 

incorporation rates for T. weissflogii and E. huxleyi (Table 3), might be due to a reduced light 583 

level during the pulse chase experiments, compared to the light levels needed for optimal 584 

growth of E. huxleyi (Oguz and Merico 2006). Other possibilities are higher leakage of DIC 585 

by T. weissflogii or release of fixed DIC as DOC, this phenomenon of wasting high energy-586 

demanding products was also reported for diazotrophic cyanobacteria with respect to N2 587 

fixation and DON (Ohlendieck et al. 2000, Wannicke et al. 2009). However, during our brief 588 
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incubation T. weissflogii and E. huxleyi both exhibited highest DIC incorporation rates at a pH 589 

of ~7.9 (Fig.2). This emphasizes that both species are well adapted to the present state CO2(aq), 590 

concentrations or rather what is expected for the end of this century. Lower and higher pH 591 

values resulted in clearly reduced DIC incorporation rates. Previous studies examined growth 592 

for E. huxleyi in the pH range of 7.7 and 8.6, a range in which some strains exhibit decreasing 593 

growth at pH below 7.8, others including the strain used here exhibit constant growth, and 594 

some show increasing autotrophic growth (Feng et al. 2008, Hoppe et al. 2011, Iglesias-595 

Rodriguez et al. 2008, Langer et al. 2009, Riebesell et al. 2000). It is possible that suboptimal 596 

growth conditions, caused by the more extreme acidic conditions at the pH of 7.45, negatively 597 

affected the DIC incorporation rate.  Photosynthesis of T. weissflogii was previously shown to 598 

be positively influenced by enhanced CO2 concentrations (Burkhardt et al. 2001). We found 599 

the proposed stimulation just between the highest and medium pH level. In accordance to 600 

those findings, E. huxleyi and T. weissflogii had the highest Chla cell contents at a pH of ~7.9 601 

(Fig. 6). Furthermore, it has to be kept in mind that the amount of RubisCO per Chla might be 602 

influenced by different CO2(aq) concentrations (Yokota and Canvin 1985). Increasing the 603 

chlorophyll content of the cell has been described as one potential adaptation to stress 604 

(Geider, 1987, Riemann et al., 1989).  Even though no linear relationship between the Chla 605 

content and CO2(aq) concentrations was detected, the RubisCO content and therefore also the 606 

efficiency might also have varied.  Suboptimal growth conditions at the pH level of ~7.4 were 607 

indicated by clearly reduced Chla contents (Fig. 6).  608 

Conclusions 609 

The pulse-chase Ci pool detection method, extended here to coccolithophorids and 610 

diatoms, provides an effective and routine method for characterizing the acid-labile C pool 611 

that is applicable to all the main classes of marine eukaryotic plankton. Our results confirm 612 

that both a diatom and a calcifying coccolithophorid build significant intracellular Ci pools 613 

Page 27 of 57 Physiologia Plantarum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[28] 
 

over the lower range of CO2 investigated here (~ 2 to 30 µmol·L-1 CO2(aq), respectively pH 8.6 614 

- 7.91). These CO2 values encompass the range found in most modern surface seawaters, for 615 

example from cold upwelling areas to warm subtropical gyres (Borges et al. 2005, Laws et al. 616 

1997, Takahashi et al. 2002). Therefore a great benefit of the application of the 14C-pulse 617 

chase method is its feasibility at natural seawater DIC concentrations, so that results may be 618 

compared with natural populations.  619 

For both algal classes, the Ci pool becomes a negligible contributor to photosynthesis 620 

once CO2(aq) exceeds 30 µmol·L-1. Thus, in the range of surface waters conditions predicted 621 

for the year 2100 (Houghton et al. 2001) especially in the most CO2-rich areas of the ocean, 622 

this aspect of CCMs may be of reduced importance.  623 

Diatoms and coccolithophorids are both key taxa to the effective operation of the 624 

biological C pump and the ratio of the export production of these groups sets the deep ocean 625 

alkalinity and ocean/atmosphere CO2 partitioning (Laws et al. 1997, Laws et al. 2002). If our 626 

method can be used to assess whether the main exported species of coccolithophorids and 627 

diatoms will have different or similar thresholds for foregoing significant acid-labile 628 

intracellular C accumulation for photosynthesis , we could better predict the response of 629 

marine biogeochemical cycling to anthropogenic C cycle changes. 630 

 631 

 632 
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FIGURE LEGENDS: 843 
 844 

Fig. 1. Idealized model for detecting the Ci pool during a pulse-chase experiment. The 845 

solid black line represents the 14C uptake during the pulse, the dotted line represents increased 846 

14C in the algae during the chase period. This 14C is transferred from the Ci pool into the 847 

particulate organic matter and serves as an estimate of the Ci pool. The dashed line indicates 848 

the loss of 14C within the particulate organic matter due to respiration.  849 

Fig. 2. DIC incorporation rates measured during the pulse incubation (n=3). a – T. 850 

weissflogii. b – E. huxleyi. 851 

Fig. 3. Pulse-chase experiments illustrating acid-labile Ci pools at 3 different pH 852 

settings of T. weissflogii. Cells were spiked with 14C and the kinetics of acid-stable 853 

photosynthetic products were followed for 120 min (pulse) after which the cells were 854 

resuspended in label-free medium under identical experimental conditions (chase). Each 855 

datapoint reflects 3 single measurements. a – Culture preincubated at a pH of 8.5 b – Culture 856 

preincubated at a pH of 7.9. c – Culture preincubated at a pH of 7.4. The different symbols 857 

represent the repetitions of the experiment. 858 

Fig. 4. Pulse-chase experiments illustrating acid-labile Ci pools at 3 different pH 859 

settings of E. huxleyi. Cells were spiked with 14C and the kinetics of acid-stable 860 

photosynthetic products were followed for 120 min (pulse) after which the cells were 861 

resuspended in label-free medium under identical experimental conditions (chase).  Each 862 

datapoint reflects 3 single measurements. a – Culture preincubated at a pH of 8.5 b – Culture 863 

preincubated at a pH of 7.9. c – Culture preincubated at a pH of 7.4. The different symbols 864 

represent the repetitions of the experiment. 865 

Fig. 5. Ci pool size variation related to differences in the carbon system (n=3). a – T. 866 

weissflogii Ci pool vs. pH. b – T. weissflogii Ci pool vs. CO2(aq). c– T. weissflogii Ci pool vs. 867 
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DIC. d – E. huxleyi Ci pool vs. pH. e – E. huxleyi Ci pool vs. CO2(aq). f– E. huxleyi Ci pool vs. 868 

DIC. 869 

Fig. 6. a – T. weissflogii Chla vs. pH. b – T. weissflogii Ci pool vs. Chla. c – T. 870 

weissflogii Chla:cell volume vs. pH. d – E. huxleyi Chla vs. pH. e – E. huxleyi Ci pool vs. 871 

Chla. c – E. huxleyi Chla:cell volume vs. pH. (n=3). 872 

Fig. 7. Results from 14C disequilibrium assays for E. huxleyi and T. weissflogii at 873 

different pH levels. a - T. weissflogii at pH 7.49. b - T. weissflogii at pH 7.90. c - E. huxleyi at 874 

pH 7.49, (d) E. huxleyi at pH 7.82. e - E. huxleyi at pH 8.11, Solid lines and filled circles 875 

represent samples without any inhibition, dashed lines and empty circles represent DBS 876 

inhibition (50 µmol L-1) during the sampling Values of f denote the proportion of HCO3
- to 877 

DIC fixation in non-treated (control) and DBS treated cells. Values and standard deviations 878 

are based on triplicate measurements. 879 

Fig. 8. Ratio of gross CO2 : HCO3
- uptake in T. weissflogii and E. huxleyi with respect 880 

to different pCO2 values. Data of shaded bars were obtained during this study, remaining data 881 

were published by Burkhardt et al. (2001) for T. weissflogii and by Rost et al (2003) for E. 882 

huxleyi. Values and standard deviations are based on triplicate measurements. The dashed line 883 

indicates the value when CO2 and HCO3
- are taken up in equal proportions. 884 
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Table 1. 
14
C experimental data of the added activity of 

14
C during the pulse incubation (AA), measured blanks = time zero values (TZ), 

TZ relative to AA, average (n=5) or single measurements of chase added activity of 
14
C (CA) measured during the chase, CA relative to AA, 

measured 
14
C activity on the filter after washing (CF), equivalent culture volume of CF with respect to the maximum measurement during the 

pulse incubation.  

Species pH 

AA 

[CPM mL
-1
] 

TZ 

[CPM mL
-1
] 

TZ : AA 

[‰] 

CA 

[CPM mL
-1
] 

CA :AA 

[‰] 

CF 

[CPM] 

CF equivalent V 

[mL] 

T. weissflogii 8.35 479,930 9.00 0.02 3029 6.20 4,218 2.4 

 8.62 156,460 7.00 0.05 221 ± 11 1.36 1,065 1 

 8.56 60,543 5.00 0.09 454 ± 25 8.10 1,404 5.7 

 7.94 772,222 109.00 0.10 326 0.42 7,596 0.6 

 7.99 127,393 8.00 0.10 731 ± 48 5.70 560 0.4 

 7.94 64,700 4.00 0.10 295 ± 23 4.70 392 1.3 

 7.47 297,610 7.00 0.02 488 1.64 1,756 1.5 

 7.47 74,433 4.00 0.05 347 ± 10 4.79 264 3.4 

 7.47 73,025 3.00 0.04 348 ± 19 4.71 602 2.5 
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E. huxleyi 8.47 210,965 13.00 0.06 304 1.44 1,721 2.2 

 8.43 54,300 3.00 0.06 460 ± 15 8.55 293 6.1 

 8.36 70,770 3.00 0.04 587 ± 26 8.67 600 11.8 

 7.96 70,715 4.00 0.06 245 ± 15 3.42 921 7.4 

 7.96 76,295 4.00 0.05 237 ± 35 3.13 313 4.7 

 7.91 56,168 3.32 0.06 333 ± 23 6.28 518 10.7 

 7.45 261,355 18.00 0.07 345 1.32 2,112 4.6 

 7.44 61,468 3.00 0.06 353 ± 21 5.18 214 14.0 

 7.47 65,800 5.00 0.08 530 ± 20 8.75 221 16.0 
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Table 2. Comparison of the light (L) and the dark (D) Ci incorporation rate per cell. 

Species pH L  D  D:L Ci 

incorporation [%] 
  Ci incorporation rate  

T. weissflogii [pmol Ci h
-1 

cell
-1

] 

E. huxleyi [pmol Ci h
-1

 cell
-1

] 

T. weissflogii 8.35 1.76 0.03 1.44 

 7.47 2.52 0.06 2.42 

E. huxleyi 8.47 0.003 0.00003 1.00 

 7.97 0.018 0.000009 0.5 
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Table 3. Measured pH values of the media, cell concentrations, cell volumes, Chla concentrations, Ci uptake rates, average Ci pools (n=3), 

internal Ci concentrations, ratio of internal to external Ci concentrations.   

Species pH 

TA 

[µmol kg 

SW
-1

] 

Ci ext 

[µmol kg 

SW
-1

] 

CO2(aq) 

[µmol kg 

SW
-1

] 

pCO2 

[µatm] 

cells 

[cells 

ml
-1

] 

Vcell 

[µm
3
] 

Chla  

[pg cell
-1

] 

Ci uptake rate 

 [pmol DIC h
-1 

cell
-1

] 

Ci pool  

[pmol 

cell
-1

] 

Ci int 

[mmol 

L
-1

] 

Ci 

int:

ext 

T. 

weissflog

ii 

8.3

5 

2,613 2,219 9.2 269 21,258   1.76 

0.522 ± 

0.268 

5.44 2.5 

 

8.6

2 

1,420 1,019 2.0 60 16,750 960 7.58 4.34 

1.399 ± 

1.027 

14.56 

14.

3 

 

8.5

6 

3643 2,919 6.8 201 8,111 1,229 7.06 6.40 

2.133 ± 

0.745 

17.36 7.6 

 

7.9

4 

2,550 2,394 27.3 804 35,970   4.95 

0.891 ± 

0.190 

7.40 3.1 

 7.9 2,880 2,687 27.3 804 14,600 1,203 8.49 9.25 1.419 ± 11.79 4.4 
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9 1.405 

 

7.9

4 

2,270 2,125 24.3 715 9,900 2,098 7.27 5.04 

0.490 ± 

0.477 

2.34 1.1 

 

7.4

7 

1,540 1,543 52.6 1,548 13,860   0.20 

0.018 ± 

0.034 

0.00 0.0 

 

7.4

7 

1,837 1,843 62.3 1,833 3,600 1,044 4.56 2.52 

0.027 ± 

0.019 

0. 26 0.1 

 

7.4

7 

2,467 2,485 84.7 2,494 7,800 1,233 5.01 4.92 

0.0 ± 

0.819 

0. 00 0.0 

E. 

huxleyi 

8.4

7 

2,590 2,110 6.4 187 

163,10

0 

  3.00E-03 

6.284E-

03 ± 

2.456E-

03 

3.45 1.6 

 

8.4

3 

1,873 1,514 5.1 149 98,900 18.2 0.057 6.00E-03 

3.113E-

03 ± 

1.214E-

1.65 1.1 
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03 

 

8.3

6 

1,450 1,177 4.7 138 75,800 17.8 0.082 6.00E-03 

4.319E-

03 ± 

4.109E-

03 

2.42 2.1 

 

7.9

6 

1,613 1,487 16.1 472 

106,40

0 

28.2 0.047 1.80E-02 

1.267E.0

3 ± 

2.303E-

04 

0. 74 0.3 

 

7.9

6 

1,953 1,812 19.6 576 69,798 17.6 0.116 1.20E-02 

1.34E-03 

± 

8.168E-

04 

0. 91 0.5 

 

7.9

1 

2,773 2,622 32.1 946 76,200 31.5  1.80E-02 

1.941E-

03 ± 

1.349E-

0. 62 0.2 
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03 

 

7.4

5 

1,350 1,354 48.3 1,422 

120,27

0 

  1.20E-03 

0.0 ± 

1.478E-

04 

0.00 0.0 

 

7.4

7 

937 9,35 34.5 1,015 90,900 23.7 0.011 1.80E-03 

0.0 ± 

2.33E-04 

0.00 0.0 

 

7.4

7 

2,107 2,120 72.9 2,146 89,400 37.7 0.033 3.00E-03 

1.291E-

04 ± 

7.212E-

04 

0.03 0.0 
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Table 4. Intracellular DIC concentrations, obtained with different methods, of different species and the corresponding external DIC 

concentration, respectively CO2(aq) concentration, as well as the ratio of surface area (SA) and volume (V)of the single cells (SOC – silicon oil 

centrifugation method; MIMS – mass spectrometry analysis; P+C – pulse chase method). 

Species Source Method  Ci int [mmol 

L
-1

]  

Ci ext [mmol 

L
-1

] 

Ci int: Ci ext SA:V 

E. huxleyii Nimer et al. 1994 SOC 0.1-0.32 0.1-1 1-15   

 Nimer et al. 1992 SOC 0.05-0.35 0.1-1 1-15   

 Dong et al. 1993 SOC 0.015-0.04 0.01-0.1 1-15   

 This study P+C 0.6-3.5 1.1-2.5 0.2-2.1 1.8 

T. weissflogii This study P+C 2.4-17.4 1-2.6 1.1-14.3 0.5 

Phaeodactylum 

tricornutum 

Burns and Beardall 1987 MIMS 0.99 0.15 5-6 2.6 

 Dixon and Merrett 1988 MIMS 0.5-1.8 0.1-0.5 5-6   
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Fig. 1. Idealized model for detecting the Ci pool during a pulse-chase experiment. The solid black line 
represents the 14C uptake during the pulse, the dotted line represents increased 14C in the algae during the 
chase period. This 14C is transferred from the Ci pool into the particulate organic matter and serves as an 

estimate of the Ci pool. The dashed line indicates the loss of 14C within the particulate organic matter due 
to respiration.  

296x420mm (300 x 300 DPI)  
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Fig. 2. Ci incorporation rates measured during the pulse incubation (n=3). a – T. weissflogii. b – E. huxleyi.  
169x85mm (96 x 96 DPI)  
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Fig. 3. Pulse-chase experiments illustrating internal Ci pools at 3 different pH settings of T. weissflogii. Cells 
were spiked with 14C and the kinetics of acid-stable photosynthetic products were followed for 120 min 

(pulse) after which the cells were resuspended in label-free medium under identical experimental conditions 

(chase). Each datapoint reflects the average of 3 filters measured for 14C activity from the same culture. 
Different symbols are from replicate culture incubations under similar pH conditions A, B, C. a – Culture 

preincubated at a pH of 8.5 b – Culture preincubated at a pH of 7.9. c – Culture preincorporated at a pH of 
7.4.  

296x420mm (300 x 300 DPI)  
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Fig. 4. Pulse-chase experiments illustrating internal Ci pools at 3 different pH settings of E. huxleyi. Cells 
were spiked with 14C and the kinetics of acid-stable photosynthetic products were followed for 120 min 

(pulse) after which the cells were resuspended in label-free medium under identical experimental conditions 

(chase).  Each datapoint reflects the average of 3 filters measured for 14C activity from the same culture. 
Different symbols are from replicate culture incubations under similar pH conditions  A, B, C.a – Culture 

preincubated at a pH of 8.5 b – Culture preincubated at a pH of 7.9. c – Culture preincorporated at a pH of 
7.4.  

296x420mm (300 x 300 DPI)  
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Fig. 5. Ci pool size variation related to differences in the carbon system (n=3). White symbols – lowest DIC 
values (a, d), lowest pH levels (c, f); grey symbols – intermediate Ci values (a, d), intermediate pH levels 
(c, f); black symbols – high Ci values (a, d), high pH levels (c, f). a – T. weissflogii Ci pool vs. pH. b – T. 

weissflogii Ci pool vs. CO2(aq). c– T. weissflogii Ci pool vs. DIC. d – E. huxleyi Ci pool vs. pH. e – E. huxleyi 
Ci pool vs. CO2(aq). f– E. huxleyi Ci pool vs. DIC.  

268x161mm (96 x 96 DPI)  
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Fig. 6. a – T. weissflogii Chla vs. pH. b – T. weissflogii Ci pool vs. Chla. c – T. weissflogii Chla:cell volume vs. 
pH. d – E. huxleyi Chla vs. pH. e – E. huxleyi Ci pool vs. Chla. c – E. huxleyi Chla:cell volume vs. pH. (n=3). 

266x161mm (96 x 96 DPI)  
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Results from 14C disequilibirum assays for E. huxleyi and T. weissflogii at different pH levels. a - T. 
weissflogii at pH 7.49. b - T. weissflogii at pH 7.90. c - E. huxleyi at pH 7.49, (d) E. huxleyi at pH 7.82. e - 

E. huxleyi at pH 8.11, Solid lines and filled circles represent samples without any inhibition, dashed lines and 

empty circles represent DBS inhibition (50 µmol L-1) during the sampling Values of f denote the proportion 
of HCO3- to C fixation in non treated (control) and DBS treated cells. Values and standard deviations are 

based on triplicate measurements.  
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Ratio of gross CO2 : HCO3- uptake in T. weissflogii and E. huxleyi with respect to different pCO2 values. 
Data of shaded bars were obtained during this study, remaining data were published by Burkhardt et al. 
(2001) for T. weissflogii and by Rost et al (2003) for E. huxleyi. Values and standard deviations are based 

on triplicate measurements. The dashed line indicates the value when CO2 and HCO3- are taken up in equal 
proportions.  
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