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puede obtener mediante el Teorema de Sklar. Por ello, resulta necesario investigar una versión 
imprecisa de este resultado, que tendrá importantes aplicaciones en los órdenes estocásticos 
bivariantes definidos bajo imprecisión. 
 
Si las alternativas se definen bajo imprecisión, pero no bajo incertidumbre, éstas se modelarán 
mediante conjuntos intuicionísticos. Para su comparación se introduce una teoría matemática 
de comparación de este tipo de conjuntos, dando especial relevancia al concepto de IF-
divergencia. Estas medidas de comparación de conjuntos intuicionísticos poseen numerosas 
aplicaciones, como pueden ser en el reconocimiento de patrones o la teoría de la decisión. Los 
conjuntos intuicionísticos permiten grados de pertenencia y de no pertenencia, y por ello 
resultan un buen modelo bipolar. Dado que las probabilidades imprecisas también son 
utilizadas en el contexto de la información bipolar, se estudiarán las conexiones entre ambas 
teorías. Estos resultados mostrarán tener interesantes aplicaciones, y en particular permitirán 
extender la dominancia estocástica para la comparación de más de dos p-boxes. 
 

 
RESUMEN (en Inglés) 

 

 
In real life situations it is common to deal with the comparison of alternatives. The alternatives to 
be compared are sometimes defined under some lack of information. Two lacks of information 
are considered: uncertainty and imprecision. Uncertainty refers to situations in which the 
possible results of the experiment are precisely described, but the exact result of the experiment 
is unknown; imprecision refers to situations in which the result of the experiment is known but it 
cannot be precisely described. In this work, uncertainty is modelled by means of Probability 
Theory, imprecision is modelled by means of IF-set Theory, and the Theory of Imprecise 
Probabilities is used when both lacks of information hold together. 
 
Alternatives under uncertainty are modelled by means of random variables. Thus, a stochastic 
order is needed for their comparison. In this work two particular stochastic orders are 
considered: stochastic dominance and statistical preference. The former is one of the most 
usual methods used in the literature and the latter is the most adequate method for comparing 
qualitative variables. Some properties about such methods are investigated. In particular, 
although stochastic dominance is related to the expectation of some transformation of the 
random variables, statistical preference is related to a different location parameter: the median. 
In addition, some conditions, related to the copula that links the random variables, under which 
stochastic dominance and statistical preference are related are given. Both stochastic orders 
are defined for the pairwise comparison of random variables. Thus, an extension of statistical 
preference for the comparison of more than two random variables is defined, and its main 
properties are studied. 
 
When the alternatives are defined under uncertainty and imprecision, each one is represented 
by a set of random variables. For comparing them, stochastic orders are extended for the 
comparison of sets of random variables instead of single ones. When the stochastic order is 
either stochastic dominance or statistical preference, the comparison of sets of random 
variables can be related to the comparison of elements of the imprecise probability theory, like 
p-boxes. Two particular instances of comparison of sets of random variables, common in 
decision making problems, are studied: the comparison of random variables with imprecision on 
the utilities or in the beliefs. The former situation is modelled by random sets, and then their sets 
of measurable selections are compared, and the second is modelled by a set of probabilities. 
When there is imprecision in the marginal distributions of the random variables, the joint 
distribution cannot be obtained from Sklar’s Theorem. For this reason, an imprecise version of 
Sklar’s Theorem is given, and its applications to bivariate stochastic orders under imprecision 
are showed. 
 
Alternatives defined under imprecision, but not under uncertainty, are modeled by means of IF-
sets. For their comparison a mathematical theory of comparison of IF-sets is given, focusing on 



                                                                

 
 

 

a particular type of measure called IF-divergences. This measure has several applications, like 
for instance in pattern recognition or decision making. IF-sets are used to model bipolar 
information because they allow membership and non-membership degrees. Since imprecise 
probabilities also allow to model bipolarity, a connection between both theories is established. 
As an application of this connection, an extension of stochastic dominance for the comparison 
of more than two p-boxes is showed. 
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Resumen

En muchas situaciones de la vida real es necesario comparar alternativas. Además, es ha-
bitual que estas alternativas estén definidas bajo falta de información. En esta memoria
se consideran dos tipos de falta de información: incertidumbre e imprecisión. La incer-
tidumbre se refiere a situaciones en las cuales los posibles resultados del experimento
son conocidos y se pueden describir completamente, pero el resultado del mismo no es
conocido; mientras que en las situaciones bajo imprecisión, se conoce el resultado del
experimento, pero no es posible describirlo con precisión. Por tanto, la incertidumbre se
modelará mediante la Teoría de la Probabilidad, mientras que la imprecisión será mode-
lada mediante la Teoría de los Conjuntos Intuicionísticos. Además, cuando ambas faltas
de información aparezcan simultáneamente, se utilizará la Teoría de las Probabilidades
Imprecisas.

Cuando las alternativas a comparar estén definidas bajo incertidumbre, éstas se
modelarán mediante variables aleatorias. Por tanto, para compararlas será necesario uti-
lizar un orden estocástico. En esta memoria se consideran dos órdenes: la dominancia
estocástica y la preferencia estadística. El primero de ellos es uno de los métodos más
utilizados en la literatura, mientras que el segundo es el método óptimo de comparación
de variables cualitativas. Para estos métodos se han estudiado varias propiedades. En
particular, si bien es conocido que la dominancia estocástica está relacionada con la com-
paración de las esperanzas de determinadas trasformaciones de las variables, se prueba
que la preferencia estadística está más ligada a otro parámetro de localización, la me-
diana. Además, se han encontrado situaciones bajo las cuales la dominancia estocástica
está relacionada con la preferencia estadística. Estos dos órdenes estocásticos han sido
definidos para comparar variables aleatorias por pares. Por esta razón se ha definido una
extensión de la preferencia estadística para la comparación simultánea de más de dos
variables y se han estudiado varias propiedades.

Cuando las alternativas están definidas en un marco de incertidumbre e imprecisión,
cada una de ellas se modelará mediante un conjunto de variables aleatorias. Dado que
los órdenes estocásticos comparan variables aleatorias, es necesario realizar su extensión
para la comparación de conjuntos de variables. Cuando el orden estocástico utilizado es
la dominancia estocástica o la preferencia estadística, la comparación de los conjuntos de
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xviii Resumen

variables aleatorias está claramente relacionada con la comparación de elementos propios
de la teoría de las probabilidades imprecisas, como pueden ser las p-boxes. Gracias al
modelo general que desarrollaremos, se podrán estudiar en particular dos situaciones
habituales en los problemas de la teoría de la decisión: la comparación de variables
aleatorias bajo utilidades o bajo creencias imprecisas. El primer problema se modelará
mediante conjuntos aleatorios, y por lo tanto su comparación se realizará a través de
sus conjuntos de selecciones medibles. El segundo problema será modelado mediante
un conjunto de probabilidades. Cuando las distribuciones marginales de las variables
están definidas bajo imprecisión, la distribución conjunta no se puede obtener mediante
el Teorema de Sklar. Por ello, resulta necesario investigar una versión imprecisa de este
resultado, que tendrá importantes aplicaciones en los órdenes estocásticos bivariantes
definidos bajo imprecisión.

Si las alternativas se definen bajo imprecisión, pero no bajo incertidumbre, éstas se
modelarán mediante conjuntos intuicionísticos. Para su comparación se introduce una
teoría matemática de comparación de este tipo de conjuntos, dando especial relevancia al
concepto de IF-divergencia. Estas medidas de comparación de conjuntos intuicionísticos
poseen numerosas aplicaciones, como pueden ser en el reconocimiento de patrones o la
teoría de la decisión. Los conjuntos intuicionísticos permiten grados de pertenencia y
de no pertenencia, y por ello resultan un buen modelo bipolar. Dado que las proba-
bilidades imprecisas también son utilizadas en el contexto de la información bipolar, se
estudiarán las conexiones entre ambas teorías. Estos resultados mostrarán tener intere-
santes aplicaciones, y en particular permitirán extender la dominancia estocástica para
la comparación de más de dos p-boxes.



Abstract

In real life situations it is common to deal with the comparison of alternatives. The
alternatives to be compared are sometimes defined under some lack of information. Two
lacks of information are considered: uncertainty and imprecision. Uncertainty refers to
situations in which the possible results of the experiment are precisely described, but
the exact result of the experiment is unknown; imprecision refers to situations in which
the result of the experiment is known but it cannot be precisely described. In this
work, uncertainty is modelled by means of Probability Theory, imprecision is modelled
by means of IF-set Theory, and the Theory of Imprecise Probabilities is used when both
lacks of information hold together.

Alternatives under uncertainty are modelled by means of random variables. Thus,
a stochastic order is needed for their comparison. In this work two particular stochastic
orders are considered: stochastic dominance and statistical preference. The former is
one of the most usual methods used in the literature and the latter is the most adequate
method for comparing qualitative variables. Some properties about such methods are
investigated. In particular, although stochastic dominance is related to the expectation of
some transformation of the random variables, statistical preference is related to a different
location parameter: the median. In addition, some conditions, related to the copula that
links the random variables, under which stochastic dominance and statistical preference
are related are given. Both stochastic orders are defined for the pairwise comparison of
random variables. Thus, an extension of statistical preference for the comparison of more
than two random variables is defined, and its main properties are studied.

When the alternatives are defined under uncertainty and imprecision, each one is
represented by a set of random variables. For comparing them, stochastic orders are
extended for the comparison of sets of random variables instead of single ones. When the
stochastic order is either stochastic dominance or statistical preference, the comparison
of sets of random variables can be related to the comparison of elements of the imprecise
probability theory, like p-boxes. Two particular instances of comparison of sets of random
variables, common in decision making problems, are studied: the comparison of random
variables with imprecision on the utilities or in the beliefs. The former situation is
modelled by random sets, and then their sets of measurable selections are compared,
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and the second is modelled by a set of probabilities. When there is imprecision in the
marginal distributions of the random variables, the joint distribution cannot be obtained
from Sklar’s Theorem. For this reason, an imprecise version of Sklar’s Theorem is given,
and its applications to bivariate stochastic orders under imprecision are showed.

Alternatives defined under imprecision, but not under uncertainty, are modeled
by means of IF-sets. For their comparison a mathematical theory of comparison of
IF-sets is given, focusing on a particular type of measure called IF-divergences. This
measure has several applications, like for instance in pattern recognition or decision
making. IF-sets are used to model bipolar information because they allow membership
and non-membership degrees. Since imprecise probabilities also allow to model bipolarity,
a connection between both theories is established. As an application of this connection,
an extension of stochastic dominance for the comparison of more than two p-boxes is
showed.



1 Introduction

The mathematical modeling of real life experiments can be rendered difficult by the pres-
ence of two types of lack of information: uncertainty and imprecision. We speak about
uncertainty when the variables involved in the experiment are precisely described but we
cannot predict beforehand the outcome of the experiment. This lack of information is
usually modelled by means of Probability Theory. On the other hand, imprecision refers
to situations in which the result of the experiment is known but it cannot be precisely
described. One possible model for this situation is given by Fuzzy Set Theory or any of
its extensions, such as the Theory of Intuitionistic Fuzzy Sets or the Theory of Interval-
Valued Fuzzy Sets. Of course, there are also situations in which both uncertainty and
imprecision appear together. In such cases, we can either combine probability theory
and fuzzy sets, or consider the Theory of Imprecise Probabilities.

Fuzzy sets were introduced by Zadeh ([214]) as a more flexible model than crisp
sets, which is particularly useful when dealing with linguistic information. A fuzzy set
assigns a value to each element on the universe, called membership degree, which is
interpreted as the degree in which the element fulfills the characteristic described by the
set. Of course, crisp sets are particular cases of fuzzy sets, since every element either
belongs (i.e., has membership degree 1) or does not (membership degree equals 0) to the
set. Since their introduction, fuzzy sets have become a very popular research topic, and
nowadays several international journals, conferences and societies are devoted to them.
For a complete study on fuzzy sets, we remit the reader to some usual references like
([71, 101]).

In 1983, Atannasov ([4]) proposed a generalization of fuzzy sets, called the theory
of Intuitionistic Fuzzy Sets (IF-sets, for short). In the subsequent years he continued
developing his idea ([5, 7]), and now it has become a commonly accepted generalization
of fuzzy sets. While fuzzy sets give a degree of membership of every element to the set,
an IF-set assigns both a degree of membership and a degree of non-membership of any
element to the set, with the natural restriction of that their sum must not exceed 1.
Every IF-set has a degree of indeterminacy or uncertainty, that is, one minus the sum
of the degrees of membership and non-membership. In this sense we can see that every
fuzzy set is in particular an IF-set, since the non-membership degree of the fuzzy set is

1



2 Chapter 1. Introduction

one minus its membership degree: the indeterminacy degree of a fuzzy set equals zero.
For this reason IF-sets have become a very useful tool in order to model situations in
which human answers are present: yes, no or does not apply, like for example human
votes ([8]). On the other hand, Zadeh also proposed several generalizations of fuzzy
sets ([216]). In particular, he introduced interval-valued fuzzy sets (IVF-sets, for short):
when the membership degree of an element to the set cannot be precisely determined, it
assigns an interval that contains the real membership degree. Although IF-sets and IVF-
sets differ on the interpretation, they are formally equivalent (see [30]). These theories
have been applied to different areas, like decision making ([194]), logic programming
([9, 10]), medical diagnosis ([48]), pattern recognition ([92]) and interesting theoretical
developments are still being made (see for example [68, 97, 120]).

The second pillar of this dissertation is the theory of Imprecise Probabilities. Im-
precise Probability is a generic term that refers to all mathematical models that serve as
an alternative and a generalization to probability models in cases of imprecise knowledge.
It includes possibility measures ([217]), Choquet capacities ([39]), belief functions ([187])
or coherent lower previsions ([205]), among others. One model that will be of particular
interest for us is that of p-boxes. A p-box ([75]) is determined by an ordered pair of
functions called lower and upper distribution functions, and it is given by all the distri-
bution functions bounded between them. Troffaes et al. ([198, 201]) have investigated
the connection between p-boxes and coherent lower probabilities ([205]). In particular,
they found conditions under which a p-box defines a coherent lower probability. In some
recent papers ([64, 65, 199, 200]), the authors have explored the connection between p-
boxes and other usual models included in the theory of imprecise probabilities, such as
possibilities, belief functions or clouds ([168]), among others.

This memory deals with the comparison of alternatives under lack of information.
As we mentioned before, we shall consider the comparison under uncertainty, imprecision
or both. On the one hand, alternatives under uncertainty are modelled by means of
random variables. Random variables are one tool of the probability theory that provide
a formal background to model non-deterministic situations, that is, situations where
randomness is present. The comparison of random variables is a long standing problem
that has been tackled from many points of view (see among others [18, 90, 98, 106, 188,
192, 210]). Its practical interest is clear since many real life processes are modelled by
random variables. The procedures of comparison are referred to as stochastic orders.
Indeed, stochastic ordering is a very popular topic within Economics ([11, 109]), Finance
([110, 173]), Social Welfare ([77]), Agriculture ([95]), Soft Computing ([180, 183]) or
Operational Research ([171]), among others.

One classical way of pairwise ordering random variables is stochastic dominance
([108, 208]), a generalization of the expected utility model. First degree stochastic
dominance, that seems to be the most widely used method, orders random variables
by comparing their cumulative distribution functions (or their survival functions). Its
main drawback is that it imposes a very strong condition to get an order, so many pairs
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of random variables are deemed incomparable. Because of this fact, a second definition,
called second degree stochastic dominance is also used, specially in Economics ([98, 139]).
Although less restrictive, it still does not establish a complete order between random vari-
ables. In fact, we can weaken progressively the notion of stochastic dominance, and talk
of stochastic dominance of n-th order.

One interesting alternative stochastic order is statistical preference, particularly
when comparing qualitative random variables, taking into account the results by Dubois
et al. ([67]). Although it was introduced by De Schuymer et al. ([55, 57]), it is possible
to find similar methods in the literature (see [25, 26, 210]). The notion of statistical pref-
erence is based on a probabilistic relation, also called reciprocal relation ([21]), that mea-
sures the degree of preference of one random variable over the other one. Furthermore,
since statistical preference depends on the joint distribution of the random variables, it
depends on the copula ([166]) that links them. Recall that from Sklar’s Theorem ([189])
it is known that for any two random variables there exists a function, called copula, that
allows to express the joint cumulative distribution function in terms of the marginals.
Then, statistical preference depends on such copula. The main drawback of this method
is its lack of transitivity. Some authors have been investigating which kind of transiti-
vity properties are satisfied by statistical preference, and in particular they focused on
cycle-transitivity (see [14, 15, 16, 49, 54, 56, 58, 121, 122]).

When the alternatives to be compared are defined under both uncertainty and im-
precision, the problem of comparing sets of random variables arises. Here we understand
the set of random variables from an epistemic point of view: we assume that the set
of random variables contains the true random variable, but such random variable is un-
known ([73]). This situation is not uncommon in decision making under uncertainty,
where there is vague or conflicting information about the probabilities or the utilities
associated to the different alternatives. We may think for instance of conflicts among
the opinions of several experts, limits or errors in the observational process, or simply
partial or total ignorance about the process underlying the alternatives. In any of such
cases, the elicitation of an unique probability/utility model for each of the alternatives
may be difficult and its use, questionable.

Indeed, one of the solutions that have been proposed for situations like this is to
consider a robust approach, by means of a set of probabilities and utilities. The use of
this approach to compare two alternatives is formally equivalent to the comparison of
two sets of alternatives, those associated to each possible probability-utility pair. Hence,
it becomes useful to consider comparison methods that allow us to deal with sets of
alternatives instead of single ones.

However, the way to compare of sets of alternatives is no longer immediate: we may
compare all possibilities within each of the sets, or also select some particular elements
of each set, to take into account phenomena of risk aversion, for instance. This gives
rise to a number of possibilities. Moreover, even in the simpler case where we choose
one alternative from each set, we must still decide which criterion we shall consider to
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determine the preferred one. There is quite an extensive literature on how to deal with
imprecise beliefs and utilities when our choice is made by means of an expected utility
model ([12, 165, 178, 186]). However, the problem has almost remained unexplored
for other choice functions. For this reason, we shall extend stochastic orders for the
comparison of sets of random variables, and we shall see that the proposed extension is
connected to the imprecise probability theory.

The last situation to be studied is the comparison of alternatives under imprecision
but without uncertainty. In this case the alternatives will be described by means of
IF-sets. Within fuzzy set theory, several types of measures of comparison have been
defined, with the goal of quantifying how different two fuzzy sets are. The more usual
measures of comparison are dissimilarities ([119]), dissimilitudes ([44]) and divergences
([159]). Other authors, like Bouchon-Meunier et al. ([27]), defined a general axiomatic
framework for the comparison of fuzzy sets, that include the aforementioned measures as
particular cases. Montes ([159]) made a complete study of the divergences as a measure
of comparison of fuzzy sets. In particular, she introduced a particular kind of divergences,
called local divergences, that have proven to be very useful.

Distances between fuzzy sets are also important for many practical applications.
For instance, Bhandari et al. ([22]) proposed a divergence measure for fuzzy sets in-
spired by the notion of divergence between two probability distributions, and used this
fuzzy divergence measure in the framework of image segmentation. Several other at-
tempts within the same field have been considered ([23, 34, 74]). For instance, the fuzzy
divergence measure of Fan and Xie is based (unlike the proposal of Bhandari and Pal)
on the exponential entropy of Pal and Pal ([175]); the same spirit is followed in [34].

However, in the framework of IF-sets only the notion of distance as well as several
examples of IF-dissimilarities have been given (see for example [36, 37, 85, 89, 92, 111, 113,
114, 138, 193]). Nevertheless, the need for a formal mathematical theory of comparison
of IF-sets still persists.

Furthermore, IF-sets are a very useful tool to represent bipolar information: the
membership and non-membership degree of every element to the set. Since bipolar
models are also being studied within the framework of imprecise probabilities (see for
instance [64, 65, 72, 73]), it becomes natural to investigate the connection between both
approaches to the modeling of bipolar information.

The rest of the work is organized as follows. Chapter 2 introduces the basic notions
that will be necessary along the work. In the first part we deal with stochastic orders,
focusing on stochastic dominance, that is based on the comparison of the cumulative
distribution functions of the random variables, and statistical preference, that is based
on a probabilistic relation and makes use of the joint distribution. In order to express
this joint distribution as a function of the marginals, we need to introduce some notions
of the theory of copulas. Then, we make a brief introduction to the theory of imprecise
probabilities. On the first part we define coherent lower previsions and we recall the
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basic results we shall use later on. Then, we focus on particular cases of coherent lower
probabilities: n-monotone capacities, belief functions, possibility measures and clouds.
We also define random sets and show their connections with imprecise probability theory.
Finally, we make an overview of IF-sets theory. First, we explain the semantic differences
between IF-sets and IVF-sets and show that both theories are formally equivalent. Then,
we introduce the basic operations between these sets.

In Chapter 3 we investigate the comparison of alternatives under uncertainty, that
will be modelled by means of random variables. Although some stochastic orders like
stochastic dominance have already been widely explored in the literature, this is not the
case for statistical preference. For this reason, we devote Section 3.1 to investigate the
main properties of this relation, and we compare them to the ones of stochastic dominance
([149, 154]). While stochastic dominance has a well-known characterization in terms of
the comparison of the expectations of adequate transformations of the random variables,
there is not a characterization of statistical preference. For this aim, we investigate a
possible characterization in terms of expectations ([150, 153]) and in terms of a different
location parameter: the median ([148, 163]).

Although statistical preference and stochastic dominance are not related in general,
in Section 3.2 we look for conditions under which first degree stochastic dominance implies
statistical preference ([150]). Obviously, since statistical preference depends on the copula
that links the variables, these conditions are related to such copula. Furthermore, we
find that in some of the usual probability distributions, like Bernoulli, uniform, normal,
etc, both stochastic dominance and statistical preference are equivalent for independent
random variables ([151]).

We have already mentioned the lack of transitivity of statistical preference, which
renders it unsuitable for comparing more than two random variables. In order to over-
come this problem, we introduce in Section 3.3 an extension of statistical preference that
preserves its philosophy and allows the comparison of more than two random variables
([140, 142]). We explore this new notion and give several properties that relate it to
the classical notion of statistical preference. In order to illustrate the applicability of our
results, Section 3.4.1 puts forward two different applications. We first use both stochastic
dominance and statistical preference to compare fitness values associated to the output
of genetic fuzzy systems ([143, 152, 162]), and then we use the generalization of statistical
preference on a decision-making problem with linguistic variables.

In Chapter 4 we consider the comparison of alternatives under both uncertainty
and imprecision. As we have already mentioned, in that case we model the alternatives
by means of sets of random variables instead of single ones. We start in Section 4.1 by
extending binary relations that are used to the comparison of random variables to the
comparison of sets of random variables. This gives rise to six possible ways of comparing
sets of random variables. In particular, we focus on the case where such binary relation
is either stochastic dominance or statistical preference. We shall see that the use of
stochastic dominance as binary relation is clearly connected to the comparison of the p-
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boxes associated with the sets of random variables ([134, 155, 157]). We shall consider two
particular cases in Section 4.2: the comparison of two random variables with imprecise
utilities and the comparison of two random variables with imprecise beliefs ([156]). The
former is modelled by means of random sets, and their comparison is made by means
of their associated sets of measurable selections. In the latter, the imprecise beliefs are
modelled by means of a set of probabilities in the initial space, instead of a single one.
In this situation we can also define a set of random variables for each alternative. Then,
both situations are particular cases of the more general situation studied in Section 4.1.

When there is imprecision about the probability of the initial space, the joint distri-
bution of the random variables is also imprecisely determined. Because of this, it seems
reasonable to investigate how the bivariate distribution, and in particular the bivariate
cumulative distribution function, can be determined. We shall investigate the proper-
ties of bivariate p-boxes and how they can define a coherent lower probability ([135]).
One particular instance where the joint distribution naturally arises is when dealing with
copulas. Recall that copulas allow to determine the joint distribution function in terms
of the marginals. However, when the marginal distribution functions are imprecisely
described by means of p-boxes, it is unclear how to determine the joint distribution, and
bivariate p-boxes prove to be a useful tool. In particular we show that, by considering
an imprecise version of copulas it is possible to extend Sklar’s Theorem to an imprecise
framework ([176]).

Section 4.4 shows several applications of the results from Chapter 4. One possible
application is the comparison of Lorenz Curves ([3, 11]), that represent the inequalities
within countries/regions. Using our results, it is possible to compare sets of regions by
means of stochastic dominance. Furthermore, imprecise stochastic dominance also allows
to compare survival rates of different cancer grouped by sites. We conclude the chapter
showing another application in decision making.

In Chapter 5 we investigate how to compare alternatives under imprecision. The
alternatives are modelled by means of IF-sets, and we propose methods for comparing
IF-sets. In Section 5.1 we recall the comparison measures that can be found in the
literature: IF-dissimilarities and distances for IF-sets. We also introduce IF-divergences
and IF-dissimilitudes ([141]). We investigate the relationships among these measures and
we justify that our preference for IF-divergences in that they impose stronger conditions,
avoiding thus counterintuitive examples ([145, 161]). We also try to define a general
measure of comparison of IF-sets as done by Bouchon-Meunier et al. ([27]) for fuzzy sets.
This allows us to define a general function that contains IF-dissimilarities, IF-divergences
and distances as particular cases ([158]). Then we introduce a particular type of IF-
divergences, that are those that satisfy a local property. We investigate their properties
and give several examples ([147]). We conclude the section studying the connection
between IF-divergences and divergences for fuzzy sets. In particular, we show how we
can define IF-divergences from divergences for fuzzy sets and, conversely, how to build
divergences for fuzzy sets from IF-divergences ([146]).
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Since both imprecise probabilities and IF-sets are used to model bipolarity, we
investigate in Section 5.2 the connection between both approaches. We establish that
when IF-sets are defined in a probability space, they can be interpreted as random sets,
and this allows to connect them with imprecise probabilities, since it is possible to define
a credal set and a lower and upper probability. We investigate under which conditions
the probabilistic information encoded by the credal set is the same than the one of the
set of measurable selections. We also investigate the relationship between our approach
and other works in the literature, like the one of Grzegorzewski and Mrowka ([86]).

We conclude the chapter showing several applications of the results. On the one
hand we show how IF-divergences can be applied to decision making and pattern recog-
nition. On the other hand, we explain how the connection between IF-sets and imprecise
probabilities allows us to propose a generalization of stochastic dominance to the com-
parison of more than two p-boxes, and we illustrate our method comparing at the same
time sets of Lorenz Curves.

We conclude this dissertation with some final remarks and a discussion of the most
important future lines of research.
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2 Basic concepts

In this chapter, we introduce the main notions that shall be employed in the rest of the
work. We start by providing the definition of binary relations as comparison methods
for random variables. Later, we consider the particular cases where the binary relation is
either stochastic dominance or statistical preference, which are the two main stochastic
orders we shall consider here.

Afterwards we make a brief introduction to Imprecise Probability theory, that shall
be useful when we want to compare sets of random variables. To conclude the chapter,
we recall the notion of intuitionistic fuzzy sets, that we shall use model situations where
sets cannot be precisely described.

2.1 Stochastic orders

Stochastic orders are methods that determine a (total or partial) order on any given set of
random quantities. Although several methods have been proposed in the last years (see
for instance [139, 188]), here we shall focus on two particular cases: stochastic dominance
and statistical preference. The former is possibly the most widespread method in the
literature, and the latter is particularly useful when comparing qualitative variables,
taking into account the axiomatization established by Dubois et al. ([67]).

Throughout, random variables are denoted byX, Y , Z, . . . , orX1, X2, . . ., and their
associated cumulative distribution functions are denoted FX, FY, FZ, . . . , or FX1 , FX2 ,
. . . , respectively. We shall also assume that the random variables to be compared are
defined on the same probability space.

Given two random variables X and Y defined from the probability space (Ω,A, P )
to an ordered space (Ω′,A′) (which in most situations will be the set of real numbers),
a binary relation � is used to compare the variables. Then, X � Y means that X is at
least as preferable as Y . This corresponds to a weak preference relation; from it a strict
preference relation, indifference and also incomparable relation can also be defined:

9
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Definition 2.1 Consider two random variables X and Y and a binary relation � used
to compare them.

• X is strictly preferred to Y with respect to �, and is denoted by X � Y , if X � Y
but Y 6� X.

• X and Y are indifferent with respect to �, and it is denoted by X ≡ Y , if X � Y
and Y � X.

• X and Y are incomparable with respect to �, and it is denoted by X 6∼ Y , if X 6� Y
and Y 6� X.

Then, if D denotes a set of random variables, according to [179], (D,�,≡, 6∼) forms a
preference structure. In particular, if the relation � is complete, that is, if there is not
incomparability between the random variables, then (D,�,≡) forms a preference structure
without incomparable elements.

One instance of binary relation is the comparison of the expectations of the random
variables, so that X � Y if and only if E(X) ≥ E(Y ). This is also an example of a
non-complete relation, because the comparison cannot be made when the expectation of
the variable does not exist.

In the remainder of this section we introduce the definitions and notations that
we shall use in the following chapters. Specifically, we consider the case in which the
binary relation is either stochastic dominance or statistical preference. With respect to
the first one, we recall the main types of stochastic dominance and some of its most
important properties, such as its characterization by means of the comparison of the
adequate expectations. Then, we provide an overview on statistical preference: we recall
its definition and we also discuss briefly its main advantages as a stochastic order.

2.1.1 Stochastic dominance

Stochastic dominance is one of the most used methods for the pairwise comparison of
random variables we can find in the literature. Besides to the usual economic interpre-
tation (see [110]), this notion has also been applied in other frameworks such as Finance
([109]), Social Welfare ([11]), Agriculture ([95]) or Operations Research ([171]), among
others. We next recall its definition and basic notions related to them, and also its main
properties.

Stochastic dominance is a method based on the comparison of the cumulative dis-
tribution functions of the random variables.

Definition 2.2 Let X and Y be two real-valued random variables, and let FX and FY

denote their respective cumulative distribution functions. X stochastically dominates Y
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by the first degree, or simply stochastically dominates, when no confusion is possible,
and it is denoted by X �FSD Y , if it holds that

FX(t) = P (X ≤ t) ≤ P (Y ≤ t) = FY(t) for every t ∈ R. (2.1)

One of the most important drawbacks of this definition is that (first degree) stochastic
dominance is a non-complete relation, that is, it is possible to find random variables
X and Y such that neither X �FSD Y nor Y �FSD X, as we can see in the following
example.

Example 2.3 Consider two random variables X and Y such that X follows a Bernoulli
distribution with parameter 0.6 and Y takes a fixed value c ∈ (0, 0.6) with probability 1.
Then, there is not first degree stochastic dominance between them:

FX(0) = 0.4 > 0 = FY(0) but FX(c) = 0.4 < 1 = FY(c).�

According to Definition 2.1, from this preference relation we can also define the strict
stochastic dominance, the indifference and, as we have just seen, the incomparability
relations:

• X stochastically dominates Y strictly, and denote it by X �FSD Y , if and only if
FX ≤ FY and there is some t ∈ [0, 1] such that FX(t) < FY(t).

• X and Y are stochastically indifferent, and denote it by FX ≡FSD FY, if and only
if they have the same distribution (usually denoted by X d= Y ).

• X and Y are stochastically incomparable, and denote it by X 6∼ Y , if there are t1
and t2 such that FX(t1) > FY(t2) and FY(t2) > FX(t2).

Remark 2.4 Here we have chosen the notation �FSD because it is the most frequent in
the literature. However, (first degree) stochastic dominance has also been denoted by �1,
as in [55], or by ≥st, as in [188]. In that case, the authors used the name stochastic
order instead of first degree stochastic dominance.�

As we see from its definition, (first degree) stochastic dominance only focuses on the
marginal cumulative distribution functions, and its interpretation is the following: if
X �FSD Y , then FX(t) ≤ FY(t) for any t, or equivalently, P (X > t) ≥ P (Y > t)
for any t. That is, we impose that at every point the probability of X to be greater
than such point is greater than the probability of Y to be greater than the same point.
Thus, X assigns greater probability to greater values. Figure 2.1 shows its graphical
interpretation. Here, we can see how FX is always below or at the same level than FY.



12 Chapter 2. Basic concepts

Figure 2.1: Example of first degree stochastic dominance: X �FSD Y

From an economic point of view, the interpretation is that the decision between
the two random variables is rational, in the sense that for any threshold of profit the
probability of going above this threshold is greater with the preferred variable ([110]).

The main drawback of this definition is that the inequality in Equation (2.1) is
quite restrictive. There are many pairs of cumulative distribution functions that do not
satisfy this inequality in any sense and therefore, the associated random variables cannot
be ordered. This is the reason why we can consider other (weaker) degrees of stochastic
dominance. Let us now introduce the second degree stochastic dominance.

Definition 2.5 Let X and Y be two real-valued random variables whose cumulative dis-
tribution functions are given by FX and FY, respectively. X stochastically dominates Y
by the second degree, and it is denoted by X �SSD Y , if it holds that:∫ t

−∞
FX(x)d(x) ≤

∫ t

−∞
FY(y)d(y) for every t ∈ R. (2.2)

As in Definition 2.2, we can also introduce the strict second degree stochastic dominance
(�SSD), the indifference (≡SSD) and the incomparable ( 6∼SSD) relations.

Note that, similar to Example 2.3, we can also see that incomparability is possible when
dealing with second degree stochastic dominance.

Example 2.6 Consider the same random variables of Example 2.3.For these variables,
the functions G2

X and G2
Y are defined by:

G2
X(t) =


0 if t < 0.
0.4t if t ∈ [0, 1).
t− 0.6 if t ≥ 1.

G2
Y(t) =

{
0 if t < c.

t− c if t ≥ c.

Then, X and Y are not ordered by means of the second degree stochastic dominance
since:

G2
X

( c
2

)
= 0.2 c > 0 = G2

Y

( c
2

)
but G2

X(1) = 0.4 < 1− c = G2
Y(1),
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since c < 0.6.�

Remark 2.7 Other authors (see for example [188]) call this method concave order, and
they denote it by ≥cv. It is also sometimes denoted by �2 ([55]).�

As we can see in Figure 2.2, when X �SSD Y , for any fixed t, the area below FX until t is
lower than the are below FY until t. This means that the X gathers more accumulated
probability at greater points than Y .

Figure 2.2: Example of second degree stochastic dominance: X �SSD Y .

From an economic point of view, second degree stochastic dominance means that
the decision maker prefers the alternative that provides a bigger profit but also with less
risk. That is, it is a rationality criterion under risk aversion (see [110]).

Similarly to Definitions 2.2 and 2.5, stochastic dominance can be defined for every
degree n by relaxing the conditions in Equations (2.1) and (2.2).

Definition 2.8 Let X and Y be two real-valued random variables with cumulative dis-
tribution functions FX and FY, respectively. X stochastically dominates Y by the n-th
degree, for n ≥ 2, and it is denoted by X �nSD Y , if it holds that:

GnX(t) =
∫ t

−∞
Gn−1

X (x)d(x) ≤
∫ t

−∞
Gn−1

Y (y)d(y) = GnY(t) ∀t ∈ R, (2.3)

where G1
X = FX and G1

Y = FY. In particular, this definition becomes the second degree
stochastic dominance when n = 2.

Again, following the notation of Definition 2.1, we can introduce the strict n-th degree
stochastic dominance (�nSD), the indifference (≡nSD) and the incomparability ( 6∼nSD)
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relations. Then, if D denotes a set of random variables, (D,�nSD,≡nSD, 6∼nSD) forms a
preference structure for any n ≥ 1.

Clearly, first degree stochastic dominance imposes a stronger condition than second
degree stochastic dominance, as we can see from Equations (2.1) and (2.2). Moreover, if
we compare Equations (2.1) and (2.3) we deduce that first degree stochastic dominance
is stronger than the n-th degree stochastic dominance for every n. Indeed, it is known
that the n-th degree stochastic dominance is stronger than the m-th degree stochastic
dominance for any n < m:

X �nSD Y ⇒ X ≥mSD Y for every n < m, (2.4)

while the converse does not hold in general.

Remark 2.9 Stochastic dominance is a reflexive and transitive relation. However, since
two different random variables may induce the same distribution, it is not antisymmetric.
Moreover, as we have already noted, it is not complete because it allows incomparability.�

One of the most important properties of stochastic dominance is its characterization by
means of the expectation. Specifically, each of the types of stochastic dominance we
have introduced can be characterized by the comparison of the expectations of adequate
transformations of the variables considered.

Theorem 2.10 ([109, 139]) Let X and Y be two random variables. For first and sec-
ond degree stochastic dominance it holds that:

• X �FSD Y if and only if E[u(X)] ≥ E[u(Y )] for every increasing function u : R→
R.

• X �SSD Y if and only if E[u(X)] ≥ E[u(Y )] for every increasing and concave
function u : R→ R.

A function u : R → R is called n-monotone ([39]) if it is n-differentiable and for any
m ≤ n and it fulfills (−1)m+1u(m) ≥ 0. Then, if Un denotes the set of n-monotone
functions, the following general equivalence holds:

X �nSD Y ⇔ E[u(X)] ≥ E[u(Y )] for every u ∈ Un. (2.5)

In fact, from the proof of Theorem 2.10, it can be derived that:

X �nSD Y ⇔ E[u(X)] ≥ E[u(Y )] for any u ∈ U∗n, (2.6)

where U∗n denote the set of n-monotone and bounded functions u : R→ R.

Equation (2.4) can also be derived from this result, since every n-monotone function
is also m-monotone for any m ≤ n.
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Remark 2.11 The characterization of the second degree stochastic dominance, based
on the comparison of the mean of the concave and increasing functions, explains the
nomenclature concave order mentioned in Remark 2.7.�

To conclude this paragraph, we list some interesting properties of first degree stochastic
dominance that shall be useful in the next chapter.

Proposition 2.12 ([139, Theorem 1.2.13]) If X and Y are real-valued random vari-
ables such that X �FSD Y and ϕ : R→ R is a increasing function, then ϕ(X) �FSD ϕ(Y ).

Proposition 2.13 ([139, Theorem 1.2.17]) Let {Xi, Yi : i = 1, . . . , n} be indepen-
dent and real-valued random variables. If Xi �FSD Yi for i = 1, . . . , n, then X1 + . . . +
Xn �FSD Y1 + . . .+ Yn.

Proposition 2.14 ([139, Theorem 1.2.14]) Given the random variables X,X1, X2,
. . . , Y, Y1, Y2,. . . such that Xn

L−→ X and Yn
L−→ Y , if Xn �FSD Yn for every n, where

L−→ denotes the convergence in distribution, then X �FSD Y .

As a consequence of the previous result, first degree stochastic dominance is preserved
by four kinds of converge: distribution, probability, mth-mean and almost sure.

For a more complete study on stochastic orders, we refer to [62, 109, 139, 188, 192].

2.1.2 Statistical preference

In the previous subsection we have mentioned that stochastic dominance is a pairwise
comparison method that has been used in several areas, always with successful results.
However, this method also presents some drawbacks: on the one hand, it is a non-
complete crisp relation. This means that it is possible to find pairs of random variables
such that n-th degree stochastic dominance does not order them for any n. Furthermore,
stochastic dominance does not allow to establish degrees of preference. In fact, there
are only three possibilities: either one random variable is preferred to the other, or they
are indifferent or incomparable. in addition, it is a method with a high computational
cost, since the n-th degree stochastic dominance requires the computation of 2(n − 1)
integrals.

These drawbacks made De Schuymer et al. ([55, 57]) introduce a new method for
the pairwise comparison of the random variables, based on a probabilistic relation.

Definition 2.15 ([21]) Given a set of alternatives D, a probabilistic or reciprocal rela-
tion Q is a map Q : D × D → [0, 1] such that Q(a, b) + Q(b, a) = 1 for any alternatives
a, b ∈ D.
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In our framework, the set of alternatives D is considered to be made by random variables
defined on the same probability space (Ω,P(Ω), P ) to an ordered space (Ω′,A′). The
probabilistic relation over D is defined (see [55, Equation 3]) by:

Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y ), (2.7)

where (X,Y ) ∈ D ×D and P denotes the joint probability of the bidimensional random
vector (X,Y ). Clearly, Q is a probabilistic relation: it takes values in [0, 1] and Q(X,Y )+
Q(Y,X) = 1:

Q(X,Y ) +Q(Y,X) = P (X > Y ) +
1
2
P (X = Y ) +

1
2
P (X = Y ) + P (Y > X) = 1.

The above definition measures the preference degree of a random variable X over another
random variable Y , in the sense that the greater the value of Q(X,Y ), the stronger the
preference of X over Y . Hence, the closer the value Q(X,Y ) is to 1, the greater we
consider X with respect to Y ; the closer Q(X,Y ) is to 0, the greater we consider Y to
X; and if Q(X,Y ) is around 0.5, both alternatives are considered indifferent. This fact
can be seen in Figure 2.3.

Y � X X � Y

X ∼ Y

� -

0 10.5

Figure 2.3: Interpretation of the reciprocal relation Q.

Statistical preference is defined from the probabilistic relation Q of Equation (2.7)
and it is the formal interpretation of that relation.

Definition 2.16 ([55, 57]) Let X and Y be two random variables. It is said that:

• X is statistically preferred to Y , and it is denoted by X �SP Y , if Q(X,Y ) ≥ 1
2 .

Also, according to Definition 2.1:

• X and Y are statistically indifferent, and it is denoted by X ≡SP Y , if Q(X,Y ) = 1
2 .

• X is strictly statistically preferred to Y , and we denote it X �SP Y , if Q(X,Y ) >
1
2 .
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Note that statistical preference does not allow incomparability, so (D,�SP,≡SP) consti-
tutes a preference structure without incomparable elements.

Remark 2.17 Statistical preference is a reflexive and complete relation. However, it is
neither antisymmetric not transitive, as we shall see in Section 3.3.�

It is possible to give a geometrical interpretation to the concept of statistical preference.
As we can see in Figure 2.4, given two continuous and independent random variables,
X �SP Y if and only if the volume enclosed under the joint density function in the half-
space {(x, y) | x > y} is larger than the volume enclosed in the half-space {(x, y) | x < y}.

Figure 2.4: Geometrical interpretation of the statistical preference: X �SP Y .

Note that X �SP Y means that X outperforms Y with a probability at least
0.5. Hence, statistical preference provides an order between the random variables and a
preference degree. This is illustrated in the following example.

Example 2.18 Consider two random variables X,Y such that X follows a Bernoulli
distribution B(p) with parameter p ∈ (0, 1) and Y follows a uniform distribution U(0, 1)
in the interval (0, 1). It is immediate that:

Q(X,Y ) = P (X > Y ) = P (X = 1) = p.

Therefore, when p ≥ 1
2 , X is statistically preferred to Y with degree of preference p, and

the greater the value of p, the most preferred X is to Y .�
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One important remark is that statistical preference for degenerate random variables is
equivalent to the order between real numbers, and in that case the preference degree is
always 0, 1 or 1

2 .

Remark 2.19 Consider two random variables X and Y . The former takes the value
cX with probability 1 and the second takes the value cY with probability 1. Assume that
cX > cY:

P (X > Y ) = P (X = cX) = 1⇒ Q(X,Y ) = 1 and X �SP Y.

On the other hand, if cX = cY, it holds that:

P (X = Y ) = P (X = cX, Y = cY) = 1⇒ Q(X,Y ) =
1
2
and X ≡SP Y.

Then, it holds that:

X �SP Y ⇔ cX > cY and X ≡SP Y ⇔ cX = cY.�

A first, but also trivial result about statistical preference is the following.

Lemma 2.20 Given two random variables X and Y , it holds that:

X �SP Y ⇔ Q(X,Y ) ≥ Q(Y,X)⇔ P (X ≥ Y ) ≥ P (Y ≥ X)
⇔ P (X > Y ) ≥ P (Y > X).

Proof: By definition, X �SP Y if and only if Q(X,Y ) ≥ 1
2 . Since Q is a probabilistic

relation, Q(X,Y ) +Q(Y,X) = 1. Then:

Q(X,Y ) ≥ 1
2
⇔ Q(X,Y ) ≥ 1

2
(Q(X,Y ) +Q(Y,X))⇔ Q(X,Y ) ≥ Q(Y,X).

Let us now prove the remaining equivalences.

X �SP Y ⇔Q(X,Y ) ≥ Q(Y,X)
⇔ P (X > Y ) + 1

2P (X = Y ) ≥ P (Y > X) + 1
2P (X = Y )

⇔ P (X > Y ) ≥ P (Y > X).

Moreover:

X �SP Y ⇔ P (X > Y ) ≥ P (Y > X)
⇔ P (X > Y ) + P (X = Y ) ≥ P (Y > X) + P (X = Y )
⇔ P (X ≥ Y ) ≥ P (Y ≥ X). �

Similar equivalences can be proved for the strict statistical preference:

X �SP Y ⇔Q(X,Y ) > Q(Y,X)⇔ P (X ≥ Y ) > P (Y ≥ X)
⇔ P (X > Y ) > P (Y > X).
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Remark 2.21 One context where statistical preference appears naturally is that of deci-
sion making with qualitative random variables. Dubois et al. showed in [67] that given
two random variables X,Y : Ω → Ω′, where (Ω′,�Ω′) is an ordered qualitative scale,
then, given a number of rationality axioms over our decision rule, the choice between
X and Y must be made by means of the likely dominance rule, which says that X is
preferred to Y if and only if [X �Ω′ Y ] % [Y �Ω′ X], where:

[X �Ω′ Y ] = {ω ∈ Ω : X(ω) �Ω′ Y (ω)} and
[Y �Ω′ X] = {ω ∈ Ω : Y (ω) �Ω′ X(ω)},

where % is a binary relation on subsets of Ω. One of the most interesting cases is that
where % is determined by a probability measure P , so A % B ⇔ P (A) ≥ P (B). Then,
using Lemma 2.20, X is preferred to Y if and only if X �SP Y .

We conclude that, according to the axioms considered in [67], statistical preference
is the optimal method for comparing qualitative random variables defined on a probability
space.�

Remark 2.22 A related notion to statistical preference is that of probability dominance
considered in [210]: X is said to dominate Y with probability β ≥ 0.5, and it is denoted
by XβY , if P (X > Y ) ≥ β. This definition has an important drawback with respect
to statistical preference, which is that incomparability is possible for every β ≥ 0.5. For
instance, this is the case of random variables X and Y satisfying P (X = Y ) > 0.5.

In [2], X is called preferred to Y in the precedence order when P (X ≥ Y ) ≥ 1
2 . The

drawback of this notion is that indifference is possible although P (X > Y ) > P (Y > X),
for instance when P (X = Y ) ≥ 1

2 .

From Lemma 2.20 we know that X �SP Y if and only if P (X > Y ) ≥ P (Y > X).
When this inequality holds some authors say that X is preferred to Y in the precedence
order (see [25, 26, 112]). Hence, this provides an equivalent formulation of statistical
preference. We have preferred to use the latter because it provides degrees of preference
between the alternatives by means of the probabilistic relation Q. Note that other authors
consider a difference definition of precedence order ([2, 25, 26, 112, 210]) which is not
equivalent in general, as we have seen in the previous remark.�

A probabilistic or reciprocal relation can also be seen as a fuzzy relation. For this reason,
statistical preference can be interpreted as a defuzzyfication of the relation Q:

X �SP Y ⇔ (X,Y ) ∈ Q 1
2
,

where Q 1
2
denotes the 1

2 -cut of Q:

Q 1
2

=
{

(X,Y ) ∈ D ×D : Q(X,Y ) ≥ 1
2

}
.�
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Another connection with fuzzy set theory can be made if we consider that the information
contained in the probabilistic relation can be also presented by means of a fuzzy relation.
This was initially proposed in [16, 57] and latter analyzed in detail in [122]; recently,
a generalization has been presented in [163]. There, from any probabilistic relation Q
defined on a set D, h(Q), with h : [0, 1] → [0, 1], is a fuzzy weak preference relation if
and only if h

(
1
2

)
= 1.

The previous result was proven for any probabilistic relation Q, but when we are
comparing random variables by means of the relation Q defined on Equation (2.7), h(Q)
is an order-preserving fuzzy weak preference relation if and only if h(0) = 0, h( 1

2 ) = 1
and h is increasing in [0, 1].

The initial h proposed in [57] was h(x) = min(1, 2x) but, of course, an infinite
family of functions may be considered. As an example, we will obtain the expression of
the weak preference relation R in that initial case:

R(X,Y ) =

{
1 if P (X > Y ) ≥ P (Y > X),
1 + P (X > Y )− P (Y > X) otherwise.

Example 2.23 Let us consider the random variable X uniformly distributed in the in-
terval (4, 6), and let Y1, Y2, Y3 and Y4 be the uniformly distributed random variables
in the intervals (7, 9), (5, 7), (3, 5) and (0, 2), respectively. If we assume them to be
independent, it holds that:

Q(X,Y1) = 0⇒ R(X,Y1) = 0.
Q(X,Y2) = 1

8 ⇒ R(X,Y2) = 1
4 .

Q(X,Y3) = 7
8 ⇒ R(X,Y3) = 1.

Q(X,Y4) = 1⇒ R(X,Y4) = 1.

We can notice the different scales used by Q and R. �

Thus, we conclude that R can be seen as a “greater than or equal to” relation, but the
meaning of Q is totally different. In fact, the interpretation of the value of the fuzzy
relation R is: the closer the value to 0, the weaker the preference of X over Y .

We have already mentioned some advantages of statistical preference over stochastic
dominance: on the one hand, statistical preference allows the possibility of establishing
preference degrees between the alternatives; on the other hand statistical preference
determines a total relationship between the random variables, while we can find pairs of
random variables which are incomparable under the n-th degree stochastic dominance.
Another advantage is that it takes into account the possible dependence between the
random variables since it is based on the joint distribution, while stochastic dominance
only uses marginal distributions.
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In this sense, recall that given n independent real-valued random variables X1,
. . . , Xn, with cumulative distribution functions FX1 , . . . , FXn , respectively, the joint
cumulative distribution function, denoted by F , is the product of the marginals:

F (x1, . . . , xn) = FX1(x1) · . . . · FXn(xn),

for any x1, . . . , xn ∈ R. In general, the joint cumulative distribution function can be
expressed by:

F (x1, . . . , xn) = C(FX1(x1), . . . , FXn(xn))

for any x1, . . . , xn ∈ R, where C is a function called copula.

Definition 2.24 ([166]) A n-dimensional copula is a function C : [0, 1]n → [0, 1] sat-
isfying the following properties:

• For every (x1, . . . , xn) ∈ [0, 1]n, C(x1, . . . , xn) = 0 if xi = 0 for some i ∈ {1, . . . , n}.

• For every (x1, . . . , xn) ∈ [0, 1]n, C(x1, . . . , xn) = xi if xj = 1 for every j 6= i.

• For every ~x = (x1, . . . , xn), ~y = (y1, . . . , yn) ∈ [0, 1]n:

VC([~x, ~y]) ≥ 0,

where:

VC([~x, ~y]) =
n∑
i=1

∑
ci∈{ai,bi}

sgn(c1, . . . , cn)C(c1, . . . , cn),

where the function sgn is defined by:

sgn(c1, . . . , cn) =

{
1 if ci = ai for an even number of i’s.
−1 if ci = ai for an odd number of i’s.

In particular, a 2-dimensional copula (a copula, for short) is a function C : [0, 1]×[0, 1]→
[0, 1] satisfying C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for every x ∈ [0, 1] and

C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1)

for every (x1, x2, y1, y2) ∈ [0, 1]4 such that x1 ≤ x2 and y1 ≤ y2.

The most important examples of copulas are the following:

• The product copula π: π(x1, . . . , xn) =
∏n
i=1 xi.

• The minimum operator M : M(x1, . . . , xn) = min{x1, . . . , xn}.

• The Łukasiewicz operator W , for n = 2: W (x1, x2) = max{0, x1 + x2 − 1}.
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Since the Łukasiewicz operator is associative, it can only be defined as a n-ary operator:
W (x1, . . . , xn) = max{0, x1 + . . .+ xn− (n− 1)}. However, it is a copula only for n = 2.
One important and well-known result concerning copula is that every n-dimensional
copula is bounded by the Łukasiewicz and the minimum operator:

W (x1, . . . , xn) ≤ C(x1, . . . , xn) ≤M(x1, . . . , xn) for every (x1, . . . , xn) ∈ [0, 1]n. (2.8)

This inequality is known as the Fréchet-Hoeffding inequality. For this reason, the Łuka-
siewicz and the minimum operators are also called the lower and upper Fréchet-Hoeffding
bounds ([79]).

Recall that, although W is not a copula for n > 2, it can be approximated by a
copula on each point:

Proposition 2.25 ([62, 166]) For any (x1, . . . , xn) ∈ [0, 1]n there is a n-dimensional
copula C such that C(x1, . . . , xn) = W (x1, . . . , xn).

In particular, when n = 2, W is a copula and the previous result becomes trivial.

A particular type of copulas are the Archimedean copulas.

Definition 2.26 ([166]) A n-dimensional copula C is Archimedean if there exists a
function ϕ : [0, 1]→ [0,∞], called generator of C, strictly decreasing, satisfying that −ϕ
is n-monotone, ϕ(1) = 0 and:

C(x1, . . . , xn) = ϕ−1](ϕ(x1) + . . .+ ϕ(xn)), (2.9)

for every (x1, . . . , xn) ∈ [0, 1]n, where ϕ−1] denotes the pseudo-inverse of ϕ, and it is
defined by:

ϕ−1](t) =

{
ϕ−1(t) if 0 ≤ t ≤ ϕ(0).
0 if ϕ(0) < t ≤ ∞.

The main Archimedean copulas are the product, whose generator is ϕπ(t) = − log t,
and the Łukasiewicz operator for n = 2, whose generator is ϕW(t) = 1 − t. The most
important non-Archimedean copula is the minimum operator.

Archimedean copulas can also be divided into two groups: strict and nilpotent
Archimedean copulas. An Archimedean copula is called strict if its generator, ϕ, sat-
isfies ϕ(0) = ∞. In such case, the pseudo inverse becomes the inverse, and therefore
Equation (2.9) becomes:

C(x1, . . . , xn) = ϕ−1(ϕ(x1) + . . .+ ϕ(xn)). (2.10)

An Archimedean copula is nilpotent if ϕ(0) <∞. The most important examples of strict
and nilpotent copulas are the product and the Łukasiewicz operator, respectively.

One of the most important traits of copulas is the famous Sklar’s theorem.
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Theorem 2.27 ([189]) Let X1, . . . , Xn be n random variables, and let FX1 , . . . , FXn

denote their respective cumulative distribution functions. If F denotes the joint cumula-
tive distribution function, then there exists a copula C such that

F (x1, . . . , xn) = C(FX1(x1), . . . , FXn(xn)) for every (x1, . . . , xn) ∈ Rn.

When the copula is Archimedean, last expression becomes:

F (x1, . . . , xn) = ϕ−1](ϕ(FX1(x1)) + . . .+ ϕ(FXn(xn))).

Obviously, a pair of random variables is coupled by the product if and only if they are in-
dependent. Moreover, random variables coupled by the minimum operator (respectively,
by the Łukasiewicz operator) are called comonotonic (respectively, countermonotonic).
These two cases are very important in the theory of copulas, and for this reason we
will study in detail the properties of statistical preference and stochastic dominance for
them. In fact, from the Fréchet-Hoeffding bounds of Equation (2.8), an interpretation of
comonotonic and countermonotonic random variables can be given. In order to see this,
recall that a subset S of R2

is increasing if and only if for each (x, y) ∈ R2 either:

1. for all (u, v) in S, u ≤ x implies v ≤ y; or

2. for all (u, v) in S, v ≤ y implies u ≤ x.

Similarly, a subset S of R2
is decreasing if and only if for each (x, y) ∈ R2 either:

1. for all (u, v) in S, u ≤ x implies v ≥ y; or

2. for all (u, v) in S, v ≤ y implies u ≥ x.

Using this notation, the following result is presented in [166, Theorem 2.5.4] and proved
in [124].

Proposition 2.28 Let X and Y be two real-valued random variables. X and Y are
comonotonic if and only if the support of the joint distribution function is a increasing
subset of R2

, and X and Y are countermonotonic if and only if the support of the joint
distribution function is a decreasing subset of R2

.

When X and Y are continuous, we say that Y is almost surely an increasing function of
X if and only if X and Y are comonotonic, and Y is almost surely a decreasing function
of X if and only if they are countermonotonic.
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2.2 Imprecise probabilities

Next, we discuss briefly imprecise probability models. This is the generic term used
to refer to all mathematical models that serve as an alternative and a generalization
of probability models to situations where our knowledge if vague or scarce. It includes
possibility measures ([217]), Choquet capacities ([39]), belief functions ([187]) or coherent
lower previsions ([205]), among other models.

2.2.1 Coherent lower previsions

We begin by introducing the main concepts of the theory of coherent lower previsions.
Consider a possibility space Ω. A gamble is a real-valued functional defined on Ω. We
shall denote by L(Ω) the set of all gambles on Ω, while L+(Ω) denotes the set of positive
gambles on Ω. Given a subset A of Ω, the indicator function of A is the gamble that
takes the value 1 on the elements of A and 0 elsewhere. We shall denote this gamble by
IA, or by A when no confusion is possible.

A lower prevision is a functional P defined on a set of gambles K ⊆ L(Ω). Given a
gamble f , P (f) is understood to represent a subject’s supremum acceptable buying price
for f , in the sense that for any ε > 0 the transaction f − P (f) + ε is acceptable to him.

Using this interpretation, we can derive the notion of coherence.

Definition 2.29 ([205, Section 2.5]) Consider the lower prevision P : K → R, where
K ⊆ P(Ω). It avoids sure loss if for any natural number n and any f1, . . . , fn ∈ K it
holds that:

sup
ω∈Ω

[
n∑
k=1

[fk(ω)− P (fk)]

]
≥ 0.

Also, P is coherent if for any natural numbers n and m and f0, f1, . . . , fn ∈ K, it holds
that:

sup
ω∈Ω

[
n∑
i=1

[fk(ω)− P (fk)]−m[f0(ω)− P (f0)]

]
≥ 0.

The interpretation of this notion is that the acceptable buying prices encompassed by
{P (f) : f ∈ L(Ω)} are consistent with each other, in the sense defined in [205, Sec-
tion 2.5]. From any lower prevision P it is possible to define a set of probabilities, also
called credal set, by:

M(P ) = {P finitely additive probabilities : P ≥ P}.

The following result relates coherence and avoiding sure loss to the credal setM(P ). It
is usually called the Envelope Theorem.
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Theorem 2.30 ([205, Section 3.3.3]) Let P be a lower probability defined on a set of
gambles K, and letM(P ) denote its associated credal set. Then:

P avoids sure loss ⇔M(P ) 6= ∅

and
P is coherent ⇔ P (f) = inf

P∈M(P )
P (f).

By conjugacy, an operator P defined on a set of gambles K is called upper prevision.
For any f ∈ K, P (f) is understood to represent the subject’s infimum acceptable selling
price for f , in the sense that for any ε > 0 the transaction P (f) + ε − f is acceptable
to him. An upper prevision avoids sure loss (respectively, is coherent) if and only if
P (f) = −P (−f), where P is a lower prevision that avoids sure loss (respectively, that is
coherent).

When the domain K of the lower and upper previsions is formed by subsets of Ω,
P and P are called lower and upper probabilities, respectively.

Next proposition shows several properties of coherent lower and upper probabilities.

Proposition 2.31 ([205, Section 2.4.7]) Let P be a lower probability and let P denote
its conjugate upper probability. The following statements hold for any A,B ⊆ Ω:

A ∩B = ∅ ⇒ P (A ∪B) ≥ P (A) + P (B). (2.11)

A ∩B = ∅ ⇒ P (A ∪B) ≥ P (A) + P (B). (2.12)

P (A) + P (B) ≤ P (A ∪B) + P (A ∩B). (2.13)

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B). (2.14)

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B). (2.15)

Given a coherent lower prevision P with domain K, we may be interested in extending P
to a more general domain K′ ⊇ K. This can be made by means of the natural extension.

Definition 2.32 ([205, Section 3.1]) Let P be a coherent lower prevision on K, and
consider K′ ⊇ K. Then, for any f ∈ K′, the natural extension of P is defined by:

E(f) = inf
P∈M(P )

P (f).

The natural extension is the least committal, that is the most imprecise, coherent exten-
sion of P .

One instance where coherent lower previsions appear is when dealing with p-boxes.
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Definition 2.33 ([75]) A probability box, or p-box for short, (F , F ) is the set of cumu-
lative distribution functions bounded between two finitely additive distribution functions
F and F such that F ≤ F . We shall refer to P as the lower distribution function and to
F as the upper distribution function of the p-box.

Note that F , F need not be cumulative distribution functions, and as such they need
not belong to the set (F , F ); they are only required to be finitely additive distribution
functions. In particular, if we consider a set F of distribution functions, its associated
lower and upper distribution functions are given by

F (x) := inf
F∈F

F (x), F (x) := sup
F∈F

F (x). (2.16)

Proposition 2.34 Given a set of cumulative distribution functions F , its lower bound
F is also a cumulative distribution function, while F is a finitely additive cumulative
distribution function.

P-boxes have been connected to info-gap theory ([76]), random sets ([103, 172]), and
possibility measures ([17, 51, 198]).

Given a p-box (F , F ) on Ω, it induces a lower probability P (F,F ) on the set

K = {Ax, Xc
x : x ∈ Ω},

where Ax = {x′ ∈ Ω : x′ ≤ x}, by:

P (F,F )(Ax) = F (x) and P (F,F )(A
c
x) = 1− F (x). (2.17)

If F = F = F , P (F,F ) is usually denoted by PF . The following result is stated in [209]
and proved in [198, 201].

Theorem 2.35 ([198, Section 3],[201, Theorem 3.59]) Consider two maps F and
F from Ω to [0, 1] and let P (F,F ) : K → [0, 1] be the lower probability they induce by
means of Equation (2.17). The following statements are equivalent:

• P (F,F ) is a coherent lower probability.

• F , F are distribution functions and F ≤ F .

• PF and PF are coherent and F ≤ F .

In particular, if F = F = F , then PF is coherent if and only if F is a distribution
function.
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A particular case appears when defining coherent lower previsions in product spaces
Ω1×Ω2. If P is a coherent lower prevision taking values on L(Ω1×Ω2), we can consider
its marginals P 1 or P 2 as coherent lower previsions on L(Ω1) or L(Ω2), respectively,
defined by:

P 1(f) = P (f) and P 2(f) = P (f)

for any gamble f on Ω1 × Ω2. They will arise when trying to define coherent lower
previsions from bivariate p-boxes.

In this work, we shall use imprecise probability models because we shall be interested
in the comparison of sets of alternatives, each with its associated probability distribution;
we obtain thus a set P of probability measures. This set can be summarized by means
of its lower and upper envelopes, which are given by:

P (A) := inf
P∈P

P (A), P (A) := sup
P∈P

P (A), (2.18)

and which are coherent lower and upper probabilities.

2.2.2 Conditional lower previsions

Consider two random variables X and Y taking values in two spaces Ω1 and Ω2 and let
P be a coherent lower prevision taking values on L(Ω1 × Ω2). We define a conditional
lower prevision P (· | Y ) as a function with two arguments. For any y ∈ Ω2, P (· | y) is
real functional on the set L(Ω1 × Ω2), while for any gamble f on Ω1 × Ω2, P (f | y) is
the lower prevision of f , conditional on Ω2 = y. P (f | Y ) is then the gamble on Ω1 that
assumes the value P (f | y) in y. Similar considerations can be made for P (· | X).

Definition 2.36 The conditional lower prevision P (· | Y ) is called separately coherent
if for all y ∈ Ω2, λ ≥ 0 and f, g ∈ L(Ω1 × Ω2) it satisfies the following conditions:
SC1 P (f | y) ≥ infx∈Ω f(x, y).
SC2 P (λf | y) = λP (f | y).
SC3 P (f + g | y) ≥ P (f | y) + P (g | y).

It is known that from separate coherence the following properties hold (see [205,
Theorems 6.2.4 and 6.2.6]):

P (g | y) = P (g(·, y) | y) and P (fg | Y ) = fP (g | Y ),

for all y ∈ Ω2, all positive gambles f on Ω2 and all gambles g on Ω1 × Ω2.

We now investigate separate coherence and coherence together. For any gamble f on
L(Ω1 × Ω2), we define:

G(f | y) = I{y}[f − P (f | Y )] = I{y}[f(·, y)− P (f(·, y) | y)]
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and

G(f | Y ) = f − P (f | Y ) = f − P (f | Y ) =
∑
y∈Ω′

I{y}[f(·, y)− P (f(·, y) | y)].

Definition 2.37 Let P (· | Y ) and P (· | X) be two separately coherent conditional lower
previsions. They are called weakly coherent if and only if for all f1, f2 ∈ L(Ω1×Ω2), all
x ∈ Ω1, y ∈ Ω2 and g ∈ L(Ω1 × Ω2), there are some

B1 ⊆ suppΩ1
(f2) ∪ suppΩ2

(f1) ∪ ({x} × Ω2)
B2 ⊆ suppΩ1

(f2) ∪ suppΩ2
(f1) ∪ (Ω1 × {y})

such that:
sup
z∈B1

[G(f1 | Y ) +G(f2 | X)−G(g | x)] (z) ≥ 0

and
sup
z∈B2

[G(f1 | Y ) +G(f2 | X)−G(g | y)] (z) ≥ 0,

where
suppΩ1

(f) = {{x} × Ω2, x ∈ Ω1 | f(x, ·) 6= 0}
and

suppΩ2
(f) = {Ω1 × {y}, y ∈ Ω2 | f(·, y) 6= 0}.

We say that P (· | Y ) and P (· | X) are coherent if for all f1, f2 ∈ L(Ω1 × Ω2), all
x ∈ Ω1, y ∈ Ω2 and all g ∈ L(Ω1 × Ω2) it holds that:

supz∈Ω1×Ω2
[G(f1 | Y ) +G(f2 | X)−G(g | x)] (z) ≥ 0.

supz∈Ω1×Ω2
[G(f1 | Y ) +G(f2 | X)−G(g | y)] (z) ≥ 0.

Several results can be found in the literature relating coherence and weak coherence.

Theorem 2.38 ([137, Theorem 1]) Let P (· | X) and P (· | Y ) be separately coher-
ent conditional lower previsions. They are weakly coherent if and only if there is some
coherent lower prevision P on L(Ω1 × Ω2) such that

P (G(f | X)) ≥ 0 and P (G(f | x)) = 0 for any f ∈ L(Ω2), x ∈ Ω2,
P (G(g | Y )) ≥ 0 and P (G(g | y)) = 0 for any g ∈ L(Ω1), y ∈ Ω1.

The following result is known as the Reduction Theorem.

Theorem 2.39 ([205, Theorem 7.1.5]) Let P (· | X) and P (· | Y ) be separately co-
herent conditional lower previsions defined on L(Ω1×Ω2), and let P be a coherent lower
prevision on L(Ω1 × Ω2). Then P , P (· | X) and P (· | Y ) are coherent if and only if the
following two conditions holds:

1. P , P (· | X) and P (· | Y ) are weakly coherent.

2. P (· | X) and P (· | Y ) are coherent.
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2.2.3 Non-additive measures

One important example of coherent lower previsions are the n-monotone ones, which
were first introduced by Choquet in [39].

Definition 2.40 ([39]) A coherent lower prevision P on L(Ω) is called n-monotone if
and only if:

P

(
p∨
i=1

fi

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P

(∧
i∈I

fi

)

for all 2 ≤ p ≤ n and all f1, . . . , fp in L(Ω), where ∨ denotes the point-wise maximum
and ∧ the point-wise minimum.

In particular, a coherent lower probability P : P(Ω)→ [0, 1] is n-monotone when

P

(
p⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P

(⋂
i∈I

Ai

)

for all 2 ≤ p ≤ n and all subsets A1, . . . , Ap of Ω.

A coherent lower prevision on L(Ω), that is n-monotone for all n ∈ N, is called completely
monotone, and its restriction to events is a belief function. The restriction to events of the
conjugate upper prevision is called plausibility function. Belief and plausibility functions
are usually denoted by bel and pl.

Another type of non-additive measure are possibility measures.

Definition 2.41 ([70]) A possibility measure on [0,1] is a supremum preserving set
function Π : P([0, 1])→ [0, 1]. It is characterised by its restriction to events π, which is
called its possibility distribution. The conjugate function N of a possibility measure is
called a necessity measure:

N(A) = 1−Π(Ac).

Because of their computational simplicity, possibility measures are widely applied in
many fields, including data analysis ([196]), diagnosis ([33]), cased-based reasoning ([91])
and psychology ([177]).

Let us see how to apply our extension stochastic dominance to the comparison of
possibility measures; another approach to preference modeling with possibility measures
is discussed in [19, 115].

The connection between possibility measures and p-boxes was already explored in
[199], and it was proven that almost any possibility measure can be seen as the natural
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extension of a corresponding p-box. However, the definition of this p-box implies defining
some particular order on our referential space, which could be different to the one we
already have there (for instance if the possibility measure is defined on [0,1] it may seem
counterintuitive to consider anything different from the natural order), and moreover
two different possibility measures may produce two different orders on the same space,
making it impossible to compare them.

Instead, we shall consider a possibility measure Π on Ω = [0, 1], its associated set
of probability measures:

M(Π) := {P probability : P (A) ≤ Π(A) ∀A}, (2.19)

and the corresponding set of distribution functions F . Let (F , F ) be its associated p-box.

Since any possibility measure on [0,1] can be obtained as the upper probability
of a random set ([84]), and moreover in that case ([131]) the upper probability of the
random set is the maximum of the probability distributions of the measurable selections,
we deduce that the p-box associated to F is determined by the following lower and upper
distribution functions:

F (x) = sup
P≤Π

P ([0, x]) = Π([0, x]) = sup
y≤x

π(y) (2.20)

F (x) = inf
P≤Π

P ([0, x]) = 1−Π((x, 1]) = 1− sup
y>x

π(y).

Note however, that these lower and upper distribution functions need not belong to F : if
for instance we consider the possibility measure associated to the possibility distribution
π = I(0.5,1], we obtain F = π, which is not right-continuous, and consequently cannot
belong to the set F of distribution functions associated toM(Π).

Another interesting type of non-additivity measures, that includes possibility mea-
sures as a particular case are clouds. Following Neumaier ([168]), a cloud is a pair of
functions [δ, π], where π, δ : [0, 1]→ [0, 1] satisfy:

• δ ≤ π.

• There exists x ∈ [0, 1] such that π(x) = 0.

• There exists y ∈ [0, 1] such that δ(y) = 1.

δ and π are called the lower and upper distributions of the cloud, respectively.

Any cloud [δ, π] has an associated set of probabilities P[δ,π], that is the set of proba-
bilities P satisfying:

P ({x ∈ [0, 1] | δ(x) ≥ α}) ≤ 1− α ≤ P ({x ∈ [0, 1] | π(x) > α}).
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Since both π and 1−δ are possibility distributions we can consider their associated credal
sets Pπ and P1−δ, given by

Pπ := {P probability : P (A) ≤ Π(A) ∀A ∈ β[0,1]},

where Π denotes the possibility measure associated to the possibility distribution π, and
similarly for P1−δ. From [65], it holds that P[δ,π] = P1−δ ∩ Pπ.

2.2.4 Random sets

One context where completely monotone lower previsions arise naturally is that of mea-
surable multi-valued mappings, or random sets ([59, 96]).

Definition 2.42 Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable space, and
Γ : Ω→ P(Ω′) a non-empty multi-valued mapping. It is called random set when

Γ∗(A) = {ω ∈ Ω : Γ(ω) ∩A 6= ∅} ∈ A

for any A ∈ A′.

One instance of random sets are random intervals, that are those satisfying that Γ(ω) is
an interval for any ω ∈ Ω.

If Γ models the imprecise knowledge about a random variable X, Γ(ω) represents
that the “true” value of X(ω) belongs to Γ(ω). Then, all we know about X is that it is
one of the measurable selections of Ω:

S(Γ) = {U : Ω→ Ω′ random variable : U(ω) ∈ Γ(ω) ∀ω ∈ Ω}. (2.21)

This interpretation of multi-valued mappings as a model for the imprecise knowledge of
a random variable is not new, and can be traced back to Kruse and Meyer ([104]). The
epistemic interpretation contrasts with the ontic interpretation which is sometimes given
to random sets as naturally imprecise quantities ([73]).

Random sets generate upper and lower probabilities.

Definition 2.43 ([59]) Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable space
and Γ : Ω→ P(Ω′) a random set. Then its upper and lower probabilities are the functions
P ∗, P∗ : A′ → [0, 1] given by:

P ∗(A) = P ({ω : Γ(ω) ∩A 6= ∅}) and P∗(A) = P ({ω : ∅ 6= Γ(ω) ⊆ A}) (2.22)

for any A ∈ A. These upper and lower probabilities are, in particular, a plausibility and
a belief function, respectively. Furthermore, they define the credal setM(P ∗Γ) given by:

M(P ∗Γ) = {P probability : P∗Γ(A) ≤ P (A) ≤ P ∗Γ(A) ∀A ∈ A}. (2.23)
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The upper and lower probabilities of a random set are in particular coherent lower and
upper probabilities, and constitute the lower and upper bounds of the probabilities in-
duced by the measurable selections:

P∗(A) ≤ PX(A) ≤ P ∗(A) for every X ∈ S(Γ). (2.24)

Therefore, their associated cumulative distribution functions provide lower and upper
bounds of the lower and upper distribution functions associated to S(Γ). The inequalities
of Equation (2.24) can be strict [130, Example 1]; however, under fairly general conditions

P ∗(A) = maxP(Γ)(A) and P∗(A) = minP(Γ)(A) for every A ∈ A′, (2.25)

where P(Γ)(A) = {PX(A) : X ∈ S(Γ)}. In particular, if Γ takes values on the measurable
space ([0, 1], β[0,1]), where β[0,1] denotes the Borel σ-field, Equation (2.25) holds under
any of the following conditions ([130]):

• If the class {Γ(ω) : ω ∈ Ω} is countable.

• If Γ(ω) is closed for every ω ∈ Ω.

• If Γ(ω) is open for every ω ∈ Ω.

However, the two sets are not equivalent in general, andM(P ∗Γ) can only be seen as an
outer approximation. There are nonetheless situations in which both sets coincide. First,
let us introduce the following definition.

Definition 2.44 Consider two functions A,B : Ω→ R. They are called strictly comono-
tone if (A(ω)−A(ω′)) ≥ 0 if and only if (B(ω)−B(ω′)) ≥ 0 for any ω, ω′ ∈ Ω.

A similar but less restrictive notion is the one of comonotone functions: A and B are
called comonotone if (A(ω)−A(ω′))(B(ω)−B(ω′)) ≥ 0 for any ω, ω′ ∈ Ω. Note that both
notions are not equivalent in general. In fact, two increasing and comonotone functions
A and B are strictly comonotone if and only if A(ω) = A(ω′) if and only if B(ω) = B(ω′),
and two comonotone functions A and B with A = 0 ≤ B are strictly comonotone if and
only if B is constant.

Next, we list some situations in which the sets P ∗(Γ) andM(P ∗Γ) coincide.

Proposition 2.45 ([129]) Let (Ω,A, P ) be a probability space and consider the random
closed interval Γ := [A,B] : Ω → P(R). Let P (Γ),M(P ∗Γ) denote the sets of proba-
bility measures induced by the selections and those dominated by the upper probability,
respectively. Then:

1. P ∗Γ(C) = max{Q(C) : Q ∈ P (Γ)} ∀C ∈ βR.
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2. M(P ∗Γ) = Conv(P (Γ)), and if (Ω,A, P ) is non-atomic then M(P ∗Γ) = P (Γ).

3. When (Ω,A, P ) = ([0, 1], β[0,1], λ[0,1]), the equality M(P ∗Γ) = P (Γ) holds under any
of the following conditions:

(a) The variables A,B : [0, 1]→ R are increasing.
(b) A = 0 ≤ B.
(c) A,B are strictly comonotone.

For a complete study on the conditions under which the lower and upper probabilities
are attained or the conditions under which the sets P(Γ) andM(P∗) coincide, we refer
to [125].

Theorem 2.46 ([130, Theorem 14]) Let (Ω,A, P ) be a probability space. Consider
the measurable space ([0, 1], β[0,1]) and let Γ : Ω→ P([0, 1]) be a random set. If P ∗(A) =
maxP(Γ)(A) for all A ∈ A′, then for any bounded random variable f : [0, 1]→ R:

(C)
∫
fdP ∗ = sup

U∈S(Γ)

∫
fdPU , (C)

∫
fdP∗ = inf

U∈S(Γ)

∫
fdPU ,

and consequently:

(C)
∫
fdP ∗ = sup(A)

∫
(f ◦ Γ)dP, (C)

∫
fdP ∗ = inf(A)

∫
(f ◦ Γ)dP,

where (C)
∫
fdP ∗ denotes the Choquet integral of f with respect to P ∗, and (A)

∫
(f◦Γ)dP

denotes the Aumann integral of f ◦ Γ with respect to P , given by:

(A)
∫

(f ◦ Γ)dP =
{∫

fdPU : U ∈ S(Γ)
}
. (2.26)

The upper probability induced by a random set is always completely alternating and
lower continuous [169]. Under some additional conditions, it is in particular maxitive or
a possibility measure:

Proposition 2.47 ([128, Corollary 5.4]) Let (Ω,A, P ) be a probability space and con-
sider the random closed interval Γ : Ω→ P(R). The following are equivalent:

(a) P ∗Γ is a possibility measure.

(b) P ∗Γ is maxitive.

(c) There exists some N ⊆ Ω null such that for every ω1, ω2 ∈ Ω \N , either Γ(ω1) ⊆
Γ(ω2) or Γ(ω2) ⊆ Γ(ω1).

See also [50] for related results when Ω = [0, 1].
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2.3 Intuitionistic fuzzy sets

Fuzzy sets were introduced by Zadeh ([214]) as a suitable model for situations where
crisp sets did not convey appropriately the available information. However, there are
also situations were a more general model than fuzzy sets is deemed adequate.

A fuzzy set A assigns to every point on the universe a number in [0, 1] that measures
the degree in which this point is compatible with the characteristic described by A. Thus,
if A(ω) denotes the membership degree of ω to A, 1−A(ω) stands for the degree in which
ω does not belong to A. However, two problems can arise in this situation:

1. 1 − A(ω) could include at the same time both the degree of non-membership and
the degree of uncertainty or indeterminacy.

2. The membership degree could not be precisely described.

Consider the following example for the former case:

Example 2.48 Let A be the set A =“objects possessing some characteristic”. Thus, A(ω)
stands for the degree in with ω is in accord with the given characteristic, and 1−A(ω) is
the degree in which ω is not. However, ω could be partly indifferent to the characteristic.
To deal with this situation, we can denote by µA(ω) = A(ω) the membership degree of
ω in A, and let us define by νA(ω) the degree in which ω does not belong A. Such
sets, where a membership and non-membership degree is associated with any element,
are called (Atanassov) Intuitionistic Fuzzy Sets (in short, IF-sets). A good example of
these situations is voting, since human voters can be grouped in three classes: vote for,
vote against or abstain ([195]).�

In order to illustrate second scenario, consider the following example:

Example 2.49 We are studying some element with melting temperature is m and va-
porization temperature is v (obviously, m ≤ v). For example, for water m = 0oC and
v = 100oC. If the element is in a liquid state, we know that its temperature is greater
than m, because otherwise it would be solid, and smaller than v, because otherwise it
would be in gaseous state. Then, although we cannot state the exact temperature of the
element, we can say for sure that it belongs to the interval [m, v].�

If A(ω) denotes the (non-precisely known) membership degree of ω to A, we can
consider an interval [lA(ω), uA(ω)] that represents that the exact membership degree of
ω to A belongs to such interval. These sets, where any element has an associated interval
that bounds of the membership degree of the element to the set, are called Interval Valued
Fuzzy Sets (IVF-sets, for short).
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In this section we introduce the definition and main properties of both IF-sets and
IVF-sets, and we see how the usual operations between crisp sets can be generalized
into this context. In particular, we show that both kind of sets are formally equivalent
although, as we have already mentioned, their philosophy is different.

Let us begin with the formal definition of an intuitionistic fuzzy set.

Definition 2.50 ([4]) Let Ω be a universe. An intuitionistic fuzzy set is defined by:

A = {(ω, µA(ω), νA(ω)) | ω ∈ Ω},

where µA and νA are functions:

µA, νA : Ω→ [0, 1]

satisfying µA(ω) + νA(ω) ≤ 1. The function πA(ω) = 1 − µA(ω) − νA(ω) is called the
hesitation index and it expresses the lack of knowledge on the membership of ω to A.

We shall denote the set of all IF-sets on Ω by IFSs(Ω).

When A is a fuzzy set, its complementary is given by Ac = 1 − A. That is,
the membership degree of every element to the complementary of A is one minus the
membership degree to A. Then, every fuzzy set is in particular an IF-set where the
hesitation index equals zero. If FS(Ω) denotes all fuzzy sets on Ω, FS(Ω) ⊂ IFSs(Ω).
For proper IF-sets, if µA and νA denote the membership and non-membership functions,
the complementary of A is defined by:

Ac = {(ω, νA(ω), µA(ω)) | ω ∈ Ω}.

Recall that, since the empty set ∅ is the set with no elements, it can be also seen as an
IF-set given by:

∅ = {(ω, 0, 1) | ω ∈ Ω}.

Similarly, full possibility space Ω is the set that includes all the elements, and therefore
it can be seen as an IF-set given by:

Ω = {(ω, 1, 0) | ω ∈ Ω}.

Definition 2.51 ([6]) An interval valued fuzzy set is defined by:

A = {[lA(ω), uA(ω)] : ω ∈ Ω},

where 0 ≤ lA ≤ uA(ω) ≤ 1. When lA(ω) = uA(ω) for any ω ∈ Ω, A becomes a fuzzy set
with membership function lA.
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If [lA(ω), uA(ω)] represents that the exact membership degree of ω to A belongs to
this interval, the interval [1− uA(ω), 1− lA(ω)] tells us that the exact membership degree
of ω to Ac belongs to such interval. Then, Ac is defined by:

Ac = {[1− uA(ω), 1− lA(ω)] : ω ∈ Ω}.

Moreover, the empty set is defined by the interval [0, 0] for any ω ∈ Ω, and the total set
is defined by the interval [1, 1] for any ω ∈ Ω.

IF-sets and IVF-sets are formally equivalent. On the one hand, given an IF-set A with
membership and non-membership functions µA and νA, it defined an IVF-set by:

{[µA(ω), 1− νA(ω)] : ω ∈ Ω}.

On the other hand, given an IVF-set with lower and upper bounds lA and uA, it defines
an IF-set by:

{(ω, lA(ω), 1− uA(ω)) : ω ∈ Ω}.
For this reason, although the remainder of this section is written in terms of IF-sets, it
could be analogously be formulated in terms of IVF-sets.

Let us see how to extend the usual definitions between fuzzy sets, like intersections,
unions or differences, towards IF-sets. Similarly to the fuzzy case, unions and intersec-
tions of IF-sets are defined by means of t-conorms and t-norms. Recall that a t-norm
is a commutative, monotonic and associative binary operator from [0, 1]× [0, 1] to [0, 1]
with neutral element 1, while a t-conorm satisfies the same properties than a t-norm but
its neutral element is 0. From a t-norm T it is possible to define a t-conorm ST, called
the dual t-conorm, by:

ST(x, y) = 1− T (1− x, 1− y) for any (x, y) ∈ [0, 1]2.

See [99] for a complete study on t-norms.

Definition 2.52 ([63]) Let A and B be two IF-sets given by:

A = {(ω, µA(ω), νA(ω) | ω ∈ Ω}.
B = {(ω, µB(ω), νB(ω) | ω ∈ Ω}.

Let T be a t-norm and ST its dual t-conorm.

• The T -intersection of A and B is the IF-set A ∩T B defined by:

A ∩T B = {(ω, T (µA(ω), µB(ω)), ST(νA(ω), νB(ω))) | ω ∈ Ω}.

• The ST-union of A and B is the IF-set A ∪ST B given by:

A ∪ST B = {(ω, ST(µA(ω), µB(ω)), T (νA(ω), νB(ω))) | ω ∈ Ω}.
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Recall that we shall use the minimum, TN, and the maximum, STM , in order to make
intersections and unions, respectively, since they are the most usual operators used in
the literature. In that case, the T -intersection and the ST-union become:

A ∩TM B = {(ω, TM(µA(ω), µB(ω)), STM(νA(ω), νB(ω))) | ω ∈ Ω}
= {(ω,min(µA(ω), µB(ω)),max(νA(ω), νB(ω))) | ω ∈ Ω}.

A ∪STM
B = {(ω, STM(µA(ω), µB(ω)), TM(νA(ω), νB(ω))) | ω ∈ Ω}

= {(ω,max(µA(ω), µB(ω)),min(νA(ω), νB(ω))) | ω ∈ Ω}.

For simplicity, we shall denote the T -intersection and the ST by ∩ and ∪.

We next define a binary relationship of inclusion between IF-sets.

Definition 2.53 Let A and B be two IF-sets. A is contained in B, and it is denoted by
A ⊆ B, if

µA(ω) ≤ µB(ω) and νA(ω) ≥ νB(ω) for any ω ∈ Ω.

Example 2.54 Let us consider a possibility space Ω representing a set of three cities:
city 1, city 2 and city 3. Let P be a politician, and let us consider the IF-sets:

A =“P is a good politician”.
B =“P is honest”.
C =“P is close to the people”.

Since A, B and C are IF-sets, each city has a degree of agreement with feature A,
B and C, and a degree of disagreement. In Figure 2.5 we can see the membership and
non-membership functions of these IF-sets.

Now, in order to compute the intersection of the IF-sets A and B,

A ∩B = “P is a good politician and honest”.

we must compute the value of µA∩B and

µA∩B(city i) = min(µA(city i), µB(city i)) = µB(city i), for i = 1, 2, 3.
νA∩B(city i) = max(νA(city i), νB(city i)) = νB(city i), for i = 1, 2, 3.

Thus, A ∩ B = B. It holds since B ⊆ A, in the sense that µB ≤ µA and νB ≥ νA, and
its interpretation would be that P is less honest than a good politician.

Now, let us compute the IF-set “P is honest or close to the people”, that is, the
IF-set B ∪ C. We obtain that:

µB∪C(city i) = max(µB(city i), µC(city i)) =

{
µB(city i) for i = 1, 3.
µC(city i) for i = 2.

νB∩C(city i) = min(νB(city i), νC(city i)) =

{
νB(city i) for i = 1, 3.
νC(city i) for i = 2.
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Figure 2.5: Examples of the membership and non-membership functions of the IF-sets
that express the P is a good politician (∗), P is honest (◦) and P is close to the people
(♦).

Then, the IF-set B ∪ C can be expressed in the following way:

B ∪ C = {(city 1, µB(city 1), νB(city 1)),
(city 2, µC(city 2), νC(city 2)), (city 3, µB(city 3), νB(city 3))}.�

Let us conclude this part by defining the difference operator between IF-sets. According
to [27], a difference between fuzzy sets, or fuzzy difference, is a map − : FS(Ω)×FS(Ω)→
FS(Ω) such that for every pair of fuzzy sets A and B it satisfies the following properties:

If A ⊆ B, then A−B = ∅.
If A ⊆ A′, then A−B ⊆ A′ −B.

Some examples of fuzzy differences are the following:

A−B(ω) = max{0, A(ω)−B(ω)},

A−B(ω) =

{
A(ω) if B(ω) = 0,
0 otherwise,

for any ω ∈ Ω.

Similarly, we can extend the definition of difference for IF-sets.
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Definition 2.55 An operator − : IFSs(Ω) × IFSs(Ω) → IFSs(Ω) is a difference be-
tween IF-sets (IF-difference, in short) if it satisfies properties D1 and D2.

D1 If A ⊆ B, then A−B = ∅.
D2 If A ⊆ A′, then A−B ⊆ A′ −B.

Any function D satisfying D1 and D2 is a difference operator. Nevertheless, there are
other interesting properties that IF-differences may satisfy:

D3 (A ∩ C)− (B ∩ C) ⊆ A−B.
D4 (A ∪ C)− (B ∪ C) ⊆ A−B.
D5 A−B = ∅ ⇒ A ⊆ B.

Let us give an example of IF-difference that also fulfills D3, D4 and D5.

Example 2.56 Consider the function − : IFSs(Ω)× IFSs(Ω)→ IFSs(Ω) given by:

A−B = {(ω, µA−B(ω), νA−B(ω)) | ω ∈ Ω},

where

µA−B(ω) = max(0, µA(ω)− µB(ω));

νA−B(ω) =

{
1− µA−B(ω) if νA(ω) > νB(ω);
min(1 + νA(ω)− νB(ω), 1− µA−B(ω)) if νA(ω) ≤ νB(ω).

Let us prove that this function satisfies properties D1 and D2, i.e., that it is an IF-
difference.

D1: Let us take A ⊆ B. Then µA ≤ µB and νA ≥ νB.

µA−B(ω) = max(0, µA(ω)− µB(ω)) = 0.
νA−B(ω) = 1− µA−B(ω) = 1, because νA ≥ νB.

As a consequence, A−B = ∅.

D2: Consider A ⊆ A′, that is, µA ≤ µA′ and νA ≥ νA′ , and let us prove that
A−B ⊆ A′ −B. Thus, for any ω in Ω we have that:

µA−B(ω) = max(0, µA(ω)− µB(ω)) ≤ max(0, µA′(ω)− µB(ω)) = µA′−B(ω).

νA′−B(ω) =

{
1− µA′−B(ω) if νA′(ω) > νB(ω).
min(1− µA′−B(ω), 1 + νA′(ω)− νB(ω)) if νA′(ω) ≤ νB(ω).

νB′−A(ω) ≤

{
1− µA−B(ω) if νA′(ω) > νB(ω).
min(1− µA−B(ω), 1 + νA(ω)− νB(ω)) if νA′(ω) ≤ νB(ω).

νB′−A(ω) ≤ νA−B(ω).

This shows that − is an IF-difference. Let us see that it also satisfies properties D3, D4
and D5.
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D3: Let us take into account that the IF-sets A ∩ C and B ∩ C are given by:

A ∩ C = {(ω,min(µA(ω), µC(ω)),max(νA(ω), νC(ω))) | ω ∈ Ω}
B ∩ C = {(ω,min(µB(ω), µC(ω)),max(νB(ω), νC(ω))) | ω ∈ Ω}.

For short, we will denote by D the IF-set D = A ∩ C − B ∩ C. On one hand, we are
going to prove that µA−B ≥ µD:

µA−B(ω) = max(0, µA(ω)− µB(ω)).
µD(ω) = max(0,min(µA(ω), µC(ω))−min(µB(ω), µC(ω))).

Applying the first part of Lemma A.1 of Appendix A, we deduce that µA−B ≥ µD.

Now, let us prove that νA−B ≤ νD. There are two possibilities, either νA(ω) > νB(ω)
or νA(ω) ≤ νB(ω). Assume that νA(ω) > νB(ω). In such a case, max(νA(ω), νC(ω)) ≥
max(νB(ω), νC(ω)), and νA−B(ω) = 1− µA−B(ω), and consequently:

νD(ω) = 1− µD(ω) ≥ 1− µA−B(ω) = νA−B(ω).

Assume now that νA(ω) ≤ νB(ω). Then it holds that

max(νA(ω), νC(ω)) ≤ max(νB(ω), νC(ω)).

By the second part of Lemma A.1 of Appendix A,

νB(ω)− νA(ω) ≥ max(νB(ω), νC(ω))−max(νA(ω), νC(ω)),

whence

νD(ω) = min(1 + max(νA(ω), νC(ω))−max(νB(ω), νC(ω)), 1− µD(ω))
≥min(1 + νA(ω)− νB(ω), 1− µA−B(ω)) = νA−B(ω).

Thus we conclude that νA−B ≤ νD, and therefore (A ∩ C)− (B ∩ C) ⊆ A−B.

D4: Consider three IF-sets A,B and C. The IF-sets A∪C and B ∪C are given by:

A ∪ C = 〈max(µA, µC),min(νA, νC)〉.
B ∪ C = 〈max(µB, µC),min(νB, νC)〉.

Let us denote by D the IF-set D = (A∪C)− (B ∪C), and let us prove that µA−B ≥ µD.
This is equivalent to

max(0, µA(ω)− µB(ω)) ≥ max(0,max(µA(ω), µC(ω))−max(µB(ω), µC(ω))),

for every ω ∈ Ω, and this inequality holds because of the first part of Lemma A.1 of
Appendix A.

Let us prove that νD ≥ νA−B. To see this, consider the two possible cases: νA(ω) >
νB(ω) and νA(ω) ≤ νB(ω). Assume that νA(ω) > νB(ω), which means that νA−B(ω) =
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1−µA−B(ω). Now, νA(ω) > νB(ω) implies that min(νA(ω), νC(ω)) ≥ min(νB(ω), νC(ω)),
and therefore:

νD(ω) = 1− µD(ω) ≥ 1− µA−B(ω) = νA−B(ω).

Assume now that νA(ω) ≤ νB(ω), whence

min(νA(ω), νC(ω)) ≤ min(νB(ω), νC(ω)).

Applying the second part of Lemma A.1 of Appendix A, we know that

νB(ω)− νA(ω) ≥ min(νB(ω), νC(ω))−min(νA(ω), νC(ω)).

Then, we deduce that:

νD(ω) = min(1 + min(νA(ω), νC(ω))−min(νB(ω), νC(ω)), 1− µD(ω))
≥min(1 + νA(ω)− νB(ω), 1− µA(ω)) = νA−B(ω).

Thus, νD ≥ νA−B, and therefore (A ∪ C)− (B ∪ C) ⊆ A−B.

D5: Let us consider A and B such that A − B = ∅. Then, µA−B(ω) = 0 and
νA−B(ω) = 1 for every ω ∈ Ω, whence

0 = µA−B(ω) = max(0, µA(ω)− µB(ω))⇒ µA(ω) ≤ µB(ω).

1 = νA−B(ω) =

{
1 if νA(ω) > νB(ω).
1 + νA(ω)− νB(ω) if νA(ω) ≤ νB(ω).

Therefore, µA(ω) ≤ µB(ω) and νA(ω) ≥ νB(ω), and as a consequence A ⊆ B.�
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3 Comparison of alternatives under un-
certainty

This memory is devoted to the comparison of alternatives under some lack of informa-
tion. If this lack of information is given by uncertainty about the consequences of the
alternatives, these are usually modelled by means of random variables. Thus, stochastic
orders emerge as an essential tool, since they allow the comparison of random quanti-
ties. As we mentioned in the previous chapter, one of the most important stochastic
orders in the literature is that of stochastic dominance, in any of its degrees. Stochastic
dominance has been widely investigated (see [98, 108, 109, 110, 173], among others) and
it has been applied in many different areas ([11, 77, 95, 109, 171, 180]). However, the
other stochastic order we have introduced, statistical preference, has been studied in
([14, 15, 16, 49, 54, 55, 56, 57, 58]) but not as widely as stochastic dominance. For this
reason, the first step of this chapter is to make a thorough study of statistical preference.
First of all, we investigate its basic properties as a stochastic order, and then we study
its relationship with stochastic dominance. In this sense, we shall firstly look for condi-
tions that guarantee that first degree stochastic dominance implies statistical preference.
Then, we shall show that in general there is not an implication relationship between
statistical preference and the n-th degree stochastic dominance. We also provide sev-
eral examples of the behaviour of statistical preference, and also stochastic dominance,
in some of the most usual distributions, like for instance Bernoulli, exponential or, of
course, the normal distribution.

Both stochastic dominance and statistical preference are stochastic orders that were
introduced for the pairwise comparison of random variables. In fact, statistical preference
presents a disadvantage that is its lack of transitivity, as was pointed out by several
authors ([14, 15, 16, 49, 54, 56, 58, 121, 122]). To illustrate this fact, we give an example.
Then, in order to have an stochastic order that allows for the simultaneous comparison
of more than two random variables, we present a generalisation of statistical preference,
and study some of its properties. In particular, we shall see its connections with the
methods established for pairwise comparisons.

It is obvious that stochastic orders are powerful tools for comparing uncertain quan-

43
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tities. For this reason, and in order to illustrate our results, we conclude the chapter by
mentioning two possible applications. On the one hand, we investigate both stochas-
tic dominance and statistical preference as methods for the comparison of fitness values
([180, 183]), and on the other hand we illustrate the usefulness of both statistical pref-
erence and its generalisation for the comparison of more than two random variables in
multicriteria decision making problems with linguistic labels ([123]).

3.1 Properties of the statistical preference

This section is devoted to the study of the main properties of statistical preference. In
particular, we shall try to find a characterization of this notion: on a first step, a similar
one to that of stochastic dominance presented in Theorem 2.10; afterwards, we explain
that statistical preference seems to be closer to another location parameter, the median.

3.1.1 Basic properties and intuitive interpretation of the statis-
tical preference

We start this subsection with some basic properties about the behaviour of the statistical
preference.

Lemma 3.1 Let X and Y be two random variables. Then it holds that

X �SP Y ⇒ P (X < Y ) ≤ 1
2
.

In particular, the converse implication holds for random variables with P (X = Y ) = 0.

Proof: It holds that Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y ) ≥ 1

2
. Then:

P (X < Y ) = 1− P (X > Y )− P (X = Y ) ≤ 1
2
− 1

2
P (X = Y ) ≤ 1

2
.

If P (X = Y ) = 0, then:

Q(X,Y ) = P (X > Y ) = 1− P (Y > X) ≥ 1
2
,

since we assume P (X < Y ) ≤ 1
2 . Thus, X �SP Y .

Remark 3.2 Note that the converse implication of the previous result does not hold in
general. As a counterexample, it is enough to consider the independent random variables
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defined by:
X 0 2
PX 0.8 0.2

Y 0 1
PY 0.7 0.3

On the one hand, it holds that:

P (X < Y ) = P (X = 0, Y = 1) = P (X = 0)P (Y = 1) = 0.8 · 0.3 = 0.24 <
1
2
,

and also

P (X = Y ) = P (X = 0, Y = 0) = P (X = 0)P (Y = 0) = 0.7 · 0.8 = 0.56.

However, P (X > Y ) = P (X = 2) = 0.2. Thus:

Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y ) = 0.2 +

1
2
· 0.56 = 0.48 <

1
2
.�

Now we present a result that shows how translations and dilations or contractions affect
to the behaviour of statistical preference for real-valued random variables.

Proposition 3.3 Let X, Y and Z be three real-valued random variables defined on the
same probability space and let λ 6= 0 and µ be two real numbers. It holds that

1. X �SP Y ⇔ X + Z �SP Y + Z.

2. λX �SP µY ⇔

{
X �SP

µ
λY if λ > 0.

µ
λY �SP X if λ < 0.

Proof:

1. It holds that

Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y )

= P (X + Z > Y + Z) +
1
2
P (X + Z = Y + Z) = Q(X + Z, Y + Z).

Then, Q(X,Y ) ≥ 1
2 if and only if Q(X + Z, Y + Z) ≥ 1

2 .

2. Let us develop the expression of Q(λX, µY ):

Q(λX, µY ) =

{
P
(
X > µ

λY
)

+ P
(
X = µ

λY
)

= Q
(
X, µλY

)
if λ > 0.

P
(
X < µ

λY
)

+ P
(
X = µ

λY
)

= Q
(
µ
λY,X

)
if λ < 0.

Then, the result direct follows from the expression of Q(λX, µY ).
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Some new equivalences can be deduced from the previous ones.

Corollary 3.4 Let X and Y be a pair of real-valued random variables, λ and µ two real
numbers and α a constant. Then it holds that

1. λX �SP µ⇔


X �SP

µ
λ , if λ > 0,

µ
λ �SP X, if λ < 0,

0 ≥ µ, if λ = 0.

2. X �SP Y ⇔ 1− Y �SP 1−X.

3. X �SP Y ⇔ X − Y �SP 0.

4. X + Y �SP Y ⇔ X �SP 0.

5. X �SP X + α⇔ α ≤ 0.

6. X �SP αX ⇔

{
0 �SP X, if α > 1,
X �SP 0, if α < 1.

Proof: In point 1, the case of λ > 0 and λ < 0 directly follow from item 2 of the
previous proposition. If λ = 0, applying Remark 2.19, the comparison of degenerate
random variables is equivalent to the comparison of real numbers, and then, it is obvious
that λX �SP µ⇔ 0 ≥ µ.

Point 2 follows from the previous proposition: X �SP Y if and only if X − 1 �SP

Y − 1, and from the second item this is equivalent to 1− Y �SP 1−X.

Points 3, 4 and 5 are immediate from the first point of Proposition 3.3 and Re-
mark 2.19 in the case of 3. Consider the last one. Applying our previous proposition,

X �SP αX ⇔ (1− α)X �SP 0.

By the second item of Proposition 3.3,

(1− α)X �SP 0⇔
{

0 �SP X, if α > 1,
X �SP 0, if α < 1. �

Let us compare the behaviour of statistical preference and stochastic dominance with
respect these basic properties. On the one hand, Proposition 2.13 assures that X1 +
. . .+Xn �FSD Y1 + . . .+ Yn when the variables are independent and Xi �FSD Yi. First
statement of Proposition 3.3 assures that X �SP Y ⇔ X + Z �SP Y + Z, and the
independence condition is not imposed. However, it is not possible to give a result as
general as Proposition 2.13 for statistical preference. For instance, consider the universe



3.1. Properties of the statistical preference 47

Ω = {ω1, ω2, ω3, ω4}, with a discrete uniform distribution, and the following random
variables:

ω1 ω2 ω3 ω4

X1 −2 1 −2 1
X2 1 −2 −2 1
Y 0 0 0 0

X1 +X2 −1 −1 −4 2
Y + Y 0 0 0 0

It holds that X1 ≡SP Y and X2 ≡SP Y . However, Q(X1 +X2, Y +Y ) = 1
4 , and therefore

X1 +X2 6�SP Y + Y .

First item of Corollary 3.4 trivially holds for stochastic dominance. The second
item also holds since:

F1−X(t) = 1− P (X < 1− t) and F1−Y(t) = 1− P (Y < 1− t),

and then F1−Y(t) ≤ F1−X(t) if and only if P (X < 1 − t) ≤ P (Y < 1 − t). Note that
P (X ≤ t) ≤ P (Y ≤ t) for any t if and only if P (X < t) ≤ P (Y < t) for any t: on the
one hand, assume that P (X ≤ t) ≤ P (Y ≤ t) for any t. Then:

P (X < t′) = lim
n→∞

P

(
X ≤ t′ − 1

n

)
≤ lim
n→∞

P

(
Y ≤ t′ − 1

n

)
= P (Y < t′).

On the other hand, if P (X < t) ≤ P (Y < t) for any t, it holds that:

P (X ≤ t′) = lim
n→∞

P

(
X < t′ +

1
n

)
≤ lim
n→∞

P

(
Y < t′ +

1
n

)
= P (Y ≤ t′).

We conclude that X �FSD Y if and only if 1 − Y �FSD 1 − X. However, stochastic
dominance does not satisfy the third item of Corollary 3.4. For instance, if X and
Y are two independent and equally distributed random variables following a Bernoulli
distribution of parameter 1

2 , it holds that:

X − Y −1 0 1

PX−Y
1
4

1
2

1
4

Then, X−Y is not comparable with the degenerate variable in 0 for first degree stochastic
dominance, but X �FSD Y .

Furthermore, the fourth item of the previous corollary does not hold, either: it
suffices to consider the universe Ω = {ω1, ω2, ω3} with discrete uniform distribution, and
the random variables defined by:

ω1 ω2 ω3

X 0 1 2
Y 2 1 0

X − Y −2 0 2
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Then, X ≡FSD Y , but X − Y and 0 are not comparable with respect to stochastic
dominance. Nevertheless, first degree stochastic dominance does satisfy the fifth and
sixth properties of Corollary 3.4.

Remark 3.5 Using the third item of the previous corollary, we know that X �SP Y
if and only if X − Y �SP 0. This allowed Couso and Sánchez [46] to prove a simple
characterization of statistical preference for real-valued random variables:

X �SP Y ⇔ X − Y �SP 0⇔ E[u(X − Y )] ≥ 0 (3.1)

for the function u : R→ R defined by u = I(0,∞) − I(−∞,0).�

Theorem 2.10 showed that X �FSD Y if and only if the expectation of u(X) is greater
than the expectation of u(Y ) for any increasing function u. In particular, Proposition 2.12
assures that, when X �FSD Y and ϕ is a increasing function, ϕ(X) �FSD ϕ(Y ). In the
case of statistical preference, we can check that it is invariant by strictly increasing
transformations of the random variables as well.

Proposition 3.6 Let X and Y be two random variables. It holds that:

X �SP Y ⇔ h(X) �SP h(Y )

for any strictly order preserving function h : Ω′ → Ω′.

Proof: On the one hand, if h(X) �SP h(Y ) for any strictly order preserving function
h, by considering the identity function we obtain that X �SP Y .

On the other hand, note that:

{ω : h(X(ω)) > h(Y (ω))} = {ω : X(ω) > Y (ω)},

and consequently P (X > Y ) = P (h(X) > h(Y )). Similarly, P (X = Y ) = P (h(X) =
h(Y )) and P (Y > X) = P (h(Y ) > h(X)). Then Q(X,Y ) = Q(h(X), h(Y )). We
conclude that X �SP Y ⇔ h(X) �SP h(Y ).

However, although first degree stochastic dominance is invariant under increasing
transformations, for statistical preference the previous result does not hold for order
preserving functions that are not strictly order preserving. For instance, consider the
following independent random variables:

X 0 2
PX

1
2

1
2

Y 1
PY 1

Then, the probabilistic relation takes the value Q(X,Y ) = 1
2 . Consider the increasing,

but not strictly increasing, function h : R→ R given by:

h(t) =

{
t if t ∈ (−∞, 0] ∪ (2,∞).
2 otherwise.
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Then, h(X) and h(Y ) are given by:

h(X) 0 2
Ph(X)

1
2

1
2

h(Y ) 2
Ph(Y ) 1

Thus, Q(h(X), h(Y )) = 1
4 , and then the previous result does not hold.

The last basic property we are going to study is if statistical preference is preserved
by different kinds of convergence.

Remark 3.7 Let {Xn}n and {Yn}n be two sequences of random variables and let X and
Y other two random variables, all of them defined on the same probability space. It holds
that:

Xn
L−→ X

Yn
L−→ Y

Xn �SP Yn ∀n

 6=⇒ X �SP Y,

Xn
P−→ X

Yn
P−→ Y

Xn �SP Yn ∀n

 6=⇒ X �SP Y,

Xn
m−p−→ X

Yn
m−p−→ Y

Xn �SP Yn ∀n

 6=⇒ X �SP Y,

Xn
a.s.−→ X

Yn
a.s.−→ Y

Xn �SP Yn ∀n

 6=⇒ X �SP Y,

where L−→, P−→, m−p−→ and a.s.−→ denote the convergence of random variables in distribution,
probability, mth-mean and almost sure, respectively.

It suffices to consider the same counterexample for all the cases: consider the uni-
verse Ω = {ω1, ω2, ω3, ω4} and the probability P such that P ({ω1}) = P ({ω3}) = 2

5 and
P ({ω2}) = P ({ω4}) = 1

10 . Let X, Xn, Y and Yn be the random variables defined by:

ω1 ω2 ω3 ω4

X,Xn 0 0 1 1
Y 0 1 1 1
Yn

−1
n 1 1 1

Yn converges to Y almost surely, and consequently also converges in probability and in
distribution. Furthermore, it also converges in mth mean, since:

E [(|Yn − Y |)m] =
2
5

(
1
n

)m
n→∞−→ 0.
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Also, Xn converges to X for the four kinds of convergence. Furthermore, Xn �SP Yn
since:

Q(Xn, Yn) = P (Xn > Yn) +
1
2
P (Xn = Yn)

= P ({ω1}) +
1
2
P ({ω3, ω4}) =

2
5

+
1
2

1
2

=
13
20

>
1
2
.

However, X 6�SP Y , since:

Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y ) =

1
2
P ({ω1, ω3, ω4}) =

9
20

<
1
2
.�

Thus, we can see that, although stochastic dominance is preserved by the four kind
of convergence (see Prop. 2.14), statistical preference is not.

Now we shall try to clarify the meaning of statistical preference by means of a
gambling example.

Example 3.8 Suppose we have two random variables X and Y defined over the same
probability space such that X �SP Y , i.e., such that Q(X,Y ) > 1

2 . Consider the following
game: we obtain a pair of random values of X and Y simultaneously. For example, if X
and Y model the results of the dice, we would roll them simultaneously; otherwise, they
can be simulated by a computer. Player 1 bets 1 euro on Y to take a value greater than
X. If this holds, Player 1 wins 1 euro, he loses 1 euro if the value of X is greater, and
he does not lose anything if the values are equal.

Denote by Zi the random variable “reward of Player 1 in the i-th iteration of the
game”. Then it holds that

Zi =

 1, if Y > X
0, if Y = X
−1, if Y < X

Then, applying the hypothesis P (X > Y ) + 1
2P (X = Y ) > 1

2 , it holds that

P (X > Y ) >
1
2

(1− P (X = Y )) =
1
2

(P (X > Y ) + P (Y > X))

⇒ P (X > Y ) > P (Y > X),

or equivalently, q > p, if we consider the notation p = P (X < Y ) and q = P (X > Y ).
Thus

E(Zi) = P (Y > X)− P (Y < X) = p− q < 0.

{Z1, Z2, ...} is an infinite sequence of independent and identically distributed random
variables. Applying the large law of big numbers,

Zn =
Z1 + . . .+ Zn

n

p→ p− q,
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or equivalently,
∀ε > 0, lim

n→∞
P
(
|Zn − (p− q)| > ε

)
= 0. (3.2)

Denote the accumulated reward of Player 1 after n iterations of the game by Sn. It holds
that Sn = Z1 + ... + Zn. Then, Player 1 wins the game after n iterations if Sn > 0.
Then, taking ε = q− p in Equation (3.2), Player 1 wins the game after n iterations with
probability:

P (Sn > 0) = P (Z1 + ...+ Zn > 0) = P (Zn > 0)
= P (Zn − (p− q) > q − p) ≤ P (|Zn − (p− q)| > q − p)
= P (|Zn − (p− q)| > ε).

Then it holds that:

lim
n→∞

P (Sn > 0) ≤ lim
n→∞

P (|Zn − (p− q)| > ε) = 0.

We have proven that the probability of the event: “Player 1 wins after n iterations of the
game” goes to 0 when n goes to ∞.�

An immediate consequence is the next proposition:

Proposition 3.9 Let X and Y be two random variables such that X �SP Y . Consider
the experiment that consists of drawing a random sample (X1, Y1), . . . , (Xn, Yn) of X
and Y , and let

Bn ≡ “In the first n iterations, at least half of the times the value
obtained by X is greater than or equal to the value obtained by Y ”.

Then,
lim
n→∞

P (Bn) = 1.

Then we can say that if we consider the game consisting of obtaining a random
value of X and a random value of Y and we repeat it a large enough number of times,
if X �SP Y , we will obtain that more than half of the times the variable X will take a
value greater than the value obtained by Y . However, this does not guarantee that the
mean value obtained by the variable X is greater than the mean value obtained by the
variable Y .

Let us consider a new example:

Example 3.10 ([57]) Let us consider the game consisting of rolling two special dice,
denoted A and B, whose results are assumed to be independent. Their faces do not show
the classical values but the following numbers:
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DICE A

1

3 4 15 16

17

DICE B

2

10 11 12 13

14

In each iteration, the dice with the greatest number wins.

In this case the probabilistic relation Q of Equation (2.7) takes the value:

Q(A,B) = P (A > B) +
1
2
P (A = B) = P (A > B) = P (A ∈ {3, 4}, B ∈ {2})

+ P (A ∈ {15, 16, 17}, B ∈ {2, 10, 11, 12, 13, 14}) =
5
9
.

Thus, A �SP B and applying the previous result, if we repeat the game indefinitely, it
holds that the probability of winning, betting on A, at least half of the times tends to 1.

However, if we calculate the expected value of every dice, we obtain that

E(A) =
1
6

(1 + 3 + 4 + 15 + 16 + 17) =
28
3
,

E(B) =
1
6

(2 + 10 + 11 + 12 + 13 + 14) =
31
3
.

Then, by the criterium of the highest expected reward, dice B should be preferred. The
same applies if we consider the criterion of stochastic dominance. However, if our goal
is to win the majority of times then we should choose dice A. �

3.1.2 Characterizations of statistical preference

In Subsection 2.1.1 we have seen that stochastic dominance can be characterised by
means of the direct comparison of the expectation of adequate transformations of the
random variables (see Theorem 2.10). In this subsection we shall give characterisa-
tions for statistical preference. For this aim, we distinguish different cases: we start by
considering independent random variables, then we consider comonotonic and counter-
monotonic random variables and we conclude with random variables coupled by means
of an Archimedean copula. Finally, we show an alternative characterization of statistical
preference in terms of the median. Recall that in the rest of this section, we will consider
real-valued random variables.
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Independent random variables

We start by considering independent random variables. In order to characterise statistical
preference for them, we need this previous result.

Lemma 3.11 Consider two independent real-valued random variables X and Y whose
associated cumulative distribution functions are FX and FY, respectively. Then:

P (X ≥ Y ) = E[FY(X)], (3.3)

where E[h(X)] stands for the expectation of the function h with respect to the variable
X, this is, E[h(X)] =

∫
h(x)dFX(x).

Proof: In order to prove this result, we consider [24, Theorem 20.3]: given two random
vectors X and Y defined on Rj and Rk, and whose distribution functions are FX and
FY, respectively, it holds that:

P ((X,Y ) ∈ B) =
∫

Rj
P ((x, Y ) ∈ B)dFX(x), B ∈ Rj+k. (3.4)

In this case, consider j = k = 1 and B = {(x, y) : x ≥ y}. Then:

P ((X,Y ) ∈ B) = P (X ≥ Y ) and
P ((x, Y ) ∈ B) = P (Y ≤ x) = FY(x).

Then, if we put these values into Equation (3.4), we obtain that P (X ≥ Y ) = E[FY(X)].

We can now establish the following result.

Theorem 3.12 Let X and Y be two independent real-valued random variables defined on
the same probability space. Let FX and FY denote their respective cumulative distribution
functions. If X ′ is a random variable identically distributed to X and independent of X
and Y , it holds that X �SP Y if and only if:

E[FY(X)]− E[FX(X)] ≥ 1
2

(P (X = Y )− P (X = X ′)) . (3.5)

Proof: It holds that X �SP Y if and only if P (Y > X) +
1
2
P (X = Y ) ≤ 1

2
. On

the other hand let us recall (see for example [24, Exercise 21.9(d)]) that E(FX(X)) =
1
2

+
1
2
P (X = X ′). Then, using also Equation (3.3):

P (Y > X) = 1− P (Y ≤ X) = 1− E[FY(X)]

=
1
2

+ E[FX(X)]− 1
2
P (X = X ′)− E[FY(X)].
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Whereas, X �SP Y if and only if

1
2

+ E(FX(X))− 1
2
P (X = X ′)− E[FY(X)] +

1
2
P (X = Y ) ≤ 1

2
,

or equivalently,

E[FY(X)]− E[FX(X)] ≥ 1
2

(P (X = Y )− P (X = X ′)).

Theorem 3.12 generalises the result established in [54, Equation 12] for continuous
and independent random variables. For this particular case, Equation (3.5) can be sim-
plified. The reason is that for continuous and independent random variables X,X ′ and
Y the probabilities P (X = Y ) and P (X = X ′) equals zero, and then the second part of
Equation (3.5) is simplified.

Corollary 3.13 Let X and Y be two real-valued independent and continuous random
variables with cumulative distribution functions FX and FY, respectively. Then:

X �SP Y ⇔ E[FY(X)] ≥ E[FX(X)].

If we are dealing with discrete and independent real-valued random variables, Equa-
tion (3.5) can also be re-written. Before showing how, let us give the following lemma:

Lemma 3.14 Let {pn}n∈N be a sequence of positive real numbers such that
∑
n pn = 1.

Then it holds that:
1 =

∑
n

p2
n + 2

∑
n<m

pnpm.

Proof: The result is a direct consequence of:

1 =
∑
n

pn =

(∑
n

pn

)2

=
∑
n

p2
n + 2

∑
n<m

pnpm.

Proposition 3.15 Let X and Y be two real-valued discrete and independent random
variables. If SX denotes the support of X, then X �SP Y holds if and only if

E[FY(X−)− FX(X−)] ≥ 1
2

∑
x∈SX

P (X = x)(P (Y = x)− P (X = x)),

where FX(t−) and FY(t−) denote the left hand side limit of the cumulative distribution
functions FX and FY evaluated in t. That is:

FX(t−) = P (X < t) and FY(t−) = P (Y < t).
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Proof: Applying the definition of the probabilistic relation Q:

Q(X,Y ) = P (X > Y ) + 1
2P (X = Y )

=
∑
x∈SX

P (X = x)P (Y < x) +
1
2

∑
x∈SX

P (X = x)P (Y = x)

=
∑
x∈SX

P (X = x)FY(x−) +
1
2

∑
x∈SX

P (X = x)P (Y = x).

Thus, Q(X,Y ) ≥ 1
2 if and only if:

∑
x∈SX

P (X = x)FY(x−) ≥ 1
2

(
1−

∑
x∈SX

P (X = x)P (Y = x)

)
.

Applying Lemma 3.14, the right hand side of the previous inequality becomes:

1
2

∑
x∈SX

P (X = x)2 + 2
∑

x1,x2∈SX,x1<x2

P (X = x1)P (X = x2)

−
∑
x∈SX

P (X = x)P (Y = x)

)
=

1
2

(∑
x∈SX

P (X = x)2

+2
∑
x∈SX

P (X = x)FX(x−)−
∑
x∈SX

P (X = x)P (Y = x)

)

= E[FX(X−)] +
1
2

(∑
x∈SX

P (X = x)(P (X = x)− P (Y = x))

)
.

Then, it holds that Q(X,Y ) ≥ 1
2 if and only if

E[FY(X−)− FX(X−)] ≥ 1
2

∑
x∈SX

P (X = x)(P (X = x)− P (Y = x)).

Theorem 3.12 allows to characterise statistical preference between independent ran-
dom variables. However, we have already said that statistical preference is a method that
considers the joint distribution of the random variables. For this reason, we are interested
not only in independent random variables but also in dependent ones. Next, we focus on
comonotonic and countermonotonic random variables, that correspond to the extreme
cases of joint distribution functions according to the Fréchet-Hoeffding bounds given in
Equation (2.8).

Continuous comonotonic and countermonotonic random variables

Let us consider two continuous random variables whose cumulative distribution functions
are FX and FY, respectively, and fX and fY denote their respective density functions.
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First of all, let us consider the case in which X and Y are comonotonic. Then, the joint
cumulative distribution function of X and Y is:

FX,Y(x, y) = min(FX(x), FY(y)), for every x, y ∈ R.

The value of the relation Q(X,Y ) has already been studied by De Meyer et al.

Proposition 3.16 ([54, Prop.7]) Let X and Y be two real-valued comonotonic and
continuous random variables. The probabilistic relation Q(X,Y ) has the following ex-
pression:

Q(X,Y ) =
∫
x:FX(x)<FY(x)

fX(x)dx+
1
2

∫
x:FX(x)=FY(x)

fX(x)dx. (3.6)

In fact, it holds that:

P (X > Y ) =
∫
x:FX(x)<FY(x)

fX(x)dx and

P (X = Y ) =
∫
x:FX(x)=FY(x)

fX(x)dx.

Therefore, we obtain that X �SP Y if and only if Equation (3.6) takes a value grater
than or equal to 1

2 . However, by Lemma 2.20 we know that X �SP Y if and only if
Q(X,Y ) ≥ Q(Y,X). These are given by:

Q(X,Y ) =
∫
x:FX(x)<FY(x)

fX(x)dx+
1
2

∫
x:FX(x)=FY(x)

fXdx.

Q(Y,X) =
∫
x:FY(x)<FX(x)

fY(x)dx+
1
2

∫
x:FY(x)=FX(x)

fY(x)dx

= 1−
∫
x:FX(x)<FY(x)

fY(x)dx− 1
2

∫
x:FY(x)=FX(x)

fY(x)dx.

Hence, we obtain the following:

Corollary 3.17 Let X and Y be two real-valued comonotonic and continuous random
variables, where FX and FY denote their respective cumulative distribution functions and
fX and fY denote their respective density functions. Then, X �SP Y if and only if:∫

x:FX(x)<FY(x)

(fX(x) + fY(x))dx+
1
2

∫
x:FX(x)=FY(x)

(fX(x) + fY(x))dx ≥ 1.

Assume now that X and Y are continuous and countermonotonic real-valued ran-
dom variables. In that case, the joint cumulative distribution function is given by:

FX,Y(x, y) = max(FX(x) + FY(y)− 1, 0), for x, y ∈ R.

As in the case of comonotonic random variables, De Meyer et al. also found the expression
of Q(X,Y ).
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Proposition 3.18 ([54, Prop.7]) Let X and Y be two real-valued countermonotonic
and continuous random variables. The probabilistic relation Q(X,Y ) is given by:

Q(X,Y ) = FY(u), (3.7)

where u is one point that fulfills FX(u) + FY(u) = 1.

Therefore, using Equation (3.7) it is possible to state the following proposition.

Proposition 3.19 Let X and Y be two real-valued countermonotonic and continuous
random variables. If FX and FY denote their respective cumulative distribution functions,
the following equivalence holds:

X �SP Y ⇔ FY(u) ≥ FX(u),

where u is a point such that FX(u) + FY(u) = 1.

Proof: By definition, X �SP Y if and only if Q(X,Y ) ≥ 1
2 . However, using Equa-

tion (3.7), Q(X,Y ) ≥ 1
2 is equivalent to FY(u) ≥ 1

2 . But, since u satisfies FX(u)+FY(u) =
1, FY(u) ≥ 1

2 if and only if FY(u) ≥ FX(u).

Discrete comonotonic and countermonotonic random variables with finite
supports

In the previous paragraph we considered continuous comonotonic and countermonotonic
random variables, and we characterised statistical preference for them. Now, we also
consider real-valued random variables coupled by the minimum or Łukasiewicz operators,
but we assume them to be discrete with finite supports. For these variables, De Meyer
et al. also found the expression of the probabilistic relation Q.

Proposition 3.20 ([54, Prop. 2]) Let X and Y be two real-valued comonotonic and
discrete random variables with finite supports. Then, their supports, denoted by SX and
SY, respectively, can be expressed by:

SX = {x1, . . . , xn} and SY = {y1, . . . , yn}

such that x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn, and such that

P (X = xi) = P (Y = yi) = P (X = xi, Y = yi), for i = 1, . . . , n.

Furthermore, the probabilistic relation takes the value:

Q(X,Y ) =
n∑
i=1

P (X = xi)δMi , (3.8)
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where

δiM =


1 if xi > yi.
1
2 if xi = yi.

0 if xi < yi.

The following example illustrates this result.

Example 3.21 ([54, Example 3]) Consider the comonotonic random variables X and
Y defined by:

X 1 3 4
PX 0.15 0.4 0.45

Y 2 3 5
PY 0.35 0.35 0.3

De Schuymer et al. proved that their supports, SX and SY, respectively, can be expressed
by:

SX = {x1, x2, x3, x4, x5} = {1, 3, 3, 4, 4} and SY = {y1, y2, y3, y4, y5} = {2, 2, 3, 3, 5},

and their probabilities can be expressed by:

X x1 x2 x3 x4 x5

PX 0.15 0.2 0.2 0.15 0.3
Y y1 y2 y3 y4 y5

PY 0.15 0.2 0.2 0.15 0.3

Using the notation of the previous result, it holds that:

δM1 = 0 because x1 < y1, δM4 = 1 because x4 > y4.

δM2 = 1 because x2 > y2, δM5 = 0 because x5 < y5.

δM3 = 0.5 because x3 = y3.

Then:

Q(X,Y ) =
5∑
i=1

δMi P (X = xi) = P (X = x2) +
1
2
P (X = x3) + P (X = x4)

= 0.2 +
1
2

0.2 + 0.15 = 0.45.�

Under the previous conditions, it is possible to define the probability space (Ω∗,P(Ω∗), P1),
where Ω∗ = {ω1, . . . , ωn} and

P1({ωi}) = P (X = xi), for any i = 1, . . . , n.

We can also define the random variables X∗ and Y ∗ by:

X∗(ωi) = xi and Y ∗(ωi) = yi for any i = 1, . . . , n.

Then, the random variables X∗ and Y ∗ are equally distributed than X and Y , respec-
tively. This will be a very important fact for results in Section 3.2. Next lemma proves
that Q(X,Y ) = Q(X∗, Y ∗).
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Lemma 3.22 Under the previous conditions, it holds that Q(X,Y ) = Q(X∗, Y ∗).

Proof: Let us compute the value of P ∗(X∗ > Y ∗) and P ∗(X∗ = Y ∗):

P1(X∗ > Y ∗) = P1({ωi : X∗(ωi) = xi > yi = Y ∗(ωi)})

=
n∑
i=1

P1({ωi})Ixi>yi =
n∑
i=1

P (X = xi)Ixi>yi .

P1(X∗ = Y ∗) = P1({ωi : X∗(ωi) = xi = yi = Y ∗(ωi)})

=
n∑
i=1

P1({ωi})Ixi=yi =
n∑
i=1

P (X = xi)Ixi=yi .

Then:
Q(X∗, Y ∗) = P ∗(X∗ > Y ∗) + 1

2P
∗(X∗ = Y ∗)

=
n∑
i=1

P (X = xi)Ixi>yi +
1
2

n∑
i=1

P (X = xi)Ixi=yi

=
n∑
i=1

P (X = xi)δMi = Q(X,Y ). �

Example 3.23 Let us continue with Example 3.21. We have two random variables X
and Y and we have seen that their supports can be expressed by SX = {x1, . . . , x5} =
{1, 3, 3, 4, 4} and SY = {y1, . . . , y5} = {2, 2, 3, 3, 5}, respectively. Their probability distri-
butions are given by:

X x1 x2 x3 x4 x5

PX 0.15 0.2 0.2 0.15 0.3
Y y1 y2 y3 y4 y5

PY 0.15 0.2 0.2 0.15 0.3

Now, we can define the possibility space Ω∗ = {ω1, . . . , ω5}, the probability P1 such that
P1(ωi) = P (X = xi) and the random variables X∗ and Y ∗ by:

X∗(ωi) = xi and Y ∗(ωi) = yi for any i = 1, . . . , 5.

Now, taking into account that:

x1 = 1 < 2 = y1 ⇒ δM1 = 0 and X∗(ω1) < Y ∗(ω1),
x2 = 3 > 2 = y2 ⇒ δM2 = 1 and X∗(ω2) > Y ∗(ω2),
x3 = 3 = y3 ⇒ δM3 = 1

2 and X∗(ω3) = Y ∗(ω3),
x4 = 4 > 3 = y4 ⇒ δM4 = 1 and X∗(ω4) > Y ∗(ω4),
x5 = 4 < 5 = y5 ⇒ δM5 = 0 and X∗(ω5) < Y ∗(ω5),

it is possible to compute the value of the probabilistic relation Q(X∗, Y ∗):

Q(X∗, Y ∗) = P1(X∗ > Y ∗) +
1
2
P1(X∗ = Y ∗)

= P1({ω2, ω4}) +
1
2
P1({ω3}) = 0.2 + 0.15 +

1
2

0.2 = 0.45 <
1
2
,
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hence Y ∗ �SP Y
∗. Furthermore, in Example 3.21 we obtained that Q(X,Y ) = 0.45, and

therefore, by the previous lemma, it holds that Q(X,Y ) = Q(X∗, Y ∗) = 0.45. �

Remark 3.24 Taking the previous comments into account, we shall assume without
loss of generality that any two discrete and comonotonic random variables X and Y
with finite supports are defined in a probability space (Ω,P(Ω), P ), where Ω is finite,
Ω = {ω1, . . . , ωn}, and X(ωi) = xi, Y (ωi) = yi, such that xi ≤ xi+1 and yi ≤ yi+1 for
any i = 1, . . . , n− 1. Moreover:

P (X = xi, Y = yi) = P (X = xi) = P (Y = yi) for i = 1, . . . , n.

Furthermore, Q(X,Y ) is given by Equation (3.8).�

Next result gives a characterization of statistical preference in terms of the supports of
X and Y , and also in terms of the probability measure in the initial space. Its proof is
trivial and therefore omitted.

Proposition 3.25 Consider two real-valued comonotonic and discrete random variables
X and Y with finite supports. According to the previous remark, we can assume them
to be defined on (Ω,P(Ω), P ), where Ω = {ω1, . . . , ωn}, by X(ωi) = xi and Y (ωi) = yi,
where xi ≤ xi+1 and yi ≤ yi+1 for any i = 1, . . . , n− 1. Then, X �SP Y if and only if:∑

i:xi>yi

P (X = xi) ≥
∑

i:xi<yi

P (X = xi),

or equivalently, by Lemma 3.22, if and only if:∑
i:xi>yi

P ({ωi}) ≥
∑

i:xi<yi

P ({ωi}).

Now, we focus on countermonotonic random variables. For them, De Meyer et al. proved
the following result:

Proposition 3.26 ([54, Prop. 4]) Let X and Y be real-valued comonotonic and dis-
crete random variables with finite supports. Then, their supports can be expressed by
SX = {x1, . . . , xn} and SY = {y1, . . . , yn}, respectively, such that x1 ≤ . . . ≤ xn and
y1 ≤ . . . ≤ yn, and such that:

P (X = xi) = P (Y = yn−i+1) = P (X = xi, Y = yi)

for any i = 1, . . . , n. Under these conditions, the probabilistic relation Q(X,Y ) takes the
value:

Q(X,Y ) =
n∑
i=1

P (X = xi)δLi , (3.9)



3.1. Properties of the statistical preference 61

where

δLi =


1 if xi > yn−i+1.
1
2 if xi = yn−i+1.

0 if xi < yn−i+1.

To illustrate this result, consider the following example.

Example 3.27 ([54, Example 5]) Consider the random variables X and Y of Exam-
ple 3.21, but now assume them to be countermonotonic. Their supports can be expressed
by SX = {x1, x2, x3, x4, x5} = {1, 3, 3, 4, 4} and SY = {y1, y2, y3, y4, y5} = {2, 3, 3, 5, 5}.
Furthermore, the probability distributions of X and Y can be expressed by:

X x1 x2 x3 x4 x5

PX 0.15 0.15 0.25 0.1 0.35
Y y1 y2 y3 y4 y5

PY 0.35 0.1 0.25 0.15 0.15

Using the notation of the previous result, it holds that:

δL1 = 0 because x1 < y5, δL4 = 1 because x4 > y4.

δL2 = 0 because x2 < y4, δL5 = 1 because x5 > y5.

δL3 = 0.5 because x3 = y3.

Then:

Q(X,Y ) =
5∑
i=1

δLi P (X = xi) =
1
2
P (X = x3) + P (X = x4) + P (X = x5)

=
1
2

0.25 + 0.1 + 0.35 = 0.575.�

Under the above conditions, and similarly to the case of comonotonic random variables,
it is possible to define a probability space (Ω∗,P(Ω∗), P2), where Ω∗ = {ω1, . . . , ωn} and
the probability is given by:

P2({ωi}) = P (X = xi) for every i = 1, . . . , n.

Furthermore, we can also define the random variables X∗ and Y ∗ by:

X∗(ωi) = xi and Y ∗(ωi) = yn−i+1 for any i = 1, . . . , n.

Note that the variables X and X∗, and also Y and Y ∗, are equally distributed. Further-
more, next lemma shows that Q(X,Y ) = Q(X∗, Y ∗).

Lemma 3.28 In the conditions of the previous comments, considering the probability
space (Ω∗,P(Ω∗), P2) and the random variables X∗ and Y ∗, it holds that Q(X,Y ) =
Q(X∗, Y ∗).
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Proof: Let us compute the value of P2(X∗ > Y ∗) and P2(X∗ = Y ∗):

P2(X∗ > Y ∗) = P2({ωi : X∗(ωi) = xi > yn−i+1 = Y ∗(ωi)})

=
n∑
i=1

P2({ωi})Ixi>yn−i+1 =
n∑
i=1

P (X = xi)Ixi>yn−i+1 .

P2(X∗ = Y ∗) = P2({ωi : X∗(ωi) = xi = yn−i+1 = Y ∗(ωi)})

=
n∑
i=1

P2({ωi})Ixi=yn−i+1 =
n∑
i=1

P (X = xi)Ixi=yn−i+1 .

Then:

Q(X∗, Y ∗) = P2(X∗ > Y ∗) + 1
2P2(X∗ = Y ∗)

=
n∑
i=1

P (X = xi)Ixi>yn−i+1 +
1
2

n∑
i=1

P (X = xi)Ixi=yn−i+1

=
n∑
i=1

P (X = xi)δLi = Q(X,Y ). �

Next example helps to understand how to build the probability space and the ran-
dom variables.

Example 3.29 Consider again Example 3.27. The supports of the random variables X
and Y can be expressed by SX = {x1, . . . , x5} = {1, 3, 3, 4, 4} and SY = {y1, . . . , y5} =
{2, 3, 3, 5, 5}, respectively. Their probability distributions are given by:

X x1 x2 x3 x4 x5

PX 0.15 0.15 0.25 0.1 0.35
Y y1 y2 y3 y4 y5

PY 0.35 0.1 0.25 0.15 0.15

Now, we can define the possibility space Ω∗ = {ω1, . . . , ω5}, the probability P ∗ satisfying
that P ∗({ωi}) = P (X = xi) for i = 1, . . . , 5 and the random variables X∗ and Y ∗ by:

X∗(ωi) = xi and Y ∗(ωi) = y6−i for any i = 1, . . . , 5.

Taking into account that:

x1 = 1 < 5 = y5 ⇒ δL1 = 0 and X∗(ω1) < Y ∗(ω1),
x2 = 3 < 5 = y4 ⇒ δL2 = 0 and X∗(ω2) < Y ∗(ω2),
x3 = 3 = y3 ⇒ δL3 = 1

2 and X∗(ω3) = Y ∗(ω3),
x4 = 4 > 3 = y2 ⇒ δL4 = 1 and X∗(ω4) > Y ∗(ω4),
x5 = 4 > 2 = y1 ⇒ δL5 = 1 and X∗(ω5) > Y ∗(ω5),
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it is possible to compute the value of the probabilistic relation Q(X∗, Y ∗):

Q(X∗, Y ∗) = P ∗(X∗ > Y ∗) +
1
2
P ∗(X∗ = Y ∗)

=
1
2
P ∗({ω3}) + P ∗({ω4, ω5}) =

1
2

0.25 + 0.1 + 0.35 = 0.575 >
1
2
,

whence Y ∗ �SP Y ∗. Moreover, from Example 3.27 Q(X,Y ) = 0.575, and therefore, as
we have seen in the previous lemma, Q(X,Y ) = Q(X∗, Y ∗) = 0.575. �

Remark 3.30 Using the previous result we can assume, without loss of generality, that
any two countermonotonic real-valued random variables X and Y are defined on a prob-
ability space (Ω,P(Ω), P ), where Ω = {ω1, . . . , ωn}, by X(ωi) = xi and Y (ωi) = yn−i+1

such that xi ≤ xi+1 and yi ≥ yi+1 for i = 1, . . . , n, and satisfying that

P (X = xi, Y = yi) = P (X = xi) = P (Y = yn−i+1) for i = 1, . . . , n.�

Now, assuming the conditions of the previous remark, we prove that there is, at most,
one element ωi such that X(ωi) = Y (ωi).

Lemma 3.31 In the conditions of the previous remark, if there exists l > 0 such that

X(ωk) = . . . = X(ωk+l) = Y (ωk) = . . . = Y (ωk+l),
min(|X(ωk−1)−X(ωk+l+1)|, |Y (ωk−1)− Y (ωk+l+1)|) > 0,

for some k, then it is possible to define a probability space (Ω∗,P(Ω∗), P3) and two random
variables X∗ and Y ∗ such that:

• Q(X∗, Y ∗) = Q(X,Y ).

• There are not ω
′
, ω
′′ ∈ Ω∗ such that

X∗(ω′) = X∗(ω′′) = Y ∗(ω′) = Y ∗(ω′′).

• X∗ and Y ∗ follow the same distribution than X and Y , respectively.

Proof: Define Ω∗ = {ω∗1 , . . . , ω∗n−l} and let P3 be the probability given by:

P3({ω∗i }) = P ({ωi}) for any i = 1, . . . , k − 1.
P3({ω∗k}) = P ({ωk}) + . . .+ P ({ωk+l}).
P3({ω∗i }) = P ({ωi+1}) for any i = k + l + 1, . . . , n− 1.

Consider the random variables X∗ and Y ∗ given by:

X∗(ω∗i ) = X(ωi) and Y ∗(ω∗i ) = Y (ωi) for any i = 1, . . . , k − 1.
X∗(ω∗k) = X(ωk) and Y ∗(ω∗k) = Y (ωk).
X∗(ω∗i ) = X(ωi+1) and Y ∗(ω∗i ) = Y (ωi+1) for any i = k + l + 1, . . . , n− 1.
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They satisfy that:

X∗(ω∗i ) < Y ∗(ω∗i ) for any i = 1, . . . , k − 1.
X∗(ω∗k) = Y ∗(ω∗k).
X∗(ω∗i ) > Y ∗(ω∗i ) for any i = k + l + 1, . . . , n− 1.

Then, since
ω∗k /∈ {ω∗ ∈ Ω∗ : X∗(ω∗) > Y ∗(ω∗)} and
ωk, . . . , ωk+l /∈ {ω ∈ Ω : X(ω) > Y (ω)},

it holds that:

ω∗i ∈ {X∗ > Y ∗} ⇔ ωi ∈ {X > Y }, for i = 1, . . . , k − 1.

Furthermore, ω∗i−1 /∈ {X∗ > Y ∗} and ωi /∈ {X > Y } for i = 1, . . . , k − 1. Then, we
conclude that:

P3(X∗ > Y ∗) = P3({ω∗ ∈ Ω∗ : X∗(ω∗) > Y ∗(ω∗)})
=

∑
i:X∗(ω∗i )>Y ∗(ω∗i )

P3({ω∗i }) =
∑

i:X(ωi)>Y (ωi)

P ({ωi}) = P (X > Y ).

Furthermore, since X∗(ω∗k) = Y ∗(ω∗k) and P3({ω∗k}) = P ({ωk, . . . , ωk+l}), it holds that:

P3(X∗ = Y ∗) = P3({ω∗ ∈ Ω∗ : X∗(ω∗) = Y ∗(ω∗)})
=

∑
i:X∗(ω∗i )=Y ∗(ω∗i )

P3({ω∗i }) = P3({ω∗k})

= P ({ωk}) + . . .+ P ({ωk+l}) =
∑

i:X′(ωi)=Y ′(ωi)

P ({ωi}) = P (X ′ = Y ′).

Then, Q(X∗, Y ∗) = Q(X,Y ).

Moreover, by construction there are not ω′, ω′′ ∈ Ω∗, ω′ 6= ω′′, such that

X∗(ω′) = X∗(ω′′) = Y ∗(ω′′) = Y ∗(ω′).

Finally, it is obvious that X∗ and X, and also Y ∗ and Y , are equally distributed, since
they take the same values with the same probabilities.

Remark 3.32 Taking into account the previous result and Remark 3.30, we conclude
that given two discrete countermonotonic random variables X and Y with finite sup-
ports, we can assume, without loss of generality, that their supports are given by SX =
{x1, . . . , xn} and SY = {y1, . . . , yn}, where xi ≤ xi+1 and yi ≤ yi+1 for i = 1, . . . , n− 1,
and that they are defined in a probability space (Ω,P(Ω), P ), where Ω = {ω1, . . . , ωn}, by
X(ωi) = xi and Y (ωi) = yn−i+1. Furthermore:

P (X = xi, Y = yi) = P (X = xi) = P (Y = yn−i+1) for any i = 1, . . . , n.

Under these conditions, Q(X,Y ) is given by Equation (3.9). Furthermore, using the
previous lemma we can also assume that max{|X(ωi)−X(ωi+1|, |Y (ωi)− Y (ωi+1)|} > 0
for any i = 1, . . . , n− 1. �
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These results allow us to characterise statistical preference for discrete countermonotonic
random variables with finite supports.

Proposition 3.33 Let X nd Y be two real-valued discrete and countermonotonic random
variables with finite supports, that can be expressed as in the previous remark. Then, it
is possible to characterise X �SP Y in the following way:

• If there exists k such that X(ωk) = Y (ωk), then X �SP Y if and only if:

P (X = x1) + . . .+ P (X = xk−1) ≤ P (X = xk+1) + . . .+ P (X = xn),

or equivalently, if and only if:

P ({ω1}) + . . .+ P ({ωk−1}) ≤ P ({ωk+1}) + . . .+ P ({ωn}).

• If X(ωi) 6= Y (ωi) for any i = 1, . . . , n, denote by k = min{i : X(ωi) < Y (ωi)}.
Then X �SP Y if and only if:

P (X = x1) + . . .+ P (X = xk) ≤ P (X = xk+1) + . . .+ P (X = xn),

or equivalently, if and only if:

P ({ω1}) + . . .+ P ({ωk}) ≤ P ({ωk+1}) + . . .+ P ({ωn}).

Proof: Assume that there is k such that X(ωk) = Y (ωk). Then, X(ωi) > Y (ωi) for
any i < k and X(ωi) < Y (ωi) for any i > k. Then:

Q(X,Y ) = P ({ωk+1, . . . , ωn}) +
1
2
P ({ωk}) and

Q(Y,X) = P ({ω1, . . . , ωk−1}) +
1
2
P ({ωk}).

Then, Q(X,Y ) ≥ 1
2 if and only if:

P ({ωk+1, . . . , ωn}) ≥ P ({ω1, . . . , ωk−1}).

Furthermore, the previous expression is equivalent to:

P (X = xk+1) + . . .+ P (X = xn) ≥ P (X = x1) + . . .+ P (X = xk−1).

Now, assume that X(ωi) 6= Y (ωi) for any i = 1, . . . , n. Then, denote by k the element
k = max{i : X(ωi) < Y (ωi)}. Then, X(ωi) > Y (ωi) for any i = k + 1, . . . , n and
X(ωi) < Y (ωi) for any i = 1, . . . , k. Then:

Q(X,Y ) = P ({ωk+1, . . . , ωn}) and Q(Y,X) = P ({ω1, . . . , ωk}).
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Then, Q(X,Y ) ≥ 1
2 if and only if:

P ({ωk+1, . . . , ωn}) ≥ P ({ω1, . . . , ωk}).

This expression is equivalent to:

P (X = xk+1) + . . .+ P (X = xn) ≥ P (X = x1) + . . .+ P (X = xk).

Random variables coupled by a strict Archimedean copula

Consider two continuous real-valued random variables X and Y with cumulative distri-
bution functions FX and FY, respectively. Let us denote their density functions by fX

and fY, respectively. We shall assume the existence of a strict Archimedean copula C,
generated by the twice differentiable generator ϕ, such that

FX,Y(x, y) = ϕ−1](ϕ(FX(x)) + ϕ(FY(y))), for every x, y ∈ R.

Note that since C is strict, then ϕ(0) = ∞. In that case, we have already mentioned in
Equation (2.10) that the pseudo-inverse becomes the inverse, and then the joint cumu-
lative distribution function is given by:

FX,Y(x, y) = ϕ−1(ϕ(FX(x)) + ϕ(FY(y))), for every x, y ∈ R.

Now, we are going to obtain the joint density function for (X,Y ). For this aim, we derive
FX,Y with respect to x and y:

∂FX,Y

∂x
(x, y) = ∂ϕ−1(ϕ(FX(x))+ϕ(FY(y)))

∂x (x, y)

=
(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(y)))ϕ′(FX(x))fX(x).

∂2FX,Y

∂x∂y
(x, y) =

(
ϕ−1

)′′ (ϕ(FX(x)) + ϕ(FY(y)))ϕ′(FX(x))ϕ′(FY(y))fX(x)fY(y).

Then, the function fX,Y defined by:

fX,Y(x, y) =
(
ϕ−1

)′′
(ϕ(FX(x)) + ϕ(FY(y)))ϕ′(FX(x))ϕ′(FY(y))fX(x)fY(y), (3.10)

is a density function of (X,Y ). Let us check that fX,Y(x, y) ≥ 0 for every x, y ∈ R:

• fX, fY ≥ 0 because they are density functions.

• By Definition 2.26, −ϕ is 2-monotone. Then, (−1)2(−ϕ)′ = −ϕ′ ≥ 0, that implies
ϕ ≤ 0. Then, ϕ′(FX(x))ϕ′(FY(y)) ≥ 0.
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• Since −ϕ is 2-monotone, (−1)3(−ϕ)′′ ≥ 0, and then ϕ′′ ≥ 0. Also, it is known that,
for a function g, g−1′(x) = g′(g−1(x))−1. Then:

(
ϕ−1

)′
(x) =

1
ϕ′(ϕ−1(x))

,

and since ϕ′ ≤ 0, it holds that
(
ϕ−1

)′ (x) ≤ 0. Then:

(
ϕ−1

)′′
(x) = −

ϕ′′(ϕ−1(x))
(
ϕ−1

)′
ϕ′(ϕ−1(x))

.

The denominator is positive because it is squared. Furthermore, ϕ′′ is positive, but(
ϕ−1

)′ is negative, but when multiplying for (−1) it becomes positive.

Then, f is the product of positive elements, and therefore f is positive. Now, let us see
that the area below fX,Y is 1:∫

R

∫
R
fX,Y(x, y)dy dx=

∫
R

((
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(y)))

]∞
−∞

)
ϕ′(FX(x))fX(x)dx

=
∫

R

(
ϕ−1

)′
(ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

= ϕ−1(ϕ(FX(x)))
]∞
−∞

= FX(x)
]∞
−∞

= 1.

Using the expression of the joint density function in Equation (3.10) we can prove the
following characterization of the statistical preference.

Theorem 3.34 Let X and Y be two real-valued continuous random variables, and let
FX and FY denote their respective cumulative distribution functions, and fX and fY are
their respective density functions. If they are coupled by a strict Archimedean copula C
generated by the twice differentiable function ϕ, then X �SP Y if and only if:

E
[((

ϕ−1
)′

(ϕ(FX(X)) + ϕ(FY(X)))−
(
ϕ−1

)′
(2ϕ(FX(X)))

)
ϕ′(FX(X))

]
≥ 0. (3.11)

Proof: First of all, note that (X,Y ) is a continuous random vector with density function
fX,Y. Then, P (X = Y ) = 0, and therefore Q(X,Y ) = P (X > Y ) and Q(Y,X) = P (Y >
X).

Denote by A the set A = {(x, y) | x > y}. Then,

P (X > Y ) =
∫
A

fX,Y(x, y)dy dx.
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Thus,

P (X > Y ) =
∫
A

fX,Y(x, y)dy dx =
∫ ∞
−∞

∫ x

−∞
fX,Y(x, y)dydx

=
∫ ∞
−∞

(
ϕ−1(ϕ(FX(x)) + ϕ(FY(y)))

]x
−∞

)
ϕ′(FX(x))fX(x)dx

=
∫ ∞
−∞

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx.

Furthermore, it holds that∫ ∞
−∞

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

=
1
2
ϕ−1(2ϕ(FX(X)))

]∞
−∞

=
1
2

(ϕ−1(0)− ϕ−1(∞)) =
1
2
.

Therefore, Q(X,Y ) = P (X > Y ) ≥ 1
2 if and only if

E
[(
ϕ−1

)′ (ϕ(FX(X)) + ϕ(FY(X)))ϕ′(FX(X))
]

=
∫ ∞
−∞

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

≥ 1
2 =

∫ ∞
−∞

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

= E
[(
ϕ−1

)′ (2ϕ(FX(X)))ϕ′(FX(X))
]
.

Hence, this inequality is equivalent to

E
[((

ϕ−1
)′

(ϕ(FX(X)) + ϕ(FY(X)))−
(
ϕ−1

)′
(2ϕ(FX(X)))

)
ϕ′(FX(X))

]
≥ 0.

This result holds in particular when the random variables are independent, that is,
when the copula that links the variables is the product. We have seen in Section 2.1.2
that the product is a strict Archimedean copula with generator ϕ(t) = − log t. In this
case:

ϕ′(t) =
−1
t
, ϕ−1(t) = e−t and

(
ϕ−1

)′
= −et.

By replacing these values in Equation (3.11), we obtain that:(
ϕ−1

)′
(ϕ(FX(X)) + ϕ(FY(X)))−

(
ϕ−1

)′
(2ϕ(FX(X)))

= −exp{logFX(X) + logFY(X)}+ exp{2 logFX(X)}

= FY(X)FX(X)− FX(X)2.
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Then, Equation (3.11) becomes:

E

[
(FY(X)FX(X)− FX(X)2)

1
FX(X)

]
= E[FY(X)− FX(X)] ≥ 0.

Thus, we conclude that for continuous random variables X and Y , X �SP Y if and only
if E[FY(X)− FX(X)] ≥ 0. This result has already been obtained in Corollary 3.13.

Random variables coupled by a nilpotent Archimedean copula

Let us study now the case where the copula that links the real-valued random variables
is a nilpotent Archimedean copula generated by a twice differentiable generator. In such
case, as we saw in Equation (2.9) the joint distribution function of X and Y is given by:

FX,Y(x, y) =

{
ϕ−1(ϕ(FX(x)) + ϕ(FY(y))) if ϕ(FX(x)) + ϕ(FY(y)) ∈ [0, ϕ(0)).
0 otherwise.

Recall that this function cannot be derived in the points (x, y) such that ϕ(FX(x)) +
ϕ(FY(y)) = ϕ(0). However, the value of ∂2FX,Y

∂x∂y (x, y) can be computed for the points
(x, y) fulfilling ϕ(FX(x)) + ϕ(FY(y)) ∈ [0, ϕ(0)). In fact, the value of this function is:

∂2FX,Y

∂x∂y
(x, y) =

(
ϕ−1

)′′
(ϕ(FX(x)) + ϕ(FY(y)))ϕ′(FX(x))ϕ′(FY(y))fX(x)fY(y).

In this way, the function fX,Y defined by:

fX,Y(x, y) =

{
∂2FX,Y
∂x∂y (x, y) if ϕ(FX(x)) + ϕ(FY(y)) ∈ [0, ϕ(0)),

0 otherwise,

is a joint density function of X and Y : on the one hand, fX,Y is a positive function:

fX, fY ≥ 0
ϕ′ ≤ 0⇒ ϕ′(FX(x))ϕ′(FY(y)) ≥ 0(
ϕ−1

)′′ ≥ 0

⇒ fX,Y ≥ 0,

since it is the product of positive functions. On the other hand, it holds that∫
R

∫
R
fX,Y(x, y)dy dx = 1.

In order to prove the last equality, we introduce the following notation:

yx = inf{y | ϕ(FX(x)) + ϕ(FY(y)) ∈ [0, ϕ(0))}, for every x ∈ R.
sX = inf{x | FX(x) > 0}.
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Therefore,

{(x, y) | x > sX, y > yx} = {(x, y) | ϕ(FX(x)) + ϕ(FY(y)) < ϕ(0)}.

This implies that:

∫
R

∫
R
fX,Y(x, y)dy dx

=
∫ ∞
sX

∫ ∞
yx

(
ϕ−1

)′′
(ϕ(FX(x)) + ϕ(FY(y)))ϕ′(FX(x))ϕ′(FY(y))fX(x)fY(y)dydx

=
∫ ∞
sX

((
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(y)))

]∞
yx

)
ϕ′(FX(x))fX(x)dx

=
∫ ∞
sX

(
ϕ−1

)′
(ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

= ϕ−1(ϕ(FX(x)))
]∞
sX

= FX(x)
]∞
sX

= 1− FX(sX) = 1.

We conclude that fX,Y is a joint density function of X and Y . Let us introduce the
following notation:

x̄ = inf{x | yx < x}. (3.12)

Using the function fX,Y and the previous notation, we can prove the following char-
acterization of the statistical preference for random variables coupled by a nilpotent
Archimedean copula.

Theorem 3.35 Let X and Y be two real-valued continuous random variables coupled by
a nilpotent Archimedean copula whose generator ϕ is twice differentiable and ϕ′′ is not
the zero function. X �SP Y if and only if

∫ ∞
x̄

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx ≥∫ ∞

x̃

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx.

Proof: From Theorem 3.34, (X,Y ) is a continuous random vector with joint density
functions fX,Y. Then, P (X = Y ) = 0, and consequently Q(X,Y ) = P (X > Y ) and
Q(Y,X) = P (Y > X).
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Let us compute the value of Q(X,Y ) = P (X > Y ).

P (X > Y ) =
∫ ∞
−∞

∫ x

−∞
fX,Y(x, y)dy dx

=
∫ ∞
x̄

∫ x

yx

(
ϕ−1

)′′
(ϕ(FX(x)) + ϕ(FY(y)))ϕ′(FX(x))ϕ′(FY(y))fX(x)fY(y)dydx

=
∫ ∞
x̄

((
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(y)))

]x
yx

)
ϕ′(FX(x))fX(x)dx

=
∫ ∞
x̄

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx.

Furthermore, if we denote by x̃ the point

x̃ = inf{x | 2ϕ(FX(x)) ≤ ϕ(0)}, (3.13)

it holds that:∫ ∞
x̃

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx =

1
2
ϕ−1(2ϕ(FX(x)))

]∞
x̃

=
1
2
.

For this reason, as X �SP Y if and only if Q(X,Y ) ≥ 1
2 , then X �SP Y if and only if∫ ∞

x̄

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx ≥

1
2

=
∫ ∞
x̃

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx. �

Remark 3.36 The previous remark does not generalise Proposition 3.19, where a char-
acterization of statistical preference for continuous and countermonotonic random vari-
ables. The reason is that, although the Łukasiewicz operator is an Archimedean copula,
its generator is ϕ(t) = 1 − t, and ϕ′′(t) = 0. Hence, this copula does not satisfy the
restriction of the previous theorem, which therefore it is not applicable. �

Characterization of the statistical preference by means of the median

In this section we shall investigate the relationship between statistical preference and the
well-know notion of median of a random variable. First of all let us show an example to
clarify the connection.

Example 3.37 Consider again the random variables of Example 2.3. It is easy to check
that Q(X,Y ) = 0.6, and therefore X �SP Y . The intuition here is that in order to obtain
Q(X,Y ) = 0.6 c must be a value greater than 0 and smaller than 1; however, the exact
value of c ∈ (0, 0.6) is not relevant at all.
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Thus, in the discrete case, statistical preference orders the values of the support of
X and Y , and once they are ordered, the exact value of each point does not matter: only
its relative position and its probability are important. This idea is similar to that used in
the definition of the median. �

The first approach to connect statistical preference and the median is to compare the
medians of the variables X and Y . Recall that a point t is a median of the random
variable X if:

P (X ≥ t) ≥ 0.5 and P (X ≤ t) ≥ 0.5, (3.14)

and we denote by Me(X) the set of medians of the random variable X.

Following the previous example, we conjecture that if the median of X is greater
than the median of Y then X should be statistically preferred to Y , and the converse
implication should also hold. However, this property does not hold in general.

Remark 3.38 Let X and Y be two real-valued random variables defined on the same
probability space. Then there is not a general relationship between X �SP Y and the
following statements:

1. me(X) ≥ me(Y ), for all me(X) ∈ Me(X) and me(Y ) ∈ Me(Y ).

2. me(X) ≤ me(Y ), for all me(X) ∈ Me(X) and me(Y ) ∈ Me(Y ).

It is enough to consider the independent random variables X and Y defined in Table 3.1.

X −2 0 2
PX 0.4 0.2 0.4

Y −3 1
PY 0.4 0.6

Table 3.1: Definition of random variables X and Y .

Both X and Y have only one median, and they equal to: me(X) = 0 < me(Y ) = 1,
but X �SP Y because Q(X,Y ) = 0.64.

Since both statistical preference and the comparison of medians are complete rela-
tions, the same counterexample allows to show that me(X) ≥ me(Y ) does not guaran-
tee that X �SP Y . Notice that me(Y ) ≥ me(X). However, Q(Y,X) = 0.36, so that
Y 6�SP X.

In order to prove that X �SP Y and me(X) ≤ me(Y ) are not related in general,
it is enough to define X as the constant random variable on 1 and Y as the constant
random variable on 0. In this case it is obvious that X and Y have only one median and
me(X) > me(Y ) and Q(X,Y ) = 1.�
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We see thus that statistical preference cannot be reduced to the comparison of the
medians of X,Y . Interestingly, there is a connection between statistical preference and
the median of X − Y , as we shall prove in Theorem 3.40. Let us present a preliminary
result.

Proposition 3.39 Let X and Y be two real-valued random variables defined on the same
probability space. Then

X �SP Y ⇔ FX−Y(0) ≤ FY−X(0),

where FX−Y (respectively, FY−X) denotes the cumulative distribution function of the
random variable X − Y (respectively, Y −X).

Proof: By Lemma 2.20, X �SP Y if and only if P (X > Y ) ≥ P (Y > X), but:

P (X − Y > 0) ≥ P (Y −X > 0)⇔ 1−FX−Y(0) ≥ 1−FY−X(0)⇔ FX−Y(0) ≤ FY−X(0).

Then, X �SP Y and FX−Y(0) ≤ FY−X(0) are equivalent.

Therefore, in order to check statistical preference it suffices to evaluate the cumu-
lative distribution functions of X − Y and Y −X on 0. In particular, if P (X = Y ) = 0,
it suffices to evaluate one of the cumulative distribution functions, FX−Y on 0, since in
this case,

Q(X,Y ) = 1− FX−Y(0)

and X �SP Y if and only if FX−Y(0) ≤ 1
2 . This equivalence holds in particular when the

random variables form a continuous random vector.

We next prove the connection between statistical preference and the median of
X − Y .

Theorem 3.40 Let X and Y be two real-valued random variables defined on the same
probability space.

1. sup Me(X − Y ) > 0⇒ X �SP Y ⇒ sup Me(X − Y ) ≥ 0.

2. X �SP Y ⇒ Me(X − Y ) ⊆ [0,∞).

3. The converse implication does not hold, although

inf Me(X − Y ) > 0⇒ X �SP Y.

4. If P (X = Y ) = 0, then

X �SP Y ⇔ inf Me(X − Y ) > 0.

But even when P (X = Y ) = 0, 0 ∈ Me(X − Y ) is not equivalent to Q(X,Y ) = 1
2 .
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Proof:

1. Assume that sup Me(X − Y ) > 0. Then, there is a median me(X − Y ) > 0. It
holds that:

P (X > Y ) ≥ P (X − Y ≥ me(X − Y )) ≥ 1
2

P (X < Y ) ≤ P (X − Y < me(X − Y )) ≤ 1
2

}
⇒ Q(X,Y ) ≥ Q(Y,X),

and then X �SP Y . Assume that X �SP Y . Then P (X ≥ Y ) ≥ P (X ≤ Y ). This
implies that P (X − Y ≥ 0) ≥ Q(X,Y ) ≥ 1

2 , and therefore there exists a median
me(X − Y ) ≥ 0, and therefore sup Me(X − Y ) ≥ me(X − Y ) ≥ 0.

2. By definition, X �SP Y if Q(X,Y ) > 1
2 .

Now, assume me(X − Y ) < 0 for a median of X − Y , then:

1
2
≥ P ((X − Y ) > me(X − Y )) ≥ P ((X − Y ) ≥ 0) ≥ P (X > Y ) +

1
2
P (X = Y ).

A contradiction arises because Q(X,Y ) > 1
2 .

3. We first prove the implication. Suppose that me(X −Y ) > 0 for any me(X −Y ) ∈
Me(X − Y ). In such a case:

1
2
≥ P ((X − Y ) < me(X − Y )) ≥ P (X − Y ≤ 0) = 1− P (X > Y ).

Hence, P (X > Y ) ≥ 1
2 and then X �SP Y . Now, assume that Q(X,Y ) = 1

2 . In
that case, P (X ≥ Y ) = P (Y ≥ X) ≥ 1

2 , and then:

P (X − Y ≥ 0) = P (Y −X ≥ 0) ≥ 1
2
,

whence 0 ∈ Me(X − Y ), that contradicts the initial hypothesis.
Next, we give an example where X − Y has only one median and equals 0, and
Q(X,Y ) < 1

2 . It is enough to consider the random variables X and Y whose joint
mass function is defined on Table 3.2.

X/Y 0 1 2
0 0.1 0 0.4
1 0 0.4 0
2 0 0 0.1

Table 3.2: Definition of random variables X and Y .

For these variables it holds that Me(X − Y ) = {0} but Y �SP X, since

Q(X,Y ) =
1
2
P ((X,Y ) = (0, 0), (1, 1), (2, 2)) =

1
2

0.6 = 0.3 <
1
2
.
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4. Assume that P (X = Y ) = 0 and let us prove the equivalence. On the one hand,
assume that X �SP Y . By the second item of this Theorem, we know that every
median of X − Y is positive. Assume now that 0 is a median of X − Y . Then:

1
2
≥ P (X − Y > 0) = P (X > Y ) = Q(X,Y ).

Then, Q(X,Y ) ≤ 1
2 , a contradiction. Assume that, although 0 is not a median of

X − Y , it is the infimum of the medians. In such a case, there is a point t∗ > 0
such that any point in (0, t∗] is a median of X − Y . Then, for any 0 < ε < t∗ it
holds that:

P (X − Y ≥ ε) ≥ 1
2
and P (X − Y ≤ ε) ≥ 1

2
.

Then, P (X − Y ≥ 0) ≥ P (X − Y ≥ ε) ≥ 1
2 and:

P (X − Y ≤ 0) = FX−Y(0) = lim
ε→0

FX−Y(ε) = lim
ε→0

P (X − Y ≤ ε) ≥ 1
2
.

This means that 0 is also a median, and we have already seen that this is not
possible. We conclude that inf Me(X − Y ) > 0.

On the other hand, we have seen in the third item that when inf Me(X − Y ) > 0,
X �SP Y .

Finally, let us see that if 0 is a median of X − Y , even when P (X = Y ) = 0, this is not
equivalent to Q(X,Y ) = 1

2 . Consider Ω = {ω1, ω2}, the probability measure given by
P ({ωi}) = 1

2 for i = 1, 2, and the random variables X and Y such that X(ω1) = X(ω2) =
0, Y (ω1) = −1 and Y (ω2) = 1. Then, −1 is the only median of X − Y , and also −1 is
the only median of Y − X, but Q(X,Y ) = 1

2 and then X ≡SP Y . On the other hand,
consider the space Ω = {ω1, ω2}, P ({ω1}) = 3

4 and the random variables defined by:

ω1 ω2

X 0 1
Y 0 0

X − Y 0 1

Then, 0 is a median of X − Y ; however, Q(X,Y ) = 5
8 .

This theorem establishes a relationship between statistical preference and the me-
dian of the difference of the random variables. The particular case in which P (X = Y ) =
0 is very useful because in that case statistical preference is characterised by the median.
Next, we are going to consider two random variables X and Y , and we are going to show
how to modify the variables with the aim of avoiding the case P (X = Y ) > 0.

Lemma 3.41 Let X,Y be two real-valued discrete random variables, without points of
accumulation on their supports, defined on the same probability space such that P (X =
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Y ) > 0. Assume that their supports SX and SY can be expressed by SX = {xn}n and
SY = {ym}m such that xn ≤ xn+1 and ym ≤ ym+1 for any n,m. In this case it is possible
to build another random variable X̃ fulfilling:

1. Q(X,Y ) = Q(X̃, Y ) and

2. P (X = Y | X = x) = 0⇒ P (X̃ = x) = P (X = x).

Proof: We shall use the following notation:

P (X = xn, Y = ym) = pn,m for any n,m.

Since P (X = Y ) > 0, there exists xn ∈ SX and ym ∈ SY such that xn = ym and
pn,m > 0. Then, for any (xn, ym) in this situation we consider x(1)

n , x
(2)
n such that:

max{xn−1, ym−1} < x(1)
n < xn = ym < x(2)

n < min{xn+1, ym+1},

where xn−1 and xn+1 (respectively, ym−1, ym+1) denote the preceding and subsequent
points of xn in SX (respectively, of ym in SY), existing because since both SX and SY

have no accumulation points. Let us use the following notation:

SaX = {xn ∈ SX : P (X = xn, Y = xn) = 0}.
SbX = {xn ∈ SX : P (X = xn, Y = xn) > 0}.

Then, SX = SaX ∪ SbX. We define the random variable X̃ whose support is given by:

SX̃ = {xn ∈ SaX} ∪ {x(1)
n , x(2)

n : xn ∈ SbX}.

The joint probability of X̃ and Y is given by:

P (X̃ = xn, Y = ym) = pn,m if xn ∈ SaX.
P (X̃ = x(1)

n , Y = ym) = P (X̃ = x(2)
n , Y = ym) =

1
2
pn,m if xn ∈ SbX.
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By definition, P (X̃ = Y ) = 0. Then:

Q(X̃, Y ) = P (X̃ > Y ) =
∑
x∈SX̃

P (X̃ > Y | X̃ = x)

=
∑

xn∈SaX

P (X̃ > Y | X̃ = xn) +
∑

xn∈SbX

P (X̃ > Y | X̃ = x(1)
n )

+ P (X̃ > Y | X̃ = x
(2)
n )

=
∑

xn∈SaX

P (X > Y | X = xn) +
∑

xn∈SbX

1
2
P (X > Y | X = xn)

+ 1
2

∑
xn∈SbX

(
P (X > Y | X = xn) + P (X = xn, Y = xn)

)
=
∑

xn∈SaX

P (X > Y | X = xn) +
∑

xn∈SbX

(
P (X > Y | X = xn)

+ 1
2P (X = xn, Y = xn)

)
=
∑

xn∈SX

P (X > Y | X = xn) +
1
2

∑
xn∈SaX

P (X = xn, Y = xn)

= P (X > Y ) + 1
2P (X = Y ) = Q(X,Y ). �

This lemma allows us to establish the following theorem.

Theorem 3.42 Let X and Y be two real-valued discrete random variables on the same
probability space, whose supports have no accumulation points and such that P (X =
Y ) > 0. Then X �SP Y if and only if it is possible to find a random variable X̃ in the
conditions of Lemma 3.41 such that inf Me(X̃ − Y ) > 0.

Proof: Applying the previous lemma it is possible to build another random variable
X̃ such that Q(X̃, Y ) = Q(X,Y ), P (X̃ = Y ) = 0, and if P (X = Y | X = x) = 0, then
P (X̃ = x) = P (X = x).

Therefore, as P (X̃ = Y ) = 0, by Theorem 3.40 it holds that X̃ �SP Y if and only
if inf Me(X̃ − Y ) ≥ 0. But since Q(X̃, Y ) = Q(X,Y ), it holds that X �SP Y if and only
if inf Me(X̃ − Y ) ≥ 0.

3.2 Relationship between stochastic dominance and sta-
tistical preference

In this section we shall study the relationships between first degree stochastic dominance
and statistical preference for real-valued random variables.
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We recall once more that stochastic dominance only uses the marginal distributions
of the variables compared. As we have seen in Subsection 2.1.2, every joint cumulative
distribution function is the copula of the marginal cumulative distribution functions. For
this reason, as we have already done in the previous subsection, we focus on different situ-
ations: independent, comonotonic and countermonotonic random variables, and random
variables coupled by an Archimedean copula.

Before starting with the main results, we are going to show that in general, first
degree stochastic dominance does not imply statistical preference.

Example 3.43 Consider the random variables X and Y whose joint mass probability
function is given by:

X\Y 0 1 2
0 0.2 0.15 0
1 0 0.2 0.15
2 0.2 0 0.1

Then, the marginal cumulative distribution functions of X and Y are defined by:

t < 0 t ∈ [0, 1) t ∈ [1, 2) t ≥ 2
FX(t) 0 0.35 0.7 1
FY(t) 0 0.4 0.75 1

It follows that X �FSD Y since FX ≤ FY. However, X 6�SP Y since:

Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y )

= P (X = 2, Y = 0) +
1
2

(
P (X = 0, Y = 0) + P (X = 1, Y = 1)

+ P (X = 2, Y = 2)
)

= 0.2 +
1
2

(0.2 + 0.2 + 0.1) = 0.45.

Thus, X �FSD Y does not imply X �SP Y .�

Furthermore, since X �FSD Y implies X �nSD Y for any n ≥ 2, the previous example
also shows that X �nSD Y does not imply X �SP Y for any n ≥ 2.

In the following subsections, we will find sufficient conditions for the implication
X �FSD⇒ X �SP Y .

3.2.1 Independent random variables

We start by proving that first degree stochastic dominance implies statistical prefer-
ence for independent random variables. For this aim, take into account that, when
X �FSD Y , Theorem (2.10) assures that E[u(X)] ≥ E[u(Y )] for any increasing function
u. In particular, if we consider u = FY, which is an increasing function, it holds that
E[FY(X)] ≥ E[FY(Y )]. This will be an interesting fact in order to prove the next result.
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Theorem 3.44 Let X and Y be two real-valued independent random variables. Then
X �FSD Y implies X �SP Y .

Proof: Using Lemma 2.20, it suffices to prove that

P (X ≥ Y ) ≥ P (Y ≥ X).

Since X and Y are independent, by Lemma 3.11 it is equivalent to prove that:

E[FY(X)] ≥ E[FX(Y )].

Moreover, since X �FSD Y , FX ≤ FY, and therefore E[FX(Y )] ≤ E[FY(Y )]. Thus, it
suffices to prove that

E[FY(X)] ≥ E[FY(Y )],

and this inequality holds because X �FSD Y and then E[u(X)] ≥ E[u(Y )] for every
increasing function u.

With a similar proof it is possible to establish that the implication holds even when
one of the variables strictly dominates the other one. Let us introduce a preliminary
lemma.

Lemma 3.45 Let X and Y be two independent real-valued random variables such that
X �FSD Y . Then, if P (Y = t) = 0 for any t such that FX(t) < FY(t), there exists an
interval [a, b] such that P (Y ∈ [a, b]) > 0 and FX(t) < FY(t) for any t ∈ [a, b].

Proof: Let t0 be a point such that FX(t0) < FY(t0). Since both FX and FY are
right-continuous,

lim
ε→0

FY(t0 + ε) = FY(t0) > FX(t0) = lim
ε→0

FX(t0 + ε).

Then, there is ε > 0 such that:

FX(t0 + ε) ≤ FX(t0) +
FY(t0)− FX(t0)

2
< FY(t0).

Considering δ = FY(t0)−FX(t0)
2 > 0, then FY(t)− FX(t) ≥ δ > 0 for any t ∈ [t0, t0 + ε].

We have thus proven that there exists an interval [a, b] such that FY(t)− FX(t) ≥ δ > 0
for t ∈ [a, b]. Now, without loss of generality, we can assume that FY(a− ε) < FY(a) for
any ε > 0 (otherwise, since FY is right-continuous, take the point a∗ = inf(t : FY(t) =
FY(a))). Then, since P (Y = a) = 0, there exists ε > 0 such that FY(t)− FX(t) ≥ δ > 0
for any t ∈ [a− ε, b]. Furthermore:

P (Y ∈ [a− ε, b]) ≥ P (Y ∈ [a− ε, a]) ≥ P (Y ∈ (a− ε, a]) = FY(a)− FY(a− ε) > 0,

and this completes the proof.
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The following result had already been established in [14, Proposition 15.3.5]. How-
ever, the authors only gave a proof for continuous random variables. Here, we provide a
proof for any pair of random variables X and Y .

Proposition 3.46 Let X and Y be two real-valued independent random variables. Then,
X �FSD Y implies X �SP Y .

Proof: We have proven in Theorem 3.44 that E[FY(X)] ≥ E[FY(Y )] when X �FSD Y .
Then, if we prove that E[FX(Y )] < E[FY(Y )] we would obtain that:

P (X ≥ Y ) = E[FY(X)] ≥ E[FY(Y )] > E[FX(Y )] = P (Y ≥ X),

and consequently X �SP Y .

Let us prove that if X �FSD Y , then E[FX(Y )] < E[FY(Y )]. By hypothesis,
FX(t) ≤ FY(t) for every t, and there is t0 such that FX(t0) < FY(t0).

Let us consider two cases. On the one hand, let us assume that P (Y = t0) > 0. In
such a case:

E[FX(Y )] =
∫
FXdFY =

∫
R\{t0}

FXdFY +
∫
{t0}

FXdFY

≤
∫

R\{t0}
FYdFY + P (Y = t0)FX(t0)

On the other hand, assume that there is not t0 satisfying both FX(t0) < FY(t0) and
P (Y = t0) > 0. Applying the previous lemma, there is an interval [a, b] such that
FY(t)− FX(t) ≥ δ > 0 and P (Y ∈ [a, b]) > 0. Then:

E[FX(Y )] =
∫
FXdFY =

∫
R\[a,a+ε]

FXdFY +
∫

[a,a+ε]

FXdFY

≤
∫

R\[a,a+ε]

FYdFY +
∫

[a,a+ε]

(FY − δ) dFY

=
∫
FYdFY − δP (Y ∈ [a, a+ ε]) < E[FY(Y )]. �

A similar result was proven in [210] for probability dominance (see Remark 2.22);
nevertheless, that result was only valid for continuous random variables.

3.2.2 Continuous comonotonic and countermonotonic random
variables

Let X and Y be two random variables with respective cumulative distribution functions
FX and FY, and respective density functions fX and fY.
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First of all, let us study the relationship between first degree stochastic dominance
and statistical preference for comonotonic random variables.

Theorem 3.47 Let X and Y be two real-valued comonotonic and continuous random
variables. If X �FSD Y , then X �SP Y .

Proof: In Corollary 3.17 we have seen that X �SP Y if and only if∫
x:FX(x)<FY(x)

(fX(x) + fY(x))dx+
1
2

∫
x:FX(x)=FY(x)

(fX(x) + fY(x))dx ≥ 1.

However, by hypothesis FX(x) ≤ FY(x) for any x ∈ R. Then, {x : FX(x) ≤ FY(x)} = R,
and therefore:∫

x:FX(x)<FY(x)

(fX(x) + fY(x))dx+
1
2

∫
x:FX(x)=FY(x)

(fX(x) + fY(x))dx

=
∫
x:FX(x)≤FY(x)

(fX(x) + fY(x))dx− 1
2

∫
x:FX(x)=FY(x)

(fX(x) + fY(x))dx

=
∫

R
(fX(x) + fY(x))dx− 1

2

∫
x:FX(x)=FY(x)

(fX(x) + fY(x))dx

≥
∫

R
(fX(x) + fY(x))dx− 1 = 2− 1 = 1.

Thus, X is statistically preferred to Y .

Proposition 3.46 assures that for independent random variables, when first degree
stochastic dominance holds in the strict sense, statistical preference is also strict. As we
shall see, this also holds for continuous and comonotonic real-valued random variables.
in order to establish this, we give first the following lemma.

Lemma 3.48 Let X and Y be two continuous real-valued random variables. Then, if
X �FSD Y , there exists an interval [a, b] such that FX(t) < FY(t) for any t ∈ [a, b] and
P (X ∈ [a, b]) > 0.

Proof: From the proof of Lemma 3.45 we deduce that there is an interval [a, b] such
that FY(t)− FX(t) ≥ δ > 0 for any t ∈ [a, b]. Since FX is continuous, there is ε > 0 such
that FX(a− ε) < FX(a) and FY(t)− FX(t) ≥ δ

2 > 0 for any t ∈ [a− ε, b]. Then:

P (X ∈ [a− ε, b]) ≥ P (X ∈ [a− ε, a]) ≥ FX(a)− FX(a− ε) > 0.

Proposition 3.49 Let X and Y be two real-valued comonotonic and continuous random
variables. If X �FSD Y , then X �SP Y .
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Proof: On the one hand, sinceX �FSD Y , thenX �FSD Y , and consequentlyX �SP Y .
According to the previous lemma, there is an interval [a, b] such that FY(t)−FX(t) ≥ δ > 0
for any t ∈ [a, b] and P (X ∈ [a, b]) > 0. By Lemma 2.20, X �SP Y is equivalent to
P (X > Y ) > P (Y > X), and from Proposition 3.16 this is equivalent to:∫

x:FX(x)<FY(x)

fX(x)dx >
∫
x:FY(x)<FX(x)

fY(x)dx.

Now, take into account that the second part of the previous equation equals 0, since
{x : FY(x) < FX(x)} = ∅. In addition:∫

x:FX(x)<FY(x)

fX(x)dx ≥
∫

[a,b]

fX(x)dx = P (X ∈ [a, b]) > 0.

Thus, we conclude that X �SP Y .

When the random variables are countermonotonic, the relationship between the
(non-strict) first degree stochastic dominance and the (non-strict) statistical preference
also holds.

Theorem 3.50 Let X and Y be two real-valued countermonotonic and continuous ran-
dom variables. If X �FSD Y , then X �SP Y .

Proof: In Proposition 3.19 we have seen that X �SP Y if and only if FY(u) ≥ FX(u),
where u is one point such that FY(u) + FX(u) = 1. However, since X �FSD Y , it holds
that FX(x) ≤ FY(x) for every x ∈ R. In particular, it also holds that FX(u) ≤ FY(u).

Although it seems intuitive that the same relationship holds with respect to the
strict preferences, this is not the case for countermonotonic continuous random variables.
To see this, it suffices to consider the countermonotonic random variables X and Y whose
cumulative distribution functions of X and Y are defined by:

FX(t) =


0 if t < 0.
t if t ∈ [0, 1].
1 if t > 1.

(3.15)

FY(t) =


0 if t < −0.1.
1
2 t+ 0.05 if t ∈ [−0.1, 0.1).
t if t ∈ [0.1, 1].
1 if t > 1.

(3.16)

Since FX(t) = FY(t) for any t /∈ (−0.1, 0.1) and FX(t) < FY(t) for t ∈ (−0.1, 0.1), it
holds that X �FSD Y , but X ≡SP Y , since FX(u) + FY(u) = 1 for u = 1

2 and:

Q(X,Y ) = FY(u) = FY(0.5) =
1
2
.

Q(Y,X) = FX(u) = FX(0.5) =
1
2
.



3.2. Relationship between SD and SP 83

3.2.3 Discrete comonotonic and countermonotonic random vari-
ables with finite supports

Let us now assume that X and Y are discrete real-valued random variables with finite
support. Then, when these random variables are comonotonic, we obtain the following
result:

Theorem 3.51 If X and Y are two real-valued comonotonic and discrete random vari-
ables with finite supports, then X �FSD Y ⇒ X �SP Y .

Proof: Using Remark 3.24, we can assume w.l.o.g. that X and Y are defined in
(Ω,P(Ω), P ), where Ω = {ω1, . . . , ωn}, by X(ωi) = xi and Y (ωi) = yi, where xi ≤ xi+1

and yi ≤ yi+1 for any i = 1, . . . , n− 1, and also:

P (X = xi, Y = yi) = P (X = xi) = P (Y = yi) for any i = 1, . . . , n.

Moreover, using Proposition 3.25, X �SP Y if and only if∑
i:xi>yi

P (X = xi) ≥
∑

i:xi<yi

P (X = xi).

Let us show that {i : xi < yi} = ∅ when X �FSD Y . Assume that there exists k such
that X(ωk) = xk < yk = Y (ωk). Then:

FX(xk) = P (X ≤ X(xk)) ≥ P ({ω1, . . . , ωk}).
FY(xk) = P (Y ≤ X(xk)) ≤ P ({ω1, . . . , ωk−1}),

where last inequality holds since ωk /∈ {Y ≤ X(xk)} because Y (ωk) > X(ωk). Now,
since X �FSD Y , it holds that FX(xk) ≤ FY(xk):

P ({ω1, . . . , ωk}) ≤ FX(xk) ≤ FY(xk) ≤ P ({ω1, . . . , ωk−1}).

This implies that P ({ωk}) = P ({X = xk}) = 0, but a contradiction arises since
P ({ωk}) > 0. Then, we conclude that {i : xi > yi} = ∅, and consequently:∑

i:xi>yi

P (X = xi) ≥ 0 =
∑

i:xi<yi

P (X = xi).

Thus, X �SP Y .

Now, it only remains to see that, as for continuous random variables, strict stochas-
tic dominance implies strict statistical preference.

Proposition 3.52 Let X and Y be two real-valued discrete and countermonotonic ran-
dom variables with finite supports. Then, X �FSD Y implies X �SP Y .
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Proof: It is obvious thatX �FSD Y impliesX �FSD Y , and then, applying the previous
theorem, X �SP Y because {i : xi < yi} = ∅. Then, in order to prove that X �SP Y it
is enough to see that {i : xi > yi} 6= ∅, that is, there is some k such that xk > yk.

Since X �FSD Y , there is some k such that FX(yk) < FY(yk). Assume ex-absurdo
that {i : xi > yi} = ∅, so xi = yi for any i = 1, . . . , n. Since xi = yi and P (X = xi) =
P (Y = yi) = P (Y = xi), X and Y are equally distributed, and then X ≡FSD Y , a
contradiction.

Finally, let us consider discrete countermonotonic random variables with finite sup-
ports, and let us see that, in that case, first degree stochastic dominance also implies
statistical preference.

Theorem 3.53 Let X and Y be two real-valued discrete and countermonotonic random
variables with finite supports. Then, X �FSD Y implies X �SP Y .

Proof: From remark 3.32, without loss of generality we can assume that X and Y are
defined on (Ω,P(Ω), P ), where Ω = {ω1, . . . , ωn}, by X(ωi) = xi and Y (ωi) = yn−i+1,
where xi ≤ xi+1 and yi ≤ yi+1 for any i = 1, . . . , n− 1, and also:

P (X = xi, Y = yi) = P (X = xi) = P (Y = yn−i+1) for any i = 1, . . . , n.

Furthermore, we can also assume that

max(|X(ωi)−X(ωi+1)|, |Y (ωi)− Y (ωi+1)|) > 0 for any i = 1, . . . , n− 1;

and that there exists, at most, one element k such that X(ωk) = Y (ωk).

In order to prove that X �FSD Y ⇒ X �SP Y we consider two cases:

• Assume X(ωi) 6= Y (ωi) for any i = 1, . . . , n and denote k = max{i : X(ωi) <
Y (ωi)}. Then, by Proposition 3.33, X �SP Y if and only if:

P ({ω1}) + . . .+ P ({ωk}) ≤ P ({ωk+1}) + . . .+ P ({ωn}).

Since X �FSD Y , FX ≤ FY. Then, taking ε = Y (ωk)−X(ωk)
2 > 0, it holds that:

FX(X(ωk)) = P (X ≤ X(ωk)) ≥ P ({ω1, . . . , ωk}).
FY(X(ωk)) ≤ FY(Y (ωk)− ε) = P (Y ≤ Y ′(ωk)− ε}) ≤ P ({ωk+1, . . . , ωn}).

• Assume that there is (an unique) k such that X(ωk) = Y (ωk). Then:

FX(X(ωk−1)) = P (X ′ ≤ X ′(ωk−1)).
FY(X(ωk−1)) = P (Y ′ ≤ Y ′(ωk−1)).



3.2. Relationship between SD and SP 85

Since X(ωk−1) < Y (ωk−1), ωk−1 /∈ {Y ≤ X(ωk−1)}, and this implies that {Y ≤
X(ωk−1)} ⊆ {ωk, ωk+1, . . . , ωn}. Furthermore, {X ≤ X(ωk−1)} ⊇ {ω1, . . . , ωk−1},
and then

FX(X(ωk−1)) ≥ P ({ω1}) + . . .+ P ({ωk−1}).
We consider two cases:

– Assume that Y (ωk) = X(ωk−1). Then X(ωk) = Y (ωk) = X(ωk−1), and this
implies that ωk ∈ {X ≤ X(ωk−1)}. Then:

FX(X(ωk−1)) ≥ P ({ω1}) + . . .+ P ({ωk−1}) + P ({ωk}).
FY(Y (ωk−1)) = P ({ωk}) + P ({ωk+1}) + . . .+ P ({ωn}).

Using that X �FSD Y ,

P ({ω1}) + . . .+ P ({ωk−1}) ≥ P ({ωk+1}) + . . .+ P ({ωn}).

Applying Proposition 3.33, X �SP Y .
– On the other hand, if Y (ωk) 6≤ X(ωk−1), then it holds that {Y ≤ X(ωk−1)} ⊆
{ωk+1, . . . , ωn}. Hence:

FY(X(ωk−1)) = P (Y ≤ X(ωk−1)) ≤ P ({ωk+1}) + . . .+ P ({ωn})

and, since FX ≤ FY because X �FSD Y , it holds that:

P ({ωk+1}) + . . .+ P ({ωn})≥ P (Y ≤ X(ωk−1)) = FY(X(ωk−1))
≥ FX(X(ωk−1)) = P (Y ≤ X(ω1))
≥ P ({ωk+1}) + . . .+ P ({ωk−1}).

By Proposition 3.33, X �SP Y .

Unsurprisingly, strict first degree stochastic dominance does not imply strict statis-
tical preference, as we can see in the following example:

Example 3.54 Consider the countermonotonic random variables X and Y defined by:

X,Y 0 1 2
PX 0 0.2 0.8
PY 0.1 0.1 0.8

For these variables, X �FSD Y . From Remark 3.32 we can assume that X and Y are
defined in the probability space (Ω,P(Ω), P ), where Ω = {ω1, . . . , ω5}, and such that:

P ({ωi}) 0.2 0.6 0.1 0.1
Ω ω1 ω2 ω3 ω4

X 1 2 2 2
Y 2 2 1 0

Then, Q(X,Y ) = 0.5, and we conclude that X ≡SP Y .�
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3.2.4 Random variables coupled by an Archimedean copula

In this subsection we consider two continuous random variables X and Y , with respective
cumulative distribution functions FX, FY and with respective density functions fX and
fY. We assume that the random variables are coupled by an Archimedean copula C,
generated by the twice differentiable function ϕ.

First of all, we consider the case of a strict Archimedean copula. In that case, we
also obtain that first degree stochastic dominance implies that statistical preference.

Theorem 3.55 Let X and Y be two real-valued continuous random variables coupled by
a strict Archimedean copula C generated by the twice differentiable function ϕ . Then,
X �FSD Y implies X �SP Y .

Proof: From Theorem 3.34, X �SP Y if and only if:

E
[((

ϕ−1
)′

(ϕ(FX(X)) + ϕ(FY(X)))−
(
ϕ−1

)′
(2ϕ(FX(X)))

)
ϕ′(FX(X))

]
≥ 0,

or equivalently, if∫ ∞
−∞

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

≥
∫ ∞
−∞

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx.

This inequality holds because

X �FSD Y ⇒ FX(x) ≤ FY(x)
⇒ ϕ(FX(x)) ≥ ϕ(FY(x)) (ϕ is decreasing)
⇒ 2ϕ(FX(x)) ≥ ϕ(FX(x)) + ϕ(FX(x))

⇒

{ (
ϕ−1

)′ (2ϕ(FX(x))) ≥(
ϕ−1

)′ (ϕ(FX(x)) + ϕ(FX(x)))
(
(
ϕ−1

)′ is increasing)
⇒

{ (
ϕ−1

)′ (2ϕ(FX(x)))ϕ′(FX(x))fX ≤(
ϕ−1

)′ (ϕ(FX(x)) + ϕ(FX(x)))ϕ′(FX(x))fX(x)
(ϕ′ ≤ 0.)

Therefore, X is statistically preferred to Y .

Remark 3.56 When applying the previous result to the product copula, we obtain that
for continuous and independent random variables, X �FSD Y ⇒ X �SP Y . This is not
new for us, since Theorem 3.44 states that this relation holds, not only for continuous,
but any kind of independent random variables.�

Let us now investigate if such relationship also holds for the strict preference. For this
aim, we consider this preliminary lemma.
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Lemma 3.57 Let X and Y be two continuous random variables such that X �FSD Y .
Then, there exists an interval [a, b] such that FX(t) < FY(t) for any t ∈ [a, b], and also
P (X ∈ [a, b]) > 0 and(

ϕ−1
)′

(ϕ(FX(t)) + ϕ(FY(t)))ϕ′(FX(t))−
(
ϕ−1

)′
(2ϕ(FX(t)))ϕ′(FX(t)) ≥ δ > 0

for any t ∈ [a, b].

Proof: We have proven in Lemma 3.48 that there exists an interval [a, b] such that
FY(t) − FX(t) ≥ δ > 0 for any t ∈ [a, b] and P (X ∈ [a, b]) > 0. Then, there is a
subinterval [a1, b1] of [a, b] where FX is strictly increasing.

Now, following the same steps than in Theorem 3.55 we obtain that:

FX(t) < FY(t) for any t ∈ [a, b]⇒(
ϕ−1

)′ (ϕ(FX(t)) + ϕ(FY(t)))ϕ′(FX(t)) >(
ϕ−1

)′ (2ϕ(FX(t)))ϕ′(FX(t)) for any t ∈ [a1, b1].

Consider t ∈ [a1, b1] and let

ε =
(
ϕ−1

)′
(ϕ(FX(t)) + ϕ(FY(t)))ϕ′(FX(t))−

(
ϕ−1

)′
(2ϕ(FX(t)))ϕ′(FX(t)) > 0.

Then, there is a subinterval [a2, b2] of [a1, b1] such that(
ϕ−1

)′
(ϕ(FX(t)) + ϕ(FY(t)))ϕ′(FX(t))−

(
ϕ−1

)′
(2ϕ(FX(t)))ϕ′(FX(t)) ≥ ε

2
> 0.

Furthermore, since FX is strictly increasing in [a, b], it is also strictly increasing in [a2, b2],
and then P (X ∈ [a2, b2]) > 0.

Proposition 3.58 Consider two real-valued continuous random variables X and Y cou-
pled by a strict Archimedean copula C generated by ϕ. Then, X �FSD Y implies
X �SP Y .

Proof: We have to prove that:∫ ∞
−∞

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

>

∫ ∞
−∞

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx.

SinceX and Y are continuous, ifX �FSD Y , thenX �FSD Y , and consequentlyX �SP Y
by Theorem 3.55. Taking into account the previous lemma, there exists an interval [a, b]
such that P (X ∈ [a, b]) > 0 and:(

ϕ−1
)′

(ϕ(FX(t)) + ϕ(FY(t)))ϕ′(FX(t))−
(
ϕ−1

)′
(2ϕ(FX(t)))ϕ′(FX(t)) ≥ δ > 0
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for any t ∈ [a, b]. Then:∫ ∞
−∞

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

≥
∫

R−[a,b]

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

+
∫

[a,b]

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

>

∫
[a,b]

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

+
∫

[a,b]

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx+

∫
[a,b]

ε

2
fX(x)dx

=
∫ ∞
−∞

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx+

ε

2
P (X ∈ [a, b])

>

∫ ∞
−∞

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx.

Consequently, X �SP Y .

Remark 3.59 As we have already mentioned, in the particular case where the strict
Archimedean copula is the product, the relation X �FSD Y ⇒ X �SP Y was already
studied in Proposition 3.46. Such result states the relation not only for continuous, but
for every kind of independent random variables.�

It only remains to study the case of nilpotent copulas. In order to do this, we are
going to see the following lemma that assures that, over the assumption of X �FSD Y ,
the points x̄ and x̃, defined on Equations (3.12) and (3.13), respectively, satisfy x̄ ≤ x̃.

Lemma 3.60 Let X and Y be two real-valued continuous random variables coupled by a
nilpotent Archimedean copula C generated by ϕ. If X �FSD Y , then it holds that x̄ ≤ x̃.

Proof: First of all, recall that:

x̃ = inf{x | 2ϕ(FX(x)) ≤ ϕ(0)},
x̄ = inf{x : yx < x} and
yx = inf{y | ϕ(FX(x)) + ϕ(FY(y)) ∈ [0, ϕ(0))} for any x ∈ R.

Assume that x̃ < x̄. Then there exists a point t∗ such that x̃ < t∗ < x̄ and yt∗ > t∗.
Moreover, from the hypothesis X �FSD Y , it holds that

FX(t) ≤ FY(t)⇒ ϕ(FX(t)) ≥ ϕ(FY(t)) ∀t ∈ R.
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As x̃ < t∗, we know that 2ϕ(FX(t∗)) < ϕ(0). Therefore, we have that:

ϕ(FX(t∗)) + ϕ(FY(t∗)) ≤ 2ϕ(FX(t∗)) < ϕ(0).

Then,
yt∗ = inf{y | ϕ(FX(t∗)) + ϕ(FY(y)) < ϕ(0)} ≤ t∗.

Therefore, yt∗ > t∗ ≥ yt∗ , a contradiction. We conclude that x̃ ≥ x̄.

Using this lemma we can prove that first degree stochastic dominance also implies
statistical preference for continuous random variables coupled by a nilpotent Archimedean
copula.

Theorem 3.61 If X and Y are two real-valued continuous random variables coupled
by a nilpotent Archimedean copula whose generator ϕ is twice differentiable such that
ϕ′′ 6= 0, then X �FSD Y ⇒ X �SP Y .

Proof: From Lemma 3.60, x̄ ≤ x̃. Furthermore, FX(x) ≤ FY(x) for every x ∈ R. Then,
for every x ≥ x̃:

X �FSD Y ⇒ FX(x) ≤ FY(x)
⇒ ϕ(FX(x)) ≥ ϕ(FY(x)) (ϕ is decreasing)
⇒ 2ϕ(FX(x)) ≥ ϕ(FX(x)) + ϕ(FX(x))

⇒

{ (
ϕ−1

)′ (2ϕ(FX(x))) ≥(
ϕ−1

)′ (ϕ(FX(x)) + ϕ(FX(x)))
(
(
ϕ−1

)′ is increasing)
⇒

{ (
ϕ−1

)′ (2ϕ(FX(x)))ϕ′(FX(x))fX ≤(
ϕ−1

)′ (ϕ(FX(x)) + ϕ(FX(x)))ϕ′(FX(x))fX(x)
(ϕ′ ≤ 0.)

Therefore: ∫ ∞
x̄

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

≥
∫ ∞
x̃

(
ϕ−1

)′
(ϕ(FX(x)) + ϕ(FY(x)))ϕ′(FX(x))fX(x)dx

≥
∫ ∞
x̃

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx

≥
∫ ∞
x̃

(
ϕ−1

)′
(2ϕ(FX(x)))ϕ′(FX(x))fX(x)dx.

Applying Theorem 3.35, we deduce that X �SP Y .

Remark 3.62 Note that this result is not applicable to the Łukasiewicz copula, since
its generator is ϕW(t) = 1 − t, and then ϕ′′(t) = 0. However, we have already seen
in Theorem 3.50 that first degree stochastic dominance implies statistical preference for
continuous and countermonotonic random variables.�
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As in the countermonotonic case, the relationship between the strict preferences
does not hold. To see this, consider two continuous random variables X and Y whose cu-
mulative distribution functions are defined in Equations (3.15) and (3.16). If we consider
the generator ϕ(t) = 2(1−

√
t), such that ϕ(0) = 2, there is not (x, y) in the set:

{(x, y) : ϕ(FX(x)) + ϕ(FY(y)) ∈ [0, ϕ(0))} ⇒ FX(t) = FY(t),

such that either x ≤ 0.1 or y ≤ 0.1. Thus, whenever fX,Y > 0, fX,Y is symmetric. Then,
if (t, t) satisfies ϕ(FX(t)) + ϕ(FY(t)) ∈ [0, ϕ(0)), then FX(t) = FY(t). Consequently:

P (X > Y ) =
∫ ∞
−∞

∫ x

−∞
fX,Y(x, y)dy dx =

∫ ∞
−∞

∫ x

−∞
fX,Y(y, x)dy dx = P (Y > X).

and we conclude X and Y are statistically indifferent.

3.2.5 Other relationships between stochastic dominance and sta-
tistical preference

In the previous subsection we have seen several conditions under whichX �FSD Y implies
X �SP Y . Now, we analyze if there are other relationships between first and n-th degree
stochastic dominance and statistical preference.

We start by proving that statistical preference does not imply neither first nor n-th
degree stochastic dominance for any n ≥ 2.

Remark 3.63 There exist random variables X and Y such that:

1. X �SP Y but X 6�nSD Y , for every n ≥ 1.

2. X �nSD Y but X 6�SP Y , for every n ≥ 2.

3. X �FSD Y but X 6�SP Y .

4. X �FSD Y , X �nSD Y for any n ≥ 2 but X 6�FSD Y .

In Example 3.43 we gave two random variables such that Y �SP X but X �FSD Y .
Then, X �nSD Y for any n ≥ 1 and therefore Y 6�nSD X for any n ≥ 1. Thus, this is
an example where the first and third items hold.

Consider next random variables X and Y such that X follows a uniform distribution
in the interval (10, 11) and Y has the following density function:

fY(x) =


1
25 if 0 < x < 10,
3
5 if 11 < x < 12,
0 otherwise.
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For these random variables it holds that:

Q(X,Y ) = P (X > Y ) = P (Y < 10) =
2
5
<

1
2
,

and therefore Y �SP X. However, on the one hand, it is trivial that neither Y �FSD X
nor X �FSD Y . Moreover, X �nSD Y for every n ≥ 2:

G2
X(t) =


0 if t < 10.
(t−10)2

2 if t ∈ [10, 11).
t− 10.5 if t ≥ 11.

G2
Y(t) =



0 if t < 0.
t2

50 if t ∈ [0, 10).
2
5 t− 2 if t ∈ [10, 11).
1
10 (343− 62t+ 3t2) if t ∈ [11, 12).
t− 8.9 if t ≥ 12.

The graphs of these functions can be seen in Figure 3.1.

Figure 3.1: Graphics of the functions G2
X and G2

Y.

Then, X �SSD Y , and applying Equation (2.4), X �nSD Y for every n ≥ 2.

We have thus an example where Y �SP X and X �nSD Y for every n ≥ 2.

Let us see by means of an example that X �SP Y and X �nSD Y do not guarantee
X �FSD Y . To see that, it is enough to consider the independent random variables X
and Y defined by:

X 1 5

PX
1
2

1
2

Y 0 10

PY
9
10

1
10
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For these variables it holds that:

Q(X,Y ) = P (X > Y ) +
1
2
P (X = Y ) = P (X > Y ) = P (Y = 0) =

9
10

>
1
2
.

Thus X �SP Y . Furthermore, since the cumulative distribution functions are:

FX(t) =


0 if t < 1,
1
2 if t ∈ [1, 5),
1 if t ≥ 5.

FY(t) =


0 if t < 0,
9
10 if t ∈ [0, 10),
1 if t ≥ 10,

the functions G2
X and G2

Y are:

G2
X(t) =


0 if t < 1,
1
2 (t− 1) if t ∈ [1, 5),
t− 3 if t ≥ 5,

G2
Y(t) =


0 if t < 0,
9
10 t if t ∈ [0, 10),
t− 1 if t ≥ 10.

If we look at their graphical representations in Figure 3.2, we can see that X �SSD Y .
However,

FX(5) = 1 >
9
10

= FY(5),

whence X cannot stochastically dominate Y by first degree, i.e., X 6�FSD Y .�

Figure 3.2: Graphics of the functions G2
X and G2

Y.

Our next Theorem summarises the main results of this paragraph.

Theorem 3.64 Let X and Y be two random variables. X �FSD Y implies X �SP Y
under any of the following conditions:

• X and Y are independent.
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• X and Y are continuous and comonotonic random variables.

• X and Y are continuous and countermonotonic random variables.

• X and Y are discrete and comonotonic random variables with finite supports.

• X and Y are discrete and countermonotonic random variables with finite supports.

• X and Y are continuous random variables coupled by an Archimedean copula.

The relationships between stochastic dominance and statistical preference under the con-
ditions of the previous result are summarised in Figure 3.3.

Figure 3.3: General relationship between stochastic dominance and statistical preference.

3.2.6 Examples on the usual distributions

In this subsection we shall study the conditions we must to impose on the parameters
of some of the most important parametric distributions in order to obtain statistical
preference and stochastic dominance for independent random variables. We shall see
that for some of them, stochastic dominance and statistical preference are equivalent.
Some results in this sense have already been established in [56].

Discrete distributions under independence: Bernoulli

In the case of discrete distributions, we shall consider the Bernoulli distribution with
parameter p ∈ (0, 1), denoted by B(p), that takes the value 1 with probability p and the
value 0 with probability 1− p.

Proposition 3.65 Let X and Y be two independent random variables with distributions
X ≡ B(p1) and Y ≡ B(p2). Then:
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• Q(X,Y ) = 1
2 (p1 − p2 + 1), and

• X is statistically preferred to Y if and only if p1 ≥ p2.

Proof: Let us compute the expression of the probabilistic relation Q(X,Y ):

Q(X,Y ) = P (X > Y ) + 1
2P (X = Y )

= P (X = 1, Y = 0) + 1
2

(
P (X = 0, Y = 0) + P (X = 1, Y = 1)

)
= p1(1− p2) + 1

2 ((1− p1)(1− p2) + p1p2) = 1
2 (p1 − p2 + 1).

Then it holds that:

X �SP Y ⇔ Q(X,Y ) ≥ 1
2
⇔ 1

2
(p1 − p2 + 1) ≥ 1

2
⇔ p1 ≥ p2.

Thus, a necessary and sufficient condition for X �SP Y is that p1 ≥ p2, or equiv-
alently, E[X] ≥ E[Y ]. In fact, it is immediate that this condition is also necessary and
sufficient for X �FSD Y . Thus, first degree stochastic dominance is a complete relation
for Bernoulli distributions; as a consequence, the same applies to n-th degree stochastic
dominance, and therefore they are equivalent methods. This allows us to establish the
following corollary.

Corollary 3.66 Let X and Y be two independent random variables with Bernoulli dis-
tribution. Then:

X �FSD Y ⇔ X �nSD Y for any n ≥ 2⇔ X �SP Y ⇔ E[X] ≥ E[Y ].

Continuous distributions under independence

Next, we consider some of the most important families of continuous distributions: ex-
ponencial, beta, Pareto and uniform. In addition, due to the importance of the normal
distribution, we devote the next paragraph to its study; in that case we shall consider
other possibilities in addition to independent random variables.

Remark 3.67 Although the beta distribution depends on two parameters, p, q > 0, in
this work we shall consider the particular cases where one of the parameters equals 1,
as in [56]. The general case in which both parameters are greater than 1 is much more
complex, since the expression of the probabilistic relation is very difficult to obtain.

Analogously, the Pareto distribution depends on two parameters, a, b, and the den-
sity function is given by

f(x) =
aba

xa+1
, x > b.

As in [56] we will focus on the case b = 1.�
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Before starting, we recall in Table 3.3 the density functions and the parameters of the
distributions we study along this subsection.

Distribution Density function Parameters

Exponential λe−λx, x ∈ (0,∞) λ > 0

Uniform 1
b−a , x ∈ (a, b) a, b ∈ R, a < b

Pareto λx−(λ+1), x ∈ (1,∞) λ > 0

Beta Γ(p+q)
Γ(p)Γ(q)x

p−1(1− x)q−1, x ∈ (0, 1) p, q > 0

Table 3.3: Characteristics of the continuous distributions to be studied.

Proposition 3.68 Let X and Y be two independent random variables with exponential
distributions, X ≡ Exp(λ1) and Y ≡ Exp(λ2), respectively. Then:

• Q(X,Y ) =
λ2

λ1 + λ2
and

• X is statistically preferred to Y if and only if λ1 ≤ λ2.

Proof: We first prove that Q(X,Y ) =
λ2

λ1 + λ2
.

Q(X,Y ) = P (X > Y ) =
∫ ∞

0

λ1e
−λ1xdx

∫ x

0

λ2e
−λ2ydy =

∫ ∞
0

λ1e
−λ1x(1− e−λ2x)dx

=
∫ ∞

0

λ1e
−λ1xdx−

∫ ∞
0

λ1e
−(λ1+λ2)xdx = 1− λ1

λ1 + λ2
=

λ2

λ1 + λ2
.

Thus,

X �SP Y ⇔ Q(X,Y ) ≥ 1
2
⇔ λ2

λ1 + λ2
≥ 1

2
⇔ λ2 ≥ λ1.

Remark 3.69 The value of the probabilistic relation Q for independent and exponen-
tially distributed random variables was already studied in [56, Section 6.2.1]. However,
in such reference the authors made a mistake during the computations and found an
incorrect expression for the probabilistic relation.�

As with Bernoulli distributed random variables, statistical preference and stochastic
dominance are equivalent properties for exponential distributions. In this case, also
first degree stochastic dominance, and therefore the n-degree stochastic dominance, are
complete relations, and the can be reduced to the comparison of the expectations.
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Corollary 3.70 Let X and Y be two independent random variables with exponential
distribution. Then,

X �FSD Y ⇔ X �nSD Y for any n ≥ 2⇔ X �SP Y ⇔ E[X] ≥ E[Y ].

Next we focus on uniform distributions.

Proposition 3.71 Let X and Y be two independent random variables with uniform
distributions, U(a, b) and U(c, d) respectively.

1. If (a, b) ⊆ (c, d) then:

• Q(X,Y ) = 2b−c−d
2(b−a) and

• X �SP Y if and only if a+ b ≥ c+ d.

2. If c ≤ a < d ≤ b, X is always statistically preferred to Y , and its degree of preference
is Q(X,Y ) = 1− (d−a)2

2(b−a)(d−c) .

Proof:

1. Suppose that a ≤ c < d ≤ b. Then,

Q(X,Y ) = P (X > Y ) =
∫ b

d

1
b− a

dx+
∫ d

c

∫ x

c

1
b− a

1
d− c

dydx

= b−d
b−a +

∫ d

c

1
b− a

x− c
d− c

dx =
b− d
b− a

+
(d− c)2

2(d− c)(b− a)
=

2b− c− d
2(b− a)

.

Then, X �SP Y if and only if:

2b− c− d
2(b− a)

≥ 1
2
⇔ b+ a ≥ c+ d.

If c ≤ a < b ≤ d, we can similarly see that

Q(X,Y ) =
b+ a− 2c
2(d− c)

.

Thus, Q(X,Y ) ≥ 1
2 if and only if a+ b ≥ c+ d.

2. If c ≤ a < d ≤ b, it is easy to prove that X �FSD Y , and therefore X �SP Y . Let
us now compute the preference degree:

P (Y > X) =
∫ d

a

∫ y

a

dxdy
(b− a)(d− c)

=
∫ d

a

y − a
(b− a)(d− c)

dy =
(d− a)2

2(b− a)(d− c)
.

Then, Q(X,Y ) = 1−Q(Y,X) = 1− P (Y > X) = 1− (d−a)2

2(b−a)(d−c) .
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Remark 3.72 The value of the probabilistic relation Q for the uniform distribution was
already studied in [56]. However, the authors only focused on uniform distribution with
a fixed amplitude of the support, and the only parameter was the starting point of the
support. This is a particular case included in the last result, and in that case, as we
have seen, the random variable with the greatest minimum of the support stochastically
dominates the other one, and consequently it is also statistically preferred. �

For uniform distributions, first degree stochastic dominance and statistical prefer-
ence are not equivalent in general. In fact, first degree stochastic dominance does not
hold when the first case of the proof of the previous proposition holds. Nevertheless, we
can establish the following:

Corollary 3.73 Let X and Y be two independent random variables with uniform distri-
bution. It holds that:

X �FSD Y ⇒ X �SP Y ⇔ E[X] ≥ E[Y ].

We next focus on the family of Pareto distribution.

Proposition 3.74 Let X and Y be two independent random variables with Pareto dis-
tributions, X ≡ Pa(λ1) and Y ≡ Pa(λ2), respectively. Then:

• Q(X,Y ) = λ2
λ1+λ2

and

• X is statistically preferred to Y if and only if λ2 ≥ λ1.

Proof: First of all, let us determine the expression of Q:

Q(X,Y ) = P (X > Y ) =
∫ ∞

1

∫ x

1

λ1x
−λ1−1λ2y

−λ2−1dydx

=
∫ ∞

1

λ1x
−λ1−1

(
1− x−λ2

)
dx = 1− λ1

λ1 + λ2
.

Then,

X �SP Y ⇔ 1− λ1

λ1 + λ2
≥ 1

2
⇔ λ2 ≥ λ1.

As for exponential and Bernoulli distributions, the equivalence between first degree
stochastic dominance and statistical preference holds for Pareto distributions. In fact,
when the expectation of the random variables exists, first degree stochastic dominance
is equivalent to the comparison of the expectations. Hence, it is a complete relation, and
then n-th degree stochastic dominance is also complete and equivalent to first degree
stochastic dominance.
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Corollary 3.75 Let X and Y be two independent random variables with Pareto distri-
butions. Then:

X �FSD Y ⇔ X �nSD Y for any n ≥ 2⇔ X �SP Y.

Furthermore, if the parameter of X and Y are greater than 1, their expectation exists,
and in that case:

X �FSD Y ⇔ X �nSD Y for any n ≥ 2⇔ X �SP Y ⇔ E[X] ≥ E[Y ].

Concerning the beta distribution, we recall that its density function is given by

f(x) =

{
Γ(p+q)

Γ(p)Γ(q)x
p−1(1− x)q−1 if 0 < x < 1,

0 otherwise.
(3.17)

However, the results we investigate in this section fix the value of one of the parameters
to 1. We start by fixing q = 1. We obtain the following:

Proposition 3.76 Let X and Y be two independent random variables with beta distri-
butions, X ≡ β(p1, 1) and Y ≡ β(p2, 1), respectively. Then:

• Q(X,Y ) = p1
p1+p2

and

• X �SP Y if and only if p1 ≥ p2.

Proof: We first compute the expression of the relation Q.

Q(X,Y ) = P (X > Y ) =
∫ 1

0

∫ x

0

p1x
p1−1p2y

p2−1dydx =
∫ 1

0

p1x
p1−1xp2dx =

p1

p1 + p2
.

Then it holds that
X �SP Y ⇔

p1

p1 + p2
≥ 1

2
⇔ p1 ≥ p2.

Taking into account that the expectation of a beta distribution with parameter
q = 1 is p

p+1 , the equivalence between statistical preference and the comparison of the
expectations is clear. Furthermore, take into account that the cumulative distribution
function associated with a beta distribution with parameter q = 1 is given by:

F (x) =


0 if x ≤ 0.
xp if 0 < x < 1.
1 if x ≥ 1.
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Then, it is clear that stochastic dominance between two variables of this type can be
reduced to verifying which of the parameters p is greater. Finally, it is easy to check
that this is equivalent to take the variable with greater expectation. Thus, in this case
stochastic dominance, statistical preference and the comparison of expectations are also
equivalent.

Corollary 3.77 Let X and Y be two independent random variables with beta distribu-
tions with second parameter equal to 1. Then,

X �FSD Y ⇔ X �nSD Y for any n ≥ 2⇔ X �SP Y ⇔ E[X] ≥ E[Y ].

Finally, we consider beta distributions with p = 1.

Proposition 3.78 Let X and Y be two independent random variables with distributions
X ≡ β(1, q1) and Y ≡ β(1, q2), respectively. Then:

• Q(X,Y ) = q2
q1+q2

and

• X �SP Y if and only if q2 ≥ q1.

Proof: In order to prove the result, note that X ≡ β(1, q)⇔ 1−X ≡ β(q, 1):

F1−X(t) = P (1−X ≤ t) = 1− FX(1− t) = 1− [1− (1− (1− t))q] = tq.

Then, taking into account Proposition 3.3, X �SP Y ⇔ 1−Y �SP 1−X and Q(X,Y ) =
Q(1− Y, 1−X) = q2

q1+q2
, and using Proposition 3.76, statistical preference is equivalent

to q2 ≥ q1.

As in the previous case, since the expectation of a beta distribution with parameter
p = 1 is 1

1+q , the equivalence between stochastic dominance and statistical preference
also holds for beta distributions.

Corollary 3.79 Let X and Y be two independent random variables with beta distribu-
tions with first parameter equal to 1. Then,

X �FSD Y ⇔ X �nSD Y for any n ≥ 2⇔ X �SP Y ⇔ E[X] ≥ E[Y ].

The normal distribution

We now study normally distributed random variables. In this case we will not only
consider independent variables. Thus, we begin with the comparison of one-dimensional
distributions and then we shall consider the case of the comparison of the components
of a bidimensional random vector normally distributed.
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Proposition 3.80 Let X and Y be two independent and normally distributed random
variables, N(µ1, σ1) and N(µ2, σ2), respectively. Then, X will be statistically preferred
to Y if and only if µ1 ≥ µ2.

Proof: The relation Q takes the value (see [56, Section 7]):

Q(X,Y ) = FN(0,1)

(
µ1 − µ2√
σ2

1 + σ2
2

)
.

Then:

X �SP Y ⇔ Q(X,Y ) ≥ 1
2
⇔ FN(0,1)

(
µ1 − µ2√
σ2

1 + σ2
2

)
≥ 1

2
⇔ µ1 − µ2√

σ2
1 + σ2

2

≥ 0⇔ µ1 ≥ µ2.

Given two normally distributed random variablesX ∼ N(µ1, σ1) and Y ∼ N(µ2, σ2),
it holds that X �FSD Y if and only if they are identically distributed, µ1 = µ2 and
σ1 = σ2, (see [139]). Then, statistical preference is not equivalent to first degree stochas-
tic dominance for normal random variables.

For independent normal distributions, the variance of the variables are not im-
portant when studying statistical preference. For this reason, statistical preference is
equivalent to the criterium of maximum mean in the comparison of normal random vari-
ables:

Corollary 3.81 Consider two independent random variables X and Y normally dis-
tributed. It holds that:

X �FSD Y ⇒ X �SP Y ⇔ E[X] ≥ E[Y ].

Let us now consider a bidimensional random vector with normal distribution:(
X1

X2

)
≡ N

((
µ1

µ2

)
,

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

))
. (3.18)

Now, our aim is to compare the components X1 and X2 of this random vector. We obtain
the following result:

Theorem 3.82 Consider the random vector
(
X1

X2

)
normally distributed as in Equa-

tion (3.18). Then, it holds that:

• Q(X1, X2) = FN(0,1)

(
µ1−µ2√

σ2
1+σ2

2−2ρσ1σ2

)
.
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• X1 �SP X2 ⇔ µ1 ≥ µ2.

Proof: Applying the usual properties of the normal distributions, the distribution of
X1 −X2 is:

X1 −X2 = (1 − 1)
(
X1

X2

)
≡N

(
(1 − 1)

(
µ1

µ2

)
, (1 − 1)

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)(
1
−1

))
=N(µ1 − µ2, σ

2
1 + σ2

2 − 2ρσ1σ2),

where the second parameter is consider to be the variance instead of the standard devi-
ation. Then:

P (X1 > X2) = P (X1 −X2 > 0) = P

(
N(0, 1) > µ2−µ1√

σ2
1+σ2

2−2ρσ1σ2

)
= P

(
N(0, 1) < µ1−µ2√

σ2
1+σ2

2−2ρσ1σ2

)
= FN(0,1)

(
µ1−µ2√

σ2
1+σ2

2−2ρσ1σ2

)
.

Thus, X1 �SP X2 if and only if FN(0,1)

(
µ1−µ2√

σ2
1+σ2

2−2ρσ1σ2

)
≥ 1

2 .

This result is more general than Proposition 3.80, which corresponds to the case
ρ = 0. Moreover, in that case statistical preference is also equivalent to the comparison of
the expectations. However, the advantage of obtaining a degree of preference is obvious.
In fact, we have to recall the influence of the correlation coefficient ρ in the value of
the preference degree: although the preference between X1 and X2 is only based on
the comparison of the expectations (X1 �SP X2 ⇔ µ1 ≥ µ2), the value of ρ plays
an important role for the preference degree. For instance, the greater the correlation
coefficient, the greater the preference degree Q(X,Y ). For this reason, the greater the
correlation coefficient, the stronger the preference of X over Y .

In Table 3.4 we have summarised the results that we have obtained in this subsec-
tion.

As a summary, we have seen that for the some of usual distributions in independent
random variables, statistical preference is equivalent to the comparison of its expec-
tations, and in several cases, stochastic dominance and statistical preference are also
equivalent. Let us recall that, in particular, for the distributions we have studied that
belongs to the exponential family of distributions, stochastic dominance and statistical
preference are equivalent. We can conjecture that for independent random variables
whose distribution belong to the exponential family of distributions, statistical prefer-
ence and stochastic dominance are equivalent, and are also equivalent to the comparison
of the expectations.

Nevertheless, at this point, this is just a conjecture because it has not been proved
yet.
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Distributions Q(X1, X2) Condition

Xi ≡ B(pi), i = 1, 2 1
2

(
p1 − p2 + 1

)
p1 ≥ p2

Xi ≡ Exp(λi), i = 1, 2 λ2
λ1+λ2

λ2 ≥ λ1

X1 ≡ U(a, b), X2 ≡ U(c, d)

a ≤ c ≤ d < b 2b−c−d
2(b−a) a+ b ≥ c+ d

c < a < b ≤ d a+b−2c
2(d−c) a+ b ≥ c+ d

c ≤ a < d ≤ b 1− (d−a)2
2(d−c)(b−a) Always

Pa(λi), i = 1, 2 λ2
λ1+λ2

λ2 ≥ λ1

β(pi, 1), i = 1, 2 p1
p1+p2

p1 ≥ p2

β(1, qi), i = 1, 2 q2
q1+q2

q2 ≥ q1

N(µi, σi), i = 1, 2 FN(0,1)

(
µ1−µ2√
σ2
1+σ2

2

)
µ1 ≥ µ2

Table 3.4: Characterizations of statistical preference between independent random vari-
ables included in the same family of distributions.

Although during this paragraph we have assumed independence for non-normally
distributed variables, there are other cases of interest. For instance, in [32] the case of
comonotonic and countermonotonic random variables are studied. In particular, Propo-
sition 3.65, that assures that

X �SP Y ⇔ X �nSD Y ⇔ E[X] ≥ E[Y ] for any n ≥ 1

for independent random variables with Bernoulli distribution, could be easily extended
to Bernoulli distributed random variables, taking into account the possible dependence
relationship between them.

3.3 Comparison of n variables by means of the statis-
tical preference

So far, we have investigated several properties of stochastic dominance and statistical
preference as pairwise comparison methods. However, a natural question arises: can
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we employ those methods for the comparison of more than two variables? On the one
hand, stochastic dominance was defined as a pairwise comparison method, based on the
direct comparison of the cumulative distribution functions, or their iterative integrals.
As we already mentioned, stochastic dominance allows for incomparability. Thus, if
incomparability can happen when comparing two distribution functions, it should be
more frequent when comparing more than two. Then, stochastic dominance does not
seem to be a good alternative for the comparison of more than two variables.

On the other hand, statistical preference has an important drawback: its lack of
transitivity. The idea of statistical preference is to consider X preferred to Y when it
provides greater utility the majority of times. As such, it is close to the rule of majority
in voting systems; taking into account Condorcet’s paradox (see [40]) it is not difficult
to see that statistical preference is not transitive. When De Schuymer et al. ([55, 57])
introduced this notion, they provided an example to illustrate this fact; another one can
be found in [67, Example 3].

Example 3.83 ([57, Section 1]) As in Example 3.10, consider the following dice:

A= {1, 3, 4, 15, 16, 17},
B = {2, 10, 11, 12, 13, 14}, (3.19)

and also the dice
C = {5, 6, 7, 8, 9, 18},

where by dice we mean a discrete and uniformly distributed random variable. We consider
the game consisting on rolling the three dice simultaneously, so that the dice whose number
is greater wins the game. Thus, A, B and C can be seen as independent random variables.

If we compute the probabilistic relation Q for these dices we obtain the following
results:

Q(A,B) = 5
9 ⇒ A �SP B.

Q(B,C) = 25
36 ⇒ B �SP C.

Q(C,A) = 7
12 ⇒ C �SP A.

Hence, dice A is statistically preferred to dice B, dice B is statistically preferred to dice
C but dice C is statistically preferred to dice A, that is, there is a cycle, as we can see
in Figure 3.4.�

This fact is known as the cycle-transitivity problem, and it has already been studied
by some authors, like De Shuymer et al. ([14, 15, 16, 49, 54, 56, 57, 58]) and Martinetti
et al. ([122]).

This shows that statistical preference could not be adequate when we want to com-
pare more than two random variables, precisely because it is based on pairwise compar-
isons.
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Figure 3.4: Probabilistic relation for the three dices.

Since both stochastic dominance and statistical preference do not seem to be ade-
quate methods for the comparison of more than two variables, our aim in this section is
to provide a generalisation of the statistical preference for the comparison of n random
variables, based on a extension of the probabilistic relation defined in Equation (2.7).
After introducing the main definition, we shall investigate its properties, its possible
characterizations and its connection with the “usual” statistical preference, as well as its
possible relationships with stochastic dominance.

3.3.1 generalisation of the statistical preference

First of all we are going to analyze the case of three random variables, as in the dice
example, and later we shall generalise our definition to the case of n random variables.

Let us consider three random variables denoted by X, Y and Z defined on the
probability space (Ω,A, P ). We can decompose Ω in the following way:

Ω = {X > max(Y,Z)} ∪ {Y > max(X,Z)} ∪ {Z > max(X,Y )}
∪ {X = Y > Z} ∪ {X = Z > Y } ∪ {Y = Z > X} ∪ {X = Y = Z} (3.20)

Obviously, {X > max(Y, Z)} denotes the subset of Ω formed by the elements ω ∈ Ω
satisfying X(ω) > max(Y (ω), Z(ω)), and similarly for the others. In what remains we
will use the short way in order to simplify the notation.

This is a decomposition of Ω into pairwise disjoint subsets, i.e., a partition of Ω. As
a consequence,

1 = P (X > max(Y,Z)) + P (Y > max(X,Z)) + P (Z > max(X,Y )) + P (X = Y > Z)
+ P (X = Z > Y ) + P (Y = Z > X) + P (X = Y = Z). (3.21)
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Since our goal is to define the degree in which X is preferred to Y and Z, we can
define Q2(X, [Y,Z]) by the following equation:

Q2(X, [Y,Z]) = P (X > max(Y, Z))
+ 1

2

(
P (X = Y > Z) + P (X = Z > Y )

)
+ 1

3P (X = Y = Z).

This generalises Equation (2.7). Furthermore, if we considerQ2(Y, [X,Z]) andQ2(Z, [X,Y ]),
given by:

Q2(Y, [X,Z]) = P (Y > max(X,Z)) +
1
2
(
P (X = Y > Z) + P (Y = Z > X)

)
+

1
3
P (X = Y = Z);

Q2(Z, [X,Y ]) = P (Z > max(X,Y )) +
1
2
(
P (X = Z > Y ) + P (Y = Z > X)

)
+

1
3
P (X = Y = Z);

using the partition of Ω showed in Equation (3.20) and Equation (3.21), it can be shown
that:

Q2(X, [Y,Z]) +Q2(Y, [X,Z]) +Q2(Z, [X,Y ]) = 1.
In this sense, following the idea of De Schuymer et al. ([55, 57]), X can be considered
preferred to Y and Z if

Q2(X, [Y,Z]) ≥ max{Q2(Y, [X,Z]), Q2(Z, [X,Y ])}.
Moreover, X is preferred to Y and Z with degree Q2(X, [Y,Z]).

More generally, we can consider a set of alternatives D formed by some random
variables defined on the same probability space. Then, we can consider the map:

Qn : D ×Dn → [0, 1],

defined by:

Qn(X, [X1, . . . , Xn]) = Prob{X > max(X1, . . . , Xn)}

+
1
2

n∑
i=1

Prob{X = Xi > max(Xj : j 6= i)}

+
1
3

∑
1≤i<j≤n

Prob{X = Xi = Xj > max(Xk : k 6= i, j)}

+ . . .+
1

n+ 1
Prob{X = X1 = . . . = Xn}.

Equivalently, the relation Qn can be expressed by:

Qn(X, [X1, . . . , Xn]) = ∑
k = 0, . . . , n

1 ≤ i1 < . . . < ik ≤ n

1
k + 1

P (X = Xi1 = . . . = Xik > max
j 6=i1,...,ik

(Xj)), (3.22)
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where {i1, . . . , ik} denotes any ordered subset of k-elements of {1, . . . , n}. Note that
this formula is the generalisation of the probabilistic relation defined on Equation (2.7),
since for n = 1 we obtain the expression of such probabilistic relation. We can interpret
the value of Qn(X, [X1, . . . , Xn]) as the degree in which X is preferred to X1, . . . , Xn.
Consequently, the greater the value of Qn(X, [X1, . . . , Xn]) the stronger the preference
of X over X1, . . . , Xn. The relation Qn allows to define the concept of general statistical
preference.

Definition 3.84 Let X,X1, . . . , Xn be n+1 random variables. X is statistically preferred
to X1, . . . , Xn, and it is denoted by X �SP [X1, . . . , Xn], if

Qn(X, [X1, . . . , Xn]) ≥ max
i=1,...,n

Qn(Xi, [X, {Xj : j 6= i}]). (3.23)

As it was the case for statistical preference, this generalisation uses the joint distribution
of the variables, and thus takes into account the stochastic dependencies between them.
Moreover, the relation Qn provides a degree of preference of a random variable with
respect to the others, and through this we can establish which is the preferred random
variable, the second preferred random variable, etc. For instance, if Qn(Xi, [X, {Xj : j 6=
i}]) ≥ Qn(Xj , [X, {Xj : j 6= i}]) for every i > j and Equation (3.23) holds, then X is the
preferred random variable, X1 is the second preferred random variable and, in general,
Xi is the i+ 1 preferred random variable, with their respective degrees of preference.

Example 3.85 If we consider the dices defined on Equation (3.19) and apply the general
statistical preference to find the preferred dice, we obtain the following preference degrees:
Q2(X, [Y, Z]) = 0.4167; Q2(Y, [X,Z]) = 0.3472; and Q2(Z, [X,Y ]) = 0.2361. Thus, X is
the preferred dice with degree 0.4167; Y is the second preferred dice with degree 0.3472;
and Z is the less preferred dice with degree 0.2361.�

3.3.2 Basic properties

In this subsection we investigate some basic properties of the general statistical pref-
erence. The first part is devoted to the study of the relationships between pairwise
statistical preference and general preference. Similarly, we also establish a connection
between Q(· , ·) and Qn(· , [·]). Finally, we generalise Proposition 3.39 and Theorem 3.40,
where we showed the connection between statistical preference and the median, for the
general statistical preference and establish a characterization of this notion.

Consider random variables X,X1, . . . , Xn. In our first result we prove that general
statistical preference sometimes offers a different preferred random variable than pair-
wise statistical preference. This is because general statistical preference uses the joint
distribution of all the variables, while pairwise statistical preference only takes into ac-
count their bivariate distributions, and consequently it does not use all the available
information.
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Proposition 3.86 Let X,X1, . . . , Xn be n+ 1 random variables. It holds that:

• There are X,X1, . . . , Xn random variables such that X �SP Xi for every i =
1, . . . , n and Xj �SP [X,Xi : i 6= j] for some j ∈ {1, . . . , n}.

• There are X,X1, . . . , Xn random variables such that Xi �SP X for every i =
1, . . . , n and X �SP [X1, . . . , Xn].�

Proof: Let us consider the first statement. To see that the implication does not hold
in general, consider n = 2 and the independent random variables X,X1 and X2 defined
by:

X 3 5
PX 0.5 0.5

X1 0 5
PX1 0.5 0.5

X2 2 6
PX2 0.51 0.49

For these variables it holds that Q(X,X1) = 0.625 and Q(X,X2) = 0.51, and conse-
quently X �SP X1 and X �SP X2. However,

Q2(X, [X1, X2]) = 0.31875.
Q2(X1, [X,X2]) = 0.19125.
Q2(X2, [X,X1]) = 0.49.

Thus, X2 �SP [X,X1].

Consider now the second statement. Consider n = 2 and the independent dices
X,X1 and X2 defined by:

X = {1, 2, 4, 6, 17, 18}.
X1 = {3, 7, 9, 12, 14, 16}.
X2 = {5, 8, 10, 11, 13, 15}.

It holds that X1 �SP X and X2 �SP X, since Q(X,X1) = 7
18 and Q(X,X2) = 13

36 .
However, if we compute the relation Q2(·, [·]) we obtain the following:

Q2(X, [X1, X2]) = 73
216 .

Q2(X1, [X,X2]) = 72
216 .

Q2(X2, [X,X1]) = 71
216 .

Consequently, X �SP [X1, X2].

Next we prove that Qn(X, [X1, . . . , Xn]) is always lower than or equal to Q(X,Xi).

Proposition 3.87 Let us consider the random variables X,X1, . . . , Xn. It holds that:

Qn(X, [X1, . . . , Xn]) ≤ Q(X,Xi) for every i = 1, . . . , n.

Consequently, if Qn(X, [X1, . . . , Xn]) ≥ 1
2 , then X �SP [X1, . . . , Xn] and X �SP Xi for

every i = 1, . . . , n.
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Proof: Recall that Q(X,Xi) = P (X > Xi) + 1
2P (X = Xi). It holds that:

{X > Xi} ⊇
⋃

k = 0, . . . , n− 1
i1, . . . , ik 6= i

{
X = Xi1 = . . . = Xik > max

j 6=i,i1,...,ik
(Xi, Xj)

}
.

Moreover, the previous sets are pairwise disjoint, and consequently:

P (X > Xi) ≥
∑

k = 0, . . . , n− 1
i1, . . . , ik 6= i

P

(
X = Xi1 = . . . = Xik > max

j 6=i,i1,...,ik
(Xi, Xj)

)
.

Similarly:

{X = Xi} ⊇
⋃

k = 0, . . . , n− 1
i1, . . . , ik 6= i

{
X = Xi = Xi1 = . . . = Xik > max

j 6=i,i1,...,ik
(Xj)

}
.

Since these sets are pairwise disjoint,

P (X = Xi) ≥
∑

k = 0, . . . , n− 1
i1, . . . , ik 6= i

P

(
X = Xi = Xi1 = . . . = Xik > max

j 6=i1,...,ik
(Xj)

)
.

Consequently, we obtain that:

Q(X,Xi) = P (X > Xi) + 1
2P (X = Xi) ≥∑

k = 0, . . . , n− 1
i1, . . . , ik 6= i

P (X = Xi1 = . . . = Xik > max
j 6=i,i1,...,ik

(Xi, Xj))+

1
2

∑
k = 0, . . . , n− 1
i1, . . . , ik 6= i

P (X = Xi = Xi1 = . . . = Xik > max
j 6=i1,...,ik

(Xj)) ≥

∑
k = 0, . . . , n

i1, . . . , ik ∈ {1, . . . , n}

1
k + 1

P (X = Xi1 = . . . = Xik > max
j 6=i1,...,ik

(Xj)) =

Qn(X, [X1, . . . , Xn]).

We conclude that Q(X,Xi) ≥ Qn(X, [X1, . . . , Xn]). Consequently, if

Qn(X, [X1, . . . , Xn]) ≥ 1
2

then X �SP [X1, . . . , Xn] and X �SP Xi for every i = 1, . . . , n.

Next we establish the connection between the probabilistic relation Q(· , ·) and
Qn(· , [·]).
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Proposition 3.88 Let X, X1, . . . , Xn be n + 1 random variables defined on the same
probability space. It holds that

Qn(X, [X1, . . . , Xn])−Q(X,max(X1, . . . , Xn)) =
n∑
k=2

(
1

k + 1
− 1

2

) ∑
1 ≤ i1 < . . . < ik ≤ n

ij 6= il ∀j 6= l

P (X = Xi1 = . . . = Xik > max
l 6=i1,...,ik

(Xl)).

Proof: Consider the expression of Q(X,max(X1, . . . , Xn)):

Q(X,max(X1, . . . , Xn)) = P (X > max(X1, . . . , Xn))+

1
2

(
n∑
k=1

∑
1 ≤ i1 < . . . < ik ≤ n

ij 6= il ∀j 6= l

P (X = Xi1 = . . . = Xik > max
l 6=i1,...,ik

(Xl))

)
.

Using Equation (3.22), Qn(X, [X1, . . . , Xn]) can be expressed by:

Qn(X, [X1, . . . , Xn]) = P (X > max(X1, . . . , Xn))+
n∑
k=1

1
k + 1

∑
1 ≤ i1 < . . . < ik ≤ n

ij 6= il ∀j 6= l

P (X = Xi1 = . . . = Xik > max
l 6=i1,...,ik

(Xl)).

The result follows simply by making the difference between both expressions.

From this result we deduce that

Qn(X, [X1, . . . , Xn]) ≤ Q(X,max(X1, . . . , Xn)). (3.24)

Then, if X �SP [X1, . . . , Xn] holds with degree Qn(X, [X1, . . . , Xn]) ≥ 1
2 , we obtain

X �SP max(X1, . . . , Xn).

Moreover,there are situations where the inequality of Equation (3.24) becomes an
equality. To see this, let us introduce the following notation:

X−i = {Xj : j 6= i}.

Corollary 3.89 Under the conditions of the previous proposition, if for every k ∈
{1, . . . , n} and for every 1 ≤ i1 < . . . < ik it holds that

P (X = Xi1 = . . . = Xik > max(Xj : j 6= i1, . . . , ik)) = 0, (3.25)

then
Qn(X, [X1, . . . , Xn]) = Q(X,max(X1, . . . , Xn)).
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Furthermore, if for every k ∈ {1, . . . , n} and for every 1 ≤ i1 < . . . < ik ≤ n it holds that

P (Xi1 = . . . = Xik > max(X,Xj : j 6= i1, . . . , ik)) = 0, (3.26)

then
Qn(Xi, [X,X−i]) = Q(Xi,max(X,X−i)),

for every i = 1, . . . , n.

In particular, the previous result holds when the random variables satisfy, P (X = Xi) =
P (X = Xj) = 0 for every i 6= j, as is for instance the case with discrete random variables
with pairwise disjoint supports.

Finally, let us generalise Theorem 3.40 and to provide a characterization of general
statistical preference. For this aim we consider random variables X,X1, . . . , Xn satisfy-
ing Equations (3.25) and (3.26) for every k ∈ {0, . . . , n} and every 1 ≤ 1i < . . . < ik ≤ n.
Although this restriction will be imposed also in Theorems 3.91, 3.95 and Lemma 3.94, it
is not too restrictive. In fact, it is satisfied by discrete random variables with pairwise dis-
joint supports or absolutely continuous random vectors (X,X1, . . . , Xn). Consequently,
we can understand it as a technical condition.

Theorem 3.90 Let X, X1, . . . , Xn be n + 1 real-valued random variables defined on
the same probability satisfying Equations (3.25) and (3.26). Then, X �SP [X1, . . . , Xn]
holds if and only if

FX−max(X1,...,Xn)(0) ≤ FXi−max(X,X−i)(0) for every i = 1, . . . , n.

Proof: The probabilistic relation Q(X,Y ) can by expressed by:

Q(X,Y ) = 1− FX−Y(0) +
1
2
P (X = Y ).

Thus, using this expression and applying Corollary 3.89 it holds that:

Qn(X, [X1, . . . , Xn]) = Q(X,max(X1, . . . , Xn)) = 1− FX−max(X1,...,Xn)(0)

+
1
2
P (X = max(X1, . . . , Xn)) = 1− FX−max(X1,...,Xn)(0).

Similarly, we can compute the value of Qn(Xi, [X,X−i]):

Qn(Xi, [X,X−i]) = 1− FXi−max(X,X−i)(0).

Therefore, X �SP [X1, . . . , Xn] if and only if:

1− FX−max(X1,...,Xn)(0) ≥ 1− FXi−max(X,X−i)(0),
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or equivalently,
FX−max(X1,...,Xn)(0) ≤ FXi−max(X,X−i)(0)

for every i = 1, . . . , n.

Thus, given random variables X,X1, . . . , Xn in the conditions of the previous result,
to find the preferred one by computing the values of Qn(·, [·]) is equivalent to comparing
the values of FX−max(X1,...,Xn)(0) and FXi−max(X,X−i)(0) for i = 1, . . . , n.

3.3.3 Stochastic dominance Vs general statistical preference

In Section 3.2 we saw that in a number of cases first degree stochastic dominance implies
statistical preference for real-valued random variables. Now we investigate the connection
between stochastic dominance and general statistical preference. Again, we shall consider
different cases: on the one hand, independent and comonotonic random variables, for
which we shall obtain an equivalent expression for Qn(·, [·]). On the other hand, we
shall consider random variables coupled by Archimedean copulas. Recall that we omit
countermonotonic random variables since, as we already said, the Łukasiewicz operator
is not a copula for n ≥ 2. Finally, we also investigate the relationships between the nth
degree stochastic dominance and general statistical preference.

Independent and comonotonic random variables

Let us begin our study with the case of independent real-valued random variables. In
this case, by generalizing Theorem 3.44, we deduce that first degree stochastic dominance
implies general statistical preference.

Theorem 3.91 Let us consider X, X1, . . . , Xn independent real-valued random vari-
ables satisfying Equations (3.25) and (3.26). Then, if X �FSD Xi for i = 1, . . . , n,
implies X �SP [X1, . . . , Xn].

Proof: Since we are under the hypotheses of Corollary 3.89, we deduce that:

Qn(X, [X1, . . . , Xn]) = Q(X,max(X1, . . . , Xn)) and
Qn(Xi, [X,X−i]) = Q(Xi,max(X,X−i)),

for every i = 1, . . . , n. Therefore, X �SP [X1, . . . , Xn] if and only if:

P (X ≥ max(X1, . . . , Xn)) ≥ P (Xi ≥ max(X,X−i)), i = 1, . . . , n.

Note that, since X, X1, . . . , Xn are independent, we also have that:

• X and max(X1, . . . , Xn) are independent.
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• Xi and max(X,X−i) are independent.

Now, we have to remark that, if U1 and U2 are two independent random variables
with respective cumulative distribution functions FU1 and FU2 , Lemma 3.11 assures that
P{U1 ≥ U2} = E[FU2(U1)].

Applying this result, we deduce that:

P (X ≥ max(X1, . . . , Xn)) = E(Fmax(X1,...,Xn)(X)) = E(FX1(X) . . . FXn(X)).

Similarly,

P (Xi ≥ max(X,X−i)) =E(Fmax(X,X−i)(Xi))
=E[FX(Xi)

∏
j 6=i FXj(Xi)] ≤ E[

∏n
j=1 FXj(Xi)],

where last inequality holds since FX ≤ FXi . Finally, since X �FSD Xi, Equation (2.6)
assures that E[h(X)] ≥ E[h(Xi)] for any increasing function h. In particular, we may
consider the increasing function

h(t) =
n∏
j=1

FXj(t).

Therefore,

P (X ≥ max(X1, . . . , Xn)) =E(FX1(X) . . . FXn(X))
≥E[

∏n
j=1 FXj(Xi)] ≥ P (Xi ≥ max(X,X−i)),

or equivalently,
Q(X,max(X1, . . . , Xn)) ≥ Q(Xi,max(X,X−i)).

We conclude that X �SP [X1, . . . , Xn].

Now we shall see that, as with statistical preference for independent random vari-
ables, strict first degree stochastic dominance also implies strict general statistical pref-
erence. For this aim, we need to establish the following lemma.

Lemma 3.92 Consider n + 1 independent real-valued random variables X,X1, . . . , Xn

satisfying Equations (3.25) and (3.26) such that X �FSD Xi for i = 1, . . . , n. The
following statements hold:

1. There is t∗ such that FX(t∗) < FXi(t
∗) and FXj(t

∗) > 0 for any j 6= i.

2. If P (Xi = t) = 0 for any t satisfying the first point, then there exists an interval
[a, b], and ε > 0 such that:

n∏
j=1

FXj(t)− FX(t)−
∏
j 6=i

FXj(t) ≥ ε > 0,

and P (Xj ∈ [a, b]) > 0.
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Proof: Let us prove the first statement. Ex-absurdo, assume that for any t such that
FX(t) < FXi(t), there exist j1, . . . , jk such that FXj1

(t) = FXjk
(t) = 0 < FXj(t) for any

j 6= j1, . . . , jk, and therefore FX(t) = 0. Since the cumulative distribution functions
are right-continuous, there is t∗ such that 0 = FX(t) < FXi(t) for any t < t∗ and
0 < FX(t∗) ≤ FXj(t

∗) for any j = 1, . . . , n. Then:

P (X = t∗) > 0, P (Xj1 = t∗) > 0, . . . , P (Xjk = t∗) > 0.

Hence:

P (X = Xj1 = . . . = Xjk > Xj : j 6= j1, . . . , jk) ≥
P (X = Xj1 = . . . = Xjk = t∗ > Xj : j 6= j1, . . . , jk) > 0,

and this contradicts Equation (3.25). We conclude that there exists at least t∗ such that
FX(t∗) < FXi(t

∗) and FXj(t
∗) > 0 for any j 6= i.

Let us now check the second statement. Let t∗ be a point such that FX(t∗) <
FXi(t

∗) and FXj(t
∗) > 0 for any j 6= i. Following the same steps as in Lemma 3.45

we can prove that the existence of an interval [a, b] including t∗ and δ > 0 such that
FXi(t) − FX(t) ≥ δ > 0 for any t ∈ [a, b] and P (Xi ∈ [a, b]) > 0. Furthermore, since
by hypothesis P (Xi = t) = 0 for any t ∈ [a, b], FXi should be strictly increasing in a
subinterval [a1, b1] of [a, b].

Now, consider a point t0 in the interval [a1, b1]. Since all the FXj , for j = 1, . . . , n,
and FX are right-continuous:

limε→0

∏n
j=1 FXj(t0 + ε) =

∏n
j=1 FXj(t0) > FX(t0)

∏
j 6=i FXj(t0)

= limε→0 FX(t0 + ε)
∏
j 6=i FXj(t0 + ε).

Then, there is ε > 0, and can we assume ε ≤ b1 − t0, such that:

FX(t0 + ε)
∏
j 6=i FXj(t0 + ε)≤ FX(t0)

∏
j 6=i FXj(t0) +

∏n
j=1 FXj (t0)−FX(t0)

∏
j 6=i FXj (t0)

2

<
∏n
j=1 FXj(t0).

Taking δ′ =
∏n
j=1 FXj (t0)−FX(t0)

∏
j 6=i FXj (t0)

2 > 0, then:

n∏
j=1

FXj(t)− FX(t)
∏
j 6=i

FXj(t) ≥ δ′ > 0

for any t ∈ [t0, t0 + ε]. Moreover, since FXi is strictly increasing in [a, b], it is also strictly
increasing in [t0, t0 + ε], and therefore P (Xi ∈ [t0, t0 + ε]) > 0.

Proposition 3.93 Let X,X1, . . . , Xn be n+ 1 independent real-valued random variables
satisfying Equations (3.25) and (3.26). Then, if X �FSD Xi for any i = 1, . . . , n it holds
that X �SP [X1, . . . , Xn].
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Proof: Since X �FSD Xi implies X �FSD Xi, we know that X �SP [X1, . . . , Xn]. Tak-
ing into account the previous result, it suffices to prove that E[FX(Xi)

∏
j 6=i FXj(Xi)] <

E[
∏n
j=1 FXj(Xi)] for i = 1, . . . , n, since this implies that:

Qn(X, [X1, . . . , Xn]) ≥ Qn(Xi, [X,X−i]) for i = 1, . . . , n.

Using the previous lemma, we can assume there is t0 such that FX(t0) < FXi(t0) and
FXj(t0) > 0 for any j 6= i.

Consider two cases:

• Assume that P (Xi = t0) > 0. Then:

E

FX(Xi)
∏
j 6=i

FXj(Xi)

=
∫
FX(Xi)

∏
j 6=i

FXjdFXi

=
∫

R\{t0}
FX(Xi)

∏
j 6=i

FXjdFXi +
∫
{t0}

FX(Xi)
∏
j 6=i

FXjdFXi

≤
∫

R\{t0}

n∏
j=1

FXjdFXi + P (Xi = t0)FX(Xi)(t0)
∏
j 6=i

FXj(t0)

<

∫
R\{t0}

n∏
j=1

FXjdFXi + P (Xi = t0)
n∏
j=1

FXj(t0)

=
∫

R\{t0}

n∏
j=1

FXjdFXi +
∫
{t0}

n∏
j=1

FXjdFXi

=E

 n∏
j=1

FXj(Xi)

 .

• Assume now that there is not t0 satisfying the conditions and such that P (Xi =
t0) = 0. By the previous lemma, there is an interval [a, b] and ε > 0 such that

n∏
j=1

FXj(t)− FX(t)
∏
j 6=i

FXj(t) ≥ ε > 0



3.3. Comparison of n variables by means of the statistical preference 115

for any t ∈ [a, b] and P (Xi ∈ [a, b]) > 0. Then:

E

FX(Xi)
∏
j 6=i

FXj(Xi)

=
∫
FX(Xi)

∏
j 6=i

FXjdFXi

=
∫

R\[a,b]
FX(Xi)

∏
j 6=i

FXjdFXi +
∫

[a,b]

FX(Xi)
∏
j 6=i

FXjdFXi

≤
∫

R\[a,b]

n∏
j=1

FXjdFXi +
∫

[a,b]

 n∏
j=1

FXj − ε

 dFXi

=
∫ n∏

j=1

FXjdFXi + εP (Xi ∈ [a, b] < E

 n∏
j=1

FXj(Xi)

 . �
We have seen thatX �FSD Xi for any i = 1, . . . , n, implies thatX �SP [X1, . . . , Xn]

when the random variables are independent. Since general statistical preference is based
on the joint distribution, and as a consequence takes into account the possible stochastic
dependencies between the variables, we are going to study a number of cases where the
variables are not independent. In the remainder of this subsection we shall focus on
comonotonic random variables.

In Equation (3.6) of Proposition 3.16 we saw that the probabilistic relation Q(X,Y )
for two continuous and comonotonic random variables is given by:

Q(X,Y ) =
∫
x:FX(x)<FY(x)

fX(x)dx+
1
2

∫
x:FX(x)=FY(x)

fX(x)dx,

where fX denotes the density function of X.

In a similar manner, we can extend this expression to the functional Qn(· , [·]). In
order to do this, we must first introduce the notion of Dirac-delta functional. Let us
consider the function Ha : R→ [0, 1] given by:

Ha(x) =

{
0 if x < a.

1 if x ≥ a.

The Dirac-delta functional δa (see [66]) associated to Ha is an application that satisfies:

• δa(t) = 0 for every t 6= a and

•
∫

R
δa(t)dt = 1.

In such a case, it holds that:

Ha(x) =
∫ x

−∞
δa(t)d(t) for every x ∈ R. (3.27)
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This functional is not a real-valued function because it does not take a real value in a. It
plays the role of the density function for a probability distribution that takes the value
a with probability 1, and we shall use it in the proof of the following lemma.

Lemma 3.94 Let X,X1, . . . , Xn be absolutely continuous and comonotonic real-valued
random variables satisfying Equation (3.25). Then

Qn(X, [X1, . . . , Xn]) =
∫
x:FX(x)<FX1 (x),...,FXn (x)

fX(x)d(x).

Proof: By Corollary 3.89, it holds that:

Qn(X, [X1, . . . , Xn]) = P (X > max(X1, . . . , Xn)).

Since the random variables are comonotonic, their joint distribution function F is given
by:

F (x, x1, . . . , xn) = min(FX(x), FX1(x1), . . . , FXn(xn))

for every x, x1, . . . , xn ∈ R. Let us compute the distribution function of max(X1, . . . , Xn)
and X, denoted by F ∗:

F ∗(x, y) = P (X ≤ x,max(X1, . . . , Xn) ≤ y)
= P (X ≤ x,X1,≤ y, . . . , Xn ≤ y) = F (x, y, . . . , y).

Thus, this distribution function can be expressed by:

F ∗(x, y) = F (x, y, . . . , y) = min(FX(x), FX1(y), . . . , FXn(y))

=

{
FX(x) if FX(x) ≤ min(FX1(y), . . . , FXn(y)).
min(FX1(y), . . . , FXn(y)) if FX(x) > min(FX1(y), . . . , FXn(y)).

Equivalently,

F ∗(x, y) =

{
FX(x) if y ≥ h−1](FX(x)),
min(FX1(y), . . . , FXn(y)) if y < h−1](FX(x)),

where h−1] denotes the pseudo-inverse of the function h given by:

h(y) = min(FX1(y), . . . , FXn(y)) for every y ∈ R.

Note that the pseudo-inverse is well-defined since h is an increasing function. Now,
∂F∗

∂x (x, y) = 0 for every (x, y) satisfying y < h−1](FX(x)). Moreover, if we restrict to the
points (x, y) such that y ≥ h−1](FX(x)), we obtain that:

∂F ∗

∂x
(x, y) = fX(x).



3.3. Comparison of n variables by means of the statistical preference 117

Thus, if we assume that:

∂F ∗

∂x
(x, y) =

{
0 if y < h−1](FX(x)),
fX(x) if y ≥ h−1](FX(x)),

then:
∂2F ∗

∂x∂y
(x, y) = fX(x)δ

(
y − h−1](FX(x))

)
.

As this distribution plays the role of the density function of max(X1, . . . , Xn) and X,
using Equation (3.27) we can compute the value of Qn(X, [X1, . . . , Xn]):

Qn(X, [X1, . . . , Xn]) = P (X > max(X1, . . . , Xn))

=
∫

R

∫
R
fX(x)δ

(
y − h−1](FX(x))

)
Ix>y(y)dydx

=
∫

R

∫
R
fX(x)δ

(
y − h−1](FX(x))

)
lim
n
I{x−y≥1/n}(y)dydx

=
∫

R
lim
n

∫ x−1/n

−∞
fX(x)δ

(
y − h−1](FX(x))

)
dydx

=
∫

R
lim
n
fX(x)I{x−1/n≥h−1](FX(x))}(x)dydx

=
∫

R
fX(x)I{x>h−1](FX(x))}(x)dydx

=
∫
{FX(x)<FX1 (x),...,FXn (x)}

fX(x)dx,

where the last equality holds applying the Theorem of Monotone Convergence.

Theorem 3.95 Let X,X1, . . . , Xn be n+1 absolutely continuous and comonotonic real-
valued random variables satisfying Equations (3.25) and (3.26). If X �FSD Xi for i =
1, . . . , n, then X �SP [X1, . . . , Xn]. Moreover, in that case Qn(X, [X1, . . . , Xn]) = 1.

Proof: Since X �FSD Xi for every i = 1, . . . , n, then FX(x) ≤ FXi(x) for every x ∈ R
and i = 1, . . . , n. Applying the previous lemma we obtain that:

Qn(Xi, [X,X−i]) =
∫
{FXi (x)<,FX(x),FXj (x):j 6=i}

fXi(x)dx = 0.

Thus, Qn(X, [X1, . . . , Xn]) > Qn(Xi, [X,X−i]) = 0 for every i = 1, . . . , n. Since

Qn(X, [X1, . . . , Xn]) +
n∑
i=1

Qn(Xi, [X,X−i]) = 1,
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it holds that:
Qn(X, [X1, . . . , Xn]) = 1.

Then, X �SP [X1, . . . , Xn].

Let us now investigate the case in which the random variables X, X1,. . . ,Xn are
comonotonic and discrete with finite supports. When n = 1, De Meyer et al. proved
(see Proposition 3.20) that the supports of the variables can be expressed by SX =
{x1, . . . , xm} and SX1 = {x(1)

1 , . . . , x
(1)
m } such that

P (X = xi, X1 = x
(1)
i ) = P (X = xi) = P (X1 = x

(1)
i ) for any i = 1, . . . ,m.

We are going to prove the a similar expression can be found when n ≥ 2.

Lemma 3.96 Let X,X1, . . . , Xn be n + 1 discrete and countermonotonic real-valued
random variables with finite supports. Then, their supports can be expressed by

SX = {x1, . . . , xm}, SX1 = {x(1)
1 , . . . , x(1)

m }, . . . , SXn = {x(n)
1 , . . . , x(n)

m }, (3.28)

and

P (X = xi, X1 = x
(1)
i , . . . , Xn = x

(n)
i ) = P (X = xi) = . . . = P (Xn = x

(n)
i ), (3.29)

for any i = 1, . . . , n.

Proof: We apply induction on n. First of all, when n = 1, this lemma becomes
Proposition 3.20. Assume then that the result holds for n − 1. Consider the variables
X,X1, . . . , Xn. Apply the induction hypothesis on X,X1, . . . , Xn−1. Then, the supports
of these variables can be expressed as in Equation (3.28), and they also satisfy Equa-
tion (3.29). Now, apply Proposition 3.20 to X (with the new support) and Xn. Then,
if in this process we duplicate an element xi, we also duplicate the elements x(j)

i for any
j = 1, . . . , n− 1, and we adapt the probabilities in order to obtain the equalities:

P (X = xi) = P (Xn = x
(1)
i ) = . . . = P (Xn = x

(n)
i ).

Finally, let us prove that

P (X = xi, X1 = x
(1)
i , . . . , Xn = x

(n)
i ) = P (X = xi).

For this aim, note that

FX(xj) = P (X = x1) + . . .+P (X = xj) = P (Xi = x
(i)
1 ) + . . .+P (Xi = x

(i)
j ) = FXi(x

(i)
j )

for any j = 1, . . . ,m and i = 1, . . . , n. Then:

FX,X1,...,Xn(xi0 , x
(1)
i1
, . . . , x

(n)
in

) = min(FX(xi0), FX1(x(1)
i1

), . . . , FXn(x(n)
in

))
= min(FX(xi0), FX(x(1)

i1
), . . . , FX(x(n)

in
))

= FX(mink=0,...,n(xik)).
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In particular, when i0 = i1 = . . . , in, the previous expression becomes:

FX,X1,...,Xn(xi, x
(1)
i , . . . , x

(n)
i ) = FX(xi).

Now, consider (xi0 , x
(1)
i1
, . . . , x

(n)
in

), and assume that there are k, l such that ik 6= il. Since
in the proof of Proposition 3.20 (see [54, Proposition 2]) it is showed that P (Xk =
x

(k)
ik
, Xl = x

(l)
il

) = 0, we deduce that:

P (X = xi0 , X1 = x
(1)
i1
, . . . , Xn = x

(n)
in

) ≤ P (Xk = x
(k)
ik
, Xl = x

(l)
il

) = 0.

Consequently:

P (X = xi, Xi = x
(1)
i , . . . , Xi = x

(n)
i ) = F (xi, x

(1)
i , . . . , x

(n)
i )− F (xi−1, x

(1)
i−1, . . . , x

(n)
i−1).

= FX(xi)− FX(xi−1) = P (X = xi). �

Next result gives an expression of the probabilistic relation, generalizing Equation (3.8).

Proposition 3.97 Consider n+1 discrete and comonotonic real-valued random variables
X, X1, . . . , Xn with finite supports. Applying the previous lemma, we can assume that
the supports are expressed as in Equation (3.28) satisfying Equation (3.29). Then:

Qn(X, [X1, . . . , Xn]) =
n∑
i=1

P (X = xi)δi,

where

δi =



0, if xi > x
(1)
i , . . . , x

(n)
i .

1
2 , if xi = x

(j)
i > x

(k)
i , for any k 6= j.

1
3 , if xi = x

(j1)
i = x

(j2)
i > x

(k)
i , for any k 6= j1, j2.

. . .
1
n , if xi = x

(1)
i = . . . = x

(n)
i .

Proof: Taking into account Equation (3.29), it holds that:

P (X > X1, . . . , Xn) =
m∑
i0=1

. . .

m∑
in=1

P (X = xi0 , X1 = x
(1)
i1
, . . . , Xn = x

(n)
in

)I
xi0>x

(1)
i1
,...,x

(n)
in

=
m∑
i=1

P (X = xi, X1 = x
(1)
i , . . . , Xn = x

(n)
i )I

xi>x
(1)
i ,...,x

(n)
i
.
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Similarly:

P (X = Xl1 = . . . = Xlk > Xj : j 6= l1, . . . , lk)

=
m∑
i0=1

. . .

m∑
in=1

P (X = xi0 , X1 = x
(1)
i1
, . . . , Xn = x

(n)
in

)IA

=
m∑
i=1

P (X = xi, X1 = x
(1)
i , . . . , Xn = x

(n)
i )IB ,

where A and B are defined by:

A = {xi0 = x
(l1)
il1

= . . . = x
(lk)
ilk

> x
(j)
ij

: j 6= l1, . . . , lk} and
B = {xi = x

(l1)
i = . . . = x

(lk)
i > x

(j)
i : j 6= l1, . . . , lk}.

Then:
Qn(X, [X1, . . . , Xn]) =∑

k = 0, . . . , n
1 ≤ i1 < . . . < ik ≤ n

1
k + 1

P (X = Xi1 = . . . = Xik > max
j 6=i1,...,ik

(Xj))

=
m∑
i=1

n∑
i=1

P (X = xi)δi. �

Remark 3.98 In this result we have not imposed Equations (3.25) and (3.26), and thus,
it is applicable for all discrete comonotonic random variables with finite supports.�

Using this lemma, we can prove that when the random variables are comonotonic and
discrete with finite supports, first degree stochastic dominance also implies general sta-
tistical preference.

Theorem 3.99 Let X,X1, . . . , Xn be n + 1 discrete comonotonic real-valued random
variables with finite supports. Then X �FSD Xi for i = 1, . . . , n implies X �SP

[X1, . . . , Xn].

Proof: Using the previous lemma, the supports of X,X1,. . . , Xn can be expressed as in
Equation (3.28) satisfying Equation (3.29). If X �FSD Xi, we have seen in the proof of
Theorem 3.51 that {i : xi < x

(j)
i } = ∅ for j = 1, . . . , n. Using the previous proposition:

Qn(Xi, [X,X−i])

=
∑

k = 0, . . . , n− 1
1 ≤ i1 < . . . < ik ≤ n

1
k + 1

P (Xi = X = Xi1 = . . . = Xik > max
j 6=i,i1,...,ik−1

(Xj))

≤
∑

k = 0, . . . , n
1 ≤ i1 < . . . < ik ≤ n

1
k + 1

P (X = Xi1 = . . . = Xik > max
j 6=i1,...,ik

(Xj)) = Q(X,Y ),
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and this for any i = 1, . . . , n. Then, X �SP [X1, . . . , Xn].

Finally, let us prove that when X is strictly preferred to any Xi with respect to
first degree stochastic dominance, it is also preferred to [X1, . . . , Xn] with respect to the
general statistical preference.

Proposition 3.100 Let X,X1, . . . , Xn be n + 1 discrete comonotonic real-valued ran-
dom variables with finite supports. Then X �FSD Xi for i = 1, . . . , n implies X �SP

[X1, . . . , Xn].

Proof: Let us prove that Qn(X, [X1, . . . , Xn]) > Qn(Xi, [X,X−i]) for i = 1, . . . , n.
From the proof of the previous result, it suffices to prove that there are k and l such that

xk = x
(j1)
k = . . . = x

(jl)
k > x

(i)
k , x

(j)
k , such that j 6= i, j1, . . . , jl.

Since X �FSD Xi, there is x(i)
k such that FX(x(i)

k ) < FXi(x
(i)
k ). Furthermore:

FXi(x
(i)
k ) = P (Xi = x

(i)
1 )+ . . .+P (Xi = x

(i)
k ) = P (X = x1)+ . . .+P (X = xk) = FX(xk).

Then, xk > x
(i)
k . Then, there is l such that

xk = x
(j1)
k = . . . = x

(jl)
k > x

(i)
k , x

(j)
k , such that j 6= i, j1, . . . , jl,

and this proves that Qn(X, [X1, . . . , Xn]) > Qn(Xi, [X,X−i]), for i = 1, . . . , n. Hence
X �SP [X1, . . . , Xn].

Random variables coupled by Archimedean copulas

Consider n + 1 absolutely continuous random variables X,X1, . . . , Xn coupled by an
Archimedean copula C with generator ϕ. In that case, Equation (2.9) implies that the
joint distribution function, F , is given by:

F (x, x1, . . . , xn) = ϕ−1]
(
ϕ(FX(x)) + ϕ(FX1(x1)) + . . .+ ϕ(FXn(xn))

)
.

Let us try to differentiate this function.

∂F

∂x
(x, x1, . . . , xn) =(

ϕ−1]
)′ (

ϕ(FX(x)) + ϕ(FX1(x1) + . . .+ ϕ(FXn(xn)))
)
ϕ′(FX(x))fX(x).

Note that
(
ϕ−1]

)
(t)′ equals

(
ϕ−1

)′ (t) whenever t ∈ [0, ϕ(0)), and
(
ϕ−1]

)
(t)′ = 0 other-

wise. If we continue differentiating with respect to x1, . . . , xn, we obtain the following
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expression:

∂2F
∂x∂x1

(x, x1, . . . , xn) =
(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x1) + . . .+ ϕ(FXn(xn))

)
· ϕ′(FX(x))ϕ′(FX1(x1))fX(x)fX1(x1).
. . .

∂n+1F
∂x∂x1...∂xn

(x, x1, . . . , xn) =
(
ϕ−1]

)(n+1)
(
ϕ(FX(x)) + ϕ(FX1(x1) + . . .

+ϕ(FXn(xn))
)
ϕ′(FX(x))

∏n
i=1 ϕ

′(FXi(xi))fXi(xi)fX(x).

Thus, function f(x, x1, . . . , xn) = ∂n+1F
∂x∂x1...∂xn

(x, x1, . . . , xn) is the density function of
X,X1, . . . , Xn whenever f 6= 0, since it is the n+1 derivative of F , and the n+1 integral
over Rn+1 equals 1. In addition, f becomes the density function of Equation (3.10). Note
that f 6= 0 when

(
ϕ−1]

)(n+1)
(t) > 0 for some t ∈ R. Moreover, if f is the joint density,

P (X = Xi) = P (Xi = Xj) = 0 for every i, j (i 6= j). Consequently, for such variables it
holds that:

Qn(X, [X1, . . . , Xn]) = P (X > max(X1, . . . , Xn))
= P (X ≥ max(X1, . . . , Xn)) = Q(X,max(X1, . . . , Xn)).

Using the joint density function f , we can prove the following result.

Theorem 3.101 Let X, X1, . . . , Xn be n + 1 absolutely continuous random variables
coupled by an Archimedean copula C generated by ϕ, that satisfies

(
ϕ−1]

)(n+1) 6= 0.
Then, if X �FSD Xi for every i = 1, . . . , n, then X �SP [X1, . . . , Xn].

Proof: We know that X �SP [X1, . . . , Xn] if and only if

P (X ≥ max(X1, . . . , Xn)) ≥ P (Xi ≥ max(X,X−i)),

for every i = 1, . . . , n. Let us compute P (X ≥ max(X1, . . . , Xn)).

P (X ≥ max(X1, . . . , Xn)) =
∫

R

∫ x

−∞
. . .

∫ x

−∞
f(x, x1, . . . , xn)dxn . . . dx1dx

=
∫

R

(
ϕ−1]

)′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ′(FX(x))fX(x)dx.

If we consider

u =
(
ϕ−1]

)′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
,

dv = ϕ′(FX(x))fX(x)dx,

and we make a change of variable, we obtain the following expression:

P (X ≥ max(X1, . . . , Xn)) =

1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FX(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx.
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Now, since X �FSD Xi, then FX ≤ FXi , and consequently, as ϕ(FX(x)) ≥ ϕ(FXi(x)) (ϕ
is decreasing), ϕ′ is negative and

(
ϕ−1

)′′ is positive, it holds that:
P (X ≥ max(X1, . . . , Xn)) ≥

1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FXi(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx.

Following the same lines we can also find the expression of P (Xi ≥ max(X,X−i)):

P (Xi ≥ max(X,X−i)) =

1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FXi(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx.

We conclude that:

P (X ≥ max(X1, . . . , Xn)) ≥ P (Xi ≥ max(X,X−i)),

and consequently X �SP [X1, . . . , Xn].

Finally, let us see that when the Archimedean copula is strict, strict statistical first
degree stochastic dominance also implies strict statistical preference.

Proposition 3.102 Let X, X1, . . . , Xn be n+1 absolutely continuous random variables
coupled by an strict Archimedean copula C generated by ϕ, that satisfies

(
ϕ−1]

)(n+1) 6= 0.
Then, if X �FSD Xi for every i = 1, . . . , n, then X �SP [X1, . . . , Xn].

Proof: By Lemma 3.48, since X �FSD Xi, there is an interval [a, b] such that FX(t) <
FXi(t) for any t ∈ [a, b] and P (Xi ∈ [a, b]) > 0. Furthermore, we can assume that FXi is
strictly increasing in such interval (otherwise it suffices to consider a subinterval of [a, b]
where this function is strictly increasing).

We have seen in the previous proof that

P (X ≥ max(X1, . . . , Xn)) =

1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FX(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx
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and

P (Xi ≥ max(X,X−i)) =

1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FXi(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx.

Then, in order to prove that Qn(X, [X1, . . . , Xn]) > Qn(Xi, [X,X−i]), it suffices to prove
that:

1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FX(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx

> 1−
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FXi(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx,

or equivalently:∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FX(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx

<

∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) + ϕ(FX1(x)) + . . .+ ϕ(FXn(x)))

)
ϕ(FXi(x))

·
(
ϕ′(FX(x))fX(x) +

n∑
i=1

ϕ′(FXi(x))fXi(x)
)

dx.

By the proof of the previous theorem, we know that:∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FX(x))′ϕ(FX(x))fX(x)dx ≤

∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FX(x))′ϕ(FXi(x))fXi(x)dx

and∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXj(x))′ϕ(FX(x))fXj(x)dx ≤

∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXj(x))′ϕ(FXi(x))fXj(x)dx.
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Now, let us see that for j = i, the previous inequality is strict. For any t ∈ [a, b]:

FXi(t) < FX(t)
ϕ decr.

=⇒ ϕ(FXi(t)) > ϕ(FX(t))
ϕ′<0
=⇒ ϕ′(FXi(t))ϕ(FXi(t)) < ϕ′(FX(t))ϕ(FX(t))
(ϕ−1)′′<0

=⇒
(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ′(FXi(t))ϕ(FXi(t)) >

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ′(FX(t))ϕ(FX(t)).

Then, there is ε > 0 and [a1, b1] ⊆ [a, b] such that

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ′(FXi(t))ϕ(FXi(t))−

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ′(FX(t))ϕ(FX(t)) ≥ ε > 0

for any t ∈ [a1, b1]. Then:∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXi(x))′ϕ(FXi(x))fXi(x)dx =∫

R\[a1,b1]

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXi(x))′ϕ(FXi(x))fXi(x)dx

+
∫

[a1,b1]

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXi(x))′ϕ(FXi(x))fXi(x)dx

≥
∫

R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXi(x))′ϕ(FX(x))fXi(x)dx+∫

[a1,b1]

εfXi(x)dx =∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXi(x))′ϕ(FX(x))fXi(x)dx+

εP (Xi ∈ [a1, b1]) >∫
R

(
ϕ−1]

)′′ (
ϕ(FX(x)) +

n∑
k=1

ϕ(FXk(x))
)
ϕ(FXi(x))′ϕ(FX(x))fXi(x)dx.

Therefore, Qn(X, [X1, . . . , Xn]) > Qn(Xi, [X,X−i]), and then we can conclude that
X �SP [X1, . . . , Xn].

We have seen several situations where X �FSD Xi∀i = 1, . . . , n implies X �SP

[X1, . . . , Xn]. However, this implication does not hold in general, as we can see in the
following example.
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Example 3.103 We have seen in Example 3.43 two random variables X and Y such
that X �FSD Y and Y �SP X. These random variables were defined by:

X/Y 0 1 2
0 0.2 0.15 0
1 0 0.2 0.15
2 0.2 0 0.1

It holds that Q(X,Y ) = 0.45. Let us modify this example to show that if there is a
random variable X that stochastically dominates any other random variables, it may not
be the preferred with respect to the general statistical preference. Consider X1, . . . , Xn

equally distributed such that they take a fixed value c < 0 with probability 1. Since X
and Y greater than X1, . . . , Xn with probability one, X �FSD Xi for i = 1, . . . , n, and it
holds that:

Qn+1(X, [Y,X1, . . . , Xn]) = P (X > max(Y,X1, . . . , Xn))
+ 1

2P (X = Y > max(X1, . . . , Xn))
= P (X > Y ) + 1

2P (X = Y ) = Q(X,Y ) = 0.45.

Similarly, Qn+1(Y, [X,X1, . . . , Xn]) = Q(Y,X) = 0.55. Therefore, X �FSD Y , X �FSD

Xi for i = 1, . . . , n but X 6�SP [Y,X1, . . . , Xn].�

To conclude this section we are going to see that if we relax the conditions of Theo-
rems 3.91, 3.95, 3.99 or 3.101, then statistical preference does not hold in general. In
particular, we replace the hypothesis X �FSD Xi by X �SP Xi for some i, and we prove
that X is not necessarily the preferred variable.

Example 3.104 Consider the absolutely continuous random variables X, X1, . . . , Xn,
whose density functions are given by:

fX(t) = I(2,3)

fX1(t) = 0.6 · I(1,2)(t) + 0.4 · I(3,4)(t).
fX2(t) = I(2,3)

fXi(t) = I(0,1) for any i = 3, . . . , n.

It holds that X �SP Xi for every i = 1, . . . , n and X �FSD Xi for every i = 2, . . . , n, but
X 6�FSD X1. Moreover,

Qn(X1, [X,X−1]) = P (X1 ∈ (3, 4)) = 0.4.
Qn(X, [X1, . . . , Xn]) = Q(X2, [X,X−2]).
Qn(Xi, [X,X−i]) = 0 for any i = 3, . . . , n.

Since the sum of these values is 1:

Qn(X, [X1, . . . , Xn]) = Q(X2, [X,X−2]) =
1
2

(1−Qn(X1, [X,X−i])) = 0.3,

and therefore X1 is not the preferred random variable with respect to the general statistical
preference.�
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Thus, Theorems 3.91, 3.95, 3.99 and 3.101 cannot be extended to any general situations.

3.3.4 General statistical preference Vs nth degree stochastic dom-
inance

In the previous section we established conditions for first degree stochastic dominance to
imply general statistical preference. Next we shall investigate the possible relationships
between the mth degree stochastic dominance and the general statistical preference.

Consider random variables X,X1, . . . , Xn and assume that X ≥mSD Xi (m ≥ 2) for
every i = 1, . . . , n. We shall study if under those conditions X �SP [X1, . . . , Xn]. To see
that this is not necessarily the case, consider the absolutely continuous random variables
whose density functions are given by:

fX(t) = I(5,6)(t).
fX1(t) = 0.4 · I(0,1)(t) + 0.6 · I(6,7)(t).
fXi(t) = I(−1,0)(t) for every i = 2, . . . , n.

Then X ≥mSD Xi for every i = 1, . . . , n. In fact, X �FSD Xi for every i = 2, . . . , n.
However, X is not statistically preferred to [X1, . . . , Xn]:

Qn(X, [X1, . . . , Xn]) = P (X > max(X1, . . . , Xn)) = P (X1 ∈ (0, 1)) = 0.4.
Qn(X1, [X,Xj : j 6= 1]) = P (X1 > max(X,Xj : j 6= 1)) = P (X1 ∈ (6, 7))=0.6.
Qn(Xi, [X,Xj : j 6= i]) = 0 for any i = 2, . . . , n.

Note that due to the definition of the density functions, the values of the relation Qn are
independent of the possible dependence among the random variables. Thus, we conclude
that, for m ≥ 2:

X ≥mSD Xi for every i = 1, . . . , n does not imply X �SP [X1, . . . , Xn].

Assume on the other hand that X �SP [X1, . . . , Xn] and let us investigate whether if
X ≥mSD Xi for some m ≥ 1. To see that this is not the case, consider the absolutely
continuous random variables with density functions

fX(t) = 0.4 · I(0,1)(t) + 0.6 · I(2,3)(t).
fXi(t) = I(1,2)(t) for every i = 1, . . . , n.

X �SP [X1, . . . , Xn], because:

Qn(X, [X1, . . . , Xn]) = P (X > max(X1, . . . , Xn)) = P (X ∈ (2, 3)) = 0.6.

However, X does not stochastically dominate Xi by the mth degree for any m ≥ 1, since
FX(t) > FXi(t) for every t ∈ (0, 1), and consequently GmX (t) > GmXi

(t) for every m ≥ 2
and t ∈ (0, 1).
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We conclude that X �SP [X1, . . . , Xn] does not imply that exists m ≥ 1 such that
X ≥mSD Xi for every i = 1, . . . , n. This generalises Remark 3.63, where we saw that
there is not a general relationship between the nth degree stochastic dominance and the
pairwise statistical preference.

Remark 3.105 Let us note that if X, X1, . . . , Xn are n + 1 random variables such
that X �SP max(X1, . . . , Xn) (respectively, X ≥mSD max(X1, . . . , Xn)), then X �SP Xi

(respectively, X ≥mSD Xi) for every i = 1, . . . , n. �

To conclude this section, we present this result:

Proposition 3.106 Given n + 1 real-valued random variables X,X1, . . . , Xn, X �SP

max(X1, . . . , Xn) implies that X �SP [X1, . . . , Xn].

Proof: Since X �SP max(X1, . . . , Xn), it holds that

Q(X,max(X1, . . . , Xn) ≥ Q(max(X1, . . . , Xn), X).

In particular, by Lemma 2.20, we know that

P (X > max(X1, . . . , Xn)) ≥ P (max(X1, . . . , Xn) > X),

since:
P (X > max(X1, . . . , Xn)) ≥ P (max(X1, . . . , Xn) > X)

=
∑

k = 1, . . . , n
1 ≤ i1 < . . . < ik ≤ n

i 6= i1, . . . , ik

P (Xi = Xi1 = . . . = Xik > X, max
j 6=i1,...,ik

(Xj))

≥
∑

k = 1, . . . , n
1 ≤ i1 < . . . < ik ≤ n

i 6= i1, . . . , ik

1
k + 1

P (Xi = Xi1 = . . . = Xik > X, max
j 6=i1,...,ik

(Xj)).

Then:
Qn(X, [X1, . . . , Xn]) =∑

k = 0, . . . , n
1 ≤ i1 < . . . < ik ≤ n

1
k + 1

P (X = Xi1 = . . . = Xik > max
j 6=i1,...,ik

(Xj)) ≥

∑
k = 1, . . . , n

1 ≤ i1 < . . . < ik ≤ n
i 6= i1, . . . , ik

1
k + 1

P (Xi = Xi1 = . . . = Xik > X, max
j 6=i1,...,ik

(Xj))+

∑
k = 1, . . . , n

1 ≤ i1 < . . . < ik ≤ n
i 6= i1, . . . , ik

1
k + 1

P (Xi = Xi1 = . . . = Xik > X, max
j 6=i1,...,ik

(Xj))

= Qn(Xi, [X,X−i]). �
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Figure 3.5 summarises some of the results of this section. Missing arrows mean
that an implication does not hold in general, arrows with references means that such
implication holds in the conditions of such references, and arrow without reference means
that such implication always holds.

X �SP max{X1, . . . , Xn} X �FSD max{X1, . . . , Xn} X �mSD max{X1, . . . , Xn}

X �SP Xi

i = 1, . . . , n

X �FSD Xi

i = 1, . . . , n

X �mSD Xi

i = 1, . . . , n

X �SP [X1, . . . , Xn]

� -

? ?

-�

?

?

���
���

�����

Thm.

3.64

Thm. 3.64

Thm. 3.91
3.95,3.99,3.101

Figure 3.5: Relationships among first and nth degree stochastic dominance, statistical
preference and the general statistical preference.

3.4 Applications

In this section we present two possible applications of stochastic orders. On the one
hand, we apply stochastic dominance and statistical preference for the comparison of
fitness values, and on the other hand, we use the general statistical preference in decision
making problems with linguistic variables.

3.4.1 Comparison of fitness values

Genetic algorithms are a powerful tool to perform tasks such as generation of fuzzy rule
bases, optimization of fuzzy rule bases, generation of membership functions, and tuning
of membership functions (see [41]). All these tasks can be considered as optimization or
search processes. A genetic algorithm generates or adapts a fuzzy system, which is called
Genetic Fuzzy Systems (GFS, for short) [42]. The use of GFS has been widely accepted,
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since these algorithms are robust and can search efficiently large solution spaces (see
[213]).

Although in this context the linguistic granules or information are represented by
fuzzy sets, the input data and the output results are usually crisp [87]. However, some
recent papers (see [180, 181, 182, 183]) have dealt with fuzzy-valued data to learn and
evaluate GFS. In that approach the function that quantifies the optimality of a solution
in the genetic algorithm, that is, the fitness function, is fuzzy-valued. In particular, in
[183], it has been considered that the fitness values are unknown, and that interval valued
information is available. The computed fitness value is used by the genetic algorithm
module to produce the next population of individuals. In this context some kind of order
between two fitness values is necessary if we want to determine whether one individual
precedes the other. Since the information about the fitness values is imprecise and is
given by means of intervals, a procedure for comparing two intervals is required. Initially,
these procedures were based on estimating and comparing two probabilities [183]. In this
section we consider statistical preference as a more flexible tool for the comparison of
intervals.

Thus, in this section we study of these concepts in connection with the comparison
of two intervals, that represent imprecise information about the fitness values of two
Knowledge Bases. In particular, we shall make no assumptions about the joint distribu-
tion of the two fitness values and shall use then the uniform distribution. This is not an
artificial requirement, and it has been considered in many situation as a consequence of
lack of information (see, for instance, [183, 197]). When this distribution is considered, we
obtain the specific expression of the associated probabilistic and fuzzy relations. We also
consider the situation where we have some additional information about the distribution
of the fitness, that we model that by means of beta distributions. For these two cases, we
consider three possible situations between the intervals: independence, comonotonicity
and countermonotonicity.

Usual comparison methods

Let us consider two fitness values θ1 and θ2 of two KBs, that is, the mean squared errors
of these two KBs on the training set. In many situations, θ1 and θ2 are unknown, but we
have some imprecise information about them, that we model by means of two intervals
that include them. These intervals can be obtained by means of a fuzzy generalisation of
the mean squared errors (for a more detailed explanation, see Sections 4 and 5 in [183])
and they will be denoted by FMSE1 and FMSE2, respectively. The comparison of this
two intervals is needed in order to choose the predecessor and the successor.

Let us introduce the usual methods that can be found in the literature for the
comparison of such intervals. We shall propose statistical preference as an alternative
method and investigate the relationships between all the possibilities.
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Let us start with the strong dominance that was considered in [116]. In that case, if
these two intervals are disjoint, then we have not any problem to determine the preferred
interval and therefore the decision is trivial. The problem arises when the intersection is
non-empty, since the intervals are incomparable.

Definition 3.107 Consider the fitness θ1 and θ2 with associated intervals FMSE1 =
[a1, b1] and FMSE2 = [a2, b2], respectively. It holds that:

• If b2 < a1, then θ1 is preferred to θ2 with respect to the strong dominance, denoted
by θ1 �sd θ2.

• If b1 < a2, then θ2 is preferred to θ1 with respect to the strong dominance, denoted
by θ2 �sd θ1.

• Otherwise, θ1 and θ2 are incomparable.

This method is too restrictive, since it can be used only in very particular cases. An
attempt to solve this problem is to use the first degree stochastic dominance, that intro-
duces prior knowledge about the probability distribution of the fitness.

In particular, if we assume that the fitness follows a uniform distribution (as in
[197]), then:

θ1 �FSD θ2 ⇔ a1 ≥ a2 and b1 ≥ b2,

with at least one of the inequalities strict. In particular, if θ1 strong dominates θ2, then
θ1 �FSD θ2 regardless on the distribution of the fitness.

Nevertheless, first degree stochastic dominance, as we have already noticed during
this memory, does not solve all the problems of strong dominance, since, for instance,
incomparability is also allowed.

Another method, called method of the probabilistic prior, was proposed in [183]. As
first degree stochastic dominance, it is based on a prior knowledge about the probability
distribution of the fitness, P (θ1, θ2).

Definition 3.108 Consider the fitness θ1 and θ2 with associated intervals FMSE1 =
[a1, b1] and FMSE2 = [a2, b2]. Then, θ1 is considered to be preferred to θ2 with respect to
the probabilistic prior, and is denoted by θ1 �pp θ2, if and only if

P (θ1 > θ1)
P (θ1 ≤ θ2)

> 1. (3.30)

If P{θ1 ≤ θ2} = 0, the ration in Equation (3.30) is not defined, but it is assumed that
θ1 �pp θ2.
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Remark 3.109 Recall that from Equation (3.30) we derive that θ1 �pp θ2 if and only
if:

P (θ1 > θ1) > P (θ1 ≤ θ2).

Thus, the probability prior is equivalent to the probability dominance, with the strict
version, considered in Remark 2.22, with β = 0.5.�

Even though these methods allow to compare a wider class of random intervals than the
strong dominance, as we said in Remark 2.22 they have an important drawback: they
allow for incomparability. In particular, whenever P (θ1 = θ2) ≥ 0.5, θ1 and θ2 would be
incomparable.

Then, it seems natural to consider statistical preference as a method for the compar-
ison of fitness for two main reasons: avoid incomparability and graduate the preference.
Also, as we already commented in Subsection 2.1.2, the probabilistic relation Q can be
transformed into a fuzzy relation.

Let us study some relationships among strong dominance, first degree stochastic
dominance, probabilistic prior and statistical preference.

Proposition 3.110 Given two fitness θ1 and θ2 with associated intervals FMSE1 =
[a1, b1] and FMSE2 = [a2, b2], it holds that:

• θ1 �sd θ2 implies θ1 �FSD θ2.

• θ1 �sd θ2 implies θ1 �pp θ2.

• θ1 �pp θ2 implies θ1 �SP θ2.

• If θ1 and θ2 are independent, θ1 �FSD θ2 implies θ1 �pp θ2.

Proof:

• The proof of the first item is based on the fact that θ1 �sd θ2 implies

minFMSE1 = a1 > b2 maxFMSE2,

and consequently θ1 �FSD θ2 regardless on the distributions of FMSEi, i = 1, 2.

• If θ1 �sd θ2, then {(θ1, θ2) : θ1 ≤ θ2} = ∅, and consequently θ1 �pp θ2.

• If θ1 �pp θ2, then P (θ1 > θ2) > P (θ1 ≤ θ2), that implies Q(X,Y ) > Q(Y,X).
However, since Q is a probabilistic relation, this means that Q(X,Y ) > 1

2 , and
thus θ1 �SP θ2.
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• If the intervals are independent, then P (θ1 = θ2) = 0, and consequently θ1 �pp θ2

if and only if
P (θ1 > θ2) > P (θ1 < θ2).

Thus, both the probabilistic prior and statistical preference are equivalent in this
context. Thus, if θ1 �FSD θ2, applying Theorem 3.64, θ1 �SP θ2, and consequently
the preference with respect to the probabilistic prior method also hold.

Thus there is a relationship between the probabilistic prior and the stochastic order when
the intervals are independent. However, such relationship does not hold for comonotonic
and countermonotonic intervals, as we show next:

Example 3.111 Consider θ1 distributed in the interval [1, 2] and θ2 distributed in the
interval [0, 2]. We consider that FMSE1 follows an uniform distribution and the distri-
bution of FMSE2 is defined by the density function:

f(x) =


1
11 if 0 < x < 1.1,
1 if 1.1 < x < 2,
0 otherwise.

Thus, θ1 �FSD θ2. Assume that both intervals are comonotonic. Using Equation (3.6)
we can compute P (θ1 = θ2):

P (θ1 = θ2) =
∫

[1.1,2]

fX(x)dx = 0.9.

Thus, both intervals are incomparable with respect to the probabilistic prior.

Assume now that they are countermonotonic. Using Equation (3.7) we obtain that

Q(θ1, θ2) = FY(1.5) = 0.5.

Thus, θ1 6�SP θ2, and consequently, using Proposition 3.110, θ1 6�pp θ2.�

Table 3.6 summarises the general relationships we have seen during this section.

θ1 �sd θ2

θ1 �FSD θ2

θ1 �pp θ2 θ1 �SP θ2
- -

6
Q
Q
Q
Q
Q
QQs

Independence

Figure 3.6: Summary of the relationships between strong dominance, first degree stochas-
tic dominance, probabilistic prior and statistical preference given in Proposition 3.110.
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Expression of the probabilistic relation for the comparison of fitness values

In this section we will apply statistical preference to the comparison of fitness values.

Uniform case Let us consider again an uniform distribution, that is, no prior informa-
tion about the distribution over the observed interval, as in [197], and let us search for an
expression of the probabilistic relation Q so as to characterise the statistical preference.

Thus, FMSE1 = [a1, b1] and FMSE2 = [a2, b2] will denote now two intervals where
we know the fitness θ1 and θ2 of two KBs are included. Let us assume a uniform distri-
bution on each of them. We will consider again three possible ways to obtain the joint
distribution: an assumption of independence, that is, being coupled by the product, and
the extreme cases where they are coupled by the minimum or the Łukasiewicz copulas. In
these three cases we will obtain the condition on the parameters to assure the statistical
preference of the interval FMSE1 to the interval FMSE2. To do that, the expression of
the probabilistic relation will be an essential part of the proof.

First of all, recall the result the comparison of independent uniform distributions
was already studied in Proposition 3.71: if FMSE1 = [a1, b1] and FMSE2 = [a2, b2] be
two uniformly distributed intervals which represent the information we have about the
fitness θ1 and θ2 of two KBs, and the joint distribution is obtained by means of the
product copula, then the probabilistic relation Q(θ1, θ2) takes the following value:

Q(θ1, θ2) =



1− (b1−a2)2

2(b1−a1)(b2−a2) if a1 ≤ a2 < b1 ≤ b2.

1− (b2−a1)2

2(b1−a1)(b2−a2) if a2 ≤ a1 < b2 ≤ b1.
2b1−a2−b2
2(b1−a1) if a1 ≤ a2 < b2 ≤ b1.
b1+a1−2a2
2(b2−a2) if a2 ≤ a1 < b1 ≤ b2.

These are the conditions under which θ1 �SP θ2:
Always if a1 ≤ a2 < b1 ≤ b2.
Never if a2 ≤ a1 < b2 ≤ b1.
a1 + b1 ≥ b2 + a2 if a1 ≤ a2 < b2 ≤ b1

or a2 ≤ a1 < b1 ≤ b2.

Let us now study the comonotonic case.

Proposition 3.112 Let FMSE1 = [a1, b1] and FMSE2 = [a2, b2] be two uniformly dis-
tributed intervals representing the available information on the different fitness θ1 and θ2

of two KBs. If the joint distribution is obtained by means of the minimum copula, the
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probabilistic relation Q(θ1, θ2) takes the following value:

Q(θ1, θ2) =


0 if a1 ≤ a2 < b1 ≤ b2.

b1−b2
b1+a2−a1−b2 if a1 ≤ a2 < b2 < b1.

a1−a2
b2−a2−b1+a1

if a2 < a1 < b1 ≤ b2.
1 if a2 < a1 < b2 ≤ b1.

Thus, θ1 �SP θ2 if and only if:
Never if a1 ≤ a2 < b1 ≤ b2.
Always if a2 < a1 < b2 ≤ b1.
a1 + b1 > a2 + b2 otherwise.

Then, the condition is equivalent to have a greater expectation.

Proof: The expression of the probabilistic relation can be obtained using Equation (3.6),
and taking into account that P (θ1 = θ2) = 0, since the associated cumulative distribution
coincide at most in one point.

First and second scenarios of the are trivial. In the third scenario, if a1 ≤ a2 <
b2 ≤ b1 it holds that:

θ1 �SP θ2 ⇔
b1 − b2

b1 + a2 − a1 − b2
>

1
2
⇔ a1 + b1 > a2 + b2.

The condition for a2 ≤ a1 < b1 ≤ b2 can be similarly obtained.

Finally, let us study the countermonotonic case.

Proposition 3.113 Let FMSE1 = [a1, b1] and FMSE2 = [a2, b2] be two uniformly dis-
tributed intervals which represent the information we have about the fitness θ1 and θ2 of
two KBs. If the joint distribution is obtained by means of the Łukasiewicz copula, then
the probabilistic relation is given by:

Q(θ1, θ2) =
b1 − a2

b2 − a2 + b1 − a1
.

In addition, θ1 �SP θ2 if and only if:
Never if a1 ≤ a2 < b1 ≤ b2.
a1 + b1 ≥ a2 + b2 if a1 ≤ a2 < b2 < b1.

a1 + b1 ≥ a2 + b2 if a2 < a1 < b1 ≤ b2.
Always if a2 < a1 < b2 ≤ b1.
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Proof: The expression of the probabilistic relation can be obtained using Equation (3.7),
and taking into account that the point u such that Fθ1(u) + Fθ2(u) = 1 equals: u =
b2b1−a1a2

b2−a2+b1−a1
.

The first and fourth scenarios of the second part are easy, since there they are
ordered by means of the stochastic order. In the first scenario it holds that Fθ1(u) >
Fθ2(u), and consequently

Q(θ1, θ2) < Q(θ2, θ1),

and then θ1 6�SP θ2. Similarly, we obtain that in the fourth scenario θ1 �SP θ2.

For the second and third scenarios, it is enough to compare de expression of the
probabilistic relation with 1

2 .

Beta case We now assume that more information about the fitness values may be
available. If it is know that some values of the interval are more feasible than others, the
uniform distribution is not a good model any more. If we assume that the closer we are
to one extreme of the interval the more feasible the values are, beta distributions become
more appropriate to model the fitness values. As we made in Subsection 3.2.6, we focus
on this situation: beta distributions such that one of the parameters is 1.

As we already said, the density of a beta distribution β(p, q) is given by Equa-
tion (3.17). However, it is possible to define a beta distribution on every interval [a, b]
(it is denoted by β(p, q, a, b). The associated density function is:

f(x) =
Γ(p+ q)
Γ(p)Γ(q)

(x− a)p−1(b− a)q−1

(b− a)p+q−1
,

for any x ∈ [a, b], and zero otherwise. Next, we will focus on two particular cases. In
the first one we will assume that the closer the value is to ai, the more feasible the value
is. In the second case, we will assume the opposite: that the closer the value is to bi,
the more feasible the value is. In terms of density functions, these two cases correspond
to strictly decreasing and strictly increasing density functions. We will consider the
intervals FMSEi follows a distribution β(p, 1, ai, bi), for i = 1, 2, where p will be an
integer greater than 1. Independently of where the weight of the distribution is, we
shall consider three possibilities concerning the relationship between the fitness values:
independence, comonotonicity and countermonotonicity. If intervals satisfy one of the
following conditions:

a1 ≤ a2 < b1 ≤ b2 or a2 ≤ a1 < b2 ≤ b1,

we have seen in the previous section that, since they are ordered with respect to the
stochastic order, the study of the statistical preference becomes trivial. For this reason
we will assume the intervals to satisfy the condition a1 ≤ a2 < b2 ≤ b1 (the case
a2 ≤ a1 < b1 ≤ b2 can be solved by symmetry).
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Proposition 3.114 Let us consider the different fitness values θ1 and θ2 with associated
intervals FMSEi ≡ [ai, bi] following a distribution β(p, 1, ai, bi), where a1 ≤ a2 < b2 ≤ b1.
Then:

QP (θ1, θ2) = p

p−1∑
k=0

(
p− 1
k

)
(a2 − a1)p−k−1(b2 − a2)k−1

(b1 − a1)p(p+ k + 1)
+
(
b2 − a1

b1 − a1

)p
−
(
a2 − a1

b1 − a1

)p
,

QM (θ1, θ2) = 1−
(
t∗−a1
b1−a1

)p
,

QL(θ1, θ2) =
(
z∗−a2
b2−a2

)p
,

where t∗ = a1b2−a2b1
b2−a2−b1+a1

and z∗ is the point in [a2, b2] such that(
z∗ − a1

b1 − a1

)p
+
(
z∗ − a2

b2 − a2

)p
= 1,

and QP , QM and QL denotes the probabilistic relation when the random variables are
coupled by the product, the minimum and the Łukasiewicz operators, respectively.

Proof: Let us begin by computing the expression of QP (θ1, θ2). Since they are inde-
pendent and continuous, P (θ1 = θ2) = 0. Then:

QP (θ1, θ2) = P (θ1 > θ2) = P (θ1 ∈ [b2, b1]) + P (b2 > θ1 > θ2).

Let us compute each one of the previous probabilities:

P (θ1 ∈ [b2, b1]) =
∫ b2

a2

p
(x− a1)p−1

(b1 − a1)p
dx =

(
b2 − a1

b1 − a1

)p
−
(
a2 − a1

b1 − a1

)p
.

P (b2 > θ1 > θ2) =
∫ b2

a2

∫ x

a2

p2 (x− a1)p−1

(b1 − a1)p
(y − a2)p−1

(b2 − a2)p
dydx

=
∫ b2

a2

p
(x− a1)p−1

(b1 − a1)p

(
x− a2

b2 − a2

)p
dx.

Taking z = x−a2
b2−a2

, the previous expression becomes:

P (b2 > θ1 > θ2) = p

∫ 1

0

(
(b2 − a2)z + a2 − a1

)p−1

(b1 − a1)p
zp

dz
b2 − a2

= p

∫ 1

0

zp

(b2 − a2)(b1 − a1)p

p−1∑
k=0

(
p− 1
k

)
((b2 − a2)z)k(a2 − a1)p−1−kdz

= p
(b1−a1)p

p−1∑
k=0

(
p− 1
k

)
(a2 − a1)p−k−1(b2 − a2)k−1

p+ k + 1
.
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Making the sum of the two probabilities, we obtain the value of Q(θ1, θ2).

Next, assume that θ1 and θ2 are comonotonic. Since {x : Fθ1(x) = Fθ2(x)} = ∅,
applying Equation (3.6) we deduce that

QM (θ1, θ2) =
∫
x:Fθ1 (x)<Fθ2 (x)

p
(x− a1)p−1

(b1 − a1)p
dx.

Moreover, {x : Fθ1(x) < Fθ2(x)} = (t∗, b1], where t∗ is the point satisfying:

Fθ1(t∗) = Fθ2(t∗)⇔
(
t∗−a1
b1−a1

)p
=
(
t∗−a2
b2−a2

)p
⇔ t∗(b2 − a2)− a1(b2 − a2) = t∗(b1 − a1)− a2(b1 − a1)

⇔ t∗ = a1b2−a2b1
b2−a2−b1+a1

.

Then:

QM (θ1, θ2) =
∫ b1

t∗
p

(x− a1)p−1

(b1 − a1)p
dx = 1−

(
t∗ − a1

b1 − a1

)p
.

Finally, assume that θ1 and θ2 are countermonotonic. By Equation (3.7),

QL(θ1, θ2) = Fθ2(z∗) =
(
z∗ − a2

b1 − a1

)p
,

where z∗ satisfies that:

Fθ1(z∗) + Fθ2(z∗) = 1⇔
(
z∗ − a1

b1 − a1

)p
+
(
z∗ − a2

b2 − a2

)p
= 1.

Proposition 3.115 Let us consider the different fitness values θ1 and θ2 with associated
intervals FMSE1 = [a1, b1] and FMSE2 = [a2, b2] following the distribution β(1, q, ai, bi),
where a1 ≤ a2 < b2 ≤ b1. Then

QP (θ1, θ2) = q

q−1∑
k=0

(
q − 1
k

)
(b1 − b2)k(b2 − a2)q−k−2

(b1 − a1)q(q + k + 1)
+
(
b1 − a2

b1 − a1

)q
,

QM (θ1, θ2) = 1−
(
b1−t∗
b1−a1

)q
,

QL(θ1, θ2) = 1−
(
b1−z∗
b1−a1

)p
,

where t∗ = a1b2−b1a2
b2−a2−b1+a1

and z∗ is the point in [a2, b2] such that

(b1 − x)q

(b1 − a1)q−1
+

(b2 − x)q

(b2 − a2)q−1
= 1,

and QP , QM and QL denotes the probabilistic relation when the random variables are
coupled by the product, the minimum and the Łukasiewicz operators, respectively.
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Proof: We begin by computing the expression of QP (θ1, θ2). Again, since they are
independent and continuous, P (θ1 = θ2) = 0, and then:

QP (θ1, θ2) = P (θ1 > θ2) = P (θ1 ∈ [b2, b1]) + P (b2 > θ1 > θ2).

Let us compute each one the the previous probabilities:

P (θ1 ∈ [b2, b1]) =
∫ b1

b2

q
(b1 − x)q−1

(b1 − a1)q
dx =

(
b1 − b2
b1 − a1

)q
.

P (b2 > θ1 > θ2) =
∫ b2

a2

∫ x

a2

q2 (b1 − x)q−1

(b1 − a1)q
(b2 − y)q−1

(b2 − a2)q
dydx

=
∫ b2

a2

q
(b1 − x)q−1

(b1 − a1)q

(
1−

(
b2 − x
b2 − a2

))
dx

=
∫ b2

a2

q
(b1 − x)q−1

(b1 − a1)q
dx−

∫ b2

a2

q
(b1 − x)q−1

(b1 − a1)q

(
b2 − x
b2 − a2

)q
dx

=
(
b1−a2
b1−a1

)
−
(
b1−b2
b1−a1

)
−
∫ b2

a2

q
(b1 − x)q−1

(b1 − a1)q

(
b2 − x
b2 − a2

)q
dx.

Taking z = b2−x
b2−a2

, the last integral becomes:

P (b2 > θ1 > θ2) =
∫ 1

0

qzq
(b1 − b2 + z(b2 − a2))q−1

(b1 − a1)q
dz

b2 − a2

= q

∫ 1

0

zq

(b2 − a2)(b1 − a1)q

q−1∑
k=0

(
q − 1
k

)
((b1 − b2)z)k(b2 − a2)q−k−1dz

= q

q−1∑
k=0

(
q − 1
k

)
(b1 − b2)k(b2 − a2)q−k−2

(b1 − a1)q(q + k + 1)
1

q + k + 1
.

Making the sum of the three terms, we obtain the expression of QP (θ1, θ2).

Consider now the fitness to be comonotonic. Then, since {x : Fθ1(x) = Fθ2(x)} = ∅,
the expression of the probabilistic relation given in Eq.(3.6) becomes:

QM (θ1, θ2) =
∫
x:Fθ1 (x)<Fθ2 (x)

q
(b1 − x)q−1

(b1 − a1)q
dx.

Then, {x : Fθ1(x) < Fθ2(x)} = (t∗, b1], where:

Fθ1(t∗) = Fθ2(t∗)⇔ 1−
(
b1 − t∗

b1 − a1

)q
= 1−

(
b2 − t∗

b2 − a2

)q
⇔ b1 − t∗

b1 − a1
=
b2 − t∗

b2 − a2
⇔ t∗ =

a1b2 − b1a2

b2 − a2 − b1 + a1
.
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Then:

QM (θ1, θ2) =
∫ b1

t∗
q

(b1 − x)q−1

(b1 − a1)q
dx =

(
b1 − x
b1 − a1

)q
.

Finally, assume that θ1 and θ2 are countermonotonic. Then, QL(θ1, θ2) = Fθ2(z∗), where
z∗ satisfies:

Fθ1(z∗) + Fθ2(z∗) = 1⇔ 1−
(
b1 − x
b1 − a1

)q
+ 1−

(
b2 − x
b2 − a2

)q
= 1

⇔
(
b1 − x
b1 − a1

)q
+
(
b2 − x
b2 − a2

)q
= 1. �

Remark 3.116 In order to prove the previous result it is not possible to follow the
procedure of Proposition 3.78. There, we used the following property:

X ≡ β(p, 1)⇔ 1−X ≡ β(1, p).

Then, since Q(X,Y ) = Q(1 − Y, 1 − X) (see Proposition 3.3), the case of q = 1 was
solved using the case p = 1. In the case of general beta distributions, it holds that:

X ≡ β(p, 1, a, b)⇔ (b− a)−X ≡ β(1, p, a, b).

The problem is that Q(X,Y ) 6= Q((b2 − a2) − Y, (b1 − a1) −X), and therefore this kind
of procedure is not possible.�

Remark 3.117 Note that for beta distribution it is not possible to obtain a simpler
characterization of the statistical preference like the one for uniform distributions.�

To conclude this section, let us present an example where we show how the values of the
probabilistic relation change when we vary the value of p.

Example 3.118 Consider the fitness values θ1 and θ2 with associated values FMSE1 =
[a1, b1] and FMSE2 = [a2, b2], where a1 ≤ a2 < b2 ≤ b1, and let assume they follow the
beta distribution β(p, 1, ai, bi). Consider a1 = 1, b1 = 4, a2 = 2 and b2 = 3. Table 3.5
shows the values of the probabilistic relation when p moves from 1 to 5, where it is possible
to see that θ1 and θ2 are equivalent when p = 1, but θ1 is preferred to θ2 when p ≥ 2.
Moreover, the greater the value of p, the stronger the preference of θ1 over θ2.

Consider now different values of the intervals: a1 = 0.7, b1 = 1.4, a2 = 0.8 and
b2 = 1.2. In this case, although [a2, b2] ⊆ [a1, b1] as in the previous example, the difference
between b1 and b2 is greater than a1 and a2. The results are summarised in Table 3.6.
There, we can see that in the three cases, θ1 �SP θ2 for any p ≥ 1. Furthermore, the
greater the value of p, the stronger the preference of θ1 over θ2. In Figure 3.7 we can see
how the values of Q vary we change the value of the parameter p from 1 to 10.�
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p QP QM QL

1 0.5 0.5 0.5
2 0.6853 0.75 0.64
3 0.7945 0.875 0.7436
4 0.8644 0.9375 0.8208
5 0.9101 0.9688 0.8766

Table 3.5: Degrees of preference for the different values of the parameter p for FMSE1 =
[1, 4] and FMSE2 = [2, 3].

p QP QM QL

1 0.5715 0.6667 0.5455
2 0.7076 0.8889 0.64
3 0.7936 0.9630 0.7192
4 0.8533 0.9877 0.7852
5 0.8955 0.9959 0.8384

Table 3.6: Degrees of preference for the different values of the parameter p for FMSE1 =
[0.7, 1.4] and FMSE2 = [0.8, 1.2].

3.4.2 General statistical preference as a tool for linguistic deci-
sion making

As we have seen, general statistical preference was introduced as a method that allows for
the comparison of more than two random variables. As an illustration of the utility of this
method we can consider a decision making problem with linguistic utilities. We consider
the example of product management given in [123, Section 8]: a company seeks to plan
its production strategy for the next year, and they consider six possible alternatives:

• A1 : Create a new product for very high-income customers.

• A2 : Create a new product for high-income customers.

• A3 : Create a new product for medium-income customers.

• A4 : Create a new product for low-income customers.

• A5 : Create a new product suitable for all customers.

• A6 : Do not create a new product.

Due to the large uncertainty, the three experts of the company are not able to draw the
information about the impact of each alternative in a numerical way, and for this reason
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Figure 3.7: Values of the probabilistic relation for different values of p. The above
picture corresponds to intervals [a1, b1] = [1, 4] and [a2, b2] = [2, 3], and the picture below
corresponds to intervals [a1, b1] = [0.7, 1.4] and [a2, b2] = [0.8, 1.2].

they express the utility based on a seven linguistic scale S = {s1, . . . , s7}, where:

s1 : None s5 : High
s2 : Very low s6 : Very high
s3 : Low s7 : Perfect
s4 : Medium

Note that the three experts have not the same influence in the company, and its im-
portance is given by the weight vector (0.2, 0.4, 0.4). Moreover, since the decision of
each expert depends on the economic situation of the following year, six scenarios are
considered:

N1 : Very bad N4 : Regular-Good
N2 : Bad N5 : Good
N3 : Regular-Bad N6 : Very good

The experts assume the following weighting vector for these scenarios:

W = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3).

Finally, the preferences of each expert are given in Tables 3.7, 3.8 and 3.9.

Although in [123] this problem was solved by means of a particular type of aggre-
gation operators, we propose to use the general statistical preference. For any expert ei,
i = 1, 2, 3, we can compute the preference degree of the alternative Aj over the others
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N1 N2 N3 N4 N5 N6

A1 s2 s1 s4 s6 s7 s5

A2 s1 s3 s5 s5 s6 s6

A3 s3 s4 s4 s4 s4 s7

A4 s2 s5 s6 s4 s2 s5

A5 s1 s3 s4 s5 s6 s6

A6 s6 s5 s5 s4 s2 s2

Table 3.7: Linguistic payoff matrix-Expert 1.

N1 N2 N3 N4 N5 N6

A1 s3 s1 s3 s5 s6 s6

A2 s1 s3 s4 s5 s6 s6

A3 s3 s4 s5 s4 s3 s7

A4 s3 s4 s5 s4 s2 s4

A5 s2 s3 s4 s6 s6 s6

A6 s7 s6 s4 s3 s2 s2

Table 3.8: Linguistic payoff matrix-Expert 2.

N1 N2 N3 N4 N5 N6

A1 s1 s2 s3 s5 s7 s6

A2 s2 s3 s4 s4 s5 s6

A3 s3 s4 s6 s4 s3 s7

A4 s2 s4 s6 s4 s2 s4

A5 s1 s3 s4 s5 s6 s6

A6 s6 s6 s5 s3 s2 s3

Table 3.9: Linguistic payoff matrix-Expert 3.
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A−j , and we obtain the following values:

Q(A1, [A−1] | e1) = P (N4) + P (N5) = 0.4.
Q(A2, [A−2] | e1) = 0.
Q(A3, [A−3] | e1) = P (N6) = 0.3.
Q(A4, [A−4] | e1) = 1

2P (N2) + P (N3) = 0.15.
Q(A5, [A−5] | e1) = 0.
Q(A6, [A−6] | e1) = P (N1) + 1

2P (N2) = 0.15.
Q(A1, [A−1] | e2) = 1

3P (N5) = 0.0667.
Q(A2, [A−2] | e2) = 1

3P (N5) = 0.0667.
Q(A3, [A−3] | e2) = 1

2P (N3) + P (N6) = 0.35.
Q(A4, [A−4] | e2) = 1

2P (N3) = 0.05.
Q(A5, [A−5] | e2) = P (N4) + 1

3P (N5) = 0.2667.
Q(A6, [A−6] | e2) = P (N1) + P (N2) = 0.2.
Q(A1, [A−1] | e3) = 1

2P (N4) + P (N5) = 0.3.
Q(A2, [A−2] | e3) = 0.
Q(A3, [A−3] | e3) = 1

2P (N3) + P (N6) = 0.35.
Q(A4, [A−4] | e3) = 1

2P (N3) = 0.05.
Q(A5, [A−5] | e3) = 1

2P (N4) = 0.1.
Q(A6, [A−6] | e3) = P (N1) + P (N2) = 0.2.

Now, since the importance of each expert is given by the weighting vector (0.2, 0.4, 0.4),
we can obtain the preference degree of each alternative:

Q(A1, [A−1]) =Q(A1, [A−1] | e1)0.2 +Q(A1, [A−1] | e2)0.4
+Q(A1, [A−1] | e3)0.4 = 0.4 · 0.2 + 0.0667 · 0.4 + 0.3 · 0.4 = 0.22667.

And similarly:

Q(A2, [A−2]) = 0.0667 · 0.4 = 0.02667.
Q(A3, [A−3]) = 0.3 · 0.2 + 0.35 · 0.4 + 0.35 · 0.4 = 0.34.
Q(A4, [A−4]) = 0.15 · 0.2 + 0.05 · 0.4 + 0.05 · 0.4 = 0.07.
Q(A5, [A−5]) = 0.2667 · 0.4 + 0.1 · 0.4 = 0.14667.
Q(A6, [A−6]) = 0.15 · 0.2 + 0.2 · 0.4 + 0.2 · 0.4 = 0.19.

Thus, general statistical preference gives A3 as the preferred alternative: A3 �SP [A−3];
A1 is the second preferred alternative, A6 the third, A5 the fourth, A4 the fifth and
finally A2 is the less preferred alternative. Consequently, creating a new product for
medium-income customers seems to be the best option, while the worst alternative is
creating a new product for high-income customers.
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3.5 Conclusions

Stochastic orders are tools that allow us to compare random quantities, so they become
particularly useful in decision problems under uncertainty. One of the most impor-
tant stochastic orders that can be found in the literature is stochastic dominance. This
method, based on the comparison of the cumulative distribution functions, has been
widely studied in the literature, and it has been applied in many different areas. One
alternative stochastic order is statistical preference, which has remained unexplored for a
long time. For this reason, we have dedicated the first part of this chapter to the investi-
gation of the properties of statistical preference as a stochastic order. In particular, while
stochastic dominance is close to the expectation, we have seen that statistical preference
is related to another location parameter: the median. This showed that both stochastic
orders have a different philosophy under their definition.

Interestingly, there are situations where both stochastic orders give rise to the same
conclusions. For instance, we have found conditions under which first degree stochastic
dominance implies statistical preference. These situations included, for example, inde-
pendent random variables or continuous comonotonic/countermonotonic random vari-
ables, among others. Although the two methods are not equivalent in general, we have
proved that the coincide when comparing independent random variables whose distribu-
tions are Bernoulli, exponential, uniform, Pareto, beta and normal.

Both methods have been devised for the pairwise comparison of random variables,
and may be unsuitable when more than two random variables must be compared simul-
taneously. For this reason, we have introduced a new stochastic order, that generalises
statistical preference and preserves its underlying philosophy, that allows us to compare
more than two random variables at the same time. We have also investigated its main
properties and its connection with the usual stochastic orders.

Stochastic orders appears in many different real-life problems. For this reason, the
last part of this chapter was devoted to present a number of applications that show the
relevance of our results. On the one hand, we have seen that both stochastic dominance
and statistical preference could be an interesting alternative to the comparison of fitness
values, and on the other hand we have applied the general statistical preference to a
multicriteria decision making with linguistic labels.

From the results we have showed in this chapter new open problems arise. For
instance, we have given some conditions under which first degree stochastic dominance
implies statistical preference, and we have seen that this relation does not hold in general.
Thus, a natural question arises: is it possible to characterise the situations in which first
degree stochastic dominance implies statistical preference?

Moreover, we have also seen that both stochastic dominance and statistic prefer-
ence coincide for the comparison of independent random variables whose distribution is
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Bernoulli, exponential, normal, . . . In fact, both methods reduce to the comparison of
the expectation of the variables. We conjecture that for independent random variables
whose distribution belongs to the exponential family of distributions, both stochastic
dominance and statistical preference coincide and are equivalent to the comparison of
the expectation. Although this is an open question that has not been answered yet, a
first approach, based on simulations, has already be done by Casero ([32]). We have
introduced the general statistical preference as a stochastic order for the comparison
of more than two random variables simultaneously. Although we have investigated its
main properties, a different approach could be given to this notion. In fact, the general
statistical preference could be seen as a fuzzy choice function ([81]) on a set of random
variables, since it gives degrees of preference of a random variable over a set a random
variables. Then, the investigation of the properties of the general statistical preference
as a fuzzy choice function could be an interesting line of research.



4 Comparison of alternatives under un-
certainty and imprecision

In the previous chapter we have dealt with the comparison of alternatives under un-
certainty. When these alternatives are modelled by means of random variables, the
comparison must be performed using stochastic orders. However, there are situations
in which it is not possible or adequate to model the experiments by means of a single
random variable, due to the presence of imprecision in the experiment. In other words,
we focus now in situations where the alternatives are defined under uncertainty but also
under imprecision. In such cases, we shall compare sets of random variables instead of
single ones; more generally, we shall compare imprecise probability models. For this
reason, this chapter is devoted to the extension of the pairwise methods studied in the
previous chapter to the comparison of imprecise probability models.

As we have already mentioned, imprecise probabilities ([205]) is a generic term that
refers to all mathematical models that serve as an alternative and a generalisation to
probability models in case of imprecise knowledge. In this respect, stochastic dominance
was connected to imprecise probabilities by Denoeux ([61]), who generalised this notion
to the comparison of belief functions ([187]). He proposed four extensions of stochastic
dominance based on the orders between real intervals given in [78]. One step forward
was made by Aiche and Dubois ([1]), by using stochastic dominance to compare random
intervals stemming from rankings between real intervals, in a similar manner as Denoeux,
and also in the comparison of fuzzy random variables ([105]).

On the other hand, the comparison of sets of random variables appears naturally
in decision making under imprecision. In this sense, the usual utility order has already
been extended in several ways to the comparison of sets of random variables: interval
dominance ([219]), maximax ([184]) and maximin criteria ([82]), and E-admissibility
([107]). See a survey on this topic in ([202]).

With respect to statistical preference, Couso and Sánchez ([46]) proposed it as a
method for comparing sets of desirable gambles (see [205, Sec. 2.2.4] for further informa-
tion). Also, Couso and Dubois ([43]) proposed a common formulation for both statistical

147



148 Chapter 4. Comparison of alternatives under uncertainty and imprecision

preference and stochastic dominance to the comparison of imprecise probability models,
and they studied its formulation in terms of expected utility.

Our aim here is to consider a more general situation: we start from a binary relation,
that may be stochastic dominance, statistical preference or any other, as in Section 2.1,
and extend it to the comparison of sets of random variables. We shall consider six
possible extensions of the binary relation, and we shall study the connections between
them. Afterwards, we consider the particular cases when the binary relation is stochastic
dominance or statistical preference. As we shall see, our approach is more general than
that of Denoeux, since the comparison of belief functions arises a particular case. On
the other hand, our approach differs from the one of [43, 46] because they considered
the comparison of sets of desirable gambles instead of sets of random variables, and the
underlying philosophy of their approach is slightly different to ours.

After these general considerations, we shall focus on two scenarios that can be
embedded into the comparison of sets of random variables: the comparison of two al-
ternatives with imprecision either in the utilities or in the beliefs. The former will be
formulated by means of random sets, and their comparison will be made by means of the
associated sets of measurable selections. In the latter, we shall assume that there is a set
of probability measures modelling the real probability measure of the probability space.

Since there could be imprecision on the initial probability, we devote the next sec-
tion to the modelling of the joint distribution in an imprecise framework. For this aim,
we shall investigate how the bivariate distribution can be expressed when there is impre-
cision in the initial probability. Then, we investigate bivariate p-boxes, and in particular
how sets of bivariate distribution functions can define a bivariate p-box, and we study
if it is possible to formulate an imprecise version of the famous Sklar’s Theorem (see
Theorem 2.27).

We conclude the chapter with several applications. First of all, we use impre-
cise stochastic dominance to compare sets of Lorenz Curves and cancer survival rates.
Secondly, we use a multi criteria decision making problem to illustrate how imprecise
stochastic orders can be applied in a context of imprecision either in the utilities or in
the beliefs.

4.1 generalisation of the binary relations to the com-
parison of sets of random variables

In the following, we propose a number of methods for comparing pairs of sets of variables
which are based on performing pairwise comparisons of elements within these sets. First
we shall give our definitions for the case where the comparisons of the elements are made
by means of a binary relation, as we did at the beginning of Section 2.1, and later we
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shall apply them to the particular cases where this binary relation consists of stochastic
dominance or statistical preference.

We shall consider a probability space (Ω,A, P ) and an ordered utility scale Ω′, that
in some situations will be considered as numerical. We shall also consider sets of random
variables, defined from the probability space to Ω′, that will be denoted by X ,Y,Z, . . ..

We begin with the extension of a binary relation to the comparison of sets of random
variables.

Definition 4.1 Let � be a binary relation between random variables defined from a
probability space (Ω,A, P ) to an ordered utility scale Ω′. Given two sets of random
variables X and Y, we say that:

1. X �1 Y if and only if for every X ∈ X , Y ∈ Y it holds that X � Y .

2. X �2 Y if and only if there is some X ∈ X such that X � Y for every Y ∈ Y.

3. X �3 Y if and only if for every Y ∈ Y there is some X ∈ X such that X � Y .

4. X �4 Y if and only if there are X ∈ X , Y ∈ Y such that X � Y .

5. X �5 Y if and only if there is some Y ∈ Y such that X � Y for every X ∈ X .

6. X �6 Y if and only if for every X ∈ X there is Y ∈ Y such that X � Y .

Remark 4.2 As we did in Definition 2.1, from any of these definitions we can infer
immediately a relation of strict preference (�i) and the indifference (≡i):

X �i Y ⇔ X �i Y and Y 6�i X ,
X ≡i Y ⇔ X �i Y and Y �i X ,

for any i = 1, . . . , 6. Moreover, we say that X and Y are incomparable with respect to �i
when X 6�i Y and Y 6�i X .�

The conditions in this definition can be given the following interpretation. �1 means
that any alternative in X is �-preferred to any alternative in Y, and as such it is related
to the idea of interval dominance from decision making with sets of probabilities [219].
Conditions �2 and �3 mean that the “best” alternative in X is �-better than the “best”
alternative in Y. The difference between them lies in whether there is a maximal element
in X in the order determined by �. These two conditions are related to the Γ-maximax
criteria considered in [184]. On the other hand, conditions �5 and �6 mean that the
“worst” alternative in X is �-preferred to the “worst” alternative in Y, and are related
to the Γ-maximin criteria in [20, 82]. Again, the difference between them lies in whether
there is a minimum element in Y with respect to the order determined by � or not.



150 Chapter 4. Comparison of alternatives under uncertainty and imprecision

Finally, �4 is a weakened version of �1, in the sense that it only requires that some
alternative in X is �-preferred to some other alternative in Y, instead of requiring it for
any pair in X , Y.

Taking this interpretation into account, it is not difficult to establish the following
relationships between the definitions.

Proposition 4.3 The following implications hold:

• �1⇒�2⇒�3⇒�4.

• �1⇒�5⇒�6⇒�4.

Proof: (�1⇒�2) : If X � Y for every X ∈ X , Y ∈ Y, in particular given any X ∈ X
it holds that X � Y for every Y ∈ Y.

(�2⇒�3) : If there exists X ∈ X such that X � Y for every Y ∈ Y, the condition
in �3 is satisfied with respect to X for every Y ∈ Y.

(�3⇒�4) : If for every Y ∈ Y there exists XY ∈ X such that XY � Y , we have a
pair (XY , Y ) ∈ X × Y such that XY � Y .

(�1⇒�5) : If X � Y for every X ∈ X and Y ∈ Y, in particular given any Y ∈ Y it
holds that X � Y for every X ∈ X .

(�5⇒�6) : If there is some Y ∈ Y such that X � Y for every X ∈ X , in particular,
for every X ∈ X it holds that X � Y .

(�6⇒�4) : If for every X ∈ X there exists YX ∈ Y such that X � YX , we have a
pair (X,YX) ∈ X × Y such that X � YX .

The previous implications are depicted in Figure 4.1. Other relationships between
the six definitions do not hold in general, as we can see in the following example.

Example 4.4 Consider a probability space with only one element ω, and let δx denote
the random variable satisfying δx(ω) = x. Consider also the binary relation � such that:

X � Y ⇔ X(ω) ≥ Y (ω). (4.1)

If we take X = {δ1, δ3} and Y = {δ2}, it follows that δ3 � δ2 � δ1, whence, applying
Definition 4.1, we have that:

X �2 Y, X �3 Y, X ≡4 Y, Y �5 X , Y �6 X

and X and Y are incomparable with respect to the first extension. From this we deduce
that:
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Figure 4.1: Relationships among the different extensions of the binary relation for the
comparison of sets of random variables.

• �2 6⇒,�1,�5,�6 and therefore �3 6⇒,�1,�5,�6.

• �4 6⇒,�1,�2,�3,�5,�6.

• �5 6⇒,�1,�2,�3 and therefore �6 6⇒,�1,�2,�3.

Next, given X = Y = {δx : x ∈ (0, 1)}, we have that X ≡3 Y and X ≡6 Y, because
δx ≡ δx for all x ∈ (0, 1). However, X and Y are incomparable with respect to second
and fifth definitions, because there are not x1, x2 ∈ (0, 1) for which δx1 � δr and δr � δx2

for all r ∈ (0, 1). Hence:

• �3 6⇒�2.

• �6 6⇒�5.�

Remark 4.5 In some cases, it may be interesting to combine some of these definitions,
for instance to consider X preferred to Y when it is preferred according to definitions �2

and �5. Taking into account the implications depicted in Proposition 4.3, the combina-
tions that produce new conditions are those where we take one condition out of {�2,�3}
together with one out of {�5,�6}.

If we combine for instance �2 with �5, we can introduce the extension, denoted by
�2,5, and defined by:

X �2,5 Y ⇔ X �2 Y and X �5 Y.

Then, �2,5 requires that X has a �-best case scenario which is better than any situation
in Y and that Y has a �-worst case which is worse than any situation in X . This turns
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out to be an intermediate condition between �1 and each of �2 and �5, and it can be
derived from the previous example that it is not equivalent to any of them.�

The implications in Proposition 4.3 can also be seen easily in the case where X and Y
are finite sets, X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym}. Then if we denote by M the
n×m matrix where

Mi,j =

{
1 if Xi � Yj
0 otherwise,

the above definitions are characterised in the following way:

• X �1 Y ⇔M = 1n,m.

• X �2 Y ⇔ ∃i ∈ {1, . . . , n} such that Mi,· = 11,m.

• X �3 Y ⇔ @j ∈ {1, . . . ,m} such that M·,j = 0n,1.

• X �4 Y ⇔M 6= 0n,m.

• X �5 Y ⇔ ∃j ∈ {1, . . . ,m} such that M·,j = 1n,1.

• X �6 Y ⇔ @i ∈ {1, . . . , n} such that Mi,· = 01,m.

Observe that, as we have already seen, for any binary relation �, its extensions �2 and
�3 (respectively �5 and �6) are quite related: both compare the best (respectively,
the worst) alternatives within each set X ,Y. Since the difference between them lies on
whether there is a maximal (respectively, minimal) element within each of these sets or
not, we can easily give a necessary and sufficient condition for the equivalences �2⇔�3

and �5⇔�6.

Proposition 4.6 Let � be a binary relation on the set of random variables that is re-
flexive and transitive.

(a) Given a set X of random variables, X �3 Y ⇒ X �2 Y for any set of variables Y
if and only if X has a maximum element under �.

(b) Given a set Y of random variables, X �6 Y ⇒ X �5 Y for any set of variables X
if and only if Y has a minimum element under �.

Proof:

(a) Assume that X has a maximum element X such that X � X ′ for every X ′ ∈ X .
If X �3 Y, then for every Y ∈ Y there is some XY ∈ X such that XY � Y . Since
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� is transitive, we deduce that X � XY � Y , and then X � Y for every Y ∈ Y,
and as a consequence X �2 Y.
Conversely, if X does not have a maximum element, we can take Y = X and we
would have X ≡3 Y because � is reflexive; however, X and Y are incomparable
with respect to �2 because X does not have a maximum element.

(b) Similarly, if Y has a minimum element Y , it holds that Y ′ � Y for any Y ′ ∈ Y. If
X �6 Y, then for every X ∈ X there exists YX ∈ Y such that X � YX , and since
� is transitive we obtain that X � Y for every X ∈ X , whence X �5 Y.
Conversely, if Y does not have a minimum element, we can take X = Y and we
would have X ≡6 Y because � is reflexive; however, X and Y are incomparable
with respect to �5 because Y does not have a minimum element.

Under some conditions, we can also give a simpler characterisation of the above proper-
ties:

Proposition 4.7 Let � be a binary relation between random variables, and assume that
it satisfies the Pareto Dominance condition:

X(ω) ≥ Y (ω) ∀ω ⇒ X � Y. (4.2)

Consider two sets of random variables X ,Y. If the random variables minX , maxX exist
and belong to X and minY, maxY exist and belong to Y, then:

(a) X �1 Y ⇔ minX � maxY.

(b) X �2 Y ⇔ X �3 Y ⇔ maxX � maxY.

(c) X �4 Y ⇔ maxX � minY.

(d) X �5 Y ⇔ X �6 Y ⇔ minX � minY.

Proof: Note that when both X ,Y include a maximum and a minimum random variable,
Equation (4.2) implies that for every X ∈ X , Y ∈ Y,

minX � Y ⇒ X � Y ⇒ maxX � Y

and
X � maxY ⇒ X � Y ⇒ X � minY.

Then:

(a) Since minX � maxY, it is obvious that X �1 Y. On the other hand, using
the previous equations, if every X ∈ X and Y ∈ Y satisfy X � Y , then also
minX ≥ maxY.
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(c) Since maxX � minY, and maxX ∈ X and minY ∈ Y, then X �4 Y. On the
other hand, using the previous equations, if X � Y for some X ∈ X , Y ∈ Y, also
maxX � minY.

(b,d) Using the previous equations, X has a maximum element and Y has a minimum
element under �. By Proposition 4.6, X �3 Y ⇔ X �2 Y and X �6 Y ⇔ X �5

Y. The remaining equivalence can be established in an analogous manner to the
previous cases.

Remark 4.8 According to Remark 4.5, under the conditions of the previous result, it is
immediate that X �2,5 Y if and only if maxX � maxY and minX � minY.�

Next we investigate which properties of the binary relation � hold onto the extensions
�1, . . . ,�6. Obviously, since all these definitions become � in the case of singletons,
if � is not reflexive (resp., antisymmetric, transitive), neither are �i, for i = 1, . . . , 6.
Conversely, we can establish the following result.

Proposition 4.9 Let � be a binary relation on random variables, and let �i, i = 1, . . . , 6
be its extensions to sets of random variables, given by Definition 4.1.

(a) If � is reflexive, so are �3, �4 and �6.

(b) If � is antisymmetric, so is �1.

(c) If � is transitive, so are �i for i = 1, 2, 3, 5, 6.

Proof: First of all, if � is reflexive, X ≡ X for any random variable X, and applying
Definition 4.1 we deduce that X �i X for any i = 3, 4, 6 and any set of random variables
X .

Secondly, assume that � is antisymmetric and that two sets of random variables
X ,Y satisfy X �1 Y and Y �1 X . Then, X � Y and Y � X for every X ∈ X and Y ∈ Y,
and by the antisymmetry property of �, we deduce that X = Y for every X ∈ X , Y ∈ Y.
But this can only be if X = {Z} = Y for some random variable Z. As a consequence,
�1 is antisymmetric.

Finally, assume that � is transitive, and let us show that so are �i for i = 1, 2, 3, 5, 6.
Consider three sets of random variables X ,Y,Z:

1. If X �1 Y and Y �1 Z then X � Y and Y � Z for every X ∈ X , Y ∈ Y, Z ∈ Z.
Applying the transitivity of �, we deduce that X � Z for every X ∈ X , Z ∈ Z,
and as a consequence X �1 Z.
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2. If X �2 Y and Y �2 Z, there is X ∈ X such that X � Y for every Y ∈ Y and
there is Y ∗ ∈ Y such that Y ∗ � Z for every Z ∈ Z. In particular, X � Y ∗ � Z for
every Z ∈ Z, whence, by the transitivity of �, X �2 Z.

3. If X �3 Y and Y �3 Z, for every Y ∈ Y there is some XY ∈ X such that XY � Y ,
and for every Z ∈ Z there is YZ ∈ Y such that YZ � Z. As a consequence, for
every Z ∈ Z it holds that XYZ � Z, and therefore X �3 Z.

The proof of the transitivity of �5 and �6 holds by analogy to that of �2 and �3,
respectively.

Our next example shows that reflexivity and antisymmetry do not hold for defini-
tions different than the ones of statements (a) and (b). To show that the fourth extension
is not transitive in general, even when the binary relation is, we refer to Example 4.18,
where we shall show that the fourth extension is not transitive when considering the
binary relation � to be the first degree stochastic dominance.

Example 4.10 Consider the universe Ω = {ω} and, as we made in Example 4.4, de-
note by δx the random variable such that δx(ω) = x, and the binary relation defined in
Equation (4.1). Consider the set of random variables X defined by X = {δx : x ∈ (0, 1)}.
Then, although � is reflexive, X is incomparable with itself with respect to �1,�2 and
�5. Now, consider the sets of random variables X and Y defined by:

X = {δx : x ∈ [0, 1]} and Y = {δx : x ∈ [0, 1]\{0.5}}.

Then, X ≡i Y for any i = 2, 3, 4, 5, 6, but X 6= Y, while � is an antisymmetric relation.�

Another interesting property in a binary relation is that of completeness, which means
that given any two elements, either one is preferred to the other or they are indifferent,
but they are never incomparable. From Proposition 4.3, it follows that the incomparable
pairs with respect to an extension �i are also incomparable with respect to the stronger
extensions. The following result shows that if � is a complete relation, then its weakest
extensions (namely, �3,�4 and �6) also induce complete binary relations:

Proposition 4.11 Consider a binary relation � between random variables, and let �i,
for i = 1, . . . , 6, be its extensions to sets of random variables given by Definition 4.1. If
� is complete, then so are �3,�4 and �6.

Proof: Let X ,Y be two sets of random variables, and assume that X �3 Y. Then
there is some Y ∈ Y such that X � Y for all X ∈ X . But since � is a complete
relation, this means that Y � X for all X ∈ X . As a consequence, Y �2 X , and applying
Proposition 4.3 we deduce that Y �3 X . Hence, the binary relation �3 is complete.
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� �1 �2 �3 �4 �5 �6

Reflexive • • •
Antisymmetric •
Transitive • • • • •
Complete • • •

Table 4.1: Summary of the properties of the binary relation � that hold onto their
extensions �1, . . . ,�6.

On the other hand, if X �4 Y, we deduce from Proposition 4.3 that also X �3 Y,
whence the above reasoning implies that Y �3 X and again from Proposition 4.3 we
deduce that Y �4 X .

The proof that �6 also induces a complete relation is analogous.

Let us now give an example where we see that the completeness of the binary
relationship does not imply the completeness of the extensions �1,�2,�5.

Example 4.12 Consider again Example 4.10, and take the sets of random variables
X = Y = {δx : x ∈ (0, 1)} and the binary relation � defined in Equation (4.1). Although
� is complete, X and Y are incomparable with respect to �1,�2 and �5.�

Table 4.1 summarises the properties we have investigated in Propositions 4.9 and 4.11.

Remark 4.13 Although in this report we shall focus on the particular application of
Definition 4.1 to the relation � associated with stochastic dominance or statistical pref-
erence, there are other cases of interest. Perhaps the most important one is that where
the comparison between pairs of random variables is made by means of their expected
utility:

X � Y ⇔ E(X) ≥ E(Y );

it is not difficult to see that Definition 4.1 gives rise to some well-known generalisations
of expected utility that are formulated in terms of lower and upper expectations. Consider
two sets X ,Y and assume that the expectations of all their elements exist. Then with
respect to definition �1 it holds that:

X �1 Y ⇔ E(X ) = inf
X∈X

E(X) ≥ sup
Y ∈Y

E(Y ) = E(Y),

which relates this notion to the concept of interval dominance considered in [219].

If we now consider definition �3, it holds that

X �3 Y ⇒ E(X ) = sup
X∈X

E(X) ≥ sup
Y ∈Y

E(Y ) = E(Y).
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Thus, definition �3 is stronger than the maximax criterium [184], which is based on
comparing the best possibilities in our sets of alternatives. Similarly, if we consider
definition �6 it holds that:

X �6 Y ⇒ E(X ) = inf
X∈X

E(X) ≥ inf
Y ∈Y

E(Y ) = E(Y).

Thus, definition �6 is stronger than the maximin criterium [82], which compares the
worst possibilities within the sets of alternatives.

Finally, definition �4 implies that

X �4 Y ⇒ E(X ) = sup
X∈X

E(X) ≥ inf
Y ∈Y

E(Y ) = E(Y),

so if X is �4-preferred to Y then it is also preferred with respect to the criterion of
E-admissibility from [107]. See [43, 202] for related comments. �

4.1.1 Imprecise stochastic dominance

In this subsection, we explore in some detail the case where the binary relation � is the
one associated with the notion of first degree stochastic dominance we have introduced
in Definition 2.2, i.e., the relation � is defined by �FSD. We call this extension imprecise
stochastic dominance. We shall assume that the utility space Ω′ is [0, 1], although the
results can be immediately extended to any bounded interval of real numbers. Since
stochastic dominance is based on the comparison of cumulative distribution functions
associated with the random variables, we shall employ the notation FX �FSD FY instead
of X �FSD Y . For the same reason, along this subsection we will consider sets of
cumulative distribution functions FX and FY instead of sets of random variables X and
Y.

Remark 4.14 From now on, we shall say that a set of distribution functions FX is
(FSDi)-preferred or that it (FSDi)-stochastically dominates another set of distribution
functions FY when FX �FSDi FY. We will also use the notation �FSDi,j when both �FSDi

and �FSDj hold. �

An illustration of the six extensions of Definition 4.1 when considering stochastic dom-
inance is given in Figure 4.2, where we compare the set of distribution functions repre-
sented by a continuous line (that we shall call continuous distributions in this paragraph)
with the set of distribution functions represented by a dotted line (that we shall call
dotted distributions). On the one hand, in the left picture the set of continuous dis-
tributions (FSD1)-stochastically dominates the set of dotted distributions. In the right
picture, there is a continuous distribution that dominates all dotted distributions, and
a dotted distribution which is dominated by all continuous distributions. This means
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that the set of continuous distributions stochastically dominates the set of dotted dis-
tributions with respect to the second to sixth definitions. Since there is also a dotted
distribution that is dominated by a continuous distribution, we deduce that the set of
continuous distributions and the set of dotted distributions are equivalent with respect
to the fourth definition. Notice that the binary relationship considered in Example 4.4

Figure 4.2: Examples of several definitions of imprecise stochastic dominance.

is equivalent to first degree stochastic dominance when the initial space Ω only has one
element. Then, such example shows that the converse implications of Proposition 4.3 do
not hold in general when considering the binary relation to be the first degree stochastic
dominance.

Now, we investigate which properties hold when considering the strict imprecise
stochastic dominance.

Proposition 4.15 Consider the extensions of stochastic dominance given in Defini-
tion 4.1. It holds that:

• FX �FSD2 FY ⇒ FX �FSD3 FY.

• FX �FSD5 FY ⇒ FX �FSD6 FY.

Proof: We begin proving that �FSD2 implies �FSD3 . Observe that FX �FSD2 FY is
equivalent to:

(I) FX �FSD2 FY ⇒ ∃F ∗1 ∈ FX such that F ∗1 ≤ F2 for all F2 ∈ FY.
(II) FY 6�FSD2 FX ⇒ ∀F2 ∈ FY,∃F1 ∈ FX such that F2 6≤ F1.

It follows from (I) and Proposition 4.3 that FX �FSD3 FY. We only have to prove that
FY 6�FSD3 FX, or equivalently, that there is F1 ∈ FX such that F2 6≤ F1 for any F2 ∈ FY.
If F ∗1 satisfies this property, the proof is finished. If not, there is some F ∗2 ∈ FY such
that F ∗2 ≤ F ∗1 , whence F ∗1 = F ∗2 . Applying (II), there exists some F

′

1 ∈ FX such that
F ∗1 6≤ F

′

1, which means that F
′

1(t) < F ∗1 (t) for some t. As a consequence, F
′

1(t) < F2(t)
for any F2 ∈ FY, whence FY 6�FSD3 FX. Hence, FX �FSD3 FY.
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Let us now prove that �FSD5⇒�FSD6 . Similarly to the previous case, FX �FSD5 FY

is equivalent to:

(I) FX �FSD5 FY ⇒ ∃F ∗2 ∈ FY such that F1 ≤ F ∗2 for all F1 ∈ FX.
(II) FY 6�FSD5 FX ⇒ ∀F1 ∈ FX,∃F2 ∈ FY such that F2 6≤ F1.

It follows from (I) and Proposition 4.3 that FX �FSD6 FY. We only have to prove that
FY 6�FSD6 FX, or equivalently, that there is F2 ∈ FY such that F2 6≤ F1 for any F1 ∈ FX.
If F ∗2 satisfies this property, the proof is finished. If not, there exists F ∗1 ∈ FX such
that F ∗2 ≤ F ∗1 , and applying (I) we deduce that F ∗1 = F ∗2 ∈ FX. Applying (II) we
deduce that there is some F

′

2 ∈ FY such that F
′

2 6≤ F ∗1 , whence there is some t such that
F
′

2(t) > F ∗1 (t) = F ∗2 (t) ≥ F1(t) for every F1 ∈ FX. Hence, F
′

2 6≤ F1 for any F1 ∈ FX and
the property holds.

Furthermore, next example shows that there are no other relationships between the
strict extensions of stochastic dominance.

Example 4.16 Consider the same conditions of Example 4.4: Ω = {ω}, δx is the ran-
dom variable given by δx(ω) = x and � is given by Equation (4.1), that is equivalent to
�FSD in this case.

Take the sets X = {δ1} and Y = {δ0, δ1}. It holds that:

X �FSD1 Y and X �FSD6 Y,

but X ≡FSD2 Y and X ≡FSD4 Y. Then, �FSD1 6⇒�FSD2 and �FSD6 6⇒�FSD4 .

If we consider the sets X = {δ0, δ1} and Y = {δ0}, it holds that:

X �FSD1 Y and X �FSD3 Y,

but X ≡FSD5 Y and X ≡FSD4 Y. Then, �FSD1 6⇒�FSD5 and �FSD3 6⇒�FSD4 .�

With respect to the other results, since �FSD is reflexive and transitive, we can apply
Proposition 4.6 and characterise the equivalences between �FSD2 and �FSD3 , and also
between �FSD5 and �FSD6 by means of the existence of a maximum and a minimum value
in the sets FX,FY we want to compare. Moreover, we can deduce from Proposition 4.9
and Examples 4.10 and 4.12 that �FSDi is reflexive for i = 3, 4, 6 and transitive for
i = 1, 2, 3, 5, 6. On the other hand, since two different random variables may induce the
same distribution function, �FSD is not antisymmetric. Nevertheless, if we are dealing
with sets of cumulative distribution functions instead of sets of random variables, �FSD

becomes antisymmetric. Next example shows that (FSD4) is not transitive in general.

Remark 4.17 Through this subsection we shall present several examples showing that
the propositions established cannot be improved, in the sense that the missing implications
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do not hold in general. Some of these examples will consider distribution functions associ-
ated with probability measures with finite supports. To fix notation, given ~a = (a1, . . . , an)
such that a1 + . . . + an = 1, and ~t = (t1, . . . , tn) with t1 ≤ . . . ≤ tn, the function F~a,~t
corresponds to the cumulative distribution function of the probability measure P~a,~t satis-
fying P~a,~t({ti}) = ai for i = 1, . . . , n. Indeed, the only continuous distribution function
we shall consider is the identity F = id, defined by F (x) = id(x) = x for any x ∈ [0, 1].�

Example 4.18 Consider the three sets of cumulative distribution functions FX, FY and
FZ defined by:

FX = {F(0.5,0.5),(0,1)}, FZ = {F}, FY = FX ∪ FZ.

Since both sets FX and FZ are included in FY, Proposition 4.29 later on assures that
FX ≡FSD4 FY and FY ≡FSD4 FZ. However, FX and FZ are not comparable, since the
distribution functions F(0.5,0.5),(0,1) and F are not comparable with respect to first degree
stochastic dominance.�

Since �FSD also complies with Pareto dominance (Equation (4.2)), we deduce from
Proposition 4.7 that when the sets FX and FY to compare have both a maximum and
a minimum element, we can easily characterise the conditions �FSDi , i = 1, . . . , 6 by
comparing these maximum and minimum elements only. Finally, note that, as we al-
ready mentioned in Example 2.3, �FSD is not a complete relation, and as a consequence,
Proposition 4.11 is not applicable in this context.

As we remarked in Section 2.2.1, p-boxes are one model within the theory of im-
precise probabilities. Stochastic dominance between sets of probabilities or cumulative
distribution functions can be studied by means of a p-box representation. Given any set
of cumulative distribution functions F , it induces a p-box (F , F ), as we saw in Equa-
tion (2.16):

F (x) := inf
F∈F

F (x), F (x) := sup
F∈F

F (x).

Our next result relates the imprecise stochastic dominance for sets of cumulative distri-
bution functions to their associated p-box representation.

Proposition 4.19 Let FX and FY be two sets of cumulative distribution functions, and
denote by (FX, FX) and (FY, FY) the p-boxes they induce by means of Equation (2.16).
Then the following statements hold:

1. FX �FSD1 FY ⇔ FX �FSD FY.

2. FX �FSD2 FY ⇒ FX �FSD FY.

3. FX �FSD3 FY ⇒ FX �FSD FY.
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4. FX �FSD4 FY ⇒ FX �FSD FY.

5. FX �FSD5 FY ⇒ FX �FSD FY.

6. FX �FSD6 FY ⇒ FX �FSD FY.

Proof:

(1) Note that FX �FSD1 FY if and only if F1 ≤ F2 for every F1 ∈ FX, F2 ∈ FY, and
this is equivalent to FX = supF1∈FX

F1 ≤ infF2∈FY F2 = FY.

(3) By hypothesis, for every F2 ∈ FY there is some F1 ∈ FX such that F1 ≤ F2. As a
consequence, FX ≤ F2 ∀F2 ∈ F2 ⇒ FX ≤ infF2∈FY F2 = FY.

(4) If there are F1 ∈ FX and F2 ∈ FY such that F1 ≤ F2, then FX ≤ F1 ≤ F2 ≤ FY.

(6) If for every F1 ∈ FX there is some F2 ∈ FY such that F1 ≤ F2, then it holds that
FX = supF1∈FX

F1 ≤ supF2∈FY
F2 = FY.

(2,5) The second (resp. fifth) statement follows from the third (resp., sixth) and Propo-
sition 4.3.

Next example shows that the converse implications in the second to sixth statements do
not hold in general.

Example 4.20 Take FX = {F(0.3,0.7),(0,1), F(0.2,0.8),(0.2,0.3)},FY = {F}. They are in-
comparable under any of the definitions but FX ≤ FY = F = FY ≤ FX, from which we
deduce that the converse implications in Proposition 4.19 do not hold.�

As we mentioned after Definition 4.1, the difference between (FSD2) and (FSD3) lies on
whether the set of distribution functions FX has a “best case”, i.e., a smallest distribution
function; similarly, the difference between (FSD5) and (FSD6) lies on whether FY

has a greatest distribution function. Taking this into account, we can easily adapt the
conditions of Proposition 4.6 towards imprecise stochastic dominance:

Proposition 4.21 Let FX and FY be two sets of cumulative distribution functions.

1. FX ∈ FX ⇒
[
FX �FSD2 FY ⇔ FX �FSD3 FY

]
.

2. FY ∈ FY ⇒
[
FX �FSD5 FY ⇔ FX �FSD6 FY

]
.

Proof: To see the first statement, use that by Proposition 4.3 FX �FSD2 FY implies
FX �FSD3 FY. Moreover, FX �FSD3 FY if and only if for every F2 ∈ FY there is



162 Chapter 4. Comparison of alternatives under uncertainty and imprecision

F1 ∈ FX such that F1 ≤ F2. In particular, since FX ≤ F1 for every F1 ∈ FX, it holds
that FX ≤ F2 for every F2 ∈ FY, and consequently, as FX ∈ FX, that FX �FSD2 FY.

The proof of the second statement is analogous.

When both the lower and upper distributions belong to the corresponding p-box,
they can be used to characterise the preferences between them. In that case, the stochas-
tic dominance between two sets of cumulative distribution functions can be characterised
by means of the relationships of stochastic dominance between their lower and upper dis-
tribution functions.

Corollary 4.22 Let FX,FY be two sets of cumulative distribution functions, and let
(FX, FX) and (FY, FY) be their associated p-boxes. If FX, FX ∈ FX and FY, FY ∈ FY,
then

1. FX �FSD1 FY ⇔ FX ≤ FY.

2. FX �FSD2 FY ⇔ FX �FSD3 FY ⇔ FX ≤ FY.

3. FX �FSD4 FY ⇔ FX ≤ FY.

4. FX �FSD5 FY ⇔ FX �FSD6 FY ⇔ FX ≤ FY.

Proof: The first item has already been showed in Proposition 4.19. The equivalences
between (FSD2)− (FSD3) and (FSD5)− (FSD6) are given by Proposition 4.21. Also,
the direct implications of second, third and fourth items are given by Proposition 4.19.
Let us prove the converse implications:

• If FY ≥ FX ∈ FX, there is some F1 ∈ FX such that F1 ≤ F2 for all F2 ∈ FY, and
as a consequence FX �FSD2 FY.

• If FX ≤ FY, then there exist F1 ∈ FX and F2 ∈ FY such that F1 ≤ F2, whence
FX �FSD4 FY.

• If FX ≤ FY, then since FY ∈ FY then there is some F2 ∈ FY such that F1 ≤ F2

for every F1 ∈ FX, because FX ≤ FX for any FX ∈ FX.

In Section 2.1.1 we established a characterisation of stochastic dominance in terms of
expectations: Theorem 2.10 assures that given two random variablesX and Y ,X �FSD Y
if and only if E(u(X)) ≥ E(u(Y )) for every increasing function u. When we compare sets
of random variables, we must replace these expectations by lower and upper expectations.
For any given set of distribution functions F and any increasing function u : [0, 1]→ R,
we shall denote EF (u) := infF∈F EPF(u) and EF (u) := supF∈F EPF(u).
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Theorem 4.23 Let us consider two sets of cumulative distribution functions FX and FY,
and let U be the set of all increasing functions u : [0, 1] → R. The following statements
hold:

1. FX �FSD1 FY ⇔ EFX
(u) ≥ EFY(u) for every u ∈ U .

2. FX �FSD2 FY ⇒ EFX(u) ≥ EFY(u) for every u ∈ U .

3. FX �FSD3 FY ⇒ EFX(u) ≥ EFY(u) for every u ∈ U .

4. FX �FSD4 FY ⇒ EFX(u) ≥ EFY
(u) for every u ∈ U .

5. FX �FSD5 FY ⇒ EFX
(u) ≥ EFY

(u) for every u ∈ U .

6. FX �FSD6 FY ⇒ EFX
(u) ≥ EFY

(u) for every u ∈ U .

Proof:

1. First of all, FX �FSD1 FY if and only if for every F1 ∈ FX and F2 ∈ FY F1 �FSD F2.
This is equivalent to EP1(u) ≥ EP2(u), for every u ∈ U , and every F1 ∈ FX and
F2 ∈ FY, where Pi is the probability associated with Fi, for i = 1, 2, and this in
turn is equivalent to

EFX
(u) = inf{EPF(u) | F ∈ FX} ≥ sup{EPF(u) | F ∈ FY} = EFY(u)

for every u ∈ U .

3. If FX �FSD3 FY, then for every F2 ∈ FY there is F1 ∈ FX such that F1 ≤ F2.
Equivalently, for every F2 ∈ FY there is F1 ∈ FX such that EP1(u) ≥ EP2(u) for
every u ∈ U . Then given u ∈ U and F2 ∈ FY,

EP2(u) ≤ sup{EPF(u) | F ∈ FX} = EFX(u),

and consequently

EFY(u) = sup{EPF(u) | F ∈ FY} ≤ EFX(u).

2. The second statement follows from the third one and from Proposition 4.3.

4. Let us assume that FX �FSD4 FY. Then, by definition there are F1 ∈ FX and
F2 ∈ FY such that F1 ≤ F2, or equivalently, EP1(u) ≥ EP2(u) for every u ∈ U . We
deduce that

EFX(u) = sup{EPF(u) | F ∈ FX} ≥ EP1(u)
≥EP2(u) ≥ inf{EPF(u) | F ∈ FY} = EFY

(u).
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6. If FX �FSD6 FY, then for every F1 ∈ FX there is F2 ∈ FY such that F1 ≤ F2.
Equivalently, for every F1 ∈ FX, EP1(u) ≥ EP2(u) for some F2 ∈ FY and for every
u ∈ U . Thus, for every F1 ∈ FX and u ∈ U ,

EP1(u) ≥ inf{EPF(u) | F ∈ FY},

and consequently

EFX
(u) = inf{EPF(u) | F ∈ FX} ≥ inf{EPF(u) | F ∈ FY} = EFY

(u).

5. Finally, the fifth statement follows from the sixth and from Proposition 4.3.

Remark 4.24 If we consider the extension of stochastic dominance �FSD3,6 , that is,
FX �FSD3,6 FY if and only if FX �FSD3 FY and FX �FSD6 FY, it holds that:

FX �FSD3,6 FY ⇒

{
FX �FSD FY and FX �FSD FY.

EFX(u) ≥ EFY(u) and EFX
(u) ≥ EFY

(u) ∀u ∈ U .
(4.3)

With a similar notation, we can consider �FSD2,5 , and it holds that FX �FSD2,5 FY

implies FX �FSD3,6 FY. Then, from the previous results we deduce that FX �FSD2,5 FY

also implies the results of Equation (4.3). �

Taking into account Equation (2.6), the above implications hold in particular when we
replace the set U by the subset U∗ of increasing and bounded functions u : [0, 1] → R.
This will be useful when comparing random sets by means of stochastic dominance in
Section 4.2.1.

Remark 4.25 Theorem 4.23 shows that the extensions of first degree stochastic domi-
nance to sets of alternatives are related to the comparison of the lower and upper expecta-
tions they induce. Taking this idea into account, we may introduce alternative definitions
by considering a convex combination of these lower and upper expectations, in a similar
way to the Hurwicz criterion [96]:

FX �FSDH FY ⇔ λEFX
(u) + (1− λ)EFX(u) ≥ λEFY

(u) + (1− λ)EFY(u),

for all u ∈ U , where λ ∈ [0, 1] plays the role of a pessimistic index. It is not difficult to
see that

FX �FSD1 FY ⇒ FX �FSD2,5 FY ⇒ FX �FSD3,6 FY ⇒ FX �FSDH FY

and that the converses do not hold. �

When the bounds of the p-boxes belong the sets of distribution functions, the implications
on Theorem 4.23 become equivalences.
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Corollary 4.26 Let FX and FY be two sets of cumulative distribution functions, and let
(FX, FX) and (FY, FY) be their associated p-boxes. If FX, FX ∈ FX and FY, FY ∈ FY,
then:

1. FX �FSD1 FY ⇔ EFX
(u) ≥ EFY(u) for every u ∈ U .

2. FX �FSD2 FY ⇔ FX �FSD3 FY ⇔ EFX(u) ≥ EFY(u) for every u ∈ U .

3. FX �FSD4 FY ⇔ EFX(u) ≥ EFY
(u) for every u ∈ U .

4. FX �FSD5 FY ⇔ FX �FSD6 FY ⇔ EFX
(u) ≥ EFY

(u) for every u ∈ U .

Proof: The proof is based on the fact that, since FX, FX ∈ FX and FY, FY ∈ FY,
then:

EFX
(u) = EFX

(u), EFX(u) = EFX
(u),

EFY
(u) = EFY

(u), EFY(u) = EFY
(u).

Then, applying Corollary 4.22, the implications directly hold.

It is also possible to consider the n-th degree stochastic dominance, for n ≥ 2 as the
binary relation in Definition 4.1. In that case, we shall denote by �nSDi or by (nSDi) its
extensions. With this relation, we can also state similar results to the ones established
for first degree stochastic dominance. For instance, the following statements hold for
imprecise n-th degree stochastic dominance:

• FX �nSD2 FY ⇒ FX �nSD3 FY (the proof is analogous to that of Proposition 4.15).

• FX �nSD5 FY ⇒ FX �nSD6 FY (the proof is analogous to that of Proposition 4.15).

• FX �nSDi FY ⇒ FX �mSDi FY for any n < m (see Equation (2.4)).

In addition, the connection of the comparison of sets of cumulative distribution functions
with the associated p-boxes (Proposition 4.19) or with the associated lower and upper
expectations (Theorem 4.23) can also be stated for the imprecise n-th degree stochastic
dominance as follows:

Proposition 4.27 Let FX and FY be two sets of cumulative distribution functions, and
denote by (FX, FX) and (FY, FY) the associated p-boxes. Denote by U∗n the set of bounded
and increasing functions u : R→ R that are n-monotone. Then it holds that:

• FX �nSD1 FY holds if and only if FX �nSD1 FY, and this is equivalent to

EFX
(u) ≥ EFY(u)

for every u ∈ U∗n.
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• FX �nSD2 FY implies:

FX �nSD2 FY and EFX(u) ≥ EFY(u) for every u ∈ U∗n.

• FX �nSD3 FY implies:

FX �nSD3 FY and EFX(u) ≥ EFY(u) for every u ∈ U∗n.

• FX �nSD4 FY implies:

FX �FSD4 FY and EFX(u) ≥ EFY
(u) for every u ∈ U∗n.

• FX �nSD5 FY implies:

FX �nSD5 FY and EFX
(u) ≥ EFY

(u) for every u ∈ U∗n.

• FX �nSD6 FY implies:

FX �nSD6 FY and EFX
(u) ≥ EFY

(u) for every u ∈ U∗n.

Furthermore, the converse implications hold when FX, FX ∈ FX and FY, FY ∈ FY.

We omit the proof because it is analogous to the one of Proposition 4.19, Theorem 4.23
and Corollaries 4.22 and 4.26.

In the remainder of the subsection we shall investigate several properties of imprecise
stochastic dominance. However, from now on we shall focus on the first degree stochastic
dominance for two main reasons: on the one hand, it is the most common stochastic
dominance in the literature and, on the other hand, as we have just seen, the results for
first degree can be easily extended for n-th degree stochastic dominance.

Connection with previous approaches

A first approach to the extension of the stochastic dominance towards an imprecise
framework was made by Denoeux in [61].

He considered two random variables U and V such that P (U ≤ V ) = 1. They can
be equivalently represented as a random interval [U, V ], which in turn induces a belief
and a plausibility function, as we saw in Definition 2.43:

bel(A) = P ([U, V ] ⊆ A) and pl(A) = P ([U, V ] ∩A 6= ∅)

for every element A in the Borel sigma-algebra βR. Thus, for every x ∈ R:

bel((−∞, x]) = FV (x) and pl((−∞, x]) = FU (x).
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The associated set of probability measures P compatible with bel and pl is given by:

P = {P probability : bel(A) ≤ P (A) ≤ pl(A) for every A ∈ βR}.

Denoeux considered two random closed intervals [U, V ] and [U ′, V ′]. One possible way
of comparing them is to compare their associated sets of probabilities:

P = {P probability : bel(A) ≤ P (A) ≤ pl(A) for every A ∈ βR}.
P ′ = {P probability : bel′(A) ≤ P (A) ≤ pl′(A) for every A ∈ βR}.

Based on the usual ordering between real intervals (see [78]), Denoeux proposed the
following notions:

• P � P ′ ⇔ pl′((x,∞)) ≤ bel((x,∞)) for every x ∈ R.

• P 1 P ′ ⇔ pl′((x,∞)) ≤ pl((x,∞)) for every x ∈ R.

• P > P ′ ⇔ bel′((x,∞)) ≤ bel((x,∞)) for every x ∈ R.

• P & P ′ ⇔ bel′((x,∞)) ≤ pl((x,∞)) for every x ∈ R.

It turns out that the above notions can be characterised in terms of the stochastic dom-
inance between the lower and upper limits of the random intervals:

Proposition 4.28 ([61]) Let (U, V ) and (U ′, V ′) be two pairs of random variables sat-
isfying P (U ≤ V ) = P (U ′ ≤ V ′) = 1, and let P and P ′ their associated sets of probability
measures. The following equivalences hold:

• P � P ′ ⇔ U �FSD V ′.

• P 1 P ′ ⇔ U �FSD U ′.

• P > P ′ ⇔ V �FSD V ′.

• P & P ′ ⇔ V �FSD U ′.

Note that the above definitions can be represented in an equivalent way by means
of p-boxes: if we consider the set of distribution functions induced by P, we obtain

{F : FV ≤ F ≤ FU},

i.e., the p-box determined by FV and FU . Similarly, the set P ′ induces the p-box
(FV ′ , FU ′), and Denoeux’s definitions are equivalent to comparing the lower and up-
per distribution functions of these p-boxes, as we can see from Proposition 4.28. Note
moreover that the same result holds if we consider finitely additive probability measures
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instead of σ-additive ones, because both of them determine the same p-box and the lower
and upper distribution functions are included in both cases.

There is a clear connection between the scenario proposed by Denoeux and our pro-
posal. Let [U, V ] and [U ′, V ′] be two random closed intervals, whose associated belief and
plausibility functions determine the sets of probability measures P,P ′ and the sets of cu-
mulative distribution functions F and F ′. Applying Proposition 4.28 and Corollary 4.22,
we obtain the following equivalences:

• F �FSD1 F ′ ⇔ FU (t) ≤ FV ′(t) for every t ∈ R⇔ P � P ′.

• F �FSD2 F ′ ⇔ F �FSD3 F ′ ⇔ FV (t) ≤ FV ′(t) for every t ∈ R⇔ P > P ′.

• F �FSD4 F ′ ⇔ FV (t) ≤ FU ′(t) for every t ∈ R⇔ P & P ′.

• F �FSD5 F ′ ⇔ F �FSD6 F ′ ⇔ FU (t) ≤ FU ′(t) for every t ∈ R⇔ P 1 P ′.

Hence, condition > gives rise to (FSD2) (when P has a smallest distribution function)
and (FSD3) (when it does not have it); similarly, condition 1 produces (FSD5) (if P ′
has a greatest distribution function) and (FSD6) (otherwise).

This also shows that our proposal is more general in the sense that it can be applied
to arbitrary sets of probability measures, and not only those associated with a random
closed interval. On the other hand, our work is more restrictive in the sense that we are
assuming that our referential space is [0,1], instead of the real line. As we mentioned
at the beginning of the section, our results are immediately extendable to distribution
functions taking values in any closed interval [a, b], where a < b are real numbers. The
restriction to bounded intervals is made so that the lower envelope of a set of cumulative
distribution functions is a finitely additive distribution function, which may not be the
case if we consider the whole real line as our referential space. One solution to this
problem is to add to our space a smallest and a greatest value 0Ω, 1Ω, so that we always
have F (0Ω) = 0 and F (1Ω) = 1.

Increasing imprecision

Next we study the behaviour of the different notions of stochastic dominance for sets
of distributions when we use them to compare two sets of distribution functions, one
of which is more imprecise than the other. This may be useful in some situations: for
instance, p-boxes can be seen as confidence bands [38, 174], which model our imprecise
information about a distribution function taking into account a given sample and a fixed
confidence level. Then if we apply two different confidence levels to the same data, we
obtain two confidence bands, one included in the other, and we may study which of the
two is preferred according to the different criteria we have proposed. In this sense, we
may also study our preferences between a set of portfolios, that we represent by means
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of a set of distribution functions, and a greater set, where we include more distribution
functions, but where also the associated risk may increase.

We are going to consider two different situations: the first one is when our infor-
mation is given by a set of distribution functions. Hence, we consider two sets FX ⊆ FY

and investigate our preferences between them:

Proposition 4.29 Let us consider two sets of cumulative distribution functions FX and
FY such that FX ⊆ FY. It holds that:

1. If FX has only one distribution function, then all the possibilities are valid for
(FSD1). Otherwise, if FX is formed by more than one distribution function, FX

and FY are incomparable with respect to (FSD1).

2. With respect to (FSD2), . . . , (FSD6), the possible scenarios are summarised in the
following table:

FSD2 FSD3 FSD4 FSD5 FSD6

FX �FSDi FY • •
FY �FSDi FX • •
FX ≡FSDi FY • • • • •

FX,FY incomparable • •

Proof: Let us prove that the possibilities ruled out in the statement of the proposition
cannot happen:

1. On the one hand, if FX has more than one cumulative distribution function, we
deduce that FX is incomparable with itself with respect to (FSD1), and as a
consequence it is also incomparable with respect to the greater set FY.

2. Since FX ⊆ FY, for any F1 ∈ FX there exists F2 ∈ FY such that F1 = F2. Hence, we
always have FY �FSD3 FX and FX �FSD6 FY. Thus, we obtain that FX 6�FSD3 FY,
FY 6�FSD6 FX, and both sets cannot be incomparable with respect to (FSD3) and
(FSD6). Moreover, using Proposition 4.3 FX �FSD2 FY and FY �FSD5 FX are
not possible. This also shows that FX ≡FSD4 FY, because any F ∈ FX ⊆ FY is
equivalent to itself.

Next example shows that all the other scenarios are indeed possible.

Example 4.30 • Let us see that FX �FSDi FY is possible for i = 1, 5, 6. For this
aim, take FX = {F} and FY = {F, F1,0}. Then, it holds that FX �FSDi FY for
i = 1, 5, 6 and FX ≡FSDi FY for i = 2, 3.
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• Let us check that FY �FSDi FX, is possible for i = 1, 2, 3. Consider FX = {F} and
FY = {F, F1,1}. Then, it holds that FY �FSDi FX for i = 1, 2, 3 and FX ≡FSDi FY

for i = 5, 6.

• Now, let us see that FX ≡FSDi FY, is possible for i = 1, . . . , 6. For this aim, take
FX = FY = {F}. Then, FX ≡FSD1 FY and by Proposition 4.3, FX ≡FSDi FY for
any i = 2, . . . , 6.

• To see that incomparability is possible for i = 1, 2, 5, let FX = FY = {F, F1,0.5}.
Then FX and FY are (FSDi) incomparable for i = 1, 2, 5, since F and F1,0.5 are
incomparable.�

Remark 4.31 A particular case of the above result would be when we compare a set of
distribution functions FX with itself, i.e., when FY = FX. In that case, FX ≡FSDi FX

for i = 3, 4, 6, as we have seen in Proposition 4.9. With respect to (FSD1), (FSD2) and
(FSD5), we may have either incomparability or indifference: to see that we may have
incomparability, consider FX = FY = {F, F1,0.5}; for indifference take FX = FY = {F}.
�

The second scenario corresponds to the case where our information about the set of
distribution functions is given by means of a p-box. A more imprecise p-box corresponds
to the case where either the lower distribution function is smaller, the upper distribution
function is greater, or both. We begin by considering the latter case.

Proposition 4.32 Let us consider two sets of cumulative distribution functions FX and
FY, and let (FX, FX) and (FY, FY) denote their associated p-boxes. Assume that FY <
FX < FX < FY. Then the possible scenarios of stochastic dominance are summarised
in the following table:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

FX �FSDi FY • • •
FY �FSDi FX • • •
FX ≡FSDi FY •

FX,FY incomparable • • • • • •

Proof: Using Proposition 4.3, we know that FX �FSD1 FY if and only if FX ≤ FY,
which is incompatible with the assumptions. Similarly, we can see that FY �FSD1 FX

and as a consequence they are incomparable.

On the other hand, if FX �FSDi FY, for i = 2, 3, using Proposition 4.19 it holds
that FX ≤ FY, a contradiction with the hypothesis.

Similarly, if FY �FSDi FX, for i = 5, 6, we deduce from Proposition 4.19 that
FY ≤ FX, again a contradiction.
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Next example shows that the scenarios included in the table are possible.

Example 4.33 • Let us see that for (FSDi), i = 2, . . . , 6, FX and FY can be in-
comparable. For this aim we consider FX = {F, F ∗}, where F ∗ = max{F, F1,0.7},
and FY = {F1,0.5, F{(0.5,0.5),(0,1)}}. It is easy to check that both sets of cumulative
distribution functions are incomparable, since every distribution function on FX is
incomparable with every distribution function on FY.

• Let us now consider

FX = {F, F ∗} and FY = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)}.

Then FY �FSDi FX for i = 2, 3 and FX �FSDi FY for i = 5, 6. As a consequence,
both sets are indifferent with respect to Definition (FSD4).

• Finally, it only remains to see that we may have strict preference under Definition
(FSD4). On the one hand, if we consider the sets

FX = {F, F ∗} and FY = {F1,0.5, F(0.5,0.5),(0,1), F(0.5,0.5),(0,0.5)},

it holds that FX �FSD4 FY. In the other hand, if we consider

FY = {F1,0.5, F(0.5,0.5),(0,1), F(0.5,0.5),(0.5,1)},

we obtain that FY �FSD4 FX.�

Although the inclusion FX ⊆ FY implies that FY ≤ FX ≤ FX ≤ FY, we may have
FY < FX < FX < FY even if FX and FY are disjoint, for instance when these lower and
upper distribution functions are σ-additive and we take the sets FX = {FX, FX} and
FY = {FY, FY}. For this reason in Proposition 4.29 we cannot have FX �FSD4 FY nor
FY �FSD4 FX and under the conditions of Proposition 4.32 we can.

Proposition 4.34 Under the above conditions, if in addition FX, FX belong to FX and
FY, FY belong to FY, the possible scenarios are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 �FSDi F2 • •
F2 �FSDi F1 • •
F1 ≡FSDi F2 •

F1,F2 incomparable •

Proof:

• It is obvious that FX and FY are incomparable with respect to Definition (FSD1).
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• It holds that FY < FX ≤ F1 for any F1 ∈ FX, and then FY �FSD2 FX. More-
over, using Corollary 4.22 (FSD2) and (FSD3) are equivalent, and consequently
FY �FSD3 FX.

• We know that FY < FX, then FY �FSD4 FX, and moreover FX < FY, and then
FX �FSD4 FY. Using both inequalities we obtain that FX ≡FSD4 FY.

• It holds that F1 ≤ FX < FY for any F1 ∈ FX, and then FX �FSD5 FY. Further-
more, using Corollary 4.22, (FSD5) and (FSD6) are equivalent, and consequently
FX �FSD6 FY.

In particular, the above result is applicable when FX = (FX, FX) and FY = (FY, FY),
with FX, FX ∈ FX and FY, FY ∈ FY.

To conclude this part, we consider the case where only one of the bounds becomes
more imprecise in the second p-box.

Proposition 4.35 Let us consider two sets of cumulative distribution functions FX and
FY, and let (FX, FX) and (FY, FY) denote their associated p-boxes.

a) Let us assume that FY < FX < FX = FY. Then the possible scenarios are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

FX �FSDi FY • • •
FY �FSDi FX • • • • •
FX ≡FSDi FY • • •

FX,FY incomparable • • • • • •

b) Let us assume that FY = FX < FX < FY. Then the possible situations are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

FX �FSDi FY • • • • •
FY �FSDi FX • • •
FX ≡FSDi FY • • •

FX,FY incomparable • • • • • •

Proof:

a) Let us first show that incomparability is the only situation possible according to
Definition (FSD1). As proven in Proposition 4.19, FX �FSD1 FY if and only if
FX ≤ FY. But this inequality is not compatible with the hypothesis. For the same
reason, the converse inequality, FY ≤ FX is not possible either.
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With respect to (FSD2), (FSD3), note that if FY < FX,

∃x0 ∈ [0, 1] such that FY(x0) = inf
F2∈FY

F2(x0) < FX(x0)

whence there exists F ∗2 ∈ FY such that F ∗2 (x0) < FX(x0) ≤ F1(x0) for all F1 ∈ FX.
Thus, F1 6≤ F ∗2 for any F1 ∈ FX and FX 6�FSD3 FY. Applying Proposition 4.19,
FX 6�FSD2 FY.

b) The proof concerning Definition (FSD1) is analogous to the one in a).
Concerning (FSD5), (FSD6), note that since FX < FY,

∃x0 ∈ [0, 1] such that FY(x0) = sup
F2∈FY

F2(x0) > FX(x0),

whence there is F ∗2 ∈ FY such that F ∗2 (x0) > FX(x0) ≥ F1(x0) for all F1 ∈ FX, then
F1 6≥ F ∗2 for any F1 ∈ FX and FY 6�FSD6 FX. It also follows from Proposition 4.19
that FY 6�FSD5 FX.

Next we give examples showing that when the lower distribution function is smaller
in the second p-box and the upper distribution functions coincide, all the possibilities
not ruled out in the first table of the previous proposition can arise. Similar examples
can be constructed for the case where FX = FY and FX < FY.

Example 4.36 • We begin by showing that FX and FY can be incomparable under
any definition (FSDi) for i = 2, . . . , 6. Let us consider the sets:

FX = {F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1) | n ≥ 3} and FY = {F1,0.5, F(0.5,0.5),(0,1)}.

For all F1 ∈ FX and F2 ∈ FY it holds that F2 6�FSD F1 and F1 6�FSD F2. Then,
FX and FY are incomparable according to (FSD4), and therefore also according to
(FSDi) for i = 2, 3, 5, 6.

• To see that FX,FY can be indifferent according to (FSD4), (FSD5) or (FSD6),
take:

FX = {F1,0.5, F(0.5,0.5),(0,0.5)} and FY = {F(0.5,0.5),(0,0.5), F1,1}.

Since FX = FY = F(0.5,0.5),(0,0.5) belongs to both sets, they verify that FX �FSD5 FY

and also FY �FSD5 FX. Therefore, FX ≡FSD5 FY. As a consequence, they are also
indifferent according to (FSD6) and (FSD4).

• Next we show that it is also possible that FX �FSDi FY for i = 5, 6. Let us consider

FX = {F(1− 1
n ,

1
n ),(0,1) : n ≥ 3} and FY = {F1,0, F1,1}.

They verify that FX �FSD5 FY since F(1− 1
n ,

1
n ),(0,1) �FSD F1,0 for all n; but

FY 6�FSD5 FX since there is not F ′ ∈ FX such that F1,0 �FSD F ′. We conclude
that FX �FSD5 FY, and applying Proposition 4.15 also FX �FSD6 FY.
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• To see that we may also have FY �FSDi FX for i = 5, 6, take:

FX = {F1,0, F(0.75,0.25),(0,1)} and FY = {F(1− 1
n ,

1
n ),(0,1) : n ≥ 3}.

Then FY �FSD5 FX because F(1− 1
n ,

1
n ),(0,1) �FSD F1,0 for every n, but they are not

indifferent with respect to (FSD5). Hence, FY �FSD5 FX and applying Proposi-
tion 4.15 also FY �FSD6 FX.

• Let us give next an example where FX �FSD4 FY. Consider

FX = {F(0.6,0.4),(0.5,1), F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1) : n ≥ 3} and

FY = {F1,0.5, F(0.5,0.5),(0,1)}.

Then, FX �FSD4 FY since F(0.6,0.4),(0.5,1) �FSD F1,0.5 but FY 6�FSD4 FX since

F1,0.5(0.5) > F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1)(0.5) for all n ≥ 3

and F1,0.5(0.5) > F(0.6,0.4),(0.5,1)(0.5). Also

F(0.5,0.5),(0,1)(0) > F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1)(0) for all n ≥ 3

and F(0.5,0.5),(0,1)(0) > F(0.6,0.4),(0.5,1)(0).

• We conclude by showing that it may also happen that FY �FSDi FX for i = 2, 3, 4.
Let us consider

FX = {F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1) : n ≥ 3} and

FY = {F1,0.5, F(0.5,0.5),(0,1), F(0.5,0.5),(0.5,1)}.

It holds that

F(0.5,0.5),(0.5,1) �FSD F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1) for all n ≥ 3,

whence FY �FSDi FX for i = 2, 3, 4. On the other hand,

F(0.5− 1
n ,0.5,

1
n ),(0,0.5,1)(0) > F(0.5,0.5),(0.5,1)(0)

and
F(0.5− 1

n ,0.5,
1
n ),(0,0.5,1)(0.5) > F(0.5,0.5),(0.5,1)(0.5),

whence FX 6�FSDi FY for i = 2, 3, 4.�

Sets of distribution functions associated with the same p-box

Next we investigate the relationships between the preferences on two sets of distributions
functions associated with the same p-box. We consider the case of non-trivial p-boxes
(that is, those where the lower and the upper distribution functions are different), since
otherwise we obviously obtain indifference.
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Proposition 4.37 Let us consider two sets of cumulative distribution functions FX and
FY such that FX = FY, FX = FY and FX < FX. Then:

1. FX and FY are incomparable with respect to FSD1.

2. With respect to (FSDi), i = 2, . . . , 6, we may have incomparability, strict stochastic
dominance or indifference between FX and FY.

Proof: By Proposition 4.19, FX �FSD1 FY if and only if FX ≤ FY, which in this case
holds if and only if FX = FX, a contradiction with our hypotheses.

With respect to conditions (FSD2), . . . , (FSD6), it is easy to find examples of
indifference by taking FX = FY including the lower and upper distribution functions.
Next example shows that we may also have strict dominance or incomparability.

Example 4.38 In these examples we are going to show that, given two sets of cumulative
distribution functions FX and FY associated with the same p-box, then there can be strict
dominance or incomparability (that they may also be indifferent has already been showed
in Proposition 4.37).

• Let us consider

FX = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)} and FY = {F1,0.5, F(0.5,0.5),(0,1)}.

Then, it holds that FX �FSDi FY for i = 2, 3 and FY �FSDi FX for i = 5, 6. By
reversing the roles of FX and FY, we obtain an example of FX and FY inducing
the same p-box and with FX �FSDi FY for i = 5, 6 and FY �FSDi FX for i = 2, 3.

• To see the incomparability, take

FX = {F1,0.5, F(0.5,0.5),(0,1)} and
FY = {F( 1

n ,0.5,0.5−
1
n ),(0,0.5,1), F(0.5− 1

n ,0.5,
1
n ),(0,0.5,1) : n ≥ 3}.

It is easy to check that both sets are incomparable with respect to (FSD4), and then
they are also incomparable with respect to (FSDi) for i = 1, . . . , 6.

• Finally, if we consider FX = {F1,0.5, F(0.5,0.5),(0,1)} and

FY = {F( 1
n ,0.5,0.5−

1
n ),(0,0.5,1), F(0.5− 1

n ,0.5,
1
n ),(0,0.5,1) : n ≥ 3, F(0.5,0.5),(0.5,1)}.

We have that F(0.5,0.5),(0.5,1) �FSD F1,0.5, while none of the distribution functions
in FX is dominated by a distribution function in FY. Thus, FY �FSD4 FX. Again,
reversing the roles of FX and FY we see that we can also have FY �FSD4 FX. �

When the lower and upper distribution functions belong to our set of distributions, we
deduce the following result.
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Corollary 4.39 Let us consider two sets of cumulative distribution functions FX and FY

such that FX = FY, FX = FY, FX < FX and FX, FX ∈ FX ∩ FY. Then FX ≡FSDi FY

for i = 2, . . . , 6, and they are incomparable with respect to (FSD1).

Proof: The result follows immediately from Proposition 4.37 and Corollary 4.22.

Next we investigate the case where we compare these two sets of distribution func-
tions with a third one, and determine if they produce the same preferences:

Proposition 4.40 Let us consider FX, F∗X and FY three sets of cumulative distribution
functions such that FX = F ∗X and F

∗
X = FX. In that case:

1. FX �FSD1 FY ⇔ F∗X �FSD1 FY, and FY �FSD1 FX ⇔ FY �FSD1 F∗X.

2. With respect to definitions (FSD2), . . . , (FSD6), if we assume that FX �FSDi FY,
then the possible scenarios for the relationship between F∗X and FY are summarised
by the following table:

FSD2 FSD3 FSD4 FSD5 FSD6

F∗X �FSDi FY • • • • •
FY �FSDi F∗X • • •
F∗X ≡FSDi FY • • • •

F∗X,FY incomparable • • • •

Proof: Concerning definition (FSD1), Proposition 4.19 assures that FX �FSD1 FY if
and only if F

∗
X = FX ≤ FY, and using the same result this is equivalent to F∗X �FSD1 FY.

The same result shows that FY �FSD1 FX if and only if FY ≤ FX = F ∗X, and this is
again equivalent to FY �FSD F∗X.
Let us prove that FX �FSD2 FY and FY �FSD2 F∗X are incompatible. If FX �FSD2 FY,
then FY 6�FSD2 FX. This means that for every F2 ∈ FY there exist F1 ∈ FX and x0 such
that F1(x0) < F2(x0). As a consequence,

inf
F∗1 ∈F∗X

F ∗1 (x0) = F ∗X(x0) = FX(x0) ≤ F1(x0) < F2(x0),

whence for every F2 ∈ FX there is some F ∗1 ∈ F∗X such that F ∗1 (x0) < F2(x0), and
consequently F2 6≤ F ∗1 . This means that FY 6�FSD2 F∗X, and therefore we cannot have
FY �FSD2 F∗X.

Let us show next that FX �FSD5 FY implies that F∗X �FSD5 FY. If FX �FSD5 FY,
there is F2 ∈ FY such that F1 ≤ F2 for every F1 ∈ FX. Whence, FX ≤ F2, and therefore
F
∗
X ≤ F2, which implies that also F ∗1 ≤ F2 for every F ∗1 ∈ F∗X. Hence, F∗X �FSD5 FY.

Next example shows that the other scenarios are possible.
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Example 4.41 Let us consider sets of cumulative distribution functions FX,F∗X and FY

that satisfies FX = F ∗X and FX = F
∗
X, and we are going to see that the scenarios given

in Proposition 4.40 are possible.

• It is obvious that we can find some examples where FX �FSDi FY for i = 2, . . . , 6
and FX �FSDi FY. To see it, it is enough to consider FX = F∗X.

• Let us show that FX �FSD3 FY and FY �FSD3 F∗X can hold simultaneously. Con-
sider the sets:

FX = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)},
F∗X = {F1,0.5, F(0.5,0.5),(0,1)},
FY = {F(0.75,0.25),(0.5,1), F(0.25,0.25,0.5),(0,0.5,1)}.

It holds that FX = F ∗X and FX = F
∗
X. Moreover it holds that FX �FSD3 FY since

F(0.5,0.5),(0.5,1) �FSD F(0.75,0.25),(0.5,1), F(0.25,0.25,0.5),(0,0.5,1),

but for F(0.5,0.5),(0.5,1) there is no distribution function in FY smaller than or equal
to F(0.5,0.5),(0.5,1). Similarly, FY �FSD3 F∗X, since

F(0.75,0.25),(0.5,1) �FSD F1,0.5 and
F(0.25,0.25,0.5),(0,0.5,1) �FSD F(0.5,0.5),(0,1).

However, F1,0.5, F(0.5,0.5),(0,1) 6�FSD F(0.25,0.25,0.5),(0,0.5,1).

• We now prove that the same can happen with Definition (FSD6). Let us consider

FY = {F(0.25,0.75),(0,0.5), F(0.5,0.25,0.25),(0,0.5,1)}.

Then it holds that F∗X �FSD6 FY and FY �FSD6 FX. To check that F∗X �FSD6 FY

it suffices to see that:

F1,0.5 �FSD F(0.25,0.75),(0,0.5) and that
F(0.5,0.5),(0,1) �FSD F(0.5,0.25,0.25),(0,0.5,1),

but F(0.25,0.75),(0,0.5) 6�FSD F1,0.5, F(0.5,0.5),(0,1). To check that FY �FSD6 FX it
suffices to see that

F(0.25,0.75),(0,0.5), F(0.5,0.25,0.25),(0,0.5,1) �FSD F(0.5,0.5),(0,0.5)

but F(0.5,0.5),(0,0.5) is not stochastically dominated by none of the distribution in FY.

• Next we prove that it is possible that FX �FSD4 FY and FY �FSD4 F∗X. For this
aim, we consider:

FX = {F(0.25,0.25,0.5),(0,0.5,1), F1,0.5, F(0.5,0.5),(0,1)},
FY = {F(0.25,0.5,0.25),(0,0.5,1), F(0.4,0.2,0.4),(0,0.5,1)} and
F∗X = {F(0.25,0.75),(0,0.5), F1,0.5, F(0.5,0.5),(0,1)}.
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It holds that FX = F ∗X and FX = F
∗
X. Also

F(0.25,0.25,0.5),(0,0.5,1) �FSD F(0.25,0.5,0.25),(0,0.5,1),

but no distribution in FY is dominated by a distribution function in FX. Whence
FX �FSD4 FY. On the other hand,

F(0.25,0.5,0.25),(0,0.5,1) �FSD F(0.25,0.75),(0,0.5), but
F(0.25,0.75),(0,0.5) 6�FSD F(0.25,0.5,0.25),(0,0.5,1), F(0.4,0.2,0.4),(0,0.5,1)

F1,0.5 6�FSD F(0.25,0.5,0.25),(0,0.5,1), F(0.4,0.2,0.4),(0,0.5,1),
F(0.5,0.5),(0,1) 6�FSD F(0.25,0.5,0.25),(0,0.5,1), F(0.4,0.2,0.4),(0,0.5,1),

so FY �FSD4 F∗X.

• Let us now show that FX may strictly dominate FY while F∗X and FY are indifferent
when we consider definition (FSDi) for i = 3, 4, 6. For this aim consider FX,FY

associated with the same p-box and such that FX �FSDi FY for i = 3, . . . , 6, as in
Example 4.38, and let F∗X = FY.

• To see that F∗X ≡FSD5 FY and FX �FSD5 FY, it is enough to consider the sets
FX = {F1,0.5, F(0.5,0.5),(0,1)}, FY = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)} and F∗X = FY.

• For FX �FSDi FY while F∗X,FY are (FSDi) incomparable for i = 2, 3, 4, take

FX = {F(0.5,0.5),(0.5,1), F(0.5,0.5),(0,0.5)},
FY = {F}, and
F∗X = {F1,0.5, F(0.5,0.5),(0,1)}.

• For FX �FSD6 FY while F∗X,FY are (FSD6) incomparable, take

FX = {F( 1
n ,1−

2
n ,

1
n ),(0,0.5,1), F( 1

2−
1
n ,

2
n ,

1
2−

1
n ),(0,0.5,1) | n ≥ 3},

F∗X = {F1,0.5, F(0.5,0.5),(0,1)},
FY = {F(0.5− 1

n ,0.5,
1
n ),(0,0.5,1), F | n ≥ 3}.�

Remark 4.42 Note that, under the conditions of the previous proposition, if we assume
in addition that FX, FX ∈ FX ∩ F∗X and that FY, FY ∈ FY, then we deduce from Corol-
lary 4.22 that FX �FSDi FY ⇔ F∗X �FSDi FY, for i = 1, . . . , 6. �

σ-additive VS finitely additive distribution functions

Although in this work we are focusing on sets of distribution functions associated with
σ-additive probability measures, it is not uncommon to encounter situations where our
imprecise information is given by means of sets of finitely additive probabilities: this is
the case of the models of coherent lower and upper previsions in [205], and in particular
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of almost all models of non-additive measures considered in the literature [126]; in this
sense they are easier to handle than sets of σ-additive probability measures, which do
not have an easy characterisation in terms of their lower and upper envelopes, as showed
in [102].

A finitely additive probability measure induces a finitely additive distribution func-
tion, and conversely, any finitely additive distribution function can be induced by a
finitely additive probability measure [133]. As a consequence, given a p-box (F , F ), the
set of finitely additive probabilities compatible with this p-box induces the class of finitely
additive distribution functions

F
′

:= {F finitely additive distribution function : F ≤ F ≤ F}. (4.4)

In particular, both F , F belong to F ′ . Taking this into account, if we define conditions
of stochastic dominance analogous to those in Definition 4.1 for sets of finitely addi-
tive distribution functions, it is not difficult to establish a characterisation similar to
Corollary 4.22.

Lemma 4.43 Let F ′X,F
′

Y be two sets of finitely additive distribution functions with as-
sociated p-boxes (FX, FX), (FY, FY). Assume FX, FX ∈ F

′

X and FY, FY ∈ F
′

Y.

1. F ′X �FSD1 F ′Y ⇔ FX ≤ FY.

2. F ′X �FSD2 F ′Y ⇔ F ′X �FSD3 F ′Y ⇔ FX ≤ FY.

3. F ′X �FSD4 F ′Y ⇔ FX ≤ FY.

4. F ′X �FSD5 F ′Y ⇔ F ′X �FSD6 F ′Y ⇔ FX ≤ FY.

Proof: The proof is analogous to the one for Corollary 4.22.

We deduce in particular that under the above conditions definitions (FSD2) and
(FSD3) are equivalent, and the same applies to (FSD5) and (FSD6). Note that, al-
though in this result we are using that the lower and upper distribution functions of the
p-box belong to the associated set of finitely additive distribution functions, this is not
necessary for the first statement.

In this section, we are going to investigate the relationship between the results we
have obtained for sets of σ-additive probability measures and those we would obtain for
finitely additive ones. Let PX,PY be two sets of σ-additive probability measures, and
let FX,FY be their associated sets of distribution functions. These sets of distribution
functions determine p-boxes (FX, FX), (FY, FY). Let F ′X,F

′

Y be two sets of finitely
additive distribution functions associated with the p-boxes (FX, FX), (FY, FX).

When the lower and upper distribution functions of the associated p-box belong
to our set of cumulative distribution functions, we can easily show that the stochastic
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dominance holds under the same conditions regardless of whether we work with finitely
or σ-additive probability measures:

Corollary 4.44 Let us consider two sets of cumulative distribution functions FX and FY

with associated p-boxes (FX, FX), (FY, FY), and let F ′X,F
′

Y be the sets of finitely additive
distribution functions associated with these p-boxes. If FX, FX ∈ FX and FY, FY ∈ FY,
it holds that:

FX �FSDi FY ⇔ F ′X �FSDi F ′Y,

for i = 1, . . . , 6.

Proof: The result is an immediate consequence of Corollary 4.22 and Lemma 4.43.

However, when the lower and the upper distribution functions induced by FX and
FY do not belong to these sets, the equivalence no longer holds. We can nonetheless
establish the following result:

Proposition 4.45 Let us consider two sets of cumulative distribution functions FX and
FY, and two sets of finite distribution functions F ′X and F ′Y such that FX,F

′

X induce the
same p-box (FX, FX) and FY,F

′

Y induce the same p-box (FY, FY). Then:

1. FX �FSD1 FY ⇔ F
′

X �FSD1 F
′

Y.

2. The relationship FX �FSDi FY does not have any implication in general on the
relationship between F ′X and F ′Y with respect to (FSDi), for i = 2, 3, 4, 5, 6.

Proof:

1. From Proposition 4.19, we know that FX �FSD1 FY ⇔ FX ≤ FY. The same proof
allows to show the equivalence with F ′X �FSD1 F

′

Y.

2. If we apply Proposition 4.40 with F ′Y = FY, we see that all we need to prove is that
FX �FSDi FY is compatible with F ′Y �FSDi F

′

X for i = 2, 5, with F ′X ≡FSDi F
′

Y for
i = 2 and with F ′X,F

′

Y incomparable with respect to (FSD5).

Next we give examples of all the possibilities in the previous result.

Example 4.46 Let us show that, given two sets FX,F
′

X, with (FX, FX) = (F
′

X, F
′

X),

and FY,F
′

Y, with (FY, FY) = (F
′

Y, F
′

Y), a number of preference scenarios are possible
(the other possible scenarios have already been established in the proof).
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We begin by showing that we may have FX �FSD2 FY and F ′Y �FSD2 F
′

X. To see
this, consider FX,FY defined by:

FX = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)} and
FY = {F1,0.5, F(0.5,0.5),(0,1)}.

They are associated with the same p-box and satisfy FX �FSD2 FY. We also consider
F ′X = FY,F

′

Y = FX. A similar reasoning shows that we may have FX �FSD5 FY while
F ′Y �FSD5 F

′

Y.

Next, we show that we may have FX �FSD2 FY and F ′X ≡FSD2 F
′

Y. Let

FX = F ′X = F ′Y = {F(0.5,0.5)(0,0.5), F(0.5,0.5),(0.5,1)} and
FY = {F1,0.5, F(0.5,0.5),(0,1)}.

It can be easily seen that FX �FSD2 FY and that FX,FY induce the same p-box. Since
F(0.5,0.5),(0.5,1) ∈ F

′

X ∩ F
′

Y satisfies that F(0.5,0.5),(0.5,1) ≤ F(0.5,0.5),(0,0.5), we deduce that
F ′X ≡FSD2 F

′

Y.

To conclude, we give an example where FX �FSD5 FY while F ′X,F
′

Y are incompa-
rable with respect to (FSD5). Consider the sets cumulative distribution functions

FX = F ′X = {F( 1
n ,1−

2
n ,

1
n ),(0,0.5,1) | n ≥ 3},

FY = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)} and
F ′Y = {F1,0.5, F(0.5,0.5),(0,1)}.

Then FX �FSD5 FY because F( 1
n ,1−

2
n ,

1
n ),(0,0.5,1) ≤ F(0.5,0.5),(0,0.5) for every n ≥ 3. On

the other hand, F ′X and F ′Y are incomparable with respect to (FSD5). �

It is known that any finitely additive cumulative distribution function F can be ap-
proximated by a σ-additive cumulative distribution function F ∗: its right-continuous
approximation, given by

F ∗(x) = inf
y>x

F (y) ∀x < 1, F ∗(1) = 1. (4.5)

Hence, to any set F of finitely additive cumulative distribution functions we can associate
a set F∗ of σ-additive cumulative distribution functions, defined by F∗ := {F ∗ : F ∈ F},
and where F ∗ is given by Equation (4.5). However, both sets do not model the same
preferences, as we can see from the following result:

Proposition 4.47 Let F be a set of finitely additive cumulative distribution functions,
and let F∗ be the set of their σ-additive approximations. The relationships between F
and F∗ are summarised in the following table:
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FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F �FSDi F
∗ • • • • • •

F∗ �FSDi F
F ≡FSDi F

∗ • • • • • •
F ,F∗ incomparable • • •

Proof: From Equation (4.5), F ≤ F ∗ for any F ∈ F , whence F �FSDi F∗, for i = 3, 4, 6.
We deduce from Proposition 4.3 that we cannot have F∗ �FSDi F for i = 1, . . . , 6.

Next example shows that the remaining scenarios are possible.

Example 4.48 If F1 is a σ-additive distribution function and we take F = {F1}, we
obtain F∗ = F = {F1}, and F∗ ≡FSDi F for i = 1, . . . , 6.

On the other hand, if F1 = I(0.5,1] and F = {F1}, we obtain that F ∗1 = I[0.5,1],
whence F1 < F ∗1 and as a consequence F �FSDi F∗ for i = 1, . . . , 6.

Finally, if F = {I[x,1] : x ∈ (0, 1)}, we obtain that F∗ = F and F is incomparable
with itself with respect to conditions (FSDi) for i = 1, 2, 5.�

Convergence of p-boxes

It is well-known that a distribution function can be seen as the limit of the empirical
distribution function that we derive from a sample, as we increase the sample size. Some-
thing similar applies when we consider a set of distribution functions: it was proven in
[136] that any p-box on the unit interval is the limit of a sequence of p-boxes (Fn, Fn)n
that are discrete, in the sense that for every n both Fn and Fn have a finite number of
discontinuity points.

If for two given p-boxes (FX, FX), (FY, FY) we consider respective approximating
sequences (FX,n, FX,n)n, (FY,n, FY,n)n, in the sense that

lim
n
FX,n = FX, lim

n
FX,n = FX, lim

n
FY,n = FY, lim

n
FY,n = FY,

we wonder if it is possible to say something about the preferences between (FX, FX) and
(FY, FY) by comparing for each n the discrete p-boxes (FX,n, FX,n) and (FY,n, FY,n).
This is what we set out to do in this section. We shall be even more general, by considering
sets of distribution functions whose associated p-boxes converge to some limit.

Proposition 4.49 Let (FX,n)n, (FY,n)n be two sequences of sets of distribution functions
and let us denote their associated sequences of p-boxes by (FX,n, FX,n) and (FY,n, FY,n)
for n ∈ N. Let FX,FY be two sets of cumulative distribution functions with associated
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p-boxes (FX, FX) and (FY, FY). Let us assume that:

FX,n
n−→ FX FX,n

n−→ FX

FY,n
n−→ FY FY,n

n−→ FY

and that FX, FX ∈ FX and FY, FY ∈ FY. Then, FX,n �FSDi FY,n ∀n, implies that
FX �FSDi FY, for i = 1, . . . , 6.

Proof: The result immediately follows from Propositions 4.3 and 4.19 and Corol-
lary 4.22.

It follows from the proof above that the assumption that the upper and lower
distribution functions belong to the corresponding sets of distribution is not necessary for
the implication with respect to (FSD1); however, it is necessary for the other definitions,
as we can see in the next example.

Example 4.50 Let us consider the following sets of cumulative distribution functions:

FX = {F1,0.5, F(0.5,0.5),(0,1)}.
FX,n = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)}.
FY = FY,n = {F}.

FX and FY are incomparable with respect to (FSD4), and consequently with respect to
(FSDi), for i = 1, . . . , 6. However, FX,n �FSDi FY,n for i = 2, 3, 4 and FY,n �FSDi FX,n

for i = 4, 5, 6. �

Stochastic dominance between possibility measures

So far, we have explored the extension of the notion of stochastic dominance towards sets
of probability measures, and we have showed that in some cases it is equivalent to compare
the p-boxes they determine. In this section, we are going to use stochastic dominance to
compare possibility measures associated with continuous distribution functions. Recall
that, from Definition 2.41, a possibility measure Π is a supremum preserving function
Π : P([0, 1])→ [0, 1], and it is characterised by its restriction to events π, called possibility
distribution. Given two possibility measures Π1 and Π2, we can consider their associated
credal sets, given by Equation (2.19):

M(Π1) := {P probability : P (A) ≤ Π1(A) ∀A}, and
M(Π2) := {P probability : P (A) ≤ Π2(A) ∀A}.

From these credal sets, we can also consider their associated sets of distribution functions
and their associated p-boxes, given in Equation (2.20) by

F 1(x) = supy≤x π1(y), F 1(x) = 1− supy>x π1(y),
F 2(x) = supy≤x π2(y), F 2(x) = 1− supy>x π2(y).
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When considering possibility measures associated with continuous distribution functions,
both the lower and the upper distribution functions belong to the set of distribution
functions associated with the possibility measures:

Lemma 4.51 Let Π be a possibility measure associated with a continuous possibility dis-
tribution on [0,1]. Then, there exist probability measures P1, P2 ∈M(Π) whose associated
distribution functions are FP1 = F , FP2 = F .

Proof: Let us consider the probability space ([0, 1], β[0,1], λ[0,1]), where β[0,1] denotes
the Borel σ-field and λ[0,1] the Lebesgue measure, and let Γ : [0, 1] → P([0, 1]) be the
random set given by Γ(α) = {x : π(x) ≥ α} = π−1([α, 1]). Then it was proved in [84]
that Π is the upper probability of Γ.

Let us consider the mappings U1, U2 : [0, 1] → [0, 1] given by U1(α) = min Γ(α),
U2(α) = max Γ(α). Since we are assuming that π is a continuous mapping, the set
π−1([α, 1]) = Γ(α) has a maximum and a minimum value for every α ∈ [0, 1], so U1, U2 are
well-defined. It also follows that U1, U2 are measurable mappings, and as a consequence
the probability measures they induce PU1 , PU2 belong to the setM(Π). Their associated
distribution functions are:

FU1(x) = PU1([0, x]) = λ[0,1](U−1
1 ([0, x])) = λ[0,1]({α : min Γ(α) ≤ x})

= λ[0,1]({α : ∃y ≤ x : π(y) ≥ α}) = λ[0,1]({α : Π[0, x] ≥ α})
= Π([0, x]) = F (x),

where the fifth equality follows from the continuity of λ[0,1], and similarly

FU2(x) = PU2([0, x]) = λ[0,1](U−1
2 ([0, x])) = λ[0,1]({α : max Γ(α) ≤ x})

= λ[0,1]({α : π(y) < α ∀y > x}) = λ[0,1]({α : Π(x, 1] ≤ α})
= 1−Π((x, 1]) = F (x),

again using the continuity of λ[0,1]. Hence, F , F belong to the set of distribution functions
induced byM(Π).

As a consequence, if we consider two possibility measures Π1,Π2 with continuous
possibility distributions π1, π2, the lower and upper distribution functions of their respec-
tive p-boxes belong to the sets F1,F2. Hence, we can apply Proposition 4.21 and conclude
that F1 �FSD2 F2 ⇔ F1 �FSD3 F2 and F1 �FSD5 F2 ⇔ F1 �FSD6 F2. Moreover, we can
use Corollary 4.22 and conclude that:

F1 �FSD1 F2 ⇔ F 1 ≤ F 2

F1 �FSD2 F2 ⇔ F 1 ≤ F 2

F1 �FSD4 F2 ⇔ F 1 ≤ F 2

F1 �FSD5 F2 ⇔ F 1 ≤ F 2.

The following proposition gives a sufficient condition for each of these relationships.
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Proposition 4.52 Let F1,F2 be the sets of distribution functions associated with the
possibility measures Π1,Π2.

1. Π1 ≤ N2 ⇒ F1 �FSD1 F2.

2. Π2 ≤ Π1 ⇒ F1 �FSD2 F2,F1 �FSD3 F2

3. M(Π1) ∩M(Π2) 6= ∅ ⇒ F1 �FSD4 F2.

4. N2 ≤ N1 ⇒ F1 �FSD5 F2,F1 �FSD6 F2.

Proof:

1. Note that F 1 ≤ F 2 if and only if supy≤x π1(y) ≤ 1 − supy>x π2(y) for every x,
or, equivalently, if and only if Π1([0, x]) ≤ 1 − Π2((x, 1]) = N2([0, x]) for every x.
Then, if Π1(A) ≤ N2(A) for any A, in particular the inequality holds for the sets
[0, x], and therefore F 1 ≤ F 2.

2. Similarly, F 1 ≤ F 2 if and only if 1 − supy≤x π1(y) ≤ 1 − supy>x π2(y) for every
x, or, equivalently, if and only if Π2((x, 1]) ≤ Π1((x, 1]) for every x. Then, if
Π2(A) ≤ Π1(A) for any A, in particular the inequality holds for the sets (x, 1], and
therefore F 1 ≤ F 2.

3. For the fourth condition of stochastic dominance, note that F 1 ≤ F 2 if and only
if 1 − supy>x π1(y) ≤ supy≤x π2(y) for every x, or, equivalently, if and only if
1 ≤ Π1((x, 1]) + Π2([0, x]) for every x. As a consequence, if there is a probability
P ∈M(Π1) ∩M(Π2),

1 = P ((x, 1]) + P ([0, x]) ≤ Π1((x, 1]) + Π2([0, x]),

whence F1 �FSD4 F2.

4. Finally, note that F 1 ≤ F 2 if and only if supy≤x π1(y) ≤ supy≤x π2(y) for every x,
or, equivalently, if and only if Π1([0, x]) ≤ Π2([0, x]) for every x. Hence, if Π1 ≤ Π2

(or, equivalently, if N2 ≤ N1) we have that F1 �FSD5 F2 and F1 �FSD6 F2.

However, none of the above conditions is necessary, as we show in the next example.

Example 4.53 1. First of all, let us see that FX �FSD1 FY 6⇒ ΠX ≤ NY. For this
aim, let πX, πY be given by

πX(x) =

{
0 if x ≤ 0.5
2x− 1 otherwise,

and πY(x) =

{
1 if x ≤ 0.5
2− 2x otherwise.
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Then for every x ∈ [0, 1] it holds that ΠX([0, x])+ΠY((x, 1]) ≤ 1: this holds trivially
for x ≤ 0.5 because in that case ΠX([0, x]) = 0. For x > 0.5, we have that

ΠX([0, x]) + ΠY((x, 1]) = 2x− 1 + 2− 2x = 1.

Hence, FX �FSD1 FY. However:

ΠX([0.5, 1]) = 1 > NY([0.5, 1]) = 1−ΠY([0, 0.5)) = 1− 1 = 0,

so the converse of the first implication does not hold.

2. Now, we are going to see that FX �FSD2,FSD3 FY 6⇒ ΠY ≤ ΠX. Consider the
possibility distributions πX, πY given by

πX(x) = x, πY(x) = 1 ∀x.

Then ΠY((x, 1]) = 1 = ΠX((x, 1]) for all x, whence FX �FSD2 FY. However,
ΠX([0, 0.5]) = 0.5 < 1 = ΠY([0, 0.5]), so ΠY � ΠX.

3. Now we are going to see that FX �FSD4 FY 6⇒ M(ΠX) ∩M(ΠY) 6= ∅. Let πX, πY

be given by

πX(x) =

{
4x− 3 if x ≥ 0.75
0 otherwise.

and πY(x) =

{
1− 4x if x ≤ 0.25
0 otherwise.

Then for every x ∈ [0, 1] it holds that

ΠX((x, 1]) + ΠY([0, x]) ≥ ΠY ([0, x]) = 1,

whence FX �FSD4 FY. However, any probability P in M(ΠX) ∩M(ΠY) should
satisfy

P ([0, 0.5]) ≤ ΠX([0, 0.5]) = 0, P ((0.5, 1]) ≤ ΠY((0.5, 1]) = 0.

Hence,M(ΠX) ∩M(ΠY) = ∅.

4. Finally, we are going to see that FX �FSD5,FSD6 FY 6⇒ ΠX ≤ ΠY. Consider the
possibility distributions πX, πY given by

πX(x) = 1, πY(x) = 1− x, ∀x.

Then it holds that ΠX([0, x]) ≤ ΠY([0, x]) ∀x, whence FX �FSD5 FY. However,
ΠX([0.5, 1]) = 1 > 0.5 = ΠY([0.5, 1]), so ΠX � ΠY. �

An open problem from this section would be to apply the notion of stochastic dominance
to compare possibility measures whose distributions are not necessarily continuous.
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P-boxes where one of the bounds is trivial

To conclude this section we investigate the case of p-boxes where one of the bounds
is trivial. These have been related to possibility and maxitive measures in [199], and
consequently they are in some sense related to the previous paragraph. We shall show
that when the lower distribution function is trivial, then the second and third conditions,
which are based on the comparison of this bound, always produce indifference.

Proposition 4.54 Let us consider the p-boxes FX = (FX, FX) and FY = (FY, FY).
Let us assume that FX = FY = I{1}, FX 6= FX and FY 6= FY. Then the possible
relationships between FX and FY are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

FX �FSDi FY • •
FY �FSDi FX • •
FX ≡FSDi FY • • • • •

FX,FY incomparable • • •

Proof:

• Using Proposition 4.19 we know that FX �FSD1 FY ⇔ FX ≤ FY. However, this
cannot happen since FY = I{1} and the p-boxes are not trivial. Consequently, both
sets are incomparable with respect to (FSD1).

• Since FX = FY ∈ FX ∩ FY, we deduce from Corollary 4.22 that FX ≡FSD2 FY.
Applying Proposition 4.3, we deduce that FX ≡FSD3 FY and FX ≡FSD4 FY.

• On the other hand, it is easy to see that anything can happen for definitions (FSD5)
and (FSD6), since these depend on the upper cumulative distribution functions of
the p-boxes.

Similarly, when the upper distribution function is trivial, then the fifth and sixth
conditions, which are based on the comparison of these bounds, always produce indiffer-
ence.

Proposition 4.55 Let us consider the p-boxes FX = (FX, FX) and FY = (FY, FY). Let
us assume that FX = FY = 1, FX < FX and FY < FY. Then the possible relationships
between FX and FY are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

FX �FSDi FY • •
FY �FSDi FX • •
FX ≡FSDi FY • • • • •

FX,FY incomparable • • •
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Proof: This proof is analogous to the previous one.

This case is related to the previous paragraph devoted to possibility measures:
when the lower distribution function is trivial, the probability measures determined by
the p-box are those dominated by the possibility measure that has F as a possibility
distribution; however, a similar result does not hold for the case of (F , 1) in general,
because we need F to be right-continuous.

0-1-valued p-boxes

Let us now focus on 0-1-valued p-boxes, by which we mean p-boxes where both the lower
and upper cumulative distribution functions F , F are 0-1-valued. As we shall see, the
notions of stochastic dominance will be related to the orderings between the intervals of
the real line determined by these 0-1-valued distribution functions. 0-1-valued p-boxes
have also been related to possibility measures in [199].

Given a 0-1-valued distribution function F , we denote

xF = inf{x | F (x) = 1}.

Note that this infimum is a minimum when we consider distribution functions associated
with σ-additive probability measures, but not necessarily for those associated with finitely
additive probability measures.

Using this notation and Proposition 4.19, we can characterise the comparison of
sets of 0–1 valued distribution functions:

Proposition 4.56 Let FX and FY be two sets of cumulative distribution functions, with
associated p-boxes (FX, FX), (FY, FY).

a) If FX, FX, FY and FY are 0-1-valued functions, then

1. FX �FSD1 FY ⇔ xFX
≥ xFY

.

2. FX �FSD2 FY ⇒ xFX
≥ xFY

.

3. FX �FSD3 FY ⇒ xFX
≥ xFY

.

4. FX �FSD4 FY ⇒ xFX
≥ xFY

.

5. FX �FSD5 FY ⇒ xFX
≥ xFY

.

6. FX �FSD6 FY ⇒ xFX
≥ xFY

.

Moreover, if FX, FX ∈ FX and FY, FY ∈ FY, the converses also hold.

b) If in particular FX and FY are two sets of 0-1 cumulative distribution functions it
also holds that
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2. xFX
> xFY

⇔ FX �FSD2 FY ⇒ FX �FSD2 FY.

3. xFX
> xFY

⇔ FX �FSD3 FY ⇒ FX �FSD3 FY.

4. xFX
> xFY

⇒ FX �FSD4 FY.

5. xFX
> xFY

⇔ FX �FSD5 FY ⇒ FX �FSD5 FY.

6. xFX
> xFY

⇔ FX �FSD6 FY ⇒ FX �FSD6 FY.

Proof: In order to prove the first item of this result it is enough to consider Propo-
sition 4.19, and to note that, if F and G are two 0-1 finitely additive distribution
functions then F ≤ G implies that xF ≥ xG. In particular, if G is a cumulative
distribution function, F ≤ G if and only if xF ≥ xG, from which we deduce that
xFX

≥ xFY
⇒ FX �FSD1 FY.

Moreover, if FX, FX ∈ FX and FY, FY ∈ FY, these are cumulative distribution
functions, and we can use that F ≤ G if and only if xF ≥ xG. Applying Corollary 4.22
we deduce that in that case the converse implications also hold.

Let us consider the second part. On the one hand, it is obvious that FX �FSDi FY

implies FX �FSDi FY for i = 2, 3, 5, 6. Let us check the other implications.

2. If xFX
> xFY

, ∃x0 such that xFX
> x0 > xFY

. Then, since x0 > xFY
, FY(x0) = 1

and therefore F2(x0) = 1 ∀F2 ∈ FY. Since xFX
> x0, FX(x0) = 0 and as we

are considering only 0 − 1 valued cumulative distribution functions, there is some
F1 ∈ FX such that F1(x0) = 0. Thus,

∃F1 ∈ FX such that F1 �FSD F2 ∀F2 ∈ FY.

Then, FX �FSD2 FY and FY 6�FSD2 FX. On the other hand, if FX �FSD2 FY,
Proposition 4.19 implies that FX �FSD FY, and moreover the preference must be
strict (otherwise both sets would be indifferent). Then, xFX

> xFY
.

3. On the one hand, the direct implication follows from the previous item and Propo-
sition 4.15. On the other hand, if FX �FSD3 FY, by Proposition 4.19 we know that
FX �FSD FY, and the preference is in fact strict (otherwise the sets FX and FY

would be indifferent). Then, following the same steps than in the previous item we
conclude that xFX

> xFY
.

4. If xFX
> xFY

, ∃x0 such that xFX
> x0 > xFY

. Then, FY(x0) = 1, and since all the
cumulative distribution function are 0-1 valued, ∃F2 ∈ FY such that F2(x0) = 1.
On the other hand, FX(x0) = 0, and since all the cumulative distribution functions
are 0-1 valued, there is some F1 ∈ FX such that F1(x0) = 0. Hence, F1 ≤ F2 and
therefore FX �FSD4 FY.

In this case, the preference may be non-strict. For instance, if FX = FY = {F1, F2}
such that xF1 = 0 and xF2 = 1, then xFX

= 1 > 0 = xFY
but FX ≡FSD4 FY.
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5. If xFX
> xFY

, there is some x0 such that xFX
> x0 > xFY

. Hence, FY(x0) = 1.
Since all the cumulative distribution functions are 0 − 1 valued, ∃F2 ∈ FY such
that F2(x0) = 1. On the other hand, FX(x0) = 0, whence F1(x0) = 0 for all
F1 ∈ FX. Hence, F1 �FSD F2 for all F1 ∈ FX. We conclude that FX �FSD5 FY

but FY 6�FSD5 FX.

On the other hand, when FX �FSD5 FY Proposition 4.19 implies FX �FSD FY, and
the preference must be strict because otherwise FX and FY would be indifferent.
Then, xFX

> xFY
.

6. On the one hand, if xFX
> xFY

, the result follows from the previous item and
Proposition 4.15. On the other hand, when FX �FSD6 FY, Proposition 4.19 assures
that FX �FSD FY, and the preference must be strict because otherwise FX and
FY would be indifferent. Then, as we saw in the previous item, it holds that
xFX

> xFY
.

Next example shows that the converse implications may not hold in general.

Example 4.57 We begin by considering the first item. Consider the following sets of
distribution functions:

FX = {F1,0.5− 1
n

: n > 3} and FY = {F1,0.5}.

It holds that FX = FY = FY = F1,0.5, and then xFX
= xFY

= 0.5, but FX 6�FSDi FY for
i = 2, 3, 4.

Similarly, we can consider the following sets:

FX = {F1,0.5+ 1
n

: n > 3} and FY = {F1,0.5}.

It holds that FX = FY = F1,0.5 and consequently xFX
= xFY

= 0.5 but FX 6�FSDi FY for
i = 5, 6.

We move next to the second item. It is enough to consider a 0-1 valued distribution
function F1 and the sets FX = FY = {F1}. Both sets are indifferent for Definition
(FSDi) for i = 1, . . . , 6, but no strict inequality hold.�

Next we are going to compare the preferences between two sets of 0-1 valued distribution
functions and their convex hull. Consider SX, SY ⊆ [0, 1], and let us define the sets:

FSX = {F 0–1 c.d.f. | xF ∈ SX}.
FSY = {F 0–1 c.d.f. | xF ∈ SY}.

Since we are working with σ-additive cumulative distribution functions, FSX and FSY

are related to the degenerate probability measures on elements of SX, SY, respectively.
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We shall also consider their convex hulls FX := conv(FSX),FY := conv(FSY). These are
the sets of cumulative distribution functions with finite supports that are included in SX

and SY, respectively.

Now, given any set F of cumulative distribution functions and its convex hull Fc,
the p-boxes (F , F ) and (F c, F c) associated with F ,Fc, coincide:

F = F c F = F c. (4.6)

Thus, FX and FSX determine the same p-box, and the same applies to FY and FSY . We
begin with an immediate lemma, whose proof is trivial and therefore omitted.

Lemma 4.58 Consider S ⊆ [0, 1] and FS = {F 0-1 c.d.f. | xF ∈ S}. Let x = inf S
and x = supS and let F , F be the lower and upper distribution functions associated with
F . Then

F = I[x,1] and F =

{
I[x,1] if x ∈ S,
I(x,1] otherwise.

Moreover, if x ∈ S, then F ∈ F , and if x ∈ S, then F ∈ F .

Note that when F = I(x,1], this is a finite, but not cumulative, distribution function, and
as a consequence it cannot belong to FS .

Proposition 4.59 Let SX and SY be two subsets of [0, 1]. Then:

1. FX �FSD1 FY ⇔ FSX �FSD1 FSY ⇔ inf SX ≥ supSY.

If in addition both inf SX and supSX belong to SX, and also inf SY and supSY belong to
SY, then also:

2. FX �FSD2 FY ⇔ FSX �FSD2 FSY ⇔ maxSX ≥ maxSY. Moreover,
maxSX > maxSY ⇔ FSX �FSD2 FSY and
maxSX = maxSY ⇔ FSX ≡FSD2 FSY .

3. FX �FSD3 FY ⇔ FSX �FSD3 FSY ⇔ maxSX ≥ maxSY. Moreover,
maxSX > maxSY ⇔ FSX �FSD3 FSY and
maxSX = maxSY ⇔ FSX ≡FSD3 FSY .

4. FX �FSD4 FY ⇔ FSX �FSD4 FSY ⇔ maxSX ≥ minSY. Moreover,
maxSX > minSY ⇔ FSX �FSD4 FSY and
maxSX = minSY ⇔ FSX ≡FSD4 FSY .

5. FX �FSD5 FY ⇔ FSX �FSD5 FSY ⇔ minSX ≥ minSY. Moreover,
minSX > minSY ⇔ FSX �FSD5 FSY and
minSX = minSY ⇔ FSX ≡FSD5 FSY .
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6. FX �FSD6 FY ⇔ FSX �FSD6 FSY ⇔ minSX ≥ minSY. Moreover,
minSX > minSY ⇔ FSX �FSD6 FSY and
minSX = minSY ⇔ FSX ≡FSD6 FSY .

Proof: The first statement follows from Proposition 4.19 and Equation (4.6), taking
also into account that, from Lemma 4.58, FX ≤ FY if and only if inf SX ≥ supSY.

To prove the other statements, note first of all that if the infima and suprema of
SX and SY are included in the set, it follows from Lemma 4.58 that FX, FX ∈ FSX and
FY, FY ∈ FSY , and applying Corollary 4.22 together with Equation (4.6) we deduce that

FX �FSDi FY ⇔ FSX �FSDi FSY ∀i = 2, . . . , 6.

On the other hand, it follows from Lemma 4.58 that in those cases

FX = I[maxSX,1], FY = I[maxSY,1], FX = I[minSX,1], FY = I[minSY,1].

The second and third equivalences in each statement follow then from Corollary 4.22.

As a consequence of this result, we obtain the following corollary.

Corollary 4.60 If SX and SY are closed subsets of [0, 1], then:

1. FSX �FSD1 FSY ⇔ minSX ≥ maxSY.

2. FSX �FSD2 FSY ⇔ maxSX ≥ maxSY.

3. FSX �FSD3 FSY ⇔ maxSX ≥ maxSY.

4. FSX �FSD4 FSY ⇔ maxSX ≥ minSY.

5. FSX �FSD5 FSY ⇔ minSX ≥ minSY.

6. FSX �FSD6 FSX ⇔ minSX ≥ minSY.

Hence, in that case (FSD2) is equivalent to (FSD3) and (FSD5) is equivalent to (FSD6).

It is easy to see that Proposition 4.59 and Corollary 4.60 also hold when we consider FX

and FY given by

FX = {F c.d.f. | PF(SX) = 1} and FY = {F c.d.f. | PF(SY) = 1}.
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4.1.2 Imprecise statistical preference

In Section 4.1.1 we considered the particular case in which the binary relation is stochastic
dominance. Now we focus on the case where the binary relation is that of statistical
preference, given in Definition 2.16. Hence, we shall assume that the utility space Ω′ is
an ordered set, which need not be numerical.

Remark 4.61 Analogously to the case of stochastic dominance, we shall denote by �SPi ,
i = 1, . . . , 6 the conditions obtained by using statistical preference as the binary relation in
Definition 4.1. We shall also say that X is (SPi) preferred or (SPi) statistically preferred
to Y when X �SPi Y. Furthermore, the notation X �SPi,j Y means that X �SPi Y and
X �SPj Y. Note that in Section 4.1.1 we used interchangeably the notation X �FSDi Y
and FX �FSDi FY, since stochastic dominance is based on the direct comparison of the
cumulative distribution functions. Now, we shall only employ the notation X �SPi Y,
because statistical preference is based on the joint distribution of the random variables,
and the marginal distributions do not keep all the information about it. �

When the binary relation is stochastic dominance, we saw in Proposition 4.15 that there
are some general relationships between its strict extensions. In the case of statistical
preference, the relationships showed in Proposition 4.15 do not hold in general, as we
can see from the following example:

Example 4.62 Consider the universe Ω = {ω1, ω2, ω3} and let P be the discrete uniform
distribution on Ω. Consider the sets of random variables X = {X1, X2, X3} and Y =
{X2, X4}, where the random variables are defined by:

ω1 ω2 ω3

X1 0 2 4
X2 4 0 2
X3 2 4 0
X4 3 2 1

For these sets, since X1 �SP X2 and X1 ≡SP X4, then X �SP2 Y. Moreover, since
X2 6�SP X1 and X4 6�SP X2, we have that Y 6�SP2 X , hence X �SP2 Y.

However, X 6�SP3 Y: since X1 ≡SP X4, X2 ≡SP X2 and X4 �SP X3, it holds that
Y �SP3 X . Hence, X ≡SP3 Y.

With a similar example it could be proved that X �SP5 Y and X ≡SP6 Y are
compatible statements.�

Note that �SP is reflexive and complete, but it is neither antisymmetric nor transitive.
Hence, Proposition 4.6 does not apply in this case; indeed, we can use statistical prefer-
ence to show that Proposition 4.6 cannot be extended to non transitive relationships.
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Example 4.63 Consider the random variables A,B,C from Example 3.83 such that
A �SP B �SP C �SP A, and let X = {A,B},Y = {A,C}. Then since A �SP A
and B �SP C, we deduce that X �SP3 Y; since A �SP B and C �SP A, we see that
X �SP2 Y; however, X has a maximum element, because A �SP B. �

On the other hand, since statistical preference complies with Pareto dominance we deduce
from Proposition 4.7 that the different conditions can be reduced to the comparison of the
maximum and minimum elements of X ,Y, when these maximum and minimum elements
exist. Finally, we deduce from Propositions 4.9 and 4.11 that conditions �SP3 ,�SP4 ,�SP6

induce a reflexive and complete relationship.

We can also use statistical preference to show that Proposition 4.11 cannot be
extended to the relations �1,�2 nor �5: take the sets X = Y = {A,B,C}, where the
variables A,B,C satisfy A �SP B �SP C �SP A as in Example 3.83; then the set X
has neither a maximum nor a minimum element, whence it is incomparable with itself
with respect to �SP2 and �SP5 . Applying Proposition 4.3, we deduce that X ,Y are also
incomparable with respect to �SP1 .

We showed in Theorem 4.23 that the generalisations of stochastic dominance to-
wards sets of variables are related to lower and upper expectations. Next, we establish a
similar result for the generalisations of statistical preference. Recall that in Theorem 3.40
we proved that:

sup Me(X − Y ) > 0⇒ X �SP Y ⇒ sup Me(X − Y ) ≥ 0. (4.7)

Taking into this result, we shall establish a generalisation in terms of lower and upper
medians, and for this we shall require our utility space Ω′ to be the reals. Let us consider
two sets of alternatives X ,Y with values on Ω′, and let us introduce the following notation:

Me(X − Y) = {Me(X − Y ) : X ∈ X , Y ∈ Y}.
Me(X − Y) = inf Me(X − Y).
Me(X − Y) = sup Me(X − Y),

where we recall that the median of a random variable with respect to a probability
measure is given by Equation (3.14).

Proposition 4.64 Let X ,Y be two sets of random variables defined on a probability
space (Ω,A, P ) and taking values on R.

1. Me(X − Y) > 0⇒ X �SP1 Y ⇒ Me(X − Y) ≥ 0.

2. ∃X ∈ X such that Me({X}−Y) > 0⇒ X �SP2 Y ⇒ ∃X ∈ X such that Me({X}−
Y) ≥ 0.

3. Me(X − {Y }) > 0 ∀Y ∈ Y ⇒ X �SP3 Y ⇒ Me(X − {Y }) ≥ 0 ∀Y ∈ Y.
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4. Me(X − Y) > 0⇒ X �SP4 Y ⇒ Me(X − Y) ≥ 0.

5. ∃Y ∈ Y such that Me(X − {Y }) > 0 ⇒ X �SP5 Y ⇒ ∃Y ∈ Y such that Me(X −
{Y }) ≥ 0.

6. Me({X} − Y) > 0 ∀X ∈ X ⇒ X �SP6 Y ⇒ Me({X} − Y) ≥ 0 ∀X ∈ X .

Proof: Recall once more that from Equation (4.7) given two random variables X,Y ,

Me(X − Y ) > 0⇒ X �SP Y ⇒ Me(X − Y ) ≥ 0.

SP1 : If Me(X − Y) > 0, in particular Me(X − Y) > 0, and then Me(X − Y ) > 0
for every X ∈ X and Y ∈ Y. Applying Equation (4.7), X �SP Y for every X ∈ X and
Y ∈ Y, and consequently X �SP1 Y. Moreover,

X �SP1 Y ⇒X �SP Y for every X ∈ X , Y ∈ Y
⇒ sup Me(X − Y ) ≥ 0 for every X ∈ X , Y ∈ Y ⇒ Me(X − Y) ≥ 0.

SP2 : If there is some X ∈ X such that Me({X} − Y) > 0, then Me(X − Y ) > 0
for every Y ∈ Y. Applying Equation (4.7), we deduce that X �SP Y for every Y ∈ Y,
and therefore X �SP2 Y.

On the other hand,

X �SP2 Y ⇒ there is some X ∈ X such that X �SP Y for every Y ∈ Y
⇒ sup Me(X − Y ) ≥ 0 for every Y ∈ Y ⇒ Me({X} − Y) ≥ 0.

SP3 : Consider Y ∈ Y. If Me(X − {Y }) > 0, then there is some X ∈ X such that
Me(X − Y ) > 0. Hence, for every Y ∈ Y there is X ∈ X such that X �SP Y , and
consequently X �SP3 Y. Moreover,

X �SP3 Y ⇒ for every Y ∈ Y there is X ∈ X such that X �SP Y
⇒ for every Y ∈ Y there is X ∈ X such that sup Me(X − Y ) ≥ 0
⇒ for every Y ∈ Y it holds that Me(X − {Y }) ≥ 0.

SP4 : If Me(X − Y) > 0, there are X ∈ X and Y ∈ Y such that Me(X − Y ) > 0,
and consequently X �SP Y . Thus, X �SP4 Y. On the other hand,

X �SP4 Y ⇒ there are X ∈ X , Y ∈ Y such that X �SP Y
⇒ there are X ∈ X , Y ∈ Y such that sup Me(X − Y ) ≥ 0⇒ Me(X − Y) ≥ 0.

SP5 : Assume that there exists some Y ∈ Y such that Me(X − {Y }) > 0. Then
Me(X − Y ) > 0 for every X ∈ X , and applying (4.7) we conclude that there is Y ∈ Y
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such that X �SP Y for every X ∈ X , and consequently X �SP5 Y. On the other hand,

X �SP5 Y ⇒ there is Y ∈ Y such that X �SP Y for every Y ∈ Y
⇒ there is Y ∈ Y such that sup Me(X − Y ) ≥ 0 for every X ∈ X
⇒ there is Y ∈ Y such that Me(X − {Y }) ≥ 0.

SP6 : Finally, if Me({X} − Y) > 0 for every X ∈ X , then for every X ∈ X there
is some Y ∈ Y such that Me(X − Y ) > 0, whence (4.7) implies that X �SP Y . We
conclude that X �SP6 Y. Moreover,

X �SP6 Y ⇒ for every X ∈ X there is Y ∈ Y such that X �SP Y
⇒ for every X ∈ X there is Y ∈ Y such that sup Me(X − Y ) ≥ 0
⇒ for every X ∈ X , Me({X} − Y) ≥ 0. �

Taking into account the properties of the median, we conclude from this result that
statistical preference may be seen as a more robust alternative to stochastic dominance
or expected utility in the presence of outliers.

As we made in Section 4.1.1 with imprecise stochastic dominance, now we shall
investigate some of the properties of the imprecise statistical preference.

Increasing imprecision

We first study the behavior of conditions �SPi , i = 1, . . . , 6, when we enlarge the sets
X ,Y of alternatives we want to compare. This may correspond to an increase in the
imprecision of our models. Not surprisingly, if the more restrictive condition �SP1 is
satisfied on the large sets, then it is automatically satisfied on the smaller ones; while for
the least restrictive one �SP4 we have the opposite implication.

Proposition 4.65 Let X , Y, X̃ and Ỹ be four sets of random variables satisfying X ⊆ X̃
and Y ⊆ Ỹ. Then

X̃ �SP1 Ỹ ⇒ X �SP1 Y and X �SP4 Y ⇒ X̃ �SP4 Ỹ.

Proof: It is clear that X̃ �SP1 Ỹ ⇒ X �SP1 Y, since if X �SP Y for every X ∈ X̃ and
Y ∈ Ỹ, the inequality holds in particular for every X ∈ X and Y ∈ Y.

On the other hand, X �SP4 Y implies the existence of X ∈ X and Y ∈ Y satisfying
X �SP Y , and then the inclusions X ⊆ X̃ and Y ⊆ Ỹ imply that X̃ �SP4 Ỹ.

Similar implications cannot be established for �SPi , for i = 2, 3, 5, 6, as the following
example shows:
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Example 4.66 Consider the universe Ω = {ω} and let δx denote the random variable
satisfying δx(ω) = x.

Let us prove that X �SPi Y and Ỹ �SPi X̃ is possible for i = 2, 3, 5, 6:

• Consider X = {δ0}, X̃ = {δ0, δ2} and Y = Ỹ = {δ1}. It holds that Y �SPi X for
i = 1, . . . , 6 while X̃ �SPi Ỹ for i = 2, 3, since δ2 �SP δ1.

• Now, given X = {δ2}, X̃ = {δ0, δ2} and Y = Ỹ = {δ1}, it holds that X �SPi Y for
i = 1, . . . , 6 while Ỹ �SPi X̃ for i = 5, 6, since δ1 �SP δ0.

Note that these examples also show that the implications of the previous proposition are
not equivalences in general.�

One particular case when we may enlarge our sets of alternatives is when we consider
convex combinations (note that for this we shall again to assume that the utility space
Ω′ is equal to R). This may be of interest for instance if we want to compare random sets
by means of their measurable selections, as we shall do in Section 4.2.1, and we move
from a purely atomic to a non-atomic initial probability space. We shall consider two
possibilities, for a given set of alternatives D: its convex hull

Ĉonv(D) =

{
Ũ =

n∑
i=1

λiXi : λi > 0, Xi ∈ D ∀i,
n∑
i=1

λi = 1

}
,

and also the set of alternatives whose utilities belong to the range of utilities determined
by A:

Conv(D) = {Ũ r.v. | Ũ(ω) ∈ Conv({U(ω) : U ∈ D})}; (4.8)

note that D ⊆ Ĉonv(D) ⊆ Conv(D). Then Proposition 4.65 allows to immediately
deduce the following:

Corollary 4.67 Consider two sets of alternatives X ,Y.

(a) Conv(X ) �SP1 Conv(Y)⇒ Ĉonv(X ) �SP1 Ĉonv(Y)⇒ X �SP1 Y.

(b) Conv(X ) �SP4 Conv(Y)⇒ X �SP4 Y ⇒ Ĉonv(X ) �SP4 Ĉonv(Y).

To see that we cannot establish similar implications with respect to �SPi , i = 2, 3, 5, 6,
take the following example:
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Example 4.68 Consider Ω = {ω1, ω2, ω3} with P ({ωi}) = 1
3 for every i = 1, 2, 3. Let

us consider the sets of variables X = {X1, X2} and Y = {Y } given by:

ω1 ω2 ω3

X1 0 3 0
X2 3 0 0
Y 1 1 1

Then since Q(X1, Y ) = Q(X2, Y ) = 1
3 , it follows that Y �SPi X for i = 1, . . . , 6.

However, Ĉonv(X ) �SPi Ĉonv(Y), for i = 2, 3, Ĉonv(X ) ≡SP4 Ĉonv(Y) and they are
incomparable with respect to �SP1 .

On the other hand, if we consider instead the sets X = {X1, X2} and Y = {Y },
where

ω1 ω2 ω3

X1 0 3 3
X2 3 0 3
Y 2 2 2

it holds that X �SPi Y for i = 1, . . . , 6. However, Ĉonv(Y) �SPi Ĉonv(X ), for i = 5, 6.

The same sets of variables show that there is no additional implication if we consider
the convex hulls determined by Equation (4.8) instead. �

Connection with aggregation functions

Since the binary relation associated with statistical preference is complete, we deduce
from Proposition 4.11 that the relations �SP3 ,�SP4 ,�SP6 also induce a complete relation.
Such relations are interesting because they mean that we can always express a preference
between two sets of alternatives X ,Y. One way of deriving a complete relation when
we make multiple comparisons is to establish a degree of preference for every pairwise
comparison, and to aggregate these degrees of preference into a joint one. This is possible
by means of an aggregation function.

Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be two finite sets of random variables
taking values on an ordered utility space Ω′, and let us compute the statistical preference
Q(Xi, Yj) for every pair of variables Xi ∈ X , Yj ∈ Y by means of Equation (2.7). The set
of all these preferences is an instance of profile of preference [80], and can be represented
by means of the matrix

QX ,Y :=

 Q(X1, Y1) Q(X1, Y2) . . . Q(X1, Ym)
...

...
. . .

...
Q(Xn, Y1) Q(Xn, Y2) . . . Q(Xn, Ym)

 (4.9)
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Note that the profile of preferences of Y over X , QY,X , corresponds to one minus the
transposed matrix of QX ,Y , i.e., 1−QtX ,Y . We shall show that conditions �SP1 , . . . ,�SP6

can be expressed by means of an aggregation function over the profile of preference:

Definition 4.69 ([31, 80]) An aggregation function is a mapping defined by

G : ∪s∈N[0, 1]s → [0, 1],

that it componentwise increasing and satisfies the boundary conditions G(0, . . . , 0) = 0
and G(1, . . . , 1) = 1.

The matrix QX ,Y representing the profile of preferences between X and Y can be equiv-
alently represented by means of a vector on [0, 1]nm using the lexicographic order:

~zX ,Y = (Q(X1, Y1), Q(X1, Y2), . . . , Q(X1, Ym), Q(X2, Y1), . . . , Q(Xn, Ym)).

Taking this into account, given an aggregation function G : ∪s∈N[0, 1]s → [0, 1], we shall
denote by G(QX ,Y) the image of the vector ~zX ,Y by means of this aggregation function.

Definition 4.70 Given two finite sets of random variables X and Y, X = {X1, . . . , Xn}
and Y = {Y1, . . . , Ym}, and an aggregation function G, we say that X is G-statistically
preferred to Y, and denote it by X �SPG Y, if

G(QX ,Y) := G(~zX ,Y) ≥ 1
2
. (4.10)

We refer to [31] for a review of aggregation functions. Some important properties are the
following:

Definition 4.71 ([31]) An aggregation function G : ∪s∈N[0, 1]s → [0, 1] is called:

• Symmetric if it is invariant under permutations.

• Monotone if G(r1, . . . , rs) ≥ G(r′1, . . . , r
′
s) whenever ri ≥ r′i for every i = 1, . . . , s.

• Idempotent if G(r, . . . , r) = r.

We shall call an aggregation function G : ∪s∈N[0, 1]s → [0, 1] self-dual if

G(r1, . . . , rs) = 1−G(1− r1, . . . , 1− rs)

for every (r1, . . . , rs) ∈ [0, 1]s and for every s ∈ N.

All these properties are interesting when aggregating the profile of preferences into
a joint one: symmetry implies that all the elements in the profile are given the same
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weight; idempotency means that if all the preference degrees equal r, the final preference
degree should also equal r; monotonicity assures that if we increase all the values in the
profile of preferences, the final value should also increase; and self-duality preserves the
idea behind the notion of probabilistic relation in Definition 2.7, since for a self-dual
aggregation function G, G(QtX ,Y) + G(QY,X ) = 1. If in addition G is symmetric, we
obtain that G(QX ,Y) +G(QY,X ) = 1.

This last property means that, when G is a self-dual and symmetric aggregation
function, Equation (4.10) is equivalent to G(QX ,Y) ≥ G(QY,X ).

The relations �SPi , for i = 1, . . . , 6, can all expressed by means of an aggregation
function, as we summarise in the following proposition. Its proof is immediate and
therefore omitted.

Proposition 4.72 Let X = {X1, . . . , Xn},Y = {Y1, . . . , Ym} be two finite sets of random
variables taking values on an ordered space Ω′. Then for any i = 1, . . . , 6 X �SPi Y if
and only if it is Gi-statistically preferred to Y, where the aggregation functions Gi are
given by:

G1(QX ,Y) := min
i,j

Q(Xi, Yj).

G2(QX ,Y) := max
i=1,...,n

min
j=1,...,m

Q(Xi, Yj).

G3(QX ,Y) := min
j=1,...,m

max
i=1,...,n

Q(Xi, Yj).

G4(QX ,Y) := max
i,j

Q(Xi, Yj).

G5(QX ,Y) := max
j=1,...,m

min
i=1,...,n

Q(Xi, Yj).

G6(QX ,Y) := min
i=1,...,n

max
j=1,...,m

Q(Xi, Yj).

It is not difficult to see that all the aggregation functions Gi above are monotonic and
comply with the boundary conditions Gi(0, . . . , 0) = 0 and Gi(1, . . . , 1) = 1. On the
other hand, only G1 and G4 are symmetric, and none of them is self-dual.

We can also use these aggregation functions to deduce the relationships between the
different conditions established in Proposition 4.3 in the case of statistical preference: it
suffices to take into account that G1 ≤ G2 ≤ G3 ≤ G4 and G1 ≤ G5 ≤ G6 ≤ G4.

Remark 4.73 Proposition 4.72 helps to verify each of the conditions �SPi , i = 1, . . . , 6
by looking at the profile of preferences QX ,Y given by Equation (4.9):

• X �SP1 Y if and only if all elements in the matrix are greater than or equal to 1
2 .
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• X �SP2 Y if and only if there is a row whose elements are all greater than or equal
to 1

2 .

• X �SP3 Y if and only if in each column there is at least one element greater than
or equal to 1

2 .

• X �SP4 Y if and only if there is an element greater than or equal to 1
2 .

• X �SP5 Y if and only if there is a column whose elements are all greater than or
equal to 1

2 .

• X �SP6 Y if and only if in each row there is at least one element greater than or
equal to 1

2 .

See the comments after Proposition 4.3 for a related idea. �

The above remarks suggest that other preference relationships may be defined by means
of other aggregation functions G, and this would allow us to take all the elements of the
profile of preferences into account, instead of focusing on the best or worst scenarios only.
Next, we explore briefly one of these possibilities: the arithmetic mean Gmean, given by

Gmean : ∪s∈N[0, 1]s → [0, 1]

(r1, . . . , rs) ↪→ r1 + · · ·+ rs
s

.

This is a symmetric, monotone, idempotent and self-dual aggregation function. For
clarity, when X is Gmean-statistically preferred to Y we shall denote it X �SPmean Y.
The connection between �SPmean and �SPi , i = 1, . . . , 6 is a consequence of the following
result:

Proposition 4.74 Given two finite sets of random variables X and Y, X = {X1, . . . , Xn}
and Y = {Y1, . . . , Ym}, and a monotone and idempotent aggregation function G,

X �SP1 Y ⇒ X �SPG Y ⇒ X �SP4 Y.

Proof: On the one hand, assume that X �SP1 Y. Then, Q(X,Y ) ≥ 1
2 for every X ∈ X

and Y ∈ Y. Since G is monotone and idempotent, G(QX ,Y) ≥ G
(

1
2 , . . . ,

1
2

)
= 1

2 , and
consequently X �SPG Y.

On the other hand, assume ex-absurdo that G(QX ,Y) ≥ 1
2 and that X 6�SP4 Y, so

that Q(X,Y ) < 1
2 for every X ∈ X and Y ∈ Y. Then G(QX ,Y) ≤ maxi,j Q(Xi, Yj) < 1

2 ,
a contradiction. Hence, X �SP4 Y.

In particular, we see that �SPmean is an intermediate notion between �SP1 and �SP4 .
To see that it is not related to �SPi for i = 2, 3, 5, 6, consider the following example:
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Example 4.75 Consider Ω = {ω1, ω2} (P ({ωi}) = 1/2), and the sets of random vari-
ables X = {X1, X2, X3} and Y = {Y } defined by:

ω1 ω2

X1 0 2
X2 0 0
X3 2 2
Y 1 1

Then,

QX ,Y :=

 1
2
0
1

 and QY,X :=
(

1
2 1 0

)
whence Remark 4.73 implies that X �SPi Y, for i = 2, 3, and Y �SPi X , for i = 5, 6. On
the other hand,

Q(X1, Y ) +Q(X2, Y ) +Q(X3, Y )
3

=
1
2
,

and consequently X ≡SPmean Y. Hence, X �SPmean Y ; X �SPi Y for i = 5, 6, and
Y �SPmean X ; Y �SPi X for i = 2, 3. By comparing Z1 = {X2, Y } and Z2 = {X3, Y }
with X , we can see that : Z1 ≡SP5,6 X �SPmean Z1 and Z2 ≡SP2,3 X ≺SPmean Z2. Then,
there are not general relationships between �SPmean and �SPi for i = 2, 3, 5, 6. �

4.2 Modelling imprecision in decision making problems

In this section, we shall show how the above results can be applied in two different
scenarios where imprecision enters a decision problem: the case where we have imprecise
information about the utilities of the different alternatives, and that where we have
imprecise beliefs about the states of nature.

4.2.1 Imprecision on the utilities

Let us start with the first case. Consider a decision problem where we must choose
between two alternatives X and Y whose respective utilities depend on the values ω of
the states of nature. Assume that we have precise information about the probabilities
of these states of nature, so that X and Y can be seen as random variables defined on
a probability space (Ω,A, P ). If we have imprecise knowledge about the utilities X(ω)
associated with the different states of nature, one possible model would be to associate
to any ω ∈ Ω a set Γ(ω) that is sure to include the ‘true’ utility X(ω). By doing this,
we obtain a multi-valued mapping Γ : Ω→ P(Ω′), and all we know about X is that it is
one of the measurable selections of Ω, that were defined in Equation (2.21) by:

S(Γ) = {U : Ω→ Ω′ r.v. : U(ω) ∈ Γ(ω) for every ω ∈ Ω}. (4.11)
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In this paper, we shall consider only multi-valued mappings satisfying the measurability
condition:

Γ∗(A) := {ω ∈ Ω : Γ(ω) ∩A 6= ∅} ∈ A for any A ∈ A′.

As we saw in Definition 2.42, these multi-valued mappings are called random sets.

Our comparison of two alternatives with imprecise utilities results thus in the com-
parison of two random sets Γ1,Γ2, that we shall make by means of their respective sets
of measurable selections S(Γ1), S(Γ2) determined by Equation (2.21). For simplicity, we
shall use the notation Γ1 � Γ2 instead of S(Γ1) � S(Γ2) when no confusion is possible.

Let us begin by studying the comparison of random sets by means of stochastic
dominance.

Proposition 4.76 Let (Ω,A, P ) be a probability space, (Ω′,P(Ω′)) a measurable space,
with Ω′ a finite subset of R, and ΓX,ΓY be two random sets. The following equivalences
hold:

(a) ΓX �FSD1 ΓY ⇔ min ΓX �FSD max ΓY.

(b) ΓX �FSD2 ΓY ⇔ ΓX �FSD3 ΓY ⇔ max ΓX �FSD max ΓY.

(c) ΓX �FSD4 ΓY ⇔ max ΓX �FSD min ΓY.

(d) ΓX �FSD5 ΓY ⇔ ΓX �FSD6 ΓY ⇔ min ΓX �FSD min ΓY.

Proof: The result follows from Proposition 4.19, taking into account that given a
random set Γ taking values on a finite space, the lower distribution function associated
with its set S(Γ) of measurable selections is induced by max Γ and its upper distribution
function is induced by min Γ.

Moreover, we can characterise the conditions �FSDi , i = 1, . . . , 6 even for random
sets that take values on infinite spaces. To see how this comes out, we shall consider
the upper and lower probabilities induced by the random set. Recall that, from Equa-
tion (2.22), they are defined by:

P ∗(A) = P ({ω : Γ(ω) ∩A 6= ∅}) and
P∗(A) = P ({ω : ∅ 6= Γ(ω) ⊆ A})

for any A ∈ A′. As we have already seen in Equation (2.24), the upper and lower
probabilities of a random set constitute upper and lower bounds of the probabilities
induced by the measurable selections:

P∗(A) ≤ PU(A) ≤ P ∗(A) ∀U ∈ S(Γ),

and in particular their associated cumulative distributions provide lower and upper
bounds of the lower and upper distribution functions associated with S(Γ).
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We have seen in Theorem 2.46 that when P ∗(A) is attained by the probabilities
induced by the measurable selections for any element A ∈ A′, the supremum and infimum
of the integrals of a gamble with respect to the measurable selections can be expressed
by means of the Choquet integral of the gamble with respect to P ∗ and P∗. This result
allows to characterise the imprecise stochastic dominance between random sets by means
of the comparison of Choquet or Aumann integrals. Recall that we have denoted by U∗
the set of increasing and bounded functions u : [0, 1]→ R.

Proposition 4.77 Let (Ω,A, P ) be a probability space. Consider the measurable space
([0, 1], β[0,1]) and let ΓX,ΓY : Ω → P([0, 1]) be two random sets. If for all A ∈ β[0,1] it
holds that P ∗X(A) = maxP(ΓX)(A) and P ∗Y(A) = maxP(ΓY)(A), the following equiva-
lences hold:

1. ΓX �FSD1 ΓY ⇔ (C)
∫
udPX∗ ≥ (C)

∫
udP ∗Y for every u ∈ U∗.

2. ΓX �FSD2 ΓY ⇒ (C)
∫
udP ∗X ≥ (C)

∫
udP ∗Y for every u ∈ U∗.

3. ΓX �FSD3 ΓY ⇒ (C)
∫
udP ∗X ≥ (C)

∫
udP ∗X for every u ∈ U∗.

4. ΓX �FSD4 ΓY ⇒ (C)
∫
udP ∗X ≥ (C)

∫
udPX∗ for every u ∈ U∗.

5. ΓX �FSD5 ΓY ⇒ (C)
∫
udPX∗ ≥ (C)

∫
udPX∗ for every u ∈ U∗.

6. ΓX �FSD6 ΓY ⇒ (C)
∫
udPX∗ ≥ (C)

∫
udPY∗ for every u ∈ U∗.

Proof: Consider u ∈ U∗. We deduce from Theorem 2.46 that, under the hypotheses of
the proposition,

(C)
∫
udP ∗X = sup

U∈S(ΓX)

∫
udPU = ES(ΓX)(u) and

(C)
∫
udPX∗ = inf

U∈S(ΓX)

∫
udPU = ES(ΓX)(u)

and similarly:

(C)
∫
udP ∗Y = sup

U∈S(ΓY)

∫
udPU = ES(ΓY)(u) and

(C)
∫
udPY∗ = inf

U∈S(ΓY)

∫
udPU = ES(ΓY)(u)

The result follows then applying Theorem 4.23.
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Let us discuss next the comparison of random sets by means of statistical preference.
When the utility space Ω′ is finite, we obtain a result related to Proposition 4.76:

Proposition 4.78 Let (Ω,A, P ) be a probability space, (Ω′,P(Ω′)) a measurable space,
with Ω′ finite, and ΓX,ΓY be two random sets. The following equivalences hold:

(a) ΓX �SP1 ΓY ⇔ min ΓX �SP max ΓY.

(b) ΓX �SP2 ΓY ⇔ ΓX �SP3 ΓY ⇔ max ΓX �SP max ΓY.

(c) ΓX �SP4 ΓY ⇔ max ΓX �SP min ΓY.

(d) ΓX �SP5 ΓY ⇔ ΓX �SP6 ΓY ⇔ min ΓX �SP min ΓY.

Proof: The result follows from Proposition 4.7, taking into account that statistical
preference satisfies the monotonicity condition of Equation (4.2) and that if Γ is a random
set taking values on a finite space, then the mappings min Γ,max Γ belong to S(Γ).

In particular, we deduce that we can focus on the minimum and maximum measur-
able selections in order to characterise these extensions of statistical preference.

Corollary 4.79 Let (Ω,A, P ) be a probability space, Ω′ a finite space and consider two
random sets ΓX,ΓY : Ω→ P(Ω′). Then for every i = 1, . . . , 6:

ΓX �SPi ΓY ⇔ {min ΓX,max ΓX} �SPi {min ΓY,max ΓY}. (4.12)

These two results are interesting because random sets taking values on finite spaces are
quite common in practice; they have been studied in detail in [59, 127], and one of
their most interesting properties is that they constitute equivalent models to belief and
plausibility functions [170].

Note that the equivalence in Equation (4.12) does not hold for the relation �SPmean

defined in Section 4.1.2.

Example 4.80 Consider the probability space (Ω,A, P ) where Ω = {ω1, ω2}, A = P(Ω)
and P is a probability uniformly distributed on Ω, and let ΓX be the random set given
by ΓX(ω1) = {0, 1},ΓX(ω2) = {0, 2, 3, 4}, and let ΓY be single-valued random set given
by ΓY(ω1) = {1} = ΓY(ω2). Then min ΓX is the constant random variable on 0, while
max ΓX is given by max ΓX(ω1) = 1,max ΓX(ω2) = 4. Hence, if we compare the set
{min ΓX,max ΓX} with ΓY by means of �SPmean we obtain

Q(min ΓX,ΓY) +Q(max ΓX,ΓY)
2

=
0 + 0.75

2
= 0.375
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and thus ΓY �SPmean {min ΓX,max ΓX}. On the other hand, the set of selections of ΓX

is given by (where a selection X is identified with the vector (U(ω1), U(ω2))):

S(ΓX) = {(0, 0), (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (1, 4)},

from which we deduce that ΓX �SPmean ΓY. �

4.2.2 Imprecision on the beliefs

We next consider the case where we want to choose between two random variables X and
Y defined from Ω to Ω′, and there is some uncertainty about the probability distribution
P of the different states of nature ω ∈ Ω, that we model by means of a set P of probability
distributions on Ω. Then we may associate with X a set X of random variables, that
correspond to the transformations of X under any of the probability distributions in P;
and similarly for Y . We end up thus with two sets X ,Y of random variables, and we
should establish methods to determine which of these two sets is preferable.

One particular case where this situation may arise is in the context of missing data
[218]. We may divide the variables determining the states of nature in two groups: one
for which we have precise information, that we model by means of a probability measure
P over the different states, and another about which are completely ignorant, knowing
only which are the different states, but nothing more. Then we may get to the classical
scenario by fixing the value of the variables in this second group: for each of these values
the alternatives may be seen as random variables, using the probability measure P to
determine the probabilities of the different rewards. Hence, by doing this we would
transform the two alternatives X and Y into two sets of alternatives X ,Y, considering
all the possible values of the variables in the second group.

In this situation, we may compare the sets X ,Y by means of the generalisations of
statistical preference or stochastic dominance we have discussed in Section 4.1; however,
we argue that other notions may make more sense in this context. This is because
conditions �1, . . . ,�6 are based on considering a particular pair (X1, Y1) in X × Y and
on comparing X1 with Y1 by means of the binary relation �. However, any X1 in X
corresponds to a particular choice of a probability measure P ∈ P, and similarly for
any Y1 ∈ Y; and if we use an epistemic interpretation of our uncertainty under which
only one P ∈ P is the ‘true’ model, it makes no sense to compare X1 and Y1 based on
a different distribution. This is particularly clear in case we want to apply statistical
preference, which is based on comparing P (X > Y ) with P (Y > X), where P is the
initial probability measure.

To make this explicit, in this section we may denote our sets of alternatives by
X := {(X,P ) : P ∈ P} and Y := {(Y, P ) : P ∈ P}, meaning that our utilities are
precise (and are determined by the variables X and Y , respectively), while our beliefs
are imprecise and are modelled by the set P. To avoid confusions, we will now write
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X �P Y to express that X is preferred to Y when we consider the probability measure
P in the initial probability space. Then we can establish the following definitions:

Definition 4.81 Let � be a binary relation on random variables. We say that:

• X is strongly P preferred to Y, and denote it X �Ps Y, when X �P Y for every
P ∈ P;

• X is weakly P preferred, and denote it X �Pw Y, to Y when X �P Y for some
P ∈ P.

Obviously, the strong preference implies the weak one. To see that they are not equiva-
lent, consider the following simple example:

Example 4.82 Let � be the binary relation associated with statistical preference and
consider the variables X,Y that represent the results of the dices A and B, respectively,
in Example 3.83. If we consider the uniform distribution P1 in all the die outcomes, we
obtain Q(X,Y ) = 5

9 , so that X �P1
SP Y ; if we take instead the uniform distribution P2

on {1, 2, 3}, then Q(X,Y ) = 1
9 , and as a consequence Y �P2

SP X. Hence, X is weakly
{P1, P2} statistically preferred to Y , but not strongly so. �

With respect to the notions established in Section 4.1, it is not difficult to establish the
following result. Its proof is immediate, and therefore omitted.

Proposition 4.83 Let X ,Y be the sets of alternatives considered above, and let � be a
binary relation. Then

X �1 Y ⇒ X �Ps Y ⇒ X �Pw Y ⇒ X �4 Y.

To see that the converse implications do not hold, consider the following example:

Example 4.84 Consider Ω = {ω1, ω2, ω3}, the set of probabilities

P := {P : P (ω1) > P (ω2), P (ω2) ∈ [0, 0.2]}

and the alternatives X,Y given by

ω1 ω2 ω3

X 1 0 1
Y 0 1 1

If we consider the sets X = {(X,P ) : P ∈ P} and Y = {(Y, P ) : P ∈ P} and we compare
them by means of stochastic dominance, it is clear that X �Ps Y; however, it does not
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hold that X �FSD1 Y: if we consider P1 := (0.3, 0.2, 0.5) and P2 := (0.1, 0, 0.9), it holds
that (Y, P2) �FSD (X,P1).

Moreover, in this example we also have that X is strictly weakly P-preferred to Y
while X ≡FSD4 Y. �

Remark 4.85 If the binary relation � we start with is complete, so is the weak P-
preference. In that case, we obtain that X �Pw Y implies that X �Ps Y, because if
X �Pw Y we must have that (X,P ) � (Y, P ) for every P ∈ P.

Moreover, when X ≡Pw Y, we may have strict preference, indifference or incompa-
rability with respect to strong P-preference. �

In what follows, we study in some detail the notions of weak and strong preference for
particular choices of the binary relation �. If � corresponds to expected utility, strong
preference of X over Y means that X is preferred to Y with respect to all the probability
measures P in P, and then it is related to the idea of maximality [205]; on the other hand,
weak preference means that X is preferred to Y (i.e., it is the optimal alternative) with
respect to some of the elements of P; this idea is close to the criterion of E-admissibility
[107]. See also Remark 4.13 and [43, Section 3.2].

When � is the binary relation associated with stochastic dominance, we obtain the
following.

Proposition 4.86 Consider a set P of probability measures on Ω, and let X,Y be two
real-valued random variables on Ω. Let us define the sets FX := {FPX : P ∈ P} and
FY := {FPY : P ∈ P}.

1. FX ≤ FY ⇒ X is strongly P-preferred to Y with respect to stochastic dominance.

2. X is weakly P-preferred to Y with respect to stochastic dominance ⇒ FX ≤ FY.

Proof: Assume that FX ≤ FY. Then, for any P ∈ P it holds that:

FPX ≤ FX ≤ FY ≤ FPY .

Then, X is strongly P-preferred to Y with respect to first degree stochastic dominance.

Now, assume that X is weakly P-preferred to Y with respect to first degree stochas-
tic dominance. Then there exists P ∈ P such that FPX ≤ FPY . Then, in particular,
X �FSD4 Y, and by Proposition 4.19 we deduce that FX ≤ FY.

Note that this result could also be derived from Propositions 4.19 and 4.83.

Finally, when � corresponds to statistical preference, we can apply Remark 4.85,
because � is a complete relation. In addition, we can establish the following result:
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Proposition 4.87 Consider a set P of probability measures, and let P , P denote its
lower and upper envelopes, given by Equation (2.18). Let X,Y be two real-valued random
variables on Ω, and let u = I(0,+∞) − I(−∞,0).

1. X is strongly P statistically preferred to Y ⇔ P (u(X − Y )) ≥ 0.

2. X is weakly P statistically preferred to Y ⇒ P (u(X−Y )) ≥ 0. The converse holds
if P =M(P ).

Proof: The result follows simply by considering that if X,Y are random variables on
a probability space (Ω,A, P ), then, by applying Equation (3.1), X �PSP Y if and only if
P (u(X − Y )) ≥ 0, where we also use P to denote the expectation operator associated
with the probability measure P .

To see that the converse of the second statement holds when P =M(P ), note that
the upper envelope P of P is a coherent lower prevision. From [205, Section 3.3.3], given
the bounded random variable u(X − Y ) there exists a probability P inM(P ) such that
P (u(X − Y )) = P (u(X − Y )).

The above result can be related to the lower median, as in [46, 148]. For this, let
us define the lower median of X − Y by the credal setM(P ) by

Me(X − Y ) := inf{MeP(X − Y ) : P ∈M(P )},

and its upper median by

Me(X − Y ) := sup{MeP(X − Y ) : P ∈M(P )},

where MeP (X−Y ) denotes the median of X−Y when P is the probability of the initial
space.

Then, we deduce from Proposition 4.64 that

Me(X − Y ) > 0⇒ X �M(P )
SP,s Y ⇒Me(X − Y ) ≥ 0,

and that
Me(X − Y ) > 0⇒ X �M(P )

SP,w Y ⇒Me(X − Y ) ≥ 0.
A related result was established in [46, Proposition 4], by means of a slightly different
definition of median. See also Proposition 4.64, and [83, 164] for approaches based on
the expected utility model.

4.3 Modelling the joint distribution in an imprecise
framework

Statistical preference is an stochastic order that depends on the joint distribution of
the random variables. This joint distribution function can be determined, according
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to Sklar’s Theorem (Theorem 2.27), from the marginals by means of a copula. In the
imprecise context we are dealing with in this chapter, there may be imprecision either
in the marginal distribution functions or in the copula that links the marginals. In the
former case, we can model the lack of information by means of p-boxes, and in the second
one the should consider a set of possible copulas. In both situations we shall obtain a
set of bivariate distribution functions.

In order to determine the mathematical model for this situation, we shall consider
two steps: on the one hand, we shall study how to model sets of bivariate distribution
functions, since the lower and upper bounds are not, in general, distribution functions. To
deal with this problem, we shall extend the notion of p-box when considering bivariate
distribution functions, and we will investigate under which conditions such bivariate
p-box can define a coherent lower probability. Then, we shall consider two marginal
imprecise distribution functions and we will try to build from them a joint distribution.
In this context, the main result is to extend Sklar’s Theorem to an imprecise framework;
we shall also study the application of these results can be applied into bivariate stochastic
orders.

4.3.1 Bivariate distribution with imprecision

Bivariate p-boxes

Let Ω1,Ω2 be two totally ordered spaces. As in [198], we assume without loss of generality
that both have a maximum element, that we denote respectively by x∗, y∗. Note that
this is trivial in the case of finite spaces.

We start by introducing standardized functions and bivariate distribution functions.

Definition 4.88 Consider two ordered spaces Ω1,Ω2. A map F : Ω1 × Ω2 → [0, 1] is
called standardized when it is component-wise increasing and F (x∗, y∗) = 1. It is called
a distribution function when moreover it satisfies the rectangle inequality:

(RI) : F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0

for every x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2 such that x1 ≤ x2 and y1 ≤ y2.

Here, and in what follows, we shall make an assumption of logical independence, meaning
that we consider all values in the product space Ω1 × Ω2 to be possible.

The rectangle inequality is equivalent to monotonicity in the univariate case, so
in that case a distribution function is simply an increasing and normalized function
F : X → [0, 1]. Moreover, a lower envelope of univariate distribution functions is again
a distribution function, by Proposition 2.34. Unfortunately, the situation is not as clear
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cut in the bivariate case: the envelopes of a set of distribution functions are standardized
maps, but not necessarily distribution functions.

Proposition 4.89 Let Ω1 and Ω2 be two ordered spaces and F be a family of distribution
functions F : Ω1 ×Ω2 → [0, 1]. Their lower and upper envelopes F , F : Ω1 ×Ω2 → [0, 1],
given by

F (x, y) = inf
F∈F

F (x, y) and F (x, y) = sup
F∈F

F (x, y)

for every x ∈ Ω1, y ∈ Ω2, are standardized maps.

Proof: It suffices to take into account that the monotonicity and normalization prop-
erties are preserved by lower and upper envelopes.

To see that these envelopes are not necessarily distribution functions, consider the
following example:

Example 4.90 Take Ω1 = Ω2 = {a, b, c}, with a < b < c and let F1, F2 be the distribu-
tion functions determined by the following joint probability measures:

X1, Y1 a b c
a 0.1 0.1 0
b 0.4 0.1 0
c 0 0 0.3

X2, Y2 a b c
a 0.4 0 0.2
b 0.1 0 0
c 0.1 0 0.2

Then F1 and F2 are given by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F1 0.1 0.2 0.2 0.5 0.7 0.7 0.5 0.7 1
F2 0.4 0.4 0.6 0.5 0.5 0.7 0.6 0.6 1

and their lower and upper envelopes are given by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0.1 0.2 0.2 0.5 0.5 0.7 0.5 0.6 1
F 0.4 0.4 0.6 0.5 0.7 0.7 0.6 0.7 1

Then

F (b, b) + F (a, a)− F (a, b)− F (b, a) = 0.5 + 0.1− 0.2− 0.5 = −0.1 < 0

and
F (b, c) + F (a, b)− F (a, c)− F (b, b) = 0.7 + 0.4− 0.6− 0.7 = −0.2 < 0.

As a consequence, neither F nor F are distribution functions. �

Taking this result into account, we give the following definition:
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Definition 4.91 Consider two ordered spaces Ω1,Ω2, and let F , F : Ω1 ×Ω2 → [0, 1] be
two standardized functions satisfying F (x, y) ≤ F (x, y) for every x ∈ Ω1, y ∈ Ω2. Then
the pair (F , F ) is called a bivariate p-box.

Proposition 4.89 shows that bivariate p-boxes can be obtained in particular by means of a
set of distribution functions, taking lower and upper envelopes. However, not all bivariate
p-boxes are of this type: if we consider for instance a map F = F that is standardized but
not a distribution function, then there is no bivariate distribution function between F
and F , and as a consequence these cannot be obtained as envelopes of a set of distribution
functions. Our next paragraph will deepen into this matter, by means of the notion of
coherence of lower probabilities. In particular, we shall investigate how Theorem 2.35
could be extended to bivariate p-boxes.

Lower probabilities and p-boxes

In order to define a lower probability from a bivariate p-box, let us now introduce a
notation similar to the one of Section 2.2.1.

Consider two ordered spaces Ω1,Ω2, and let (F , F ) be a bivariate p-box on Ω1×Ω2.
Denote

A(x,y) := {(x′, y′) ∈ Ω1 × Ω2 : x′ ≤ x, y′ ≤ y},
and let us define

K1 := {A(x,y) : x ∈ Ω1, y ∈ Ω2} and K2 := {Ac(x,y) : x ∈ Ω1, y ∈ Ω2}.

The maps F and F can be used to define the lower probabilities PF : K1 → R and
PF : K2 → R by:

PF (A(x,y)) = F (x, y) and PF (Ac(x,y)) = 1− F (x, y). (4.13)

Define now K := K1 ∪ K2; note that A(x∗,y∗) = Ω1 × Ω2, where x∗, y∗ are the maximum
of Ω1 and Ω2, respectively. Thus, both Ω1 × Ω2 and ∅ belong to K.

Definition 4.92 The lower probability induced by (F , F ) is the map P (F,F ) : K → [0, 1]
given by:

P (F,F )(A(x,y)) = F (x, y), P (F,F )(A
c
(x,y)) = 1− F (x, y) (4.14)

for every x ∈ Ω1, y ∈ Ω2.

Note that P (F,F )(Ω1 × Ω2) = 1 and P (F,F )(∅) = 0 because F and F are standardized.

In this section, we are going to study which properties of the lower probability
P (F,F ) can be characterised in terms of the lower and upper distribution functions F
and F .
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Avoiding sure loss We begin with the property of avoiding sure loss. Recall that, as
we saw in Definition 2.29, a lower probability P with domain K ⊆ P(Ω1 × Ω2) avoids
sure loss if and only if there is a finitely additive probability P : P(Ω1 × Ω2) → [0, 1]
that dominates P on its domain. This is a consequence of [205, Corollary 3.2.3 and
Theorem 3.3.3].

Proposition 4.93 The lower probability P (F,F ) induced by the bivariate p-box (F , F ) by
means of Equation (4.14) avoids sure loss if and only if there is a distribution function
F : Ω1 × Ω2 → [0, 1] satisfying F ≤ F ≤ F .

Proof: We begin with the direct implication. Assume that P (F,F ) avoids sure loss.
Then, there exists a finitely additive probability P : P(Ω1 × Ω2) → [0, 1] such that
P (A) ≥ P (F,F )(A) for every A ∈ K. Let us define the map FP : Ω1 × Ω2 → [0, 1] by
FP (x, y) = P (A(x,y)). Then FP is a distribution function that is bounded between F

and F :

• Consider x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2 such that x1 ≤ x2, y1 ≤ y2. Then:

FP (x1, y1) = P (A(x1,y1)) ≤ P (A(x2,y2)) = FP (x2, y2)

because P is monotone.

• FP (x∗, y∗) = P (A(x∗,y∗)) = P (Ω1 × Ω2) = 1.

• Consider x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2 such that x1 ≤ x2, y1 ≤ y2. Then it holds
that

FP (x1, y1) + FP (x2, y2)− FP (x1, y2)− FP (x2, y1)
= P (A(x1,y1)) + P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1))
= P ({(x, y) ∈ Ω1 × Ω2 : x1 < x ≤ x2, y1 < y ≤ y2}) ≥ 0.

• For every x ∈ Ω1, y ∈ Ω2,

FP (x, y) = P (A(x,y)) ≥ P (F,F )(A(x,y)) = F (x, y),

and on the other hand,

FP (x, y) = P (A(x,y)) = 1− P (Ac(x,y))
≤ 1− P (F,F )(A

c
(x,y)) = 1− (1− F (x, y)) = F (x, y).

Conversely, assume that F : Ω1 ×Ω2 → [0, 1] is a distribution function that lies between
F and F , and let us define the finitely additive probability PF on the field generated by
K by means of

PF ({(x, y) ∈ Ω1 × Ω2 : x1 < x ≤ x2, y1 < y ≤ y2})
= FP (x1, y1) + FP (x2, y2)− FP (x1, y2)− FP (x2, y1) ≥ 0. (4.15)
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Then it follows that PF (A(x,y)) = F (x, y) ≥ F (x, y) = P (F,F )(A(x,y)) and moreover
PF (Ac(x,y)) = 1− F (x, y) ≥ 1− F (x, y) = P (F,F )(A

c
(x,y)).

Since any finitely additive probability on a field of events has a finitely additive
extension to P(Ω1 × Ω2), we deduce that there is a finitely additive probability that
dominates P (F,F ), and as a consequence this lower probability avoids sure loss.

This result allows us to focus on the lower and upper distributions of the p-box, that
shall simplify search for for necessary and sufficient conditions. We shall say that (F , F )
avoids sure loss when the lower probability P (F,F ) it induces by means of Equation (4.14)
does. Our next result gives a necessary condition:

Proposition 4.94 If (F , F ) avoids sure loss, then for every x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2

such that x1 ≤ x2 and y1 ≤ y2 it holds that

(I−RI0) : F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

Proof: Assume that (F , F ) avoids sure loss. By Proposition 4.93, there is a distribution
function F bounded by F , F . Given x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2 such that x1 ≤ x2 and
y1 ≤ y2, it follows from (RI) that

0 ≤ F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)

≤ F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1),

where the second inequality follows from F ≤ F ≤ F .

Let us show that this necessary condition is not sufficient in general:

Example 4.95 Consider Ω1 = Ω2 = {a, b, c}, with a < b < c and let F and F be given
by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.65 0.7 0.2 0.8 0.8 0.35 0.9 1
F 0.1 0.7 0.7 0.25 0.8 0.8 0.4 0.9 1

It is immediate to check that both maps are standardized and that together they satisfy
(I-RI0). However, (F , F ) does not avoid sure loss: from Proposition 4.93, it suffices to
show that there is no distribution function F bounded by F (x, y) and F (x, y) for every
x, y ∈ {a, b, c}. To see that this is indeed the case, note that any distribution function
F ∈ (F , F ) should satisfy

F (a, c) = 0.7, F (b, b) = 0.8, F (b, c) = 0.8, F (c, b) = 0.9 and F (c, c) = 1.

By (RI) to (x1, y1) = (a, b) and (x2, y2) = (b, c), we deduce that F (a, b) = 0.7, and then
applying again the rectangle inequality we deduce that

F (b, b) + F (a, a)− F (a, b)− F (b, a) = 0.8 + F (a, a)− 0.7− F (b, a) ≥ 0
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if and only if F (a, a) + 0.1 ≥ F (b, a), whence F (a, a) = 0.1 and F (b, a) = 0.2. If we now
apply (RI) to (x1, y1) = (b, a) and (x2, y2) = (c, b), we deduce that

F (c, b) + F (b, a)− F (b, b)− F (c, a) = 0.9 + 0.2− 0.8− F (c, a) ≥ 0

if and only if F (c, a) ≤ 0.3. But on the other hand we must have F (c, a) ≥ F (c, a) = 0.35,
a contradiction. Hence, (F , F ) does not avoid sure loss. �

However, (I-RI0) is a necessary and sufficient condition when both Ω1,Ω2 are binary
spaces.

Proposition 4.96 Assume that both Ω1 = {x1, x2} and Ω2 = {y1, y2} are binary spaces
such that x1 ≤ x2 and y1 ≤ y2, and let (F , F ) be a bivariate p-box on Ω1×Ω2. Then the
following are equivalent:

1. (F , F ) avoids sure loss.

2. F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0 for all x1, x2 ∈ Ω1, y1, y2 ∈ Ω2.

3. F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0 for all x1, x2 ∈ Ω1, y1, y2 ∈ Ω2.

Proof: The first statement implies the second from Proposition 4.94. To see that the
second implies the third note that, since F and F are standardized maps, it holds that
F (x2, y2) = F (x2, y2) = 1.

To see that the third statement implies the first, let us consider F : Ω1×Ω2 → [0, 1]
given by

F (x1, y1) = F (x1, y1)

F (x1, y2) = max{F (x1, y1), F (x1, y2)}
F (x2, y1) = max{F (x1, y1), F (x2, y1)}
F (x2, y2) = 1.

By construction, F is a standardized map and it is bounded by F , F . To see that it
indeed is a distribution function, note that if either F (x1, y2) or F (x2, y1) is equal to
F (x1, y1) = F (x1, y1), then it follows from the monotonicity of F , F that

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0;

and if F (x1, y2) = F (x1, y2) and F (x2, y1) = F (x2, y1), then

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)

= F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. �
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Coherence Let us turn now to coherence, where we shall see that Theorem 2.35 does
not extend immediately to the bivariate case. We begin by establishing a result related
to Proposition 4.93:

Proposition 4.97 The lower probability P (F,F ) induced by the bivariate p-box (F , F ) is
coherent if and only if F and F are the lower and the upper envelopes of the set

{F : Ω1 × Ω2 → [0, 1] distribution function : F ≤ F ≤ F},

respectively.

Proof: We begin with the direct implication. If P (F,F ) is coherent, then for any x ∈ Ω1

and y ∈ Ω2 there is some probability P ≥ P (F,F ) such that P (A(x,y)) = P (F,F )(A(x,y)).
Consider the function FP : Ω1 ×Ω2 → [0, 1] defined by FP (x′, y′) = P (A(x′,y′)) for every
(x′, y′) ∈ Ω1 × Ω2. Reasoning as in the proof of Proposition 4.93, we deduce that FP is
a distribution function that belongs to (F , F ). Moreover, by construction:

FP (x, y) = P (A(x,y)) = P (F,F )(A(x,y)) = F (x, y).

Similarly, there exists some P ′ ≥ P (F,F ) such that

P ′(Ac(x,y)) = P (F,F )(A
c
(x,y)).

Let FP ′ : Ω1×Ω2 → [0, 1] be given by FP ′(x′, y′) = P ′(A(x′,y′)) for every (x′, y′) ∈ Ω1×Ω2.
Reasoning as in the proof of Proposition 4.93, we deduce that FP ′ is a distribution
function that belongs to (F , F ). Moreover, by construction:

1− FP ′(x, y) = 1− P (A(x,y)) = P (Ac(x,y)) = P (F,F )(A
c
(x,y)) = 1− F (x, y),

whence FP ′(x, y) = F (x, y).

Conversely, fix (x, y) ∈ Ω1 × Ω2 and let F1, F2 be distribution functions in (F , F )
such that F1(x, y) = F (x, y) and F2(x, y) = F (x, y). Let P1, P2 be the finitely additive
probabilities they induce in K by means of Equation (4.15). Then it follows from the
proof of Proposition 4.93 that P1, P2 dominate P (F,F ), and moreover

P1(A(x,y)) = F1(x, y) = F (x, y) = P (F,F )(Ax,y) and

P2(Ac(x,y)) = 1− P2(A(x,y)) = 1− F2(x, y) = 1− F (x, y) = P (F,F )(A
c
x,y)

Since P1, P2 have finitely additive extensions to P(Ω1 × Ω2), we deduce from this that
P (F,F ) is coherent.

We shall call the bivariate p-box (F , F ) coherent when its associated lower prob-
ability is. One interesting difference with the univariate case is that F , F need not be



4.3. Modelling the joint distribution 217

distribution functions for (F , F ) to be coherent (although if F , F are distribution func-
tions then trivially (F , F ) is coherent by Proposition 4.97). This can be seen for instance
with Example 4.90, where the lower envelope of a set of distribution functions (which
determines the lower distribution function of a coherent p-box) is not a distribution
function itself.

Out next result uses properties (2.11)–(2.15) of coherent lower probabilities to ob-
tain four imprecise-versions of the rectangle inequality that, as we shall see, will play an
important role.

Proposition 4.98 Let (F , F ) be a bivariate p-box on Ω1×Ω2. If it is coherent, then the
following conditions hold for every x1, x2 ∈ Ω1 and y1, y2 ∈ Ω2 such that x1 ≤ x2 and
y1 ≤ y2:

(I−RI1) : F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

(I−RI2) : F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

(I−RI3) : F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

(I−RI4) : F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

Proof: Consider (x1, y1) and (x2, y2) in Ω1 × Ω2 such that x1 ≤ x2 and y1 ≤ y2. Let
P (F,F ) be the lower probability induced by (F , F ) by means of Equation (4.14). It is
coherent by Proposition 4.97.

Then, by Equations (2.11) and (2.13), it holds that:

P (A(x2,y2)) ≥ P (A(x1,y2) ∪A(x2,y1)) + P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1)))

≥ P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y2) ∩A(x2,y1))
+ P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1))).

Thus:

P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1)) + P (A(x1,y2) ∩A(x2,y1))
≥ P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1))) ≥ 0.

If we write the previous equation in terms of the maps F , F , we obtain that:

F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0.

On the other hand, applying Equations (2.12) and (2.14)

P (A(x2,y2)) ≥ P (A(x1,y2) ∪A(x2,y1)) + P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1)))
≥ P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y2) ∩A(x2,y1))
+ P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1))).
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Then:

P (A(x2,y2)) + P (A(x1,y2) ∩A(x2,y1))− P (A(x1,y2))− P (A(x2,y1))
≥ P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1))) ≥ 0.

In terms of F , F , this means that

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

Analogously, by Equation (2.12)

P (A(x2,y2)) ≥ P (A(x1,y2) ∪A(x2,y1)) + P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1)))

and, from Equation (2.15), this is greater than or equal to both

P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1))) + P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y2) ∩A(x2,y1))

and

P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1))) + P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y2) ∩A(x2,y1)).

Then:

0 ≤ P (A(x2,y2) \ (A(x1,y2) ∪A(x2,y1)))

≤

{
P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1)) + P (A(x1,y2) ∩A(x2,y1)).
P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1)) + P (A(x1,y2) ∩A(x2,y1)).

In terms of F , F , this means that:

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.
F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. �

None of these conditions is sufficient for coherence, as we can see in the following
examples.

Example 4.99 Let us show an example where both F and F satisfy (I-RI1), (I-RI2)
and (I-RI4), but not (I-RI3), and the lower prevision P is not coherent. For this aim
consider three real numbers a < b < c and the functions F and F defined by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.3 0.45 0.3 0.6 0.75 0.45 0.8 1
F 0 0.3 0.5 0.3 0.6 0.85 0.5 0.85 1

Both F and F are standardized maps. In addition, F is a distribution function, and con-
sequently F and F satisfy (I-RI1) and (I-RI2). It can be checked that (I-RI4) is also sat-
isfied. Assume that their lower probability P (F,F ) is coherent. Then, by Proposition 4.97
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there must be a distribution function F between F , F such that F (b, c) = F (b, c) = 0.85.
However, this implies that

F (c, c) + F (b, b)− F (b, c)− F (c, b) = 1 + 0.6− 0.85− F (c, b) ≥ 0⇒ F (c, b) ≤ 0.75.

But on the other hand we must have F (c, b) ≥ F (c, b) = 0.8; this is a contradiction.

Similarly, if we define F ∗ and F
∗
by F ∗(x, y) = F (y, x) and F

∗
(x, y) = F (y, x), we

obtain an example where (I-RI1), (I-RI2) and (I-RI3) are satisfied but the p-box (F , F )
is not coherent. �

Example 4.100 Let us give next an example where F and F satisfy conditions (I-RI2)
and (I-RI3) and (I-RI4), but not (I-RI1), and the bivariate p-box (F , F ) is not coherent.
For this aim consider three real numbers a < b < c and the functions F and F defined
by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.3 0.4 0.3 0.6 0.6 0.5 0.8 1
F 0 0.3 0.4 0.3 0.6 0.7 0.5 0.8 1

Both F and F are standardized functions. They also satisfy conditions (I-RI2) and, since
F is a cumulative distribution function, also conditions (I-RI3) and (I-RI4). Assume that
(F , F ) is coherent. Then, there must be a distribution function F such that F (b, c) =
F (b, c) = 0.6. Then:

F (b, c) + F (a, b)− F (b, b)− F (a, c) = 0.6 + 0.3− 0.6− 0.4 = −0.1 < 0,

a contradiction. �

Example 4.101 Finally, let us give an example where F and F satisfy (I-RI1) and
(I-RI3) and (I-RI4), but not condition (I-RI2), and the bivariate p-box (F , F ) is not
coherent. As in the previous examples, consider three real numbers a < b < c and the
functions F and F defined by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.3 0.4 0.3 0.5 0.7 0.5 0.8 1
F 0.1 0.3 0.4 0.3 0.5 0.7 0.5 0.8 1

These functions can be easily proven to satisfy (I-RI1), (I-RI3) and (I-RI4). However,
they do not satisfy (I-RI2) since:

F (b, b) + F (a, a)− F (a, b)− F (b, a) = 0.5 + 0− 0.3− 0.3 = −0.1 < 0.

Then, P (F,F ) is not coherent.�

Next we establish the most important result in this section: a characterisation of the
coherence of a bivariate p-box in the case when one of the variables is binary.
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Proposition 4.102 Assume that Ω2 = {y1, y2} is a binary space and Ω1 = {x1, . . . , xn}
is finite, and let (F , F ) be a bivariate p-box on Ω1 × Ω2.

1. If F , F satisfy (I-RI1) and (I-RI2), then

F = min{F distribution function : F ≤ F ≤ F}.

2. If F , F satisfy (I-RI3) and (I-RI4), then

F = max{F distribution function : F ≤ F ≤ F}.

3. As a consequence, (F , F ) is coherent ⇔ F , F satisfy conditions (I-RI1) to (I-RI4).

Proof: First of all, let us check that if F and F satisfy (I-RI2), then there is a cumulative
distribution function F2 such that F ≤ F2 and F2(xi, y1) = F (xi, y1) for any i = 1, . . . , n.
For this aim we define the function F2 by:

F2(xi, y1) = F (xi, y1) for i = 1, . . . , n,
F2(x1, y2) = F (x1, y2), and
F2(xi, y2) = F (xi, y2)−min(0,∆Ri−1

F ), for i = 2, . . . , n, where
∆Ri−1
F = F (xi, y2) + F (xi−1, y1)− F (xi, y1)− F2(xi−1, y2).

On the one hand, by definition F2(xi, y1) = F (xi, y1) for i = 1, . . . , n. On the other
hand, let us prove that F ≤ F2 ≤ F , F2(xn, y2) = 1, F2 is monotone and ∆Ri−1

F2
≥ 0,

where:
∆Ri−1
F2

= F2(xi, y2) + F2(xi−1, y1)− F2(xi, y1)− F2(xi−1, y2),

for i = 2, . . . , n. In such a case, F2 would be a distribution function bounded by F and
F .

1. F2 ≥ F :

It trivially holds since −min(0,∆Ri−1
F ) ≥ 0.

2. F2 ≤ F :
For either i = 1 or j = 1, F2(xi, yj) = F (xi, yj) ≤ F (xi, yj). When i, j ≥ 2, and
(i, j) 6= (n, 2), it holds that:

F (xi, y2) ≥ F2(xi, y2)⇔ F (xi, y2)− F (xi, y2) + min(∆Ri−1
F , 0) ≥ 0

This is obvious when ∆Ri−1
F ≥ 0. Otherwise, we have to prove that

F (xi, y2)− F (xi, y2) + ∆Ri−1
F ≥ 0.
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This inequality holds if and only if:

0≤ F (xi, y2)− F (xi, y2) + F (xi, y2)− F (xi, y1)− F2(xi−1, y2) + F (xi−1, y1)
= F (xi, y2)− F (xi, y1)− F2(xi−1, y2) + F (xi−1, y1).

Then, we shall prove that

F (xi, y2)− F (xi, y1)− F2(xk, y2) + F (xk, y1) ≥ 0 (4.16)

for any k = 1, . . . , i− 1 by induction on k.

(a) k = 1: Equation (4.16) becomes:

F (xi, y2)− F (xi, y1)− F (x1, y2) + F (x1, y1) ≥ 0,

and it holds for (I-RI2).

(b) Assume that Equation (4.16) holds for k−1. Then, for k = 1 Equation (4.16)
becomes:

F (xi, y2)− F (xi, y1)− F (xk, y2) + min(∆Rk−1
F , 0) + F (xk, y1) ≥ 0,

and this is positive when ∆Rk−1
F ≥ 0 by (I-RI2). Otherwise, it becomes:

F (xi, y2)− F (xi, y1)− F (xk, y2) + F (xk, y2)− F (xk, y1)
− F2(xk−1, y2) + F (xk−1, y1) + F (xk, y1)
= F (xi, y2)− F (xi, y1)− F2(xk−1, y2) + F (xk−1, y1) ≥ 0,

since Equation (4.16) holds for k − 1.

3. F2(xn, y2) = 1:

In fact:

F2(xn, y2) = 1⇔ F (xn, y2)−min(∆Rn−1
F , 0) = 1−min(∆Rn−1

F , 0) = 1
⇔ ∆Rn−1

F ≥ 0
⇔ F (xn, y2)− F (xn, y1)− F2(xn−1, y2) + F (xn−1, y1)

= F (xn, y2)− F (xn, y1)− F2(xn−1, y2) + F (xn−1, y1) ≥ 0,

which follows from the proof by induction of Equation (4.16) by putting i = n and
k = n− 1.

4. F2 is monotone:

(a) On the one hand, F2(xi, y1) = F (xi, y1) ≤ F (xi+1, y1) = F2(xi, y1) for any
i = 1, . . . , n− 1.
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(b) F2(xi, y2) ≥ F2(xi−1, y2):

F2(xi, y2) = F (xi, y2)−min(∆Ri−1
F , 0)

= max(F (xi, y2)−∆Ri−1
F , F (xi, y2))

= max(F2(xi−1, y2) + F (xi, y1)− F (xi−1, y1), F (xi, y2))
≥ F2(xi−1, y2) + F (xi, y1)− F (xi−1, y1) ≥ F2(xi−1, y2),

by the monotonicity of F .
(c) F2(xi, y2) ≥ F2(xi, y1) = F (xi, y1) since

F2(xi, y2) ≥ F (xi, y2) ≥ F (xi, y1).

5. ∆Ri−1
F2

≥ 0 for i = 1, . . . , n:

It holds that:

∆Ri−1
F2

= F2(xi, y2)− F (xi, y1)− F2(xi−1, y2) + F (xi−1, y1)
= F (xi, y2) + max(−∆Ri−1

F , 0)− F (xi, y1)− F2(xi−1, y2) + F (xi−1, y1)
= max(−∆Ri−1

F , 0) + ∆Ri−1
F = max(0,∆Ri−1

F ) ≥ 0.

Now, consider the function F1 defined by:

F1(xi, y2) = F (xi, y2) for i = 1, . . . , n,
F1(xi, y1) = F (xi, y1)−min(∆Ri

F , 0), where
∆Ri
F = F (xi+1, y2)− F1(xi+1, y1)− F (xi, y2) + F (xi, y1),

for i = n− 1, . . . , 1. If F and F satisfy (I-RI1), with a similar proof as the one for F2, we
can prove that F1 is a distribution function bounded by F and F and, by its definition,
F1(xi, y2) = F (xi, y2) for i = 1, . . . , n. Then, taking into account F1 and F2, it holds
that:

F = min{F distribution functions : F ≤ F ≤ F}.

Finally, consider the functions F3 and F4, defined by:

F3(xi, y2) = F (xi, y2) for i = 1, . . . , n,
F3(x1, y1) = F (x1, y1), and
F3(xi, y1) = F (xi, y1) + min(∆Ri−1

F
, 0), where

∆Ri−1

F
= F (xi, y2) + F3(xi−1, y1)− F (xi−1, y2)− F (xi, y1)

for i = 2, . . . , n, and:

F4(xi, y1) = F (xi, y1) for i = 1, . . . , n,
F4(xn, y2) = F (xn, y2), and
F4(xi, y1) = F (xi, y1) + min(∆Ri

F
, 0), where

∆Ri
F

= F (xi+1, y2) + F (xi, y1)− F4(xi, y2)− F (xi−1, y1)
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for i = n − 1, . . . , 1. With a similar proof as the one for F2, we can check that when F
and F satisfy (I-RI3) (respectively (I-RI4)) F3 (respectively F4) is a distribution function
bounded by F and F such that F3(xi, y2) = F (xi, y2) (respectively F4(xi, y1) = F (xi, y1))
for i = 1, . . . , n. Then, this implies that when F and F satisfy conditions (I-RI3) and
(I-RI4) it holds that:

F = max{F distribution functions : F ≤ F ≤ F}.

Putting the functions F1, F2, F3 and F4 together, we deduce that when F and F satisfy
(I-RI1) to (I-RI4), (F , F ) is a coherent bivariate p-box; the converse implication holds
by Proposition 4.98.

As a consequence, we deduce that conditions (I-RI1)–(I-RI4) are also equivalent to
the coherence of (F , F ) when both variables Ω1,Ω2 are binary. In fact, we conjecture that
conditions (I-RI1)–(I-RI4) are also equivalent to the coherence of (F , F ) in the general
case.

To conclude this section, we investigate if the third statement in Theorem 2.35 can
be used to characterise coherence in the bivariate case. Let F , F be standardized maps
on Ω1×Ω2, and let PF : K1 → R and PF : K2 → R be the lower probabilities associated
with them by Equation (4.13).

Proposition 4.103 Let (F , F ) be a bivariate p-box and let PF , PF be the lower previ-
sions they induce on K1,K2, respectively. Then:

(a) PF , PF always avoid sure loss.

(b) PF is coherent ⇔ P (F,1) is coherent.

(c) PF is coherent ⇔ P (I(x∗,y∗),F ) is coherent.

(d) P (F,F ) coherent ⇒ PF , PF coherent.

Proof:

(a) To see that PF and PF always avoid sure loss, it suffices to take into account that
the constant map on 1 is a distribution function that dominates F and that I(x∗,y∗)
is a distribution function that is dominated by F .

(b) The lower probability PF is coherent if and only if for every (x, y) ∈ Ω1 × Ω2

there is a distribution function F ≥ F such that F (x, y) = F (x, y). The condition
F ≥ F is equivalent to F ≤ F ≤ 1, and on the other hand the constant map on
1 is trivially a distribution function. We deduce from Proposition 4.97 that P (F,1)

is coherent if and only if F is the lower envelope of the distribution functions in
(F , 1), and as a consequence we have the equivalence.
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(c) The lower probability PF is coherent if and only if for every (x, y) ∈ Ω1 × Ω2

there is a distribution function F ≤ F such that F (x, y) = F (x, y). The condition
F ≤ F is equivalent to I(x∗,y∗) ≤ F ≤ F , and on the other hand the map I(x∗,y∗) is
trivially a distribution function. We deduce from Proposition 4.97 that P (I(x∗,y∗),F )

is coherent if and only if F is the upper envelope of the distribution functions in
(I(x∗,y∗), F ), and as a consequence we have the equivalence.

(d) This statement follows from the previous two and from Proposition 4.97, taking
into account that the set of distribution functions (F , F ) is the intersection of the
sets (F , 1) and (I(x∗,y∗), F ).

To see that the converse in the fourth statement does not hold, consider the following
example.

Example 4.104 Consider now the functions F and F of Example 4.100. To see that
(F , 1) is coherent, it suffices to take into account that F is the lower envelope of the
distribution functions F1, F2 given by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F1 0 0.3 0.4 0.3 0.6 0.7 0.5 0.8 1
F2 0.1 0.4 0.4 0.3 0.6 0.6 0.5 0.8 1

while the constant map on 1 is trivially a distribution function.

Similarly, since both I(c,c) and F are distribution functions, we deduce that (I(c,c), F )
is also coherent. However, we saw in Example 4.100 that (F , F ) are not coherent. �

This shows that one of the equivalences in Theorem 2.35 does not extend to the bivariate
case. Moreover, we can see from this example that the coherence of PF does not imply
that F is a distribution function: we have that F (a, b) +F (b, c) < F (a, c) +F (b, b). In a
similar way (using for instance Example 4.99) we can see that the coherence of PF does
not imply that F is a distribution function.

Another consequence is that whenever (I-RI1)–(I-RI4) characterise the coherence of
(F , F ) (as is for instance the case in Proposition 4.102), it holds that PF is coherent for
any a standardized function F , because they hold trivially whenever F is the indicator
function I(x∗,y∗). On the other hand, PF may not be coherent: consider Ω1 = Ω2 = {0, 1}
and F given by:

(0, 0) (0, 1) (1, 0) (1, 1)
F 0 0.6 0.6 1

Then there is no distribution function F ≥ F satisfying F (0, 0) = F (0, 0) = 0, because
then

F (1, 1) + F (0, 0) = 1 < 1.2 ≤ F (0, 1) + F (1, 0).
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2-monotonicity In the univariate case, the lower probability P (F,F ) associated with
a p-box is completely monotone [198]. As we saw in Definition 2.40, this means, in
particular, that for every pair of events A,B in its domain it holds that

P (F,F )(A ∪B) + P (F,F )(A ∩B) ≥ P (F,F )(A) + P (F,F )(B),

provided also A ∪B and A ∩B belong to the domain. 2-monotone capacities have been
studied in detail in [53, 204], among others. They satisfy the property of comonotone
additivity, which is of interest in economy ([35, 203]).

In the univariate case, we can assume without loss of generality that the domain of
the lower probability induced by the p-box is a lattice (see [198] for more details), and
this allows us to apply the results from [53]. This is not the case for bivariate p-boxes:
the domain K of P (F,F ) is not a lattice, so if we want to use the results in [53] we need
to take the natural extension of P (F,F ). By the Envelope Theorem (Theorem 2.30) and
Proposition 4.97, this natural extension is the lower envelope of the set

{PF : F distribution function, F ≤ F ≤ F},

where PF is the finitely additive probability associated with the distribution function F
by means of Equation (4.15).

However, and as the following example shows, in the bivariate case it could be that
the lower probability associated with the p-box (F , F ) is coherent but not 2-monotone,
even if both F , F are distribution functions:

Example 4.105 Consider Ω1 = Ω2 = {0, 1}, and let F , F : Ω1 × Ω2 → [0, 1] be the
standardized maps given by:

(0, 0) (0, 1) (1, 0) (1, 1)
F 0 0 0.5 1
F 0.25 0.25 0.5 1

Then, both F , F are distribution functions, because

F (1, 1) + F (0, 0)− F (0, 1)− F (1, 0) = 0;
F (1, 1) + F (0, 0)− F (0, 1)− F (1, 0) = 0.25 > 0;

and the other comparisons are trivial.

Now, in the particular case of binary spaces the correspondence between distribution
functions and finitely additive probabilities in Equation (4.15) means that any distribution
function F on Ω1×Ω2 determines uniquely a probability mass function on P(Ω1)×P(Ω2)
by:

PF({(0, 0)}) = F (0, 0).
PF({(0, 1)}) = F (0, 1)− F (0, 0).
PF({(1, 0)}) = F (1, 0)− F (0, 0).
PF({(1, 1)}) = 1− PF({(0, 1)})− PF({(1, 0)})− PF({(0, 0)})

= F (1, 1)− F (0, 1)− F (1, 0) + F (0, 0) ≥ 0.
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Let F be the set of distribution functions that lie between F and F , and let us define

MF := {PF : F ∈ F}.

Then P (F,F ) is the lower envelope of MF on K and so is its natural extension E. Let
us show that E is not 2-monotone.

Since F (1, 0) = 0.5, F (0, 1) = 0.25 and F (1, 1) = 1, any map F bounded between
F and F will satisfy F (1, 0) + F (0, 1) ≤ F (0, 0) + F (1, 1), so it will be a distribution
function as soon as it is monotone. In other words, F = {F monotone : F ≤ F ≤ F}.

Denote a = {(0, 0)}, b = {(0, 1)}, c = {(1, 0)}, d = {(1, 1)} and take A = {a, c}
and B = {c, d}. Any monotone map F bounded by F , F induces the mass function
(P (a), P (b), P (c), P (d)), where:

P (a) ∈ [0, 0.25], P (a) + P (b) ∈ [0, 0.25],
P (a) + P (c) = 0.5, P (a) + P (b) + P (c) + P (d) = 1.

Then:

MF = {(PF(a), PF(b), PF(c), PF(d)) : F ∈ (F , F )}
= {(λ, ν − λ, 0.5− λ, 0.5− ν + λ) : ν ∈ [0, 0.25], λ ∈ [0, ν]},

and as a consequence:

• E(A) = E({a, c}) = 0.5.

• E(B) = min{P (c) + P (d) : P ∈ MF} = 0.75, considering the mass function
P = (0.25, 0, 0.25, 0.5).

• E(A∪B) = min{P (a)+P (c)+P (d) : P ∈MF} = 0.75, with P = (0, 0.25, 0.5, 0.25).

• E(A ∩ B) = min{P (c) : P ∈ MF} = 0.25, considering the mass function P =
(0.25, 0, 0.25, 0.5).

This means that E(A∪B)+E(A∩B) < E(A)+E(B) and therefore the lower probability
induced by the p-box (F , F ) is not 2-monotone. �

Interestingly, in this example the lower probability E does not coincide with the lower en-
velope of min{PF , PF }: these are associated with the mass functions PF = (0, 0, 0.5, 0.5)
and PF = (0.25, 0, 0.25, 0.5), so

min{PF (A ∪B), PF (A ∪B)} = 1 > 0.75 = E(A ∪B).

This means that even if the p-box is determined by the distribution functions F , F , the
same does not apply to its associated lower probability.
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On the other hand, when the bivariate p-box determines a 2-monotone lower prob-
ability, it is not too difficult to show that F is indeed a distribution function. Note here
the difference with the case where we only require that the lower probability is coherent,
discussed in Section 4.3.1.

Proposition 4.106 ([185, Lemma 6]) Assume that the natural extension of the lower
probability P (F,F ) induced by the bivariate p-box (F , F ) by Equation (4.14) is 2-monotone.
Then F is a distribution function.

However, the standardized map F of the p-box determined by a 2-monotone lower prob-
ability is not necessarily a distribution function.

Example 4.107 Consider the upper probability defined by P (A) = min((1 + δ)P (A), 1)
for every A ∈ P(Ω1 × Ω2), where δ > 0,

K ⊇ {A(x,y) : x ∈ Ω1, y ∈ Ω2},

and P is a probability measure. This corresponds to Pari-mutuel model (see [205, Sec-
tion 2.9.3]) and it is known that P is 2-alternating. Consider the random variables X
and Y defined on Ω1 = Ω2 = {a, b, c}, where a < b < c, probability P and value of
δ = 0.25:

X\Y a b c
a 0.1 0 0.15
b 0.2 0.2 0.05
c 0.15 0.1 0.05

Joint probability distribution

X\Y a b c
a 0.1 0.1 0.25
b 0.3 0.5 0.7
c 0.45 0.75 1

Joint distribution function

In this situation, F is not a precise cumulative distribution function:

F (3, 3) + F (2, 2)− F (3, 2)− F (2, 3) = 1 + 0.625− 0.9375− 0.875 < 0.�

Remark 4.108 One interesting case is that when the bivariate p-box is precise, that is,
when the standardized maps F , F coincide. In that case, we obviously have that (F , F )
avoids sure loss if and only if it is coherent, and if and only if F = F is a bivariate
distribution function. When Ω1 and Ω2 are finite, it follows from Equation (4.15) that
this distribution function has a unique extension to the power set of Ω1×Ω2; this means
that in that case the lower probability associated with (F , F ) is linear.

Note however, that a distribution function does not determine uniquely its associated
finitely additive probability, not even in the univariate case; this is a problem that has
been explored in detail in [133]. �
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4.3.2 Imprecise copulas

One particular case where bivariate p-boxes can arise is in the combination of two
marginal p-boxes. In this section, we shall explore this case in detail, by studying the
properties of a number of bivariate p-boxes with given marginals: the most conservative
one, that shall be obtained by means of the Fréchet bounds and the notion of natural
extension, and also the one corresponding to model a notion of independence. In both
cases, we shall see that the bivariate model can be derived by means of an appropriate
extension of the notion of copula.

Related results can be found in [198, Section 7], with one fundamental difference: in
[198], the authors assume the existence of a total preorder on the product space Ω1×Ω2

that is compatible with the orders in Ω1,Ω2; while here we shall only consider the partial
order given by

(x1, y1) ≤ (x2, y2)⇔ x1 ≤ x2 and y1 ≤ y2.

An imprecise version of Sklar’s theorem

Taking into account our previous results, we see that the combination of the marginal
p-boxes into a bivariate one is related to the combination of marginal lower probabilities
into a joint one. This is a problem that has been studied in detail under some conditions
of independence [52].

Remember that Sklar’s Theorem (see Theorem 2.27) stated that given two random
variables X and Y with associated cumulative distribution functions FX and FY, there
exists a copula C such that the joint distribution function, named F , can be expressed
by:

F (x, y) = C(FX(x), FY(y)) for any x, y.

Moreover, the copula is unique on Rang(FX) × Rang(FY ). Conversely, any transfor-
mation of marginal distribution functions by means of a copula produces a bivariate
distribution function.

Next, we introduce the notion of imprecise copula. It is a simple generalisation of
precise copulas; the main difference lies in the rectangle inequality that has been replaced
by its four imprecise extensions of (I-RI1)–(I-RI4).

Definition 4.109 A pair of functions C,C : [0, 1]× [0, 1]→ [0, 1] is called an imprecise
copula if:

• Both C and C are component-wise increasing.

• C ≤ C.
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• C(0, u) = C(0, u) = 0 = C(v, 0) = C(v, 0) ∀u, v ∈ [0, 1].

• C(1, u) = C(1, u) = u and C(v, 1) = C(v, 1) = v ∀u ∈ S2, v ∈ S1.

• C and C satisfy the following conditions for any x1, x2, y1, y2 ∈ [0, 1] such that
x1 ≤ x2 and y1 ≤ y2:

(I−CRI1) : C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1).

(I−CRI2) : C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1).

(I−CRI3) : C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1).

(I−CRI4) : C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1).

C and C shall be named the lower and the upper copulas, respectively.

Note that monotonicity and condition C ≤ C may not be imposed in the definition of
imprecise copula: on the one hand, C ≤ C can be derived from conditions (I-CRI1) to
(I-CRI4): for any x, y ∈ [0, 1], (I-CRI1) assures that

C(x, y) + C(x, y) ≥ C(x, y) + C(x, y),

that is equivalent to C(x, y) ≥ C(x, y). Furthermore, taking 0 ≤ x and y1 ≤ y2 and
applying (I-CRI1) we obtain that C is increasing in the second component. Similarly,
using conditions (I-CRI1) to (I-CRI4) we obtain that both C and C are increasing in
each component.

As next result shows, one way of obtaining imprecise copulas is by taking the
infimum and supremum of sets of copulas, or just simply by considering two ordered
copulas.

Proposition 4.110 Let C be a non-empty set of copulas. Take C and C defined by:

C(x, y) = inf
C∈C

C(x, y) and C(x, y) = sup
C∈C

C(x, y)

for any (x, y). Then, (C,C) forms an imprecise copula. Moreover, if C1 and C2 are two
copulas such that C1 ≤ C2, then (C1, C2) also forms an imprecise copula.

Proof: Consider C a non-empty set of copulas, and let C and C denote their infimum
and supremum. Since any copula is in particular a bivariate cumulative distribution
function, (C,C) forms a bivariate p-box. Hence, C and C satisfy C ≤ C, monotonicity,
the boundary conditions and (I-CRI1) to (I-CRI4).

In particular, if we consider two copulas C1 and C2 such that C1 ≤ C2, the previous
result applies, being C1 and C2 the infimum and supremum, respectively.



230 Chapter 4. Comparison of alternatives under uncertainty and imprecision

Let us see to which extent Sklar’s theorem also holds in an imprecise framework.
For this aim, we start by considering marginal imprecise distributions, described by
(univariate) p-boxes, and we use imprecise copulas to obtain a bivariate p-box that
generates a coherent lower probability.

Proposition 4.111 Let (FX, FX) and (FY, FY) be two marginal p-boxes on respective
spaces Ω1,Ω2, and let C be a set of copulas. Define the bivariate p-box (F , F ) by:

F (x, y) = inf
C∈C

C(FX(x), FY(y)) and F (x, y) = sup
C∈C

C(FX(x), FY(y)) (4.17)

for any (x, y), and let P be its associated lower probability by Equation (4.14). Then, P
is a coherent lower probability. Moreover,

F (x, y) = C(FX(x), FY(y)) and F (x, y) = C(FX(x), FY(y)),

where C(x, y) = infC∈C C(x, y) and C(x, y) = supC∈C C(x, y).

Proof: Given C ∈ C, F1 ∈ (FX, FX) and F2 ∈ (FY, FY), the bivariate distribution
function C(F1, F2) is bounded by F , F . Applying Proposition 4.93, we deduce that P
avoids sure loss. Let us now check that it is also coherent. Fix (x, y) in Ω1 × Ω2. Since
the marginal p-boxes (FX, FX), (FY, FY) are coherent, there are F1 ∈ (FX, FX) and
F2 ∈ (FY, FY) such that F1(x) = FX(x) and F2(y) = FY(y). As a consequence,

F (x, y) = inf
C∈C

C(FX(x), FY(y)) = inf
C∈C

C(F1(x), F2(y)),

and since C(F1, F2) ∈ (F , F ) for every C ∈ C, it then follows from monotonicity that F
is the lower envelope of the set {F distribution function : F ≤ F ≤ F}. Similarly, we
can also prove that

F = sup{F distribution function : F ≤ F ≤ F}.

Applying now Proposition 4.97, we deduce that P is coherent.

In particular, when the information about the marginal distribution is precise, and
it is given by the distribution functions FX and FY, the bivariate p-box in the above
proposition is given by

F (x, y) = inf
C∈C

C(FX(x), FY(y)) and F (x, y) = sup
C∈C

C(FX(x), FY(y))

for any (x, y) ∈ Ω1 × Ω2.

Remark 4.112 This result generalises [167, Theorem 2.4], where the authors only fo-
cused on the functions F and F , showing that

F (x, y) = C(FX(x), FY(y)) and F (x, y) = C(FX(x), FY(y)).
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Proposition 4.111 establishes moreover the coherence of the joint lower probability, and
it is more general than [167, Theorem 2.4] since we are assuming the existence of impre-
cision in the marginal distribution, that we model by means of p-boxes. �

Using these results, we can give the form of the credal set M(P ) (that is, the set of
dominating probabilities) associated with the lower probability P . Note that, in the
sequel, we can assume that the probabilities in M(P ) are defined on a suitable set of
events, larger than the domain of P . Hence, the domains of P and of the probabilities
inM(P ) do not necessarily coincide.

Corollary 4.113 Under the assumptions of Proposition 4.111, the credal set M(P ) of
the lower probability P is given by:

{P probability | C(FX(x), FY(y)) ≤ FP (x, y) ≤ C(FX(x), FY(y)) ∀x, y}.

Proof: By Proposition 4.97, we know that P is coherent if and only if F and F are the
lower and the upper envelopes of the set

{F distribution function | F ≤ F ≤ F}.

From this, the thesis follows simply by replacing the lower and upper distribution func-
tions by their expressions in terms of C and C.

Next, we investigate whether the second part of Sklar’s theorem also holds, meaning
whether any bivariate p-box can be obtained as the combination of its marginals by
means of an imprecise copula. A partial result in this sense has been established in [185,
Theorem 9]. The next example shows that this result cannot be generalised to arbitrary
p-boxes.

Example 4.114 Consider Ω1 = {x1, x2, x3},Ω2 = {y1, y2} with x1 < x2 < x3, y1 < y2

and let P1, P2 be the probability measures associated with the mass functions:

(x1, y1) (x2, y1) (x1, y2) (x2, y2) (x3, y1) (x3, y2)
P1 0.2 0 0.3 0 0 0.5
P2 0.1 0.2 0.5 0.1 0 0.1

Let P = min{P1, P2}. Then its associated p-box satisfies F (x1) = F (x2) = 0.5 and
F (y1) = 0.2 while F (x1, y1) = 0.1 < F (x2, y1) = 0.2. Hence, there is no function C
such that F (x1, y1) = C(F (x1), F (y1)) = C(F (x2), F (y1)) = F (x2, y1). Consequently,
the lower distribution in the bivariate p-box cannot be expressed as a function of its
marginals. �
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Obviously, when both F , F are bivariate distribution functions, we can express them as
a function of their marginals because of Sklar’s theorem; the example shows that this is
no longer possible when they are simply standardized functions.

Next theorem summarises the results of this paragraph.

Theorem 4.115 (Imprecise version of Sklar’s Theorem) Consider a set of copu-
las C and two marginal p-boxes (FX, FX).The functions F and F defined by

F (x, y) = infC∈C C(FX(x), FY(y)) and
F (x, y) = supC∈C C(FX(x), FY(y))

form a bivariate p-box whose marginals are (FX, FX) and (FY, FY). Furthermore, the
lower probability associated with this bivariate p-box is coherent.

However, given a bivariate p-box (FX, FX) and (FY, FY), there may not be an
imprecise copula (C,C) that generates (F , F ) from its marginals, even when its associated
lower probability is coherent.

Natural extension and independent products

In this section we consider two particular combinations of the marginal p-boxes into the
bivariate one. First of all, we consider the case where there is no information about the
copula that links the marginal distribution functions.

Lemma 4.116 Consider the univariate p-boxes (FX, FX) and (FY, FY), and let P be
the lower prevision defined on

A∗ = {A(x,y∗), A
c
(x,y∗), A(x∗,y), A

c
(x∗,y) : x, y ∈ R} (4.18)

by

P (A(x,y∗)) = FX(x) P (Ac(x,y∗)) = 1− FX(x). (4.19)

P (A(x∗,y)) = FY(y) P (Ac(x∗,y)) = 1− FY(y).

Then:

1. P is a coherent lower probability.

2. M(P ) =M(CL, CM ), whereM(CL, CM ) is given by

{P prob. | FP (x, y) ∈ [CL(FX(x), FY(y)), CM (FX(x), FY(y))]}.
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Proof: Let CP denote the product copula, and let PCP be the coherent lower probability
on K that results from Proposition 4.111, taking C = {CP }. Then P coincides with PCP
in A∗, and consequently P is coherent.

On the other hand, let us check the equality between the credal sets M(P ) and
M(CL, CM ) (note that both sets are trivially non-empty).

• Let P be a probability in M(CL, CM ), and let FP be its associated distribution
function. Then it holds that:

FP (x, y∗) ∈ [CL(FX(x), 1), CM (FX(x), 1)] = [FX(x), FX(x)].
FP (x∗, y) ∈ [CL(1, FY(y)), CM (1, FY(y))] = [FY(y), FY(y)].

Thus, the marginal distribution functions of FP belong to the p-boxes (FX, FX)
and (FY, FY). As a consequence, P ∈M(P ).

• Conversely, let P be a probability on M(P ), and let FP be its associated distri-
bution function. Then, Sklar’s Theorem assures that there is a (precise) copula C
such that FP (x, y) = C(FP (x, y∗), FP (x∗, y)) for every (x, y) ∈ Ω1 × Ω2. Hence,

CL(FX(x), FY(y))≤CL(FP (x, y∗), FP (x∗, y)) ≤ C(FP (x, y∗), FP (x∗, y))
≤C(FX(x), FY(y)) ≤ CM (FX(x), FY(y)),

taking into account that any copula lies between CL and CM . We conclude that
P ∈M(CL, CM ) and as a consequence both sets coincide.

From this result we can immediately derive the expression of the natural extension
[205] of two marginal p-boxes, that is the least-committal (i.e., the most imprecise)
coherent lower probability that extends P to a larger domain.

Proposition 4.117 Let (FX, FX) and (FY, FY) be two univariate p-boxes. Let P be
the lower prevision defined on the set A∗ given by Equation (4.18) by means of Equa-
tion (4.19). Then, the natural extension E of P to K is given by

E(A(x,y)) = CL(FX(x), FY(y)) and E(Ac(x,y)) = 1− CM (FX(x), FY(y)).

The bivariate p-box (F , F ) associated with E is given by:

F (x, y) = CL(FX(x), FY(y)) and F (x, y) = CM (FX(x), FY(y)).

Proof: On the one hand, the lower prevision P is coherent from the previous lemma,
and in addition its associated credal set isM(P ) =M(CL, CM ). The natural extension
of P to the set K is given by:

E(A(x,y)) = infP∈M(P ) FP (x, y) = infP∈M(CL,CM ) FP (x, y) = CL(FX(x), FY(y)).
E(Ac(x,y)) = infP∈M(P )(1− P (A(x,y))) = 1− supP∈M(P ) FP (x, y)

= 1− supP∈M(CL,CM ) FP (x, y) = 1− CM (FX(x), FY(y)).
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The second part is an immediate consequence of the first.

Recall that Proposition 4.110 assures that every pair of copulas C1 and C2 satisfying
C1 ≤ C2 (in particular CL and CM) forms an imprecise copula (C1, C2).

Until now, we have studied how to build the joint p-box (F , F ) from two given
marginals (FX, FX), (FY, FY), when we have no information about the interaction be-
tween the underlying variables X and Y : we have argued that we should use in that case
the natural extension of the associated coherent lower probabilities, which corresponds to
combining the compatible univariate distribution functions by means of all the possible
copulas, and then considering the lower envelope.

Next, we consider another case of interest: that where the variables X and Y are
assumed to be independent. Consider marginal p-boxes (FX, FX), (FY, FY), and let
PX, PY the coherent lower probabilities they induce by means of Equation (2.17). We
shall also use this notation to refer to their natural extensions, so that

PX := min{P : P (Ax) ∈ [FX(x), FX(x)] ∀x ∈ Ω1} and
PY := min{P : P (Ay) ∈ [FY(y), FY(y)] ∀y ∈ Ω2}.

Under imprecise information, there is more than one way to model the notion of inde-
pendence; see [47] for a survey on this topic. Because of this, there is more than one
manner in which we can say that a coherent lower prevision P on the product space is
an independent product of its marginals PX, PY. This was studied in some detail in [52].
In the remainder of this paragraph, we shall follow that paper into assuming that the
spaces Ω and Ω′ are finite. We recall thus the following definitions.

Definition 4.118 Let P be a coherent lower prevision on L(Ω1 × Ω2) with marginals
PX, PY. We say that P is an independent product when it is coherent with the condi-
tional lower previsions PX(·|Ω2), PY(·|Ω1) derived from PX, PY by epistemic irrelevance,
meaning that

PX(f |y) := PX(f(·, y)) and PY(f |x) := PY(f(x, ·)) ∀f ∈ L(Ω1 × Ω2), x ∈ Ω1, y ∈ Ω2.

One example of independent product is the strong product, given by

PX � PY := inf{PX × PY : PX ≥ PX, PY ≥ PY }.

This is the joint model satisfying the notion of strong independence. However, it is not the
only independent product, nor is it the smallest one. In fact, the smallest independent
product of the marginal coherent lower previsions PX, PY is their independent natural
extension, which is given by

(PX ⊗ PY)(f)
= sup{µ : f − µ ≥ g − PX(g|Ω2) + h− PY(h|Ω1) for some g, h ∈ L(Ω1 × Ω2)}
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for every gamble f on Ω1 × Ω2.

One way of building independent products is by means of the following condition:

Definition 4.119 A coherent lower prevision P on L(Ω1×Ω2) is called factorising when

P (fg) = P (fP (g)) ∀f ∈ L+(Ω1), g ∈ L(Ω2)

and
P (fg) = P (gP (f)) ∀f ∈ L(Ω1), g ∈ L+(Ω2).

Both the independent natural extension and the strong product are factorising. Indeed,
it can be proven [52, Theorem 28] that any factorising P is an independent product of its
marginals, but the converse is not true. Under factorisation, it is not difficult to establish
the following result.

Proposition 4.120 Let (FX, FX), (FY, FY) be marginal p-boxes, and let PX, PY be
their associated coherent lower previsions. Let P be a factorising coherent lower pre-
vision on L(Ω1 × Ω2) with these marginals. Then it induces the bivariate p-box (F , F )
given by

F (x, y) = FX(x) · FY(y) and F (x, y) = FX(x) · FY(y).

Proof: It suffices to take into account that, if P is factorising, then

P (A(x,y)) = P (IA(x,y∗) · IA(x∗,y)) = P (A(x,y∗)) · P (A(x∗,y)) = FX(x) · FY(y),

and similarly using conjugacy we deduce that

P (A(x,y)) = P (A(x,y∗) ·A(x∗,y)) = P (A(x,y∗)) · P (A(x∗,y)) = FX(x) · FY(y),

taking into account in the application of the factorisation condition that both gambles
A(x,y∗), A(x∗,y) are positive, and recalling also that x∗, y∗ denote the maxima of Ω,Ω′,
respectively.

From this, it is easy to deduce that the p-box (F , F ) induced by a factorising P is
the lower envelope of the set of bivariate distribution functions

{F : F (x, y) = FX(x) · FY(y) for FX ∈ (FX, FX), FY ∈ (FY, FY)}.

In other words, the bivariate p-box can be obtained by applying the imprecise version of
Sklar’s theorem (Proposition 4.111) with the product copula.

In particular, this also holds for other (stronger) conditions than factorisation also
discussed in [52], such as the Kuznetsov property.

Note also that in our definition of the marginal coherent lower previsions PX, PY we
have considered the natural extensions of their restrictions to cumulative sets; however,
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the result still holds if we consider any other coherent extension, since in our use of the
factorisation condition only the values in A(x,y∗), A(x∗,y) matter. We conclude then that,
even if the independent natural extension and the strong product do not coincide in
general [205, Section 9.3.4], they agree with respect to their associated bivariate p-box.

Interestingly, not all independent products induce the same p-box determined by
the copula of the product:

Example 4.121 Consider Ω1 = Ω2 = {0, 1} and let FX = FY be the marginal distri-
bution functions given by FX(0) = FY(0) = 0.5, FX(1) = FY(1) = 1. They induce the
marginal coherent lower previsions PX, PY given by

PX(f) = min{f(0), 0.5f(0) + 0.5f(1)} and PY(g) = min{g(0), 0.5g(0) + 0.5g(1)}

for every f ∈ L(Ω1), g ∈ L(Ω2). Their strong product is given by:

PX � PY := min{(0.25, 0.25, 0.25, 0.25), (0.5, 0, 0.5, 0), (0.5, 0.5, 0, 0), (1, 0, 0, 0)}, (4.20)

where in the above equation a vector (a, b, c, d) is used to denote the vector of probabilities
{(P (0, 0), P (0, 1), P (1, 0), P (1, 1))}. Let P be the coherent lower prevision given by

P := min{(0.375, 0.125, 0.375, 0.125), (0.375, 0.375, 0.125, 0.125), (1, 0, 0, 0)}.

Then the marginals of P are also PX, PY. Moreover, we see from Equation (4.20) that
P dominates PX � PY, and this allows us to deduce that P is weakly coherent with both
PX(·|Ω2), PY(·|Ω1): given a gamble f on Ω1 × Ω2,

P (G(f |Ω2)) ≥ (PX � PY)(G(f |Ω2)) ≥ 0,

whence in particular P (G(f |y)) = P (G(fIy|Ω2)) ≥ 0 for every y ∈ Ω2. And since PY is
the marginal of P , it follows that we must have P (G(f |y)) = 0: if it were P (G(f |y)) > 0
then we would define the gamble g by g(x′, y′) = f(x′, y) and

0 = P (g − PX(g)) ≥
∑
y′∈Ω2

P (G(g|y′)) > 0,

a contradiction. Similarly, P (G(f |Ω1)) ≥ 0 and P (G(f |x)) = 0 for every x ∈ Ω1.
Applying [137, Theorem 1], we conclude that P , PX(·|Ω1), PY(·|Ω1) are weakly coherent,
and since PX(·|Ω2), PY(·|Ω1) are coherent because they are jointly coherent with PX�PY,
we deduce from the reduction theorem [205, Theorem 7.1.5] that P , PX(·|Ω2), PY(·|Ω1)
are coherent. Thus, P is an independent product. Its associated distribution function is
given by

F (0, 0) = 0.375, F (0, 1) = 0.5, F (1, 0) = 0.5, F (1, 1) = 1.

This differs from the bivariate distribution function F
′
induced by PX�PY, which is the

product of its marginals and which satisfies therefore F
′
(0, 0) = 0.25. �
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4.3.3 The role of imprecise copulas in the imprecise orders

Next we study how imprecise copulas can be used to express the relationship between
imprecise stochastic dominance and statistical preference, that arise by using �FSD and
�SP as the binary relation � in Section 4.1. Afterwards, we shall study the role of
imprecise copulas with respect to imprecise bivariate stochastic orders.

Univariate orders

We have seen in Section 3.2 that, although first degree stochastic dominance does not
imply statistical preference in general (see Example 3.43), there are situations in which
the implication holds (see Theorem 3.64), in terms of the marginal distributions of the
variables and the copula that determines their joint distribution.

Given two random variables X and Y , let us denote by CX,Y the set of copulas
that make stochastic dominance imply statistical preference. Since the latter depends on
the joint distribution of the random variables, it may be that X is preferred to Y when
their joint distribution is determined by a copula C1 and Y is preferred to X when it is
determined by different copula C2.

In the imprecise framework, it is possible to establish the following connection
between the imprecise stochastic dominance and statistical preference. We shall assume
that we have imprecise information about the marginal distributions (that we model by
means of p-boxes) and by the copula that links the marginal distributions into a joint
(that we model by means of a set of copulas), in a manner similar to Proposition 4.111:

Proposition 4.122 Consider a coherent lower prevision P defined on the space product
X × Y of two finite spaces that is factorising. Denote by (F , F ) its associated bivari-
ate p-box, that from Proposition 4.120 is built from the marginal p-boxes (FX, FX) and
(FY, FY) using the product copula. Then, it holds that:

(FX, FX) �FSDi (FY, FY)⇒ X �SPi Y

for any i = 1, . . . , 6, where X (respectively Y) denotes the set of random variables whose
cumulative distribution function belongs to (FX, FX) ((FY, FY), respectively).

Proof: We know from Proposition 4.120 that (F , F ) is built by applying the product
copula to their marginal p-boxes.

• i = 1: We know that for any FX ∈ (FX, FX) and FY ∈ (FY, FY), FX �FSD FY.
Since they are coupled by the product copula, Theorem 3.44 implies PFX �SP PFY .
Thus, X �SP1 Y .
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• i = 2: We know that there is F ∗X ∈ (FX, FX) such that F ∗X �FSD FY for any
FY ∈ (FY, FY). Since they are coupled by the product copula, Theorem 3.44
implies PF∗X

�SP PFY for any FY ∈ (FY, FY). Then, X �SP2 Y .

• i = 3: We know that for any FY ∈ (FY, FY) there is FX ∈ (FX, FX) such that
FX �FSD FY. Then, for any PFY , there is a PFX such that FX �FSD FY, and
consequently, the product copula links them, and by Theorem 3.44, PFX �SP PFY .

• i = 4: We know that there are FX ∈ (FX, FX) and FY ∈ (FY, FY) such that
FX �FSD FY. Then, consider PFX and PFY . Since they are coupled by the product
copula, Theorem 3.44 implies PFX �SP PFY .

• The proof of cases i = 5 and i = 6 are similar to the one of cases i = 2 and i = 3.

Remark 4.123 Although we may think that the previous result also holds when we build
the joint bivariate p-box from the marginal p-boxes by means of a set of copulas C ⊆ CX,Y,
in the manner of Proposition 4.111, such a result does not seem to hold in general. The
reason is that, as soon as one of the marginal p-boxes is imprecise (i.e., if its lower and
the upper bounds do not coincide), we can find a distribution function inside the p-box
associated with a neither continuous nor discrete random variable, and then, taking into
account Theorem 3.64, we cannot assure the implication �FSD⇒�SP unless we assume
independence between the two p-boxes. �

Bivariate orders

As we saw in Equation (2.6), univariate stochastic dominance can be expressed in terms
of the comparison of expectations. It is also well-known that stochastic dominance can
be expressed by means of the comparison of the survival distribution functions: given
two random variables X and Y , their distribution functions are given by FX and FY, and
let F̃X(t) = P (X > t) and F̃Y = P (Y > t) denote their associated survival distribution
functions. Then, it holds that:

FX(t) = P (X ≤ t) ≤ P (Y ≤ t) = FY(t) ⇔ F̃X(t) = 1 − FX(t) ≥ 1 − FY(t) = F̃Y.
(4.21)

Indeed, according to Equation (2.5), we have the following characterisations for first
degree stochastic dominance:

X �FSD Y ⇔ FX(t) ≤ FY(t) for any t
⇔E[u(X)] ≥ E[u(Y )] for any increasing u
⇔ F̃X(t) ≥ F̃Y(t) for any t.

In the bivariate case, the survival distribution functions are not related to the distribution
functions as in Equation (4.21), since P (X > t1, Y > t2) 6= 1−P (X ≤ t1, Y ≤ t2). Then,
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these three conditions are not equivalent, and they generate three different stochastic
orders:

Definition 4.124 Let (X1, X2) and (Y1, Y2) be two random vectors with bivariate dis-
tribution functions FX1,X2 and FY1,Y2 . We say that:

• (X1, X2) stochastically dominates (Y1, Y2), and denote it (X1, X2) �FSD (Y1, Y2),
if E[u(X1, X2)] ≥ E[u(Y1, Y2)] for any increasing u : R2 → R.

• (X1, X2) is preferred to (Y1, Y2) with respect to the upper orthant order, and denote
it (X1, X2) �uo (Y1, Y2), if F̃X1,X2(t) ≥ F̃Y1,Y2(t) for any t ∈ R2.

• (X1, X2) is preferred to (Y1, Y2) with respect to the lower orthant order, and denote
it (X1, X2) �lo (Y1, Y2), if FX1,X2(t) ≤ FY1,Y2(t) for any t ∈ R2.

These three orders are equivalent in the univariate case, but not in the bivariate. Next
theorem describe the relationships between these three orders:

Theorem 4.125 ([139, Theorem 3.3.2]) If X �FSD Y , then X �lo Y and X �uo Y .
In addition, there is no implication between the lower and the upper orthant orders.

In Remark 4.127 we will give an example where the lower and the upper orthant orders
are not equivalent.

Since any copula C is in particular a bivariate distribution function on [0, 1]× [0, 1],
the previous orders can also be applied to the comparison of copulas. Taking this into
account, we can establish the following result, that links the comparison of bivariate
p-boxes with the comparison of their associated marginal p-boxes.

Proposition 4.126 Let (FX1
, FX1), (FX2

, FX2), (FY1
, FY1) be univariate p-boxes and

(FY2
, FY2) and the set of copulas CX and CY. Let (FX, FX) and (FY, FY) be the bivariate

p-boxes given by:

(FX, FX) := {C(FX1 , FX2) : C ∈ CX, FX1 ∈ (FX1
, FX1), FX2 ∈ (FX2

, FX2)}
(FY, FY) := {C(FY1 , FY2) : C ∈ CY, FY1 ∈ (FY1

, FY1), FY2 ∈ (FY2
, FY2)}.

Then, it holds that:

(FX1
, FX1) �FSDi (FY1

, FY1)
(FX2

, FX2) �FSDi (FY2
, FY2)

CX �loi CY

⇒ (FX, FX) �loi (FY, FY)

for i = 1, . . . , 6.
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Proof:

(i = 1) We know that:

∀FX1 ∈ (FX1
, FX1), FY1 ∈ (FY1

, FY1), FX1 ≤ FY1 .
∀FX2 ∈ (FX2

, FX2), FY2 ∈ (FY2
, FY2), FX2 ≤ FY2 .

∀CX ∈ CX, CY ∈ CY, CX ≤ CY.

Consider FX ∈ (FX, FX) and FY ∈ (FY, FY). They can be expressed in the
following way: FX(x, y) = CX(FX1(x), FX2(y)) and FY(x, y) = CY (FY1(x), FY2(y)).
Then:

FX(x, y) =CX(FX1(x), FX2(y)) ≤ CX(FY1(x), FY2(y))
≤CY(FY1(x), FY2(y)) = FY(x, y).

(i = 2) We know that:

∃F ∗X1
∈ (FX1

, FX1) such that F ∗X1
≤ FY1 ∀FY1 ∈ (FY1

, FY1).
∃F ∗X2

∈ (FX2
, FX2) such that F ∗X2

≤ FY2 ∀FY2 ∈ (FY2
, FY2).

∃C∗X ∈ CX such that C∗X ≤ CY ∀CY ∈ CY.

Consider FX(x, y) := C∗X(F ∗X1
(x), F ∗X2

(y)), and let us see that FX ≤ FY for any
FY(x, y) = CY(FY1(x), FY2(y)):

FX(x, y) =C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(FY1(x), FX2(y))
≤CY(FY1(x), FX2(y)) = FY(x, y).

(i = 3) We know that:

∀FY1 ∈ (FY1
, FY1),∃FX1 ∈ (FX1

, FX1) such that FX1 ≤ FY1 .
∀FY2 ∈ (FY2

, FY2),∃FX2 ∈ (FX2
, FX2) such that FX2 ≤ FY2 .

∀CY ∈ CY∃CX ∈ CX such that CX ≤ CY.

Consider FY(x, y) = CY(FY1(x), FY2(y)), and let us check that there is FX such
that FX ≤ FY. We define FX(x, y) = CX(FX1(x), FX2(y)) such that CX ≤ CY,
FX1 ≤ FY1 and FX2 ≤ FY2 . Then:

FX(x, y) =CX(FX1(x), FX2(y)) ≤ CX(FY1(x), FY2(y))
≤CY(FY1(x), FY2(y)) = FY(x, y).

(i = 4) We know that:

∃F ∗X1
∈ (FX1

, FX1), F ∗Y1
∈ (FY1

, FY1) such that F ∗X1
≤ F ∗Y1

.

∃F ∗X2
∈ (FX2

, FX2), F ∗Y2
∈ (FY2

, FY2) such that F ∗X2
≤ F ∗Y2

.
∃C∗X ∈ CX, C∗Y ∈ CY such that CX ≤ CY.
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Consider FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) and FY(x, y) = C∗Y(F ∗Y1
(x), F ∗Y2

(y)). It
holds that FX ≤ FY:

FX(x, y) =C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(F ∗Y1
(x), F ∗Y2

(y))
≤C∗Y(F ∗Y1

(x), F ∗Y2
(y)) = FY(x, y).

(i = 5, i = 6) The proof of these two cases is analogous to that of i = 2 and i = 3,
respectively.

Remark 4.127 Note that under the hypotheses of Proposition 4.126 we do not neces-
sarily have that (FX, FX) �uoi (FY, FY). To see this, consider the following probability
mass functions (see [139, Example 3.3.3]):

X2\X1 0 1 2
0 0 0 1

8
1 1

4
1
4 0

2 1
4

1
8 0

Y2\Y1 0 1 2
0 1

4
1
4 0

1 0 1
8

1
8

2 1
4 0 0

Then, (X1, X2) �lo (Y1, Y2) since FX1,X2 ≤ FY1,Y2 . However, (X1, X2) 6�uo (Y1, Y2),
since:

F̃X(1, 0) = P (X1 > 1, X2 > 0) = 0 <
1
8

= P (Y1 > 1, Y2 > 0) = F̃Y(1, 0).

This example also shows that under the assumptions of Proposition 4.126 it does not
necessarily hold that (X1, X2) �FSD (Y1, Y2); otherwise, we would deduce from Theo-
rem 4.125 that (X1, X2) �uo (Y1, Y2), a contradiction with the example above. �

A result similar to Proposition 4.126 can be established when we consider the upper
instead of the lower orthant order:

Proposition 4.128 Let (FX1
, FX1), (FX2

, FX2), (FY1
, FY1) be univariate p-boxes and

(FY2
, FY2) and the set of copulas CX and CY. Let (FX, FX) and (FY, FY) be the bivariate

p-boxes given by:

(FX, FX) := {C(FX1 , FX2) : C ∈ CX, FX1 ∈ (FX1
, FX1), FX2 ∈ (FX2

, FX2)}
(FY, FY) := {C(FY1 , FY2) : C ∈ CY, FY1 ∈ (FY1

, FY1), FY2 ∈ (FY2
, FY2)}.

Then, it holds that:

(FX1
, FX1) �FSDi (FY1

, FY1)
(FX2

, FX2) �FSDi (FY2
, FY2)

CX �uoi CY

⇒ (FX, FX) �uoi (FY, FY),

for i = 1, . . . , 6.

The proof of this result is analogous to the one of Proposition 4.126, and therefore
omitted.
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Natural extension and independent product

To conclude this section, we consider the particular cases where the bivariate p-boxes are
made by means of the natural extension or a factorising product.

By Proposition 4.117, the natural extension of two marginal p-boxes (FX, FX) and
(FY, FY) is given by:

F (x, y) = CL(FX(x), FY(y)) and F (x, y) = CM(FX(x), FY(y)). (4.22)

This allows us to prove the following result:

Corollary 4.129 Consider marginal p-boxes (FX1
, FX1), (FX2

, FX2) and (FY1
, FY1) and

(FY2
, FY2). Let (FX, FX) (respectively, (FY, FY)) denote the natural extension of the

p-boxes (FX1
, FX1) and (FX2

, FX2) (respectively, (FY1
, FY1), (FY2

, FY2)) by means of
Equation (4.22). Then:

(FX1
, FX1) �FSDi (FY1

, FY1)
(FX2

, FX2) �FSDi (FY2
, FY2)

}
⇒ (FX, FX) �loi (FY, FY)

for i = 2, . . . , 6.

Proof: The result follows immediately from Proposition 4.126.

To see that the result does not hold for �loi , consider the following example.

Example 4.130 For j = 1, 2, let FXj
= FXj = FYj

= FYj be the distribution function
associated with a uniform distribution on [0, 1], and let us denote it by F . Then, trivially:

(FXj
, FXj) �FSD1 (FYj

, FYj) for j = 1, 2.

To see that (FX, FX) 6�lo1 (FY, FY), it suffices to note that CM(F, F ) ∈ (FX, FX) and
CL(F, F ) ∈ (FY, FY), and:

CM(F (0.5), F (0.5)) = CM(0.5, 0.5) = 0.5 > 0 = CL(0.5, 0.5) = CL(F (0.5), F (0.5)).�

We also saw in Proposition 4.120 that the bivariate p-box associated with a factorising
coherent lower probability is obtained applying the product copula to the two marginal
p-boxes. This fact allows us to simplify Propositions 4.126 and 4.128:

Corollary 4.131 Consider two factorising coherent lower probabilities PX and PY de-
fined on X × Y, where both sets are finite. Denote by (FX, FX) and (FY, FY) their
associated bivariate p-boxes, that from Proposition 4.120 can be obtained by applying
the product copula to their respective marginal distributions represented by the p-boxes
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(FX1
, FX1), (FX2

, FX2) and (FY1
, FY1) and (FY2

, FY2), respectively. Then, it holds
that:

(FX1
, FX1) �FSDi (FY1

, FY1)
(FX2

, FX2) �FSDi (FY2
, FY2)

}
⇒

{
(FX, FX) �loi (FY, FY)
(FX, FX) �uoi (FY, FY).

Proof: We have seen in Proposition 4.120 that the bivariate p-box associated with a
factorising coherent lower probability is made by considering the product copula applied
to the marginal p-boxes. Then, this result is a particular case of Propositions 4.126
and 4.128.

4.4 Applications

To conclude the chapter, we give some possible applications of the extension of stochastic
orders to an imprecise framework. We start with two possible applications of imprecise
stochastic dominance: the comparison of Lorenz Curves and that of cancer survival
rates. Lorenz Curves are a well-known economic tool that measure how the wealth of
a population is distributed. Since Lorenz Curves can be seen as distribution functions,
we can compare them by means of stochastic dominance. Furthermore, in some cases
the economical analysis is made for geographical regions that comprise several countries,
like for example Nordic countries, Southern Europe, American, . . . Then, we can use
the imprecise stochastic dominance to compare the sets of Lorenz Curves associated
with these groups of countries. On the other hand, some kind of cancer sites can also
by grouped into Digestive, Respiratory, Reproductive or Other. Then, it is possible to
compare the survival rates of the group of cancer by comparing their associated set of
mortality rates, that can be expressed as distribution functions. Then, also the imprecise
stochastic dominance could be applied.

Afterwards, we focus on a Multi-Criteria Decision Making problem, where it is
possible to find imprecision in the utilities or in the beliefs. This allows us to illustrate
how both the imprecise stochastic dominance and statistical preference can be used, as
well as the strong and weak dominance introduced in Section 4.2.2.

4.4.1 Comparison of Lorenz curves

As we mentioned in Section 2.1.1, the notion of stochastic dominance has been applied
in many different contexts. One of the most interesting is in the field of social welfare
[3, 117, 190], for comparing Lorenz curves. They are a graphical representation of the
cumulative distribution function of the wealth: the elements of the population are ordered
according to it, and the curve shows, for the bottom x% elements, what percentage y% of
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Country-year 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1
Australia-1994 5.9 12.01 17.2 23.57 41.32
Canada-2000 7.2 12.73 17.18 22.95 39.94
China-2005 5.73 9.8 14.66 22 47.81
Finland-2000 9.62 14.07 17.47 22.14 36.7

FYR Macedonia-2000 9.02 13.45 17.49 22.61 37.43
Greece-2000 6.74 11.89 16.84 23.04 41.49
India-2005 8.08 11.27 14.94 20.37 45.34
Japan-1993 10.58 14.21 17.58 21.98 35.65

Maldives-2004 6.51 10.88 15.71 22.66 44.24
Norway-2000 9.59 13.96 17.24 21.98 37.23
Sweden-2000 9.12 13.98 17.57 22.7 36.63
USA-2000 5.44 10.68 15.66 22.4 45.82

Table 4.2: Quintiles of the Lorenz Curves associated with different countries.

the total wealth they have. Hence, the Lorenz curve can be used as a measure of equality:
the closest the curve is to the straight line, the more equal the associated society is.

If we have the Lorenz curves of two different countries, we can compare them by
means of stochastic dominance: if one of them is dominated by the other, the closest
to the straight line will be associated with a more equal society, and will therefore be
considered preferable. In this section, we are going to use our extensions of stochastic
dominance to compare sets of Lorenz curves associated with countries in different areas
of the world. We shall consider the Lorenz curves associated with the quintiles of the
empirical distribution functions. Table 4.2 provides the wealth in each of the quintiles
(Source data: World Bank database. http://timetric.com/dataset/worldbank):

To make the comparison by means of the extensions of stochastic dominance clearer,
we are going to consider the cumulative distribution from the richest to the poorest group:
in this way, we will always obtain a curve which is above the straight line, and it will
comply with our idea of considering preferable the smallest distribution function. If we
apply this to the data in Table 4.2, we obtain the data of Table 4.3.

We are going to group these countries by continents/regions:

• Group 1: China, Japan, India.

• Group 2: Finland, Norway, Sweden.

• Group 3: Canada, USA.

• Group 4: FYR Macedonia, Greece.
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Country-year F(0.2) F(0.4) F(0.6) F(0.8) F(1)
Australia-1994 41.32 64.89 82.09 94.1 100
Canada-2000 39.94 62.89 80.07 92.8 100
China-2005 47.81 69.81 84.47 94.27 100
Finland-2000 36.7 58.84 76.31 90.38 100

FYR Macedonia-2000 37.43 60.04 77.53 90.98 100
Greece-2000 41.49 64.53 81.37 93.26 100
India-2005 45.34 65.71 80.65 91.92 100
Japan-1993 35.65 57.63 75.21 89.42 100

Maldives-2004 44.24 66.9 82.61 93.49 100
Norway-2000 37.23 59.21 76.45 90.41 100
Sweden-2000 36.63 59.33 76.9 90.88 100
USA-2000 45.82 68.22 83.88 94.56 100

Table 4.3: Cumulative distribution functions associated with the Lorenz Curves of the
countries.

Group 1 Group 2 Group 3 Group 4 Group 5
Group 1 ≡FSD2,5 �FSD2 �FSD2 �FSD2 �FSD2

Group 2 �FSD5 ≡FSD3,6 �FSD1 �FSD1 �FSD1

Group 3 ≡FSD4 ≡FSD2,5 �FSD2 �FSD2

Group 4 �FSD5 �FSD5 ≡FSD3,6 �FSD3,6

Group 5 �FSD5 �FSD5 ≡FSD3,6

Table 4.4: Result of the comparison of the regions by means of the imprecise stochastic
dominance.

• Group 5: Australia, Maldives.

The relationships between these groups are summarised in Table 4.4.

This means for instance that the set of distribution functions in the first group
strictly dominates the second group according to definition (FSD2), while the second
group strictly dominates the first group according to definition (FSD5). This is because
the best country in the first group (Japan) stochastically dominates all the countries
in the second group, but the worst (China) is stochastically dominated by all countries
in the second group. This, together with Proposition 4.3, implies that the first group
strictly dominates the second according to (FSD3), is strictly dominated by the second
according to (FSD6), that they are indifferent according to (FSD4) and incomparable
according to (FSD1).

Similar considerations hold for the other pairwise comparisons. For instance, group
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4 strictly dominates group 5 according to (FSD3), (FSD6), but it does not dominate
it according to (FSD2), (FSD5). This also shows that conditions (FSD2) and (FSD3)
are not equivalent (and similarly for (FSD5) and (FSD6)).

The cells where we have left a blank space mean that no dominance relationship
is satisfied: for instance, group 3 does not dominate group 2 according to any of the
definitions.

Since all the groups have more than one element, they will not satisfy (FSD1)
when comparing them to themselves. It follows from Remark 4.31 that they are always
indifferent to themselves according to (FSD3), (FSD4) and (FSD6); they are indifferent
to themselves according to (FSD2) when they have a best-case-scenario (as it is the case
for groups 1 and 3), and indifferent according to (FSD5) when they have a worst-case
scenario (as it is the case again for groups 1 and 3), and incomparable according to these
definitions in the other cases.

Note that we can also use the above data to illustrate some of the results in this
paper: for instance, we saw in Remark 4.9 that condition (FSD2) is transitive, and in
the table above we see that group 1 is preferred to group 3 according to (FSD2) and
group 3 is preferred to group 4 according to (FSD2): this allows us to infer immediately
that group 1 is preferred to group 4 according to this condition. The comparison of the
first two groups is an instance of Proposition 4.32, because the p-box induced by the first
group is strictly more imprecise (i.e., it has a smaller lower cumulative distribution and
a greater upper cumulative distribution function) than that of the second group.

Remark 4.132 In economy, the Gini Index is a well-known inequality measure that
express how the incomes of a population are shared. It takes values between 0 and 1,
where a Gini Index of 0 means perfect equality for the incomes of the people, while a
Gini Indez of 1 express a total inequality in the incomes. Thus, the greater the Gini
Index is, the more inequality the incomes of a population are.

The Gini Index is quite related to Lorenz curves: given a Lorenz Curve F , that
express the distribution function of the wealth of a population (a country, a region,. . . ),
its associated Gini index is defined by:

G = 2
∫ 100

0

(x− F (x))dx.

Thus, the closer the Lorenz curve is to the straight y = x, the smaller the Gini index is.

In the imprecise framework, if we are working with a p-box that represents the Lorenz
curve, we can compute the lower and the upper Gini Indexes, that are a lower and an
upper bound of the Gini Index, simply by considering the Gini indexes of the upper and
the lower bounds of the p-box. Then, for any p-box (F , F ) representing Lorenz curve F
we obtain a Gini index given in an interval form: [G,G], where G is the Gini index
associated with F and G is the Gini index associated with F . Then, in order to compare
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the Gini intervals associated with two imprecise Lorenz curves, it is possible to consider
the usual orderings for real intervals (see for instance [69, 78]).�

4.4.2 Comparison of cancer survival rates

According to [28], long-term cancer survival rates have substantially improved in the past
decades. However, there are still some kinds of cancer whose survival rates could clearly
be improved. Here, we use the survival rates of different cancer sites given in [28]. These
can be grouped in Digestive, Respiratory, Reproductive and Other, and we shall compare
the survival rates of these types applying imprecise stochastic dominance.

Table 4.5 shows the survival rates of different cancer sites (see [28]).

Note that it is possible to transform the survival rates of Table 4.5 into cumulative
distribution functions. In this case, we assume the distribution functions to be defined
in the interval [0,100], and we impose the condition F (100) = 1, that means that the
survival rate after 100 years of the cancer diagnostic is zero. The results are showed in
Table 4.6.

These cancer sites can be grouped as follows:

Digestives Colon (C), Rectum (R), Oral cavity and pharynx (OCP), Stomach (S),
Oesophagus (O), Liver and intrahepatic bile duct (LIBD), Pancreas (P).

Respiratory Larynx (L), Lung and bronchus (LB).

Reproductive Prostate (Pr), Testis (T), Breast (B), Cervix uteri (CU), Corpus uteri
and uterus (CUU), Ovary (Ov).

Other Melanomas (M), Urinary bladder (UB), Kidney and renal pelvis (KRP), Brain
and other nervous system (BNS), Thyroid (Th), Hodgkin’s disease (HD), Non-
Hodgkin lymphomas (NHL), Leukaemias (L).

Let us compare these kinds of cancer by means of the imprecise stochastic dominance.
Note that in this case, given two distribution functions F1 and F2 that represent the
mortality rates of two cancer sites, F1 �FSD F2 means that the cancer F1 is less deadly
than the cancer F2, or equivalently, that the cancer F1 has a greater survival rate than
the cancer F2.

First of all, note that Pancreas (P) is the worst cancer with respect to stochastic
dominance, since F < FP for any other distribution function F . This implies that Diges-
tive is �FSD5 dominated by the other three groups, and then, from a pessimistic point of
view, digestive cancers are the worst. Furthermore, Prostate and Thyroid cancers are less
deadly than any of the digestive cancers, and then both Reproductive and Other groups
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Relative survival rate, %
1 year 4 years 7 years 10 years

Cancer site
Colon 80.7 65.6 60.5 58.2
Rectum 86.3 68.2 61.2 57.9
Oral cavity and pharynx 82.9 63.0 56.1 50.2
Stomach 49.0 27.0 22.9 20.8
Oesophagus 43.4 17.9 13.8 11.8
Liver and intrahepatic bile duct 34.5 15.2 11.0 9.2
Pancreas 23.0 6.2 4.5 3.8
Larynx 85.9 66.3 57.0 49.6
Lung and bronchus 41.2 17.5 13.0 10.5
Prostate* 99.6 98.6 97.9 97.0
Testis* 97.8 95.7 95.4 95.0
Breast** 97.5 90.4 85.8 82.6
Cervix uteri** 88.0 72.3 68.3 66.1
Corpus uteri and uterus** 92.4 83.9 81.5 80.3
Ovary** 74.9 48.5 38.8 35.0
Melanomas 97.3 92.2 90.3 89.5
Urinary bladder 90.1 80.9 76.4 72.7
Kidney and renal pelvis 80.8 69.3 63.8 59.4
Brain and other nervous system 56.4 35.1 30.6 27.9
Thyroid 97.6 96.9 96.3 95.9
Hodgkin’s disease 92.4 85.8 82.2 79.6
Non-Hodgkin lymphomas 77.2 65.1 59.0 54.3
Leukaemias 70.2 55.0 48.3 43.8

Table 4.5: Estimation of relative survival rates by cancer site. The rates are derived from
SEER 1973-98 database, all ethnic groups, both sexes (except (*), only for male, and
(**) for female). [191].

�FSD2 dominates Digestive. However, Digestive and Respiratory are incomparable with
respect to (FSD2) and (FSD3), and they are equivalent with respect to (FSD4), since
FP > FLB > FC. Also Digestive is (FSD4) equivalent to Reproductive and Other groups,
since FP > FOv > FC and FP > FBNS > FC.

Since Lung and Brounch cancer has a greater mortality than any Reproductive
cancer, Respiratory is �FSD5 dominated by Reproductive group. Furthermore, they are
not comparable with respect to (FSD2) and indifferent with respect to (FSD4) since
FL < FOv < FLL.

Finally, since Brain and other nervous system cancer is stochastically dominated
by any Reproductive cancer, Reproductive �FSD5 dominates Other group, and they are



4.4. Applications 249

Cumulative distribution functions
F (1) F (4) F (7) F (10)

Cancer site
Colon 0.193 0.344 0.395 0.418
Rectum 0.137 0.318 0.388 0.421
Oral cavity and pharynx 0.171 0.370 0.439 0.498
Stomach 0.510 0.730 0.771 0.792
Oesophagus 0.566 0.821 0.862 0.882
Liver and intrahepatic bile duct 0.655 0.846 0.890 0.908
Pancreas 0.770 0.938 0.955 0.962
Larynx 0.141 0.337 0.430 0.504
Lung and bronchus 0.588 0.825 0.870 0.895
Prostate 0.004 0.014 0.021 0.030
Testis 0.022 0.043 0.046 0.050
Breast 0.025 0.096 0.142 0.174
Cervix uteri 0.120 0.277 0.317 0.339
Corpus uteri and uterus 0.076 0.161 0.185 0.197
Ovary 0.251 0.515 0.612 0.650
Melanomas 0.027 0.078 0.097 0.105
Urinary bladder 0.099 0.191 0.236 0.273
Kidney and renal pelvis 0.192 0.307 0.362 0.406
Brain and other nervous system 0.436 0.649 0.694 0.721
Thyroid 0.024 0.031 0.037 0.041
Hodgkin’s disease 0.076 0.142 0.178 0.204
Non-Hodgkin lymphomas 0.228 0.349 0.410 0.457
Leukaemias 0.298 0.450 0.517 0.562

Table 4.6: Estimation of relative mortality rates by cancer site.

equivalent with respect to (FSD4) since FM < FCU < FBNS.

The results are depicted in Table 4.7.

Thus, according to our results, Digestive cancer seems to be the group with a greater
mortality rate, while Reproductive cancer seems to be the least deadly.

4.4.3 Multiattribute decision making

In this section, we shall illustrate the extension of statistical preference to a context
of imprecision by means of an application to decision making. We shall consider two
different scenarios: on the one hand, we shall compare two alternatives in a context of
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Digestive Respiratory Reproductive Other
Digestive ≡FSD5 ≡FSD4 ≡FSD4 ≡FSD4

Respiratory �FSD5 ≡FSD2,5 ≡FSD4

Reproductive �FSD2,5 �FSD5 ≡FSD5 �FSD5

Other �FSD2,5 �FSD2 ≡FSD4 ≡FSD2,5

Table 4.7: Result of the comparison of the different groups of cancer by means of the
imprecise stochastic dominance.

imprecise information about their utilities or probabilities, by means of the results in
Sections 4.2.1 and 4.2.2; on the other hand, we shall consider the comparison of two
sets of alternatives, by means of the techniques established in Section 4.1. Our running
example throughout this section is based on [118, Section 4].

A decision problem with uncertain beliefs

Consider a decision problem where we must choose between n alternatives a1, . . . , an,
whose rewards depend on the values of the states of nature, θ1, . . . , θm, which hold with
certain probabilities P (θ1), . . . , P (θm).

Let us start by assuming that there is uncertainty about these probabilities, that
we model by means of a set of probability measures P. Then, we shall compare any two
alternatives by means of the concepts of weak and strong P-preference we have considered
in Section 4.2.2.

Example 4.133 A company must choose where to invest its money. The alternatives
are: a1-a computer company; a2-a car company; a3-a fast food company. The rewards
associated with the investment depend on an attribute c1: “economic evolution”, which
may take the values θ1-“very good”, θ2-“good”, θ3-“normal” or θ4-“bad”. The probabilities
of each of these states are expressed by means of an interval. The rewards associated
with any combination (alternative, state) are expressed in a linguistic scale, with values
S = {s0, s1, s2, s3, s4, s5, s6} (very poor, poor, slightly poor, normal, slightly good, good,
very good). The available information is summarised in the following table:

θ1 θ2 θ3 θ4

[0.1, 0.4] [0.2, 0.7] [0.3, 0.4] [0.1, 0.4]
a1 s4 s3 s3 s2

a2 s5 s4 s4 s2

a3 s2 s3 s5 s4
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Hence, the set P of probability measures for our beliefs is given by

P = {(p1, p2, p3, p4) : p1 + p2 + p3 + p4 = 1,
p1 ∈ [0.1, 0.4], p2 ∈ [0.2, 0.7], p3 ∈ [0.3, 0.4], p4 ∈ [0.1, 0.4]}.

Since the rewards are expressed in a qualitative scale, we are going to compare the different
alternatives by means of statistical preference. We obtain that:

Q(a1, a2) = 1
2p4 ∈ [0.05, 0.2].

Q(a1, a3) = p1 + 1
2p2 ∈ [0.2, 0.5].

Q(a2, a3) = p1 + p2 ∈ [0.3, 0.6].

We deduce that, using statistical preference as our basic binary relation:

• a2 �Ps a1 and a2 �Pw a1.

• a3 �Ps a1 and a3 ≡Pw a1.

• a2 ≡Pw a3 and they are incomparable with respect to strong P-preference.

Consequently, with respect to the strong preference, the car company is preferred to the
computer company, while the car and the fast food company are incomparable. With
respect to weak preference, the car company is also preferred to the computer company,
while the fast food company is indifferent to the car and the computer companies. �

A decision problem with uncertain rewards

Assume next that we have precise information about the probabilities of the different
states of nature but that we have imprecise information about the utilities associated
with the different rewards. Let us model this case by means of a random set, as we
discussed in Section 4.2.1.

Example 4.133 (Cont) Assume that the probability of the different states of nature is
given by:

P (θ1) = 0.2 P (θ2) = 0.25 P (θ3) = 0.3 P (θ4) = 0.25,

but that we cannot determine precisely the consequences associated with each combination
(alternative, state). We model the available information by means of a set of possible
consequences, that we summarise in the following table:

θ1 θ2 θ3 θ4

0.2 0.25 0.3 0.25
a1 [s4, s5] {s3} [s2, s3] {s2}
a2 {s5} [s3, s4] [s3, s5] [s2, s4]
a3 {s2} [s3] [s3, s5] [s3, s4]
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Since again we have qualitative rewards, we shall use statistical preference to compare
the different alternatives. Taking into account that the utility space is finite, we deduce
from Proposition 4.78 that the comparison of the random sets associated with each of the
alternatives reduces to the comparison of their maxima and minima measurable selections.
Moreover, since the utility space is finite, �SP2⇔�SP3 and �SP5⇔�SP6 .

Let us compare alternatives a1, a2:

Q(min a1,max a2) = 0.
Q(min a1,min a2) = 0.25.
Q(max a1,max a2) = 0.1.
Q(max a1,min a2) = 0.5.

Using Proposition 4.78, we conclude that a2 �SPi a1 for i = 1, 2, 3, 5, 6 and a1 ≡SP4 a2.

With respect to alternatives a1 and a3, we obtain that:

Q(min a1,max a3) = 0.325
Q(min a1,min a3) = 0.325.
Q(max a1,max a3) = 0.325.
Q(max a1,min a3) = 0.475.

Using Proposition 4.78, we conclude that a3 �SPi a1 for i = 4 and as a consequence also
for i = 1, 2, 3, 5, 6.

Finally, if we compare alternatives a2 and a3, we obtain that:

Q(min a2,max a3) = 0.325
Q(min a2,min a3) = 0.475.
Q(max a2,max a3) = 0.725.
Q(max a2,min a3) = 1.

Using Proposition 4.78, we conclude that a2 �SPi a3 for i = 2, 3, a3 �SPi a2 for i = 5, 6,
a2 ≡SP4 a3 and they are incomparable with respect to �SP1 . Hence, in this case the choice
between a2 and a3 would depend on our attitude towards risk, which would determine if
we focus on the best or the worst-case scenarios. Consequently, both the car and the fast
food companies are preferred to the computer one. However, the preference between the
car and fast food companies depends on the chosen criteria. �

A decision problem between sets of alternatives

Assume now that we have precise beliefs and utilities but the choice must be made
between sets of alternatives instead of pairs. In that case, we shall apply the conditions
and results from Section 4.1.
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Example 4.133 (Cont) Assume now that we may invest our money in another com-
pany a4 in the telecommunications area, and that the choice must be made between two
portfolios: one –that we shall denote X–made by alternatives a1, a2, and another –denoted
by Y–made by a3, a4. Assume that the rewards associated with each alternative are given
by the following table:

θ1 θ2 θ3 θ4

0.2 0.25 0.3 0.25
a1 75 60 55 50
a2 80 65 55 40
a3 60 55 50 55
a4 80 55 40 65

where the utilities are now expressed in a [0, 100] scale.

If we compare these alternatives by means of stochastic dominance, we obtain that
a1 �FSD a3, a2 �FSD a4 and any other pair (ai, aj) with i ∈ {1, 2}, j ∈ {3, 4} are
incomparable with respect to stochastic dominance. Hence, X �FSDi Y for i = 3, 4, 6 and
they are incomparable with respect to �FSDi for i = 1, 2, 5.

Note that this example is an instance where �FSD2 is not equivalent to �FSD3 and
�FSD5 is not equivalent to �FSD6 , because there is neither a maximum nor a minimum
in the sets of distribution functions associated with X ,Y.

On the other hand, if we compare any two alternatives by means of statistical pref-
erence, we obtain the following profile of preferences:

QX ,Y :=
(

0.75 0.55
0.75 0.65

)
.

Using Remark 4.73, we obtain that X �SP1 Y, and as a consequence X �SPi Y for
i = 2, . . . , 6 and also X �SPmean Y. Hence, from the point of view of statistical preference
the first portfolio should be preferred to the second. �

4.5 Conclusions

In this chapter we have considered the comparison of alternatives under both uncertainty
and imprecision. As in Chapter 3, alternatives defined under uncertainty have been
modelled by means of random variables, while the imprecision about the random variables
has been modelled with sets of random variables, or in a more general situation, imprecise
probability models.

We have extended binary relations to the comparison of sets of random variables
instead of pairs of them. For this aim, we considered six possible generalisations. We
have seen that the interpretation of each extension is related to the extensions of expected
utility within imprecise probabilities.



254 Chapter 4. Comparison of alternatives under uncertainty and imprecision

We have mainly focused on two stochastic orders in this report: stochastic domi-
nance and statistical preference. When we consider the binary relation to be first degree
stochastic dominance, its extensions are related to the comparison of the p-boxes as-
sociated with the sets of random variables to compare. Also, according to the usual
characterisation of stochastic dominance in terms of the comparison of the expectation
of the increasing transformations of the random variables, we can also relate imprecise
stochastic dominance to the comparison of the upper or lower expectations of the in-
creasing transformation of the sets of random variables. We have also seen that our
approach to extend stochastic dominance to the comparison of sets of random variables
includes Denoeux approach ([61]) as a particular case, and we have also applied stochastic
dominance to the comparison of possibility measures.

The extension of statistical preference has been connected to the comparison of
the lower and upper medians of some set of random variables. We have seen that,
when the sets of random variables to compare are finite, their comparison can be made
by means of the pointwise comparison of the random variables by means of statistical
preference, aggregating them with an aggregation function, and we have showed that the
six extensions of statistical preference can be expressed in terms of aggregation functions.

We have also investigated two situations which can be considered as particular
cases of the comparison of sets of random variables. On the one hand, we considered two
random variables with imprecision on the utilities. That is, imprecise knowledge about
the value of X(ω) and Y (ω). To model this imprecision, we have considered random
sets ΓX and ΓY, with the interpretation that the real value of X(ω) (respectively, Y (ω))
belongs to ΓX(ω) (respectively ΓY(ω)). Then, we know that the random variables X,Y
to be compared belong to the set of measurable selections of the random sets. Thus, the
comparison of the random variables with imprecise utilities is made by the comparison
of the random sets, which in fact can be made by means of the comparison of their
associated sets of measurable selections.

On the other hand, we have also considered two random variables defined in a
probability space whose probability is imprecisely described. We modelled this lack of
information by means of a credal set. Then the random variables depend on the exact
probability of the initial space. To deal with this imprecision we have introduced two
new definitions: strong and weak preference.

We have seen that some binary relations, such as statistical preference, depend on
the joint distribution of the random variables. In this framework Sklar’s Theorem is
a powerful tool that allows to build the joint distribution function from the marginals.
However, there could be imprecision either in the marginal distributions, for example by
considering p-boxes instead of distribution functions, or in the copula that links these
marginals. For this reason we have developed a mathematical model that allows us to
deal with this problem. In the first step, we showed that the infimum and supremum of
sets of bivariate distribution functions are not bivariate distribution functions in general,
because it may not satisfy the rectangle inequality. We have studied this problem by
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means of imprecise probabilities, extending the notion of p-box to the bivariate case.
Then, the infimum and supremum of bivariate distribution functions determine a coherent
lower probability that satisfies some imprecise version of the rectangle inequalities.

On the other hand we have considered the case where the lack of information lies in
the copula that links the marginals. For this problem, we have extended copulas to the
imprecise framework, and we have proven an imprecise version of the Sklar’s Theorem.
Finally, we have seen how bivariate p-boxes and this imprecise version of the Sklar’s
Theorem could be applied to one and two-dimensional stochastic orders.

Since in the real life it is common to encounter situations in which the information
is imprecisely described, the results of this chapter have several applications. We have
showed how imprecise stochastic dominance can be applied in the comparison of Lorenz
Curves and cancer survival rates, and illustrated the usefulness of imprecise statistical
preference for multicriteria decision making problems under uncertainty.
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5 Comparison of alternatives under im-
precision

Chapter 3 was devoted to the comparison of alternatives in a decision problem under
a context of uncertainty, where these alternatives were modelled by means of random
variables. In Chapter 4 we added imprecision to the original problem, and we studied
the comparison of sets of random variables. In this chapter we shall assume that the
alternatives are defined under imprecision but without uncertainty. In this case we need
not use probability theory, as the outcomes of the different alternative will be constant.
However, the imprecision makes crisp sets not to an adequate model of the available
information. Because of this, we shall use a more flexible theory than the one of crisp
sets: that of fuzzy sets or any of its extensions, such as the theory of IF-sets or IVF-sets.

While for the comparison of random variables or sets of random variables we use
stochastic orders, and some tools of the imprecise probability theory, for the comparison
of IF-sets or IVF-sets we shall use some measures of comparison of these kinds of sets.

In the framework of fuzzy set theory, we can find in the literature several measures
of comparison between fuzzy sets. The more usual measures of comparison are dis-
similarities ([119]), dissimilitudes ([44]) and divergences ([159]), in addition to classical
distances. Other authors, like Bouchon-Meunier ([27]) tried to define a general measure
of comparison between fuzzy sets, that include the cited measures as particular cases.
The last attempt was made by Couso et al. ([45]) where some usual axioms required by
the measures of comparison of fuzzy sets are collected and analyzed.

Montes ([159]) made a complete study of divergences as comparison measures of
fuzzy sets. She introduced a particular kind of divergences, the so-called local divergences,
which have been proved to be very useful.

However, in the framework of IF-sets, in the literature we can only find distances
for IF-sets and a lot of examples of IF-dissimilarities (see for example [36, 37, 85, 89,
92, 111, 113, 114, 138, 193, 212]), but there is not a thorough mathematical theory of
comparison of IF-sets.

257
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For this reason, the first part of this chapter is devoted to the generalization of the
comparison measures from fuzzy sets to IF-sets. Note that even though in this part we
shall deal with IF-sets, our comments in Section 2.3 guarantee that all our results remain
valid for IVF-sets.

Afterwards, we shall investigate the relationship between IF-sets and imprecise
probabilities. In this second part, we shall interpret IF-sets as IVF-sets, because this
allows for a clearer connection to imprecise probability. Thus, we shall assume that the
IVF-set is defined on a probability space, and that it may be thus interpreted as a random
set. Then, we shall investigate its main properties.

The results we present in this chapter have several applications. On the one hand,
the measures of comparison of IF-sets have been used in several fields, such as pattern
recognition ([92, 93, 94, 113, 114]) or decision making ([194, 211]), among others. On
the other hand, the connection between IVF-sets and imprecise probabilities will be very
useful when producing a graded version of stochastic dominance, and they shall allow us
to propose a generalization of stochastic dominance that allow the comparison of more
than two sets of cumulative distribution functions.

5.1 Measures of comparison of IF-sets

In this section we are going to introduce some comparison measures for IF-sets. We
begin by recalling the most common comparison measures for IF-sets: distances and
dissimilarities.

Definition 5.1 A map d : IFSs(Ω)× IFSs(Ω) → R is a distance between IF-sets if it
satisfies the following properties:

Positivity: d(A,B) ≥ 0 for every A,B ∈ IFSs(Ω).
Identity of indiscernibles: d(A,B) = 0 if and only if A = B.

Symmetry: d(A,B) = d(B,A) for every A and Bin IFSs(Ω).
Triangle inequality: d(A,C) ≤ d(A,B) + d(B,C) for every A,B,C ∈ IFSs(Ω).

Definition 5.2 A map D : IFSs(Ω) × IFSs(Ω) → R is a dissimilarity for IF-sets
(IF-dissimilarity, for short) if it satisfies the following axioms:

IF-Diss.1: D(A,A) = 0 for every A ∈ IFSs(Ω).
IF-Diss.2: D(A,B) = D(B,A) for every A,B ∈ IFSs(Ω).
IF-Diss.3: For every A,B,C ∈ IFSs(Ω) such that A ⊆ B ⊆ C

it holds that D(A,C) ≥ max(D(A,B), D(B,C)).
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Remark 5.3 Some authors (see for instance [93, 113, 211]) replace axiom IF-Diss.1 by
a stronger condition:

̂IF-Diss.1: D(A,B) = 0⇔ A = B.

Thus, an IF-dissimilarity that satisfies ̂IF-Diss.1 is more restrictive than IF-dissi-
milarities. Here, we shall restrict ourselves to the usual definition of IF-dissimilarity
because it is more common in the literature.�

There are several examples of dissimilarities in the literature, as we shall see in Sec-
tion 5.1.3. However, since its definition is not too restrictive, it is possible to define a
counterintuitive measure of comparison for which axioms IF-Diss.1, IF-Diss.2 and IF-
Diss.3 hold. In order to overcome this problem, we propose a measure of comparison of
IF-sets called IF-divergence that satisfies the following natural properties:

• The divergence between two IF-sets is positive.

• The divergence between an IF-set and itself must be zero.

• The divergence between two IF-sets A and B is the same than the divergence
between B and A. That is, it must be a symmetric function.

• The “more similar” two IF-sets are, the smaller is the divergence between them.

This is formally defined as follows.

Definition 5.4 Let us consider a function DIFS : IFSs(Ω) × IFSs(Ω) → R. It is a
divergence for IF-sets (IF-divergence for short) when it satisfies the following axioms:

IF-Diss.1: DIFS(A,A) = 0 for every A ∈ IFSs(Ω).
IF-Diss.2: DIFS(A,B) = DIFS(B,A) for every A,B ∈ IFSs(Ω).
IF-Div.3: DIFS(A ∩ C,B ∩ C) ≤ DIFS(A,B), for every A,B,C ∈ IFSs(Ω).
IF-Div.4: DIFS(A ∪ C,B ∪ C) ≤ DIFS(A,B), for every A,B,C ∈ IFSs(Ω).

Note that IF-divergences are more restrictive than IF-dissimilarities. In order to prove
this, let us first give a preliminary result.

Lemma 5.5 Let DIFS be an IF-divergence, and let A, B, C and D be IF-sets such that
A ⊆ C ⊆ D ⊆ B. Then DIFS(A,B) ≥ DIFS(C,D).

Proof: Note that, if N and M are two IF-sets such that N ⊆ M , then N ∪M = M
and N ∩M = N . Then, it holds that:

C ⊆ D ⇒ C ∩D = C, D ⊆ B ⇒ B ∩D = D,
A ⊆ C ⇒ C ∪A = C, C ⊆ B ⇒ B ∪ C = B.
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Using axioms IF-Div.3 and IF-Div.4 we obtain that:

DIFS(C,D) =DIFS(C ∩D,B ∩D) ≤ DIFS(C,B)
=DIFS(A ∪ C,B ∪ C) ≤ DIFS(A,B).

We conclude that DIFS(C,D) ≤ DIFS(A,B).

Using this lemma we can prove now that every IF-divergence is also an IF-dissimilarity.

Proposition 5.6 Every IF-divergence is an IF-dissimilarity.

Proof: Let DIFS be an IF-divergence, and let us check that it is also an IF-dissimilarity.
For this, it suffices to prove that it satisfies axiom IF-Diss.3, because first and second
axioms of IF-divergences and IF-dissimilarities coincide. Let A, B and C be three IF-sets
such that A ⊆ B ⊆ C. Then, taking into account that A ⊆ A ⊆ B ⊆ C, and applying the
previous lemma, DIFS(A,C) ≥ DIFS(A,B). On the other hand, since A ⊆ B ⊆ C ⊆ C,
the previous lemma also implies that DIFS(A,C) ≥ DIFS(B,C).

Hence, DIFS satisfies axiom Diss.3 and, consequently, it is a dissimilarity.

We have seen that every IF-divergence is also an IF-dissimilarity. In Example 5.8
we will see that the converse does not hold in general.

In the fuzzy framework Couso et al. ([44]) introduced a measure of comparison
called dissimilitude. It can be generalized to the comparison of IF-sets in the following
way.

Definition 5.7 A map D : IFSs(Ω)×IFSs(Ω)→ R is an IF-dissimilitude if it satisfies
the following properties:

IF-Diss.1: DIFS(A,A) = 0 for every A ∈ IFSs(Ω).
IF-Diss.2: DIFS(A,B) = DIFS(B,A) for every A,B ∈ IFSs(Ω).
IF-Diss.3: If A,B,C ∈ IFSs(Ω) satisfies A ⊆ B ⊆ C, then

DIFS(A,C) ≥ max(DIFS(A,B), DIFS(B,C)).
IF-Div.4: DIFS(A ∪ C,B ∪ C) ≤ DIFS(A,B), for everyA,B,C ∈ IFSs(Ω).

This measure of comparison is stronger than IF-dissimilarities, but less restrictive than
IF-divergences. Moreover, the converse implications do not hold in general. Let us give
an example of an IF-dissimilitude that is not an IF-divergence and an example of an
IF-dissimilarity that is not an IF-dissimilitude.

Example 5.8 First of all, we are going to build a dissimilarity that is not a dissimilitude.

Let us consider the function D : IFSs(Ω)× IFSs(Ω)→ [0, 1] defined on a finite Ω
by:

D(A,B) = |max
ω∈Ω

(max(0, µB(ω)− µA(ω)))−max
ω∈Ω

(max(0, µA(ω)− µB(ω)))|.
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Let us see that D is an IF-dissimilarity:

IF-Diss.1: D(A,A) = 0, since µB(ω)− µA(ω) = 0 for any ω ∈ Ω.

IF-Diss.2: Obviously, D(A,B) = D(B,A).

IF-Diss.3: Let A, B and C be three IF-sets such that A ⊆ B ⊆ C. Then, since
µA(ω) ≤ µB(ω) ≤ µC(ω), it holds that:

D(A,B) = |maxω∈Ω µB(ω)− µA(ω)|,
D(B,C) = |maxω∈Ω µC(ω)− µB(ω)|,
D(A,C) = |maxω∈Ω µC(ω)− µA(ω)|.

Moreover,
µC(ω)− µA(ω) ≥ max(µC(ω)− µB(ω), µB(ω)− µA(ω)),

and therefore:
D(A,C) ≥ max(D(A,B), D(B,C)).

Thus, D satisfies axiom IF-Diss.3 and therefore it is an IF-dissimilarity. Let us show
that D is not a dissimilitude, or equivalently, that there are IF-sets A,B and C such that
D(A ∪ C,B ∪ C) > D(A,B). To see this, let us consider Ω = {ω1, ω2} and define the
IF-sets A and B by:

A = {(ω1, 0.5, 0), (ω2, 0, 0)}, B = {(ω1, 0, 0), (ω2, 0.6, 0)},
C = {(ω1, 0.5, 0), (ω2, 0.2, 0)}.

It holds that:
A ∪ C = {(ω1, 0.5, 0), (ω2, 0.2, 0)}.
B ∪ C = {(ω1, 0.5, 0), (ω2, 0.6, 0)}.

Then:
D(A,B) = |0.5− 0.6| = 0.1 6≥ 0.4 = |0.2− 0.6| = D(A ∪ C,B ∪ C).

Hence, D does not fulfill Div.4, and therefore it is neither an IF-dissimilitude nor an
IF-divergence. �

Example 5.9 Let us give an IF-dissimilitude that is not an IF-divergence. Consider the
function D defined by:

D(A,B) =

{
1 if A = ∅ or B = ∅, but A 6= B.

0 otherwise.

Let us see that this function is a dissimilitude:

IF-Diss.1: D(A,A) = 0 by definition.

IF-Diss.2: D is symmetric by definition.
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IF-Diss.3: Let A, B and C be three IF-sets such that A ⊆ B ⊆ C. Then,

µA(ω) ≤ µB(ω) ≤ µC(ω) and νA(ω) ≥ νB(ω) ≥ νC(ω)

for every ω ∈ Ω.

There are two cases: on the one hand, if D(A,C) = 1, then

D(A,C) = 1 ≥ max(D(A,B), D(B,C)).

On the other hand, A 6= ∅ and C 6= ∅ or A = C. Since A ⊆ B ⊆ C, in the first case B 6= ∅
and in the second one B = A = C. In all cases, D(A,C) = D(A,B) = D(B,C) = 0.

Div.4: Let us show that D(A ∪C,B ∪C) ≤ D(A,B) for every IF-sets A,B and C.
This inequality holds if D(A,B) = 1. Otherwise, if D(A,B) = 0 then A 6= ∅ and B 6= ∅
or A = B. Since A ⊆ A ∪ C and B ⊆ B ∪ C, in the first case we deduce that A ∪ C 6= ∅
and B ∪ C 6= ∅ and we conclude that D(A ∪ C,B ∪ C) = D(A,B) = 0. In the second
case, D(A ∪ C,B ∪ C) = D(A ∪ C,A ∪ C) = 0 = D(A,B).

Thus, D is an IF-dissimilitude, but it is not an IF-divergence since it does not fulfill
axiom Div.3: if we consider the IF-sets A,B and C defined by

A = {(ω0, 0, 1), (ω, µA(ω), νA(ω)) | ω 6= ω0};
B = {(ω, µB(ω), νB(ω)) | ω ∈ Ω};
C = {(ω0, 1, 0), (ω, 0, 1) | ω 6= ω0};

where µB(ω) > 0 for every ω ∈ Ω and µA(ω) = µB(ω) for every ω 6= ω0, for a fixed
element ω0 of Ω; then, A ∩ C = ∅ but B ∩ C 6= ∅, and therefore:

D(A ∩ C,B ∩ C) = 1 > 0 = D(A,B).

Hence, D is an IF-dissimilitude that is not an IF-divergence.

We have already studied the relationships among IF-dissimilarities, IF-divergences and
IF-dissimilitudes, and we have also mentioned some counterexamples related to the dis-
tance. In fact, that there is not a general relationship between the notion of distance for
IF-sets and these three measures of comparison. To show that, we start with an example
of an IF-distance that is not an IF-dissimilarity.

Example 5.10 Let us consider the function D defined by:

D(A,B) =


0 if A = B,
1
2 if A−B 6= ∅ or B −A 6= ∅ and µA∩B(ω) = 0.3 ∀ω ∈ Ω,
1 otherwise,

where the IF-difference is the one of Example 2.56. Let us see that this function is a
distance for IF-sets.
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Positivity: By definition, D(A,B) ≥ 0 for every A,B ∈ IFSs(Ω).

Identity of indiscernibles: By definition, D(A,B) = 0 if and only if A = B.

Symmetry: D is also symmetric by definition.

Triangular inequality: Let us see that D(A,C) ≤ D(A,B) +D(B,C) holds for any
A,B,C ∈ IFSs(Ω). On the one hand, if D(A,C) = 0, the inequality trivially holds.
If D(A,B) = 1

2 , we can assume, without loss of generality, that A − C 6= ∅, and then,
A 6= C. This implies that either A 6= B or B 6= C, and consequently either D(A,B) ≥ 1

2
or D(B,C) ≥ 1

2 . Therefore the inequality holds. Finally, if D(A,C) = 1 and we assume
that the triangle inequality does not hold, then without loss of generality we can assume
that D(A,B) = 0. In that case, A = B, and therefore D(A,C) = D(B,C) = 1, a
contradiction arises. We conclude that the triangle inequality holds.

Thus, D is a distance for IF-sets. However, it is not an IF-dissimilarity, since we
can find IF-sets A,B and C, with A ⊆ B ⊆ C, such that D(A,C) < D(A,B): let us
consider Ω = {ω} and the IF-sets A, B and C defined by:

A = {(ω, 0.2, 0.4)}, B = {(ω, 0.3, 0.2)}, C = {(ω, 0.4, 0)}.

It is obvious that A ⊆ B ⊆ C. Moreover, it holds that:

D(A,C) = 1 and D(B,C) = 0.5.

We conclude that D is not an IF-dissimilarity.�

We have seen that IF-distances are not IF-dissimilarities in general. Thus, they cannot
be, in general, IF-divergences or IF-dissimilitudes, since in that case they would be in
particular IF-dissimilarities. We next show that the converse implications do not hold
either.

Example 5.11 Let us give an example of an IF-divergence that is not a distance between
IF-sets. Consider the function D defined by:

D(A,B) = max
ω∈Ω

(max(0, µA(ω)− µB(ω)))2 + max
ω∈Ω

(max(0, µA(ω)− µB(ω)))2.

IF-Div.1: It is obvious that D(A,A) = 0.

IF-Div.2: By definition, D is also symmetric.

IF-Div.3: Let us prove that D(A,B) ≥ D(A∩C,B ∩C) for any A,B,C. Using the
first part of Lemma A.1 in Appendix A, for any ω it holds that:

max(0, µA(ω)− µB(ω)) ≥ max(0,min(µA(ω), µC(ω))−min(µB(ω), µC(ω))).
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It trivially follows that D(A,B) ≥ D(A ∩ C,B ∩ C).

IF-Div.4: Similarly, let us prove that D(A,B) ≥ D(A ∪ C,B ∪ C) for any A,B,C.
Taking into account again the first part of Example A.1 in Lemma A, any ω satisfies the
following:

max(0, µA(ω)− µB(ω)) ≥ max(0,max(µA(ω), µC(ω))−max(µB(ω), µC(ω))).

This implies that D(A,B) ≥ D(A ∪ C,B ∪ C).

We conclude that D is an IF-divergence. However, it does not satisfy the triangular
inequality, because for the IF-sets A, B and C of Ω = {ω}, defined by:

A = {(ω, 0, 1)}, B = {(ω, 0.4, 0)} and C = {(ω, 0.5, 0)},

it holds that:
D(A,C) = 0.25 6≤ 0.16 + 0.01 = D(A,B) +D(B,C).

Thus, D does not satisfy the triangular inequality.�

Since the measure defined in this example is an IF-divergence, it is also an IF-dissimilarity
and an IF-dissimilitude. Then, we can see that none of these measures satisfy, in general,
the properties that define a distance.

Let us show next that an IF-dissimilitude and a distance is not necessarily an IF-
divergence.

Example 5.12 Let us consider the map

D : IFSs(Ω)× IFSs(Ω)→ R

defined by:

D(A,B) =


0 if A = B.

1 if A 6= B and either µA(ω) = 0 ∀ω ∈ Ω or µB(ω) = 0 ∀ω ∈ Ω.
0.5 otherwise.

First of all, let us prove that D is a distance for IF-sets.

Positivity: By definition, D(A,B) ≥ 0 for every A,B ∈ IFSs(Ω).

Identity of indiscernibles: By definition, D(A,B) = 0 if and only if A = B.

Triangular inequality: Let us consider A,B,C ∈ IFSs(Ω), and let us prove that
D(A,C) ≤ D(A,B) + D(B,C). If D(A,C) = 0, obviously the inequality holds. If
D(A,C) = 0.5, then A 6= C, and therefore either A 6= B, and consequently D(A,B) ≥ 0.5
or B 6= C, and consequently D(B,C) ≥ 0.5. Then, D(A,B)+D(B,C) ≥ 0.5 = D(A,C).
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Otherwise, D(A,C) = 1. In such a case, A 6= C and we can assume that µA(ω) = 0 for
every ω ∈ Ω. Then, if A 6= B, D(A,B) = 1, and if A = B, then D(B,C) = D(A,C) = 1.
We conclude thus that the triangular inequality holds.

Let us now prove that D is also an IF-dissimilitude:

IF-Diss.1: We have already seen that D(A,A) = 0.

IF-Diss.2: Obviously, D is symmetric.

IF-Diss.3: Consider A,B,C ∈ IFSs(Ω) such that A ⊆ B ⊆ C, and let us prove
that D(A,C) ≥ max(D(A,B), D(B,C)). Note that if D(A,C) = 0, then A = B = C,
and therefore the inequality holds. Moreover, if D(A,C) = 1 then the inequality also
holds because max(D(A,B), D(B,C)) ≤ 1. Finally, assume that D(A,C) = 0.5. In such
a case A 6= C, and therefore either A 6= B or B 6= C, and there is ω ∈ Ω such that
µC(ω) ≥ µA(ω) > 0. Then, as µC(ω) ≥ µB(ω) ≥ µA(ω), D(A,B), D(B,C) ≤ 0.5. Thus,
axiom IF-Diss.3 holds.

IF-Div.4: Let us now consider three IF-sets A, B and C, and let us prove that
D(A ∪ C,B ∪ C) ≤ D(A,B). First of all, if D(A,B) = 1, then the previous inequality
trivially holds, since D is bounded by 1. Moreover, if D(A,B) = 0 then A = B, and
consequently applying IF-Diss.1 D(A ∪ C,B ∪ C) = D(A ∪ C,A ∪ C) = 0. Finally,
assume that D(A,B) = 0.5. In such a case, A 6= B and there exist ω1, ω2 ∈ Ω such that
µA(ω1) > 0 and µB(ω2) > 0. Let us note that:

µA∪C(ω) = max(µA(ω), µC(ω)) ≥ µA(ω) and
µB∪C(ω) = max(µB(ω), µC(ω)) ≥ µB(ω).

Consequently, µA∪C(ω1) ≥ µA(ω1) > 0 and µB∪C(ω2) ≥ µB(ω2) > 0. Then it holds that
D(A ∪ C,B ∪ C) ≤ 0.5 = D(A,B).

Thus, D is a distance and an IF-dissimilitude. Let us show that it is not an IF-
divergence. Consider Ω = {ω1, ω2} and the IF-sets A, B and C defined by:

A = {(ω1, 1, 0), (ω2, 0, 0)}.
B = {(ω1, 1, 0), (ω2, 1, 0)}.
C = {(ω1, 0, 0), (ω2, 1, 0)}.

Then:
A ∩ C = {(ω1, 0, 0), (ω2, 0, 0)}.
B ∩ C = {(ω1, 0, 0), (ω2, 1, 0)}.

Then, D(A,B) = 0.5 and D(A ∩ C,B ∩ C) = 1, and therefore

D(A ∩ C,B ∩ C) > D(A,B),

a contradiction with IF-Div.3. Thus D cannot be an IF-divergence.�
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To conclude this part, it only remains to show that if D is an IF-dissimilarity and a
distance, it is not necessarily an IF-dissimilitude.

Example 5.13 Consider the map

D : IFSs(Ω)× IFSs(Ω)→ R

defined by:

D(A,B) =


0 if A = B.

1 if A 6= B and either A = Ω or B = Ω.
0.5 otherwise.

Let us prove that D is a distance for IF-sets.

Positivity, the identity of indiscernibles and symmetry trivially hold. Let us prove
that the triangular inequality is also satisfied. Let A, B and D be three IF-sets, and let
us see that D(A,C) ≤ D(A,B) +D(B,C).

• If D(A,C) = 0, the inequality trivially holds.

• If D(A,C) = 0.5, then A 6= C, and therefore either A 6= B or B 6= C, and
consequently D(A,B) +D(B,C) ≥ 0.5 = D(A,C).

• Finally, if D(A,C) = 1, we can assume, without loss of generality, that A = Ω.
Then, if B = A, D(B,C) = 1, and therefore D(A,C) = 1 = D(A,B) + D(B,C).
Otherwise, if B 6= A, then D(A,B) = 1, and therefore

D(A,C) = 1 ≤ D(A,B) +D(B,C).

Thus, D is a distance for IF-sets.

Let us now prove that it is also an IF-dissimilarity. On the one hand, prop-
erties IF-Diss.1 and IF-Diss.2 are trivially satisfied. Let us see that IF-Diss.3 also
holds. Consider three IF-sets A,B,Csatisfying A ⊆ B ⊆ C, and let us prove that
D(A,C) ≥ max(D(A,B), D(B,C)).

• If D(A,C) = 1, obviously D(A,C) ≥ max(D(A,B), D(B,C)).

• If D(A,C) = 0.5, then A 6= C and there is ω ∈ Ω such that µA(ω) ≤ µB(ω) ≤
µC(ω) < 1. Then, max(D(A,B), D(B,C)) ≤ 0.5 = D(A,C).

• Finally, if D(A,C) = 0, A = B = C holds, and then D(A,B) = D(B,C) = 0.
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Thus, D is a distance for IF-sets and an IF-dissimilarity. However, it is not an IF-
dissimilitude, for it does not satisfy axiom IF-Div.4: to see this, consider the universe
Ω = {ω1, ω2}, and the IF-sets

A = {(ω1, 1, 0), (ω2, 0, 0)} and B = {(ω1, 0, 0), (ω2, 1, 0)}.

It holds that D(A,B) = 0.5. However, if we consider C = B, then A ∪ C = Ω, and
therefore:

D(A ∪ C,B ∪ C) = D(Ω, B) = 1.

Then, D(A ∪ C,B ∪ C) > D(A,B), and therefore axiom IF-Div.4 is not satisfied. This
shows that D is not an IF-divergence. �

Figure 5.1 summarizes the relationships between the different methods for compar-
ing IF-sets.

Figure 5.1: Relationships among IF-divergences, IF-dissimilitudes, IF-dissimilarities and
distances for IF-sets.

5.1.1 Theoretical approach to the comparison of IF-sets

Bouchon-Meunier et al. ([27]) proposed a general measure of comparison for fuzzy sets
that generates some particular measures depending on the conditions imposed to such a
general measure.

Following this ideas, in this section we define a general measure of comparison
between IF-sets that, depending on the imposed properties, generates either distances,
or IF-dissimilarities or IF-divergences.

For this, let us consider a function D : IFSs(Ω)× IFSs(Ω)→ R, and assume that
there is a generator function GD:

GD : IFSs(Ω)× IFSs(Ω)× IFSs(Ω)→ R+ (5.1)
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such that D can be expressed by:

D(A,B) = GD(A ∩B,B −A,A−B),

where − is a difference operator for IF-sets, according to Definition 2.55, that fulfills D3,
D4 and D5.

We shall see that depending on the conditions imposed on GD, we can obtain that
D is either an IF-dissimilarity, an IF-divergence or a distance for IF-sets.

We begin by determining which conditions must be imposed on GD in order to
obtain a distance for IF-sets.

Proposition 5.14 Consider the function D : IFSs(Ω) × IFSs(Ω) → R that can be
expressed as in Equation (5.1) by means of a generator GD : IFSs(Ω) × IFSs(Ω) ×
IFSs(Ω)→ R+. If the function GD satisfies the properties:

S-Dist.1: GD(A,B,C) = 0 if and only if B = C = ∅;
S-Dist.2: GD(A,B,C) = GD(A,C,B) for every A,B,C ∈ IFSs(Ω);
S-Dist.3: For every A,B,C ∈ IFSs(Ω),

GD(A ∩ C,C −A,A− C) ≤ GD(A ∩B,B −A,A−B)
+GD(B ∩ C,C −B,B − C);

then D is a distance for IF-sets.

Proof: Let us prove that D satisfies the axioms of IF-distances.

Positivity: it trivially follows from the positivity of GD. To show the identity of
indiscernibles, let A and B be two IF-sets. Then, by property S-Dist.1:

D(A,B) = GD(A ∩B,B −A,A−B) = 0⇔ B −A = A−B = ∅,

and by properties D1 and D5 this is equivalent to A = B.

Symmetry: Let A and B be two IF-sets. Using S-Dist.2, we have that:

D(A,B) =GD(A ∩B,B −A,A−B)
=GD(A ∩B,A−B,B −A) = D(B,A).

Triangular inequality: Let A, B and C be three IF-sets. By S-Dist.3, it holds that:

D(A,C) =GD(A ∩ C,C −A,A− C)
≤GD(A ∩B,B −A,A−B) +GD(B ∩ C,C −B,B − C)
=D(A,B) +D(B,C). �

Let us now consider IF-dissimilarities. We have proven the following result:
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Proposition 5.15 Let D be a map D : IFSs(Ω)×IFSs(Ω)→ R+ that can be expressed
as in Equation (5.1) by means of the generator GD, where GD : IFSs(Ω)× IFSs(Ω)×
IFSs(Ω)→ R+. Then, D is an IF-dissimilarity if GD satisfies the following properties:

S-Diss.1: GD(A, ∅, ∅) = 0 for every A ∈ IFSs(Ω).
S-Dist.2: GD(A,B,C) = GD(A,C,B) for every A,B,C ∈ IFSs(Ω).
S-Diss.3: GD(A,B, ∅) is increasing in B.
S-Diss.4: GD(A,B, ∅) is decreasing in A.

Proof: Let us prove that D is an IF-dissimilarity.

IF-Diss.1: Let A be an IF-set. By D1 and S-Diss.1 it holds that

D(A,A) = GD(A ∩A,A−A,A−A) = GD(A, ∅, ∅) = 0.

IF-Diss.2: Let A and B be two IF-sets. Then, by S-Dist.2, D is symmetric:

D(A,B) =GD(A ∩B,B −A,A−B)
=GD(A ∩B,A−B,B −A) = D(B,A).

IF-Diss.3: Let A, B and C be three IF-sets such that A ⊆ B ⊆ C, and let us prove
that D(A,C) ≥ max(D(A,B), D(B,C)). First of all, let us compute D(A,C), D(A,B)
and D(B,C).

D(A,C) = GD(A ∩ C,C −A,A− C) = GD(A,C −A, ∅).
D(A,B) = GD(A ∩B,B −A,A−B) = GD(A,B −A, ∅).
D(B,C) = GD(B ∩ C,C −B,B − C) = GD(B,C −B, ∅).

On one hand, let us prove that D(A,C) ≥ D(A,B). By D2, it holds that B−A ⊆ C−A,
and therefore, by S-Diss.3:

D(A,C) = GD(A,C −A, ∅) ≥ GD(A,B −A, ∅) = D(A,B).

Let us prove next that D(A,C) ≥ D(B,C). By D4 it holds that C − B ⊆ C − A, and
therefore:

D(A,C) = GD(A,C −A, ∅)
S−Diss.4
≥ GD(B,C −A, ∅)

S−Diss.3
≥ GD(B,C −B, ∅) = D(B,C).

Thus, we conclude that D is an IF-dissimilarity.

Concerning IF-divergences, we have established the following:

Proposition 5.16 Let D be a map D : IFSs(Ω) × IFSs(Ω) → R generated by GD as
in Equation (5.1), where GD : IFSs(Ω) × IFSs(Ω) × IFSs(Ω) → R+. Then, D is an
IF-divergence if GD satisfies the following properties:



270 Chapter 5. Comparison of IFS and its connection to IP

S-Diss.1: GD(A, ∅, ∅) = 0 for every A,B ∈ IFSs(Ω).
S-Dist.2: GD(A,B,C) = GD(A,C,B) for every A,B,C ∈ IFSs(Ω).
S-Div.3: GD(A,B,C) is increasing in B and C.
S-Div.4: GD(A,B,C) is independent of A.

Note that axiom S-Div.4 is a very strong condition. We require it because IF-divergences
focus on the difference between the IF-sets instead of the intersection.

Proof: Let us prove that D is an IF-divergence.

First and second axioms of IF-divergences and IF-dissimilarities coincide. Further-
more, as we proved in Proposition 5.15, they follow from S-Diss.1 and S-Dist.2.

IF-Div.3: Let A, B and C be three IF-sets. Since the IF-difference operator fulfills
D3, then (A ∩ C) − (B ∩ C) ⊆ A − B and (B ∩ C) − (A ∩ C) ⊆ B − A. Therefore, by
S-Div.3 and S-Div.4:

D(A ∩ C,B ∩ C)
= GD(A ∩B ∩ C, (B ∩ C)− (A ∩ C), (A ∩ C)− (B ∩ C))
= GD(A ∩B, (B ∩ C)− (A ∩ C), (A ∩ C)− (B ∩ C))
≤ GD(A ∩B,B −A,A−B) = D(A,B).

IF-Div.4: Consider the IF-sets A, B and C. As in the previous axiom, applying
property D4 of the IF-difference −, we obtain that (A ∪ C) − (B ∪ C) ⊆ A − B and
(B ∪ C)− (A ∪ C) ⊆ B −A. As a consequence,

D(A ∪ C,B ∪ C)
= GD((A ∪ C) ∩ (B ∪ C), (B ∪ C)− (A ∪ C), (A ∪ C)− (B ∪ C))
S−Div.4= GD(A ∩B, (B ∪ C)− (A ∪ C), (A ∪ C)− (B ∪ C))
S−Div.3
≤ GD(A ∩B,B −A,A−B) = D(A,B).

We conclude that D is an IF-divergence.

In order to find sufficient conditions over GD so as to build an IF-dissimilitude D,
we need D to satisfy axioms IF-Diss.1, IF-Diss.2, IF-Diss.3 and IF-Div.4. As we have
already mentioned, axioms IF-Diss.1 and IF-Diss.2 are implied by conditions:

S-Diss.1: GD(A, ∅, ∅) for every A,B ∈ IFSs(Ω).
S-Dist.2: GD(A,B,C) = GD(A,C,B) for every A,B ∈ IFSs(Ω).

In order to prove condition IF-Div.4, in Proposition 5.16 we required the following:

S-Div.3: GD(A,B,C) is increasing in B and C.
S-Div.4: GD(A,B,C) is independent of A.

Moreover, it is trivial that these conditions imply S-Diss.3 and S-Diss.4, that also
follow from axiom IF-Diss.3. Therefore, the conditions that need to be imposed on GD
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in order to obtain an IF-dissimilitude are the same that we have imposed in order to
obtain an IF-divergence.

Let us give an example of a function GD that generates an IF-dissimilarity but not
an IF-divergence.

Example 5.17 Consider the function GD : IFSs(Ω) × IFSs(Ω) × IFSs(Ω) → R+

defined, for every A,B,C ∈ IFSs(Ω), by:

GD(A,B,C) = |max
ω∈Ω

µB(ω)−max
ω∈Ω

µC(ω)|.

This function generates an IF-dissimilarity because it satisfies properties S-Diss.i, with
i = 1, 3, 4 and S-Dist.2.

S-Diss.1: By definition, GD(A, ∅, ∅) = 0, since µ∅(ω) = 0 for every ω ∈ Ω.

S-Dist.2: GD is symmetric with respect its second and third components:

GD(A,B,C) = |maxω∈Ω µB(ω)−maxω∈Ω µC(ω)|
= |maxω∈Ω µC(ω)−maxω∈Ω µB(ω)| = GD(A,C,B).

S-Diss.3: Let A,B and B′ be three IF-sets such that B ⊆ B′. Then, µB(ω) ≤ µB′(ω)
for every ω ∈ Ω. Then it holds that:

GD(A,B, ∅) = max
ω∈Ω

µB(ω) ≤ max
ω∈Ω

µB′(ω) = GD(A,B′, ∅).

Thus, GD(A,B, ∅) is increasing in B.

S-Diss.4: It is obvious that GD does not depend on its first component, and therefore,
it is in particular decreasing on A.

Hence, GD satisfies the conditions of Proposition 5.15, and therefore the map D
defined by:

D(A,B) = GD(A ∩B,B −A,A−B), for every A,B ∈ IFSs(Ω)

is an IF-dissimilarity. However, in general GD does not satisfy S-Div.4. To see this, it
is enough to consider the IF-difference of Example 2.56. In that case, the function GD

generates the IF-dissimilarity of Example 5.8, which was showed not to satisfy condition
IF-Div.4. Then, D is neither an IF-dissimilitude nor an IF-divergence. This implies
that GD does not fulfill S-Div.4, because otherwise D would be an IF-divergence.�

Let us see next an example of a function GD that generates an IF-divergence that is not
a distance for IF-sets.
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Example 5.18 Consider the function GD : IFSs(Ω) × IFSs(Ω) × IFSs(Ω) → R+

defined by:
GD(A,B,C) =

(
max
ω∈Ω

µB(ω)
)2 +

(
max
ω∈Ω

µC(ω)
)2
,

for every A,B,C ∈ IFSs(Ω). This function generates an IF-divergence, since it trivially
satisfies the conditions in Proposition 5.16. However, it does not generate a distance
for IF-sets. To see it, consider the IF-difference defined in Example 2.56. Then, the
IF-divergence that generates GD with this IF-difference coincides with the one given in
Example 5.11, where we proved that it was not a distance for IF-sets.�

Finally, let us give an example of a function GD that generates a distance for fuzzy
sets that is not an IF-dissimilarity, and therefore it is neither an IF-divergence nor an
IF-dissimilitude.

Example 5.19 Consider the function

GD : IFSs(Ω)× IFSs(Ω)× IFSs(Ω)→ R+

by:

GD(A,B,C) =


0 if B = C = ∅,
0.5 if B 6= ∅ or C 6= ∅ and µA(ω) = 0.3 for all ω ∈ Ω,
1 otherwise.

Let us prove that GD satisfies conditions of Proposition 5.14.

S-Dist.1: By definition, GD(A,B,C) = 0 if and only if B = C = ∅.

S-Dist.2: Obviously, GD(A,B,C) = GD(A,C,B) for every A,B,C ∈ IFSs(Ω).

S-Dist.3: Let us consider A,B,C ∈ IFSs(Ω), and we want to prove that

GD(A ∩C,C −A,A−C) ≤ GD(A ∩B,B −A,A−B) +GD(C ∩B,B −C,C −B).

• If GD(A ∩ C,C −A,A− C) = 0, then the inequality trivially holds.

• Let us now assume that GD(A ∩ C,C − A,A − C) = 0.5. Thus, either A − C 6= ∅
or C − A 6= ∅ and µA∩C(ω) = 0.3 for every ω ∈ Ω. Let us note that, as A 6= C,
either A 6= B or B 6= C. Equivalently, either GD(A ∩ B,B − A,A − B) ≥ 0.5 or
GD(C ∩B,B − C,C −B) ≥ 0.5. Then, in this case the inequality also holds.

• Finally, consider the case where GD(A ∩ C,C − A,A− C) = 1. Then, A− C 6= ∅
or C −A 6= ∅ and µA∩C(ω) 6= 0.3 for some ω ∈ Ω. If A = B, then:

GD(A ∩B,B −A,A−B) = 0 and
GD(C ∩B,B − C,C −B) = GD(C ∩A,A− C,C −A) = 1.
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The same happens when B = C. Otherwise, if A 6= B and B 6= C, then both
GD(C ∩B,B−C,C−B) and GD(A∩B,B−A,A−B) are greater or equal to 0.5,
and its sum equals 1.

Therefore, GD generates a distance for IF-sets. To show that it generates neither an
IF-dissimilarity nor an IF-divergence, it is enough to consider the IF-difference of Ex-
ample 2.56, because in that case the function GD generates the distance of Examples 5.10,
where we showed that such function is neither an IF-dissimilarity nor an IF-divergence.�

We have seen sufficient conditions for GD to generate distances, IF-dissimilarities and
IF-divergences. However, such conditions are not necessary, and we cannot assure that
every distance, IF-dissimilarity or IF-divergence can be generated in this way.

As we have seen, IF-divergences are more restrictive than IF-dissimilarities and IF-
dissimilitudes. Thus, IF-divergences avoid some counterintuitive measures of comparison
of IF-sets, since the stronger the conditions, the more “robust” the measure is. Because
of this, we think it is preferable to work with IF-divergences, and we shall focus on them
in the remainder of this chapter.

5.1.2 Properties of the IF-divergences

We have proposed an axiomatic definition of divergence measures for intuitionistic fuzzy
sets, which are particular cases of dissimilarity and dissimilitude measures. Next, we
study their properties in more detail. We begin by noting that a desirable property for a
measure of the difference between IF-sets is positivity. Although it has not been imposed
in the definition, it can be easily derived from axioms IF-Diss.1 and IF-Div.3:

Lemma 5.20 If D : IFSs(Ω)× IFSs(Ω)→ R satisfies IF-Diss.1 and IF-Div.3, then it
is positive.

Proof: Consider two IF-sets A and B.From IF-Div.3, for every C ∈ IFSs(Ω) it holds
that:

D(A,B) ≥ D(A ∩ C,B ∩ C).

If we take C = ∅, then:

D(A,B) ≥ D(A ∩ ∅, B ∩ ∅) = D(∅, ∅) = 0,

by IF-Diss.1. Thus, D is a positive function.

Now we investigate an interesting property of IF-divergences.

Proposition 5.21 Given an IF-divergence DIFS, it fulfills that:

DIFS(A ∩B,B) = DIFS(A,A ∪B),
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and this value is lower than or equal to DIFS(A,B) and DIFS(A ∩B,A ∪B), that is:

DIFS(A ∩B,B) = DIFS(A,A ∪B) ≤ min{DIFS(A,B), DIFS(A ∩B,A ∪B)}.

However, there is no fixed relationship between DIFS(A ∩B,A ∪B) and DIFS(A,B).

Proof: By the definitions of union and intersection of intuitionistic fuzzy sets, we have
that (A ∪ B) ∩ B = B and (A ∩ B) ∪ A = A. Applying axioms IF-Div.3 and IF-Div.4,
we obtain that

DIFS(A ∩B,B) =DIFS(A ∩B, (A ∪B) ∩B) ≤ DIFS(A,A ∪B)
=DIFS((A ∩B) ∪A,B ∪A) ≤ DIFS(A ∩B,B).

Thus, DIFS(A ∩B,B) = DIFS(A,A ∪B).

On the other hand, B ∩B = B, whence

DIFS(A ∩B,B) = DIFS(A ∩B,B ∩B) ≤ DIFS(A,B) by Axiom IF-Div.3.

Finally, since A ∩B ⊆ A ⊆ A ∪B, by Lemma 5.5 we have that

DIFS(A,A ∪B) ≤ DIFS(A ∩B,A ∪B).

In order to prove that there is no dominance relationship between DIFS(A ∩ B,A ∪ B)
and DIFS(A,B), let us consider the universe Ω = {ω} and the IF-sets:

A = {(ω, 0.2, 0.6)}
B = {(ω, 0.3, 0.7)}

}
⇒
{
A ∩B = {(ω, 0.2, 0.7)}
A ∪B = {(ω, 0.3, 0.6)}

Consider the IF-divergences DL and lIFS defined by:

DL(A,B) = 1
4 (|(µA(ω)− νA(ω))− (µB(ω)− νB(ω))|+ |µA(ω)− µB(ω)|

+ |νA(ω)− νB(ω)|) .
lIFS(A,B) = 1

2 |µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+ |πA(ω)− πB(ω)|.

As we shall see in Section 5.1.3, they correspond to the Hong and Kim IF-divergence and
the Hamming distance, respectively. Then:

lIFS(A,B) = 0.2 and
lIFS(A ∩B,A ∪B) = 0.1.
DL(A,B) = 0.2

4 and
DL(A ∩B,A ∪B) = 0.2+0.1+0.1

4 = 0.4
4 .

Thus:

lIFS(A,B) > lIFS(A ∩B,A ∪B) and DL(A,B) < DL(A ∩B,A ∪B)

and therefore, there is not fixed relationship between these two quantities.

Next, we shall study under which conditions axioms IF-Div.3 and IF-Div.4 are
equivalent. But before tackling this problem, we give an example showing that they are
not equivalent in general.
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Example 5.22 Consider the function D : IFSs(Ω)× IFSs(Ω)→ R given by

D(A,B) =
∑
ω∈Ω

h(µA(ω), µB(ω)), for every A,B ∈ IFSs(Ω),

where h is defined by

h(x, y) =

{
0 if x = y.

1− xy if x 6= y.

We shall prove in Example 5.53 of Section 5.1.5 that D satisfies IF-Diss.1, IF-Diss.2 and
IF-Div.4. However, it is not an IF-divergence. For instance, if we consider a universe
Ω = {ω1, . . . , ωn}, and the IF-sets defined by:

A = {(ω, 0.2, 0.8) | ω ∈ Ω}.
B = {(ω, 0.8, 0.2) | ω ∈ Ω}.
C = {(ω, 0.5, 0.5) | ω ∈ Ω}

it holds that:

D(A ∩ C,B ∩ C) = D(A,C) =
∑
ω∈Ω

(1− 0.2 · 0.5) =
∑
ω∈Ω

0.9 = 0.9n.

DIF(A,B) =
∑
ω∈Ω

(1− 0.2 · 0.8) =
∑
ω∈Ω

0.84 = 0.84n.

Thus, D(A∩C,B∩C) = 0.9n > 0.84n = D(A,B), and therefore IF-Div.3 is not satisfied.

Hence, we have an example of a function that satisfies IF-Div.4 but it does not
satisfy IF-Div.3. Next we are going to show by means of an example that IF-Div.3 does
not imply IF-Div.4 either. Consider the function D : IFSs(Ω)×IFSs(Ω)→ R given by:

D(A,B) =
∑
ω∈Ω

h(µA(ω), µB(ω)) for every A,B ∈ FS(Ω),

where h : R2 → R is defined by:

h(x, y) =

{
0 if x = y.

xy if x 6= y.

We shall also see in Example 5.53 of Section 5.1.5 that this function satisfies IF-Diss.1,
IF-Diss.2 and IF-Div.3, but it is not an IF-divergence: consider Ω = {ω1, . . . , ωn}, and
the IF-sets of the previous example. Then, it holds that

D(A ∪ C,B ∪ C) = D(C,B) =
∑
ω∈Ω

0.8 · 0.5 =
∑
ω∈Ω

0.4 = 0.4n.

D(A,B) =
∑
ω∈Ω

0.2 · 0.8 =
∑
ω∈Ω

0.16 = 0.16n.

We can conclude that axiom IF-Div.4 is not satisfied since

D(A ∪ C,B ∪ C) = 0.4n > 0.16n = D(A,B).�
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Therefore, axioms IF-Div.3 and IF-Div.4 are not related in general. We shall see however,
that under some additional conditions they become equivalent. Let us consider the
following natural property:

IF-Div.5: DIFS(A,B) = DIFS(Ac, Bc) for every A,B ∈ IFSs(Ω).

In the following section we shall see some examples of IF-divergences satisfying this
property. To see, however, that not all IF-divergences satisfy IF-Div.5, take Ω = {ω}
and the function defined by:

DIFS(A,B) = |µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|2. (5.2)

We shall prove in Example 5.54 of Section 5.1.5 that this function is an IF-divergence.
However, it does not satisfy IF-Div.5. To see that, consider the IF-sets

A = {(ω, 0.6, 0.4)} and B = {(ω, 0.5, 0.1)}.

It holds that:

DIFS(A,B) = 0.1 + 0.09 = 0.19 6= 0.31 = 0.3 + 0.01 = DIFS(Ac, Bc).

Our next result shows that, when IF-Div.5 is satisfied, then axioms IF-Div.3 and IF-Div.4
are equivalent.

Proposition 5.23 If D is a function D : IFSs(Ω) × IFSs(Ω) → R satisfying the
property IF-Div.5, then it satisfies IF-Div.3 if and only if it satisfies IF-Div.4.

Proof: First of all let us show that, since D(A,B) = D(Ac, Bc) by IF-Div.5, it also
holds that:

D(A ∪ C,B ∪ C) = D((A ∪ C)c, (B ∪ C)c) = D(Ac ∩ Cc, Bc ∩ Cc).

Assume that D satisfies IF-Div.3:

D(A ∩ C,B ∩ C) ≤ D(A,B) for every A,B ∈ IFSs(Ω).

Then it also satisfies IF-Div.4:

D(A ∪ C,B ∪ C) = D(Ac ∩ Cc, Bc ∩ Cc) ≤ D(Ac, Bc) = D(A,B).

Similarly, assume that D satisfies IF-Div.4, that is,

D(A ∪ C,B ∪ C) ≤ D(A,B) for every A,B ∈ IFSs(Ω).

Then, it also satisfies axiom IF-Div.3:

D(A ∩ C,B ∩ C) = D(Ac ∪ Cc, Bc ∪ Cc) ≤ D(Ac, Bc) = D(A,B). �

Now, we will obtain a general expression of IF-divergences by comparing the membership
and non-membership functions of the IF-sets by means of a t-conorm.
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Proposition 5.24 Consider a finite set Ω. If S and S∗ are two t-conorms, the function
DIFS defined by:

DIFS(A,B) = Sω∈Ω(S∗(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|))

for every A,B ∈ IFSs(Ω), is an IF-divergence. Moreover, it satisfies IF-Div.5.

Proof: Let us prove that DIFS fulfills axioms IF-Diss.1 to IF-Div.4.

IF-Diss.1: Let A be an IF-set. Obviously, DIFS(A,A) = 0:

DIFS(A,A) = Sω∈Ω(S∗(0, 0)) = S(0, . . . , 0) = 0.

IF-Diss.2: Let A and B be two IF-sets. It holds that:

DIFS(A,B) = Sω∈Ω(S∗(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|))
= Sω∈Ω(S∗(|µB(ω)− µA(ω)|, |νB(ω)− νA(ω)|)) = DIFS(B,A).

IF-Div.3: Let A, B and C three IF-sets. We have to prove that

DIFS(A,B) ≥ DIFS(A ∩ C,B ∩ C).

Applying the first part of Lemma A.1 of Appendix A, we have that

|µA(ω)− µB(ω)| ≥ |min(µA(ω), µC(ω))−min(µB(ω), µC(ω))| = |µA∩C(ω)− µB∪C(ω)|.
|νA(ω)− νB(ω)| ≥ |max(νA(ω), νC(ω))−max(νB(ω), νC(ω))| = |νA∩C(ω)− νB∪C(ω)|.

Since every t-conorm is increasing, it holds that:

DIFS(A,B) = Sω∈Ω(S∗(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|))
≥ Sω∈Ω(S∗(|µA∩C(ω)− µB∩C(ω)|, |νA∩C(ω)− νB∩C(ω)|))
=DIFS(A ∩ C,B ∩ C).

IF-Div.4: Consider three IF-sets A, B and C. Using the first part of Lemma A.1 of
Appendix A, we see that:

|µA(ω)− µB(ω)| ≥ |max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|
= |µA∪C(ω)− µB∪C(ω)|.

|νA(ω)− νB(ω)| ≥ |min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|
= |νA∪C(ω)− νB∪C(ω)|.

Since t-conorms are increasing operators,

DIFS(A,B) = Sω∈Ω(S∗(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|))
≥ Sω∈Ω(S∗(|µA∪C(ω)− µB∪C(ω)|, |νA∪C(ω)− νB∪C(ω)|))
=DIFS(A ∪ C,B ∪ C).
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Thus, DIFS is an IF-divergence. Now, we are going to prove that it also satisfies IF-Div.5.
Using that every t-conorm is symmetric, we deduce that:

DIFS(A,B) = Sω∈Ω(S∗(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|))
= Sω∈Ω(S∗(|νA(ω)− νB(ω)|, |µA(ω)− µB(ω)|)) = DIFS(Ac, Bc).

Therefore DIFS(A,B) = DIFS(Ac, Bc) for every A,B ∈ IFSs(Ω).

One of the conditions we required on IF-divergences was that “the more similar two
IF-sets are, the lower the divergence is between them”. In the following result we are
going to see that, if the non-membership functions of A and B are the same than the
ones of C and D, respectively, or the membership functions of C and D are the same,
then the IF-divergence between A and B is greater than the IF-divergence between C
and D.

Proposition 5.25 Let A and B be two IF-sets. Let us consider the IF-sets CA and DB

given by:
CA = {(ω, µ(ω), νA(ω)) | ω ∈ Ω},
DB = {(ω, µ(ω), νB(ω)) | ω ∈ Ω},

where µ : Ω→ [0, 1] is a map such that µ(ω)+νA(ω) ≤ 1 and µ(ω)+νB(ω) ≤ 1 for every
ω ∈ Ω. If D is an IF-divergence, then D(A,B) ≥ D(CA, DB).

Proof: Let us define the following IF-set:

N = {(ω,min(µA(ω), µ(ω)), 0) | ω ∈ Ω}.

Then,
A ∩N = {(ω,min(µA(ω), µ(ω)), νA(ω)) | ω ∈ Ω}.
B ∩N = {(ω,min(µB(ω), µ(ω), µA(ω)), νB(ω)) | ω ∈ Ω}.

Applying IF-Div.3 we obtain that D(A,B) ≥ D(A ∩N,B ∩N). Consider now another
IF-set, defined by:

M = {(ω, µ(ω),max(νA(ω), νB(ω))) | ω ∈ Ω}.

We obtain that:

(A ∩N) ∪M = {(ω,max(µ(ω),min(µA(ω), µ(ω))), νA(ω)) | ω ∈ Ω}
= {(ω, µ(ω), νA(ω)) | ω ∈ Ω} = CA.

(B ∩N) ∪M = {(ω,max(µ(ω),min(µB(ω), µ(ω), µA(ω))), νB(ω)) | ω ∈ Ω}
= {(ω, µ(ω), νB(ω)) | ω ∈ Ω} = DB.

Applying IF-Div.4,

D(A,B) ≥ D(A ∩N,B ∩N) ≥ D((A ∩N) ∪M, (B ∩N) ∪M) = D(CA, DB). �

Analogously, we can obtain a similar result by exchanging the membership and the
non-membership functions.
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Proposition 5.26 Let A and B be two IF-sets. Let us consider the IF-sets CA and DB

given by:

C = {(ω, µA(ω), ν(ω)) | ω ∈ Ω} and D = {(ω, µB(ω), ν(ω)) | ω ∈ Ω},

where ν : Ω→ [0, 1] is a map such that µA(ω)+ν(ω) ≤ 1 and µB(ω)+ν(ω) ≤ 1 for every
ω ∈ Ω. If DIFS is an IF-divergence, then DIFS(A,B) ≥ DIFS(CA, DB).

We conclude this section with a property that assures that some transformations of
IF-divergences are also IF-divergences.

Proposition 5.27 If D is an IF-divergence and φ : R → R is an increasing function
with φ(0) = 0, then Dφ defined by:

Dφ
IFS(A,B) = φ(DIFS(A,B)) for every A,B ∈ IFSs(Ω),

is also an IF-divergence. Moreover, if DIFS satisfies axiom IF-Div.5, then so does Dφ
IFS.

Proof: Let DIFS be an IF-divergence and φ an increasing function with φ(0) = 0.
Condition IF-Diss.1 follows from φ(0) = 0 and conditions IF-Div.3 and IF-Div.4 follow
from the monotonicity of φ, and IF-Div.2 and IF-Div.5 are trivially fulfilled by definition.

5.1.3 Examples of IF-divergences and IF-dissimilarities

This subsection is devoted to the study of some of the most important examples of
IF-divergences and dissimilarities. Specifically, we shall investigate whether the most
prominent examples of dissimilarities that can be found in the literature are particular
cases of IF-divergence. Furthermore, we shall also study if they satisfy other properties,
such as axiom IF-Div.5, or if they are dissimilitudes.

Dissimilarities that also are IF-divergences

In this section we are going to present an overview of the dissimilarities that are also
IF-divergences. From now on, Ω denotes a finite universe with n elements.

Hamming and normalized Hamming distance One of the most important com-
parison measures for IF-sets are the Hamming distance ([193]), defined by:

lIFS(A,B) =
1
2

∑
ω∈Ω

(|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+ |πA(ω)− πB(ω)|),
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and the normalized Hamming distance by:

lnIFS(A,B) =
1
n
lIFS(A,B), for every A,B ∈ IFSs(Ω).

These functions are known to be dissimilarities. Let us prove that they are also IF-
divergences. In order to do this, we shall first of all prove that the Hamming distance
is an IF-divergence; this, together with Proposition 5.27, we allow us to conclude that
the normalized Hamming distance is also an IF-divergence, because it is an increasing
transformation (by means of φ(x) = x

n ) of the Hamming distance. In order to prove that
the Hamming distance is an IF-divergence, we shall begin by showing that it satisfies
axiom IF-Div.5. Let us note that

πA(ω) = 1− µA(ω)− νA(ω) = 1− νAc(ω)− µAc(ω) = πAc(ω)

for every ω ∈ Ω and A ∈ IFSs(Ω). Then:

lIFS(Ac, Bc) =
∑
ω∈Ω

(|νA(ω)− νB(ω)|+ |µA(ω)− µB(ω)|+ |πAc(ω)− πBc(ω)|)

=
∑
ω∈Ω

(|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+ |πA(ω)− πB(ω)|) = lIFS(A,B).

By Proposition 5.23, axioms IF-Div.3 and IF-Div.4 are equivalent. Moreover, axioms IF-
Diss.1 and IF-Diss.2 are satisfied since lIFS is an IF-dissimilarity (see for instance [92]).
Hence, in order to prove that lIFS is an IF-divergence it suffices to check that it fulfills
either IF-Div.3 or IF-Div.4. Let us show the latter. Let A, B and C be three IF-sets;
using Lemma A.2 of Appendix A, we know that for every ω ∈ Ω, the following inequality
holds:

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+ |πA(ω)− πB(ω)| ≥
|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|+
|min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|+
|max(µA(ω), µC(ω)) + min(νA(ω), νC(ω))−
max(µB(ω), µC(ω))−min(νB(ω), νC(ω))|.

Then:

lIFS(A,B) =
∑
ω∈Ω

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+ |πA(ω)− πB(ω)|

≥
∑
ω∈Ω

|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|

+ |min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|
+ |max(µA(ω), µC(ω))−min(νA(ω), νC(ω))
+ max(µB(ω), µC(ω))−min(νB(ω), νC(ω))| = lIFS(A ∪ C,B ∪ C).

Thus, lIFS(A,B) ≥ lIFS(A ∪ C,B ∪ C).

In other words, we have proven that lIFS satisfies axiom IF-Div.4, and therefore it
also satisfies IF-Div.3. Hence, lIFS is an IF-divergence, and as a consequence so is lnIFS.
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Moreover, since they are IF-divergences, we deduce that they are also dissimilitudes.
In summary, the Hamming and the normalized Hamming distances are examples of
dissimilarities, IF-divergences, dissimilitudes and distances.

Hausdorff dissimilarity Another very important dissimilarity between IF-sets is based
on the Hausdorff distance (see for example [85]). It is defined by:

dH(A,B) =
∑
ω∈Ω

max(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|).

As the Hamming distance, the Hausdorff dissimilarity satisfies axiom IF-Div.5, because

dH(Ac, Bc) =
∑
ω∈Ω

max(|νA(ω)− νB(ω)|, |µA(ω)− µB(ω)|) = dH(A,B).

Applying Prop 5.23, we deduce that axioms IF-Div.3 and IF-Div.4 are equivalent. Note
that axioms IF-Diss.1 and IF-Diss.2 are satisfied by dH since it is a IF-dissimilarity.
Hence, in order to prove that dH is an IF-divergence, it suffices to prove that either
IF-Div.3 or IF-Div.4 hold.

Let us prove that axiom IF-Div.4 is satisfied by dH. Consider three IF-sets A,B
and C. Then, the IF-sets A ∪ C and B ∪ C are given by:

A ∪ C = {(ω,max(µA(ω), µC(ω)),min(νA(ω), νC(ω))) | ω ∈ Ω}.
B ∪ C = {(ω,max(µB(ω), µC(ω)),min(νB(ω), νC(ω))) | ω ∈ Ω}.

By the second part of Lemma A.1 of Appendix A, it holds that:

|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))| ≤ |µA(ω)− µB(ω)|.
|min(νA(ω), νC(ω))−min(νB(ω), νC(ω))| ≤ |νA(ω)− νB(ω)|.

Then,
|µA∪C(ω)− µB∪C(ω)| ≤ |µA(ω)− µB(ω)| and
|νA∪C(ω)− νB∪C(ω)| ≤ |νA(ω)− νB(ω)|.

From these inequalities it follows that:

max(|µA∪C(ω)− µB∪C(ω)|, |νA∪C(ω)− νB∪C(ω)|)
≤ max(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|).

This inequality has been proved for every ω in Ω, and consequently:

dH(A ∪ C,B ∪ C) =
∑
ω∈Ω

max(|µA∪C(ω)− µB∪C(ω)|, |νA∪C(ω)− νB∪C(ω)|)

≤
∑
ω∈Ω

max(|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|) = dH(A,B).
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Thus, the Hausdorff IF-dissimilarity is an IF-divergence, and consequently it is also a
dissimilitude.

Note that it is also possible to define the normalized Hausdorff dissimilarity, denoted
by dnH, by:

dnH(A,B) =
1
n
dH(A,B), for every A,B ∈ IFSs(Ω).

It holds that dnH(A,B) = φ(dH(A,B)), where φ(x) = 1
nx. As we already said, this

function φ is increasing and φ(0) = 0. Therefore, using Proposition 5.27, we deduce that
dnH is also an IF-divergence that fulfills axiom IF-Div.5.

We conclude that dH and dnH are distances, IF-dissimilarities, IF-divergences and
IF-dissimilitudes at the same time.

Hong & Kim dissimilarities Hong and Kim proposed two dissimilarity measures in
[89]. They are defined by:

DC(A,B) = 1
2n

∑
ω∈Ω

(|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|) and

DL(A,B) = 1
4n

(∑
ω∈Ω

|SA(ω)− SB(ω)|+
(∑
ω∈Ω

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|
))
,

where SA(ω) = µA(ω)− νA(ω) and SB(ω) = µB(ω)− νB(ω).

Recall that DL can be equivalently expressed by:

DL(A,B) =
1

4n

∑
ω∈Ω

|(µA(ω)−µB(ω))−(νA(ω)−νB(ω))|+|µA(ω)−µB(ω)|+|νA(ω)−νB(ω)|

for every A,B ∈ IFSs(Ω).

In order to prove that DC satisfies IF-Div.3, we shall use part b) of Lemma A.1:

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)| ≥
|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|+ |min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|.

Using this fact, IF-Div.3 trivially follows, and IF-Div.4 can be similarly proved.

Let us see that DL is also an IF-divergence. For this, it suffices to take into account
that, from Lemma A.3, for every ω ∈ Ω it holds that:

|µA(ω)− µB(ω)− νA(ω) + νB(ω)|+ |µA(ω)− µB(ω)|+
∣∣νA(ω)− νB(ω)|

≥ |max(µA(ω), µC(ω))−max(µB(ω), µC(ω))
−min(νA(ω), νC(ω)) + min(νB(ω), νC(ω))

∣∣
+|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|
+|min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|.
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By taking the sum on Ω on every part of the inequality, and multiplying each term by
1

4n , we obtain that:
DL(A,B) ≥ DL(A ∪ C,B ∪ C).

Thus, DL satisfies axiom IF-Div.4, and therefore also IF-Div.3 sinceDL satisfies the prop-
erty IF-Div.5. We conclude that both DC and DL are IF-dissimilarities, IF-divergences
and IF-dissimilitudes.

Li et al. dissimilarity Another dissimilarity measure for IF-sets was proposed by Li
et al. ([113]):

DO(A,B) =
1√
2n

(∑
ω∈Ω

(µA(ω)− µB(ω))2 + (νA(ω)− νB(ω))2

) 1
2

.

This dissimilarity also satisfies IF-Div.5, since DO(Ac, Bc) = DO(A,B). Then, by Propo-
sition 5.23, in order to prove that DO is an IF-divergence it is enough to prove that it
satisfies IF-Div.4. Let us consider A, B and C three IF-sets. By the second part of
Lemma A.1 in Appendix A, we know that:

|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))| ≤ |µA(ω)− µB(ω)| and
|min(νA(ω), νC(ω))−min(νB(ω), νC(ω))| ≤ |νA(ω)− νB(ω)|,

or, equivalently,

|µA∪C(ω)− µB∪C(ω)| ≤ |µA(ω)− µB(ω)| and
|νA∪C(ω)− νB∪C(ω)| ≤ |νA(ω)− νB(ω)|.

Then it holds that:

|µA∪C(ω)− µB∪C(ω)|2 + |νA∪C(ω)− νB∪C(ω)|2

≤ |µA(ω)− µB(ω)|2 + |νA(ω)− νB(ω)|2,

whence

DO(A ∪ C,B ∪ C) = 1√
2n

(∑
ω∈Ω

|µA∪C(ω)− µB∪C(ω)|2 + |νA∪C(ω)− νB∪C(ω)|2
) 1

2

DO(A ∪ C,B ∪ C) ≤ 1√
2n

(∑
ω∈Ω

|µA(ω)− µB(ω)|2 + |νA(ω)− νB(ω)|2
) 1

2
= DO(A,B).

Thus, DO satisfies axiom IF-Div.4 and therefore it is an IF-Divergence, and in particular
an IF-dissimilitude.
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Mitchell dissimilarity Mitchell ([138]) proposed a dissimilarity defined by:

DHB(A,B) =
1

2 p
√
n

((∑
ω∈Ω

|µA(ω)− µB(ω)|p
) 1
p +

(∑
ω∈Ω

|νA(ω)− νB(ω)|p
) 1
p

)
,

for some p ≥ 1. This dissimilarity obviously satisfies IF-Div.5. Thus, in order to prove
that DHB is an IF-divergence it is enough to prove IF-Div.4, since IF-Diss.1 and IF-Diss.2
are satisfied for every dissimilarity. Consider A, B and C. Applying again the second
part of Lemma A.1 from Appendix A we deduce that:

|µA∪C(ω)− µB∪C(ω)| ≤ |µA(ω)− µB(ω)| and
|νA∪C(ω)− νB∪C(ω)| ≤ |νA(ω)− νB(ω)|.

Moreover, the inequalities holds if we raise every term to the power of p, whence

DHB(A,B) =
1

2 p
√
n

((∑
ω∈Ω

|µA∪C(ω)− µB∪C(ω)|p
) 1
p +

(∑
ω∈Ω

|νA∪C(ω)− νB∪C(ω)|p
) 1
p

)
DHB(A,B) ≤ 1

2 p
√
n

((∑
ω∈Ω

|µA(ω)− µB(ω)|p
) 1
p +

(∑
ω∈Ω

|νA(ω)− νB(ω)|p
) 1
p

)
DHB(A,B) = DHB(A,B).

Thus, axiom IF-Div.4 holds, and therefore DHB is an IF-divergence, and in particular a
dissimilitude.

Liang & Shi dissimilarities Liang and Shi ([114]) defined the dissimilarities Dp
e and

Dp
h, for some p ≥ 1, by

Dp
e (A,B) =

1
2 p
√
n

(∑
ω∈Ω

(
|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|

)p) 1
p

,

Dp
h(A,B) =

1
p
√

3n

(∑
ω∈Ω

(η1(ω) + η2(ω) + η3(ω))p
) 1
p

,

where
η1(ω) = 1

2 (|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|).
η2(ω) = 1

2 |µA(ω)− νA(ω)− µB(ω) + νB(ω)|.
η3(ω) = max(lA(ω), lB(ω))−min(lA(ω), lB(ω)).

lA(ω) = 1
2 (1− νA(ω)− µA(ω)).

lB(ω) = 1
2 (1− νB(ω)− µB(ω)).

Note that Dp
h can be expressed in a equivalent way as

Dp
h(A,B) =

1
2 p
√

3n

(∑
ω∈Ω

(|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|

Dp
h(A,B) + |(µA(ω)− µB(ω))− (νA(ω)− νB(ω))|

Dp
h(A,B) + |(µA(ω) + νA(ω))− (µB(ω) + νB(ω))|)p

) 1
p

.
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As in the previous examples, both Dp
e and Dp

h satisfy IF-Div.5, and therefore it suffices
to prove that both functions satisfy IF-Div.4 to prove that they are IF-divergences. Let
us first focus on Dp

e , and let us consider A, B and C three IF-sets. Applying again the
second part of Lemma A.1 in Appendix A we know that:

|µA∪C(ω)− µB∪C(ω)| ≤ |µA(ω)− µB(ω)| and
|νA∪C(ω)− νB∪C(ω)| ≤ |νA(ω)− νB(ω)|.

If we sum both inequalities we obtain

|µA∪C(ω)− µB∪C(ω)|+ |νA∪C(ω)− νB∪C(ω)| ≤ |µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|,

and since this inequality also holds when we raise every component to the power of p,

Dp
e (A ∪ C,B ∪ C) =

1
2 p
√
n

(∑
ω∈Ω

(|µA∪C(ω)− µB∪C(ω)|+ |νA∪C(ω)− νB∪C(ω)|)p
) 1
p

≤ 1
2 p
√
n

(∑
ω∈Ω

(|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|)p
) 1
p

= Dp
e (A,B).

Thus, Dp
e satisfies IF-Div.4, and, taking into account that it satisfies IF-Div.5, also axiom

IF-Div.3. Hence, it is a dissimilarity, and consequently, a dissimilitude.

Consider now Dp
h. Using Lemma A.4 in Appendix A, we know that, for every ω ∈ Ω,

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+
|µA(ω)− µB(ω)− νA(ω) + νB(ω)|+
|µA(ω) + νA(ω)− µB(ω)− νB(ω)| ≥
|µA∪C(ω)− µB∪C(ω)|+ |νA∪C(ω)− νB∪C(ω)|+
|µA∪C(ω)− µB∪C(ω)− νA∪C(ω) + νB∪C(ω)|+
|µA∪C(ω) + νA∪C(ω)− µB∪C(ω)− νB∪C(ω)|.

Making the summation over every ω in Ω in each part of the inequality and multiplying
by 1

2 p
√

3n
, we obtain that Dp

h(A,B) ≥ Dp
h(A ∪ C,B ∪ C).

Thus, both Dp
e and Dp

h are IF-dissimilarities, IF-divergences and IF-dissimilitudes.

Hung & Yang dissimilarities Hung and Yang proposed some new dissimilarities in
[92], two of which are based on the Hausdorff dissimilarity. As we shall see, it is easy to
check that both are also IF-divergences. These dissimilarities are defined by:

D1
HY(A,B) = dnH(A,B).

D2
HY(A,B) = 1− e−dnH(A,B) − e−1

1− e−1
.

D3
HY(A,B) = 1− 1− dnH(A,B)

1 + dnH(A,B)
.
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We have already proven that the Hausdorff dissimilarity is an IF-divergence that satisfies
the property IF-Div.5. Consider the functions φ2 and φ3 defined by:

φ2(x) = 1− e−x − e−1

1− e−1
and φ3(x) = 1− 1− x

1 + x
.

These functions are increasing and satisfy φ2(0) = φ3(0) = 0. Applying Proposition 5.27
we conclude that

dφ2
H (A,B) = φ2(dnH(A,B)) = D2

HY(A,B) and
dφ3

H (A,B) = φ3(dnH(A,B)) = D3
HY(A,B)

are IF-divergences that satisfy property IF-Div.5. Thus, they are also IF-dissimilitudes.

On the other hand, Hung and Yang also proposed the IF-dissimilarity given by

Dpk2(A,B) =
1
2
(

max
ω∈Ω

(|µA(ω)− µB(ω)|) + max
ω∈Ω

(|νA(ω)− νB(ω)|)
)
.

This measure satisfies IF-Div.5, whence, applying Proposition 5.23, it is enough to prove
that, indeed, Dpk2 satisfies IF-Div.4. If we consider A, B and C three IF-sets, we know
from the second part of Lemma A.1 in Appendix A that:

|µA(ω)− µB(ω)| ≥ |max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|.
|νA(ω)− νB(ω)| ≥ |min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|.

Thus,

max
ω∈Ω
|µA(ω)− µB(ω)| ≥ max

ω∈Ω
|max(µA(ω), µC(ω))−max(µB(ω), µC(ω))|.

max
ω∈Ω
|νA(ω)− νB(ω)| ≥ max

ω∈Ω
|min(νA(ω), νC(ω))−min(νB(ω), νC(ω))|.

Then, Dpk2(A,B) ≥ Dpk2(A ∪ C,B ∪ C). We conclude that Dpk2 is another example of
IF-dissimilarity that is also an IF-divergence and IF-dissimilitude.

Dissimilarities that are not IF-divergences

Let us now provide some examples of dissimilarities, very frequently used in the litera-
ture, that are not IF-divergences. We shall also give some examples showing that these
comparison measures are, in some cases, counterintuitive.

Euclidean and normalized Euclidean distance Together with the Hamming and
Hausdorff distances, one of the most important comparison measures is the Euclidean
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distance (see for example. nThis distance is used to define a dissimilarity between IF-sets
and its normalization as follows ([85]):

qIFS(A,B) =
(1

2

∑
ω∈Ω

(µA(ω)− µB(ω))2 + (νA(ω)− νB(ω))2 + (πA(ω)− πB(ω))2
) 1

2
.

qnIFS(A,B) = 1
nqIFS(A,B).

These dissimilarities fulfill axiom IF-Div.5, since πA(ω) = πAc(ω) and πB(ω) = πBc(ω)
for every A,B ∈ IFSs(Ω). However, they are not IF-divergences, since they do not
satisfy axioms IF-Div.3 nor IF-Div.4. To see a counterexample, consider Ω = {ω} and
the following IF-sets:

A = {(ω, 0.12, 0.68)}, B = {(ω, 0.29, 0.59)}, C = {(ω, 0.11, 0.36)}.

The IF-sets A ∪ C and B ∪ C are given by:

A ∪ C = {(ω, 0.12, 0.36)} and B ∪ C = {(ω, 0.29, 0.36)}.

It holds that qIFS(A ∪ C,B ∪ C) > qIFS(A,B):

qIFS(A ∪ C,B ∪ C) =
[

1
2 (0.172 + 0 + 0.172)

]0.5 = 0.17.
qIFS(A,B) =

[
1
2 (0.172 + 0.092 + 0.082)

]0.5 = 0.1473.

Moreover, since qIFS does not satisfy IF-Div.4, axiom IF-Div.3 cannot hold either because
they are equivalent under IF-Div.5. Therefore, qIFS is neither an IF-divergence nor a
dissimilitude. The same example shows that qnIFS is not an IF-divergence, since for
n = 1 we have that qIFS = qnIFS.

Liang & Shi dissimilarity We have seen previously some IF-dissimilarities pro-
posed by Liang and Shi that are also IF-divergences. They also proposed another IF-
dissimilarity measure, that is defined by:

Dp
s (A,B) =

1
p
√
n

(∑
ω∈Ω

(ϕs1(ω) + ϕs2(ω))p
) 1
p

,

where p ≥ 1 and
ϕs1(ω) = 1

2 |mA1(ω)−mB1(ω)|.
ϕs2(ω) = 1

2 |mA2(ω)−mB2(ω)|.
mA1(ω) = 1

2 (µA(ω) +mA(ω)).

mA2(ω) = 1
2 (mA(ω) + 1− νA(ω)).

mB1(ω) = 1
2 (µB(ω) +mB(ω)).

mB2(ω) = 1
2 (mB(ω) + 1− νB(ω)).

mA(ω) = 1
2 (µA(ω) + 1− νA(ω)).

mB(ω) = 1
2 (µB(ω) + 1− νB(ω)).
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Note that Dp
s can also be expressed by:

Dp
s (A,B) =

1
p
√
n

(∑
ω∈Ω

1
8

(|3(µA(ω)− µB(ω))− (νA(ω)− νB(ω))|

+ |(µA(ω)− µB(ω))− 3(νA(ω)− νB(ω))|)
) 1
p

.

Thus, this dissimilarity satisfies axiom IF-Div.5. However, neither IF-Div.3 nor IF-Div.4
are satisfied. To see this, consider Ω = {ω} and the IF-sets

A = {(ω, 0.25, 0.25)} and B = {(ω, 0.6, 0.35)}.

For these IF-sets it holds that Dp
s (A,B) = 0.125. Furthermore, if we consider the IF-set

C defined by:
C = {(ω, 0.2, 0.2)},

it holds that
A ∪ C = {(ω, 0.25, 0.2)} and B ∪ C = {(ω, 0.6, 0.2)},

whence,
Dp

s (A ∪ C,B ∪ C) = 0.175 > 0.125 = D(A,B).

Consequently, Dp
s is neither an IF-divergence, nor an IF-dissimilitude.

Chen dissimilarity Chen ([36, 37]) defined an IF-dissimilarity measure by:

DC(A,B) =
1

2n

∑
ω∈Ω

|SA(ω)− SB(ω)|,

where SA(ω) = µA(ω)− νA(ω) and SB(ω) = µB(ω)− νB(ω).

This dissimilarity also satisfies axiom IF-Div.5, because:

DC(Ac, Bc) = 1
2n

∑
ω∈Ω

|SAc(ω)− SBc(ω)|

= 1
2n

∑
ω∈Ω

|µA(ω)− µB(ω)− νA(ω) + νB(ω)|

= 1
2n

∑
ω∈Ω

|SA(ω)− SB(ω)| = D(A,B).

By Proposition 5.23 axioms IF-Div.3 and IF-Div.4 are equivalent. Let us see an example
where axiom IF-Div.4 is violated. Consider Ω = {ω} and the IF-sets:

A = {(ω, 0.25, 0.75)} and B = {(ω, 0, 0.5)}.

It holds that DC(A,B) = 0. If we consider C = {(ω, 0.2, 0.6)}, it holds that:

A ∪ C = {ω, 0.25, 0.6} and B ∪ C = {ω, 0.2, 0.5},
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whence
DC(A ∪ C,B ∪ C) = 0.025 > 0 = DC(A,B).

Thus, DC is neither an IF-divergence nor a dissimilitude.

In [89], Hong provided an example that showed that this IF-dissimilarity is a coun-
terintuitive measure of comparison of fuzzy sets. The main reason is that:

µA(ω)− νA(ω) = µB(ω)− νB(ω) ∀ω ∈ Ω⇒ DC(A,B) = 0.

In fact, if we consider the IF-sets A and B defined by:

A = {(ω, 0, 0) | ω ∈ Ω} and B = {(ω, 0.5, 0.5) | ω ∈ Ω};

we obtain DC(A,B) = 0. However, these IF-sets do not seem to be very similar.

Dengfenf & Chuntian dissimilarity Dengfenf and Chuntian ([111]) proposed the
following IF-dissimilarity:

DDC(A,B) =
1
p
√
n

(∑
ω∈Ω

|1
2

(µA(ω)− µB(ω)− νA(ω) + νB(ω))|p
)
,

for some p ≥ 1. Again, it obviously holds that D(Ac, Bc) = D(A,B), that is, DDC

satisfies IF-Div.5, and therefore, by Proposition 5.23, axioms IF-Div.3 and IF-Div.4 are
equivalent. Furthermore, when p = 1, DDC becomes Chen dissimilarity multiplied by
a constant. Thus, in order to obtain a counterexample, it suffices to consider the same
than in the previous paragraph.

Hung & Yang dissimilarities Previously we have seen some examples of IF-dissi-
milarities proposed by Hung and Yang that are also IF-divergences. Here we give some
examples of IF-dissimilarities proposed by them which are not IF-divergences. They are
given by:

Dω1(A,B) = 1− 1
n

∑
ω∈Ω

min(µA(ω), µB(ω)) + min(νA(ω), νB(ω))
max(µA(ω), µB(ω)) + max(νA(ω), νB(ω))

.

Dpk1(A,B) = 1−

∑
ω∈Ω

min(µA(ω), µB(ω)) + min(νA(ω), νB(ω))∑
ω∈Ω

max(µA(ω), µB(ω)) + max(νA(ω), νB(ω))
.

Dpk3(A,B) =

∑
ω∈Ω

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|∑
ω∈Ω

|µA(ω) + µB(ω)|+ |νA(ω) + νB(ω)|
.
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These dissimilarities satisfy axiom IF-Div.5, and therefore, using Proposition 5.23, both
axioms IF-Div.3 and IF-Div.4 become equivalent. However, none of them satisfies these
axioms. Let us give a counterexample for Dω1: consider an universe Ω = {ω} and the
IF-sets:

A = {(ω, 0.75, 0.19)} and B = {(ω, 0.48, 0.23)}.

For these IF-sets, Dω1(A,B) = 0.32. If we now consider the IF-set C = {(ω, 0.25, 0.06)},
then A ∪ C and B ∪ C are given by:

A ∪ C = {(ω, 0.75, 0.06)} and B ∪ C = {(ω, 0.48, 0.06)}.

Hence,
Dω1(A ∪ C,B ∪ C) ≥ 0.333 > 0.32 = D(A,B).

The same example shows that Dpk1 does not satisfy IF-Div.4, since for n = 1 Dpk1 and
Dω1 are the same function.

Let us prove now that Dω3 does not satisfy IF-Div.4 neither. For this, take Ω = {ω}
define the following IF-sets:

A = {(ω, 0.24, 0.28)}, B = {(ω, 0.66, 0.29)}, C = {(ω, 0.02, 0.15)}.

Then, it holds that:

Dpk3(A,B) = 0.29 < 0.35 = Dpk3(A ∪ C,B ∪ C).

Thus, none of these IF-dissimilarity measures are IF-divergences or IF-dissimilitudes.

In Table 5.1 we have summarized the results we have presented in this section.
There, we can see which axioms satisfy every one of the examples of IF-dissimilarities
we have studied. We can remark that all these examples satisfy the property IF-Div.5,
and then IF-Div.3 and IF-Div.4 are equivalent. Recall that all the measures we have
studied satisfy property IF-Div.5, and then IF-divergences and IF-dissimilitudes become
equivalent.

5.1.4 Local IF-divergences

In this section we are going to study a special type of IF-divergences called the local
IF-divergences.They are an important family of IF-divergences because of the interesting
properties they satisfy.

Let us consider a universe Ω = {ω1, . . . , ωn} and an IF-divergence DIFS defined on
IFSs(Ω)×IFSs(Ω). From IF-Div.4, we know that D(A∪C,B∪C) ≤ D(A,B) for every
C ∈ IFSs(Ω). In particular, given C = {ωi}, we can express it equivalently by

C = {(ωi, 1, 0), (ωj , 0, 1) | j 6= i}.
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Name Notation IF-Diss.1&2 IF-Div.3&4 IF-Div.5 IF-diss IF-div

Hamming lIFS OK OK OK Yes Yes
Normalized
Hamming lnIFS OK OK OK Yes Yes

Hausdorff dH OK OK OK Yes Yes
Normalized
Hausdorff dnH OK OK OK Yes Yes

Normalized
Eucliden qIFS OK FAIL OK Yes No

Hong and
Kim (I) DC OK OK OK Yes Yes

Hong and
Kim (II) DL OK OK OK Yes Yes

Li et al. DO OK OK OK Yes Yes

Mitchell DHB OK OK OK Yes Yes
Liang and
Shi (I) Dpe OK OK OK Yes Yes

Liang and
Shi (II) Dph OK OK OK Yes Yes

Liang and
Shi (III) Dps OK FAIL OK Yes No

Chen DC OK FAIL OK Yes No
Dengfeng

and Chuntian DDC OK FAIL OK Yes No

Hung and
Yang (I) D1

HY OK OK OK Yes Yes

Hung and
Yang (II) D2

HY OK OK OK Yes Yes

Hung and
Yang (III) D3

HY OK OK OK Yes Yes

Hung and
Yang (IV) Dω1 OK FAIL OK Yes No

Hung and
Yang (V) Dpk1 OK FAIL OK Yes No

Hung and
Yang (VI) Dpk2 OK OK OK Yes Yes

Hung and
Yang (VIII) Dpk3 OK FAIL OK Yes No

Table 5.1: Behaviour of well-known dissimilarities and IF-divergences.
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Then, the IF-sets A ∪ {ωi} and B ∪ {ωi} are given by:

A ∪ {ωi} = {(ωi, 1, 0), (ωj , µA(ωj), νA(ωj)) | j 6= i}.
B ∪ {ωi} = {(ωi, 1, 0), (ωj , µB(ωj), νB(ωj)) | j 6= i}.

Applying axiom IF-Div.4 to these IF-sets, we obtain the following inequality:

DIFS(A ∪ {ωi}, B ∪ {ωi}) = DIFS(A,B).

Hence, the only difference between DIFS(A ∪ C,B ∪ C) and DIFS(A,B) is on the i-th
element. However, such a function may not exist. When it does, the IF-divergence will
be called local.

Definition 5.28 Let DIFS be an IF-divergence. It is called local (or it is said to satisfy
the local property) when for every A,B ∈ IFSs(Ω) and every ω ∈ Ω it holds that:

DIFS(A,B)−DIFS(A ∪ {ω}, B ∪ {ω}) = hIFS(µA(ω), νA(ω), µB(ω), νB(ω)). (5.3)

In order to characterize local IF-divergences we are going to see the next Theorem.

Theorem 5.29 A map DIFS : IFSs(Ω) × IFSs(Ω) → R on a finite universe Ω =
{ω1, . . . , ωn} is a local IF-divergence if and only if there is a function hIFS : T 2 → R such
that for every A,B ∈ IFSs(Ω):

DIFS(A,B) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi)), (5.4)

where T denotes the set T = {(t, z) ∈ [0, 1]2 | t + z ≤ 1} and hIFS fulfills the following
properties:

IF-loc.1 hIFS(x, y, x, y) = 0 for every (x, y) ∈ T .
IF-loc.2 hIFS(x1, x2, y1, y2) = hIFS(y1, y2, x1, x2) for every

(x1, x2), (y1, y2) ∈ T .
IF-loc.3 If (x1, x2), (y1, y2) ∈ T , z ∈ [0, 1] and x1 ≤ z ≤ y1, it holds that:

hIFS(x1, x2, y1, y2) ≥ hIFS(x1, x2, z, y2).
Moreover, if (x2, z), (y2, z) ∈ T it holds that
hIFS(x1, x2, y1, y2) ≥ hIFS(z, x2, y1, y2).

IF-loc.4 If (x1, x2), (y1, y2) ∈ T , z ∈ [0, 1] and x2 ≤ z ≤ y2, it holds that:
hIFS(x1, x2, y1, y2) ≥ hIFS(x1, x2, y1, z).

Moreover, if (x1, z), (y1, z) ∈ T it holds that:
hIFS(x1, x2, y1, y2) ≥ hIFS(x1, z, y1, y2).

IF-loc.5 If (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1], then:
hIFS(z, x2, z, y2) ≤ hIFS(x1, x2, y1, y2) if (x2, z), (y2, z) ∈ T and
hIFS(x1, z, y1, z) ≤ hIFS(x1, x2, y1, y2) if (x1, z), (y1, z) ∈ T .
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Proof: Assume first of all that DIFS is a local IF-divergence and let us prove that
DIFS(A,B) can be expressed as in Equation (5.4) for every A,B ∈ IFSs(Ω), where
hIFS satisfies the properties IF-loc.1 to IF-loc.6. In order to prove that, we will apply
recursively Equation (5.3):

DIFS(A,B) =DIFS(A ∪ {ω1}, B ∪ {ω1})
+ hIFS(µA(ω1), νA(ω1), µB(ω1), νB(ω1))
=DIFS(A ∪ {ω1} ∪ {ω2}, B ∪ {ω1} ∪ {ω2})

+
2∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi))

= . . .

=DIFS(Ω,Ω) +
n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi)).

Moreover, from axiom IF-Diss.1 we know that DIFS(Ω,Ω) = 0, and therefore DIFS can
be expressed by:

DIFS(A,B) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi)).

This shows that DIFS can be expressed as in Equation (5.4).

Let us prove next that hIFS fulfills properties IF-loc.1 to IF-loc.5:

IF-loc.1: Take x, y ∈ T , and let us prove that hIFS(x, y, x, y) = 0. Define the IF-set
A by µA(ωi) = x and νA(ωi) = y, for every i = 1, . . . , n. Note that A is in fact an
IF-set since µA(ωi) + νA(ωi) = x + y ≤ 1 for every i = 1, . . . , n. Applying IF-diss.1,
DIFS(A,A) = 0, and therefore, since DIFS(A,A) can be expressed as in Equation (5.4),
it holds that:

0 = DIFS(A,A) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µA(ωi), νA(ωi))

=
n∑
i=1

hIFS(x, y, x, y) = n · hIFS(x, y, x, y).

Then, it must hold that hIFS(x, y, x, y) = 0.

IF-loc.2: Let (x1, x2), (y1, y2) be two elements in T . Consider the IF-sets A and
B defined by: µA(ωi) = x1, νA(ωi) = x2, µB(ωi) = y1 and νB(ωi) = y2. Using axiom
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IF-diss.2 and Equation (5.4) we obtain the following:

n · hIFS(x1, x2, y1, y2) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi))

=DIFS(A,B) = DIFS(B,A)

=
n∑
i=1

hIFS(µB(ωi), νB(ωi), µA(ωi), νA(ωi))

= nhIFS(y1, y2, x1, x2).

Thus, hIFS(x1, x2, y1, y2) = hIFS(y1, y2, x1, x2).

IF-loc.3: Consider (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1] such that x1 ≤ z ≤ y1, and
let us define the IF-sets A and B by: µA(ωi) = x1, νA(ωi) = x2, µB(ωi) = y1 and
νB(ωi) = y2, for every i = 1, . . . , n. We have to consider two cases:

• On one hand we are going to prove that

hIFS(x1, x2, y1, y2) ≥ hIFS(x1, x2, z, y2).

To see this, consider the IF-set C defined by µC(ωi) = z and νC(ωi) = 0 for
i = 1, . . . , n. Then the IF-sets A ∩ C and B ∩ C are given by:

A ∩ C = A.
B ∩ C = {(ωi, µC(ωi), νB(ωi)) | i = 1, . . . , n}.

By axiom IF-Div.3, we see that DIFS(A,B) ≥ DIFS(A∩C,B∩C) = DIFS(A,B∩C),
and then Equation (5.4) implies that:

n · hIFS(x1, x2, y1, y2) =DIFS(A,B) ≥ DIFS(A ∩ C,B ∩ C)
= n · hIFS(x1, x2, z, y2).

Hence, hIFS(x1, x2, y1, y2) ≥ hIFS(x1, x2, z, y2).

• Let us prove now that, when (x2, z), (y2, z) ∈ T , it holds that
hIFS(x1, x2, y1, y2) ≥ hIFS(z, x2, y1, y2). Consider the IF-set C defined by µC(ωi) = z
and νC(ωi) = max(x2, y2), for i = 1, . . . , n. Note that C is an IF-set because
µC(ωi) + νC(ωi) = max(x2 + z, y2 + z) ≤ 1, for i = 1, . . . , n. Using axiom IF-Div.4,
we deduce that DIFS(A,B) ≥ DIFS(A ∪ C,B ∪ C). Moreover, the IF-sets A ∪ C
and B ∪ C are given by:

A ∪ C = {(ωi, µC(ωi), νA(ωi) | i = 1, . . . , n}.
B ∪ C = B.

Then, DIFS(A,B) ≥ DIFS(A ∪ C,B). This, together with Equation (5.4), implies
that:

n · hIFS(x1, x2, y1, y2) = DIFS(A,B) ≥ DIFS(A ∪ C,B ∪ C) = n · hIFS(z, x2, y1, y2).

Hence, hIFS(x1, x2, y1, y2) ≥ hIFS(z, x2, y1, y2).
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IF-loc.4: The proof is similar to that of IF-loc.3. Consider (x1, x2) and (y1, y2) in
T , and let z be a point in [0, 1] such that x2 ≤ z ≤ y2. Define the IF-sets A and B by:

A = {(ω, x1, x2) | ω ∈ Ω} and B = {(ω, y1, y2) | ω ∈ Ω}.

If we consider the IF-set C given by:

C = {(ω, 0, z) | ω ∈ Ω},

then, the IF-sets A ∪ C and B ∪ C are given by:

A ∪ C = A and B ∪ C = {(ω, y1, z)}.

Applying axiom IF-Div.4 we deduce that

DIFS(A,B) ≥ DIFS(A ∪ C,B ∪ C) = DIFS(A,B ∪ C),

and using now Equation (5.4), we obtain:

n · hIFS(x1, x2, y1, y2) = DIFS(A,B) ≥ DIFS(A ∪ C,B ∪ C) = n · hIFS(x1, x2, y1, z).

Moreover, if (x1, z), (y1, z) ∈ T , we consider the set

C ′ = {(ω,max(x1, y1), z) | ω ∈ Ω}.

Since (x1, z), (y1, z) ∈ T , C ′ is an IF-set. Moreover, A ∩ C ′ and B ∩ C ′ are given by:

A ∩ C ′ = {(ω, x1, z) | ω ∈ Ω} and B ∩ C ′ = B.

Using axiom IF-Div.3, we deduce that

DIFS(A,B) ≥ DIFS(A ∩ C ′, B ∩ C ′) = DIFS(A ∩ C ′, B),

and applying Equation (5.4),

n · hIFS(x1, x2, y1, y2) = DIFS(A,B) ≥ DIFS(A ∩ C ′, B ∩ C ′) = n · hIFS(x1, z, y1, y2).

Hence, hIFS(x1, x2, y1, y2) ≥ hIFS(x1, z, y1, y2).

IF-loc.5: Let us consider (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1].

If we assume that (x2, z), (y2, z) ∈ T , then max(x2, y2) + z ≤ 1; we consider the
IF-sets A, B, C and D given by:

A = {(ω, x1, x2) | ω ∈ Ω}, B = {(ω, y1, y2) | ω ∈ Ω}.
C = {(ω, z, x2) | ω ∈ Ω}, D = {(ω, z, y2) | ω ∈ Ω}.

From Proposition 5.25, we know that DIFS(A,B) ≥ DIFS(C,D), and applying Equa-
tion (5.4) we deduce that

n · hIFS(x1, x2, y1, y2) = DIFS(A,B) ≥ DIFS(C,D) = n · hIFS(z, x2, z, y2).
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Thus, hIFS(x1, x2, y1, y2) ≥ hIFS(z, x2, z, y2).

If we assume now that (x1, z), (y1, z) ∈ T , it holds that max(x1, y1) + z ≤ 1; we
consider the IF-sets:

A = {(ω, x1, x2) | ω ∈ Ω}, B = {(ω, y1, y2) | ω ∈ Ω}.
C = {(ω, x1, z) | ω ∈ Ω}, D = {(ω, y1, z) | ω ∈ Ω}.

Applying Corollary 5.26, DIFS(A,B) ≥ DIFS(C,D). Using Equation (5.4), we obtain:

n · hIFS(x1, x2, y1, y2) = DIFS(A,B) ≥ DIFS(C,D) = n · hIFS(x1, z, y1, z).

Thus, hIFS(x1, x2, y1, y2) ≥ hIFS(x1, z, y1, z).

Summarizing, if DIFS is a local IF-divergence, then DIFS(A,B) can be expressed as
in Equation (5.4) where the function hIFS satisfies IF-loc.1 to IF-loc.5.

Let us prove the converse: that if a function DIFS is defined by Equation (5.4),
where hIFS fulfills properties IF-loc.1 to IF-loc.5, then DIFS is a local IF-divergence.

First of all, let us prove that DIFS is an IF-divergence, i.e., that it satisfies axioms
IF-Diss.1, IF-Diss.2, IF-Div.3 and IF-Div.4.

IF-Diss.1: Let A be an IF-set. Then, DIFS(A,A) = 0 because

DIFS(A,A) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µA(ωi), νA(ωi)) = 0,

since IF-loc.1 implies that hIFS(x, y, x, y) = 0 for every (x, y) ∈ T , and in particular
(µA(ωi), νA(ωi)) ∈ T .

IF-Diss.2: Let A,B be IF-sets, and let us prove that DIFS(A,B) = DIFS(B,A).
By IF-loc.2, hIFS(x1, x2, y1, y2) = hIFS(y1, y2, x1, x2) for every (x1, x2), (y1, y2) ∈ T , as
(µA(ωi), νA(ωi)), (µB(ωi), νB(ωi)) ∈ T , whence

DIFS(A,B) = DIFS(B,A).

IF-Div.3 & IF-Div.4: Consider three IF-sets A,B and C, and let us show that
DIFS(A,B) ≥ max(DIFS(A ∪ C,B ∪ C), DIFS(A ∩ C,B ∩ C)). Consider the following
partition of Ω:

P1 = {ω ∈ Ω | max(µA(ω), µB(ω)) ≤ µC(ω)}.
P2 = {ω ∈ Ω | µA(ω) ≤ µC(ω) < µB(ω)}.
P3 = {ω ∈ Ω | µB(ω) ≤ µC(ω) < µA(ω)}.
P4 = {ω ∈ Ω | µC(ω) < min(µA(ω), µB(ω))}.
Q1 = {ω ∈ Ω | max(νA(ω), νB(ω)) ≤ νC(ω)}.
Q2 = {ω ∈ Ω | νA(ω) ≤ νC(ω) < νB(ω)}.
Q3 = {ω ∈ Ω | νB(ω) ≤ νC(ω) < νA(ω)}.
Q4 = {ω ∈ Ω | νC(ω) < min(νA(ω), νB(ω))}.
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Thus, Ω =
4⋃
i=1

4⋃
j=1

(Pi ∩ Qj). We are going to prove that, for every i, j ∈ {1, . . . , 4}, if

ω ∈ Pi ∩Qj then both:

hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C) and
hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C)

are smaller than
hIFS(µA(ω), νA(ω), µB(ω), νB(ω)).

1. ω ∈ P1 ∩Q1; by hypothesis, we have that:

max(µA(ω), µB(ω)) ≤ µC(ω) and max(νA(ω), νB(ω)) ≤ νC(ω),

whence
µA∪C(ω) = µC(ω), νA∪C(ω) = νA(ω),
µA∩C(ω) = µA(ω), νA∩C(ω) = νC(ω),
µB∪C(ω) = µC(ω), νB∪C(ω) = νB(ω),
µB∩C(ω) = µB(ω), νB∩C(ω) = νC(ω).

Moreover, property IF-loc.5 can be applied since

max(νA(ω), νB(ω)) + µC(ω) ≤ νC(ω) + µC(ω) ≤ 1,

whence (νA(ω), µC(ω)), (νB(ω), µC(ω)) ∈ T and therefore

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µC(ω), νA(ω), µC(ω), νB(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

Similarly,
hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νC(ω), µB(ω), νC(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

Let us remark that, in the rest of the proof, axioms IF-loc.3, IF-loc.4 and IF-loc.5
are applicable because the previous hypotheses are satisfied.

2. ω ∈ P1 ∩Q2; by hypothesis it holds that:

µA(ω), µB(ω) ≤ µC(ω) and νA(ω) ≤ νC(ω) < νB(ω),

whence
µA∪C(ω) = µC(ω), νA∪C(ω) = νA(ω),
µA∩C(ω) = µA(ω), νA∩C(ω) = νC(ω),
µB∪C(ω) = µC(ω), νB∪C(ω) = νC(ω),
µB∩C(ω) = µB(ω), νB∩C(ω) = νB(ω),
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As a consequence, by IF-loc.4 and IF-loc.5:

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νA(ω), µB(ω), νC(ω))
≥ hIFS(µC(ω), νA(ω), µC(ω), νC(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

Similarly, by IF-loc.4:

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νC(ω), µB(ω), νB(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

3. ω ∈ P1 ∩Q3; this case is immediate from case 2, if we exchange the roles of A and
B.

4. ω ∈ P1 ∩Q4; then we know that:

µA(ω), µB(ω) ≤ µC(ω), and νC(ω) < νA(ω), νB(ω).

Then, it holds that A ∪ C = B ∪ C = C, A ∩ C = A and B ∩ C = B, whence

hIFS(µA(ω), νA(ω), µB(ω), νB(ω)) = hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

Moreover,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))≥ 0 = hIFS(µC(ω), νC(ω), µC(ω), νC(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

5. ω ∈ P2 ∩Q1; in that case we know that:

µA(ω) ≤ µC(ω) < µB(ω) and νA(ω), νB(ω) ≤ νC(ω),

whence
µA∪C(ω) = µC(ω), νA∪C(ω) = νA(ω),
µA∩C(ω) = µA(ω), νA∩C(ω) = νC(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νB(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νC(ω).

Thus, by IF-loc.3,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µC(ω), νA(ω), µB(ω), νB(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

Similarly, by IF-loc.1 and IF-loc.3,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ 0 = hIFS(µC(ω), νC(ω), µC(ω), νC(ω))
≥ hIFS(µA(ω), νC(ω), µC(ω), νC(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).
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6. ω ∈ P2 ∩Q2; we know that:

µA(ω) ≤ µC(ω) < µB(ω) and νA(ω) ≤ νC(ω) < νB(ω).

Then
µA∪C(ω) = µC(ω), νA∪C(ω) = νA(ω),
µA∩C(ω) = µA(ω), νA∩C(ω) = νC(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νC(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νB(ω),

and therefore, by IF-loc.3 and IF-loc.4,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νA(ω), µB(ω), νC(ω))
≥ hIFS(µC(ω), νA(ω), µB(ω), νC(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

As a consequence,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νC(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νC(ω), µC(ω), νB(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

7. ω ∈ P2 ∩Q3; we know that:

µA(ω) ≤ µC(ω) < µB(ω) and νB(ω) ≤ νC(ω) < νA(ω).

Thus,
µA∪C(ω) = µC(ω), νA∪C(ω) = νC(ω),
µA∩C(ω) = µA(ω), νA∩C(ω) = νA(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νB(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νC(ω)

whence, applying IF-loc.3 and IF-loc.4,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νC(ω), µB(ω), νB(ω))
≥ hIFS(µC(ω), νC(ω), µB(ω), νB(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)),

and as a consequence

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νA(ω), µC(ω), νB(ω))
≥ hIFS(µA(ω), νA(ω), µC(ω), νC(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).
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8. ω ∈ P2 ∩Q4; it holds that:

µA(ω) ≤ µC(ω) < µB(ω) and νC(ω) ≤ νA(ω), νB(ω),

whence
µA∪C(ω) = µC(ω), νA∪C(ω) = νC(ω),
µA∩C(ω) = µA(ω), νA∩C(ω) = νA(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νC(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νB(ω).

and thus, by IF-loc.3,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
0 = hIFS(µC(ω), νC(ω), µC(ω), νC(ω))
≥ hIFS(µC(ω), νC(ω), µB(ω), νC(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

In addition,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νA(ω), µC(ω), νB(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

9. ω ∈ P3 ∩Qi; this case is immediate if we exchange the roles of A and B and apply
the case when ω ∈ P2 ∩Qi.

10. ω ∈ P4 ∩Q1; in such case

µC(ω) < µA(ω), µB(ω) and νA(ω), νB(ω) ≤ νC(ω).

We have that:
µA∪C(ω) = µA(ω), νA∪C(ω) = νA(ω),
µA∩C(ω) = µC(ω), νA∩C(ω) = νC(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νB(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νC(ω),

whence

hIFS(µA(ω), νA(ω), µB(ω), νB(ω)) = hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)),

and moreover, by IF-loc.1,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
= 0 ≥ hIFS(µC(ω), νC(ω), µC(ω), νC(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).



5.1. Measures of comparison of IF-sets 301

11. ω ∈ P4 ∩Q2; in such case we know that

µC(ω) < µA(ω), µB(ω) and νA(ω) ≤ νC(ω) < νB(ω).

It holds that
µA∪C(ω) = µA(ω), νA∪C(ω) = νA(ω),
µA∩C(ω) = µC(ω), νA∩C(ω) = νC(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νC(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νB(ω),

whence, applying IF-loc.4,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νA(ω), µB(ω), νC(ω))
= hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)).

Moreover, applying IF-loc.1 and IF-loc.4,

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
= 0 ≥ hIFS(µC(ω), νC(ω), µC(ω), νC(ω))
≥ hIFS(µC(ω), νC(ω), µC(ω), νB(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

12. ω ∈ P4 ∩Q3; this follows from the previous case by exchanging the roles of A and
B.

13. ω ∈ P4 ∩Q4; we know that

µC(ω) < µA(ω), µB(ω) and νC(ω) < νA(ω), νB(ω)

whence
µA∪C(ω) = µA(ω), νA∪C(ω) = νC(ω),
µA∩C(ω) = µC(ω), νA∩C(ω) = νA(ω),
µB∪C(ω) = µB(ω), νB∪C(ω) = νC(ω),
µB∩C(ω) = µC(ω), νB∩C(ω) = νB(ω),

and thus by IF-loc.5

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µA(ω), νC(ω), µB(ω), νC(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).

Moreover:
hIFS(µA(ω), νA(ω), µB(ω), νB(ω))
≥ hIFS(µC(ω), νA(ω), µC(ω), νB(ω))
= hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω)).
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Hence, since Ω =
4⋃
i=1

4⋃
j=1

Pi ∩Qj , we conclude that for all ω ∈ Ω it holds that:

hIFS(µA(ω), νA(ω), µB(ω), νB(ω)) ≥
max

(
hIFS(µA∪C(ω), νA∪C(ω), µB∪C(ω), νB∪C(ω)),

hIFS(µA∩C(ω), νA∩C(ω), µB∩C(ω), νB∩C(ω))
)
.

Thus, DIFS satisfies both IF-Div.3 and IF-Div.4, and therefore it is an IF-divergence. It
only remains to show that DIFS is local. But this holds trivially, taking into account that

DIFS(A,B)−DIFS(A ∪ {ωj}, B ∪ {ωj})

=
n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi))

−
∑
i 6=j

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi))− hIFS(1, 1, 0, 0)

= hIFS(µA(ωj), νA(ωj), µB(ωj), νB(ωj)).

We conclude that DIFS is a local IF-divergence.

Properties of local IF-divergences

In this section we are going to study some properties of local IF-divergences. In some
cases, the local property will allows us to obtain interesting and useful properties.

We begin by studying under which conditions a local divergence satisfies IF-Div.5.

Proposition 5.30 Let DIFS be a local IF-divergence which associated function hIFS. It
satisfies IF-Div.5 if and only if for every

(x1, x2), (y1, y2) ∈ T = {(x, y) ∈ [0, 1]2 | x+ y ≤ 1}

it holds that
hIFS(x1, x2, y1, y2) = hIFS(x2, x1, y2, y1).

Proof: Assume that DIFS satisfies axiom IF-Div.5, i.e., that for every A,B ∈ IFSs(Ω),
DIFS(A,B) = DIFS(Ac, Bc). Consider (x1, x2), (y1, y2) ∈ T , and define the IF-sets A and
B by:

A = {(ω, x1, x2) | ω ∈ Ω} and B = {(ω, y1, y2) | ω ∈ Ω}.

By IF-Div.5, it holds that DIFS(A,B) = DIFS(Ac, Bc). Using Equation (5.4),

n · hIFS(x1, x2, y1, y2) = DIFS(A,B) = DIFS(Ac, Bc) = n · hIFS(x2, x1, y2, y1).

Thus, hIFS(x1, x2, y1, y2) = hIFS(x2, x1, y2, y1).
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Conversely, assume that hIFS(x1, x2, y1, y2) = hIFS(x2, x1, y2, y1) for every two ele-
ments (x1, x2), (y1, y2) ∈ T . Let A and B be two IF-sets. Then, for every i = 1, . . . , n it
holds that:

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi)) = hIFS(νA(ωi), µA(ωi), νB(ωi), µB(ωi))

and therefore DIFS(A,B) = DIFS(Ac, Bc).

Next we give a lemma that shall be useful later.

Lemma 5.31 If DIFS is a local IF-divergence, then for every i = 1, . . . , n it holds that

DIFS(A ∪ {ωi}, B ∪ {ωi}) = DIFS(A ∩ {ωi}c, B ∩ {ωi}c).

Proof: Consider the IF-sets A ∩ {ωi}c and B ∩ {ωi}c. Note that

(A ∩ {ωi}c) ∪ {ωi} = (A ∪ {ωi}) ∩ ({ωi}c ∪ {ωi}) = A ∪ {ωi}.
(B ∩ {ωi}c) ∪ {ωi} = (B ∪ {ωi}) ∩ ({ωi}c ∪ {ωi}) = B ∪ {ωi}.

Since DIFS is a local IF-divergence,

DIFS

(
A ∩ {ωi}c, B ∩ {ωi}c

)
−DIFS

(
(A ∩ {ωi}c) ∪ {ωi}, (B ∩ {ωi}c) ∪ {ωi}

)
= DIFS(A ∩ {ωi}c, B ∩ {ωi}c)−DIFS(A ∪ {ωi}, B ∪ {ωi})
= hIFS(µA∩{ωi}c(ωi), νA∩{ωi}c(ωi), µB∩{ωi}c(ωi), νB∩{ωi}c(ωi))
= hIFS(0, 1, 0, 1) = 0,

using that
µA∩{ωi}c(ωi) = min(µA(ωi), 0) = 0,
νA∩{ωi}c(ωi) = max(νA(ωi), 1) = 1,
µB∩{ωi}c(ωi) = min(µB(ωi), 0) = 0,
νB∩{ωi}c(ωi) = max(µB(ωi), 1) = 1. �

Using this lemma, we can establish the following proposition.

Proposition 5.32 An IF-divergence DIFS is local if and only if there is a function h′

such that

DIFS(A,B)−DIFS(A ∩ {ωi}c, B ∩ {ωi}c) = h′(µA(ωi), νA(ωi), µB(ωi), νB(ωi))

for every A,B ∈ IFSs(Ω).

Proof: It is immediate from the previous lemma.

Let us give another characterization of local IF-divergences.
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Proposition 5.33 An IF-divergence DIFS is local if and only if for every X ∈ P(Ω) it
holds that:

DIFS(A,B) = DIFS(A ∩X,B ∩X) +DIFS(A ∩Xc, B ∩Xc),

for every A,B ∈ IFSs(Ω).

Proof: Assume that DIFS is a local IF-divergence, and let us consider A,B ∈ IFSs(Ω)
and X ∈ P(Ω).

Since A = (A ∩X) ∪ (A ∩Xc) and B = (B ∩X) ∪ (B ∩Xc), it holds that

DIFS(A,B) = DIFS((A ∩X) ∪ (A ∩Xc), (B ∩X) ∪ (B ∩Xc)).

Taking into account that DIFS is local, we deduce that:

DIFS(A,B) =
n∑
i=1

hIFS(µ(A∩X)∪(A∩Xc)(ωi), ν(A∩X)∪(A∩Xc)(ωi),

µ(B∩X)∪(B∩Xc)(ωi), ν(B∩X)∪(B∩Xc)(ωi)).

Moreover, by splitting the sum between the elements on X and Xc,

DIFS(A,B) =
∑
ω∈X

hIFS(µ(A∩X)∪(A∩Xc)(ω), ν(A∩X)∪(A∩Xc)(ω),

µ(B∩X)∪(B∩Xc)(ω), ν(B∩X)∪(B∩Xc)(ω))
+
∑
ω∈Xc

hIFS(µ(A∩X)∪(A∩Xc)(ω), ν(A∩X)∪(A∩Xc)(ω),

µ(B∩X)∪(B∩Xc)(ω), ν(B∩X)∪(B∩Xc)(ω)).

Furthermore:

ω ∈ X ⇒


µ(A∩X)∪(A∩Xc)(ω) = max(µA∩X(ω), µA∩Xc(ω))
µ(A∩X)∪(A∩Xc)(ω) = max(µA∩X(ω), 0) = µA∩X(ω).
ν(A∩X)∪(A∩Xc)(ω) = min(νA∩X(ω), νA∩Xc(ω))
ν(A∩X)∪(A∩Xc)(ω) = min(νA∩X(ω), 1) = νA∩X(ω).

ω ∈ Xc ⇒


µ(A∩X)∪(A∩Xc)(ω) = max(µA∩X(ω), µA∩Xc(ω))
µ(A∩X)∪(A∩Xc)(ω) = max(0, µA∩Xc(ω)) = µA∩Xc(ω).
ν(A∩X)∪(A∩Xc)(ω) = min(νA∩X(ω), νA∩Xc(ω))
ν(A∩X)∪(A∩Xc)(ω) = min(1, νA∩Xc(ω)) = νA∩Xc(ω).

Similarly,

ω ∈ X ⇒

{
µ(B∩X)∪(B∩Xc)(ω) = µB∩X(ω).
ν(B∩X)∪(B∩Xc)(ω) = νB∩X(ω).

ω ∈ Xc ⇒

{
µ(B∩X)∪(B∩Xc)(ω) = µB∩Xc(ω).
ν(B∩X)∪(B∩Xc)(ω) = νB∩Xc(ω).
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Thus, the expression of DIFS(A,B) becomes

DIFS(A,B) =
∑
ω∈X

hIFS(µA∩X(ω), νA∩X(ω), µB∩X(ω), νB∩X(ω))

+
∑
ω∈Xc

hIFS(µA∩Xc(ω), νA∩Xc(ω), µB∩Xc(ω), νB∩Xc(ω)).

Taking into account that

DIFS(A ∩X,B ∩X) =
∑
ω∈Ω

hIFS(µA∩X(ω), νA∩X(ω), µB∩X(ω), νB∩X(ω))

=
∑
ω∈X

hIFS(µA∩X(ω), νA∩X(ω), µB∩X(ω), νB∩X(ω))

+
∑
ω∈Xc

hIFS(µA∩X(ω), νA∩X(ω), µB∩X(ω), νB∩X(ω))

=
∑
ω∈X

hIFS(µA∩X(ω), νA∩X(ω), µB∩X(ω), νB∩X(ω)),

DIFS(A ∩Xc, B ∩Xc) =
∑
ω∈Ω

hIFS(µA∩Xc(ω), νA∩Xc(ω), µB∩Xc(ω), νB∩Xc(ω))

=
∑
ω∈X

hIFS(µA∩Xc(ω), νA∩Xc(ω), µB∩Xc(ω), νB∩Xc(ω))

+
∑
ω∈Xc

hIFS(µA∩Xc(ω), νA∩Xc(ω), µB∩Xc(ω), νB∩Xc(ω))

=
∑
ω∈Xc

hIFS(µA∩Xc(ω), νA∩Xc(ω), µB∩Xc(ω), νB∩Xc(ω)),

we conclude that

DIFS(A,B) = DIFS(A ∩X,B ∩X) +DIFS(A ∩Xc, B ∩Xc).

Conversely, assume that DIFS(A,B) = DIFS(A ∩X,B ∩X) +DIFS(A ∩Xc, B ∩Xc) for
every A,B ∈ IFSs(Ω) and X ⊆ Ω. Applying this property to the crisp set X = {ω1},

DIFS(A,B) =DIFS(A ∩ {ω1}, B ∩ {ω1}) +DIFS(A ∩ {ω2, . . . , ωn}, B ∩ {ω2, . . . , ωn})
=DIFS(A1, B1) +DIFS(A ∩ {ω2, . . . , ωn}, B ∩ {ω2, . . . , ωn}),

where the IF-sets A1 and B1 are defined by

A1 = {(ω1, µA(ω1), νA(ω1)), (ωi, 0, 1) | i 6= 1},
B1 = {(ω1, µB(ω1), νB(ω1)), (ωi, 0, 1) | i 6= 1}.

Now, apply the hypothesis to the crisp set X = {ω2} and the IF-sets A ∩ {ω2, . . . , ωn}
and B ∩ {ω2, . . . , ωn}.

DIFS(A ∩ {ω2, . . . , ωn}, B ∩ {ω2, . . . , ωn}=DIFS(A ∩ {ω2}, B ∩ {ω2})
+DIFS(A ∩ {ω3, . . . , ωn}, B ∩ {ω3, . . . , ωn})
=DIFS(A2, B2)
+DIFS(A ∩ {ω3, . . . , ωn}, B ∩ {ω3, . . . , ωn}),
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where
A2 = {(ω2, µA(ω2), νA(ω2)), (ωi, 0, 1) | i 6= 2},
B2 = {(ω2, µB(ω2), νB(ω2)), (ωi, 0, 1) | i 6= 2}.

If we repeat the process, for any j ∈ {1, . . . , n − 1}, given X = {ωj} and the IF-sets
A ∩ {ωj , . . . , ωn} and B ∩ {ωj , . . . , ωn}, it holds that:

DIFS(A ∩ {ωj , . . . , ωn}, B ∩ {ωj , . . . , ωn}
= DIFS(A ∩ {ωj}, B ∩ {ωj}) +DIFS(A ∩ {ωj+1, . . . , ωn}, B ∩ {ωj+1, . . . , ωn})
= DIFS(Aj , Bj) +DIFS(A ∩ {ωj+1, . . . , ωn}, B ∩ {ωj+1, . . . , ωn}),

where
Aj = {(ωj , µA(ωj), νA(ωj)), (ωi, 0, 1) | i 6= j},
Bj = {(ωj , µB(ωj), νB(ωj)), (ωi, 0, 1) | i 6= j}.

Then, DIFS(A,B) can be expressed by

DIFS(A,B) =DIFS(A1, B1) +DIFS(A ∩ {ω2, . . . , ωn}, B ∩ {ω2, . . . , ωn})
=DIFS(A1, B1) +DIFS(A2, B2)
+DIFS(A ∩ {ω3, . . . , ωn}, B ∩ {ω3, . . . , ωn})

= . . . =
n∑
i=1

DIFS(Ai, Bi).

Now, consider the difference between DIFS(A,B) and DIFS(A ∩ {ωi}, B ∩ {ωi}):

DIFS(A∪{ωi}, B ∪{ωi})−DIFS(A,B) = DIFS(Ai ∪{ωi}, Bi ∪{ωi})−DIFS(Ai, Bi).

This difference only depends on µA(ωi), νA(ωi) and µB(ωi), νB(ωi), so taking into account
Definition 5.28 we conclude that DIFS is a local IF-divergence.

A particular case of interest is the comparison of an IF-set and its complementary.
In this sense, it seems useful to measure how imprecise an IF-set is. We consider the
following partial order between IF-sets: given two IF-sets A and B, we say that A
is sharper than B, and denote it A ≪ B, when |µA(ω) − 0.5| ≥ |µB(ω) − 0.5| and
|νA(ω)− 0.5| ≥ |νB(ω)− 0.5| for every ω ∈ Ω.

Using this partial order we can establish the following interesting property.

Proposition 5.34 If DIFS is a local IF-divergence and A ≪ B, then it holds that
DIFS(A,Ac) ≥ DIFS(B,Bc).

Proof: Assume that A≪ B, and let us consider the crisp sets X and Y defined by

X = {ω ∈ Ω | µA(ω) ≤ 0.5 and νA(ω) ≥ 0.5}.
Y = {ω ∈ Ω | µB(ω) ≤ νB(ω)}.
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Applying Proposition 5.33,

DIFS(A,Ac) = DIFS(A ∩X,Ac ∩X) +DIFS(A ∩Xc, Ac ∩Xc)

and if we use the same proposition with DIFS(A∩X,Ac∩X) and DIFS(A∩Xc, Ac∩Xc),
we obtain that

DIFS(A ∩X,Ac ∩X) =DIFS(A ∩X ∩ Y,Ac ∩X ∩ Y )
+DIFS(A ∩X ∩ Y c, Ac ∩X ∩ Y c),

DIFS(A ∩Xc, Ac ∩Xc) =DIFS(A ∩Xc ∩ Y,Ac ∩Xc ∩ Y )
+DIFS(A ∩Xc ∩ Y c, Ac ∩Xc ∩ Y c).

Hence,
DIFS(A,Ac) =DIFS(A ∩X ∩ Y,Ac ∩X ∩ Y )

+DIFS(A ∩X ∩ Y c, Ac ∩X ∩ Y c)
+DIFS(A ∩Xc ∩ Y,Ac ∩Xc ∩ Y )
+DIFS(A ∩Xc ∩ Y c, Ac ∩Xc ∩ Y c).

Let us study each of the summands in the right-hand-side separately. For the first one,
we have that

µA∩X∩Y(ω) =

{
µA(ω) if µA(ω) ≤ 0.5 ≤ νA(ω) and µB(ω) ≤ νB(ω),
0 otherwise,

νA∩X∩Y(ω) =

{
νA(ω) if µA(ω) ≤ 0.5 ≤ νA(ω) and µB(ω) ≤ νB(ω),
1 otherwise.

However, if ω ∈ X ∩ Y , taking into account that A≪ B, it holds that

µA(ω) ≤ µB(ω) ≤ 0.5 ≤ νB(ω) ≤ νA(ω)

and therefore,
A ∩X ∩ Y ⊆ B ⊆ Bc ∩X ∩ Y ⊆ Ac ∩X ∩ Y.

Now, applying Lemma 5.5 we obtain that

DIFS(A ∩X ∩ Y,Ac ∩X ∩ Y ) ≥ DIFS(B ∩X ∩ Y,Bc ∩X ∩ Y ).

Let us consider next the second term

µA∩X∩Yc(ω) =

{
µA(ω) if µA(ω) ≤ 0.5 ≤ νA(ω) and νB(ω) ≤ µB(ω),
0 otherwise,

νA∩Xc∩Y(ω) =

{
νA(ω) if µA(ω) ≤ 0.5 ≤ νA(ω) and νB(ω) ≤ µB(ω),
1 otherwise,

However, if ω ∈ X ∩ Y c, since A≪ B it holds that

µA(ω) ≤ νB(ω) ≤ 0.5 ≤ µB(ω) ≤ νA(ω)
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whence
A ∩X ∩ Y c ⊆ Bc ∩X ∩ Y c ⊆ B ∩X ∩ Y c ⊆ Ac ∩X ∩ Y c

and if we apply Lemma 5.5 we obtain that

DIFS(A ∩X ∩ Y c, Ac ∩X ∩ Y c) ≥ DIFS(B ∩X ∩ Y c, Bc ∩X ∩ Y c).

Consider next the third summand

µA∩Xc∩Y(ω) =

{
µA(ω) if νA(ω) ≤ 0.5 ≤ µA(ω) and µB(ω) ≤ νB(ω),
0 otherwise,

νA∩Xc∩Y(ω) =

{
νA(ω) if νA(ω) ≤ 0.5 ≤ µA(ω) and µB(ω) ≤ νB(ω),
1 otherwise.

If ω ∈ Xc ∩ Y , since A≪ B, it holds that

νA(ω) ≤ µB(ω) ≤ 0.5 ≤ νB(ω) ≤ µA(ω)

whence
Ac ∩Xc ∩ Y ⊆ B ∩Xc ∩ Y ⊆ Bc ∩Xc ∩ Y ⊆ A ∩Xc ∩ Y.

Applying Lemma 5.5, we obtain that

DIFS(A ∩Xc ∩ Y,Ac ∩Xc ∩ Y ) ≥ DIFS(B ∩Xc ∩ Y,Bc ∩Xc ∩ Y )

Finally, consider the fourth term:

µA∩Xc∩Yc(ω) =

{
µA(ω) if νA(ω) ≤ 0.5 ≤ µA(ω) and νB(ω) ≤ µB(ω),
0 otherwise,

νA∩Xc∩Yc(ω) =

{
νA(ω) if νA(ω) ≤ 0.5 ≤ µA(ω) and νB(ω) ≤ µB(ω),
1 otherwise.

If ω ∈ Xc ∩ Y c, taking into account that A≪ B, it holds that:

νA(ω) ≤ νB(ω) ≤ 0.5 ≤ µB(ω) ≤ µA(ω).

Then, using Lemma 5.5 we obtain that

DIFS(A ∩Xc ∩ Y c, Ac ∩Xc ∩ Y c) ≥ DIFS(B ∩Xc ∩ Y c, Bc ∩Xc ∩ Y c)

and therefore

DIFS(A,Ac) =DIFS(A ∩X ∩ Y,Ac ∩X ∩ Y )
+DIFS(A ∩X ∩ Y c, Ac ∩X ∩ Y c)
+DIFS(A ∩Xc ∩ Y,Ac ∩Xc ∩ Y )
+DIFS(A ∩Xc ∩ Y c, Ac ∩Xc ∩ Y c)
≥DIFS(B ∩X ∩ Y,Bc ∩X ∩ Y )
+DIFS(B ∩X ∩ Y c, Bc ∩X ∩ Y c)
+DIFS(B ∩Xc ∩ Y,Bc ∩Xc ∩ Y )
+DIFS(B ∩Xc ∩ Y c, Bc ∩Xc ∩ Y c) = DIFS(B,Bc).



5.1. Measures of comparison of IF-sets 309

This completes the proof.

The above result implies that the lower the fuzziness, the greater the divergence
between an IF-set and its complementary. Moreover, the divergence is maximum when
the IF-set is crisp.

Proposition 5.35 If V and Z are two crisp sets and DIFS is a local IF-divergence,

DIFS(V, V c) = DIFS(Z,Zc).

In addition, if A,B ∈ IFSs(Ω), then DIFS(A,B) ≤ DIFS(Z,Zc).

Proof: Note that, by IF-loc.2 of Theorem 5.29 hIFS(1, 0, 0, 1) = hIFS(0, 1, 1, 0), and
therefore

DIFS(V, V c) = n · hIFS(1, 0, 0, 1) = DIFS(Z,Zc).

Now, taking into account that hIFS(1, 0, 0, 1) ≥ hIFS(x1, x2, y1, y2), since by IF-loc.3 and
IF-loc.4:

hIFS(1, 0, 0, 1)≥ hIFS(x1, 0, 0, 1) ≥ hIFS(x1, x2, 0, 1)
≥ hIFS(x1, x2, 0, y2) ≥ hIFS(x1, x2, y1, y2),

we have that

DIFS(A,B) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi))

≤
n∑
i=1

hIFS(1, 0, 0, 1) = DIFS(Z,Zc). �

We have seen that every IF-divergence is also an IF-dissimilarity, and therefore it satisfies
that DIFS(A,C) ≥ max(DIFS(A,B), DIFS(B,C)) for every IF-sets A, B and C such
that A ⊆ B ⊆ C. In the following proposition we obtain a similar result for local
IF-divergences with less restrictive conditions.

Proposition 5.36 Let DIFS be a local IF-divergence. If for every ω ∈ Ω either

µA(ω) ≤ µB(ω) ≤ µC(ω) and νA(ω) ≥ νB(ω) ≥ νC(ω),

or
µA(ω) ≥ µB(ω) ≥ µC(ω) and νA(ω) ≤ νB(ω) ≤ νC(ω),

then DIFS(A,C) ≥ max(DIFS(A,B), DIFS(B,C)).

Proof: Since the IF-divergence is local we can apply properties IF-loc.3 and IF-loc.4,
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and we obtain the following:

DIFS(A,C) =
n∑
i=1

hIFS(µA(ωi), νA(ωi), µC(ωi), νC(ωi))

≥max
( n∑
i=1

hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi)),

n∑
i=1

hIFS(µB(ωi), νB(ωi), µC(ωi), νC(ωi))
)

= max(DIFS(A,B), DIFS(B,C)). �

In Proposition 5.27 we proved that, if DIFS is an IF-divergence, then Dφ
IFS is also an

IF-divergence, where Dφ
IFS(A,B) = φ(DIFS(A,B)) and φ is a increasing function such

that φ(0) = 0. In particular, if DIFS is a local IF-divergence, Dφ
IFS is local if and only

if φ is linear. Next we derive a similar method to build local IF-divergences from local
IF-divergences.

Proposition 5.37 Let DIFS be a local IF-divergence, and let φ : [0,∞) → [0,∞) be a
increasing function such that φ(0) = 0. Then, the function DIFS,φ, defined by

DIFS,φ(A,B) =
n∑
i=1

φ
(
hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi))

)
,

is a local IF-divergence.

Proof: Immediate using the properties of φ and taking into account that hIFS satisfies
the properties IF-loc.1 to IF-loc.5.

To conclude this section, we relate local IF-divergences and real distances.

Proposition 5.38 Consider a distance d : R× R→ R satisfying

max(d(x, y), d(y, z)) ≤ d(x, z)

for x < y < z. Then, for every increasing function φ : [0,∞)× [0,∞)→ [0,∞) such that
φ(0, 0) = 0, the function DIFS : IFSs(Ω)× IFSs(Ω)→ R defined by:

DIFS(A,B) =
n∑
i=1

φ(d(µA(ωi), µB(ωi)), d(νA(ωi), νB(ωi)))

is a local IF-divergence.

Proof: Using Theorem 5.42, it suffices to prove that the function

hIFS(x1, x2, y1, y2) = φ(d(x1, y1), d(x2, y2))



5.1. Measures of comparison of IF-sets 311

satisfies the properties IF-loc.1 to IF-loc.5.

IF-loc.1: Consider (x, y) ∈ T = {(x, y) ∈ [0, 1]2 | x + y ≤ 1}. Since d is a distance,
d(x, x) = d(y, y) = 0, and therefore

hIFS(x, y, x, y) = φ(d(x, x), d(y, y)) = φ(0, 0) = 0.

IF-loc.2: Take (x1, x2) and (y1, y2) in T . Since d is a distance, d(x1, y1) = d(y1, x1)
and d(x2, y2) = d(y2, x2), whence

hIFS(x1, x2, y1, y2) = φ(d(x1, y1), d(x2, y2)) = φ(d(y1, x1), d(y2, x2)) = hIFS(y1, y2, x1, x2).

IF-loc.3: Consider (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1] such that x1 ≤ z ≤ y1.
Applying the hypothesis on d,

d(x1, y1) ≥ max(d(x1, z), d(z, y1))

whence

hIFS(x1, x2, y1, y2) = φ(d(x1, y1), d(x2, y2)) ≥ φ(d(x1, z), d(x2, y2)) = hIFS(x1, x2, z, y2).

Moreover, if (x2, z), (y2, z) ∈ T , then max(x2, y2) + z ≤ 1 and it holds that:

hIFS(x1, x2, y1, y2) = φ(d(x1, y1), d(x2, y2)) ≥ φ(d(z, y1), d(x2, y2)) = hIFS(z, x2, y1, y2).

IF-loc.4: Let (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1] such that x2 ≤ z ≤ y2. Applying
the hypothesis on d,

d(x2, y2) ≥ max(d(x2, z), d(z, y2)).

Since φ is increasing in each component:

hIFS(x1, x2, y1, y2) = φ(d(x1, y1), d(x2, y2)) ≥ φ(d(x1, y1), d(x2, z)) = hIFS(x1, x2, y1, z).

Moreover, if (x1, z), (y1, z) ∈ T , it holds that max(x1, y1) + z ≤ 1 and then:

hIFS(x1, x2, y1, y2) = φ(d(x1, y1), d(x2, y2)) ≥ φ(d(x1, y1), d(z, y2)) = hIFS(x1, z, y1, y2).

IF-loc.5: Finally, consider (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1]. Applying our hypoth-
esis on d, it holds that:

d(z, z) = 0 ≤ min(d(x1, y1), d(x2, y2)).

Then, if (x2, z), (y2, z) ∈ T , it holds that max(x2, y2) + z ≤ 1, and since φ is increasing
in each component, it follows that

hIFS(z, x2, z, y2) = φ(d(z, z), d(x2, y2)) ≤ φ(d(x1, y1), d(x2, y2)) = hIFS(x1, x2, y1, y2).
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Moreover, if (x1, z), (x2, z) ∈ T , then max(x1, y1) + z ≤ 1, and since φ is increasing in
each component, it holds that:

hIFS(x1, z, y1, z) = φ(d(x1, y1), d(z, z)) ≤ φ(d(x1, y1), d(x2, y2)) = hIFS(x1, x2, y1, y2).

Thus, hIFS satisfies properties IF-loc.1 to IF-loc.5. Applying Theorem 5.29, we conclude
that DIFS is a local IF-divergence.

Let us see an example of an application of this result.

Example 5.39 Consider the distance d defined by d(x, y) = |x− y|, and the increasing
function φ(x, y) = x+y

2n , that satisfies φ(0, 0) = 0. Then, we can define the function
DIFS : IFSs(Ω)× IFSs(Ω)→ R defined by

DIFS(A,B) =
n∑
i=1

φ
(
d(µA(ωi), µB(ωi)), d(νA(ωi), νB(ωi)

)
for every A,B ∈ IFSs(Ω) is an IF-divergence. In fact, if we input the values of φ and
d, DIFS becomes

DIFS(A,B) =
n∑
i=1

|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|,

i.e., we obtain Hong and Kim IF-divergence DC (see 5.1.3).�

Examples of local IF-divergences

In this section we are going to study which of the examples of IF-divergences of Sec-
tion 5.1.3 are in particular local IF-divergences.

Let us begin with the Hamming distance (see Section 5.1.3). It is defined by:

lIFS(A,B) =
n∑
i=1

|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|+ |πA(ωi)− πB(ωi)|.

Consider two IF-sets A and B, and an element ωi ∈ Ω. We have to see that the difference
lIFS(A,B)− lIFS(A∪{ωi}, B ∪{ωi}) only depends on µA(ωi), µB(ωi), νA(ωi) and νB(ωi).
Note that, since µA∪{ωi}(ωi) = µB∪{ωi}(ωi) = 1 and νA∪{ωi}(ωi) = νB∪{ωi}(ωi) = 0,
lIFS(A ∪ {ωi}, B ∪ {ωi}) takes the following value:

lIFS(A ∪ {ωi}, B ∪ {ωi}) =∑
j 6=i

|µA(ωj)− µB(ωj)|+ |νA(ωj)− νB(ωj)|+ |πA(ωj)− πB(ωj)|
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whence
lIFS(A,B)− lIFS(A ∪ {ωi}, B ∪ {ωi}) =
|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|+ |πA(ωi)− πB(ωi)| =
hIFS(µA(ωi), νA(ωi), µB(ωi), νB(ωi)).

Thus, lIFS is a local IF-divergence whose associated function hIFS is given by:

hIFS(x1, x2, y1, y2) = |x1 − y1|+ |x2 − y2|+ |x1 + x2 − y1 − y2|.

Moreover, the normalized Hamming distance, defined by lnIFS(A,B) = 1
n lIFS(A,B),

is also a local IF-divergence. The reason is that lnIFS(A,B) = φ(lIFS(A,B)), where
φ(x) = x

n , and we have already mentioned that in that case lnIFS is local if and only if φ
is linear.

Let us next study the Hausdorff distance for IF-sets (see Section 5.1.3), which is
given by:

dH(A,B) =
n∑
i=1

max(|µA(ωi)− µB(ωi)|, |νA(ωi), νB(ωi)|).

Consider ωi ∈ Ω, and let A and B be two IF-sets. As we have done in the previous case,
dH(A ∪ {ωi}, B ∪ {ωi}) is given by

dH(A ∪ {ωi}, B ∪ {ωi}) =
∑
j 6=i

max(|µA(ωj)− µB(ωj)|, |νA(ωj), νB(ωj)|),

taking into account that A ∪ {ωi} and B ∪ {ωi} are given by:

A ∪ {ωi} = {(ωj , µA(ωj), νA(ωj)), (ωi, 1, 0) | j 6= i}.
B ∪ {ωi} = {(ωj , µB(ωj), νB(ωj)), (ωi, 1, 0) | j 6= i}.

Hence, dH(A,B)− dH(A ∪ {ωi}, B ∪ {ωi}) is given by

dH(A,B)− dH(A ∪ {ωi}, B ∪ {ωi}) = max(|µA(ωi)− µB(ωi)|, |νA(ωi)− νB(ωi)|).

Therefore, the Hamming distance for IF-sets is a local IF-divergence, whose associated
function hdH is given by

hdH(x1, x2, y1, y2) = max(|x1 − y1|, |x2 − y2|).

The same applies to the normalized Hausdorff distance, since it is a linear transformation
of the Hausdorff distance.

Consider now the IF-divergences defined by Hong and Kim, DC and DL (see Sec-
tion 5.1.3), given by

DC(A,B) =
1

2n

n∑
i=1

|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|.

DL(A,B) =
1

4n

n∑
i=1

|µA(ωi)− µB(ωi)− νA(ωi) + νB(ωi)|

+ |µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|.
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Let us see that both IF-divergences are local. Consider two IF-sets A and B and an
element ωi ∈ Ω, and let us compute DC(A∪{ωi}, B ∪{ωi}) and DL(A∪{ωi}, B ∪{ωi}).

DC(A ∪ {ωi}, B ∪ {ωi}) =
1

2n

∑
j 6=i

|µA(ωj)− µB(ωj)|+ |νA(ωj)− νB(ωj)|.

DL(A ∪ {ωi}, B ∪ {ωi}) =
1

4n

∑
j 6=i

|µA(ωj)− µB(ωj)− νA(ωj) + νB(ωj)|

+ |µA(ωj)− µB(ωj)|+ |νA(ωj)− νB(ωj)|.

Then,

DC(A,B)−DC(A ∪ {ωi}, B ∪ {ωi}) = |µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|.
DL(A,B) −DL(A ∪ {ωi}, B ∪ {ωi})

= |µA(ωj)− µB(ωj)− νA(ωj) + νB(ωj)|
+ |µA(ωj)− µB(ωj)|+ |νA(ωj)− νB(ωj)|.

Thus, both IF-divergences are local, and their respective functions hDC and hDL are:

hDC(x1, x2, y1, y2) = |x1 − y1|+ |x2 − y2|.
hDL(x1, x2, y1, y2) = |x1 − y1 − x2 + y2|+ |x1 − y1|+ |x2 − y2|.

In summary, Hamming and Hausdorff distances and the IF-divergences of Hong and Kim
are local IF-divergences. It can be checked that the other examples of IF-divergences are
not local.

5.1.5 IF-divergences Vs Divergences

Some of the studies presented until now in this chapter are inspired in the concept of
fuzzy divergence introduced by Montes et al. ([160]).

Definition 5.40 ([160]) Let Ω be an universe. A map D : FS(Ω) × FS(Ω) → R is a
divergence if it satisfies the following conditions:

Div.1: D(A,A) = 0 for every A ∈ FS(Ω).
Div.2: D(A,B) = D(B,A) for every A,B ∈ FS(Ω).
Div.3: D(A ∩ C,B ∩ C) ≤ D(A,B), for every A,B,C ∈ FS(Ω).
Div.4: D(A ∪ C,B ∪ C) ≤ D(A,B), for every A,B,C ∈ FS(Ω).

Montes et all ([160]) also investigated the local property for fuzzy divergences.

Definition 5.41 ([160, Def. 3.2]) A divergence measure defined on a finite universe
is a local divergence, or it is said to fulfill the local property, if for every A,B ∈ FS(Ω)
and every ω ∈ Ω we have that:

D(A,B)−D(A ∪ {ω}, B ∪ {ω}) = h(A(ω), B(ω)),
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Local fuzzy divergences were characterized as follows.

Theorem 5.42 ([160, Prop. 3.4]) A map D : FS(Ω) × FS(Ω) → R defined on a
finite universe Ω = {ω1, . . . , ωn} is a local divergence if and only if there is a function
h : [0, 1]× [0, 1]→ R such that

D(A,B) =
n∑
i=1

h(A(ωi), B(ωi)),

and

loc.1: h(x, y) = h(y, x), for every (x, y) ∈ [0, 1]2.
loc.2: h(x, x) = 0 for every x ∈ [0, 1].
loc.3: h(x, z) ≥ max(h(x, y), h(y, z)), for every x, y, z ∈ [0, 1]

such that x < y < z.

In this section we are going to study the relationship between divergences and IF-
divergences. We shall provide some methods to derive IF-divergences from divergences
and vice versa. Moreover, we shall investigate under which conditions the property of
being local is preserved under these transformations.

From IF-divergences to fuzzy divergences

Consider an IF-divergence DIFS : IFSs(Ω)× IFSs(Ω)→ R defined on a finite universe
Ω = {ω1, . . . , ωn}. Recall that every fuzzy set A is in particular an IF-set, whose mem-
bership and non-membership functions are µA(ωi) = A(ωi) and νA(ωi) = 1 − A(ωi),
respectively. Hence, if A and B are two fuzzy sets, we can compute its divergence D as:

D(A,B) = DIFS(A,B).

Proposition 5.43 If DIFS is an IF-divergence, the map D : FS(Ω)×FS(Ω)→ R given
by

D(A,B) = DIFS(A,B)

is a divergence for fuzzy sets. Moreover, if DIFS satisfies axiom IF-Div.5, then D satisfies
axiom Div.5, and if DIFS is local, then so is D.

Proof: Let us prove that D is a divergence, i.e., that it satisfies axioms Diss.1 to Div.4.

Diss.1: Let A be a fuzzy set. Then:

D(A,A) = DIFS(A,A) = 0.
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Diss.2: Let A and B be two fuzzy sets. Since they are in particular IF-sets,
DIFS(A,B) = DIFS(B,A), and therefore:

D(A,B) = DIFS(A,B) = DIFS(B,A) = D(B,A).

Div.3: Let A, B and C be fuzzy sets. Again, since they are in particular IF-sets, it
holds that DIFS(A ∩ C,B ∩ C) ≤ DIFS(A,B). Then:

D(A ∩ C,B ∩ C) = DIFS(A ∩ C,B ∩ C) ≤ DIFS(A,B) = D(A,B).

Div.4: Similarly to Div.3, consider fuzzy sets A, B and C. Since they are in partic-
ular IF-sets, they satisfy DIFS(A ∪ C,B ∪ C) ≤ DIFS(A,B), whence

D(A ∪ C,B ∪ C) = DIFS(A ∪ C,B ∪ C) ≤ DIFS(A,B) = D(A,B).

Thus, D is a divergence for fuzzy sets. Assume now that DIFS satisfies IF-Div.5, i.e.,

DIFS(A,B) = DIFS(Ac, Bc) for every A,B ∈ IFSs(Ω).

Then, in particular, D satisfies axiom Div.5

D(A,B) = DIFS(A,B) = DIFS(Ac, Bc) = D(Ac, Bc),

for every A,B ∈ FS(Ω). Assume now that DIFS is a local IF-divergence. Then:

D(A,B)−D(A ∪ {ω}, B ∪ {ω}) =DIFS(A,B)−DIFS(A ∪ {ω}, B ∪ {ω})
= h̃(A(ω), 1−A(ω), B(ω), 1−B(ω)) = h(A(ω), B(ω)),

where h(x, y) = h̃(x, 1−x, y, 1− y). Consequently, D is a local divergence between fuzzy
sets.

Remark 5.44 The function D defined in the previous proposition is in fact a composi-
tion of some functions:

D : FS(Ω)× FS(Ω)
i
↪→ IFSs(Ω)× IFSs(Ω) DIFS−→ R

where i(A,B) stands for the inclusion of FS(Ω)× FS(Ω) on IFSs(Ω)× IFSs(Ω).�

Remark 5.45 If we look at the proof of Proposition 5.43, we see that, in order to prove
that D satisfies axiom Div.i, for i ∈ {1, 2} it is enough for DIFS to satisfy axiom IF-
Diss.i. Moreover, if DIFS satisfies axiom IF-Div.j, for j ∈ {3, 4}, then D also satisfies
axiom Div.j. In fact, if for instance DIFS is not an IF-divergence, but it satisfies IF-
Diss.1, IF-Diss.2 and IF-Div.3, we cannot assure that D is a divergence. However, we
know that D satisfies axioms Div.1, IF-Div.2 and IF-Div.3.�
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The above method of deriving divergences from IF-divergences seems to be natural. Let
us show how it can be used in a few examples.

Example 5.46 Consider the Hamming distance for IF-sets that we have already studied
in Section 5.1.3, given by:

lIFS(A,B) =
1
2

n∑
i=1

(|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|+ |πA(ωi)− πB(ωi)|).

If we consider A and B two fuzzy sets, the divergence D defined in the previous proposition
is:

D1(A,B) =
n∑
i=1

|A(ωi)−B(ωi)|.

Recall that the function:

lFS(A,B) =
n∑
i=1

|A(ωi)−B(ωi)|, ∀A,B ∈ FS(Ω)

is known as the Hamming distance for fuzzy sets. Then, from the Hamming distance
for IF-sets we obtain the Hamming distance for fuzzy sets. Moreover, if we consider
the normalized Hamming distance for IF-sets, we also obtain the normalized Hamming
distance, defined by lnFS(A,B) = 1

n lFS, for fuzzy sets.

Consider now the Hausdorff distance (see Section 5.1.3) for IF-sets:

dH(A,B) =
n∑
i=1

max(|µA(ωi)− µB(ωi)|, |νA(ωi)− νB(ωi)|).

Given two fuzzy sets A and B, if we apply Proposition 5.43 we obtain the Hamming
distance for fuzzy sets:

D2(A,B) = dH(A,B) =
n∑
i=1

max(|A(ωi)−B(ωi)|, |(1−A(ωi))− (1−B(ωi))|)

=
n∑
i=1

|A(ωi)−B(ωi)| = lFS(A,B).

Moreover, if we consider the normalized Hausdorff distance, we obtain the normalized
Hamming distance:

D3(A,B) = dnH(A,B) =
1
n

n∑
i=1

max(|A(ωi)−B(ωi)|, |(1−A(ωi))− (1−B(ωi))|)

=
1
n

n∑
i=1

|A(ωi)−B(ωi)| = lnFS(A,B).
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Thus, both the Hamming distance and the Hausdorff distance for IF-sets produce the
same divergence for fuzzy sets: the Hamming distance for fuzzy sets.

However, if we consider the IF-divergences of Hong and Kim (see Section 5.1.3),
defined by:

DC(A,B) =
1

2n

n∑
i=1

(|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|);

DL(A,B) =
1

4n

n∑
i=1

|(µA(ωi)− µB(ωi))− (νA(ωi)− νB(ωi))|

+ |µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|;

and we apply Proposition 5.43 we obtain also the normalized Hamming distance:

D4(A,B) =DC(A,B) =
1

2n

n∑
i=1

(|A(ωi)−B(ωi)|+ |(1−A(ωi))− (1−B(ωi))|

=
1
n

n∑
i=1

|A(ωi)−B(ωi)| = lnFS(A,B).

D5(A,B) =DL(A,B) =
1

4n

n∑
i=1

|(A(ωi)−B(ωi))− (1−A(ωi)− 1 +B(ωi))|

+ |A(ωi)−B(ωi)|+ |1−A(ωi)− 1 +B(ωi)|

=
1
n

n∑
i=1

|A(ωi)−B(ωi)| = lnFS(A,B).

Thus, both Hamming and Hausdorff distances for IF-sets produce the Hamming distance
for fuzzy sets, and the normalized Hamming and Hausdorff distances, and Hong and
Kim dissimilarities for IF-sets produce the normalized Hamming distance for fuzzy sets.
Consequently, all these IF-divergences can be seen as generalizations of the Hamming
distance for fuzzy sets to the comparison of IF-sets.�

Example 5.47 Let us now consider the IF-divergence defined by Li et al. (see page 283
of Section 5.1.3):

DO(A,B) =
1√
2n

( n∑
i=1

(µA(ωi)− µB(ωi))2 + (νA(ωi)− νB(ωi))2
) 1

2
.

If we use Proposition 5.43 in order to build a divergence for fuzzy sets from DO, we
obtain the normalized Euclidean distance for fuzzy sets:

D(A,B) =DO(A,B) =
1√
2n

( n∑
i=1

(A(ωi)−B(ωi))2 + (1−A(ωi)− 1 +B(ωi))2
) 1

2

=
1√
n

( n∑
i=1

(A(ωi)−B(ωi))2
) 1

2
=
√

2qnFS(A,B).
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Thus, both the normalized Euclidean distance for IF-sets and Li et al. IF-divergence are
generalizations of the normalized Euclidean distance for fuzzy sets. Note however that the
normalized Euclidean distance is not an IF-divergence (see Section 5.1.3), even though
Li et al.’s dissimilarity is.�

Example 5.48 Consider now the IF-divergence defined by Mitchell (see Section 5.1.3):

DHB(A,B) =
1

2 p
√
n

(( n∑
i=1

|µA(ωi)− µB(ωi)|p
) 1
p +

( n∑
i=1

|νA(ωi)− νB(ωi)|p
) 1
p

)
.

Applying Proposition 5.43, we obtain the following divergence for fuzzy sets:

D1(A,B) =DHB(A,B) =
1

2 p
√
n

(( n∑
i=1

|A(ωi)−B(ωi)|p
) 1
p

+
( n∑
i=1

|(1−A(ωi))− (1−B(ωi))|p
)1−p) =

1
p
√
n

( n∑
i=1

|A(ωi)−B(ωi)|p
) 1
p

.

If we now consider the IF-Divergence Dp
e of Liang and Shi (see Section 5.1.3), defined

by:

Dp
e (A,B) =

1
2 p
√
n

( n∑
i=1

(
|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|

)p) 1
p

and apply Proposition 5.43, we obtain the following divergence:

D2(A,B) = Dp
e (A,B)

D2(A,B) =
1

2 p
√
n

( n∑
i=1

(
|A(ωi)−B(ωi)|+ |(1−A(ωi))− (1−B(ωi))|

)p) 1
p

D2(A,B) =
1
p
√
n

( n∑
i=1

|A(ωi)−B(ωi)|p
) 1
p

.

Note that D1(A,B) = D2(A,B). Thus, both DHB and Dp
e produce the same divergence

between fuzzy sets, and therefore both of them can be seen as a generalization of the
divergence D1.�

Although the method proposed in Proposition 5.43 seems to be very natural, there is
another possible, albeit less intuitive, way of deriving divergences from IF-divergences,
that we detail next.

Proposition 5.49 The function D : FS(Ω)× FS(Ω)→ R defined by

D(A,B) = DIFS(Ã, B̃),
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where DIFS is an IF-divergence, is a divergence for fuzzy sets, where Ã and B̃ are given
by:

Ã = {(ω,A(ω), 0) | ω ∈ Ω} ∈ IFSs(Ω).
B̃ = {(ω,B(ω), 0) | ω ∈ Ω} ∈ IFSs(Ω).

However, although DIFS satisfies IF-Div.5, D may not satisfy Div.5.

Proof: Let us see that D satisfies the divergence axioms.

Diss.1: Let A be a fuzzy set. Then Ã = {(ω,A(ω), 0) | ω ∈ Ω}, and therefore, as
DIFS is an IF-divergence,

D(A,A) = DIFS(Ã, Ã) = 0.

Diss.2: Let A and B be two fuzzy sets. Then

D(A,B) = DIFS(A,B) = DIFS(B,A) = D(B,A),

because DIFS is symmetric.

Div.3: Consider A,B,C ∈ IFSs(Ω). Since DIFS is an IF-divergence, DIFS(Ã ∩
C̃, B̃ ∩ C̃) ≤ DIFS(Ã, B̃). Moreover,

Ã ∩ C = {(ω,min(µA(ω), µC(ω)), 0) | ω ∈ Ω} = Ã ∩ C̃.
B̃ ∩ C = {(ω,min(µB(ω), µC(ω)), 0) | ω ∈ Ω} = B̃ ∩ C̃,

whence

D(A ∩ C,B ∩ C) =DIFS(Ã ∩ C, B̃ ∩ C)
=DIFS(Ã ∩ C̃, B̃ ∩ C̃) ≤ DIFS(Ã, B̃) = D(A,B).

Div.4: The proof is similar to the previous one. Consider three fuzzy sets A, B and
C. We know that DIFS(Ã ∪ C̃, B̃ ∪ C̃) ≤ DIFS(Ã, B̃). Moreover,

Ã ∪ C = {(ω,max(µA(ω), µC(ω)), 0) | ω ∈ Ω} = Ã ∪ C̃.
B̃ ∪ C = {(ω,max(µB(ω), µC(ω)), 0) | ω ∈ Ω} = B̃ ∪ C̃.

Then, axiom Div.4 is satisfied, because:

D(A ∪ C,B ∪ C) =DIFS(Ã ∪ C, B̃ ∪ C)
=DIFS(Ã ∪ C̃, B̃ ∪ C̃) ≤ DIFS(A,B) = D(A,B).

Hence, D is a divergence for fuzzy sets. Assume now that DIFS satisfies axiom IF-Div.5
and let us show that in that case D may not satisfy Div.5. Consider a singleton universe
Ω = {ω}, and the function DIFS : IFSs(Ω)× IFSs(Ω)→ R defined by

DIFS(A,B) = |max(µA(ω)− 0.5, 0)−max(µB(ω)− 0.5, 0)|
+ |max(νA(ω)− 0.5, 0)−max(νB(ω)− 0.5, 0)|.
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Let us see that DIFS is an IF-divergence.

IF-Diss.1: Let A be an IF-set. Trivially

|max(µA(ω)− 0.5, 0)−max(µA(ω)− 0.5, 0)| = 0 and
|max(νA(ω)− 0.5, 0)−max(νA(ω)− 0.5, 0)| = 0,

and therefore DIFS(A,A) = 0.

IF-Diss.2: Let A and B be two IF-sets. Then it follows from the definition that
DIFS(A,B) = DIFS(B,A).

IF-Div.3: Let A, B and C be three IF-sets. We must prove the following inequality:

|max(µA(ω)− 0.5, 0)−max(µB(ω)− 0.5, 0)|+
|max(νA(ω)− 0.5, 0)−max(νB(ω)− 0.5, 0)| ≥
|max(µA∩C(ω)− 0.5, 0)−max(µB∩C(ω)− 0.5, 0)|+
|max(νA∩C(ω)− 0.5, 0)−max(νB∩C(ω)− 0.5, 0)|.

This follows from Lemma A.5 in Appendix A.

IF-Div.4: Similarly, if A, B and C are three IF-sets, condition IF-Div.4 holds if and
only if:

|max(µA(ω)− 0.5, 0)−max(µB(ω)− 0.5, 0)|+
|max(νA(ω)− 0.5, 0)−max(νB(ω)− 0.5, 0)| ≥
|max(µA∪C(ω)− 0.5, 0)−max(µB∪C(ω)− 0.5, 0)|+
|max(νA∪C(ω)− 0.5, 0)−max(νB∪C(ω)− 0.5, 0)|,

and this follows from Lemma A.5 in Appendix A.

Hence, DIFS is an IF-divergence. Moreover, it also trivially satisfies axiom IF-Div.5.

Consider the divergence derived in this proposition:

D(A,B) = DIFS({(ω,A(ω), 0}, {(ω,B(ω), 0}) = |max(A(ω)−0.5, 0)−max(B(ω)−0.5, 0)|.

Although DIFS satisfies IF-Div.5, D does not fulfill Div.5: if we consider the fuzzy sets
A and B given by

A = {(ω, 0.3)} ⇒ Ac = {(ω, 0.7)}, and
B = {(ω, 0.4)} ⇒ Bc = {(ω, 0.6)}

then it holds that D(A,B) = 0 6= 0.1 = D(Ac, Bc).

Although this second method for deriving divergences from IF-divergences is also
valid, for us the first one seems to be more natural; besides, we have shown that some
of the most important examples of divergences can be obtained applying this method to
the corresponding IF-divergences.
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From fuzzy divergences to IF-divergences

Consider now a divergence D : FS(Ω) × FS(Ω) → R between fuzzy sets define on a
finite space Ω = {ω1, . . . , ωn}, and let us study how to derive an IF-divergence from it.
Consider two IF-sets A and B. Each of them can be decomposed into two fuzzy sets as
follows:

A = {(ωi, µA(ωi), νA(ωi) | i = 1, . . . , n} ∈ IFSs(Ω)

⇒

{
A1 = {(ωi, µA(ωi) | i = 1, . . . , n} ∈ FS(Ω) ⊆ IFSs(Ω).
A2 = {(ωi, νA(ωi)) | i = 1, . . . , n} ∈ FS(Ω) ⊆ IFSs(Ω).

B = {(ωi, µB(ωi), νB(ωi) | i = 1, . . . , n} ∈ IFSs(Ω)

⇒

{
B1 = {(ωi, µB(ωi) | i = 1, . . . , n} ∈ FS(Ω) ⊆ IFSs(Ω).
B2 = {(ωi, νB(ωi)) | i = 1, . . . , n} ∈ FS(Ω) ⊆ IFSs(Ω).

Using the divergence D we can measure the divergence between the pairs of fuzzy sets
(A1, B1) and (A2, B2). In other words, we have the divergence between the membership
degrees and the non-membership degrees; in order to compute the divergence between A
and B it only remains to combine these two divergences.

Theorem 5.50 Let D be a divergence for fuzzy sets, and let f : [0,∞)× [0,∞)→ [0,∞)
be a mapping satisfying the following two properties:

f1: f(0, 0) = 0;
f2: f(·, t) and f(t, ·) are increasing for every t ∈ [0,∞);

then, the function DIFS : IFSs(Ω)× IFSs(Ω)→ R defined by

DIFS(A,B) = f(D(A1, B1), D(A2, B2)), for every A,B ∈ IFSs(Ω),

is an IF-divergence. Moreover, if D is a local divergence, then DIFS is also a local IF-
divergence if f has the form: f(x, y) = αx+ βy, for some α, β ≥ 0.

Finally, if f is symmetric then DIFS fulfills axiom IF-Div.5 (regardless of whether
D satisfies or not axiom Div.5), and if f is not symmetric, then although D satisfies
Div.5, DIFS may not satisfy IF-Div.5.

Proof: We begin by showing that DIFS is an IF-divergence.

IF-Diss.1: Let A be an IF-set. Applying the definition of DIFS we obtain that:

DIFS(A,A) = f(D(A1, A1), D(A2, A2)) = f(0, 0)
f1
= 0.

IF-Diss.2: Let A,B be IF-sets, and let us prove that DIFS(A,B) = DIFS(B,A).

DIFS(A,B) = f(D(A1, B1), D(A2, B2))
= f(D(B1, A1), D(B2, A2)) = DIFS(B,A).
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IF-Div.3: Consider the IF-sets A, B and C, and let us prove that DIFS(A ∩ C,B ∩
C) ≤ DIFS(A,B). Let us note the following:

A ∩ C = {(ω, µA∩C(ω), νA∩C(ω) | ω ∈ Ω}
= {(ω,min(µA(ω), µC(ω)),max(νA(ω), νC(ω))) | ω ∈ Ω}

⇒

{
(A ∩ C)1 = {(ω,min(µA(ω), µC(ω))) | ω ∈ Ω} ∈ FS(Ω).
(A ∩ C)2 = {(ω,max(νA(ω), νC(ω))) | ω ∈ Ω} ∈ FS(Ω).

Similarly, we also obtain that

(B ∩ C)1 = {(ω,min(µB(ω), µC(ω))) | ω ∈ Ω} ∈ FS(Ω).
(B ∩ C)2 = {(ω,max(νB(ω), νC(ω))) | ω ∈ Ω} ∈ FS(Ω).

Since D is a divergence for fuzzy sets, applying Div.3 we obtain that:

D(A ∩ C1, B ∩ C1) = D((A ∩ C)1, (B ∩ C)1) ≤ D(A1, B1),

where C1 = µC, and applying Div.4,

D(A ∪ C2, B ∪ C2) = D((A ∩ C)2, (B ∩ C)2) ≤ D(A2, B2),

where C2 = νC. From these properties, DIFS(A ∩ C,B ∩ C) ≤ DIFS(A,B)

DIFS(A ∩ C,B ∩ C) = f(D((A ∩ C)1, (B ∩ C)1), D((A ∪ C)2, (B ∪ C)2))
≤ f(D(A1, B1), D(A2, B2)) = DIFS(A,B).

IF-Div.4: Let us prove that DIFS(A∪C,B∪C) ≤ DIFS(A,B) for every IF-sets A,B
and C, similarly to the previous point. We have that

A ∪ C1 = {(ω,max(µA(ω), µC(ω))) | ω ∈ Ω} ∈ FS(Ω),
A ∪ C2 = {(ω,min(νA(ω), νC(ω))) | ω ∈ Ω} ∈ FS(Ω),
B ∪ C1 = {(ω,max(µB(ω), µC(ω))) | ω ∈ Ω} ∈ FS(Ω),
B ∪ C2 = {(ω,min(νB(ω), νC(ω))) | ω ∈ Ω} ∈ FS(Ω).

Applying Div.4,
D(A ∪ C1, B ∪ C1) ≤ D(A1, B1),

and Div.3 implies that:

D(A ∪ C2, B ∪ C2) ≤ D(A2, B2).

Using these two inequalities, we can prove that DIFS(A ∪ C,B ∪ C) ≤ DIFS(A,B)

DIFS(A ∪ C,B ∪ C) = f(D(A ∪ C1, B ∪ C1), D(A ∪ C2, B ∪ C2))
≤ f(D(A1, B1), D(A2, B2)) = DIFS(A,B).
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Hence, DIFS is an IF-divergence. Assume now that f is symmetric, i.e., f(x, y) = f(y, x)
for every (x, y) ∈ [0, 1]2, then it is immediate that DIFS satisfies axiom IF-Div.5, that is,
DIFS(A,B) = DIFS(Ac, Bc) for every A,B ∈ IFSs(Ω), since:

DIFS(A,B) = f(D(A1, B1), D(A2, B2)) = f(D(A2, B2), D(A1, B1)) = DIFS(Ac, Bc).

However, assume that f is not symmetric, and let us give an example of divergence
D that fulfills axiom Div.5, such that DIFS does not satisfies IF-Div.5. Consider the
normalized Hamming divergence for fuzzy sets:

lFS(A,B) =
1
n

n∑
i=1

|A(ωi)−B(ωi)|,

and let f be given by: f(x, y) = αx + βy, where α 6= β, for example α = 1 and β = 0.
Then:

DIFS(A,B) =
1
n

n∑
i=1

(α|µA(ωi)− µB(ωi)|+ β|νA(ωi)− νB(ωi)|)

is an IF-divergence. Obviously D satisfies axiom Div.5, but DIFS does not satisfy IF-
Div.5; to see this, it suffices to consider the IF-sets

A = {(ω, 0.6, 0.2) | ω ∈ Ω} and B = {(ω, 0.5, 0.4) | ω ∈ Ω}.

Then it holds that

DIFS(A,B) = 1
n

n∑
i=1

(α · 0.1 + β · 0.2) = α · 0.1 + β · 0.2 = 0.1.

DIFS(Ac, Bc) = 1
n

n∑
i=1

(α · 0.2 + β · 0.1) = α · 0.2 + β · 0.1 = 0.2.

and therefore DIFS(A,B) 6= DIFS(Ac, Bc).

Assume now that D is a local divergence, i.e., that there is a function h, such that

loc.1: h(x, y) = h(y, x), for every (x, y) ∈ [0, 1]2;
loc.2: h(x, x) = 0 for every x ∈ [0, 1];
loc.3: h(x, z) ≥ max(h(x, y), h(y, z)), for every x, y, z ∈ [0, 1]

such that x < y < z;

for which D can be expressed by:

D(A,B) =
n∑
i=1

h(A(ωi), B(ωi)).

Then, DIFS is given by

DIFS(A,B) = f

(
n∑
i=1

h(µA(ωi), µB(ωi)),
n∑
i=1

h(νA(ωi), νB(ωi))

)
.
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Let us see that if f is linear then DIFS is a local IF-divergence. In such a case, DIFS has
the following form:

DIFS(A,B) =
n∑
i=1

α · h(µA(ωi), µB(ωi)) + β · h(νA(ωi), νB(ωi)),

and if we define h̃ by:

h̃(x1, y1, x2, y2) = α · h(x1, x2) + β · h(y1, y2)

then if suffices to show that h̃ satisfies properties (i)-(iv) to deduce that DIFS is a local
IF-divergence. Let us see that this is indeed the case:

IF-loc.1: Consider (x, y) ∈ [0, 1]2. By hypothesis it holds that h(x, x) = h(y, y) = 0,
and then:

h̃(x, y, x, y) = αh(x, x) + βh(y, y) = 0.

IF-loc.2: Consider (x1, x2) and (y1, y2) in T . Then h(x1, y1) = h(y1, x1) and
h(x2, y2) = h(y2, x2), whence

h̃(x1, x2, y1, y2) = αh(x1, y1) + βh(x2, y2)
= αh(y1, x1) + βh(y2, x2) = h̃(y1, y2, x1, x2).

IF-loc.3: Take now (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1] such that x1 ≤ z ≤ y1. Then,
loc.3 implies that:

h(x1, y1) ≥ max(h(x1, z), h(z, y1)),

whence

h̃(x1, x2, y1, y2) = α · h(x1, y1) + β · h(x2, y2) ≥ α ·max(h(x1, z), h(z, y1)) + β · h(x2, y2)
= max(h̃(x1, x2, z, y2), h̃(z, x2, y1, y2)).

In particular, h̃(x1, x2, y1, y2) ≥ h̃(x1, x2, z, y2) and, if (x2, z), (y2, z) ∈ T , then max(x2 +
z, y2 + z) ≤ 1 and h̃(x1, x2, y1, y2) ≥ h̃(z, x2, y1, y2).

IF-loc.4: Consider (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1] such that x2 ≤ z ≤ y2.
Applying property loc.3 we see that

h(x2, y2) ≥ max(h(x2, z), h(z, y2))

and therefore

h̃(x1, x2, y1, y2) = αh(x1, y1) + βh(x2, y2) ≥ αh(x1, y1) + βmax(h(x2, z), h(z, y2))
= max(h̃(x1, x2, y1, z), h̃(x1, z, y1, y2)).
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IF-loc.5: Consider (x1, x2), (y1, y2) ∈ T and z ∈ [0, 1]. By loc.1, we know that
h(z, z) = 0. Then:

h̃(z, x2, z, y2) = αh(z, z) + βh(x2, y2) = βh(x2, y2)
≤ αh(x1, y1) + βh(x2, y2) = h̃(x1, x2, y1, y2).

h̃(x1, z, y1, z) = αh(x1, y1) + βh(z, z) = αh(x1, y1)
≤ αh(x1, y1) + βh(x2, y2) = h̃(x1, x2, y1, y2).

Thus, DIFS is a local divergence.

Remark 5.51 In a similar way, it is possible to prove that, if D1 and D2 are two
divergences for fuzzy sets, and if f : [0,∞) × [0,∞) → [0,∞) is an increasing function
with f(0, 0) = 0, then the function DIFS : IFSs(Ω)× IFSs(Ω)→ R defined by:

DIFS(A,B) = f(D1(µA, µB), D2(νA, νB))

for every A,B ∈ IFSs(Ω), is an IF-divergence.�

If in particular we consider the function f(x, y) = x we obtain the following result.

Corollary 5.52 Let D be a map D : FS(Ω) × FS(Ω) → R, and consider the function
f : [0,∞)×[0,∞)→ [0,∞) given by f(x, y) = x. Define DIFS : IFSs(Ω)×IFSs(Ω)→ R
by:

DIFS(A,B) = f(D(A1, B1), D(A2, B2)), for every A,B ∈ IFSs(Ω).

Then, if D satisfies axiom Div.i (i ∈ {1, 2}), then DIFS satisfies axiom IF-Diss.i, and if
D satisfies axiom Div.j (j ∈ {3, 4}), DIFS satisfies axiom IF-v.j. In particular, if D is
a divergence for fuzzy sets, then DIFS is an IF-divergence. Moreover, if D is local, then
DIFS is also a local IF-divergence. However, DIFS may not satisfy the property IF-Div.5
even if D satisfies Div.5.

Proof:

• Let us assume that D satisfies Diss.1. Then, DIFS satisfies IF-Diss.1 since:

DIFS(A,A) = D(A1, A1) = 0.

• Let us assume that D satisfies Diss.2. Then, DIFS is also symmetric since:

DIFS(A,B) = D(A1, B1) = D(B1, A1) = DIFS(B,A).

• Let us assume that D satisfies Div.3, and let us see that DIFS(A ∩ C,B ∩ C) ≤
DIFS(A,B) for every IF-sets A, B and C.

DIFS(A ∩ C,B ∩ C) = D(A ∩ C1, B ∩ C1) ≤ D(A1, B1) = DIFS(A,B).
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• Finally, assume that D satisfies Div.4. Then also DIFS satisfies axiom IF-Div.4,
since for every A, B and C it holds that:

DIFS(A ∪ C,B ∪ C) = D(A ∪ C1, B ∪ C1) ≤ D(A1, B1) = DIFS(A,B).

Thus, if D is a divergence for fuzzy sets, then DIFS is also an IF-divergence. Moreover,
taking into account the previous theorem and that f is a linear function, if D is a local
divergence, then DIFS is also a local IF-divergence. Furthermore, we have seen in that
result that a sufficient condition for DIFS to satisfy IF-Div.5 is that f is symmetric, which
is not the case for f(x, y) = x. Then, we cannot assure DIFS to satisfy IF-Div.5.

Using the previous results we can give some examples of IF-divergences.

Example 5.53 Consider the function D : FS(Ω)× FS(Ω)→ R defined by:

D(A,B) =
∑
ω∈Ω

h(A(ω), B(ω)),

where h : R2 → R is given by:

h(x, y) =

{
0 if x = y.

1− xy if x 6= y.

Montes proved that this function satisfies Div.1, Div.2 and Div.3 (see [159]). Then, if
we apply Theorem 5.50 with the function f(x, y) = x, we conclude that the function D1

satisfies IF-Div.1, IF-Div.2 and IF-Div.3.

Similarly, we can consider the function

h(x, y) =

{
0 if x = y,

xy if x 6= y,

and D : FS(Ω)× FS(Ω)→ R defined by:

D(A,B) =
∑
ω∈Ω

h(A(ω), B(ω)).

Montes et al. ([159]) proved that D satisfies Div.1, Div.2 and Div.4. Then, applying
Theorem 5.50 with the function f(x, y) = x, we conclude that the function D2 they
generate satisfies IF-Diss.1, IF-Diss.2 and IF-Div.4.

These two functions D1 and D2 were used in Example 5.22, and there we have
proved that they are not IF-divergences. �
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Example 5.54 In Equation (5.2), we considered a function D : FS(Ω) × FS(Ω) → R
defined on the space Ω = {ω} by:

D(A,B) = DIFS(A,B) = |µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|2.

The Hamming distance for fuzzy sets, lFS, is known to be a divergence for fuzzy sets.
Then, applying Theorem 5.50 to this divergence and the function f(x, y) = x + y2,
we obtain the function of Equation (5.2), and therefore we conclude that it is an IF-
divergence.�

Assume now that we have an IF-divergence DIFS. Using Theorem 5.50 we can build a
divergence D for fuzzy sets. On the other hand, Proposition 5.43 allows us to derive
another IF-divergence D∗IFS. We next investigate under which conditions these two IF-
divergences coincide.

Remark 5.55 Let us consider DIFS an IF-divergence. Let D be the divergence deter-
mined by Proposition 5.43:

D(A,B) = DIFS(A,B), for every A,B ∈ FS(Ω).

and let D∗IFS be the IF-divergence derived from D by means of Theorem 5.50:

D∗IFS(A,B) = f(D(A1, B1), D(A2, B2)), for every A,B ∈ IFSs(Ω).

Then, DIFS = D∗IFS if and only if for every A,B ∈ IFSs(Ω) it holds that:

DIFS(A,B) = f(DIFS(A1, B1), DIFS(A2, B2)).

Similarly, let D be a divergence for fuzzy sets. Using Theorem 5.50 we can build an IF-
divergence DIFS, and applying Proposition 5.43, from DIFS we can derive a divergence
D∗. Again, we want to determine if we recover our initial divergence.

Theorem 5.56 Let D be a divergence for fuzzy sets, and let DIFS be the IF-divergence
derived from D by means of Theorem 5.50, given by

DIFS(A,B) = f(D(A1, B1), D(A2, B2)) ∀A,B ∈ IFSs(Ω).

Let D∗ be the divergence derived from DIFS by means of Proposition 5.43:

D∗(A,B) = DIFS(A,B), for every A,B ∈ FS(Ω).

Then, D = D∗ if and only if f(x, y) = x for every (x, y) ∈ [0, 1]2.
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Proof: Let us compute the expression of D∗:

D∗(A,B) = DIFS(A,B) = f(D(A,B), D(Ac, Bc))),

for every A,B ∈ FS(Ω). Thus, D(A,B) = D∗(A,B) for every A,B ∈ FS(Ω) if and only
if:

D(A,B) = f(D(A,B), D(Ac, Bc)),

and this is equivalent to f(x, y) = x for every (x, y) ∈ [0, 1]2.

Let us see how Remark 5.55 and Theorem 5.56 apply to the Hamming distance for
fuzzy sets and the IF-divergence of Hong and Kim.

Example 5.57 Let us consider the Hamming distance for fuzzy sets:

lFS(A,B) =
n∑
i=1

|A(ωi)−B(ωi)|, for every A,B ∈ FS(Ω).

Applying Theorem 5.50, we can build an IF-divergence from lFS:

DIFS(A,B) = f

(
n∑
i=1

|µA(ωi)− µB(ωi)|,
n∑
i=1

|νA(ωi)− νB(ωi)|

)
,

and using Proposition 5.43, we can derive from DIFS another divergence D for fuzzy sets:

D(A,B) = f

(
n∑
i=1

|A(ωi)−B(ωi)|, |A(ωi)−B(ωi)|

)
.

Then, D(A,B) = lFS(A,B) if and only if f(x, x) = x. In particular D and lFS are the
same divergence if f(x, y) = x+y

2 .

Consider now the IF-divergence DC defined by Hong and Kim in Section 5.1.3:

DC(A,B) =
1
2

n∑
i=1

|µA(ωi)− µB(ωi)|+ |νA(ωi)− νB(ωi)|.

Using Proposition 5.43 we can build a divergence for fuzzy sets:

D(A,B) = DIFS(A,B) =
n∑
i=1

|A(ωi)−B(ωi)| = lFS(A,B).

If we now apply Theorem 5.50, we can build other IF-divergence given by:

DIFS(A,B) = f(D(A1, B1), D(A2, B2))

= f

(
n∑
i=1

|µA(ωi)− µB(ωi)|,
n∑
i=1

|νA(ωi)− νB(ωi)|

)
.

Thus, we conclude that DIFS(A,B) = DC(A,B) if and only if f(x, y) = x+y
2 .�
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Corollary 5.58 Let D be a divergence for fuzzy sets. Then, the diagram:

D DIFS
s

5.57

k
5.50

commutes if and only if f(x, y) = x and

DIFS(A,B) = D(A1, B1), for every A,B ∈ IFSs(Ω).

Proof: On the one hand, from Theorem 5.56 we know that f(x, y) = x. Moreover,
from Remark 5.55 the following equation must hold:

DIFS(A,B) = f(DIFS(A1, B1), DIFS(A2, B2)) = DIFS(A1, B1)
= f(D(A1, B1), D(A2, B2)) = D(A1, B1).

Thus, for every A,B ∈ IFSs(Ω) it must hold that:

DIFS(A,B) = D(A1, B1).

5.2 Connecting IVF-sets and imprecise probabilities

This section is devoted to investigate the relationship between IF-sets and Imprecise
Probabilities. In fuzzy set theory, it is well known ([217]) that there exists a connection
between fuzzy sets and possibility measures. In fact, given a normalized fuzzy set µA, it
defines a possibility distribution with associated possibility measure Π defined by:

Π(B) = sup
x∈B

µA(x).

Conversely, given a possibility measure Π with associated possibility distribution π, it
defines a fuzzy set with membership function π.

In this section, we shall assume first of all that the IVF-sets are defined on a
probability space. Thus, any IVF-set defines a random set, and then the probabilistic
information of the IVF-set can be summarized by means of the set of distributions of
the measurable selections. In this framework, we investigate in which situations the
probabilistic information can be equivalently represented by the set of probabilities that
dominate the lower probability induced by the random interval, and the conditions under
which the upper probability induced by the random interval is a possibility measure.

Afterwards, we shall investigate other possible relationships between IVF-sets and
imprecise probabilities. For instance, we shall see that the definition of probability for
IVF-set given by Grzegorzewski and Mrowka ([86]) becomes a particular case in our
theory. We also investigate how a one-to-one relation could be defined between IVF-sets,
p-boxes and clouds.
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5.2.1 Probabilistic information of IVF-sets

In this section we shall assume that IVF-sets are defined on a probability space. Then,
they define random sets. We investigate how the probabilistic information of a IVF-set
can be summarized by means of Imprecise Probabilities.

Since formally IVF-sets and IF-sets are equivalent, as we saw in Section 2.3, we
shall denote IVF-sets by:

{[µA(ω), 1− νA(ω)] : ω ∈ Ω},

where µA and νA refer the membership and non-membership degree of the associated
IF-set.

IVFS as random intervals

As we mentioned in Section 2.3, an IVF-set can be regarded as a model for the imprecise
knowledge about the membership function of a fuzzy set A, in the sense that for every ω in
the possibility space Ω, its membership degree belongs to the interval [µA(ω), 1−νA(ω)].
Hence, we can equivalently represent the IVF-set IA by means of a multi-valued mapping
ΓA : Ω→ P([0, 1]), where

ΓA(ω) := [µA(ω), 1− νA(ω)]. (5.5)

If the intuitionistic fuzzy set is defined on a probability space (Ω,A, P ), then the prob-
abilistic information encoded by the multi-valued mapping ΓA can be summarized by
means of its lower and upper probabilities P∗ΓA , P

∗
ΓA

. Recall that, from Equation (2.22),
for any subset B in the Borel σ-field β[0,1], its lower and upper probabilities are given by

P∗ΓA(B) := P ({ω : ΓA(ω) ⊆ B})

and
P ∗ΓA

(B) := P ({ω : ΓA(ω) ∩B 6= ∅}).

We need to make two clarifications here: the first one is that the images of the multi-
valued mapping ΓA are non-empty, as a consequence of the restriction µA ≤ 1 − νA in
the definition of IVF-sets; the second is that, in order to be able to define the lower
and upper probabilities P∗ΓA , P

∗
ΓA

, the multi-valued mapping ΓA needs to be strongly
measurable ([88]), which in this case ([129]) means that the mappings

µA, νA : Ω→ [0, 1]

must be A− β[0,1]−measurable.
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If we assume that the ‘true’ membership function imprecisely specified by means
of the IVF-set is A − β[0,1]−measurable, then it must belong to the set of measurable
selections of ΓA (see Equation (2.21)):

S(ΓA) := {φ : Ω→ [0, 1] measurable : φ(ω) ∈ [µA(ω), 1− νA(ω)] ∀ω ∈ Ω},

and as a consequence the probability measure it induces will belong to the set

P (ΓA) := {Pφ : φ ∈ S(ΓA)}.

Any probability measure in P (ΓA) is bounded by the upper probability P ∗ΓA
, and as a

consequence the set P (ΓA) is included in the set M(P ∗ΓA
) of probability measures that

are dominated by P ∗ΓA
. As we have seen in Section 2.2.4, both sets are not equivalent

in general; however, Proposition 2.45 shows several situations in which they coincide.
Taking this result into account, we can establish the following conditions for the equality
between the credal sets generated by an IVF-set.

Corollary 5.59 Consider the initial space ([0, 1], β[0,1], λ[0,1]) and ΓA : [0, 1]→ P([0, 1])
defined as in Equation (5.5). Then, the equality M(P ∗ΓA

) = P (ΓA) holds under any of
the following conditions:

(a) The membership function µA is increasing and the non-membership function νA is
decreasing.

(b) µA(ω) = 0 for any ω ∈ Ω.

(c) For any ω, ω′ ∈ Ω, either ΓA(ω) ≤ ΓA(ω′) or ΓA(ω) ≥ ΓA(ω′), where [a1, b1] ≤
[a2, b2] if a1 ≤ a2 and b1 ≤ b2.

The previous conditions can be interpreted as follows:

(a) The greater the value of ω, the more evidence supports that ω belongs to A.

(b) There is no evidence supporting that the elements belong to set A.

(c) The intervals associated with the elements are ordered. In particular, this holds
when the hesitation is constant.

Proof:

(a) Condition (3a) of Proposition 2.45 assures thatM(P ∗ΓA
) and P (ΓA) coincide when-

ever the bounds of the random interval are increasing. In the particular case of
IVF-set, this means that both µA and 1 − νA are increasing, or equivalently, that
µA is increasing and νA is decreasing.
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(b) Condition (3b) of Proposition 2.45 assures that M(P ∗ΓA
) and P (ΓA) coincide if the

lower bound of the interval equals 0. In the case of IVF-sets, this means that
µA = 0.

(c) Condition (3c) of Proposition 2.45 assures that M(P ∗ΓA
) and P (ΓA) coincide if the

bounds of the interval are strictly comonotone. In the case of IVF-sets, the bounds
of the interval, µA and 1 − νA, are comonotone if and only if ΓA(ω) ≥ ΓA(ω′) or
ΓA(ω) ≤ ΓA(ω′) for any ω, ω′: assume that µA and 1 − νA are comonotone, then
µA(ω) ≥ µA(ω′) if and only if 1− νA(ω) ≥ 1− νA(ω′) for every ω, ω′. Thus:

– If µA(ω) > µA(ω′), then 1− νA(ω) > 1− νA(ω′), so

ΓA(ω) = [µA(ω), 1− νA(ω)] > [µA(ω′), 1− νA(ω′)] = ΓA(ω′).

– If µA(ω) < µA(ω′), then 1− νA(ω) < 1− νA(ω′), so

ΓA(ω) = [µA(ω), 1− νA(ω)] < [µA(ω′), 1− νA(ω′)] = ΓA(ω′).

On the other hand, assume that either ΓA(ω) ≥ ΓA(ω′) or ΓA(ω) ≤ ΓA(ω′) for any
ω, ω′. Then:

ΓA(ω) ≥ ΓA(ω′)⇒ µA(ω) ≥ µA(ω′) and 1− νA(ω) ≥ 1− νA(ω′)
ΓA(ω) ≤ ΓA(ω′)⇒ µA(ω) ≤ µA(ω′) and 1− νA(ω) ≤ 1− νA(ω′)

and from this we deduce that µA and 1− νA are comonotone.

On the other hand, [129, Example 3.3] shows that the equality P (Γ) = M(P ∗Γ) does not
necessarily hold for all the random closed intervals, even when the initial probability space
is non-atomic: it suffices to consider (Ω,A, P ) = ([0, 1], β[0,1], λ[0,1]) and Γ : [0, 1]→ P(R)
given by

Γ(ω) = [−ω, ω] ∀ω ∈ [0, 1].

It is easy to adapt the example to our context and deduce that there are intuitionistic
fuzzy sets where the information about the membership function is not completely de-
termined by the upper probability P ∗ΓA

: it would suffice to take ΓA : [0, 1] → P([0, 1])
given by

ΓA(ω) =
[
0.5− ω

2
, 0.5 +

ω

2

]
∀ω ∈ [0, 1], (5.6)

that is, to consider the IVF-set such that the membership and non-membership functions
of its associated IF-set coincide and take the value 1−ω

2 .

We have seen in Proposition 2.47 that the upper probability associated with a
random set is a possibility measure if and only if the images of Γ are nested except for
a null subset. In the particular case of the random closed intervals associated with an
IVF-set, we deduce the following:
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Corollary 5.60 Let ΓA : Ω→ P([0, 1]) be the random set defined in the probability space
(Ω,A, P ) by Equation (5.5). Then, P ∗Γ is possibility measure if and only if there exists
some N ⊆ Ω null such that µA and νA are comonotone on Ω\N .

Proof: Assume that ΓA is a possibility measure. Then, by Proposition 2.47, there is
a null set N such that ΓA(ω1) ⊆ ΓA(ω2) or ΓA(ω2) ⊆ ΓA(ω1) for any ω1, ω2 ∈ Ω\N .
Consider ω1, ω2 ∈ Ω\N , it holds that:

ΓA(ω1) ⊆ ΓA(ω2)⇒ [µA(ω1), 1− νA(ω1)] ⊆ [µA(ω2), 1− νA(ω2)]
⇒ µA(ω1) ≥ µA(ω2) and 1− νA(ω1) ≤ 1− νA(ω2)
⇒ µA(ω1) ≥ µA(ω2) and νA(ω1) ≥ νA(ω2)

ΓA(ω2) ⊆ ΓA(ω1)⇒ [µA(ω2), 1− νA(ω2)] ⊆ [µA(ω1), 1− νA(ω1)]
⇒ µA(ω2) ≥ µA(ω1) and 1− νA(ω2) ≤ 1− νA(ω1)
⇒ µA(ω2) ≥ µA(ω1) and νA(ω2) ≥ νA(ω1).

Then, µA and νA are comonotone on Ω\N .

Conversely, assume that µA and νA are comonotone on Ω\N .

If µA(ω1) ≤ µA(ω2)⇒ νA(ω1) ≤ νA(ω2)
⇒ [µA(ω1), 1− νA(ω1)] ⊆ [µA(ω2), 1− νA(ω2)]⇒ ΓA(ω2) ⊆ ΓA(ω1).

If µA(ω2) ≤ µA(ω1)⇒ νA(ω2) ≤ νA(ω1)
⇒ [µA(ω2), 1− νA(ω2)] ⊆ [µA(ω1), 1− νA(ω1)]⇒ ΓA(ω1) ⊆ ΓA(ω2). �

P-box induced by a IVF-set

The lower and upper probabilities P∗ΓA , P
∗
ΓA

summarize the probabilistic information
about the probability distribution of the membership function of the IVF-set A. If in
particular we want to summarise the information about the distribution function of this
variable, we must use the lower and upper distribution functions:

FA, FA : Ω→ [0, 1],

where
FA(x) := P∗ΓA([0, x]) = P ({ω : 1− νA(ω) ≤ x}) = PνA([1− x, 1]) (5.7)

and
FA(x) := P ∗ΓA

([0, x]) = P ({ω : µA(ω) ≤ x}) = PµA([0, x]). (5.8)

When Ω is an ordered space (for instance if Ω = [0, 1]), the lower and upper distribution
functions FA, FA can be used to determine a p-box. In that case, we shall refer to
(FA, FA) as the p-box on Ω associated with the intuitionistic fuzzy set A.
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The lower and upper distribution functions also determine a set of probability mea-
sures:

M(FA, FA) := {Q : β[0,1] → [0, 1] : FA(x) ≤ FQ(x) ≤ FA(x) ∀x ∈ [0, 1]},

where FQ is the distribution function associated with the probability measure Q. It is
immediate to see that the set M(FA, FA) includes M(P ∗ΓA

). However, the two sets do
not coincide in general, and as a consequence the use of the lower and upper distribution
functions may produce a loss of information, as we can see in the following example.

Example 5.61 Consider the random set of Equation (5.6), defined on ([0, 1], β[0,1], λ[0,1])
by ΓA(ω) =

[
0.5− ω

2 , 0.5 + ω
2

]
. Using Equation (2.23), we already know that the credal

set M(P ∗ΓA
) is given by:

M(P ∗ΓA
) = {P probability | P∗ΓA(B) ≤ P (B) ≤ P ∗ΓA

(B) for any B}.

Let us now compute the form of the set M(FA, FA):

FA(x) = P∗ΓA([0, x]) = P ({ω ∈ [0, 1] : Γ(ω) ⊆ [0, x]})
= P (

{
ω ∈ [0, 1] : Γ(ω) =

[
0.5− ω

2 , 0.5 + ω
2

]
⊆ [0, x]

}
)

= P ({ω ∈ [0, 1] : ω ∈ [−1, 2x− 1]})
= P ({ω ∈ [0, 1] : ω ∈ [0, 2x− 1]})

=

{
0 if x ≤ 1

2 .

2x− 1 otherwise.
FA(x) = P ∗ΓA

([0, x]) = P ({ω ∈ [0, 1] : Γ(ω) ∩ [0, x] 6= ∅})
= P (

{
ω ∈ [0, 1] :

[
0.5− ω

2 , 0.5 + ω
2

]
∩ [0, x] 6= ∅

}
)

=

{
2x if x ≤ 1

2 .

1 otherwise.

Thus, the set M(FA, FA) is formed by the probabilities whose associated cumulative
distribution function is bounded by FA and FA.

Consider now the probability distribution associated with the cumulative distribution
function F defined by:

F (x) =


FA(x) if x ≤ 1

4 .
1
2 if x ∈

(
1
4 ,

3
4

]
.

FA(x) if x > 3
4 .

Its associated probability, PF , belongs to M(FA, FA). Now, let us check that PF does
not belong to M(P ∗ΓA

). For this aim, note that:

P∗ΓA

([
1
4 ,

3
4

])
= P

({
ω ∈ [0, 1] : Γ(ω) ⊆

[
1
4 ,

3
4

]})
= P

({
ω ∈ [0, 1] :

[
0.5− ω

2 , 0.5 + ω
2

]
⊆
[

1
4 ,

3
4

]})
= P

({
ω ∈ [0, 1] : ω ∈

[
0, 1

2

]})
= 1

2 .
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This means that every probability P in M(P ∗ΓA
) must hold that P

([
1
4 ,

3
4

])
≥ 1

2 . However,
PF
([

1
4 ,

3
4

])
= 0, and consequently PF /∈M(P ∗ΓA

).

We conclude that M(FA, FA) ⊃M(P ∗ΓA
).�

Nevertheless, there are non-trivial situations in which both sets coincide.

Example 5.62 Consider the initial space ([0, 1], β[0,1], λ[0,1]) and the random set ΓA

defined from the IF-set IA by:

ΓA(ω) =

{
{ω} if ω ∈

[
0, 1

4

)
∪
(

3
4 , 1
]
.[

1
4 ,

3
4

]
otherwise.

Thus, the membership and non-membership functions are given by:

µA(ω) =

{
ω if ω ∈

[
0, 1

4

)
∪
(

3
4 , 1
]

1
4 otherwise,

and

νA(ω) =

{
1− ω if ω ∈

[
0, 1

4

)
∪
(

3
4 , 1
]
.

1
4 otherwise.

Then, the lower and upper cdfs FA and FA are given by:

FA(x) =


x if x ∈

[
0, 1

4

)
,

1
4 if x ∈

[
1
4 ,

3
4

)
,

x if x ∈
[

3
4 , 1
]
,

and FA(x) =


x if x ∈

[
0, 1

4

)
.

3
4 if x ∈

[
1
4 ,

3
4

)
.

x if x ∈
[

3
4 , 1
]
.

We know that M(FA, FA) ⊇ M(P ∗ΓA
). Let us now see that for every probability P

such that FA ≤ FP ≤ FA, P ∈ M(P ∗ΓA
). Let P be one such probability, and let FP

denote its associated cumulative distribution function. Consider now the measurable map
U(ω) := F

−1]
P (ω), where F−1]

P denotes the pseudo-inverse of the cumulative distribution
function FP. It trivially holds that U ∈ S(ΓA), and consequently PU ∈ P (ΓA) ⊆M(P ∗ΓA

).
On the other hand, since F−1]

P (ω) ≤ x if and only if ω ∈ [0, FP(x)], FU and FP coincide:

FU(x) = P ({ω ∈ [0, 1] | U(ω) ≤ x}) = P ({ω ∈ [0, 1] | F−1]
P (ω) ≤ x})

= P ({ω ∈ [0, 1] | ω ≤ FP(x)}) = P ([0, FP(x)]) = FP(x).

Thus, P = PU, and consequently P ∈ P (ΓA) ⊆M(P ∗ΓA
).�

The following result gives a sufficient condition for the equality betweenM(FA, FA)
and M(P ∗ΓA

):
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Proposition 5.63 If the initial space is ([0, 1], β[0,1], λ[0,1]) and the random interval is an
IVF-set as in Equation (5.5), where µA(x) = 0 for every x, then M(FA, FA) = M(P ∗ΓA

).

Proof: Assume there is a probability P ∈ M(FA, FA) such that for some measurable
B it satisfies P (B) /∈ [P∗ΓA(B), P ∗ΓA

(B)]. We consider two cases: 0 ∈ B and 0 /∈ B.

0 /∈ B: When 0 /∈ B, it holds that P∗ΓA(B) = 0:

P∗ΓA(B) = P ({ω | Γ(ω) ⊆ B}) = P ({ω | [0, µA(ω)] ⊆ B}) = 0,

since 0 ∈ ΓA(ω)\B for any ω. Then, it holds that P (B) > P ∗ΓA
(B). In addition,

P ∗ΓA
(B) = 1 − P∗ΓA(Bc), and consequently P∗ΓA(Bc) must be strictly positive

(otherwise P (B) > P ∗ΓA
(B) = 1 and a contradiction arises). Thus, there exists an

interval [0, x] ⊆ Bc. Let ε = sup{x : [0, x] ⊆ Bc}, and consider two cases:

• Assume that ε = max{x : [0, x] ⊆ Bc}. Then, since (ε, 1] ⊇ B, it holds that:

P (B) ≤ P ((ε, 1]) = 1− FP(ε),

and consequently:

1− FP(ε) ≥ P (B) > P ∗ΓA
(B) = 1− P∗ΓA(Bc).

But:

PΓA∗(B
c) = P ({ω | ΓA(ω) ⊆ Bc}) = P ({ω | ΓA(ω) ⊆ [0, ε]}) = FA(ε).

Thus:

1− FP(ε) > 1− P∗ΓA(Bc) = 1− FA(ε)⇒ FA(ε) > F (ε),

and a contradiction arises since P /∈M(FA, FA).
• Assume that ε 6= max{x : [0, x] ⊆ Bx}. Then:

P∗ΓA(Bc) = P ({ω | ΓA(ω) ⊆ Bc}) = P ({ω | ΓA(ω) ⊆ [0, ε)}) = P∗ΓA([0, ε)).

Moreover:
[0, ε) ⊆ Bc ⇒ [ε, 1] ⊇ B ⇒ P ([ε, 1]) ≥ P (B).

Thus, it holds that

P ([ε, 1]) ≥ P (B) > 1− P∗ΓA([0, ε)) = P ∗ΓA
([ε, 1]).

However, note that FP(t) ≥ FA(t) = F1−νA(t) for any t, and:

P ([ε, 1]) = 1− FP(t−) ≤ 1− FA(t−) = P ∗ΓA
([ε, 1]),

a contradiction.
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0 ∈ B: Note that, since 0 ∈ B, P ∗ΓA
(B) = 1:

P ∗ΓA
(B) = P ({ω | Γ(ω) ∩B 6= ∅}) ≥ P ({ω | Γ(ω) ∩ {0} 6= ∅}) = 1.

Then P (B) < P∗ΓA(B). Since P∗ΓA(B) > 0, there exists [0, x] ⊆ B. Define
ε = sup{x : [0, x] ⊆ B} and consider two cases:

• Assume that ε = max{x : [0, x] ⊆ B}. Then, P (B) ≥ P ([0, ε]) = FP(ε).
However:

P∗ΓA(B) = P ({ω | ΓA(ω) ⊆ B}) = P ({ω | ΓA(ω) ⊆ [0, ε]})
= FA(ε) ≤ FP(ε) ≤ P (B),

a contradiction, because we had assumed that P∗ΓA(B) > P (B).
• Assume that ε 6= max{x : [0, x] ⊆ B}. Then P (B) ≥ P ([0, ε)). Moreover,

P∗ΓA(B) = P ({ω | ΓA(ω) ⊆ B}) = P ({ω | ΓA(ω) ⊆ [0, ε)})
= FA(ε−) = F1−νA(ε−) ≤ FP(ε−) = P ([0, ε)) ≤ P (B).

This contradicts the assumption of PΓA∗(B) > P (B).

Another sufficient condition for the equality between M(P ∗ΓA
) and M(FA, FA) is the

strict comonotonicity between µA and 1− νA, that, as we have seen in Corollary 5.59, is
equivalent to the existence of a total order between the intervals [µA(ω), 1− νA(ω)].

Proposition 5.64 If the initial space is ([0, 1], β[0,1], λ[0,1]) and the random interval is
given by an IF-set as in Equation (5.5), where ΓA(ω) ≤ ΓA(ω′) or ΓA(ω) ≥ ΓA(ω′) for
any ω, ω′ ∈ Ω, then M(FA, FA) = M(P ∗ΓA

).

Proof: In [129, Theorem 4.5] it is proven that when the random interval is defined on
([0, 1], β[0,1], λ[0,1]) and its bounds are strictly comonotone, then it is possible to define
the random interval Γ : [0, 1]→ P([0, 1]) by:

Γ(ω) := [U(ω), V (ω)],

where U and V denote the quantile functions of the lower and upper bounds of ΓA,
respectively, that are defined by:

U(ω) = inf{x ∈ R : ω ≤ F (x)} and V (ω) = inf{x ∈ R : ω ≤ F (x)}.

This random interval satisfies P ∗Γ = P ∗ΓA
, and consequently M(P ∗Γ) = M(P ∗ΓA

) and
M(F , F ) = M(FA, FA). Then, in order to prove the equality M(P ∗ΓA

) = M(FA, FA) it
is sufficient to establish the equality between M(P ∗Γ) = M(F , F ).

Consider now a probability P ∈M(F , F ), and define W as the quantile function of
FP. Since F ≤ FP ≤ F , W (ω) is bounded by U(ω) and V (ω) for any ω ∈ [0, 1]. Then, W
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is a measurable selection of Γ, and its induce probability PW belongs to P (Γ). Moreover,
since P (Γ) = M(P ∗Γ), PW also belongs to M(P ∗Γ).

Thus, M(P ∗Γ) = M(F , F ), and therefore M(P ∗ΓA
) = M(FA, FA).

One particular situation where the previous result holds is when µA is strictly
increasing, νA is strictly decreasing and µA(ω) = µA(ω′) if and only if νA(ω) = νA(ω′).

Finally, we are going to see that the equality between both credal sets also holds
when the bounds of the interval are increasing.

Proposition 5.65 If the initial space is ([0, 1], β[0,1], λ[0,1]) and the random interval is
given by an IF-set as in Equation (5.5), where µA is increasing and νA is decreasing,
then M(FA, FA) = M(P ∗ΓA

).

Proof: Let P be a probability in M(FA, FA), and we are going to see that there is
a measurable selection V such that PV = P , and therefore M(FA, FA) ⊆ P (ΓA) ⊆
M(P ∗ΓA

). Since µA is increasing, there is a countable number of elements ω ∈ (0, 1)
such that µA(ω) > supω′<ω µA(ω′). Denote this set by N , and consider the function
V : [0, 1]→ R defined by:

V (ω) =

{
inf{y : ω ≤ P ((−∞, y])} if ω ∈ (0, 1)\N.
µA(ω) otherwise.

Following the same steps than in [129, Proposition 4.1], this function V can be proved to
be a measurable selection of ΓA such that PV = P . Then, we conclude thatM(FA, FA) ⊆
P (ΓA) ⊆M(P ∗ΓA

), and then we conclude that both credal sets coincide.

These results allow us state a number of sufficient conditions for the equality between
the three sets of probabilities P (ΓA),M(P ∗ΓA

) and M(FA, FA).

Corollary 5.66 Consider the initial space is ([0, 1], β[0,1], λ[0,1]) and the random interval
ΓA given by an IVF-set as in Equation (5.5). Then, the equalities P (ΓA) = M(P ∗ΓA

) =
M(FA, FA) hold if one of the following conditions is satisfied:

• µA is increasing and νA is decreasing.

• µA(ω) = 0 for any ω ∈ [0, 1].

• µA and 1 − νA are strictly comonotone, or equivalently, if ΓA(ω) ≤ ΓA(ω′) or
ΓA(ω′) ≤ ΓA(ω) for any ω, ω′ ∈ [0, 1].

We have seen sufficient conditions under which the p-box defined from the random inter-
val ΓA contains the same information than the set of measurable selections. Conversely,



340 Chapter 5. Comparison of IFS and its connection to IP

there are situations in which, given a p-box, it is possible to define a random interval
ΓA whose associated p-box coincides with the previous one, and that the probabilistic
information given by the p-box is the same that the information given by the set of
measurable selections.

Proposition 5.67 Consider a p-box (F , F ) defined on [0, 1] such that both F and F are
right-continuous. Then it is possible to define a random interval Γ : [0, 1] → P([0, 1])
whose associated p-box is (F , F ). In addition, if either F and F are strictly comonotone
or F (x) = 1, then the random interval Γ satisfies P (Γ) = M(F , F ).

Proof: Proposition 2.45 assures that P (Γ) = M(P ∗ΓA
). Given the p-box (F , F ), define

the random interval ΓA(ω) = [U(ω), V (ω)], where U and V are the quantile functions of
F and F , respectively. Then, the p-box associated with ΓA is given by:

FA(t) = FV(t) = P ({ω ∈ [0, 1] | V (ω) ≤ t}) = F (t).
FA(t) = FU(t) = P ({ω ∈ [0, 1] | U(ω) ≤ t}) = F (t).

Since F and F are right-continuous, U and V are random variables because their cumu-
lative distribution functions are right-continuous. Assume now that F and F are strictly
comonotone. Then, U and V are also strictly comonotone, and following Proposition 5.64,
the credal set P (ΓA) coincides with the credal set M(F , F ).

Assume that F (x) = 1. Then, U = 0 almost surely. Applying Proposition 5.63,
P (ΓA) = M(F , F ).

In Corollary 5.60 we have seen that the upper probability induced by the random
set ΓA defined from an IF-set IA is a possibility measure if and only if µA and νA are
strictly comonotone on the complementary of a null set. In [199], the following result is
proved:

Proposition 5.68 ([199, Corollary 17]) Assume that Ω/ ' is order complete and let
(F , F ) be a p-box. Let P (F,F ) denote the lower probability associated with (F , F ) by
means of Equation (2.17). Then the natural extension of P (F,F ) is a possibility measure
if and only if either

(L1) F is 0–1 valued,

(L2) F (x) = F (x−) for all x ∈ Ω that have no immediate predecessor, and

(L3) {x ∈ Ω ∪ {0−} : F (x) = 1} has a minimum, where 0− is a minimum element on
Ω,

or
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(U1) F is 0–1 valued,

(U2) F (x) = F (x+) for all x ∈ Ω that have no immediate successor, and

(U3) {x ∈ Ω ∪ {0−} : F (x) = 0} has a maximum.

In our context, when the initial space is [0, 1], no element in such interval has immediate
predecessor or successor. Assume now that the p-box (FA, FA) defined from the random
interval ΓA as in Equations (5.7) and (5.8) is a possibility measure. Note that since FA

and FA are right-continuous, (U2) becomes trivial. On the one hand, assume that FA

is 0–1 valued. Then, there exists t∗ such that F (t) = 1 for any t ≥ t∗ and F (t) = 0 for
any t < t∗, and by (L3) it is left-continuous. Equivalently:

F (t) = P ({ω ∈ [0, 1] | ΓA(ω) ⊆ [0, t]}) = 1 for any t ≥ t∗.
F (t) = P ({ω ∈ [0, 1] | ΓA(ω) ⊆ [0, t]}) = 0 for any t < t∗.

Then, 1− νA(ω) = t∗ for every ω ∈ [0, 1]\N for some null set N on β[0,1]. On the other
hand, assume that FA is 0–1 valued. Then, there exists t∗ such that F (t) = 1 for any
t > t∗ and F (t) = 0 for any t ≤ t∗, and by (U2) it is right-continuous. Equivalently:

F (t) = P ({ω ∈ [0, 1] | ΓA(ω) ∩ [0, t] 6= ∅}) = 1 for any t ≥ t∗.
F (t) = P ({ω ∈ [0, 1] | ΓA(ω) ∩ [0, t] 6= ∅}) = 0 for any t < t∗.

Thus, µA(ω) = t∗ for every ω ∈ [0, 1]\N for some null set N on β[0,1]. We deduce that:

Proposition 5.69 Consider the initial space ([0, 1], β[0,1], λ[0,1]) and the random interval
ΓA defined from the IVF-set IA. Consider the p-box (FA, FA) defined in Equations (5.7)
and (5.8). If (FA, FA) defines a possibility measure, then there is a null set N on β[0,1]

and t∗ such that either 1 − νA(ω) = t∗ for any ω ∈ [0, 1]\N or µA(ω) = t∗ for any
ω ∈ [0, 1]\N . In such a case, P (ΓA) = M(P ∗ΓA

) = M(FA, FA).

A non-measurable approach

The previous developments assume that the intuitionistic fuzzy set is defined on a prob-
ability space and that the functions µA, νA are measurable with respect to the σ-field we
have on this space and the Borel σ-field on [0, 1]. Although this is a standard assumption
when considering the probabilities associated with fuzzy events, it is arguably done for
mathematical convenience only. In this section, we present an alternative approach where
we get rid of the measurability assumptions by means of finitely additive probabilities.
This allows us to make a clearer link with p-boxes, by means of Walley’s notion of natural
extension introduced in Definition 2.32.

Consider thus a intuitionistic fuzzy set A defined on a space Ω. If this set is deter-
mined by the functions µA, νA, we can represent it by means of the multi-valued mapping
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ΓA : Ω→ [0, 1] given by ΓA(ω) = [µA(ω), 1−νA(ω)]. Note that we are not assuming any-
more that this multi-valued mapping is strongly measurable, and now our information
about the “true” membership function would be given by the set of functions

{φ : Ω→ [0, 1] : µA(ω) ≤ φ(ω) ≤ 1− νA(ω)}.

Now, if we do not assume the measurability of µA, νA and consider then the field P(Ω) of
all events in the initial space, we may not be able to model our uncertainty by means of
a σ-additive probability measure. However, we can do so by means of a finitely additive
probability measure P or more generally by means of an imprecise probability model
[205]. Moreover, the notions of lower and upper probabilities can be generalized to that
case [132]. If for instance we consider a finitely additive probability P on P(Ω), then by
an analogous reasoning to that in Section 5.2.1 we obtain that

Pφ(C) ∈ [PΓ∗A(C), P ∗ΓA
(C)] ∀C ⊆ [0, 1],

where P ∗ΓA
is the completely alternating upper probability given by

P ∗ΓA
(C) = P ({ω : ΓA(ω) ∩ C 6= ∅})

and its conjugate P∗ΓA is the completely monotone lower probability given by

P∗ΓA(C) = P ({ω : ∅ 6= ΓA(ω) ⊆ C})

for every C ⊆ [0, 1]. Then the information about Pφ is given by the set of finitely additive
probabilities dominated by P ∗ΓA

, and we do not need to make the distinction between
P (ΓA) and M(P ∗ΓA

) as in Section 5.2.1.

The associated p-box is given now by the set of finitely additive distribution func-
tions (that is, monotone and normalized) that lie between FA and FA, where again
FA, FA are given by Equations (5.7) and (5.8), respectively.

This set is equivalent to the set of associated finitely additive probability measures
that can be determined by natural extension. This can be determined in the following way
([198]): if we denote by H the field of subsets of [0, 1] generated by the sets {[0, x], (x, 1) :
x ∈ [0, 1]}, then any set B ∈ H is of the form

B := [0, x1] ∪ (x2, x3] ∪ . . . (x2n, x2n+1]

or
B := (x1, x2] ∪ . . . (x2n, x2n+1]

for some n ∈ N, x1 < x2 < · · · < xn ∈ [0, 1]. It holds that

EF,F ([0, x1] ∪ (x2, x3] ∪ . . . (xn, 1]) = FA(x1) +
n∑
i=1

max{0, FA(x2i+1)− FA(x2i)}
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and

EF,F ((x1, x2] ∪ . . . (x2n, x2n+1]) =
n∑
i=0

max{0, FA(x2i+1)− FA(x2i)} (5.9)

and if we consider any C ⊆ [0, 1], then

EF,F (C) = sup
B⊆C,B∈H

EF,F (B).

The upper probability P ∗ΓA
is determined by P∗ΓA using conjugacy.

It can be easily seen that P∗ΓA and the natural extension of the p-box EF,F do not
coincide in general, even in sets of the form (x1, x2]:

Example 5.70 Consider the random interval of Example 5.61. We already know that
P∗ΓA

([
1
4 ,

3
4

])
= 1

2 . Similarly, it can be proved that P∗ΓA

((
1
4 ,

3
4

])
= 1

2 . Now, let us use
Equation (5.9) to compute EF,F

((
1
4 ,

3
4

])
:

EF,F

((
1
4
,

3
4

])
= max

{
0, FA

(
3
4

)
− FA

(
1
4

)}
= max

{
0,

1
2
− 1

2

}
= 0.

We conclude that, in general, P∗ΓA and EF,F do not coincide even in sets of the form
(x1, x2].�

Our next example shows that P∗ΓA and EF,F do not coincide neither when the bounds
of the random interval are increasing.

Example 5.71 Consider the random interval defined by:

ΓA(ω) =


[ω, 2ω] if ω ∈

[
0, 1

3

]
.[

1
3 ,

2
3

]
if ω ∈

(
1
3 ,

2
3

]
.

[2ω − 1, ω] otherwise.

The bounds of its associated p-box are defined by:

FA(x) =

{
1
2x if x ∈

[
0, 2

3

)
.

x otherwise.

FA(x) =

{
x if x ∈

[
0, 1

3

)
.

1
2x+ 1

2 otherwise.

Then, P∗ΓA

([
1
3 ,

2
3

])
= 1

3 . However, it holds that:

EFA,FA

((
1
3
,

2
3

])
= FA

(
2
3

)
− FA

(
1
2

)
=

2
3
− 2

3
= 0.
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Furthermore:

EFA,FA

([
1
3
,

2
3

])
= sup
B⊆[ 1

3 ,
2
3 ],B∈H

EFA,FA
(B) ≤ EFA,FA

((
1
3
,

2
3

])
= 0.

Thus, the natural extension is less informative than the original lower probability.�

Next we show that the lower probability and the natural extension defined of the p-box
coincide when µA = 0.

Proposition 5.72 Consider the initial space ([0, 1], β[0,1], λ[0,1]) and the random interval
defined from an IF-set A with µA = 0. Then, EFA,FA

= P∗ΓA .

Proof: We know that µA = 0 implies that FA = 1. Let us prove the equality between
the natural extension and the lower probability following several steps:

1. Let B be a set on H. We have several cases:

• Assume that B = [0, x]. Then:

P∗ΓA([0, x]) = P ({ω : Γ(ω) ⊆ [0, x]}) = FA(x).
EFA,FA

([0, x]) = FA(x).

• Assume now that B = [0, x1) ∪ [x2, x3) ∪ . . . ∪ [x2k, x2k+1], with x1 < x2 <
. . . < xn. Then:

P∗ΓA(B) = P ({ω : ΓA(ω) ⊆ B}) = P ({ω : ΓA(ω) ⊆ [0, x1]}) = FA(x1).

EFA,FA
(B) = FA(x1) +

n∑
i=1

max{0, FA(x2i+1)− FA(x2i)}

= FA(x1) +
n∑
i=1

max{0, FA(x2i+1)− 1} = FA(x1).

• Finally, assume that B = (x1, x2]∪ . . .∪(x2n, x2n+1], with x1 < x2 < . . . < xn.
Then:

P∗ΓA(B) = P ({ω : ΓA(ω) = [0, 1− νA(ω)] ⊆ B}) = 0.

EFA,FA
(B) =

n∑
i=1

max{0, FA(x2i+1)− FA(x2i)}

=
n∑
i=1

max{0, FA(x2i+1)− 1} = 0.

Then, EFA,FA
and P∗ΓA coincide for elements in H.

2. Consider C ⊆ [0, 1]. Denote by x∗ = sup{x : [0, x] ⊆ C}. We have several cases:
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• Assume that {x : [0, x] ⊆ C} = ∅, that means that 0 /∈ C. Then, 0 /∈ B for
every B ∈ H, and then EFA,FA

(B) = 0. Thus, we conclude that

EFA,FA
(C) = sup

B⊆C,B∈H
(B) = 0.

Furthermore, since 0 /∈ C, P∗ΓA(C) = 0.

• Now, assume that x∗ = max{x : [0, x] ⊆ C}, that means that 0 ∈ C and there
is x∗ such that [0, x∗] ⊆ C but [0, x∗ + ε] 6⊆ C for any ε > 0. Then:

P∗ΓA(C) = P ({ω : ΓA(ω) ⊆ C}) = P ({ω : ΓA(ω) ⊆ [0, x∗]}) = FA(x∗).
EFA,FA

([0, x∗]) = FA(x∗).

Furthermore, as in the previous case:

EFA,FA
([0, x∗]) = EFA,FA

(B)

for any B such that [0, x∗] ⊆ B, and consequently

EFA,FA
(C) = EFA,FA

([0, x∗]) = FA(x∗).

• Finally, assume that x∗ is a supremum, not a maximum, that is: [0, x∗) ⊆ C
but x∗ /∈ C. Then:

P∗ΓA(C) = P ({ω : ΓA(ω) ⊆ [0, x∗)}) = limε→0 P ({ω : 1− νA(ω) ≤ x∗ − ε})
= limε→0 FA(x∗ − ε) = limε→0 P∗ΓA([0, x∗ − ε])
= limε→0EFA,FA

([0, x∗ − ε])
= supB⊆[0,x∗),B∈HEFA,FA

(B) = EFA,FA
([0, x∗)).

In addition, every B ∈ H such that [0, x∗) ⊆ B satisfies that EFA,FA
(B) =

EFA,FA
([0, x∗)). Then, the lower probability and the natural extension coin-

cide.

We could think that the lower probability and the natural extension of the associated
p-box also coincide when the bounds of the random interval are strictly comonotone
functions. However, we can find examples where such equality does not hold.

Example 5.73 Consider the random interval ΓA defined on ([0, 1], β[0,1], λ[0,1]) by:

ΓA(ω) =


[

1
2 − ω, 1− ω

]
if ω ∈

[
0, 1

4

]
.[

1
4 ,

3
4

]
if ω ∈

[
1
4 ,

3
4

]
.[

ω − 1
2 , ω

]
if ω ∈

[
3
4 , 1
]
.
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Since µA(ω) = (1− νA(ω))− 1
2 , we see that µA and 1− νA are strictly comonotone. Its

associated p-box is defined by:

FA(t) =


0 if t ∈

[
0, 1

4

)
,

2t if t ∈
[

1
4 ,

1
2

]
,

1 if t ∈
(

1
2 , 1
]
,

and FA(t) =

{
0 if t ∈

[
0, 3

4

]
.

2t− 1 if t ∈
(

3
4 , 1
]
.

Let us compute P∗ΓA and EFA,FA
for the set

(
1
4 ,

7
8

]
:

P∗ΓA

((
1
4 ,

7
8

])
= P

({
ω : ΓA(ω) ⊆

(
1
4 ,

7
8

]})
= 1

4 .

EFA,FA

((
1
4 ,

7
8

])
= max

{
0, FA

(
1
4

)
− FA

(
7
8

)}
= 1

4 .

Thus, they coincide. However, we are going to check that they do not agree on the set[
1
4 ,

7
8

]
.

P∗ΓA

([
1
4
,

7
8

])
= P

({
ω : ΓA(ω) ⊆

[
1
4
,

7
8

]})
=

3
4
.

By definition, EFA,FA

([
1
4 ,

7
8

])
= supB⊆[ 1

4 ,
7
8 ],B∈HEFA,FA

(B). But

EFA,FA
(B) ≤ EFA,FA

((
1
4
,

7
8

])
=

1
4

for any B ⊆
[

1
4 ,

7
8

]
in H. Thus,

P∗ΓA

([
1
4
,

7
8

])
> EFA,FA

([
1
4
,

7
8

])
.�

5.2.2 Connection with other approaches

We now investigate the connection between the framework we have presented and other
theories that can be found in the literature. For this aim, we first investigate the con-
nection with the approach of Grzegorzewski and Mrowka ([86]) and then we establish a
one-to-one relationship between IVF-sets, p-boxes and clouds.

Probabilities associated with IF-Sets

One of the most important works on the connection between IF-sets and imprecise prob-
abilities is the work carried out in [86] on the probabilities of IF-sets. Given a probability
space (Ω,A, P ), the probability associated with an IF-set A is a number of the interval[∫

Ω

µAdP,
∫

Ω

1− νAdP
]
. (5.10)
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Using this definition, in [86] a link is established with probability theory by considering
the appropriate operators in the spaces of real intervals and of intuitionistic fuzzy sets.
Note that in this work it is assumed that we have a structure of probability space on Ω
and that moreover the functions µA, νA are measurable, as we have done in Section 5.2.1.

Remark 5.74 This definition generalises an earlier definition by Zadeh [215] for fuzzy
events. He defined the probability of a fuzzy event µA by:

P (µA) =
∫

Ω

µAdP = E[µA].

Although Zadeh proved that this definition satisfies the axioms of Kolmogorov when con-
sidering the minimum operator for making intersections, it was proved in [144] that this
does not happen for any t-norm (see [100] for a complete review on t-norms). In fact, it
was proved that every strict and continuous t-norm made Zadeh’s probability to satisfy
Kolmogorov axioms, while the Łukasiewicz operator is the only nilpotent and continuous
t-norm that satisfies these axioms.�

If we consider the random interval associated with the intuitionistic fuzzy set A in Equa-
tion (5.5), we can see that the interval in Equation (5.10) corresponds simply to the set
of expectations of the measurable selections of ΓA: it follows from [130, Theorem 14] that
if we consider the mapping id : [0, 1]→ [0, 1], then the Aumann integral [13] of (id ◦ΓA),
defined on Equation (2.26), satisfies that[

inf(A)
∫

(id ◦ ΓA)dP, sup(A)
∫

(id ◦ ΓA)dP
]

=
[
(C)

∫
iddP ∗ΓA

, (C)
∫

iddP∗ΓA

]
,

where (C) is used to denote the Choquet integral [39, 60] with respect to the non-additive
measures P∗ΓA , P

∗
ΓA

, respectively. Since on the other hand it is immediate to see that

sup(A)
∫

(id ◦ ΓA)dP =
∫

(1− νA)dP

and
inf(A)

∫
(id ◦ ΓA)dP =

∫
µAdP,

we deduce that the probabilistic information about the intuitionistic fuzzy set A can be
determined in particular by the lower and upper probabilities of its associated random
interval. Note moreover that the Aumann integral of a random set is not convex in
general, and it is only guaranteed to be so when the probability space (Ω,A, P ) is non-
atomic.

A one-to-one relationship between p-boxes and IFS

In Section 5.2.1, we saw that the correspondence between interval-valued fuzzy sets and
p-boxes on [0,1] is many-to-one, in the sense that many different IFS determine the same
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lower and upper distribution functions. In this section, we consider a subset of the class of
IFS for which a bijection can be established with the set of p-boxes. In contradistinction
to our work in Section 5.2.1, the p-box we shall establish here shall be established in the
possibility space Ω, that we shall consider here to be the unit interval.

Denote by IF ∗([0, 1]) the set:

IF ∗([0, 1]) = {A ∈ IFSs(Ω) | µA increasing and νA decreasing}.

Denote also F([0, 1]) the set of all p-boxes on [0,1], and let us define the correspondences:

f1 : F([0, 1]) −→ IF ∗([0, 1])
(F , F ) 7→ A(F,F ) = 〈(x, F (x), 1− F (x))〉

f2 : IF ∗([0, 1]) −→ F([0, 1])
A 7→ (µA, 1− νA)

We can see that every IFS A has an associated p-box: (µA, 1− νA). The interpretation
here would be that (µA, 1− νA) models the imprecise information about the distribution
function associated with the set A, instead of about the membership function, as we did
in Section 5.2.1.

The following properties follow immediately, and therefore their proof is omitted:

Proposition 5.75 Let f1, f2 be the two correspondences between F([0, 1]) and IF ∗([0, 1])
considered above. Then:

(a) f1, f2 are bijective, and f1 = f−1
2 .

(b) f1((F , F )) ∈ Γ⇔ F = F .

(c) f2(A) = (F, F )⇔ A ∈ FS(Ω).

Another property assures that there exists a relationship between application f1 and the
stochastic order (FSD2,5):

(F 1, F 1) �FSD2,5 (F 2, F 2)⇔ f1((F 1, F 1)) ⊆ f1((F 2, F 2)).

A one-to-one relationship between clouds and IFS

A similar correspondence can be made between intuitionistic fuzzy sets and clouds. Recall
that a cloud is a pair of functions δ, π such that δ ≤ π and there are x, y ∈ [0, 1] such
that δ(x) = 0 and π(y) = 1. Let us denote by IF∗ the following set:

IF∗ = {A ∈ IFSs(Ω) | µA(x) = 0 and νA(y) = 0 for some x, y ∈ [0, 1]}.
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Then, if we denote by Cl([0, 1]) the set of all the clouds on [0,1], the following functions
can be defined:

g1 : Cl([0, 1]) −→ IF∗([0, 1])
(δ, π) 7→ A(δ,π) = 〈(x, δ(x), 1− π(x))〉

g2 : IF∗([0, 1]) −→ Cl([0, 1])
A 7→ (µA, 1− νA)

A cloud (δ, π) is called thin ([168]), when δ = π; in that case, its associated IVF-sets by
g1 becomes 〈(x, δ, 1− δ)〉 ∈ FS(Ω), that is, a fuzzy set.

This is consistent in the sense that, given a possibility distribution π, it has an
associated fuzzy sets µ(x) := π(x). Thus, this is a more general approach that contains
the relationship between fuzzy sets and possibility distribution as a particular case.

Another particular type of clouds are the fuzzy clouds, for which δ = 0. In such a
case the associated IFS is 〈(x, 0, 1− π)〉.

Some immediate properties of the above correspondences are the following:

Proposition 5.76 Let g1, g2 be the correspondences between Cl([0, 1]) and IF∗([0, 1])
considered above. The following conditions hold:

(a) g1((δ, π)) ∈ FS(Ω)⇔ δ = π ⇔ (δ, π) is a thin cloud.

(b) g2(A) = (δ, δ)⇔ A ∈ FS(Ω).

(c) g1, g2 are bijective, and g1 = g−1
2 .

The above correspondence is related to the connection between clouds and imprecise
probabilities established in [65], where the credal set associated with a cloud (δ, π) is the
set of probability measures on Ω satisfying M((π, 1 − δ)) = M(π) ∩M(1 − δ), where
M(π) (respectively M(1 − δ)) is the credal set associated with the possibility measure
π (respectively 1− δ).

5.3 Applications

In the previous sections we have presented a theoretical study of comparison measures
for intuitionistic fuzzy sets, focusing in the study of IF-divergences, and we have also
investigated the connection between IVF-sets and imprecise probabilities.

Now we shall present some possible applications of the theories we have developed.
On one hand, we will see how IF-divergences can be applied in multiple attribute decision
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making ([211]), and we will outline some examples of application in pattern recognition
([92, 93, 114]). On the other hand, we shall see how the connection between IVF-sets
and imprecise probabilities allows us to extend stochastic dominance to the comparison
more than two sets of cumulative distribution functions.

5.3.1 Application to pattern recognition

One interesting area of application of comparison measures between IF-sets is in pattern
recognition ([92, 93, 114]). Let us consider a universe Ω = {ω1, . . . , ωn}, and assume the
patterns A1, . . . , Am, that are represented by IF-sets. Then:

Aj = {(ωi, µAj(ωi), νAj(ωi) | i = 1, . . . , n}, for j = 1, . . . ,m.

If B is a sample that is also represented by an IF-set, and we want to classify it into one
of the patterns, we can measure the difference between B and Ai:

DIFS(A1, B), . . . , DIFS(Am, B),

where DIFS can be an IF-divergence or an IF-dissimilarity. Finally, we associate B to
the pattern Aj whenever DIFS(Aj , B) = min

i=1,...,m
(DIFS(Ai, B)), i.e., we classify B into

the pattern from which it differs the least.

Example 5.77 ([114, Section 4]) Consider a possibility space with three elements,
Ω = {ω1, ω2, ω3}, and the following three patterns:

A1 = {(ω1, 0.1, 0.1), (ω2, 0.5, 0.4), (ω3, 0.1, 0.9)}.
A2 = {(ω1, 0.5, 0.5), (ω2, 0.7, 0.3), (ω3, 0, 0.8)}.
A3 = {(ω1, 0.7, 0.2), (ω2, 0.1, 0.8), (ω3, 0.4, 0.4)}.

Assume that a sample B = {(ω1, 0.4, 0.4), (ω2, 0.6, 0.2), (ω3, 0, 0.8)} is given, and let us
consider the Hamming and the Hausdorff distances for IF-sets. We obtain the following
results.

lIFS(A1, B) = 1, lIFS(A2, B) = 0.4, lIFS(A3, B) = 1.3,
dH(A1, B) = 0.6, dH(A2, B) = 0.2, dH(A3, B) = 1.3.

Thus, both distances classify B into the pattern A2, because

lIFS(A2, B) ≤ lIFS(A1, B), lIFS(A3, B).
dH(A2, B) ≤ dH(A1, B), dH(A3, B).�

In the framework of pattern recognition it is usually assumed that every point ui in the
universe has the same weight, that is, αi = 1

n for i = 1, . . . , n. However, it is possible
that the weight vector α = (α1, . . . , αn) is not constant, that is, αi ≥ 0 for i = 1, . . . , n
and α1 + . . .+ αn = 1.
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ω1 ω2 ω3 ω4 ω5 ω6

µC1(ωi) 0.739 0.033 0.188 0.492 0.020 0.739
νC1(ωi) 0.125 0.818 0.626 0.358 0.628 0.125
µC2(ωi) 0.124 0.030 0.048 0.136 0.019 0.393
νC2(ωi) 0.665 0.825 0.800 0.648 0.823 0.653
µC3(ωi) 0.449 0.662 1.000 1.000 1.000 1.000
νC3(ωi) 0.387 0.298 0.000 0.000 0.000 0.000
µC4(ωi) 0.280 0.521 0.470 0.295 0.188 0.735
νC4(ωi) 0.715 0.368 0.423 0.658 0.806 0.118
µC5(ωi) 0.326 1.000 0.182 0.156 0.049 0.675
νC5(ωi) 0.452 0.000 0.725 0.765 0.896 0.263
µB(ωi) 0.629 0.524 0.210 0.218 0.069 0.658
νB(ωi) 0.303 0.356 0.689 0.753 0.876 0.256

Table 5.2: Six kinds of materials are represented by IF-sets.

To deal with this situation, we propose the following method. Let us consider a
local IF-divergence DIFS, and for every point ui let us compute the following:

DIFS(Aj , B) − DIFS(Aj ∪ {ωi}, B ∪ {ωi}) = hIFS(µAj(ωi), νAj(ωi), µB(ωi), νB(ωi)).

Then, for every j ∈ {1, . . . ,m} we have that

d(Aj , B) =
n∑
i=1

ωi (DIFS(Aj , B)−DIFS(Aj ∪ {ωi}, B ∪ {ωi}))

=
n∑
i=1

αihIFS(µAj(ωi), νAj(ωi), µB(ωi), νB(ωi)).

Then, we classify the sample B into the pattern Aj if

d(Aj , B) = min
i=1,...,m

(d(Ai, B)).

Example 5.78 ([206, Example 4.2]) Consider five kinds of mineral fields, each of
them featured by the content of six minerals and containing one kind of typical hybrid
mineral. The five kinds of typical hybrid mineral are represented by IF-sets C1, C2, C3,
C4 and C5 in Ω = {ω1, . . . , ω6}, respectively. Assume that we are given another kind of
hybrid mineral B, and that we want to classify it into one of the aforementioned min-
eral fields. Assume that the IF-sets Ci and B are defined in Table 5.2, and that our
experts have established the following weight vector on Ω: α =

{
1
4 ,

1
4 ,

1
8 ,

1
8 ,

1
8 ,

1
8

}
. Let us

use our method to classify B. If we consider the Hamming distance for IF-sets as local
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IF-divergence, we obtain that:

ω1 ω2 ω3 ω4 ω5 ω6

lIFS(C1, B)− lIFS(C1 ∪ {ωi}, B ∪ {ωi}) 0.178 0.491 0.085 0.395 0.297 0.131
lIFS(C2, B)− lIFS(C2 ∪ {ωi}, B ∪ {ωi}) 0.505 0.494 0.162 0.187 0.103 0.397
lIFS(C3, B)− lIFS(C3 ∪ {ωi}, B ∪ {ωi}) 0.180 0.138 0.790 0.782 0.931 0.342
lIFS(C4, B)− lIFS(C4 ∪ {ωi}, B ∪ {ωi}) 0.412 0.012 0.266 0.095 0.119 0.138
lIFS(C5, B)− lIFS(C5 ∪ {ωi}, B ∪ {ωi}) 0.303 0.476 0.036 0.062 0.020 0.024

whence

d(C1, B) = 1
40.178 + 1

40.491 + 1
80.085 + 1

80.395 + 1
80.297 + 1

80.131 = 0.2808.

d(C2, B) = 1
40.505 + 1

40.494 + 1
80.162 + 1

80.187 + 1
80.103 + 1

80.397 = 0.3559.

d(C3, B) = 1
40.180 + 1

40.138 + 1
80.790 + 1

80.782 + 1
80.931 + 1

80.342 = 0.4351.

d(C4, B) = 1
40.412 + 1

40.012 + 1
80.266 + 1

80.095 + 1
80.119 + 1

80.138 = 0.1833.

d(C5, B) = 1
40.303 + 1

40.476 + 1
80.036 + 1

80.062 + 1
80.020 + 1

80.024 = 0.2125.

Thus, we classify B into the hybrid mineral C4.

If we repeat the process with local IF-divergence dH, we obtain the following:

ω1 ω2 ω3 ω4 ω5 ω6

dH(C1, B)− dH(C1 ∪ {ωi}, B ∪ {ωi}) 0.178 0.491 0.063 0.395 0.248 0.131
dH(C2, B)− dH(C2 ∪ {ωi}, B ∪ {ωi}) 0.505 0.494 0.162 0.105 0.053 0.397
dH(C3, B)− dH(C3 ∪ {ωi}, B ∪ {ωi}) 0.180 0.138 0.790 0.782 0.931 0.342
dH(C4, B)− dH(C4 ∪ {ωi}, B ∪ {ωi}) 0.412 0.012 0.266 0.095 0.119 0.138
dH(C5, B)− dH(C5 ∪ {ωi}, B ∪ {ωi}) 0.303 0.476 0.036 0.062 0.020 0.017

Then:

d(C1, B) = 1
40.178 + 1

40.491 + 1
80.063 + 1

80.395 + 1
80.248 + 1

80.131 = 0.2719.

d(C2, B) = 1
40.505 + 1

40.494 + 1
80.162 + 1

80.105 + 1
80.053 + 1

80.397 = 0.3394.

d(C3, B) = 1
40.180 + 1

40.138 + 1
80.790 + 1

80.782 + 1
80.931 + 1

80.342 = 0.4351.

d(C4, B) = 1
40.412 + 1

40.012 + 1
80.266 + 1

80.095 + 1
80.119 + 1

80.138 = 0.1833.

d(C5, B) = 1
40.303 + 1

40.476 + 1
80.036 + 1

80.062 + 1
80.020 + 1

80.017 = 0.2116,

and we conclude that we also should classify B into the hybrid mineral C4.�

5.3.2 Application to decision making

In [211], Xu showed how measures of similarity for IF-sets (and, consequently, also IF-
dissimilarities) can be applied within multiple attribute decision making. Let us overview
the main aspects of this application.
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We use the following notation: let A = {A1, . . . , Am} denote a set of m alternatives,
let C = {C1, . . . , Cn} be a set of attributes and let α = {α1, . . . , αn} be its associated
weight vector (i.e., it holds that αi ≥ 0 for every i = 1, . . . , n and that α1 + . . .+αn = 1).

Every alternative Ai can be represented by means of an IF-set:

Ai = {(Cj , µAi(Cj), νAi(Cj) | j = 1, . . . , n}.

Thus, µAi(Cj) and νAi(Cj) stand for the degree in which alternative Ai agrees and does
not agree with characteristic Cj , respectively.

Xu ([211]) defined the IF-sets A+ and A− in the following way:

A+ = {(Cj , µA+(Cj), νA+(Cj)) | j = 1, . . . , n} and
A− = {(Cj , µA−(Cj), νA−(Cj)) | j = 1, . . . , n},

where

µA+(Cj) = max
i=1,...,m

(µAi(Cj)), νA+(Cj) = min
i=1,...,m

(νAi(Cj)), (5.11)

µA−(Cj) = min
i=1,...,m

(µAi(Cj)), νA−(Cj) = max
i=1,...,m

(νAi(Cj)), (5.12)

that is, A+ =
⋃m
i=1Ai and A

− =
⋂m
i=1Ai.

These IF-sets can be interpreted as the “optimal” and the “least optimal” alterna-
tives. Therefore, the preferred alternative in A would the one that is simultaneously
more similar to A+ and more different to A−.

In order to measure how different is Ai to both A+ and A−, Xu considered some
different functions, such as:

D(A+, Ai) =
[ n∑
j=1

αj
(
|µA+(Cj)− µAi(Cj)|β + |νA+(Cj)− νAi(Cj)|β

+ |πA+(Cj)− πAi(Cj)|β
)] 1

β

and

D(A−, Ai) =
[ n∑
j=1

αj
(
|µA−(Cj)− µAi(Cj)|β + |νA−(Cj)− νAi(Cj)|β

+ |πA+(Cj)− πAi(Cj)|β
)] 1

β

.

Besides, Xu consider the quotient:

di =
D(A+, Ai)

D(A+, Ai) +D(A−, Ai)
.
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Then, the greater the value di, the better the alternative Ai.

Next we propose a modification of the above method. Let us consider a local IF-
divergence DIFS, so that for every pair of IF-sets A and B, DIFS(A,B) can be expressed
by:

DIFS(A,B) =
n∑
i=1

hIFS(µA(Ci), νA(Ci), µB(Ci), νB(Ci)).

We consider the IF-set Ai, that represents the i-th alternative, and for every j ∈
{1, . . . , n} we compute the following:

DIFS(A+, Ai)−DIFS(A+∪{Cj}, Ai∪{Cj}) = hIFS(µA+(Cj), νA+(Cj), µAi(Cj), νAi(Cj)).

This quantity measures how different A+ and Ai are with respect to element Cj . Then,
we can compute the difference between Ai and A+:

d(Ai, A+) =
n∑
j=1

αjhIFS(µA+(Cj), νA+(Cj), µAi(Cj), νAi(Cj)).

In this way d(Ai, A+) measures how much difference there is between Ai and the optimal
set A+.

Similarly, we can compute the difference between Ai and A−:

d(Ai, A−) =
n∑
j=1

αjhIFS(µA−(Cj), νA−(Cj), µAi(Cj), νAi(Cj)).

Thus, d(Ai, A−) measures how much different is Ai from the least optimal A−.

Therefore, if we consider a map f : [0,∞) × [0,∞) → [0,∞) that is decreasing in
the first component and increasing on the second one, we obtain the following value ai
for alternative Ai:

ai = f(d(Ai, A+), d(Ai, A−)).

Thus, the greater the value of ai, the more preferred is the alternative Ai.

We can see that we can choose the function f depending on the part we are more
interested in: the difference between Ai and the optimum A+ or the difference between
Ai and the least optimum A−. The following examples illustrate this fact.

Example 5.79 ([211, Section 4]) A city is planning to build a library, and the city
commissioner has to determine the air-conditioning system to be installed in the library.
The builder offers the commissioner five feasible alternatives Ai, which might be adapted
to the physical structure of the library. Suppose that three attributes C1 (economic), C2

(functional) and C3 (operational) are taken into consideration in the installation problem,
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and that the weight vector of the attributes Cj is α = (0.3, 0.5, 0.2). Assume moreover
that the characteristics of the alternatives Ai are represented by the following IF-sets:

A1 = {(C1, 0.2, 0.4), (C2, 0.7, 0.1), (C3, 0.6, 0.3)},
A2 = {(C1, 0.4, 0.2), (C2, 0.5, 0.2), (C3, 0.8, 0.1)},
A3 = {(C1, 0.5, 0.4), (C2, 0.6, 0.2), (C3, 0.9, 0)},
A4 = {(C1, 0.3, 0.5), (C2, 0.8, 0.1), (C3, 0.7, 0.2)},
A5 = {(C1, 0.8, 0.2), (C2, 0.7, 0), (C3, 0.1, 0.6))}.

For these IF-sets, the corresponding A+ and A− are given by:

A+ = {(C1, 0.8, 0.2), (C2, 0.8, 0), (C3, 0.9, 0)}.
A− = {(C1, 0.2, 0.5), (C2, 0.5, 0.2), (C3, 0.1, 0.6)}.

Then, if we consider the Hamming distance for IF-sets (see Subsection 5.1.3), we obtain
the following:

C1 C2 C3

lIFS(A1, A
+)− lIFS(A1 ∪ {Cj}, A+ ∪ {Cj}) 1.2 0.2 0.6

lIFS(A1, A
−)− lIFS(A1 ∪ {Cj}, A− ∪ {Cj}) 0.2 0.4 1

lIFS(A2, A
+)− lIFS(A2 ∪ {Cj}, A+ ∪ {Cj}) 0.8 0.6 0.2

lIFS(A2, A
+)− lIFS(A2 ∪ {Cj}, A+ ∪ {Cj}) 0.6 0 1.4

lIFS(A3, A
+)− lIFS(A3 ∪ {Cj}, A+ ∪ {Cj}) 0.6 0.4 0

lIFS(A3, A
+)− lIFS(A3 ∪ {Cj}, A+ ∪ {Cj}) 0.6 0.2 1.6

lIFS(A4, A
+)− lIFS(A4 ∪ {Cj}, A+ ∪ {Cj}) 1 0.2 0.4

lIFS(A4, A
+)− lIFS(A4 ∪ {Cj}, A+ ∪ {Cj}) 0.2 0.6 1.2

lIFS(A5, A
+)− lIFS(A5 ∪ {Cj}, A+ ∪ {Cj}) 0 0.2 1.6

lIFS(A5, A
+)− lIFS(A5 ∪ {Cj}, A+ ∪ {Cj}) 1.2 0.4 0

Thus:
d(A1, A

+) = 0.3 · 1.2 + 0.5 · 0.2 + 0.2 · 0.6 = 0.58.
d(A1, A

−) = 0.3 · 0.2 + 0.5 · 0.4 + 0.2 · 1 = 0.46.
d(A2, A

+) = 0.3 · 0.8 + 0.5 · 0.6 + 0.2 · 0.2 = 0.58.
d(A2, A

−) = 0.3 · 0.6 + 0.5 · 0 + 0.2 · 1.4 = 0.46.
d(A3, A

+) = 0.3 · 0.6 + 0.5 · 0.4 + 0.2 · 0 = 0.38.
d(A3, A

−) = 0.3 · 0.6 + 0.5 · 0.2 + 0.2 · 1.6 = 0.6.
d(A4, A

+) = 0.3 · 1 + 0.5 · 0.2 + 0.2 · 0.4 = 0.48.
d(A4, A

−) = 0.3 · 0.2 + 0.5 · 0.6 + 0.2 · 1.2 = 0.6.
d(A5, A

+) = 0.3 · 0 + 0.5 · 0.2 + 0.2 · 1.6 = 0.42.
d(A5, A

−) = 0.3 · 1.2 + 0.5 · 0.4 + 0.2 · 0 = 0.56.

Assume that we want to choose the alternative that is, at the same time, more similar to
A+ and less similar to the worst case A−. In such a case we can consider the function f
given by f(x, y) = 1

2

(
1
x+y

)
. We can see that this function take into account the difference
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between Ai and A+ and between Ai and A−. We obtain the following results:

a1 = f(d(A1, A
+), d(A1, A

−)) = 1
2

(
1

0.58 + 0.46
)

= 1.09.

a2 = f(d(A2, A
+), d(A2, A

−)) = 1
2

(
1

0.58 + 0.46
)

= 1.09.

a3 = f(d(A3, A
+), d(A3, A

−)) = 1
2

(
1

0.38 + 0.6
)

= 1.62.

a4 = f(d(A4, A
+), d(A4, A

+)) = 1
2

(
1

0.48 + 0.6
)

= 1.34.

a5 = f(d(A5, A
+), d(A5, A

+)) = 1
2

(
1

0.42 + 0.56
)

= 1.47.

Assume next that we decide to choose the alternative that is more similar to the optimum
A+, regardless the difference from A−. In that case, we may consider f(x, y) = 1

x . This
function only depends in the difference between Ai and the optimum A+. We obtain the
following result:

a1 = f(d(A1, A
+), d(A1, A

−)) =
1

d(A1, A+)
=

1
0.58

.

a2 = f(d(A2, A
+), d(A2, A

−)) =
1

d(A2, A+)
=

1
0.58

.

a3 = f(d(A3, A
+), d(A3, A

−)) =
1

d(A3, A+)
=

1
0.38

.

a4 = f(d(A4, A
+), d(A4, A

+)) =
1

d(A4, A+)
=

1
0.48

.

a5 = f(d(A5, A
+), d(A5, A

+)) =
1

d(A5, A+)
=

1
0.42

.

Thus, A3 � A5 � A4 � A1 ∼ A2, and as a consequence the best alternative is A3.

Finally, assume we are interested in the alternative that differs more from the worst
alternative A−. In such a situation we should consider f(x, y) = y. This function only
depends on the difference between Ai and A−. We obtain the following results:

a1 = f(d(A1, A
+), d(A1, A

−)) = d(A1, A
−) = 0.46.

a2 = f(d(A2, A
+), d(A2, A

−)) = d(A2, A
−) = 0.46.

a3 = f(d(A3, A
+), d(A3, A

−)) = d(A3, A
−) = 0.6.

a4 = f(d(A4, A
+), d(A4, A

+)) = d(A4, A
−) = 0.6.

a5 = f(d(A5, A
+), d(A5, A

+)) = d(A5, A
−) = 0.56.

Thus, A3 ∼ A4 � A5 � A1 ∼ A2. We conclude that in this case A3 and A4 are the
preferred alternatives.�

Example 5.80 Consider the previous example, but now with the Hausdorff distance for
IF-sets (see Section 5.1.3). Using the same IVF-sets, we obtain that:
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C1 C2 C3

dH(A1, A
+)− dH(A1 ∪ {Cj}, A+ ∪ {Cj}) 0.6 0.1 0.3

dH(A1, A
−)− dH(A1 ∪ {Cj}, A− ∪ {Cj}) 0.3 0.2 0.5

dH(A2, A
+)− dH(A2 ∪ {Cj}, A+ ∪ {Cj}) 0.4 0.3 0.1

dH(A2, A
−)− dH(A2 ∪ {Cj}, A+ ∪ {Cj}) 0.3 0 0.7

dH(A3, A
+)− dH(A3 ∪ {Cj}, A+ ∪ {Cj}) 0.3 0.2 0

dH(A3, A
−)− dH(A3 ∪ {Cj}, A+ ∪ {Cj}) 0.3 0.1 0.8

dH(A4, A
+)− dH(A4 ∪ {Cj}, A+ ∪ {Cj}) 0.5 0.1 0.2

dH(A4, A
−)− dH(A4 ∪ {Cj}, A+ ∪ {Cj}) 0.3 0.3 0.6

dH(A5, A
+)− dH(A5 ∪ {Cj}, A+ ∪ {Cj}) 0 0.1 0.8

dH(A5, A
−)− dH(A5 ∪ {Cj}, A+ ∪ {Cj}) 0.6 0.2 0

Then:

d(A1, A
+) = 0.3 · 0.6 + 0.5 · 0.1 + 0.2 · 0.3 = 0.29.

d(A1, A
−) = 0.3 · 0.3 + 0.5 · 0.2 + 0.3 · 0.5 = 0.34.

d(A2, A
+) = 0.3 · 0.4 + 0.5 · 0.3 + 0.3 · 0.1 = 0.3.

d(A2, A
−) = 0.3 · 0.3 + 0.5 · 0 + 0.3 · 0.7 = 0.3.

d(A3, A
+) = 0.3 · 0.3 + 0.5 · 0.2 + 0.3 · 0 = 0.19.

d(A3, A
−) = 0.3 · 0.3 + 0.5 · 0.1 + 0.3 · 0.8 = 0.38.

d(A4, A
+) = 0.3 · 0.5 + 0.5 · 0.1 + 0.3 · 0.2 = 0.26.

d(A4, A
−) = 0.3 · 0.3 + 0.5 · 0.3 + 0.3 · 0.6 = 0.42.

d(A5, A
+) = 0.3 · 0 + 0.5 · 0.1 + 0.3 · 0.8 = 0.29.

d(A5, A
−) = 0.3 · 0.6 + 0.5 · 0.2 + 0.3 · 0 = 0.28.

As before, we first look for the alternative that is, at the same time, more similar to the
optimum A+ and less similar to the least optimum A−. For this aim we can consider the
function f(x, y) = 1

2

(
1
x + y

)
. It holds that:

a1 = f(d(A1, A
+), d(A1, A

−)) = 1
2

(
1

0.29 + 0.34
)

= 3.79.

a2 = f(d(A2, A
+), d(A2, A

−)) = 1
2

(
1

0.3 + 0.3
)

= 3.63.

a3 = f(d(A3, A
+), d(A3, A

−)) = 1
2

(
1

0.19 + 0.38
)

= 5.64.

a4 = f(d(A4, A
+), d(A4, A

+)) = 1
2

(
1

0.26 + 0.42
)

= 4.27.

a5 = f(d(A5, A
+), d(A5, A

+)) = 1
2

(
1

0.29 + 0.28
)

= 3.72.

Then A3 � A4 � A1 � A5 � A2, and therefore A3 is the preferred alternative.

Next, we seek for the alternative that is more similar to the optimal A+. A possible
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function f for this scenario is f(x, y) = 1
x . In such a case:

a1 = f(d(A1, A
+), d(A1, A

−)) =
1

d(A1, A+)
=

1
0.29

.

a2 = f(d(A2, A
+), d(A2, A

−)) =
1

d(A2, A+)
=

1
0.3

.

a3 = f(d(A3, A
+), d(A3, A

−)) =
1

d(A3, A+)
=

1
0.19

.

a4 = f(d(A4, A
+), d(A4, A

+)) =
1

d(A4, A+)
=

1
0.26

.

a5 = f(d(A5, A
+), d(A5, A

+)) =
1

d(A5, A+)
=

1
0.29

.

Then, it holds that A3 � A4 � A1 ∼ A5 � A2, and therefore alternative A3 is the
preferred one.

Finally, if we look for the alternative that differs more from the worst possibility
A−, we can choose f(x, y) = y. In that case,

a1 = f(d(A1, A
+), d(A1, A

−)) = d(A1, A
−) = 0.34.

a2 = f(d(A2, A
+), d(A2, A

−)) = d(A2, A
−) = 0.3.

a3 = f(d(A3, A
+), d(A3, A

−)) = d(A3, A
−) = 0.38.

a4 = f(d(A4, A
+), d(A4, A

+)) = d(A4, A
−) = 0.42.

a5 = f(d(A5, A
+), d(A5, A

+)) = d(A5, A
−) = 0.28.

We conclude that A4 � A3 � A1 � A2 � A5, whence A4 is the best alternative.�

5.3.3 Using IF-divergences to extend stochastic dominance

Consider now the problem of comparing more than two random variables. In Section 3.3
we mentioned that both stochastic dominance and statistical preference are methods for
the pairwise comparison of random variables, and we proposed a generalization of statis-
tical preference for comparing more than two random variables, based on an extension
of the probabilistic relation defined in Equation (2.7). Now, based on the IF-divergences
and due to the connection between IF-sets and imprecise probabilities we have investi-
gated in Section 5.2, we propose a method that allows us to compare n p-boxes in order
to obtain an order between them.

In order to do this, consider n p-boxes (F 1, F 1), . . . ,(Fn, Fn). For each p-box
(F i, F i), define the random interval Γi by Γi(ω) = [Ui(ω), Vi(ω)], where Ui and Vi are
the quantile functions of F i and F i, respectively. Then, for each p-box (F i, F i) we have
an associated random interval that we can understand as a random interval defined from
an IF-set Ai. Thus, we can apply the method described in Section 5.3.2 to obtain the
p-box closer to the “optimal” p-box, that is the one associated with A+, and more distant
to the “less optimal” p-box, that is the one associated with A−.
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Remark 5.81 During this section we have investigated measures of comparison defined
on finite spaces, according to the usual framework. However, all the measures we have
studied can be extended to any space, non-necessarily finite. For instance, when dealing
with local IF-divergences, they could be defined from [a, b] to R by using the Lebesgue
measure λ[a,b] in [a, b]:

DIFS(A,B) =
∫

[a,b]

hIFS(µA(ω), νA(ω), µB(ω), νB(ω))dλ[a,b].

In order to illustrate this method, we propose a numerical example based on the com-
parison of sets of Lorenz Curves as we made in Section 4.4.1.

Numerical example: comparison of Lorenz curves

In Section 4.4.1 we considered the Lorenz curves associated with several countries. Such
data was illustrated in Table 4.2, and Table 4.3 showed the cumulative distribution
functions associated with each Lorenz curve. Recall that we grouped the countries by
continents/regions in the following way:

• Group 1: China, Japan, India.

• Group 2: Finland, Norway, Sweden.

• Group 3: Canada, USA.

• Group 4: FYR Macedonia, Greece.

• Group 5: Australia, Maldives.

Next table shows the p-boxes associated with these groups.
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Group F(0.2) F(0.4) F(0.6) F(0.8) F(1)

Group-1 F 1 47.81 69.81 84.47 94.27 100

F 1 35.65 57.63 75.21 89.42 100

Group-2 F 2 37.23 59.33 76.9 90.88 100

F 2 36.63 58.84 76.31 90.38 100

Group-3 F 3 45.82 68.22 83.88 94.56 100

F 3 39.94 62.89 80.07 92.8 100

Group-4 F 4 41.49 64.53 81.37 93.26 100

F 4 37.43 60.04 77.53 90.98 100

Group-5 F 5 49.24 66.9 82.61 94.1 100

F 5 41.32 64.89 82.09 93.49 100

Assume now that we are interested in comparing all the groups of countries together.
Then, following the steps of Section 5.3.2, denote by Ai the IF-set defined by µAi = F

−1]

i

and 1 − νAi = F
−1]
i , that is, the IF-set defined by the quantile functions of (F i, F i).

These IF-sets are given by:

µA1(t) =



0 if t = 0.

0.2 if t ∈ (0, 47.81].

0.4 if t ∈ (47.81, 69.81].

0.6 if t ∈ (69.81, 84.47].

0.8 if t ∈ (84.47, 94.27].

1 if t ∈ (94.27, 100].

1− νA1(t) =



0 if t = 0.

0.2 if t ∈ (0, 35.64].

0.4 if t ∈ (35.64, 57.63].

0.6 if t ∈ (57.63, 75.21].

0.8 if t ∈ (75.21, 89.42].

1 if t ∈ (89.42, 100].

µA2(t) =



0 if t = 0.

0.2 if t ∈ (0, 37.23].

0.4 if t ∈ (37.23, 59.33].

0.6 if t ∈ (59.33, 76.9].

0.8 if t ∈ (76.9, 90.88].

1 if t ∈ (90.88, 100].

1− νA2(t) =



0 if t = 0.

0.2 if t ∈ (0, 36.63].

0.4 if t ∈ (36.63, 58.84].

0.6 if t ∈ (58.84, 76.31].

0.8 if t ∈ (76.31, 90.38].

1 if t ∈ (90.38, 100].

µA3(t) =



0 if t = 0.

0.2 if t ∈ (0, 45.82].

0.4 if t ∈ (45.82, 68.22].

0.6 if t ∈ (68.22, 83.88].

0.8 if t ∈ (83.88, 94.56].

1 if t ∈ (94.56, 100].

1− νA3(t) =



0 if t = 0.

0.2 if t ∈ (0, 39.94].

0.4 if t ∈ (39.94, 62.89].

0.6 if t ∈ (62.89, 80.07].

0.8 if t ∈ (80.07, 92.8].

1 if t ∈ (92.8, 100].
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µA4(t) =



0 if t = 0.

0.2 if t ∈ (0, 41.49].

0.4 if t ∈ (41.49, 64.53].

0.6 if t ∈ (64.53, 81.37].

0.8 if t ∈ (81.37, 93.26].

1 if t ∈ (93.26, 100].

1− νA4(t) =



0 if t = 0.

0.2 if t ∈ (0, 37.43].

0.4 if t ∈ (37.43, 60.04].

0.6 if t ∈ (60.04, 77.53].

0.8 if t ∈ (77.53, 90.98].

1 if t ∈ (90.98, 100].

µA5(t) =



0 if t = 0.

0.2 if t ∈ (0, 49.24].

0.4 if t ∈ (49.24, 66.9].

0.6 if t ∈ (66.9, 82.61].

0.8 if t ∈ (82.61, 94.1].

1 if t ∈ (94.1, 100].

1− νA5(t) =



0 if t = 0.

0.2 if t ∈ (0, 41.32].

0.4 if t ∈ (41.32, 64.89].

0.6 if t ∈ (64.89, 82.09].

0.8 if t ∈ (82.09, 93.49].

1 if t ∈ (93.49, 100].

Consider now the IF-sets A+ and A− defined in Equations (5.11) and (5.12), that are
defined by µA+ = µA2 , 1− νA+ = 1− νA1 , 1− νA− = 1− νA5 and:

µA− =



0 if t = 0.
0.2 if t ∈ (0, 49.24].
0.4 if t ∈ (49.24, 69.81].
0.6 if t ∈ (69.81, 84.47].
0.8 if t ∈ (84.47, 94.56].
1 if t ∈ (94.56, 100].

Now, we consider two of the most usual measures of comparison of IF-divergences we can
find in the literature, the Hausdorff and the Hamming distances that, as we have said
in Section 5.1.3, are also local IF-divergences. Recall that they are defined, respectively,
by:

dH(A,B) =
∫ 100

0

max{|µA(ω)− µB(ω)|, |νA(ω)− νB(ω)|}dω.

lIFS(A,B) =
1
2

∫ 100

0

|µA(ω)− µB(ω)|+ |νA(ω)− νB(ω)|+ |πA(ω)− πB(ω)|dω.

We represent the results on the next table.

lIFS(Ai, A+) lIFS(Ai, A−) dH(Ai, A+) dH(Ai, A−)
A1 6.404 2.561 6.404 5.122
A2 0.852 4.773 0.852 7.414
A3 4.594 1.169 6.916 5.974
A4 2.439 3.324 5.052 6.386
A5 5.448 0.523 6.99 1.046
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Now, we consider three different functions:

f1(x, y) = y, f2(x, y) = −x and f3(x, y) = y − x.

f1 only focus in the closest IF-set to the least optimal alternative; f2 only focus in
the closest IF-set to the most optimal alternative, while f3 focus in the IF-set that is
both closer to the most optimal alternative and less closer IF-set to the least optimal
alternative. We obtain the following results:

lIFS f1 f2 f3

A1 2.561 −6.404 −3.843
A2 4.773 −0.852 3.921
A3 1.169 −4.594 −3.425
A4 3.324 −2.439 0.885
A5 0.523 −5.448 −4.925

dH f1 f2 f3

A1 5′122 −6′404 1′282
A2 7′414 −0′852 6′562
A3 5′974 −6′916 −0′942
A4 6′386 −5′052 1′334
A5 1′046 −6′99 −5′944

In the three cases, and with both IF-divergences, the preferred group is the second, that
is, the group of Nordic countries. The worst alternative, except for the IF-divergence lIFS

and the function f2, is the group A5, that is the group of oceanic countries. This means
that the group of countries that has a better wealth distribution is the group of Nordic
countries, while the greater wealth inequalities are, in the most cases, in the group of
oceanic countries.

5.4 Conclusions

The comparison of fuzzy sets is a topic that has been widely investigated, an several
papers with mathematical theories can be found in the literature. However, when we
move towards IF-sets the efforts are somewhat scattered, and there is not an axiomatic
approach to the comparison of this kind of sets.

For this reason we have developed a mathematical theory of the comparison of
IF-sets. In particular, we have focused on IF-divergences, which are more restrictive
measures than IF-dissimilarities. In particular, IF-divergences with the local property,
named local IF-divergences, played an important role. As was expected, a connection
between divergences for fuzzy sets and IF-divergences can be established, and we have
found the conditions under which the local property, among other interesting properties,
are preserved when we move from IF-divergences to divergences, and conversely, from
divergences to IF-divergences. We also showed that these measures can be applied in
pattern recognition and decision making, showing several examples.

On the other hand, we have investigated the connection between IVF-sets and
Imprecise Probabilities. In this sense, we assumed that the IVF-set is defined on a
probability space, and then it can be interpreted as a random interval. Then, we have
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investigated the probabilistic information encoded by the random interval or its mea-
surable selections, and we found conditions under which this probabilistic information
coincides with the probabilistic information given by its associated set of probabilities
dominated by the upper probability. We also investigated the connection between our
approach and other ones that can be found in the literature. In particular, the definition
of probability for IF-sets given by Grzegorzewski and Mrowka is contained as a particular
case of our theory.

The connection between IVF-sets and Imprecise Probabilities has allowed us to
extend stochastic dominance to the comparison of more than two p-boxes simultaneously,
determining also a complete relationship (i.e., avoiding incomparability). This method,
that depends on the chosen IF-divergence, gives us a ranking of the p-boxes. We have
illustrated its behaviour continuing with the example of Section 4.4.1 in which we compare
sets of Lorenz Curves.

For future research, some open problems arise in the topic of comparison of IF-sets.
On the one hand, it is possible to investigate under which conditions IF-divergences, and
in particular local IF-divergences, can define an entropy for IF-sets ([29]). On the other
hand, as could be seen in the applications of IF-divergence, it is interesting to introduce
weights in the elements of the universe. In this situation it would be interesting to define
local IF-divergence with weights, and trying to find an analogous result to Theorem 5.29
to characterize them. Furthermore, we could investigate if it is possible to define locality
with an operator different than the sum; a t-conorm for instance. Moreover, our aim is
to extend the local property to general universes, non-necessarily finite. With respect
to the connection between IF-sets, IVF-sets and Imprecise Probabilities, we pretend to
continue studying IF-sets and IVF-sets as bipolar models for representing positive and
negative information ([72, 73]).
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Conclusiones y trabajo futuro

A lo largo de esta memoria se ha tratado el problema de la comparación de alternati-
vas bajo ciertos tipos de falta de información: incertidumbre e imprecisión. La incer-
tidumbre se refiere a situaciones en las que los posibles resultados del experimento están
perfectamente descritos, pero el resultado del mismo es desconocido. Por otra parte, la
imprecisión se refiere a situaciones en las que el resultado del experimento es conocido
pero no es posible describirlo con precisión. Las herramientas utilizadas para modelar la
incertidumbre y la imprecisión han sido la Teoría de las Probabilidades y la Teoría de los
Conjuntos Intuicionísticos, respectivamente, mientras que la Teoría de las Probabilidades
Imprecisas se ha utilizado para modelar ambas faltas de información simultáneas.

Cuando las alternativas a comparar están definidas bajo incertidumbre, éstas se han
modelado mediante variables aleatorias, que son habitualmente comparadas mediante
órdenes estocásticos. En esta memoria se han considerado, principalmente, dos de estos
órdenes: la dominancia estocástica y la preferencia estadística. El primero de ellos es el
orden estocástico más habitual en la literatura, y ha sido utilizado en diferentes ámbitos
con destacables resultados. Por otra parte, la preferencia estadística es el método más
adecuado para comparar variables cualitativas.

A pesar de que la dominancia estocástica es un método que ha sido investigado
por varios autores, la preferencia estadística no ha sido estudiada con tanta profundidad.
Ésta es la razón por la cual hemos estudiado sus propiedades como orden estocásticos.
Uno de los resultados más destacados en este estudio es la relación de este método con la
mediana. Esto demuestra que, mientras que la dominancia estocástica está relacionada
con la media, la preferencia estadística es más cercana a otro parámetro de localización.

También hemos investigado la relación entre la dominancia estocástica y la preferen-
cia estadística, y hemos encontrado condiciones bajo las cuales la dominancia estocástica
de primer orden implica la preferencia estadística. Dado que la preferencia estadística
depende de la distribución conjunta de las variables y, por tanto, de la cópula que las liga,
dichas condiciones están también relacionadas con la cópula. El Teorema 3.64 resume
estas condiciones: variables aleatorias independientes, variables aleatorias continuas liga-
das por una cópula Arquimediana o variables aleatorias o bien continuas o bien discretas

365
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con soportes finitos que son comonótonas o contramonótonas. Además, hemos compro-
bado que esta relación no se cumple en general. Por tanto, de manera natural surge
la siguiente cuestión: ¿es posible caracterizar las cópulas que hacen que la dominancia
estocástica de primer orden implique la preferencia estadística?

Cuando las variables a comparar pertenecen a la misma familia paramétrica de dis-
tribuciones, como por ejemplo Bernoulli, exponencial, uniforme, Pareto, beta o normal,
hemos visto que la dominancia estocástica y la preferencia estadística coinciden, y de
hecho, ambos métodos se reducen a la comparación de sus esperanzas. Por esta razón
es posible plantearse la siguiente conjetura: cuando las variables a comparar siguen la
misma distribución perteneciente a la familia exponencial de distribuciones, tanto la
dominancia estocástica como la preferencia estadística se reducen a la comparación de
esperanzas y son, por tanto, equivalentes. Aunque éste es un problema abierto, una
primera aproximación basada en simulaciones se ha realizado en [32].

La dominancia estocástica y la preferencia estadística son métodos de comparación
de variables aleatorias por pares. Esto hace que en ocasiones no sean métodos adecuados
para comparar más de dos variables simultáneamente. De hecho, la preferencia estadística
es una relación no transitiva, y por lo tanto puede producir resultados ilógicos. Ésta es
la razón que nos ha llevado a definir una generalización de la preferencia estadística
para la comparación de más de dos variables simultáneamente. Siguiendo la misma
aproximación que en el caso de la preferencia estadística, nuestra generalización da un
grado de preferencia a cada una de las variables de manera que todos los grados sumen
uno. Por lo tanto, la variable preferida será aquella con el mayor grado de preferen-
cia. Para este método hemos estudiado su conexión con los órdenes estocásticos por
pares. En particular, hemos visto que las mismas condiciones del Teorema 3.64 permiten
asegurar que si una de las variables domina estocásticamente de primer grado al resto,
entonces ésta es también preferida a todas las demás utilizando nuestra generalización
de la preferencia estadística.

A la preferencia estadística general le podemos dar la siguiente interpretación: dado
un conjunto de alternativas (en este caso variables aleatorias) tenemos que elegir entre
la preferida, y podemos asignar a cada variable un grado de preferencia. Este grado
de preferencia puede entenderse como cuánto de preferida es cada alternativa sobre el
resto. Esto hace que la preferencia estadística general se pueda ver como una función
de elección difusa ([81, 207]). Un punto abierto sería por tanto estudiar la preferencia
estadística general como una función de elección difusa.

Hay situaciones en las cuales las alternativas a comparar están definidas tanto bajo
incertidumbre como bajo imprecisión. En tales casos, las variables aleatorias no recogen
todas la información. En esta situación hemos modelado las alternativas mediante con-
juntos de variables aleatorias con una interpretación epistémica: cada conjunto contiene
la variable aleatoria original, que es desconocida. De cara a comparar estos conjuntos
de alternativas, hemos tenido que extender los órdenes estocásticos para la comparación
de conjuntos de variables aleatorias. Esta extensión da lugar a seis posibles métodos de
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ordenación de conjuntos de variables aleatorias. Una vez investigadas estas extensiones,
nos hemos centrado en los casos en los que el orden estocástico utilizado es o bien la do-
minancia estocástica o bien la preferencia estadística, y hemos llamado a sus extensiones
dominancia estocástica imprecisa y preferencia estadística imprecisa. La Proposición 4.19
y el Corolario 4.22 muestran que la dominancia estocástica imprecisa está relacionada
con la comparación de las p-boxes asociadas a los conjuntos de variables aleatorias por
medio de la dominancia estocástica. Estos resultados también nos permiten ver el estu-
dio realizado por Denoeux ([61]) como un caso particular de nuestro estudio. Denoeux
consideró dos medidas de creencia, y sus medidas de plausibilidad asociadas, y utilizó la
dominancia estocástica para compararlas. Sin embargo, dado que las medidas de creencia
y plausibilidad definen conjuntos de probabilidades, es posible compararlas mediante la
dominancia estocástica imprecisa.

Lo mismo ocurre con posibilidades: una medida de posibilidad define un conjunto
de probabilidades, y por lo tanto es posible utilizar la dominancia estocástica imprecisa
para compararlas. En la Proposición 4.52 hemos dado una caracterización de la dominan-
cia estocástica imprecisa para medidas de posibilidad con distribuciones de posibilidad
continuas. Aquí surge un nuevo problema abierto: en caso de que las distribuciones de
posibilidad asociadas a las distribuciones de posibilidad no sean continuas, ¿se cumple la
misma caracterización de la Proposición 4.52?

Dos situaciones habituales dentro de la Teoría de la Decisión se pueden modelar
mediante la comparación de conjuntos de variables aleatorias. Por una parte, hemos
considerado la comparación de dos variables aleatorias con imprecisión en las utilidades.
Esta falta de información ha sido modelada con conjuntos aleatorios. La información
probabilística de un conjunto aleatorio se recoge en sus selecciones medibles. Por tanto, la
comparación de conjuntos aleatorios se realiza mediante la comparación de sus conjuntos
de selecciones medibles. Por otra parte, hemos considerado la comparación de variables
aleatorias definidas sobre un espacio probabilístico donde la probabilidad no está definida
de manera precisa. En esta situación, en vez de haber una única probabilidad, hemos
considerado un conjunto de probabilidades. De esta manera también es posible definir dos
conjuntos de variables aleatorias que recogen la información disponible. Para estas dos
situaciones hemos investigado en particular las propiedades de la dominancia estocástica
imprecisa y la preferencia estadística imprecisa, estudiando sus conexiones con la Teoría
de las Probabilidades Imprecisas.

La preferencia estadística es un orden estocástico que está basado en la distribu-
ción conjunta de las variables aleatorias. El Teorema de Sklar asegura que la función de
distribución conjunta de dos variables se puede expresar a través de las marginales me-
diante el uso de la cópula adecuada. Ahora bien, dados dos variable aleatorias definidas
en un espacio de probabilidad descrito de manera imprecisa, el Teorema de Sklar no
permite construir la distribución conjunta. Para tratar este problema, hemos investigado
las p-boxes bivariantes y su conexión con las probabilidades inferiores coherentes. En
particular, hemos visto que las funciones de distribución inferior y superior asociadas
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a un conjunto de funciones de distribución bivariantes no son en general funciones de
distribución bivariantes, puesto que no cumplen la desigualdad de los rectángulos. Sin
embargo, hemos visto que permiten definir una probabilidad inferior coherente, y a partir
de resultados conocidos, las funciones de distribución inferior y superior cumplen cuatro
desigualdades, llamadas (I-RI1), (I-RI2), (I-RI3) y (I-RI4), que pueden verse como las
versiones imprecisas de la desigualdad de los rectángulos. La Proposición 4.102 asegura
que dos funciones de distribución bivariantes, normalizadas y ordenadas definen una
probabilidad inferior coherente cuando una de las funciones de distribución está definida
sobre un espacio binario. Como trabajo futuro, deseamos estudiar si esta propiedad se
cumple para funciones de distribución definidas sobre todo tipo de espacios, no necesa-
riamente binarios.

El estudio de las p-boxes bivariantes nos han permitido demostrar una versión
imprecisa del Teorema de Sklar. En nuestro estudio hemos asumido que partimos de
dos distribuciones marginales imprecisas, definidas mediante p-boxes, y de un conjunto
de cópulas. En esta situación es posible definir una p-box bivariante que defina a su
vez una probabilidad inferior coherente. Además, hemos visto que el recíproco no se
cumple en general, puesto que una p-box bivariante que define una probabilidad inferior
coherente no puede ser expresada, en general, a través de las p-boxes marginales. Hemos
comprobado que esta versión imprecisa del Teorema de Sklar es muy útil cuando hay que
utilizar órdenes estocásticos bajo imprecisión.

La extensión de los órdenes estocásticos para la comparación de conjuntos de va-
riables aleatorias tiene varias aplicaciones. Además de las aplicaciones habituales de
los órdenes estocásticos en la Teoría de la Decisión, hemos visto que también pueden
ser aplicados a la comparación de Curvas de Lorenz asociadas a distintos grupos de
países o regiones. Estos conjuntos de Curvas de Lorenz han sido comparados mediante
la dominancia estocástica imprecisa. Un estudio similar se ha realizado para comparar
tasas de supervivencia asociadas a distintos tipos cáncer, estudiando qué tipo de cáncer
tiene peor diagnóstico.

Las alternativas definidas bajo imprecisión, sin incertidumbre, se han modelado me-
diante conjuntos intuicionísticos (IF-sets). IF-sets son un tipo de conjuntos que sirven
para modelar información bipolar: considera los grados de pertenencia y no pertenen-
cia. Varios ejemplos de medidas de comparación de IF-sets se pueden encontrar en
la literatura. Sin embargo, hasta este momento no se había desarrollado una teoría
matemática. Por esta razón hemos considerados diferentes tipos de medidas de com-
paración, IF-disimilaridades, IF-divergencias, IF-disimilitudes y distancias, y las hemos
estudiado desde un punto de vista teórico. Por una parte hemos estudiado las relaciones
existentes entre estas medidas, y hemos definido una medida general de comparación de
IF-sets que contiene a las otras medidas como casos particulares. Posteriormente nos
hemos centrado en el estudio de las IF-divergencias, estudiando sus propiedades más in-
teresantes. En particular, hemos considerado una clase de IF-divergencias que satisface
una condición de localidad. También hemos visto qué conexión existe entre las divergen-
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cias para conjuntos difusos y las IF-divergencias. Por último, se han explicado posibles
aplicaciones de las IF-divergencias en el reconocimiento de patrones y en la Teoría de la
Decisión.

Pasamos a comentar algunos problemas abiertos relacionados con las IF-divergencias.
Por una parte, en caso de que los elementos del espacio inicial tengan unos pesos aso-
ciados, parece posible extender las IF-divergencias locales considerando los pesos. Por
otra parte, las IF-divergencias se podrían estudiar como entropías para IF-sets. Además,
creemos que es posible extender la propiedad de localidad para universos no finitos, o
incluso dar una defición de localidad basada en un operador diferente de la suma, como
podría ser una t-conorma.

En las últimas fechas varios investigadores han centrado su atención en cómo las
probabilidades imprecisas pueden modelar la información bipolar. Dado que los IF-sets
también son utilizados en este mismo contexto, hemos establecido una conexión entre
ambas teorías. Para ello, hemos considerado IF-sets definidos en un espacio probabilís-
tico, y si entendemos los IF-sets como conjuntos intervalo-valorados, pueden ser vistos
como conjuntos aleatorios. En esta situación, la información probabilística está recogida
en el conjunto de selecciones medibles. Hemos visto condiciones bajo las cuales esta in-
formación coincide con la información probabilística dada por el conjunto credal asociado
al conjunto aleatorio. Además, hemos visto que aproximaciones que ya se encontraban
en la literatura se pueden ver como casos particulares de nuestro estudio.

La conexión entre los IF-sets y las probabilidades imprecisas nos han permitido
extender la dominancia estocástica para la comparación de más de dos p-boxes al mismo
tiempo. Como trabajo futuro, pensamos que este estudio podría ser completado. En
particular, se podría estudiar la relación del procedimiento que hemos explicado con el
uso de la habitual distancia de Kolmogorov entre funciones de distribución. Sin embargo,
creemos que éste puede verse como un caso particular de nuestro estudio.



370 Chapter 6. Conclusiones y trabajo futuro



Conclusions and further research

This memory has dealt with the problem of comparing alternatives under lack of infor-
mation. This lack of information can be of different kinds, and here we have assumed
that it corresponds to either uncertainty or imprecision. Uncertainty refers to situations
where the possible results of the experiment are precisely described, but the exact result
is unknown; on the other hand, imprecision refers to situations in which the result of the
experiment is known but it cannot be precisely described. In order to model uncertainty
and imprecision we have used Probability Theory and Intuitionistic Fuzzy Set Theory,
respectively; when both these features appear together in the decision problem, we have
used the Theory of Imprecise Probabilities.

When the alternatives are subject to uncertainty in the outcomes, we we have
modelled them as random variables, and have used stochastic orders so as to make a
comparison between them. We have focused mainly in two different stochastic orders:
stochastic dominance and statistical preference. The former is one of the most widely
used stochastic orders we can find in the literature and the latter is of particular interest
when comparing qualitative variables. Indeed, although stochastic dominance is a well-
known method that has been widely investigated by several authors, statistical preference
remained partly unexplored. For this reason we have studied several properties of this
stochastic order. Possibly the most important one is its characterization in terms of the
median, that serves us to compare it as a robust alternative to stochastic dominance,
which is related to another location parameter: the mean.

We have also investigated the relationship between stochastic dominance and sta-
tistical preference, and we have found conditions under which (first degree) stochastic
dominance implies statistical preference. Since statistical preference depends on the cop-
ula that links the variables into a joint distribution, the conditions we have obtained
are also related to the copula. Theorem 3.64 summarizes such conditions: indepen-
dent random variables, continuous random variables coupled by an Archimedean copula
and either continuous or discrete random variables with finite supports that are either
comonotonic or countermonotonic. In addition, we have also showed that the implica-
tion between these two stochastic orders does not hold in general. Thus, the first open
question naturally arises: it is possible to characterize the set of copulas that makes first
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degree stochastic dominance to imply statistical preference?

When the random variables to be compared belong to the same parametric family
of distributions, like for instance Bernoulli, exponential, uniform, Pareto, beta or nor-
mal, we have seen that both stochastic dominance and statistical preference coincide,
and in fact, they are equivalent to compare the expectations of the random variables.
This makes us to conjecture that when comparing two random variables that belong to
the same parametric family of distribution within the exponential family, then stochas-
tic dominance and statistical preference reduce to the comparison of the expectations.
Although this problem is still open, a first approach, based on simulations, has already
be done in [32].

Stochastic dominance and statistical preference are pairwise methods of compari-
son of random variables. In this respect, they were not defined to compare more than
two variables simultaneously. In fact, statistical preference is not a transitive relation,
and therefore it may produce nonsensical results. For this reason we have generalized
statistical preference to the comparison of more than two random variables at the same
time. With similar underlying ideas to those of statistical preference, our generaliza-
tion assigns a preference degree to any of the random variables, and the sum of these
preference degrees is one. Then, the preferred random variable is the one with greater
preference degree. For this new approach we have investigated its connection to the
usual statistical preference and stochastic dominance. In fact, the same conditions of
Theorem 3.64 that guarantee that stochastic dominance implies statistical preference
also assures that if there is a random variable that pairwise dominates all the others with
respect to stochastic dominance, then such random variable will be the preferred one
with respect to our generalization of statistical preference.

A future line of research appears associated with this general statistical preference.
Given a set of alternatives (in this case, random variables) out of which we have to
choose the preferred one, we can assign a degree of preference, that we understand
as the strength of the preference of each alternative over the other. Then, the general
statistical preference can be seen as a fuzzy choice function defined on a set of alternatives
([81, 207]). Thus, it may be interesting to investigate the properties of the general
statistical preference in the framework of fuzzy choice functions.

On the other hand, there are situation in which the alternatives to be compared
are defined, not only under uncertainty, but also under imprecision. In such cases,
random variables do not collect all the available information. Thus, we have modelled the
alternatives by means of sets of random variables with an epistemic interpretation: each
set contains the real unknown random variable. In order to compare these sets, we need to
extend stochastic orders to this general framework. In order to do this, we have considered
any binary relation defined for the comparison of single random variables and we have
extended it for the comparison of sets of random variables. We have thus considered
six possible ways of ordering sets of random variables. After investigating some general
properties of these extensions, we have focused in the cases in which binary relation is
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either stochastic dominance or statistical preference. We have called their extensions
imprecise stochastic dominance and imprecise statistical preference. Proposition 4.19
and Corollary 4.22 showed that the former is clearly connected to the comparison of
the bounds of the associated p-boxes by means of stochastic dominance. These results
also helped to show that the approach given by Denoeux ([61]) is a particular case
of our more general framework. Denoeux considered two belief functions, and their
respective plausibility functions, and used stochastic dominance to compare them. Since
each belief and plausibility function can be represented as a set of probabilities, and
therefore imprecise stochastic dominance can be applied; we have seen that our definitions
become the ones given by Denoeux for this particular case.

The same happens with possibilities: each possibility defines a set of probabilities,
and therefore the imprecise stochastic dominance can be used to compare them. Proposi-
tion 4.52 showed a characterization of the imprecise stochastic dominance for possibility
measures with continuous possibility distribution. Thus, an open problem is to inves-
tigate if such characterization also holds for possibility measures with non-continuous
possibility distributions.

We have explored two situations that are usually present in decision making and
that can be modelled by means of the comparison of sets of random variables. On the
one hand, we have considered the comparison of two random variables with impreci-
sion on the utilities. We have modelled this imprecision with random sets. Since under
our epistemic interpretation the set of measurable selections of a random set encodes
its probabilistic information, the comparison of random sets must be made by means of
the comparison of their associated credal sets. On the other hand, we can also compare
random variables defined on a probability space with a non-precisely determined prob-
ability; in that case, we have to consider a set of probabilities instead a single one. In
this situation we can also consider two sets of random variables that summarise all the
available information. For these two particular situations we have explored the properties
of imprecise stochastic dominance and statistical preference, and we heave investigated
their connection to imprecise probabilities.

We know that statistical preference is a stochastic order that is based on the joint
distribution of the random variables. By Sklar’s Theorem, this joint distribution is
determined combining the marginals by means of a copula. However, given two random
variables defined in a probability space with imprecise beliefs, Sklar’s Theorem does not
allow to define the joint distribution. In order to solve this problem, we have investigated
bivariate p-boxes and how they can define a coherent lower probability. In particular,
we have seen that the lower and upper distributions associated with a set of bivariate
distribution functions are not in general bivariate distribution functions because they
violate the rectangle inequality. However, we have seen that they define a coherent lower
probability and they satisfy four inequalities, named (I-RI1), (I-RI2), (I-RI3) and (I-RI4),
that can be seen as the imprecise versions of the rectangle inequality. We have seen in
Proposition 4.102 that given two ordered normalized bivariate distribution functions that
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satisfy them, they define a coherent lower probability if one of the normalized functions
is defined on a binary space. An open problem for future research is to investigate if this
property also holds for normalized functions defined on any space.

The study of bivariate p-boxes have allowed to define an imprecise version of Sklar’s
Theorem. We have assumed that we have two imprecise marginal distributions, that we
model by means of p-boxes, and we have a set of possible copulas that link them. In
this situation it is possible to define a bivariate p-box that defines a coherent lower
probability. However, the second part of the Sklar’s Theorem does not hold, because a
bivariate p-box that defines a coherent lower probability cannot be expressed, in general,
by means of the marginal p-boxes. We have also seen how this imprecise version is very
useful when dealing with bivariate stochastic orders with imprecision.

The extension of stochastic orders to the comparison of sets of random variables we
have proposed has several applications. Besides the usual application of stochastic orders
in decision making, we have seen that they can be also applied to the comparison of the
inequality indices between groups of countries. In this work, we have considered the
Lorenz curve of each country, that measures the inequality of such country, and we have
grouped them by geographical areas. Then, we have compared these groups of Lorenz
curves using the imprecise stochastic dominance. We have made a similar approach to
the comparison of cancer survival rates, grouping them by cancer sites, and we have
analyzed which cancer site has a worst prognosis.

Alternatives defined under imprecision, without uncertainty, have been modelled
by means of IF-sets. IF-sets are bipolar models that allow to define membership and
non-membership degrees. Several examples of measures of comparison of IF-sets had
been proposed in the literature. However, a mathematical theory had not been devel-
oped. For this reason we have considered different kinds of measures, IF-dissimilarities,
IF-divergences, IF-dissimilitudes and distances, and we have investigated them from a
theoretical point of view. First of all, we have seen the relationships between these mea-
sures, and we have defined a general measure of comparison of IF-sets that contains them
as particular cases. Then, we have focused on IF-divergences and we have investigated its
main properties. In particular, we have considered one instance of IF-divergences, those
that satisfy a local property. We have also seen the connection between IF-divergences
and divergences for fuzzy sets. We have also showed how IF-divergences can be applied
within pattern recognition and decision making.

There are several open problems related to this study of IF-divergences. On the
one hand, it would be interesting to define local IF-divergences that take into account
a weight function on the the elements of the initial space. On the other hand, IF-
divergences could be studied as entropies for IF-sets. Furthermore, it is possible to
extend the local property to spaces non-necessarily finite, and also to define the local
property by means of an operator different than the sum, like t-conorms, for instance.

Currently, several authors have been investigating how imprecise probabilities can
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be used to model bipolar information. Since IF-sets are also useful in this context, we
have established a connection between both theories. We have assumed that IF-sets are
defined in a probability space; if we understand them as IVF-sets, they can then be
seen as random sets. In that case, their probabilistic information can be encoded by
the set of measurable selections. We have seen conditions under which such information
coincides with the probabilistic information given the credal set associated to the random
set. Furthermore, we have seen how previous approaches made for defining a probability
measure on IF-sets can be embedded into our approach.

The connection between IF-sets and imprecise probabilities has allowed us to extend
stochastic dominance to the comparison of more than two p-boxes simultaneously. For
future research, we think that this proposal could be studied more thoroughly. For
instance, a similar extension of stochastic dominance may be made by using the usual
Kolmogorov distance between cumulative distribution functions. It would be interesting
to determine if this becomes a particular case of our more general framework.
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A Appendix: Basic Results

In this Appendix we prove some results that we have used throughout this report.

Lemma A.1 Let a, b and c be three real numbers in [0, 1]. Then

a) max{0,min{a, c} −min{b, c}} ≤ max{0, a− b} and
max{0,max{a, c} −max{b, c}} ≤ max{0, a− b}.

b) max(|max{a, c} −max{b, c}|, |min{a, c} −min{b, c}|) ≤ |a− b|.

Proof: We distinguish the following cases, depending on the minimum and the maxi-
mum of {a, c} and {b, c}:

1. Assume that min{a, c} = a and min{b, c} = b, and consequently max{a, c} =
max{b, c} = c. Then:

a) max{0,min{a, c} −min{b, c}} = max{0, a− b}.
max{0,max{a, c} −max{b, c}} = 0 ≤ max{0, a− b}.

b) |max{a, c} −max{b, c}| = |c− c| = 0 ≤ |a− b|.
|min{a, c} −min{b, c}| = |a− b|.

2. Assume next that min{a, c} = a and min{b, c} = c, and therefore max{a, c} = c
and max{b, c} = b. Note that, since min{a, c} = a, then a ≤ c, and therefore
a− c ≤ 0. Moreover, it also holds that c ≤ b, and consequently a ≤ c ≤ b. Hence:

a) max{0,min{a, c} −min{b, c}} = max{0, a− c} = 0
max{0,min{a, c} −min{b, c}} ≤ max{0, a− b}.
max{0,max{a, c} −max{b, c}} = max{0, c− b} = 0
max{0,max{a, c} −max{b, c}} ≤ max{0, c− b}.

b) |max{a, c} −max{b, c}| = |c− b| ≤ |a− b|.
|min{a, c} −min{b, c}| = |a− c| ≤ |a− b|.
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3. Thirdly, assume that min{a, c} = c and min{b, c} = b, whence
max{a, c} = a and max{b, c} = c. In such a case, c ≤ a and b ≤ c, and therefore
b ≤ c ≤ a, that implies c− b ≤ a− b and a− c ≤ a− b. Hence:

a) max{0,min{a, c} −min{b, c}} = max{0, c− b}
max{0,min{a, c} −min{b, c}} ≤ max{0, a− b}.
max{0,max{a, c} −max{b, c}} = max{0, a− c}
max{0,max{a, c} −max{b, c}} ≤ max{0, a− b}.

b) |max{a, c} −max{b, c}| = |a− c| ≤ |a− b|.
|min{a, c} −min{b, c}| = |c− b| ≤ |a− b|.

4. Finally, assume that min{a, c} = min{b, c} = c, and consequently max{a, c} = a
and max{b, c} = b. Then:

a) max{0,min{a, c} −min{b, c}} = 0 ≤ max{0, a− b}.
max{0,max{a, c} −max{b, c}} = max{0, a− b}.

b) |max{a, c} −max{b, c}| = |a− b|.
|min{a, c} −min{b, c}| = |c− c| = 0 ≤ |a− b|.

Lemma A.2 If (a1, a2), (b1, b2) and (c1, c2) are elements on T = {(x, y) ∈ [0, 1]2 |
x+ y ≤ 1}, it holds that:

α= |a1 − b1|+ |a2 − b2|+ |a1 + a2 − b1 − b2|
≥ |max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+ |max{a1, c1}+ min{a2, c2} −max{b1, c1} −min{b2, c2}| = β.

Proof: Let us consider the following possibilities:

1. a1, b1 ≤ c1 and a2, b2 ≤ c2. Then:

β = |c1 − c1|+ |a2 − b2|+ |c1 + a2 − c1 − b2| = 2|a2 − b2|
≤ |a2 − b2|+ |a1 − b1|+ |a1 + a2 − b1 − b2| = α.

2. a1, b1 ≤ c1 and c2 ≤ a2, b2. Then it holds that:

β = |c1 − c1|+ |c2 − c2|+ |c1 + c2 − c1 − c2| = 0 ≤ α.

3. a1, b1 ≤ c1 and b2 ≤ c2 ≤ a2:

β = |c1 − c1|+ |c2 − b2|+ |c1 + c2 − c1 − b2| = 2|c2 − b2|
≤ 2|a2 − b2| ≤ α.

4. c1 ≤ a1, b1 and c2 ≤ a2, b2:

β = |a1 − b1|+ |c2 − c2|+ |a1 + c2 − b1 − c2| = 2|a1 − b1|
≤ |a1 − b1|+ |a2 − b2|+ |a1 + a2 − b1 − b2| = α.
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5. c1 ≤ a1, b1 and b2 ≤ c2 ≤ a2.

β = |a1 − b1|+ |c2 − b2|+ |a1 + c2 − b1 − b2|

=

{
|b1 − a1|+ (c2 − b2) + (a1 − b1)− (b2 − c2) if a1 − b1 ≥ b2 − c2
|b1 − a1|+ (c2 − b2) + (b2 − c2)− (a1 − b1) if a1 − b1 < b2 − c2

=

{
|b1 − a1|+ (a1 − b1) + 2(c2 − b2) if a1 − b1 ≥ b2 − c2
2|b1 − a1| if a1 − b1 < b2 − c2

≤

{
|b1 − a1|+ (a1 − b1) + (c2 − b2) + (a2 − b2) if a1 − b1 ≥ b2 − c2
|a1 − b1|+ |a2 − b2|+ |a1 + a2 − b1 − b2| if a1 − b1 < b2 − c2

≤

{
|b1 − a1|+ (a1 − b1) + (a2 − b2) + (a2 − b2) if a1 − b1 ≥ b2 − c2
|a1 − b1|+ |a2 − b2|+ |a1 + a2 − b1 − b2| if a1 − b1 < b2 − c2

≤ α.

6. b1 ≤ c1 ≤ a1 and b2 ≤ c2 ≤ a2.

β = |a1 − c1|+ |c2 − b2|+ |a1 + c2 − c1 − b2|
= (a1 − c1) + (c2 − b2) + (a1 − c1) + (c2 − b2)
= 2(a1 − c1) + 2(c2 − b2) ≤ 2(a1 − b1) + 2(a2 − b2) ≤ α.

7. b1 ≤ c1 ≤ a1 and a2 ≤ c2 ≤ b2.

β = |a1 − c1|+ |a2 − c2|+ |a1 + a2 − c1 − c2|

=

{
(a1 − c1) + (c2 − a2) + (a1 − c1) + (a2 − c2) if a1 − c1 ≥ c2 − a2

(a1 − c1) + (c2 − a2)− (a1 − c1)− (a2 − c2) if a1 − c1 < c2 − a2

=

{
2(a1 − c1) ≤ 2(a1 − b1) if a1 − c1 ≥ c2 − a2

2(c2 − a2) ≤ 2(b2 − a2) if a1 − c1 < c2 − a2

≤

{
2(a1 − b1) if a1 − c1 ≥ c2 − a2

2(b2 − a2) if a1 − c1 < c2 − a2

≤ α.

In the remaining cases, it is enough to exchange the roles of (a1, b1), (a2, b2) and to apply
the previous cases.

Lemma A.3 If (a1, a2), (b1, b2) and (c1, c2) are elements on T = {(x, y) ∈ [0, 1]2 |
x+ y ≤ 1}, then it holds that:

|a1 − b1 − a2 + b2|+ |a1 − b1|+ |a2 − b2| ≥
|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|+
|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|.

Proof: Let us consider some cases.



380 Appendix A. Basic Results

1. a1, b1 ≤ c1 and a2, b2 ≤ c2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|

= |c1 − c1 − a2 + b2|+ |c1 − c1|+ |a2 − b2| = 2|b2 − a2|
≤ |a1 − b1 − a2 + b2|+ |a1 − b1|+ |a2 − b2|.

2. a1, b1 ≤ c1 and c2 ≤ a2, b2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|

= |c1 − c1 − c2 + c2|+ |c1 − c1|+ |c2 − c2| = 0
≤ |a1 − b1 − a2 + b2|+ |a1 − b1|+ |a2 − b2|.

3. a1, b1 ≤ c1 and b2 ≤ c2 ≤ a2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|

= |c1 − c1 − c2 + b2|+ |c1 − c1|+ |c2 − b2| = 2|c2 − b2|
≤ |a1 − b1 − a2 + b2|+ |a1 − b1|+ |a2 − b2|.

4. a1, b1 ≤ c1 and a2 ≤ c2 ≤ b2. It suffices to exchange the roles of (a1, a2) and (b1, b2)
and to apply the previous case.

5. c1 ≤ a1, b1 and a2, b2 ≤ c2. Take (a2, a1) and (b2, b1) and apply case 2.

6. c1 ≤ a1, b1 and c2 ≤ a2, b2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|

= |a1 − b1 − c2 + c2|+ |a1 − b1|+ |c2 − c2| = 2|a1 − b1|
= |a1 − b1 − a2 + b2|+ |a1 − b1|+ |a2 − b2|.

7. c1 ≤ a1, b1 and b2 ≤ c2 ≤ a2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
= |a1 − b1 − c2 + b2|+ |a1 − b1|+ |c2 − b2|

=

{
(a1 − b1)− (c2 − b2) + |a1 − b1|+ (c2 − b2) if a1 − b1 ≥ c2 − b2
2(c2 − b2)− (a1 − b1) + |a1 − b1| if a1 − b1 ≤ c2 − b2

≤

{
2|a1 − b1| if a1 − b1 ≥ c2 − b2
(a2 − b2)− (a1 − b1) + |a1 − b1|+ |a2 − b2| if a1 − b1 ≤ c2 − b2

= |a1 − b1|+ |a2 − b2|+ |a1 − b1 − a2 + b2|.
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8. c1 ≤ a1, b1 and a2 ≤ c2 ≤ b2. It suffices to exchange (a1, a2) and (b1, b2) and to
apply the previous case.

9. b1 ≤ c1 ≤ a1 and a2, b2 ≤ c2. It is enough to consider (a2, a1) and (b1, b2) and to
apply case 3.

10. b1 ≤ c1 ≤ a1 and c2 ≤ a2, b2. It suffices to consider (a2, a1) and (b1, b2) and to
apply case 7.

11. b1 ≤ c1 ≤ a1 and b2 ≤ c2 ≤ a2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
= |a1 − c1 − c2 + b2|+ |a1 − c1|+ |c2 − b2|

=

{
2(a1 − c1) + (c2 − b2)− (c2 − b2) if a1 − c1 ≥ c2 − b2
(a1 − c1) + 2(c2 − b2)− (a1 − c1) if a1 − c1 ≤ c2 − b2

≤

{
2(a1 − b1) if a1 − c1 ≥ c2 − b2
2(a2 − b2) if a1 − c1 ≤ c2 − b2

= |a1 − b1|+ |a2 − b2|+ |a1 − b1 − a2 + b2|.

12. b1 ≤ c1 ≤ a1 and a2 ≤ c2 ≤ b2.

|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|

= |a1 − c1 − a2 + c2|+ |a1 − c1|+ |a2 − c2|
= 2(a1 − c1) + 2(c2 − a2)
≤ 2(a1 − b1) + 2(b2 − a2)
= |a1 − b1|+ |a2 − b2|+ |a1 − b1 − a2 + b2|.

13. a1 ≤ c1 ≤ b1. It is enough to consider (a2, a1) and (b2, b1) and to apply the previous
cases.

Lemma A.4 If (a1, a2), (b1, b2) and (c1, c2) are elements on T = {(x, y) ∈ [0, 1]2 |
x+ y ≤ 1}, then:

|a1 − b1|+ |a2 − b2|+ |a1 − b1 − a2 + b2|+ |a1 + a2 − b1 − b2| ≥
|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|+
|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|+
|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|.

Proof: Throughout this proof we will use the fact that |x+y|+|x−y| = max{2|x|, 2|y|}.
Let us consider the following possibilities.
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1. a1, b1 ≤ c1 and a2, b2 ≤ c2.

|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|

= |c1 − c1|+ |a2 − b2|+ |c1 − c1 − a2 + b2|+ |c1 − c1 + a2 − b2|
= 3|a2 − b2| ≤ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|
≤ |a1 − b1|+ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|.

2. a1, b1 ≤ c1 and c2 ≤ a2, b2.

|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|
= |c1 − c1|+ |c2 − c2|+ |c1 − c1 − c2 + c2|+ |c1 − c1 + c2 − c2|
= 0 ≤ |a1 − b1|+ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|.

3. a1, b1 ≤ c1 and b2 ≤ c2 ≤ a2.

|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|

= |c1 − c1|+ |c2 − b2|+ |c1 − c1 − c2 + b2|+ |c1 − c1 + c2 − b2|
= 3|c2 − b2| ≤ 3|a2 − b2|
= |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|
≤ |a1 − b1|+ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|.

4. a1, b1 ≤ c1 and a2 ≤ c2 ≤ a2. It suffices to exchange the roles of (a1, a2) and
(b1, b2).

5. c1 ≤ a1, b1 and a2, b2 ≤ c2. It suffices to consider (a2, a1) and (b2, b1) and to apply
case 2.

6. c1 ≤ a1, b1 and c2 ≤ a2, b2.

|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|

= |a1 − b1|+ |c2 − c2|+ |a1 − b1 + c2 − c2|+ |a1 − b1 − c2 + c2|
= 3|a1 − b1| ≤ |a1 − b1|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|
≤ |a1 − b1|+ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|.
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7. c1 ≤ a1, b1 and b2 ≤ c2 ≤ a2.

|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|

= |a1 − b1|+ |c2 − b2|+ |a1 − b1 − c2 + b2|+ |a1 − b1 + c2 − b2|
= |a1 − b1|+ |c2 − b2|+ 2 max(|a1 − b1|, |c2 − b2|)
≤ |a1 − b1|+ |a2 − b2|+ 2 max(|a1 − b1|, |a2 − b2|)
≤ |a1 − b1|+ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|.

8. c1 ≤ a1, b1 and a2 ≤ c2 ≤ a2. It suffices to exchange the roles of (a1, a2) and (b1, b2)
and to apply the previous case.

9. b1 ≤ c1 ≤ a1 and a2, b2 ≤ c2. It is enough to consider (a2, a1) and (b2, b1) and to
apply case 3.

10. b1 ≤ c1 ≤ a1 and c2 ≤ a2, b2. Consider (a2, a1) and (b2, b1) and to apply case 7.

11. b1 ≤ c1 ≤ a1 and b2 ≤ c2 ≤ a2.

|max{a1, c1} −max{b1, c1}|+ |min{a2, c2} −min{b2, c2}|
+|max{a1, c1} −max{b1, c1} −min{a2, c2}+ min{b2, c2}|
+|max{a1, c1} −max{b1, c1}+ min{a2, c2} −min{b2, c2}|

= |a1 − c1|+ |c2 − b2|+ |a1 − c1 − c2 + b2|+ |a1 − c1 + c2 − b2|
= |a1 − c1|+ |c2 − b2|+ 2 max(|a1 − c1|, |c2 − b2|)
≤ |a1 − b1|+ |a2 − b2|+ 2 max(|a1 − b1|, |a2 − b2|)
= |a1 − b1|+ |a2 − b2|+ |a2 − b2 − a1 + b1|+ |a2 − b2 + a1 − b1|.

12. b1 ≤ c1 ≤ a1 and a2 ≤ c2 ≤ b2. It suffices to exchange the roles of (a1, a2) and
(b1, b2) and to apply the previous case.

13. a1 ≤ c1 ≤ b1. It suffices to exchange (a1, a2) and (b1, b2) and to apply the previous
cases.

Lemma A.5 If (a1, a2), (b1, b2) and (c1, c2) are three elements in T = {(x, y) ∈ [0, 1]2 |
x+ y ≤ 1}, then:

|max{a1 − 0.5, 0} −max{b1 − 0.5, 0}|+
|max{a2 − 0.5, 0} −max{b2 − 0.5, 0}| ≥

|max{max{a1, c1} − 0.5, 0} −max{max{b1, c1} − 0.5, 0}|+
|max{min{a2, c2} − 0.5, 0} −max{min{b2, c2} − 0.5, 0)|.

Proof: In order to prove this result, we are going to prove the following inequalities:

|max{a− 0.5, 0} −max{b− 0.5, 0}| ≥
|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|,

|max{a− 0.5, 0} −max{b− 0.5, 0}| ≥
|max{min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|,
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for every a, b, c ∈ [0, 1]. Let us consider several cases.

1. a ≤ b ≤ c.

|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|
= |max{c− 0.5, 0} −max{c− 0.5, 0}|
= 0 ≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.

|max(min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|
= |max{a− 0.5, 0}+ max{b− 0.5, 0}|.

2. a ≤ c ≤ b. This implies that b − 0.5 ≥ c − 0.5 ≥ a − 0.5, and therefore max{b −
0.5, 0} ≥ max{c− 0.5, 0} ≥ max{a− 0.5, 0}.

|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|
= |max{c− 0.5, 0} −max{b− 0.5, 0}|
≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|

|max{min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|
= |max{a− 0.5, 0} −max{c− 0.5, 0}|
≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.

3. b ≤ a ≤ c.

|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|
= |max{c− 0.5, 0} −max{c− 0.5, 0}|
= 0 ≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.

|max{min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|
= |max{a− 0.5, 0} −max{b− 0.5, 0}|.

4. b ≤ c ≤ a. Then a − 0.5 ≥ c − 0.5 ≥ b − 0.5, and consequently max{a − 0.5, 0} ≥
max{c− 0.5, 0} ≥ max{b− 0.5, 0}.

|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|
= |max{a− 0.5, 0} −max{c− 0.5, 0}|
≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.

|max{min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|
= |max{c− 0.5, 0} −max{b− 0.5, 0}|
≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.

5. c ≤ a ≤ b.

|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|
= |max{a− 0.5, 0} −max{b− 0.5, 0}|.

|max{min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|
= |max{c− 0.5, 0} −max{c− 0.5, 0}|
= 0 ≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.
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6. c ≤ b ≤ a.

|max{max{a, c} − 0.5, 0} −max{max{b, c} − 0.5, 0}|
= |max{a− 0.5, 0} −max{b− 0.5, 0}|.

|max{min{a, c} − 0.5, 0} −max{min{b, c} − 0.5, 0}|
= |max{c− 0.5, 0} −max{c− 0.5, 0}|
= 0 ≤ |max{a− 0.5, 0} −max{b− 0.5, 0}|.

Thus, for every (a1, a2), (b1, b2), (c1, c2) ∈ T it holds that:

|max{a1 − 0.5, 0} −max{b1 − 0.5, 0}|+
|max{a2 − 0.5, 0} −max{b2 − 0.5, 0}| ≥
|max{max{a1, c1} − 0.5, 0} −max{max{b1, c1} − 0.5, 0}|+
|max{a2 − 0.5, 0} −max{b2 − 0.5, 0}| ≥
|max{max{a1, c1} − 0.5, 0} −max{max{b1, c1} − 0.5, 0}|+
|max{min{a2, c2} − 0.5, 0} −max{min{b2, c2} − 0.5, 0}|.
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