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Prologue

“Paradoxically, one of the principal contributions of fuzzy logic
is its high power of precisiation of what is imprecise.”

(Zadeh, 2008)

In the current information age, new types of data are emerging in the everyday
life and we should face the new challenging problems associated with the analysis
of these data. In consequence, to tackle these problems, new statistical ideas and
developments are needed.

Among these new types of data, one can think about the (crisp or fuzzy) set-
valued ones, which have often been referred to as imprecise data for the last years.
These data come from two different situations in real-life: the imprecise observa-
tion/perception of the values of a random variable/vector and the expression of the
values of intrinsically imprecise attributes.

The work developed for this dissertation deals with imprecise data modeled as
either nonempty compact convex sets or fuzzy sets of finite-dimensional Euclidean
spaces. The interest is focused on the robust analysis of the location or central
tendency of the random mechanism generating such imprecise data. More concretely,
imprecise data are supposed to come from the performance of an imprecise-valued
random element (that is, a random set or random fuzzy set) and the statistical
analysis concerns the location of this random element.

A well-known location measure of the distribution of a random (fuzzy) set is the
associated Aumann-type mean, which satisfies that:

- it is well-defined under quite general conditions,

- it extends the mean value/vector of a random variable/vector, respectively,

- and it preserves the main valuable properties of the real/vectorial-valued means.

Nevertheless, the Aumann-type mean also inherits a rather negative feature from
the mean of a random variable/vector: its high sensitivity to either the existence of
outliers or data changes.
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In looking for a more robust location measure, it seems convenient to follow some
of the most successful approaches in dealing with other types of data. In this respect,
the work is to be centered on the trimmed means and M -estimators approaches.

To develop or adapt these approaches when the available data are imprecise, two
methodologies will be considered, namely:

• On one hand, imprecise data can be represented as functional data from (a
convex cone within) certain Hilbert space-valued random elements. Conse-
quently, we may particularize results and methods from Functional Data Anal-
ysis which have already been stated, like those regarding the trimmed means
and M -estimators to the imprecise-valued case. This can be properly made
whenever one guarantees that the particularization does not move out of the
cone of the imprecise data.

• On the other hand, when either the preceding methodology fails or the design
techniques are exact or give a better approximation, we may develop ad hoc
concepts and methods by combining notions and results from both (Fuzzy)
Set-Valued Analysis and Large Sample/Resampling Statistics.

With this general goal, the work for this dissertation is structured as follows:

Chapter 1 gathers all the main preliminary and supporting tools that will be
used in developing the two mentioned approaches. Some concepts and results had
already been introduced in the literature in connection with problems different from
the ones we have focused on. Nevertheless, a substantial part of the chapter regards
notions and results which have been expressly introduced during the course of this
thesis.

Firstly, the types of data to be dealt with are presented by recalling their defini-
tion and also by showing some useful representations that characterize them. The
usual arithmetics between imprecise data are later presented in terms of both their
definitions and their alternative representations. Remarks in connection with some
distinctive structural characteristics will be stated. Metrics have already been a
valuable tool for statistics with precise data, but the distinctive structural charac-
teristics we have just mentioned make the role of metrics even more outstanding
and crucial for statistics with imprecise data, especially in the location approaches
that will be considered in this work. For this purpose, some suitable distances be-
tween imprecise data will be recalled and new metrics, based on the characterizing
representations of these data, will be also introduced. The random mechanisms that
model the generation of imprecise data will be also presented within the chapter,
along with the Aumann/Aumann-type means of these models and some of its main
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properties. To motivate the main body of the work, contained in Chapters 2, 3
and 4, some simulation studies are carried out to corroborate empirically that the
Aumann and Aumann-type means are highly sensitive to outliers and data changes
in the imprecise-valued case.

Therefore, one is moved to look for robust location measures for these random
elements. Nowadays, in dealing with real-valued data the most widely used robust
estimators of central tendency are trimmed means and M-estimators of location,
both including the median as a special case. Depending on the distribution of the
considered random variable, M-estimators outperform trimmed means in terms of
efficiency and robustness or vice versa. For this reason, the work has been centered
on studying the extension of these two notions to deal with imprecise-valued data.

Chapter 2 is devoted to the extension of trimmed means to deal with imprecise-
valued data. At this point, we could particularize to some extent some published
concepts and results from Functional Data Analysis. More concretely, the population
trimmed mean has been previously introduced in the literature and its existence and
uniqueness (under ideal assumptions) have been also proved. On the other hand,
the empirical trimmed mean has been approximated by choosing algorithmically a
convenient point from the sample and the consistency of this approximation has been
demonstrated. In this chapter, after remarking that the required ideal assumptions
to guarantee the uniqueness of the population trimmed means do not cover some
realistic situations, a new algorithm to compute the empirical trimmed mean and
not only an approximation is introduced. The new algorithm is examined and some
results are obtained. The empirical trimmed mean is proved to be consistent and
its finite sample breakdown point is also computed as an objective tool measuring
its robustness.

A theoretical comparative analysis of the complexity of the new and the previous
algorithms for the trimmed mean is carried out. Furthermore, a comparative study
of the efficiency of the empirical trimmed mean computed using the new algorithm
in contrast to the mean, the trimmed mean based on depths and the approximation
of the empirical trimmed mean is developed through simulations of functional data.

The ideas and results in this chapter are finally particularized to set- and fuzzy
set-valued data by means of two illustrative real-life examples and some comparative
simulations in connection with the Aumann/Aumann-type means and analogue to
the ones presented for functional data.

Chapter 3 deals with the extension of M-estimates of location for imprecise-
valued data. As for the trimmed means, the first attempt to approach the problem
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has led to the search of M-estimates in the realm of Functional Data Analysis.
Some recent studies in the context of robust nonparametric density estimation com-
bine ideas from both the traditional kernel density estimation and the classical M-
estimation. These studies have been first adapted to Hilbert space-valued random
elements in such a way that necessary and sufficient conditions for the existence
of M-estimates in this setting have been stated. Moreover, these conditions allow
us to ensure that each of these estimates can be expressed as a convex linear com-
bination or weighted mean of the sample elements the estimate is based on. This
special feature is crucial for the particularization to imprecise-valued data, in order
to guarantee that the M-estimates remain in the space of values the location measure
should belong to. Furthermore, an iterative algorithm, extension of the iteratively
re-weighted least squares algorithm used in classical M-estimation, is also adapted
to approximate the sample location M-estimate for Hilbert space-valued data un-
der the above-referred conditions. Finally, the consistency is proved and the finite
sample breakdown point of the M-estimates is calculated, both results under some
other assumptions.

Although the conditions for the existence of M-estimates cover the extension of
several interesting and valuable classical M-estimates, other valuable and natural
ones do not fulfill them. At this point, the second attempt to approach the problem
has consisted of developing ad hoc procedures for imprecise-valued random elements
related to the 1-dimensional Euclidean space. Two of these procedures are based on
convenient L1 metrics between imprecise values (which have been either introduced
or recalled in Chapter 1) and the other one makes use of an L2 metric, being inspired
by the spatial approach to the median.

The ideas and results in this chapter are finally illustrated by means of two real-
life examples and some comparative simulations in connection with the Aumann-
type mean are carried out.

Chapter 4 aims to compare the robust behaviour of the different location mea-
sures introduced in this work from an empirical point of view. While the aim of the
simulations developed in Chapters 2 and 3 was to compare the robustness of the
new location measures in contrast to the sensitivity of the Aumann/Aumann-type
means, at this chapter the comparison will be stated among all the approaches which
have been suggested in the course of this work. A summarized discussion is to be
presented after them.

Each of the chapters in the work will end with some common types of remarks,
namely,
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• those clearly highlighting the main contributions in the chapter;

• those pointing out the ideas and results which, having been developed for the
chapter, have already been published, accepted or submitted for publication.

The work for this dissertation ends with some comments and suggestions con-
cerning open problems and future directions in connection with the topic covered in
it.
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“Paradoxically, one of the principal contributions of fuzzy logic
is its high power of precisiation of what is imprecise.”

(Zadeh, 2008)

En la era de la información en la que nos encontramos inmersos, continuamente
surgen nuevos tipos de datos procedentes de la vida cotidiana. Los problemas aso-
ciados al análisis de dichos datos suponen un desafío al que hay que enfrentarse y
abordar a través de desarrollos estadísticos novedosos.

Entre los tipos de datos que están emergiendo, se encuentran aquellos que toman
valores de conjunto (clásico o fuzzy) y que en los últimos años suelen denominarse
datos imprecisos. En la vida real, estos datos pueden provenir de dos situaciones
completamente diferentes: por un lado, de la observación o percepción imprecisa de
los valores de una variable o de un vector aleatorios y, por otro, de la expresión de
los valores de atributos que son intrínsecamente imprecisos.

El trabajo desarrollado para esta tesis se ocupa de los datos imprecisos que
se modelizan, o bien mediante conjuntos no vacíos, compactos y convexos, o bien
mediante conjuntos fuzzy de espacios euclídeos de dimensión finita. El interés está
focalizado en el análisis robusto de la localización o tendencia central del mecanismo
aleatorio que genera tales datos. Más concretamente, se supone que los datos que
manejamos son resultado de la realización de un elemento aleatorio con valores
imprecisos (es decir, de un conjunto aleatorio o de un conjunto fuzzy aleatorio)
y el análisis estadístico considerado hace referencia a la tendencia central de la
distribución de ese elemento aleatorio.

Una medida de localización muy conocida y habitual en el contexto de los con-
juntos aleatorios (clásicos o fuzzy) es la media (de Aumann o tipo Aumann, respec-
tivamente) asociada a los mismos, la cual satisface que:

- está bien definida en condiciones bastante generales,

- extiende el valor/vector media de las variables/vectores aleatorios,
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- y conserva las propiedades más relevantes de las medias del caso real y vecto-
rial.

No obstante, esta generalización de la media comparte con los casos real y vectorial
un rasgo muy negativo: su elevada sensibilidad a la presencia de outliers o al cambio
de datos.

Es deseable, por lo tanto, la búsqueda de una medida de localización con un
comportamiento más robusto. Para ello, parece conveniente adoptar algunos de los
enfoques más exitosos en el análisis de otros tipos de datos. Ese es el motivo por el
que este trabajo va a centrarse en las medias recortadas y en los M-estimadores.

Para desarrollar o adaptar estos enfoques cuando los datos disponibles son im-
precisos, van a considerarse dos metodologías:

• Por un lado, los datos imprecisos pueden representarse como datos funcionales
provenientes de elementos aleatorios con valores en (un cono convexo dentro
de) cierto espacio de Hilbert. Por lo tanto, podrían particularizarse los resul-
tados y métodos ya establecidos para el Análisis de Datos Funcionales, como
los relativos a las medias recortadas y a los M-estimadores, al caso de datos
imprecisos. Esta aproximación será válida siempre y cuando pueda garanti-
zarse que la particularización se lleva a cabo dentro del cono correspondiente
a los datos imprecisos.

• Por otro lado, cuando la metodología anterior falla o es posible establecer
técnicas exactas o que proporcionen una aproximación más adecuada, pueden
desarrollarse conceptos y métodos ad hoc combinando nociones y resultados
del Análisis de Valores de Conjunto (o Conjunto Fuzzy) y las Estadísticas de
Grandes Muestras y de Remuestreo.

Con este objetivo general, el trabajo de la tesis se ha estructurado como sigue:

El Capítulo 1 recoge las herramientas preliminares y de apoyo que van a usarse
en el desarrollo de los dos enfoques mencionados. Algunos conceptos y propiedades
se han introducido previamente en la literatura en relación con otros problemas. Sin
embargo, una parte importante del capítulo se refiere a nociones y resultados que se
han introducido de forma expresa en el curso de esta tesis.

En primer término se presentan los tipos de datos que van a tratarse, recordando
sus definiciones y mostrando algunas representaciones útiles que los caracterizan. A
continuación, se exponen las aritméticas usuales entre datos imprecisos (tanto en
términos de sus definiciones originales como de las alternativas en función de sus
representaciones caracterizadoras), señalando algunas características estructurales
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distintivas inherentes a su empleo. Hay que tener en cuenta que, si bien las métricas
entre datos son una herramienta muy notable y valiosa en la Estadística clásica, las
peculiaridades estructurales a las que acabamos de referirnos hacen que su papel
sea aún más destacado si cabe en el caso de datos imprecisos, especialmente en los
enfoques del estudio de la localización que van a considerarse a lo largo de esta
tesis. Con esta finalidad, se recopilan algunas de las distancias más adecuadas entre
datos imprecisos y se introducen nuevas métricas basadas en representaciones car-
acterizadoras de dichos datos. También se incluyen en este capítulo los mecanismos
aleatorios que modelizan la generación de datos imprecisos, junto con las medias de
Aumann y tipo Aumann de esos modelos, así como algunas de sus propiedades más
notables. Para motivar la contribución principal de esta memoria, recogida en los
Capítulos 2, 3 y 4, se llevan a cabo algunos estudios de simulación que corroboran
empíricamente que las medias de Aumann y tipo Aumann son muy sensibles ante
outliers y cambios de datos.

Todo ello justifica la propuesta de medidas de localización robustas para estos
elementos aleatorios. En la actualidad, las medias recortadas y los M-estimadores
de localización son los estimadores robustos de tendencia central más utilizados al
trabajar con valores reales, siendo la mediana un caso especial de los anteriores.
Dependiendo de las distribuciones de las variables consideradas, los M-estimadores
resultan más eficientes y robustos que las medias recortadas o viceversa. Por esta
razón, la tesis se ha centrado en el estudio de la generalización de ambas nociones
para el tratamiento de datos imprecisos.

El Capítulo 2 está dedicado a la extensión de las medias recortadas para datos
con valores imprecisos. En este punto, pueden particularizarse algunos conceptos
y resultados del Análisis de Datos Funcionales. Más concretamente, las medias
recortadas poblacionales ya han sido introducidas previamente por otros autores y
se ha demostrado su existencia y unicidad bajo ciertas condiciones ideales. Por otra
parte, la media recortada empírica se ha aproximado eligiendo algorítmicamente un
punto apropiado a partir de la muestra y su consistencia ha sido demostrada. En este
capítulo, tras observar que las suposiciones requeridas para garantizar la unicidad
de las medias recortadas poblacionales no se ajustan a las situaciones más realistas,
se introduce un nuevo algoritmo para calcular la media recortada empírica de forma
exacta, y no simplemente una aproximación de la misma. Después de examinar el
algoritmo propuesto y obtener algunos resultados teóricos, se prueba que la media
recortada empírica es consistente y se determina su punto de ruptura muestral finito
como una herramienta objetiva de su robustez.
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La complejidad de ambos algoritmos se va a comparar a nivel teórico y también
a través de un estudio de simulación con datos funcionales, contrastando la eficiencia
de la media recortada empírica calculada frente a su aproximación, la media y la
media recortada basada en profundidades.

Finalmente, se particularizan las ideas y resultados de este capítulo a datos
con valores de conjunto y de conjunto fuzzy mediante dos ejemplos ilustrativos
del mundo real y algunas simulaciones comparativas en relación con las medias de
Aumann y tipo Aumann siguiendo pautas análogas a las de las comparaciones para
datos funcionales.

El Capítulo 3 se ocupa de la extensión de las M-estimaciones de localización
para datos con valores imprecisos. Al igual que ocurría con las medias recortadas,
el primer acercamiento al problema ha conducido a la búsqueda de M-estimaciones
en el marco del Análisis de Datos Funcionales. Algunos estudios recientes, en el
contexto de la estimación de densidad no paramétrica robusta, combinan ideas de la
estimación de densidad núcleo tradicional y la M-estimación clásica. Estos estudios
se han adaptado en primer lugar a elementos aleatorios con valores en un espacio
de Hilbert, estableciendo condiciones necesarias y suficientes para la existencia de
M-estimaciones en esa situación. Gracias a esas condiciones es posible asegurar que
las estimaciones pueden expresarse como una combinación lineal convexa o media
ponderada de los elementos muestrales a partir de los cuales se calcula la estimación.
Esta propiedad resulta crucial para la particularización al caso de datos imprecisos,
puesto que permite garantizar que las M-estimaciones no toman valores fuera del
espacio al que debe pertenecer la medida de localización. Además, para aproximar la
M-estimación de localización muestral para datos con valores en espacios de Hilbert
en las condiciones indicadas, se ha adaptado un procedimiento iterativo que extiende
el algoritmo de mínimos cuadrados reponderado iterativamente y empleado habit-
ualmente en la M-estimación clásica. Por último, y bajo otras condiciones, se prueba
la consistencia y se calcula el punto de ruptura muestral finito de las M-estimaciones.

Aunque las condiciones para la existencia de las M-estimaciones son válidas para
muchas de las funciones de pérdida clásicas más interesantes, otras relevantes y
naturales no las satisfacen. En este punto, la segunda forma de acercarse al problema
ha consistido en desarrollar procedimientos ad hoc para elementos aleatorios con
valores imprecisos, limitándonos al caso unidimensional (números fuzzy aleatorios
e intervalos aleatorios). Dos de esos procedimientos están basados en apropiadas
métricas (entre valores imprecisos) de tipo L1, las introducidas o rememoradas en el
Capítulo 1, y el tercero recurre a una métrica de tipo L2, inspirándose en el enfoque
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de la mediana espacial.
Para concluir, las ideas y resultados de este capítulo se ilustran a través de dos

ejemplos de la vida real y algunas simulaciones comparativas en conexión con la
media de Aumann o tipo Aumann.

El Capítulo 4 compara el comportamiento robusto de las distintas medidas/es-
timaciones de localización introducidas en la tesis, desde una perspectiva empírica.
Mientras que el objetivo de las simulaciones recogidas en los Capítulos 2 y 3 era
contrastar la robustez de las nuevas medidas frente a la sensibilidad de las medias
de Aumann o tipo Aumann, en este capítulo la comparación concierne a todas las
propuestas presentadas a lo largo de esta memoria. Tras las simulaciones, se presenta
una discusión que resume las conclusiones extraídas.

Cada uno de los capítulos de la tesis finaliza con una serie de observaciones
comunes:

• las que subrayan las contribuciones más destacables del capítulo;

• las que indican las ideas y resutados que se han desarrollado expresamente para
dicho capítulo y ya se han publicado, aceptado para publicación o enviado para
su consideración en revista.

La memoria concluye con algunos comentarios y sugerencias de problemas abier-
tos y líneas futuras de investigación estrechamente conectadas con el tema de la
tesis.
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“Paradoxically, one of the principal contributions of fuzzy logic
is its high power of precisiation of what is imprecise.”

(Zadeh, 2008)

In het huidige informatie tijdperk ontstaan nieuwe types gegevens in het dagelijk-
se leven en we moeten de uitdagende problemen die gepaard gaan met de analyse
van deze nieuwe soorten gegevens aanpakken. Om deze problemen op te lossen zijn
nieuwe statistische ideeën en ontwikkelingen noodzakelijk.

Eén van de nieuwe types data waar men kan aan denken zijn de (crisp of fuzzy)
verzamelingwaardige gegevens die in de laatste jaren dikwijls niet-precieze gegevens
genoemd worden. Deze gegevens zijn afkomstig van twee verschillende situaties in
de praktijk: De niet-precieze observatie/perceptie van de waarde van een stochas-
tische veranderlijke/vector en de expressie van de waarde van intrinsiek niet-precieze
attributen.

Het werk dat in deze thesis ontwikkeld werd behandelt niet-precieze gegevens
die gemodelleerd worden als ofwel niet-lege compacte convexe verzamelingen ofwel
als vaagverzamelingen van eindige Euclidische ruimten. De hoofdinteresse ligt bij
de robuuste analyse van de locatie of centrale tendens van het toevalsafhankelijke
mechanisme that zulke niet-precieze gegevens genereert. Meer concreet, niet-precieze
gegevens worden verondersteld afkomstig te zijn van een niet-precieswaardig stocha-
stisch element (d.w.z. een stochastische verzameling of een stochastische vaagverza-
meling) en de statistische analyse heeft betrekking op de locatie van dit stochastisch
element.

Een welgekende maat voor de locatie van de verdeling van een stochastische
(vaag)verzameling is het Aumann-type gemiddelde, die voldoet aan:
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- Het is goed-gedefinieerd onder vrij algemene voorwaarden,

- Het is een uitbreiding van de gemiddelde waarde/vector van een stochastische
veranderlijke/vector, respectievelijk,

- en het behoudt de belangrijkste waardevolle eigenschappen van de reëel/vector-
waardige gemiddelden.

Desondanks erft het Aumann-type gemiddelde ook een negatieve eigenschap van
het gemiddelde van een stochastische veranderlijke/vector: zijn extreem hoge gevoe-
ligheid aan de aanwezigheid van uitschieters of (kleine) veranderingen in de gegevens.

In de zoektocht naar meer robuuste locatiematen, is het voor de hand liggend
om de meest succesvolle procedures bij andere types gegevens te volgen. Dit werk
concentreert zich dan ook op het getrimde gemiddelde en de M -schatter aanpak.

Om deze technieken te ontwikkelen of aan te passen voor niet-precieze gegevens,
worden twee methoden beschouwd, namelijk

• Enerzijds kunnen niet-precieze gegevens voorgesteld worden als functionele
gegevens afkomstig van (een convexe kegel in) zekere Hilbertruimte-waardige
stochastische elementen. Bijgevolg kunnen we reeds bestaande resultaten en
methoden van functionele data analyse, zoals deze voor getrimde gemiddelden
en M -schatters, toepassen op het speciale geval van niet-precieswaardige gege-
vens. Deze aanpak kan volledig uitgewerkt worden als gegarandeerd kan wor-
den dat de toepassing van deze procedures op niet-precieswaardige gegevens
niet buiten de kegel van de niet-precieze gegevens kan terechtkomen.

• Anderzijds, als de voorgaande methodologie faalt of als alternatieve design-
technieken exacte resultaten of betere benaderingen opleveren, dan kunnen
we ad hoc concepten en methoden ontwikkelen door noties en resultaten van
(vaag)verzamelingwaardige analyse te combineren met grote steekproeven /
resampling statistiek.

Met dit algemene doel is het werk voor deze verhandeling gestructureerd als
volgt:

Hoofdstuk 1 verzamelt alle belangrijke voorafgaande en ondersteunende instru-
menten die gebruikt zullen worden in de ontwikkeling van de twee hierboven ver-
melde aanpakken. Enkele concepten en resultaten werden eerder al in de literatuur
geïntroduceerd in verband met andere problemen dan degenen die hier bestudeerd
worden. Een substantieel deel van het hoofdstuk behandelt echter begrippen en
resultaten die nieuw geïntroduceerd werden, specifiek voor het onderzoek in deze
thesis.

xvi



Proloog

Eerst worden de types gegevens die behandeld worden voorgesteld door hun
definitie te herhalen en ook door nuttige representaties die de gegevens karakteris-
eren aan te tonen. De standaard rekenregels voor niet-precieze gegevens worden dan
voorgesteld, zowel in termen van hun definitie als in termen van hun alternatieve rep-
resentaties. Commentaren in verband met verschillende structurele karakterisaties
worden ook toegevoegd. Metrieken zijn al een heel nuttig instrument gebleken voor
de statistische analyse van niet-precieze gegevens, maar de nieuwe representaties
zorgen ervoor dat de rol van metrieken nog crucialer wordt voor de statistische ana-
lyse van niet-precieze gegevens, in het bijzonder voor de locatieprocedures die in
dit werk uiteengezet worden. Met dit doel worden handige afstanden tussen niet-
precieze gegevens herhaald, maar ook worden nieuwe metrieken gebaseerd op de
nieuwe representaties voor deze gegevens geïntroduceerd. De stochastische mecha-
nismen die het genereren van niet-precieze gegevens modelleren worden ook in dit
hoofdstuk voorgesteld, samen met de Aumann-type gemiddelden voor deze modellen
en hun belangrijkste eigenschappen. Om het werk in hoofdstukken 2, 3 en 4, die de
hoofdzaak van deze thesis vormen, te motiveren worden simulatieresultaten getoond
die empirisch bevestigen dat de Aumann-type gemiddelden extreem gevoelig zijn aan
uitschieters en veranderingen in de niet-precieswaardige gegevens.

Daarom wordt men aangezet om op zoek te gaan naar robuuste locatiematen
voor deze stochastische elementen. De huidige meest gebruikte robuuste schat-
ters voor het centrum van reëelwaardige gegevens zijn de getrimde gemiddelden en
M -schatters, die beide de mediaan bevatten als speciaal geval. Afhankelijk van
de verdeling van de beschouwde stochastische veranderlijke kunnen M-schatters de
getrimde gemiddelden overtreffen in termen van efficiëntie en robuustheid of vice
versa. Voor deze reden richt dit werk zich op het uitbreiden van deze twee noties
voor de behandeling van niet-precieswaardige gegevens.

Hoofdstuk 2 is gewijd aan de uitbreiding van getrimde gemiddelden voor de
behandeling van niet-precieswaardige gegevens. Hiervoor konden in zekere mate
gepubliceerde begrippen en resultaten van functionele data analyse gebruikt wor-
den. Meer concreet, het populatie getrimde gemiddelde werd al in de literatuur
geïntroduceerd en zijn bestaan en uniciteit (onder ideale voorwaarden) werden reeds
bewezen. Anderzijds werd het steekproef getrimde gemiddelde benaderd door op een
algoritmische wijze een geschikte observatie van de steekproef te kiezen en de consis-
tentie van deze schatter werd aangetoond. In dit hoofdstuk wordt eerst opgemerkt
dat de ideale voorwaarden om uniciteit van het populatie getrimde gemiddelde te
garanderen niet voldaan zijn in een aantal realistisch situaties en wordt daarna een
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nieuw algoritme voor de berekening van het steekproef getrimde gemiddelde, en niet
slechts een benadering, voorgesteld. De eigenschappen van het nieuwe algoritme
worden onderzocht. Er wordt aangetoond dat het steekproef getrimde gemiddelde
consistent is en het finite-sample breekpunt van de schatter wordt ook berekend als
een objectieve manier om zijn robuustheid te meten.

Een theoretische vergelijking van de complexiteit van het nieuwe en bestaande
algoritme voor het steekproef getrimde gemiddelde wordt uitgevoerd. Daarenboven
wordt een vergelijkende studie opgezet om de efficiëntie van het steekproef getrimde
gemiddelde, berekend aan de hand van het nieuwe algoritme, te vergelijken met
het gemiddelde, het getrimde gemiddelde gebaseerd op dieptefuncties en de eerdere
benadering van het steekproef getrimde gemiddelde aan de hand van simulaties met
functionele gegevens.

De ideeën en resultaten in dit hoofdstuk worden tenslotte toegepast op het spec-
ifieke geval van verzameling- en vaagverzamelingwaardige gegevens door middel van
twee illustraties met reële data voorbeelden en enkele vergelijkende simulaties ten
opzichte van de Aumann-type gemiddelden, analoog aan de simulaties met func-
tionele gegevens.

Hoofdstuk 3 behandelt de uitbreiding van M-schatters voor locatie naar niet-
precieswaardige gegevens. Zoals bij getrimde gemiddelden was de eerste poging om
het probleem aan te pakken om op zoek te gaan naar M-schatters in de context
van functionele data analyse, Enkele recente studies in de context van robuuste
niet-parametrische dichtheidsschatting combineren ideeën van traditionele kernel
dichtheidsschatting met M-schatters. Deze studies werden eerst aangepast naar
Hilbertruimte-waardige stochastische elementen en wel zodanig dat voldoende en
nodige voorwaarden voor het bestaan van M-schatters in deze setting opgesteld
werden. Deze voorwaarden stellen ons daarenboven in staat om te garanderen dat
deze schatters kunnen uitgedrukt worden als een convexe lineaire combinatie of
een gewogen gemiddelde van de steekproefelementen waarop de schatting gebaseerd
is. Deze bijzondere eigenschap is cruciaal voor de toepassing op het speciale geval
van niet-precieswaardige gegevens om te kunnen garanderen dat de M-schatter in de
ruimte blijft waartoe de locatieschatter moet behoren. Door het iteratieve herwogen
kleinste kwadratenalgoritme voor klassieke M-schatters aan te passen, wordt boven-
dien een iteratief algoritme uitgewerkt om de steekproef locatie M-schatting voor
Hilbertruimte-waardige gegevens te benaderen onder de reeds aangehaalde voor-
waarden. Ten slotte wordt de consistentie aangetoond en ook het finite-sample
breekpunt van de M-schatters berekend onder geschikte voorwaarden.
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Alhoewel de voorwaarden voor het bestaan van M-schatters de uitbreiding van
meerdere interessante en belangrijke M-schatters omvatten, sluiten de voorwaar-
den ook andere natuurlijke, belangrijke M-schatters uit. Daarom heeft de tweede
aanpak voor het probleem erin bestaan om ad hoc procedures te ontwikkelen voor
niet-precieswaardige stochastische elementen gerelateerd aan de ééndimensionele Eu-
clidische ruimte. Twee van deze procedures zijn gebaseerd op geschikte L1 metrieken
tussen niet-precieze gegevens (die herhaald of geïntroduceerd werden in Hoofdstuk
1) en de andere procedure gebruikt een L2 metriek, geïnspireerd door de spatiale
aanpak voor de mediaan.

De ideeën en resultaten in dit hoofdstuk worden tenslotte geïllustreerd door
middel van twee voorbeelden met reële data en enkele vergelijkende simulaties ten
opzichte van het Aumann-type gemiddelde worden ook uitgevoerd.

Hoofdstuk 4 beoogt om de robuustheid van de verschillende locatiematen die
in dit werk geïntroduceerd werden te vergelijken vanuit een empirisch standpunt.
Daar waar de simulaties in de hoofdstukken 2 en 3 bedoeld waren om de robuustheid
van de nieuwe locatiematen te vergelijken ten opzichte van de gevoeligheid van de
Aumann-type gemiddelden, willen we in dit hoofdstuk een vergelijking maken tussen
alle procedures die tijdens dit werk voorgesteld werden. Een samenvattend overzicht
wordt op het einde weergegeven.

Elk van de hoofdstukken in dit werk eindigt met eenzelfde soort van opmerkingen,
namelijk

• opmerkingen die duidelijk de belangrijkste bijdragen van het hoofdstuk in de
verf zetten.

• opmerkingen die duidelijk aangeven welke ideeën en resultaten die in het hoofd-
stuk uitgewerkt werden al gepubliceerd werden, aanvaard werden voor publi-
catie of ter publicatie aangeboden werden.

Het werk voor deze verhandeling eindigt met enkele commentaren en suggesties
met betrekking tot open problemen en toekomstige richtingen voor onderzoek in
verband met de onderwerpen die hier aan bod gekomen zijn.
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Chapter 1

Preliminary tools
and supporting results

Nowadays, data is the raw material and the essence of information and knowledge.
Statistical data analysis methodology is permanently evolving due to either the
emergence of new types of data in real-life studies or data analysts being able to
develop tools to deal with more or less complex data. In this respect, the first
statistical techniques were simply designed to manage either quantitative or qual-
itative data. At present, we can find numerous statistical procedures to handle
functional data (see, for instance, some recent studies about by Febrero-Bande and
González-Manteiga [68], Arribas-Gil and Müller [4], Jacques and Preda [110]), in-
complete/missing data (see, for instance, Bianco et al. [17], Ferraty et al. [74], Zhao
et al. [223], Lin [123], Sinha et al. [170]), and several other types of data.

Among the new types of data that can be frequently found in the everyday life,
one can consider imprecise data. As a quite natural, inherent and almost inevitable
fact, the meaning of “imprecise” is itself rather imprecise and there is no unanimous
agreement on it.

One of the most commonly used meaning for the imprecise data has been that
corresponding to mixtures of interval-valued and ordinal data (see, for instance,
Cooper et al. [36]).

Another meaning, the one considered along this work and that is prevailing in the
last years (see, for instance, Petit-Renaud and Denoeux [149], Coppi et al. [41], Gil
et al. [85], Hsu et al. [105], Zerafat et al. [222], Blanco-Fernández et al. [18], Ferraro
and Giordani [73]), is that imprecise data stand for set or fuzzy set-valued data.
These data are assumed to derive from either the imprecise observation/description
of a real/vectorial data or the valuation of an intrinsically imprecise-valued data. It

1
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should be clearly stated that the statistics in this work will be supposed to refer to
either these data or the random mechanism generating them, independently of the
origin of the imprecise data.

In this chapter, several models, concepts and results regarding imprecise data
will be exposed. Section 1.1 concerns the mathematical modeling for imprecise data
that is to be adopted in all the studies for this dissertation. Section 1.2 refers to the
arithmetic between these data. Section 1.3 presents some useful distances between
imprecise data which will be employed in Chapters 2 and 3. Section 1.4 recalls
suitable models for the imprecise-valued random elements generating imprecise data.
Section 1.5 includes empirical results showing how the Aumann-type mean of such
random elements is influenced by data contamination, what motivates the interest
of the studies in subsequent chapters. The chapter ends with a summary of the
novelties and the related publications derived from it.

1.1 Types of imprecise data and some valuable
representations

Imprecise data, in accordance with the considered meaning, model many complex
objects or appear in different domains.

In this way, set-valued data (and, in particular, interval-valued data) are a type
of data that often arise in econometric and financial applications. For example, as
indicated by Molchanov and others (see, for instance, Haval and Molchanov [111],
Cascos and Molchanov [26], Molchanov [139]): earners may report a salary bracket
instead of the exact salary or the profit of a firm may be intentionally converted to
an interval to ensure anonymity, it is possible to be interested in the range of prices
(which are always non-unique in case of transaction costs) and in case of several
financial assets this range leads to a parallelepiped (or to a more general convex
set if simultaneous transactions on several assets attract an extra discount). Also,
set-valued data are present in many medical and image databases recording, for
instance: the set of alleles present at a particular genomic location for each person
in a group; a particle; the set of symptoms/illnesses or the set of objects appearing
in a picture; and so on (see, for instance, Zhang et al. [224], Díaz et al. [58], and
others).

Similarly, the kind of data called fuzzy set-valued data (and, in particular, fuzzy
number-valued data) describe ratings, opinions, judgements, perceptions and other
data often in connection with human valuations in a natural and very expressive
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way. More concretely, when conducting quality ratings, satisfaction valuations and
many other surveys, responses cannot usually be expected to be expressible in terms
of values in a precise scale, since they are essentially imprecise (see De la Rosa
de Sáa et al. [53] for a recent detailed discussion about this point). Examples of
fuzzy set-valued data with higher dimension are scarcely found in the literature of
applications, but some references appear to conical fuzzy data in an approach to
the tone and color triangle designs (see Sugano [192] and Sugano et al. [193]), in
analyzing the perforation of a plate by projectiles (see Celmiņš [28]) or in clusterizing
fuzzy ecological data (see Salski [165]), among others.

The formalization of set- and fuzzy set-valued data is now presented in the next
two subsections.

1.1.1 Set-valued data and helpful representations

Let (Rp, ∥·∥) be the p-dimensional Euclidean space with the associated norm, where
p ∈ N.

Definition 1.1.1. Kc(Rp) is the space of nonempty compact convex subsets of Rp.
Consequently, Kc(R) denotes the space of closed and bounded nonempty intervals.

Along this work, when we refer to set-valued data , we will be concerned with
elements in Kc(Rp) with p > 1, whereas when we refer to interval-valued data ,
we will be concerned with elements in Kc(R).

Convex bodies of Rp, i.e., the elements in Kc(Rp), can be represented in terms
of the support function introduced by Minkowski [134] (see, for instance, Castaing
and Valadier [27], Schneider [167] and Ghosh and Kumar [82] for more details).

Definition 1.1.2. The support function of K ∈ Kc(Rp) is the mapping sK :

Sp−1 → R (where Sp−1 denotes the unit sphere of Rp, that is, Sp−1 = {u ∈ Rp :

∥u∥ = 1}) given by
sK(u) = sup

v∈K
⟨u,v⟩

for all u ∈ Sp−1, with ⟨·, ·⟩ denoting the inner product on Rp.

The value sK(u) represents the signed (i.e., oriented) distance from 0 ∈ Rp to
the supporting hyperplane of K which is orthogonal to u. Figure 1.1 shows the
graphical interpretation of the support function of a nonempty compact convex set
in dimensions p = 1 and p = 2. Ghosh and Kumar [82] have also graphically
illustrated the computation of the support function for different situations in case
p = 2.
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Figure 1.1: Support function of a nonempty compact convex set. On
the top, case p = 1, S0 = {−1, 1}. On the bottom, case p = 2, S1 =

circumference (center = (0, 0), radius = 1)

The support function was originally defined on the space Rp, but because of
the support function being positive homogeneous (i.e., sK(γ · v) = γ · sK(v) for all
v ∈ Rp, γ > 0), then the definition can be constrained to the unit sphere.

It should be emphasized that a set in Kc(Rp) is uniquely determined by its
support function. Actually, necessary and sufficient conditions are known to ensure
such a uniqueness (see, for instance, Schneider [167], Theorem 1.7.1, p. 38):

Proposition 1.1.1. [167] If s : Sp−1 → R is a subadditive function, that is,

∥u+ v∥ · s
(

u+ v

∥u+ v∥

)
≤ s(u) + s(v)

for all u,v ∈ Sp−1 (and, hence, one can trivially extend it to a sublinear –i.e.,
subadditive and positive homogeneous– function on Rp), then there exists a unique
K ∈ Kc(Rp) such that s = sK. More concretely,

K =
{
v ∈ Rp : ⟨v,u⟩ ≤ s(u) for all u ∈ Sp−1

}
.

In the particular case p = 1, that is, in dealing with interval-valued data, the
two following characterizing representations are intuitive and easy-to-use:
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Definition 1.1.3. The inf/sup representation of the interval K ∈ Kc(R) is the
vector ιK = (infK, supK) = (−sK(−1), sK(1)) ∈ {(x, y) ∈ R2 : x ≤ y}. In fact,
for any vector w = (w1, w2) ∈ R2 with w1 ≤ w2, there exists a unique interval
K = [w1, w2] ∈ Kc(R) such that ιK = w.

Definition 1.1.4. The mid/spr representation of the interval K ∈ Kc(R) is the
vector ηK = (midK, spr K) = ((infK + supK)/2, (supK − infK)/2) ∈ R× [0,∞)

(i.e., midK is the mid-point/centre of K and sprK denotes the spread/radius of
K). In fact, for any vector w = (w1, w2) ∈ R× [0,∞) there exists a unique interval
K = [w1 − w2, w1 + w2] ∈ Kc(R) such that ηK = w.

The use of the support function representation is quite interesting from a the-
oretical viewpoint, as we will later see, but in many cases it is not easy-to-specify,
to-handle and to-interpret. In contrast, both the inf/sup and the mid/spr are always
easy-to-compute and to-use, although they are limited to the one-dimensional case.

1.1.2 Fuzzy set-valued data and helpful representations

Fuzzy set-valued data are a ‘level-wise’ extension of set-valued ones, in which the
levels add a certain gradualness to the imprecision of set-valued data.

Definition 1.1.5. Fc(Rp) is the space of the fuzzy subsets of Rp (that is, the map-
pings Ũ : Rp → [0, 1]), such that their α-levels

Ũα =

 {x ∈ Rp : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ Rp : Ũ(x) > 0} if α = 0,

belong to Kc(Rp), where Ũ(x) means the ‘degree of compatibility of x with Ũ ’ (or
‘degree of truth of the assertion «x is Ũ»’).

Equivalently, a fuzzy set value can be defined as a normal (i.e., having nonempty
1-level) upper semi-continuous element of [0, 1]Rp with bounded 0-level.

Along this work, when we refer to fuzzy set-valued data , we will be concerned
with elements in Fc(Rp) with p ∈ N. We will distinguish two situations: when p > 1,
we will call them fuzzy vectors , while when p = 1, they will be referred to as fuzzy
number-valued data or simply fuzzy numbers .

As for the set-valued case, elements in Fc(Rp) can be represented in terms of the
(extended) support function introduced by Puri and Ralescu [156] (see, for instance,
Diamond and Kloeden [56] and Liang et al. [122] for more details).
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Definition 1.1.6. The support function of Ũ ∈ Fc(Rp) is given by the mapping
sŨ : [0, 1]× Sp−1 → R defined so that

sŨ(α,u) = sŨα
(u) = sup

x∈Ũα

⟨u,x⟩

for all u ∈ Sp−1, α ∈ [0, 1].

It should be emphasized that a fuzzy set in Fc(Rp) is uniquely determined by its
support function. Actually, necessary and sufficient conditions are known to ensure
such a uniqueness (see, for instance, Butnariu et al. [22], Theorem 1, p. 24):

Proposition 1.1.2. [22] If s : [0, 1]× Sp−1 → R is a function such that

s.i) is subadditive in Sp−1, that is, for all α ∈ [0, 1], u,v ∈ Sp−1,

∥u+ v∥ · s
(
α,

u+ v

∥u+ v∥

)
≤ s (α,u) + s (α,v)

and

s.ii) for all u ∈ Sp−1, the function s(·,u) is non-increasing, left-continuous on (0, 1]

and right-continuous at 0,

then, there exists a unique Ũ ∈ Fc(Rp) such that s = sŨ . Actually, Ũ is the fuzzy
set such that for all α ∈ [0, 1]:

Ũα = {x ∈ Rp : ⟨u,x⟩ ≤ s(α,u) for all u ∈ Sp−1}.

In the particular case p = 1, i.e., in dealing with fuzzy number-valued data, two
characterizing representations are intuitive and easy-to-use.

Definition 1.1.7. The inf/sup representation of the fuzzy number Ũ ∈ Fc(R)
is the vector-valued function ιŨ = (ιl

Ũ
, ιr

Ũ
) : [0, 1] → {(x, y) ∈ R2 : x ≤ y} such that

ιŨ(α) = ιŨα
, that is, ιl

Ũ
(α) = inf Ũα, ιrŨ(α) = sup Ũα.

It should be emphasized that a fuzzy set in Fc(R) is uniquely determined by its
inf/sup representation, as the following result states (see, for instance, Goetschel
and Voxman [87] and Ming [133]-Theorem 3.1, pp. 187-188):

Proposition 1.1.3. [87] Given a fuzzy number Ũ ∈ Fc(R), there exist two functions
l : [0, 1] → R and r : [0, 1] → R satisfying that

i) l and r are

− left-continuous on (0, 1],
− right-continuous at 0,
− non-increasing on [0, 1],

ii) −l(1) ≤ r(1),
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such that
ιŨ(α) = (−l(α), r(α)) for all α ∈ [0, 1].

Conversely, let l : [0, 1] → R and r : [0, 1] → R be two functions satisfying
Conditions i) and ii). Then, there exists a unique Ũ ∈ Fc(R) such that the vector-
valued function (−l, r) is its inf/sup representation.

Another representation that has been used in providing an alternative interpre-
tation and expression for the metric by Bertoluzza et al. [16] (see Trutschnig et
al. [201], Casals et al. [25]) and in formalizing some statistical developments with
fuzzy number-valued data is the mid/spr representation. This representation asso-
ciates each fuzzy number Ũ ∈ Fc(R) with the vector-valued function ηŨ = (ηm

Ũ
, ηs

Ũ
) :

[0, 1] → R×[0,∞) such that ηŨ(α) = ηŨα
, that is, ηm

Ũ
(α) = mid Ũα, ηs

Ũ
(α) = spr Ũα.

Components in this representation satisfy that ηs
Ũ

is a left-continuous non-increasing
and nonnegative function on (0, 1] and right-continuous at 0, whereas ηm

Ũ
is also left-

continuous on (0, 1] and right-continuous at 0, but nothing can be ensured in general
in connection with its monotonicity. In fact, in contrast to the inf/sup representa-
tion, one cannot state a set of necessary and sufficient conditions for the functions
involved in the mid/spr representation to characterize a fuzzy number.

Alternatively, and aiming to extend the mid/spr representation of the interval-
valued case, one can introduce a new representation. This representation also takes
into account the center and the shape, although in a slightly different way, so it is
possible to establish necessary and sufficient conditions to determine a fuzzy number.
Since this representation is a novelty, its construction will be explained in detail.

The new representation is based on considering an alternative indicator of the
‘center’ (instead of considering the mid function) along with an indicator of the
‘shape’ quantifying the deviation with respect to the center (instead of considering
the spr function). A suitable indicator of the ‘center’ of a fuzzy number is the one
given by Yager [218] and later extended by De Campos and González [52] (as the
.5-average index) and by Nasibov [142] (as the weighted averaging based on levels
-see also Nasibov et al. [143]). For any Ũ ∈ Fc(R), the weighted averaging based
on levels is defined as the real number in the interior set int(Ũ0) such that

wablφ(Ũ) =

∫
[0,1]

mid Ũα dφ(α),

where φ is a weighting measure on the measurable space ([0, 1],B[0,1]) that can be
formalized by means of an absolutely continuous probability measure with positive
mass function on (0, 1).
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It should be pointed out that no stochastic meaning is actually associated with
φ, but it allows us to weight the ‘degrees of compatibility’ given by the α-levels.

The wablφ is often used as a defuzzification function to rank fuzzy numbers and
it coincides with the well-known generalized Steiner point (or centroid) of a fuzzy
number (see, for instance, Diamond and Kloeden [55, 56], Körner [117], Diamond
and Körner [57], Butnariu et al. [22], Vetterlein and Navara [209, 210], and Liang
et al. [122]) by extending level-wise the Steiner points for convex sets (see Schnei-
der [166, 167]).

The wablφ is one of the three components of the new representation of fuzzy
numbers. The other two components are level-wise indicators of the shape of a
fuzzy number with respect to the considered center. They can be formalized as the
following functions:

ldevφ
Ũ
: [0, 1] → R, α 7→ ldevφ

Ũ
(α) = wablφ(Ũ)− inf Ũα,

rdevφ
Ũ
: [0, 1] → R, α 7→ rdevφ

Ũ
(α) = sup Ũα − wablφ(Ũ).

On the basis of these three components, we obtain a representation of fuzzy
numbers.

Definition 1.1.8. Let φ be an absolutely continuous probability measure associated
with the measurable space ([0, 1],B[0,1]) and having positive mass function on (0, 1).
The φ-wabl/ldev/rdev representation of the fuzzy number Ũ ∈ Fc(R) is the
vector-valued function υφ

Ũ
= (υw

Ũ
, υl

Ũ
, υr

Ũ
) : [0, 1] → R3 such that υw

Ũ
is constantly

equal to wablφ(Ũ), υl
Ũ
(α) = ldevŨ(α) and υr

Ũ
(α) = rdevφ

Ũ
(α).

For symmetric fuzzy number-valued data, the φ-wabl/ldev/rdev representation
coincides with the mid/spr one, irrespective of φ. Consequently, it is indeed an
extension of the mid/spr representation for interval-valued data.

As for the inf/sup representation, one can state necessary and sufficient condi-
tions characterizing fuzzy numbers by their φ-wabl/ldev/rdev representation. Thus
(see Appendix for the proof),

Proposition 1.1.4. Given a fuzzy number Ũ ∈ Fc(R) there exist a value m ∈ R
and two functions l∗ : [0, 1] → R and r∗ : [0, 1] → R satisfying that

i) l∗ and r∗ are

− left-continuous functions at any α ∈ (0, 1],
− right-continuous at 0,
− and non-increasing on [0, 1],

with
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ii) −l∗(1) ≤ r∗(1),

and such that for all α ∈ [0, 1],

Ũα = [m− l∗(α),m+ r∗(α)] .

Conversely, let m ∈ R and let l∗ : [0, 1] → R and r∗ : [0, 1] → R be functions
satisfying Conditions i) and ii). Then there exists a unique Ũ ∈ Fc(R) such that for
all α ∈ [0, 1]

Ũα = [m− l∗(α),m+ r∗(α)] .

Furthermore, if there is an absolutely continuous probability measure φ on ([0, 1],B[0,1])

with positive mass function on (0, 1) and such that

iii)

∫
[0,1]

l∗(α) dφ(α) =

∫
[0,1]

r∗(α) dφ(α),

then, (m, l∗, r∗) is the φ-wabl/ldev/rdev representation of Ũ .

This result will be illustrated by means of an example.

Example 1.1.1. Let m = 8, l∗(α) = 5−3α2 and r∗(α) = 7−6α for α ∈ [0, 1]. Since
functions l∗ and r∗ satisfy Conditions i) and ii) in Proposition 1.1.4, there exists a
unique bounded fuzzy number Ũ such that

Ũα = [m− l∗(α),m+ r∗(α)] =
[
3 + 3α2, 15− 6α

]
for every α ∈ [0, 1]. This fuzzy number Ũ is shown in Figure 1.2 and is given by

Ũ(x) =


√

(x− 3)/3 if x ∈ [3, 6)

1 if x ∈ [6, 9)

(15− x)/6 if x ∈ [9, 15]

0 otherwise.

On the other hand, the equality∫
[0,1]

(5− 3α2) dα = 4 =

∫
[0,1]

(7− 6α) dα

implies that for φ ≡ ℓ ≡ Lebesgue measure in [0, 1] we have that

wablℓ(Ũ) = 8, ldevℓ
Ũ
(α) = 5− 3α2, rdevℓ

Ũ
(α) = 7− 6α.

Some considerations should be made in connection with the last representation.
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Figure 1.2: Fuzzy number for the given ℓ-wabl/ldev/rdev representa-
tion in Example 1.1.1

Remark 1.1.1. The wabl/ldev/rdev representation for this fuzzy number is not
unique, since it is indeed possible to find a wabl/ldev/rdev representation for every
choice of φ. For instance, if one chooses φ ≡ Beta(5, 1) (i.e., the probability measure
associated with the Beta(5, 1) distribution), then

wablφ(Ũ) = 53/7, ldevφ
Ũ
(α) = (32− 21α2)/7, rdevφ

Ũ
(α) = (52− 42α)/7.

Note that for the Beta(5, 1) distribution, the larger the α-level of a set (that is to
say, the greater the degree of compatibility with Ũ), the larger its weight in the
corresponding wabl/ldev/rdev representation.

Remark 1.1.2. It should also be emphasized that, on the basis of the Weighted
Mean Value Theorem for integrals, whenever mid Ũα is a continuous function of α
in [0, 1], then for each φ there exists at least one βφ ∈ [0, 1] such that

mid Ũβφ =

∫
[0,1]

mid Ũα dφ(α) = wablφ(Ũ).

The wabl/ldev/rdev representation can be extended to deal with fuzzy vector-
valued data as follows:
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Definition 1.1.9. Given an absolutely continuous probability measure φ on the mea-
surable space ([0, 1],B[0,1]), the φ-support/Steiner representation of the fuzzy
vector Ũ ∈ Fc(Rp) is given by the vector-valued function:

τφ

Ũ
: [0, 1]× Sp−1 → Rp × R, (α,u) 7→ τφ

Ũ
(α,u) = (Sφ(Ũ), sŨ(α,u)),

where Sφ(Ũ) stands for the φ-Steiner point of Ũ , which, if it exists, corresponds
to the vector value:

Sφ(Ũ) =

∫
[0,1]×Sp−1

u · sŨ(α,u) dλp(u) dφ(α),

with λp denoting the normalized Lebesgue measure on Sp−1.

The following result establishes necessary and sufficient conditions to characterize
each fuzzy vector by a support/Steiner representation.

Proposition 1.1.5. If there exist a function s : [0, 1]×Sp−1 → R fulfilling conditions
s.i) and s.ii) in Proposition 1.1.2 and an absolutely continuous probability measure
φ on ([0, 1],B[0,1]), then, there exists a unique fuzzy vector Ũ ∈ Fc(Rp) such that

τφ(Ũ) = (m, s),

with m =

∫
[0,1]×Sp−1

u · s(α,u) dλp(u) dφ(α).

1.2 Arithmetics with imprecise data

In performing statistics with imprecise data, one of the key tools is given by the
arithmetic to operate with these data. More concretely, the elementary operations
to be specified are the sum of imprecise data and the multiplication of scalars by
imprecise data.

Although there is no full agreement about how these operations should be for-
malized, most of the theoretical and practical studies with imprecise data consider
the usual and natural approaches, which will be recalled in next subsections.

1.2.1 Arithmetic with set-valued data

In extending the sum and the product by a scalar from the Euclidean space Rp

to Kc(Rp), a natural way to proceed consists of defining these operations as the
image sets of the involved set-valued data through the function associated with the
corresponding operation (see Minkowski [134]). Thus,
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Definition 1.2.1. Let K,K ′ ∈ Kc(Rp). The Minkowski sum (or Minkowski
addition) of K and K ′ is defined as the set value K +K ′ ∈ Kc(Rp) given by

K +K ′ = {x+ y : x ∈ K, y ∈ K ′} =
∪

y∈K′

(K + y) =
∪
x∈K

(x+K ′),

where K + y = K + {y} = {x+ y : x ∈ K} = y +K = {y}+K.
In particular, if p = 1, K = [a, b] and K ′ = [a′, b′], then K +K ′ = [a+ a′, b+ b′].

As already indicated by Schneider [167], the Minkowski sum K + K ′ can be
‘kinematically’ interpreted as the set that is covered if K undergoes all translations
by vector values in K ′.

Figure 1.3 graphically illustrates the sum of two set-valued data in case p = 2.

Figure 1.3: Example of the Minkowski sum of two set-valued data

On the other hand,

Definition 1.2.2. Let K ∈ Kc(Rp) and γ ∈ R. The product of K by the scalar
γ is defined as the set value γ ·K ∈ Kc(Rp) given by

γ ·K = {γ x : x ∈ K}.

In particular, if p = 1 and K = [a, b], then

γ ·K =


[γ a, γ b] if γ ≥ 0

[γ b, γ a] otherwise.

Figure 1.4 graphically illustrates the product of a set-valued data by a scalar in
case p = 2.

These operations satisfy the following properties (see, for instance, Schneider [167]):
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Figure 1.4: Example of the product of a set-valued datum by a scalar

Proposition 1.2.1. [167] The Minkowski sum and the product by a scalar on
Kc(Rp) satisfy that for all K,K ′, K ′′ ∈ Kc(Rp) and γ, ϱ ∈ R

• K +K ′ = K ′ +K (commutativity of the Minkowski sum);

• K + (K ′ +K ′′) = (K +K ′) +K ′′ (associativity of the Minkowski sum);

• K + {0} = K (the neutral element of the Minkowski sum is {0});

• γ · (ϱ ·K) = (γ · ϱ) ·K (associativity of the product by a scalar);

• 1 ·K = K (the neutral scalar element of the product by a scalar is 1);

• γ ·(K+K ′) = γ ·K+γ ·K ′ whenever γ, ϱ ∈ [0,∞) (distributivity of the product
by a scalar w.r.t. the Minkowski sum);

• (γ + ϱ) · K = γ · K + ϱ · K (distributivity of the Minkowski sum w.r.t. the
product by nonnegative scalars);

• K +K ′ = K ′′ +K ′ implies that K = K ′′ (cancellation law of the Minkowski
sum).

The point-wise ‘opposite’ and ‘difference’ of set-valued data could be defined as

−K = {−x : x ∈ K}, K −K ′ = {x− y : x ∈ K, y ∈ K ′},

whence −K is the image of K under reflection w.r.t. {0}, and K − K ′ is the set
that is covered if K undergoes all reflected w.r.t. {0} translations by vector values
in K ′.

It can be straightforwardly proved that these point-wisely defined terms can also
be formalized through the two elementary algebraic operations on Kc(Rp) introduced
in Definitions 1.2.1 and 1.2.2, so that

−K = (−1) ·K, K −K ′ = K + (−1) ·K ′.
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Unlike what happens in the vector-valued case, a remarkable differential aspect
of this arithmetic is that K−K does not coincide in general with the neutral element
{0}, and hence, (K−K ′)+K ′ and (K+K ′)−K ′ do not coincide with K. Actually
(see, for instance, Schneider [167]),

Proposition 1.2.2. [167] Whatever K,K ′ ∈ Kc(Rp) may be
• {0} ⊂ K −K, with

•• {0} = K −K if and only if K reduces to a singleton in Rp,
•• K −K being centrally symmetric w.r.t. 0 (i.e., x ∈ K −K if and only if

−x ∈ K −K);

• K ⊂ (K +K ′)−K ′ and K ⊃ (K −K ′) +K ′.

As a consequence from the last preceding results one can conclude that

Proposition 1.2.3. [167] The space Kc(Rp) satisfies that
• with the Minkowski sum is a commutative semigroup, although not a group;

• with the Minkowski sum and the product by a scalar is a semilinear space (in
fact, a convex cone), but not a linear (vector) space.

The operations in Definitions 1.2.1 and 1.2.2 could be alternatively defined in
terms of their characterizing representations in Subsection 1.1.1. Thus, it is well-
known that by considering the functional arithmetic with support functions

Proposition 1.2.4. [134] Whatever K,K ′ ∈ Kc(Rp) and γ ∈ [0,∞) may be
• sK+K′(u) = sK(u) + sK′(u) for all u ∈ Sp−1;

• sγ·K(u) = γ · sK(u) for all u ∈ Sp−1.

In case p = 1, it is trivial that

inf(K +K ′) = infK + infK ′, inf(γ ·K) =

{
γ · infK if γ ≥ 0

γ · supK otherwise

sup(K +K ′) = supK + supK ′, sup(γ ·K) =

{
γ · supK if γ ≥ 0

γ · infK otherwise

and
mid (K +K ′) = midK +midK ′, mid (γ ·K) = γ ·midK,

spr (K +K ′) = sprK + sprK ′, spr (γ ·K) = |γ| ·midK,

whence

Proposition 1.2.5. Whatever K,K ′ ∈ Kc(R) and γ ∈ [0,∞) may be
ιK+K′ = ιK + ιK′ , ιγ·K = γ · ιK ,

ηK+K′ = ηK + ηK′ , ηγ·K = γ · ηK .
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1.2.2 Arithmetic with fuzzy set-valued data

The common way to extend the sum and the product by a scalar from the Euclidean
space Rp to Fc(Rp) is to use Zadeh’s extension principle (Zadeh [219]). It provides
a general method for extending nonfuzzy mathematical concepts in order to deal
with fuzzy set-valued data. In particular, it has been systematically applied to the
algebra of real and vector values from which operations on fuzzy set-values have
been extensively developed.

These operations generalize the usual set-valued arithmetic. Furthermore, be-
cause of the assumed compactness of the level sets and the consequent upper semi-
continuity of the fuzzy set-valued data, the results in Nguyen [146] guarantee the
equivalence of Zadeh’s principle with its level set form. This equivalence indicates
that the sum and the product by a scalar of fuzzy set-valued data based on Zadeh’s
extension principle are equivalent level-wise to the corresponding set-valued opera-
tions. Since this set-valued approach is in general much simpler than the one based
on functions, it will be more convenient to use it for most of the theoretical and
practical developments.

Now, the two elementary operations are to be recalled following the two equiva-
lent approaches on Fc(Rp).

Definition 1.2.3. Let Ũ , Ṽ ∈ Fc(Rp). The sum of Ũ and Ṽ is defined as the fuzzy
set value Ũ + Ṽ ∈ Fc(Rp) given by

(Ũ + Ṽ )(t) = sup
y,z∈Rp :y+z=t

min
{
Ũ(y), Ṽ (z)

}
.

Equivalently, for each α ∈ [0, 1]

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα =
{
y + z : y ∈ Ũα, z ∈ Ṽα

}
.

Figure 1.5 illustrates the sum of two fuzzy set-valued data in case p = 1 graph-
ically. It has been obtained by applying the R package SAFD (Statistical Analysis
of Fuzzy Data), which has been developed (see Trutschnig and Lubiano [202] and
Trutschnig et al. [203]), among other purposes, to ease the performance of the stan-
dard operations on the class of fuzzy numbers. On the other hand,

Definition 1.2.4. Let Ũ ∈ Fc(Rp) and γ ∈ R. The product of Ũ by the scalar γ

is defined as the fuzzy set value γ · Ũ ∈ Fc(Rp) given by

(γ · Ũ)(t) = sup
y∈Rp :y=γt

Ũ(y) =


Ũ(t/γ) if γ ̸= 0

1{0}(t) if γ = 0.
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Figure 1.5: Example of the sum of two fuzzy set-valued data

Equivalently, for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =
{
γ · y : y ∈ Ũα

}
.

Figure 1.6 graphically illustrates the product of a scalar by a fuzzy set-valued
datum in case p = 1, and it has been obtained by applying SAFD.
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Figure 1.6: Example of the product of a fuzzy set-valued datum by a scalar

Based on the properties in the set-valued case (Proposition 1.2.1) and the level
set form of the extension principle, one can trivially conclude that the operations
above satisfy the following properties:
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Proposition 1.2.6. The sum and the product by a scalar on Fc(Rp) based on
Zadeh’s extension principle satisfy that for all Ũ , Ṽ , W̃ ∈ Fc(Rp) and γ, ϱ ∈ R

• Ũ + Ṽ = Ṽ + Ũ (commutativity of the fuzzy sum);

• Ũ + (Ṽ + W̃ ) = (Ũ + Ṽ ) + W̃ (associativity of the fuzzy sum);

• Ũ + 1{0} = Ũ (the neutral element of the fuzzy sum is the indicator 1{0});

• γ · (ϱ · Ũ) = (γ · ϱ) · Ũ (associativity of the fuzzy product by a scalar);

• 1 · Ũ = Ũ (the neutral scalar element of the fuzzy product by a scalar is 1);

• γ · (Ũ + Ṽ ) = γ · Ũ + γ · Ṽ (distributivity of the fuzzy product by a scalar w.r.t.
the fuzzy sum);

• (γ + ϱ) · Ũ = γ · Ũ + ϱ · Ũ whenever γ, ϱ ∈ [0,∞) (distributivity of the fuzzy
sum w.r.t. the fuzzy product by nonnegative scalars);

• Ũ + Ṽ = W̃ + Ṽ implies that Ũ = W̃ (cancellation law of the fuzzy sum).

Due to the equivalence between the set-valued operations and their point-wise
approach, the point- and level-wise ‘opposite’ and ‘difference’ of fuzzy set-valued
data could be immediately defined as

−Ũ = (−1) · Ũ , Ũ − Ṽ = Ũ + (−1) · Ṽ .

As for the set-valued case, a remarkable differential aspect of this arithmetic with
respect to the real and vectorial ones is that Ũ− Ũ does not coincide in general with
the neutral element 1{0}, and hence, (Ũ − Ṽ ) + Ṽ and (Ũ + Ṽ )− Ṽ do not coincide
with Ũ . Actually, and based on Proposition 1.2.2, one can trivially conclude that

Proposition 1.2.7. Whatever Ũ , Ṽ ∈ Fc(Rp) may be

• {0} ⊂ (Ũ − Ũ)α for all α ∈ [0, 1], with

•• 1{0} = Ũ − Ũ if and only if Ũ reduces to the indicator function of a
singleton in Rp,

•• (Ũ − Ũ)α being centrally symmetric w.r.t. 0 for all α;

• Ũ ⊂ (Ũ + Ṽ )− Ṽ and Ũ ⊃ (Ũ − Ṽ ) + Ṽ .

As a consequence one can derive that

Proposition 1.2.8. The space Fc(Rp) satisfies that

• with the fuzzy sum is a commutative semigroup, although not a group;
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• with the fuzzy sum and the product by a scalar is a semilinear space (in fact,
a convex cone), but not a linear (vector) space.

The operations in Definitions 1.2.3 and 1.2.4 could be alternatively defined in
terms of their characterizing representations in Subsection 1.1.2. Thus, it can be
trivially stated (see, for instance, Puri and Ralescu [156]) that by considering the
functional arithmetic with support functions

Proposition 1.2.9. [156] Whatever Ũ , Ṽ ∈ Fc(Rp) and γ ∈ [0,∞) may be
• sŨ+Ṽ (α,u) = sŨ(α,u) + sṼ (α,u) for all u ∈ Sp−1 and α ∈ [0, 1];

• sγ·Ũ(α,u) = γ · sŨ(α,u) for all u ∈ Sp−1 and α ∈ [0, 1].

In case p = 1, it is trivial that for all α ∈ [0, 1]

inf(Ũ + Ṽ )α = inf Ũα + inf Ṽα, inf(γ · Ũ)α =

{
γ · inf Ũα if γ ≥ 0

γ · sup Ũα otherwise

sup(Ũ + Ṽ )α = sup Ũα + sup Ṽα, sup(γ · Ũ)α =

{
γ · sup Ũα if γ ≥ 0

γ · inf Ũα otherwise

and
wablφ(Ũ + Ṽ ) = wablφ(Ũ) + wablφ(Ṽ ), wablφ(γ · Ũ) = γ · wablφ(Ũ),

ldevφ
Ũ+Ṽ

(α) = ldevφ
Ũ
(α) + ldevφ

Ṽ
(α), ldevφ

γ·Ũ
(α) =

{
γ · ldevφ

Ũ
(α) if γ ≥ 0

−γ · rdevφ
Ũ
(α) otherwise

rdevφ
Ũ+Ṽ

(α) = rdevφ
Ũ
(α) + rdevφ

Ṽ
(α), rdevφ

γ·Ũ
(α) =

{
γ · rdevφ

Ũ
(α) if γ ≥ 0

−γ · ldevφ
Ũ
(α) otherwise

whence

Proposition 1.2.10. Whatever Ũ , Ṽ ∈ Fc(R) and γ ∈ [0,∞) may be, for all α ∈
[0, 1] we have that

ιŨ+Ṽ (α) = ιŨ(α) + ιṼ (α), ιγ·Ũ(α) = γ · ιŨ(α),

υφ

Ũ+Ṽ
(α) = υφ

Ũ
(α) + υφ

Ṽ
(α), υφ

γ·Ũ
(α) = γ · υφ

Ũ
(α).

The last conclusion can be extended to Fc(Rp) through the support/Steiner
representation, so that

Proposition 1.2.11. Whatever Ũ , Ṽ ∈ Fc(Rp) and γ ∈ [0,∞) may be, for all
α ∈ [0, 1] we have that

τφ

Ũ+Ṽ
(α) = τφ

Ũ
(α) + τφ

Ṽ
(α), τφ

γ·Ũ
(α) = γ · τφ

Ũ
(α).
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1.3 Metrics between imprecise data

A relevant consequence from the nonlinearity of the spaces of set and fuzzy set
values is that there is no ‘difference operation’ between these values that is simul-
taneously well-defined and preserves the main properties of the difference between
real/vectorial values in connection with the sum. In fact, there exists a difference
notion (Hukuhara’s one) satisfying the last condition, but it cannot be defined for
many set and fuzzy set values.

Moreover, it should be pointed out that, although fuzzy set values are formalized
as [0, 1]-valued functions and set values can be trivially identified with {0, 1}-valued
functions, one cannot treat directly imprecise data as if they were functional, in
the way they are usually handled in Functional Data Analysis. This is due to the
fact that none of the above-presented arithmetics coincide with the usual arithmetic
with functions, so when we apply the functional arithmetic on either Kc(Rp) (more
concretely, the corresponding indicator functions) or Fc(Rp), outputs are quite often
out of this space and their meaning is lost.

These concerns have been substantially overcome in developing statistics with
imprecise data by incorporating suitable distances between them. On one hand,
distances will allow to ‘translate’ the equality of set/fuzzy set values into the distance
between these values being equal to 0, as in the case of real values. On the other
hand, as it will be shown later, appropriate distances also allow us to ‘identify’ set-
valued and fuzzy set-valued data with functional ones through the support function.

Distances between imprecise data are a topic that has received a deep attention in
the literature. In this way, it has often been considered in connection with studies
of similarity between sets/fuzzy sets, as well as for statistical purposes such as
classification of set/fuzzy set-valued elements or inferential statistics with set/fuzzy
set-valued random elements. Regarding the last target, metrics have been used,
among other applications,

• to obtain some limit and probabilistic results for set- and fuzzy set-valued
random elements (see, for instance, Artstein and Vitale [5], Lyasenkho [129],
Cuesta and Matrán [48], Molchanov [135, 137], Hess [103], Colubi et al. [31,
35], Proske and Puri [153], Krätschmer [120], Terán and Molchanov [200],
Terán [197, 199], Quang and Thuan [147], and Aletti and Bongiorno [3]),

• in optimization problems, image analysis, signal theory, etc. (see, for instance,
Huttenlocher et al. [109], Abbasbandy and Asady [2], Abbasbandy and Amir-
fakhrian [1], Ayala and López-Díaz [7], Ayala et al. [8], Báez-Sánchez et al. [10],
Ban and Coroianu [11], Bera et al. [14], Coroianu [42], and Coroianu et al. [43]),
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• and especially in performing many statistical analyses, like classifying impre-
cise data, testing hypotheses about the mean(s) or variance(s) of set/fuzzy set-
valued random elements, regression analysis, fuzzy clustering, fuzzy decision
tree, and so on (see, for instance, Cressie and Laslett [45], Näther [144, 145],
Körner and Näther [119], Körner [118], García et al. [79], Montenegro et
al. [140, 141], D’Urso [61], Coppi and D’Urso [37, 38], Ayala et al. [9], Gil
et al. [85], Coppi et al. [39, 40], D’Urso and Giordani [63], D’Urso and San-
toro [66, 67], Beresteanu and Molinari [15], González-Rodríguez et al. [88,
90, 91], D’Urso [62], D’Urso et al. [65, 64], Ferraro et al. [72], García-García
and Santos-Rodríguez [80], García-García et al. [81], Ramos-Guajardo and Lu-
biano [161], Cappelli et al. [24], Ferraro and Giordani [73] and Guillaume et
al. [98]).

In connection with set-valued data, the best known and most used metric is likely
Hausdorff’s one [101]. This metric (which is defined on a general metric space) is
particularized on Kc(Rp) as follows:

Definition 1.3.1. Let K,K ′ ∈ Kc(Rp). The Hausdorff distance between K and
K ′ is given by

dH(K,K ′) = δ∞(K,K ′) = max

{
sup
x∈K

inf
y∈K′

∥x− y∥, sup
y∈K′

inf
x∈K

∥x− y∥
}
.

Hausdorff’s distance is also denoted as δ∞ because it is an L∞ distance between
the corresponding support functions, that is,

dH(K,K ′) = δ∞(K,K ′) = sup
u∈Sp−1

∥sK(u)− sK′(u)∥

(see, for instance, Weil [214] and McClure and Vitale [131]).

The Hausdorff metric is sometimes referred to in the literature as the Pompeiu-
Hausdorff metric. In fact, as Bârsan and Tiba have clearly explained [13], Pompeiu
first defined in his PhD Thesis [151] a distance between sets by considering the so-
called écart mutuel, which is given by supx∈K infy∈K′ ∥x−y∥+supy∈K′ infx∈K ∥x−y∥.

Anyway, in spite of the many advantages of Hausdorff’s metric, for the purposes
of this dissertation we will mainly consider L2 and L1 metrics. In this way, this
section aims to either recall or introduce some suitable L2 and L1 metrics which are
on the basis of the approaches to the robust location measures for imprecise data
presented in Chapters 2 and 3 of this work.
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1.3.1 L2 metrics for imprecise data

Since set- and fuzzy set-valued data are characterized by their respective support
functions, some rather immediate L2 metrics to consider are those defined by Vi-
tale [211] for set values and extended to fuzzy set values by Diamond and Kloe-
den [54].

Definition 1.3.2. [211] Let K,K ′ ∈ Kc(Rp). The δ2 distance between K and K ′

is given by

δ2(K,K ′) =

√∫
Sp−1

∥sK(u)− sK′(u)∥2 dλp(u).

If p = 1, then δ2(K,K ′) =

√
[infK − infK ′]2

2
+

[supK − supK ′]2

2
.

Vitale [211] proved that δ2 and dH induce the same topology on Kc(Rp) and yield
separable metric spaces.

Definition 1.3.3. [54] Let Ũ , Ṽ ∈ Fc(Rp). The ρ2 distance between Ũ and Ṽ is
given by

ρ2(Ũ , Ṽ ) =

√∫
[0,1]×Sp−1

∥sŨ(α,u)− sṼ (α,u)∥2 dλp(u) dℓ(α).

The metric ρ2 can be extended by weighting the relevance of different levels. Let
φ be an absolutely continuous probability measure on ([0, 1],B[0,1]) with the mass
function being positive in (0, 1). The ρφ

2 distance between Ũ and Ṽ is given by

ρφ
2(Ũ , Ṽ ) =

√∫
[0,1]×Sp−1

∥sŨ(α,u)− sṼ (α,u)∥2 dλp(u) dφ(α).

Diamond and Kloeden [54] proved that ρ2 is topologically equivalent on Fc(Rp)

to d2, which is given (see Klement et al. [116]) by

d2(Ũ , Ṽ ) =

√∫
[0,1]

[
dH(Ũα, Ũα)

]2
dℓ(α)

and both yield separable metric spaces. Analogously, one can easily prove that

ρφ
2 is topologically equivalent to dφ

2(Ũ , Ṽ ) =

√∫
[0,1]

[
dH(Ũα, Ũα)

]2
dφ(α), and the

separability is also straightforwardly concluded.
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By following the ideas in Rådström [159] on Kc(Rp) and in Puri and Ralescu [154]
on Fc(Rp), the support functions of elements in these spaces allow us to embed
isometrically each of these spaces into a convex cone of a Hilbert space of functions
(more concretely, the space of the L2-type real-valued functions on Sp−1 and [0, 1]

× Sp−1, respectively, with the metrics λp and λp ⊗ ℓ). As it will be remarked later,
this embedding allows us to identify set- and fuzzy set-valued data with functional
data.

The metric ρφ
2 can be extended by considering two families of L2 metrics which

pay attention to the ‘center’ of the involved values as well as to their ‘shape’ sep-
arately. One of these families has been introduced in previous papers and will be
recalled here with a certain detail, while the other one is to be introduced for this
work. Since set values are a special type of fuzzy set values, the metrics are first
presented on Fc(Rp) and will be particularized later to the case in which p = 1 and
Kc(Rp).

The first family of distances extending ρφ
2 is that one introduced for fuzzy vector-

valued data by Trutschnig et al. [201] as an extension of the metric for fuzzy number-
valued data given by Bertoluzza et al. [16] (see Casals et al. [25] for a recent review
about). This family is formalized as follows:

Definition 1.3.4. [201] Let θ ∈ (0,+∞) and let φ be an absolutely continuous
probability measure on ([0, 1],B[0,1]) with the mass function being positive in (0, 1).
Then, the mid/spr-based L2 distance is defined as the mapping Dφ

θ : Fc(Rp)

× Fc(Rp) → [0,+∞) such that it associates each pair of elements of Fc(Rp), Ũ and
Ṽ , with the value

Dφ
θ (Ũ , Ṽ ) =

[∫
[0,1]×Sp−1

[
midΠ Ũα(u)−midΠ Ṽα(u)

]2
dλp(u) dφ(α)

+ θ

∫
[0,1]×Sp−1

[
sprΠ Ũα(u)− sprΠ Ṽα(u)

]2
dλp(u) dφ(α)

]1/2
,

where Π Ũα(u) denotes the projection of Ũα over the direction u ∈ Sp−1.
The mid/spr-based L2 distance between elements in Kc(Rp) is denoted by dθ.

Notice that Π Ũα(u) = [−sŨ(α,−u), sŨ(α,u)].

Remark 1.3.1. Due to the meaning of midΠ Ũα(u) and sprΠ Ũα(u), the choice of
θ allows us to weight the effect of the deviation between spreads (which could be
intuitively translated into the difference in ‘shape’) in contrast to the effect of the
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deviation between mid’s (which can be intuitively translated into the difference in
‘center’) for each level.

On the other hand, the choice of φ enables to weight the relevance of differ-
ent levels (i.e., the degree of ‘imprecision’). Although it has been formalized as a
probability measure, its role is not stochastic, but weighting.

Since s(α,u) = midΠ Ũα(u)+sprΠ Ũα(u), being this decomposition orthogonal,
one can trivially prove that Dφ

1 (Ũ , Ṽ ) = ρφ
2(Ũ , Ṽ ) for all Ũ , Ṽ ∈ Fc(Rp).

Furthermore, following ideas similar to those in [201], it can be proved that, in
case θ ∈ (0, 1], there exists a probability measure Wθ on ([0, 1],B[0,1]) such that

Dφ
θ (Ũ , Ṽ ) =

√∫
[0,1]×[0,1]×Sp−1

[
(Π Ũα(u))[ξ] − (Π Ṽα(u))[ξ]

]2
dλp(u) dφ(α) dWθ(ξ)

where (Π Ũα(u))
[ξ] = ξ · supΠ Ũα(u) + (1− ξ) · inf Π Ũα(u) for all ξ ∈ [0, 1].

This leads to an alternative interpretation of the weighting parameter θ in terms
of certain weighted averages of the squared Euclidean distances between the same
convex linear combinations of the extreme values of Π Ũα(u) and Π Ṽα(u) (i.e., for
the same ξ) and can be helpful also in choosing θ.

As some interesting examples we find the following:

• Dφ
1 can be equivalently expressed as

Dφ
1 (Ũ , Ṽ ) =

[
1

2

∫
[0,1]×Sp−1

[
inf Π Ũα(u)− inf Π Ṽα(u)

]2
dλp(u) dφ(α)

+
1

2

∫
[0,1]×Sp−1

[
supΠ Ũα(u)− supΠ Ṽα(u)

]2
dλp(u) dφ(α)

]1/2
,

that is, Dφ
1 corresponds to the probability measure Wθ associated with the

uniform distribution on {0, 1} (and hence taking only into account the infima
and suprema of the projection intervals);

• Dφ
1/3 can be equivalently expressed as

Dφ
1/3(Ũ , Ṽ ) =

√∫
[0,1]

∫
[0,1]×Sp−1

[
(Π Ũα(u))[ξ] − (Π Ṽα(u))[ξ]

]2
dλp(u) dφ(α) dℓ(ξ),

that is, Dφ
1/3 corresponds to the probability measure Wθ = ℓ associated with

the uniform distribution on [0, 1] (and hence taking into account and equally
weighting all the points of the projection intervals).
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The L2 mid/spr-based metric fulfills several valuable metric properties, and it
allows us to establish a Rådstrom-type isometry enabling us to identify each fuzzy
set-valued datum with a functional data and to connect one-to-one the corresponding
arithmetics and metrics. These properties can be found in detail in Trutschnig et
al. [201] and González-Rodríguez et al. [90] (see also Blanco-Fernández et al. [19]
and Gil et al. [83]).

Proposition 1.3.1. Let θ ∈ (0,+∞) and let φ be an absolutely continuous prob-
ability measure on ([0, 1],B[0,1]) with the mass function being positive in (0, 1). Let
H2 = {L2-type real-valued functions defined on [0, 1]×Sp−1 w.r.t. ℓ⊗λp}. Then, the
L2 mid/spr-based metric satisfies that

i) Dφ
θ is an L2-type metric on Fc(Rp).

ii) Dφ
θ is translational and rotational invariant, i.e., Dφ

θ (Ũ + W̃ , Ṽ + W̃ ) =

Dφ
θ (Ũ , Ṽ ) and Dφ

θ ((−1) · Ũ , (−1) · Ṽ ) = Dφ
θ (Ũ , Ṽ ).

iii) Dφ
θ is topologically equivalent to ρφ

2 (and, hence, to dφ
2).

iv) (Fc(Rp), Dφ
θ ) is a separable metric space.

v) The support function s : Fc(Rp) → H2 (with s(Ũ) = sŨ) states an isometric
embedding of Fc(Rp) with the fuzzy arithmetic and Dφ

θ onto a convex cone of
the Hilbert space H2 with the functional arithmetic and the distance induced
by the norm

∥h− h′∥φθ =
√

⟨h− h′, h− h′⟩φθ ,

with
⟨f, g⟩φθ =

∫
[0,1]×Sp−1

mid f(α,u) ·mid g(α,u) dλp(u) dφ(α)

+θ

∫
[0,1]×Sp−1

spr f(α,u) · spr g(α,u) dλp(u) dφ(α)

and

mid f(α,u) =
f(α,u)− f(α,−u)

2
, spr f(α,u) =

f(α,u) + f(α,−u)

2
.

Remark 1.3.2. An immediate and crucial implication from Proposition 1.3.1.v)
is that any fuzzy set value Ũ ∈ Fc(Rp) can be identified with the corresponding
function sŨ and this identification is accompanied by the correspondences between
the usual arithmetics and L2 metrics. Consequently, data in the setting of fuzzy
set-valued data with the fuzzy arithmetic and the metric Dφ

θ can be systematically
translated into data in the setting of functional data with the functional arithmetic
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and the metric based on the associated norm. In this way, despite the fact that
fuzzy data should not be treated directly as functional data, they can be treated as
functional data by considering the identification via the support function.

Then, we can now assert formally as a relevant implication for statistical purposes
that several developments in Functional Data Analysis could be particularized to
fuzzy set-valued data by using the adequate identifications and correspondences.
However, it should be guaranteed that the resulting elements/outputs remain in the
cone s (Fc(Rp)). In case either the functional developments become very complex
or the resulting elements/outputs are out of s (Fc(Rp)), ad hoc techniques should
be developed, as we will show in the next chapters.

The mid/spr-based L2 metric has been shown to be very suitable in the develop-
ment of statistical methodology for experimental fuzzy set-valued data. For instance,
González-Rodríguez et al. [90] provides a detailed explanation of an approach to the
ANOVA with fuzzy data based on the functional data identification. The recent
reviews of Blanco-Fernández et al. [18, 19, 20] and Gil et al. [83] summarize most of
these statistical methods.

The particularization of the mid/spr-based L2 metric to fuzzy numbers and to
set and interval values is immediate and will be employed in some developments in
Chapters 2 and 3.

Now we will introduce the second family extending ρφ
2 for fuzzy vector-valued

data with a double purpose, namely, taking into account the influence of the devi-
ation in ‘center’ and the influence of the deviation in ‘shape’ separately and being
based on a representation for which there exist sufficient conditions characterizing
fuzzy set values.

For the first family of distances, the center and shape have been substantiated
through the mid and spr functions, respectively. As it has been already pointed
out in Section 1.1.2, for the mid/spr representation there is not a set of sufficient
conditions characterizing fuzzy set-valued data.

In this new family, we consider the Steiner point (and, consequently, the weighted
averaging based on levels in case p = 1) as indicator of the center and the level-wise
deviations of the levels w.r.t. the center (left and right deviations of the extreme
points w.r.t. the wabl in case p = 1) as indicators of the shape. Therefore, the
generalized metric will be based on the support/Steiner representation for which
sufficient conditions have been stated (Proposition 1.1.5) to characterize fuzzy set-
valued data. Thus,
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Definition 1.3.5. Given an absolutely continuous probability measure φ on the
measurable space ([0, 1],B[0,1]) with positive mass function on (0, 1) and a parameter
θ ∈ (0, 1], the support/Steiner-based L2 metric is the mapping Dφ

θ : Fc(Rp)

× Fc(Rp) → [0,+∞) such that for Ũ , Ṽ ∈ Fc(Rp):

Dφ
θ (Ũ , Ṽ ) =

[
(1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2

+ θ

∫
[0,1]×Sp−1

[
s
Ũ
(α,u)− s

Ṽ
(α,u)

]2
dλp(u) dφ(α)

]1/2

=

√
∥Sφ(Ũ)− Sφ(Ṽ )∥2 + θ

∫
[0,1]×Sp−1

∥devφ

Ũ
(α,u)− devφ

Ṽ
(α,u)∥2 dλp(u) dφ(α),

where devφ

Ũ
(α,u) = u · sŨ(α,u)− Sφ(Ũ).

The support/Steiner-based L2 distance between elements in Kc(Rp) will be de-
noted by dθ.

The support/Steiner-based L2 metric can be also expressed in terms of the ρφ
2 .

More concretely,

Dφ
θ (Ũ , Ṽ ) =

√
(1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2 + θ

[
ρφ
2(Ũ , Ṽ )

]2
.

The mapping Dφ
θ is a distance between fuzzy vectors. In consequence (see Ap-

pendix for the proof),

Proposition 1.3.2.
(
Fc(Rp),Dφ

θ

)
is a metric space.

As for the mid/spr-based L2 metric, the parameter θ and the measure φ do not
have a stochastic meaning in the support/Steiner-based distance. The parameter θ

weighs the influence of the ‘deviation in shape’ between the fuzzy vectors (quantified
through devφ) with respect to the influence of their ‘deviation in center’ (quantified
through the generalized Steiner point Sφ), while the choice of φ allows us to weigh
the influence of each α-level (i.e., the different degrees of ‘compatibility’).

The support/Steiner-based metric is in fact an L2 metric that allows us to embed
the space of fuzzy set values into a convex cone of a Hilbert space through the
support/Steiner representation. In this way, an inner product in Rp × H2 can be
defined as follows:

Let θ ∈ (0, 1] and let φ be a weighting measure formalized as an absolutely
continuous probability measure on ([0, 1],B[0,1]) with positive mass function in (0, 1).
For x,y ∈ Rp and f, g ∈ H2, consider the inner product⟨⟨

(x, f), (y, g)
⟩⟩φ

θ
=

∫
[0,1]×Sp−1

⟨(x, f(α,u)), (y, g(α,u))⟩θ dλp(u) dφ(α),
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where the Euclidean inner product ⟨·, ·⟩θ on Rp × R is based on the weighted dot
product given by

⟨(x1, x2), (y1, y2)⟩θ = (1− θ)x1 · y1 + θ x2 y2.

Obviously, if
∣∣∣∣ · ∣∣∣∣φ

θ
denotes the norm associated with the inner product

⟨⟨
·, ·
⟩⟩φ

θ
,

we have that
Dφ

θ (Ũ , Ṽ ) =
∣∣∣∣τφ(Ũ)− τφ(Ṽ )

∣∣∣∣φ
θ
=
√⟨⟨

τφ(Ũ)− τφ(Ṽ ), τφ(Ũ)− τφ(Ṽ )
⟩⟩φ

θ
.

Then, due to the properties of the generalized Steiner points and the support
functions (see, for instance, Butnariu et al. [22], Vetterlein and Navara [209, 210]
and Liang et al. [122]), the following result holds:

Proposition 1.3.3. Let φ be an arbitrarily fixed absolutely continuous probability
measure on ([0, 1],B[0,1]) with positive mass function on (0, 1) and θ ∈ (0, 1] be a
weighting parameter. Then,

i)
⟨⟨
·, ·
⟩⟩φ

θ
is an inner product in Rp ×H2.

ii)
(
Rp ×H2,

⟨⟨
·, ·
⟩⟩φ

θ

)
is a Hilbert space.

iii) Dφ
θ is an L2-type metric and it is translational and rotational invariant.

iv) For a fixed φ, the function τφ : Fc(Rp) → Rp × H2 with τφ(Ũ) = τφ

Ũ
for all

Ũ ∈ Fc(Rp) satisfies that

− τφ is an isometry from (Fc(Rp),Dφ
θ ) into

(
Rp ×H2,

⟨⟨
·, ·
⟩⟩φ

θ

)
,

− τφ(Ũ + Ṽ ) = τφ(Ũ) + τφ(Ṽ ) for all Ũ , Ṽ ∈ Fc(Rp),

− τφ(γ · Ũ) = γ · τφ(Ũ) for all Ũ ∈ Fc(Rp) and γ > 0.

Consequently, the τφ function preserves the semilinearity of Fc(Rp) and relates
the fuzzy arithmetic to the vectorial-valued functional arithmetic, which implies
that Fc(Rp) can be isometrically embedded into a convex cone of the Hilbert
space

(
Rp ×H2,

⟨⟨
·, ·
⟩⟩φ

θ

)
.

The metric space (Fc(Rp),Dφ
θ ) is separable. This assertion is justified by the

fact that Dφ
θ is topologically equivalent (in fact, strongly equivalent) to the metric

ρφ
2 and, hence, to dφ

2 . Specifically (see Appendix for the proof),

Proposition 1.3.4. Let θ ∈ (0, 1] be a weight parameter and let φ be an arbitrarily
fixed absolutely continuous probability measure on ([0, 1],B[0,1]) with positive mass
function in (0, 1). The metric Dφ

θ is topologically equivalent to the metric ρφ
2 on

Fc(Rp). More precisely,
√
θ · ρφ

2(Ũ , Ṽ ) ≤ Dφ
θ (Ũ , Ṽ ) ≤ ρφ

2(Ũ , Ṽ )

for all Ũ , Ṽ ∈ Fc(Rp).
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The practical computation of Dφ
θ in the case p = 1 is quite simple and easy to

implement in any programming language. This computation will be illustrated later
by means of some examples and simulations.

Unlike the one-dimensional case, when p > 1 the situation usually becomes much
more complex. This is a consequence of the computational difficulties involved in
determining most of the support functions of fuzzy vectors in practice (see Ghosh
and Kumar [82] for some details about the set-valued case).

As an example illustrating the use of Dφ
θ in one of the simplest fuzzy vector-

valued situations, we are now going to compute the distance between two conical
fuzzy vectors arisen in an approach to the tone and color triangle designs (see Sug-
ano [191, 192, 193] and Sugano et al. [194]).

Example 1.3.1. Sugano and collaborators have developed studies on a system of the
three primary colors RGB presented on a color triangle. The usual triangle involves
sixty-six fuzzy inputs (fundamental type) on parts of the tone triangle designated
as darkness-blackness, lightness-whiteness and chromaticness.

The main (fundamental type) color names and modifiers are No. 1: darkest, No.
11: lightest, and No. 66: maximum chromaticness in the tone triangle and No. 1:
blue, No. 11: green, and No. 66: red in the color triangle.

The fuzzy inputs are formed by right circular conical fuzzy vectors and they
can mutually overlap (actually, any fuzzy input overlaps with some other ones).
Detailed arguments leading to the conical fuzzy inputs can be found in, among
others, Sugano [191, 192, 193] and Sugano et al. [194].

Figure 1.7 displays the general scheme, but only three fuzzy inputs have been
fully represented, namely:

• No. 1, corresponding to the right cone C̃1 such that for each α ∈ [0, 1]

C̃1
α = circle with centre (0, 0) and radius 10(1− α),

• No. 36, corresponding to the right cone C̃36 such that for each α ∈ [0, 1]

C̃36
α = circle with centre (15

√
3, 65) and radius 10(1− α),

• No. 58, corresponding to the right cone C̃58 such that for each α ∈ [0, 1]

C̃58
α = circle with centre (35

√
3, 45) and radius 10(1− α).

For the rest of the inputs only their 0.5-levels have been displayed graphically.
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Figure 1.7: Conical fuzzy vectors in the usual color triangle (funda-
mental type)

The support function associated with a right circular conical fuzzy vector C̃ such
that, for each α ∈ [0, 1], the α-level corresponds to C̃α = circle with centre (x, y)

and radius r(1− α) can be calculated using some trigonometric results and is given
for u = (cos βu, sin βu) ∈ S1 = circumference with centre (0, 0) and radius 1 by

sC̃(α,u) = x · cos βu + y · sin βu + r(1− α).

Consequently, one can obtain the following distances using the already seen ex-
pression [

Dφ
θ (Ũ , Ṽ )

]2
= (1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2 + θ

[
ρφ
2(Ũ , Ṽ )

]2
.

Note that in this case, because of the ‘shape’ of the α-levels of the three conical
fuzzy vectors coinciding, they are irrespective of the chosen φ:[

Dφ
θ (C̃

1, C̃36)
]2

= (1− θ) ∥(0, 0)− (15
√
3, 65)∥2

+
θ

2π

∫
[0,1]×[0,2π)

[10(1− α)− 15
√
3 cos β − 65 sin β − 10(1− α)]2 dβ dφ(α)

= 4900(1− θ),[
Dφ

θ (C̃
1, C̃58)

]2
= (1− θ) ∥(0, 0)− (35

√
3, 45)∥2

+
θ

2π

∫
[0,1]×[0,2π)

[10(1− α)− 35
√
3 cos β − 45 sin β − 10(1− α)]2 dβ dφ(α)

= 5700(1− θ),
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[
Dφ

θ (C̃
36, C̃58)

]2
= (1− θ) ∥(15

√
3, 65)− (35

√
3, 45)∥2

+
θ

2π

∫
[0,1]×[0,2π)

[15
√
3 cos β + 65 sin β + 10(1− α)

−35
√
3 cos β − 45 sin β − 10(1− α)]2 dβ dφ(α) = 1600(1− θ).

Therefore, and whatever the weight θ may be, we can conclude that the fuzzy
inputs No. 36 and No. 58 are closer than No. 1 and No. 36 and than No. 1 and
No. 58.

In summary, the support/Steiner-based L2 metrics represent a parameterized
family of topologically equivalent metrics to the distance ρφ

2 (based on the 2-norm
and making use of the support function representation of the fuzzy value). Con-
sequently, they share all the topological advantages of ρφ

2 , but they also allow us
to control the relative influence of the center and the shape of the fuzzy values,
whereas ρφ

2 does not. This double control was also allowed by Trutschnig et al.’s
metric, but, unfortunately, there is not a set of sufficient conditions for the mid/spr
representation to characterize fuzzy set-valued data, what becomes a rather serious
drawback in many optimization problems.

A key question that can arise when employing the distance Dφ
θ in real-life prob-

lems involving fuzzy data is the selection of a particular element of the family of
metrics. For this purpose, we will interpret the roles played by φ and θ in the metric
in a deeper way.

The probability measure φ can be formally identified with a measure weighting
the ‘importance’ given to the different α-levels of the fuzzy set-valued data. For
instance,

• the choice φ ≡ ℓ indicates that one gives the same relevance to all levels in
quantifying the distance between fuzzy set values;

• choosing φ such that the greater the value of α, the greater its weight (e.g.
φ ≡ Beta(p, 1) with p >> 1) indicates that one gives higher relevance to high
levels in quantifying the distance between fuzzy values, that is, one mainly
focuses on the levels with high degree of compatibility;

• choosing φ such that the greater the value of α, the lower its weight (e.g.
φ ≡ Beta(1, p) with p >> 1) indicates that one gives higher relevance to low
levels in quantifying the distance between fuzzy values, that is, one mainly
focuses on the levels with low degree of compatibility.
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We illustrate these assertions with the following example in case p = 1.

Example 1.3.2. Consider the four couples of triangular fuzzy numbers in Fig-
ure 1.8. Note that:

• Ũ and Ṽ share the 0-level -the interval [0, 2]-, but differ strongly in the shape,
being ‘closer’ at lower levels;

• Ũ ′ and Ṽ ′ have 0-levels -the intervals [0, 1] and [1, 2]- which only overlap in a
singleton and also show strongly different shapes, being also ‘closer’ at lower
levels;

• Ũ ′′ and Ṽ ′′ have 0-levels -the intervals [0, 1] and [1, 2]- which only overlap in a
singleton, but show the same shape and they are both symmetric;

• Ũ ′′′ and Ṽ ′′′ have 0-levels -the intervals [−2, 0] and [0, 2]- which only overlap
in a singleton, differ very strongly in the shape and they are ‘closer’ at higher
levels.

Figure 1.8: Different couples of fuzzy numbers

Figure 1.9 displays graphically the distance Dφ
1/3 between the fuzzy numbers Ũ

and Ṽ , Ũ ′ and Ṽ ′, Ũ ′′ and Ṽ ′′ and Ũ ′′′ and Ṽ ′′′ as a function of p ∈ (0,∞) when φ is
taken as β(p, 1) and β(1, p), respectively (note that the situation p = 1 corresponds
to φ ≡ ℓ).

The conclusions from Figure 1.9 are not unexpected looking at the center and
shape of the considered fuzzy numbers in Figure 1.8. First note that, due to the
symmetry of the corresponding fuzzy numbers, Dφ

1/3(Ũ
′′, Ṽ ′′) is constantly equal to 1,

independently from the choice of φ. On the other hand, Dφ
1/3(Ũ , Ṽ ) and Dφ

1/3(Ũ
′, Ṽ ′)

increase as the weight of the high levels increases, and decreases otherwise, whereas
Dφ

1/3(Ũ
′′′, Ṽ ′′′) decreases as the weight to the low levels increases, and increases

otherwise.
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Dφ
1/3(Ũ

′, Ṽ ′)
Dφ

1/3(Ũ
′′′, Ṽ ′′′)Dφ

1/3(Ũ , Ṽ )

Dφ
1/3(Ũ

′, Ṽ ′)

Dφ
1/3(Ũ

′′, Ṽ ′′) Dφ
1/3(Ũ

′′, Ṽ ′′)

Dφ
1/3(Ũ

′′′, Ṽ ′′′) Dφ
1/3(Ũ , Ṽ )

Figure 1.9: Distance Dφ
1/3 between the couples of fuzzy numbers in

Fig. 1.8 for φ ≡ β(p, 1) (left) and β(1, p) (right)

As explained in introducing the support/Steiner-based L2 metric, the general
role of the parameter θ is to weigh the influence of the squared deviation in center
(measured by Sφ or wablφ) of the fuzzy values in contrast to the influence of their
squared deviation in shape (measured level-wise by devφ or ldevφ and rdevφ func-
tions). However, although the exact meaning of the value θ takes is not clear yet, it
can be identified intuitively in the situation p = 1. First, we will particularize this
metric to the fuzzy number-valued case.

When p = 1, the metric Dφ
θ reduces to a distance based on the wabl/ldev/rdev

representation of the involved fuzzy numbers. In this way (see Appendix for the
proof),

Proposition 1.3.5. If Ũ , Ṽ ∈ Fc(R), then

Dφ
θ (Ũ , Ṽ ) =

[(
wablφ(Ũ)− wablφ(Ṽ )

)2
+

θ

2

∫
[0,1]

[
ldevφ

Ũ
(α)− ldevφ

Ṽ
(α)
]2

dφ(α) +
θ

2

∫
[0,1]

[
rdevφ

Ũ
(α)− rdevφ

Ṽ
(α)
]2

dφ(α)

]1/2
.

Remark 1.3.3. It should be noticed that if the involved fuzzy numbers are sym-
metric (and, in particular, interval-valued), the distances Dφ

θ and Dφ
θ between them

coincide.

A result can be established now to allow us to interpret better the role of the
value of θ when p = 1. For this purpose, for an arbitrarily given fuzzy number Ũ

∈ Fc(R) and level α ∈ [0, 1], each real value
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x ∈
[
min{wablφ(Ũ), inf Ũα},max{wablφ(Ũ), sup Ũα}

]
can be written as a particular linear combination of the components of the wabl/
ldev/rdev representation. More precisely, for any of these x’s there exists a ξ ∈
[−1, 1] such that

x = fφ

Ũ
(α, ξ) = wablφ(Ũ)−M0(−ξ) · ldevφ

Ũ
(α) +M0(ξ) · rdevφŨ(α),

with M0(ξ) = max{0, ξ}.
Note that

[
min{wablφ(Ũ), inf Ũα},max{wablφ(Ũ), sup Ũα}

]
does not always rep-

resent the level Ũα, but in case wablφ(Ũ) /∈ Ũα, the α-level interval is ‘enlarged’ to
include wablφ(Ũ).

Based on the above expression, for any two fuzzy numbers Ũ and Ṽ , a one-to-one
correspondence between them can be stated by considering the functions fφ

Ũ
(α, ξ)

and fφ

Ṽ
(α, ξ), so that it seems plausible to consider the distance between Ũ and Ṽ

as given by

Dφ
ϑ(Ũ , Ṽ ) =

√∫
[0,1]

∫
[−1,1]

[
fφ

Ũ
(α, ξ)− fφ

Ṽ
(α, ξ)

]2
dϑ(ξ) dφ(α),

where ϑ is a measure which can be identified formally with a symmetric and non-
degenerate probability measure on

(
[−1, 1],B[−1,1]

)
.

Since ϑ is assumed to be symmetric on [−1, 1], it can be expressed as a finite
mixture ϑ = .5 · ζ + .5 · ν, where ν is a (non-degenerate at 0) probability measure
on [0, 1] and ζ(ξ) = ν(−ξ). Therefore, the distance Dφ

ϑ(Ũ , Ṽ ) can be rewritten by
taking into account that∫

[−1,1]

[
fφ

Ũ
(α, ξ)− fφ

Ṽ
(α, ξ)

]2
dϑ(ξ)

=
1

2

∫
[0,1]

[(
wablφ(Ũ)− ξ · ldevφ

Ũ
(α)
)
−
(
wablφ(Ṽ )− ξ · ldevφ

Ṽ
(α)
)]2

dν(ξ)

+
1

2

∫
[0,1]

[(
wablφ(Ũ) + ξ · rdevφ

Ũ
(α)
)
−
(
wablφ(Ṽ ) + ξ · rdevφ

Ṽ
(α)
)]2

dν(ξ).

The next result shows that this distance is an equivalent definition for Dφ
θ . Based

on this equivalence, the role of the parameter θ becomes easier to interpret (see
Appendix for the proof).

Proposition 1.3.6. The family of metrics Dφ
ϑ is equivalent to the family of metrics

Dφ
θ .
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As an immediate implication from the preceding proposition we can interpret
some choices of the value of θ that will be useful for practical purposes. Among the
most relevant metrics, we can highlight:

• the choice of θ = 1/3 (considered in Example 1.3.2) corresponds to choosing
ν as the Lebesgue measure ℓ on [0, 1] (i.e. the points in each ‘enlarged’ level
being weighted uniformly);

• the choice of θ = 1 corresponds, among others, to choosing ν as the indicator
function of {1}, so that as already commented Dφ

1 = ρφ
2 .

In summary, another advantage of this family of metrics is that the choice of the
parameter θ can be interpreted in a similar way to that of Bertoluzza et al.’s metric,
what can make its choice easier in practical problems. Nevertheless, the use of the
parameterized version simplifies many practical and theoretical developments.

To illustrate the computation of the distance Dφ
θ when p = 1 and interpret the

role of θ, we make use of another example.

Example 1.3.3. Setnes et al. [169] considered the modeling of a real-world system,
a pressure-controlled fermenter tank, by means of the FAIR (Fuzzy Arithmetic-based
Interpolative Reasoning) method. A model with fuzzy outputs was identified by least
squares approximation, where the identification data consist of fuzzy observations.

One of the variables that should be carefully controlled during a fermentation
process is the pressure in the fermenter tank. The inference in FAIR consists of a
set of fuzzy rules, each of which describes a local relation between the inputs (or an-
tecedents) and the outputs (or consequents). By using previous knowledge about the
process, the antecedents are partitioned into four ‘fuzzy regions’, associated with the
triangular values Ũ1 = Tri(1, 1, 1.2), Ũ2 = Tri(1, 1.2, 1.65), Ũ3 = Tri(1.2, 1.65, 2.2)

and Ũ4 = Tri(1.65, 2.2, 2.2).

In case there is no knowledge the researchers can use to determine the an-
tecedent fuzzy partition, data-driven approaches, like fuzzy clustering, can be ap-
plied. Given the antecedent partition above, the fuzzy numbers in the consequents
are estimated from the identification data (see Setnes et al. [169] for more de-
tails). One of the fuzzy consequents obtained following this process corresponds
to Ṽ = Tri(1.27, 1.476, 1.673), which is definitely ‘in between’ Ũ2 and Ũ3.

Figure 1.10 displays the fuzzy partition of the antecedents (in grey lines) and
the examined consequent (in pink line).

Assume that, for purposes of classification or others, we want to look for the
closest antecedent to Ṽ in the considered particion.
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Figure 1.10: Fuzzy partition of the antecedents and consequent Ṽ in
Example 1.3.3

Then, by considering the metric Dℓ
θ we obtain that:

Dℓ
θ(Ũ2, Ṽ ) =

√
0.0446 + 0.0064 θ, Dℓ

θ(Ũ3, Ṽ ) =
√
0.0405 + 0.0299 θ.

This situation shows that depending on the choice of θ we will classify Ũ2 as
closer to Ṽ than Ũ3. More concretely, if θ ≤ 0.1744 then Ũ3 is closer to Ṽ than Ũ2,
otherwise the situation is the contrary (see Figure 1.11).
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Figure 1.11: Distance Dℓ
θ between the couples of fuzzy numbers in

Fig. 1.10, (Ũ2, Ṽ ) and (Ũ3, Ṽ ), as a function of θ
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In short, when the metric assesses much higher influence to the ‘center’ than
to the ‘shape’ (i.e., θ takes on very low values) Ṽ is slightly closer to Ũ3, but the
smaller the relative importance of the center in contrast to that of the shape, the
closer Ṽ to Ũ2.

In Section 1.5 it will be shown that metrics Dφ
θ and Dφ

θ lead to close outputs
for many interesting cases, so the main advantage of the support/Steiner-based L2

metric in contrast to the mid/spr-based distance is the highlighted fact that a set of
sufficient conditions exist for the second one to characterize imprecise-valued data.

1.3.2 L1 metrics for imprecise data

As for the L2-type metrics, some rather immediate L1 metrics to consider for im-
precise values are the ones defined by Vitale [211] for set values and their level-wise
extension for fuzzy set values by Diamond and Kloeden [54].

Definition 1.3.6. [211] Let K,K ′ ∈ Kc(Rp). The δ1 distance between K and K ′

is given by

δ1(K,K ′) =

∫
Sp−1

∥sK(u)− sK′(u)∥ dλp(u).

If p = 1, then δ1(K,K ′) = | infK − infK ′|/2 + | supK − supK ′|/2.
δ1 and dH induce the same topology on Kc(Rp) and yield separable metric spaces,

as proven in Vitale [211].

Definition 1.3.7. [54] Let Ũ , Ṽ ∈ Fc(Rp). The ρ1 distance between Ũ and Ṽ is
given by

ρ1(Ũ , Ṽ ) =

∫
[0,1]×Sp−1

∥sŨ(α,u)− sṼ (α,u)∥ dλp(u) dℓ(α).

The metric ρ1 can be ‘corrected’ by weighting the relevance of the different
levels. Let φ be an absolutely continuous probability measure on ([0, 1],B[0,1]) with
the mass function being positive in (0, 1). The ρφ

1 distance between Ũ and Ṽ is
given by

ρφ
1(Ũ , Ṽ ) =

∫
[0,1]×Sp−1

∥sŨ(α,u)− sṼ (α,u)∥ dλp(u) dφ(α).

Diamond and Kloeden [54] proved that ρ1 is topologically equivalent on Fc(Rp)

to d1, which is given (see Klement et al. [116]) by

d1(Ũ , Ṽ ) =

∫
[0,1]

dH(Ũα, Ṽα) dℓ(α)
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and both yield separable metric spaces. Analogously, one can easily prove that ρφ
1

is topologically equivalent to dφ
1(Ũ , Ṽ ) =

∫
[0,1]

dH(Ũα, Ũα) dφ(α) and that both yield
separable metric spaces.

By following the ideas in Rådström [159] on Kc(Rp) and in Puri and Ralescu [154]
on Fc(Rp), the support functions of elements in these spaces allow us to embed
isometrically each of these spaces into a convex cone of a Banach space of functions
(more concretely, the space of the L1-type real-valued functions on Sp−1 and [0, 1]

× Sp−1, respectively, with the metrics λp and λp ⊗ ℓ).
In particular, when p = 1 we have that

Proposition 1.3.7. Let φ be an arbitrarily fixed absolutely continuous probability
measure on ([0, 1],B[0,1]) with positive mass function on (0, 1). Then,

i) ρφ
1 is an L1 metric on Fc(R) and it is translational and rotational invariant.

ii) For a fixed φ, the function ιφ : Fc(R) → H1 = {L1-type 2-dimensional vector-
valued functions defined on [0, 1]} satisfies that

− ιφ is an isometry from (Fc(R),ρφ
1) into H1,

− ιφ(Ũ + Ṽ ) = ιφ(Ũ) + ιφ(Ṽ ) for all Ũ , Ṽ ∈ Fc(R),

− ιφ(γ · Ũ) = γ · ιφ(Ũ) for all Ũ ∈ Fc(R) and γ > 0;

Consequently, the ιφ function preserves the semilinearity of Fc(R) and relates
the fuzzy arithmetic to the functional arithmetic, what implies that Fc(R) can
be isometrically embedded into a convex cone of the Banach space

(
H1,

∥∥ · ∥∥φ
1

)
with

∥f − g∥φ1 =

∫
[0,1]

(
1

2
|f1(α)− g1(α)|+

1

2
|f2(α)− g2(α)|

)
dφ(α)

for f = (f1, f2), g = (g1, g2) ∈ H1.

The metrics δφ1 and ρφ
1 can be complemented (in this case, it does not mean an

extension) by considering families of L1 metrics paying separate attention to the
‘center’ and the ‘shape’ of the involved values.

It should be emphasized that the L1 metrics between imprecise values will be
involved in this work to develop ad hoc approaches in extending the median of
imprecise-valued random elements.

At this point, on one hand, since under some usual conventions the median of a
real-valued random variable preserves monotonicity and continuity and is equivariant
under the product by a scalar, but nothing can be said in general in connection with
additivity/subadditivity, we will constrain the use of the L1 metrics in this setting
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to the case p = 1. On the other hand, the fact of having a set of sufficient conditions
to characterize imprecise values becomes crucial, so the family of metrics based on
the wabl/ldev/rdev representation will be considered in this respect.

Definition 1.3.8. Given an absolutely continuous probability measure φ on the
measurable space ([0, 1],B[0,1]) with positive mass function on (0, 1) and a parame-
ter θ ∈ (0, 1], the wabl/ldev/rdev-based L1 metric is the mapping Dφ

θ : Fc(R)
× Fc(R) → [0,+∞) such that for Ũ , Ṽ ∈ Fc(R):

Dφ
θ (Ũ , Ṽ ) = |wablφ(Ũ)− wablφ(Ṽ )|

+
θ

2

∫
[0,1]

|ldevφ
Ũ
(α)− ldevφ

Ṽ
(α)| dφ(α) + θ

2

∫
[0,1]

|rdevφ
Ũ
(α)− rdevφ

Ṽ
(α)| dφ(α).

The wabl/ldev/rdev-based L1 distance between elements in Kc(R) is denoted by
dθ (with d1 = dH on Kc(R)).

The metric Dφ
θ can be also expressed as follows:

Dφ
θ (Ũ , Ṽ ) =

∫
[0,1]

|υφ

Ũ
(α)− υφ

Ṽ
(α)|1θ dφ(α),

where | · |1θ is the L1 norm in R3 given for x = (x1, x2, x3),y = (y1, y2, y3) ∈ R3 by

|x− y|1θ = |x1 − y1|+
θ

2
· |x2 − y2|+

θ

2
· |x3 − y3|.

By following arguments similar to those in Propositions 1.3.2 and 1.3.3, the
mapping Dφ

θ is a distance between fuzzy numbers. Thus,

Proposition 1.3.8. Let φ be an arbitrarily fixed absolutely continuous probability
measure on ([0, 1],B[0,1]) with positive mass function on (0, 1), and θ ∈ (0, 1] be a
weighting parameter. Then,

i) Dφ
θ is an L1 metric on Fc(R), both translational and rotational invariant.

ii) For a fixed φ, the function υφ : Fc(R) → H⋆
1 = {L1-type 3-dimensional vector-

valued functions defined on [0, 1]} satisfies that

− υφ is an isometry from (Fc(R),Dφ
θ ) into H⋆

1,

− υφ(Ũ + Ṽ ) = υφ(Ũ) + υφ(Ṽ ) for all Ũ , Ṽ ∈ Fc(R),

− υφ(γ · Ũ) = γ · υφ(Ũ) for all Ũ ∈ Fc(R) and γ > 0;

Consequently, the υφ function preserves the semilinearity of Fc(R) and relates
the fuzzy arithmetic to the functional arithmetic, what implies that Fc(R) can
be isometrically embedded into a convex cone of the Banach space

(
H⋆

1, ∥ ·
∥∥φ⋆
θ

)
with ∥f − g∥φ⋆θ =

∫
[0,1]

|f(α)− g(α)|1θ dφ(α).
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The metric space (Fc(R),Dφ
θ ) is separable. This assertion is justified by the fact

that Dφ
θ is topologically equivalent (in fact, strongly equivalent) to the metric ρφ

1

and, hence, to dφ
1 . Specifically (see Appendix for the proof),

Proposition 1.3.9. Let θ ∈ (0, 1] be a weight parameter and let φ be an arbitrarily
fixed absolutely continuous probability measure on ([0, 1],B[0,1]) with positive mass
function in (0, 1). The metric Dφ

θ is topologically equivalent to the metric ρφ
1 on

Fc(R). More precisely,

θ · ρφ
1(Ũ , Ṽ ) ≤ Dφ

θ (Ũ , Ṽ ) ≤ (2 + 3 θ) · ρφ
1(Ũ , Ṽ )

for all Ũ , Ṽ ∈ Fc(R).

Remark 1.3.4. As pointed out in Remark 1.3.2 and as a consequence from the
embeddings in Propositions 1.3.7 and 1.3.8, at first glance one might be tempted
to consider the following reasoning: in extending statistical methods dealing with
real-valued data to either interval- or fuzzy number-valued data, one can take into
account that any interval value can be identified with a certain two-dimensional
vector (by considering either its infimum/supremum or its mid-point/spread repre-
sentation) and many fuzzy numbers (those being characterized by some few points,
like trapezoidals) can be identified with finite-dimensional vectors, so we can imme-
diately particularize the well-known multivariate procedures to analyze these data.

Unfortunately, the last reasoning fails due to the nonlinearities of the space of
interval values and the space of fuzzy numbers: the vectors associated with interval
and fuzzy number values through the isometries should fulfill some constraints, since
not all the elements in Rp determine a compact interval (in case p = 2) or a fuzzy
number of the concrete referred shapes. Consequently, if one tries to particular-
ize directly well-known multivariate procedures to analyze either interval- or fuzzy
number-valued data, one should never forget that the mathematical and probabilis-
tic results and developments supporting these procedures neglect such constraints,
so the particularization is wrong in general. Even when some procedures could
be ‘physically’ applied, conclusions from them could be neither reliable nor well-
supported.
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1.4 Imprecise-valued random elements

Mathematical modeling is essential in developing data analysis. With this in mind,
appropriate models have been recalled in Section 1.1 for set- and fuzzy set-valued
data, as well as some useful representations for them. The key operations for statis-
tical purposes and metrics between these data have been presented in Sections 1.2
and 1.3, respectively.

In Statistics data are usually a sample of observations/perceptions from a pop-
ulation of interest. In other words, data are assumed to come from the repeated
performance of a random mechanism.

Fréchet [77, 78] anticipated that future mathematics would have to incorporate
new and unexpected sorts of objects quite beyond numbers and vectors. In response
to this need he introduced random elements taking on values in metric spaces and
he also pointed out the valuable implications associated with the introduction of a
distance between elements in the considered space. In accordance with their current
usage, a random element is defined to be a measurable function between a sample
space and a metric space equipped with its Borel σ-algebra.

Random sets and random fuzzy sets determine a well-stated and supported model
for the random mechanisms generating set-valued and fuzzy set-valued data within
the probabilistic setting, respectively. They integrate both randomness and impre-
cision, so that the first one affects the generation of experimental data, whereas the
second one has effect on the nature of the experimental data, which are assumed to
be intrinsically imprecise.

1.4.1 Random compact convex sets

Random sets were rigorously formalized as random elements of a space of sets by
Matheron [130], although Robbins [163, 164] had already presented some rather
informal instances of the notion several decades before.

In this way, Matheron stated the fundamentals of the theory of random closed
sets, as well as the appropriate model and basic tools within the probabilistic setting.
In Molchanov [138], one can find a wide and quite updated monograph on random
sets.

In Hiai and Umegaki [104], several equivalent definitions for the notion of mea-
surable compact set-valued random elements were established. When the set values
belong to Kc(Rp), one of the most suitable definitions among them is the following
one:
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Definition 1.4.1. Given a probability space (Ω,A, P ), a mapping X : Ω → Kc(Rp)

is said to be a random compact convex set associated with it if X is measurable
with respect to the Borel σ-algebra generated by the topology induced by the Hausdorff
metric on Kc(Rp).

In case p = 1, we will refer to a random compact convex set as a random
interval.

Because of the topological equivalences by Vitale [211], one can trivially conclude
that:

Proposition 1.4.1. Given a probability space (Ω,A, P ), a mapping X : Ω → Kc(Rp)

is said to be a random compact convex set associated with it if X is measurable
with respect to the Borel σ-algebra generated by the topology induced by the metrics
δ1 or δ2 on Kc(Rp).

1.4.2 Random fuzzy sets

On the other hand, random fuzzy sets were initially introduced by Féron [69, 70, 71]
in a double way: as a Borel-measurable function (i.e., following Fréchet’s approach),
and as a level-wise extension of random sets. Féron sketched the guiding idea in the
notion, but without specifying some key terms like the involved metrics.

Concerning the level-wise extension of random sets, Puri and Ralescu [157] have
made this specification as follows:

Definition 1.4.2. Let (Ω,A, P ) be a probability space. A mapping X : Ω → Fc(Rp)

is said to be a random fuzzy set (or fuzzy random variable in Puri and
Ralescu’s sense) if for each α ∈ [0, 1] the set-valued mapping Xα : Ω → Kc(Rp)

(with Xα(ω) =
(
X (ω)

)
α

for all ω ∈ Ω) is a random compact convex set.
When p = 1, we will refer to a random fuzzy set as a random fuzzy number

and, otherwise, as a random fuzzy vector.

In addition to the level-wise measurability in Definition 1.4.2, Puri and Ralescu
also considered to define random fuzzy sets as Borel-measurable functions, as sug-
gested by Féron and in agreement with Fréchet’s approach. Thereby, notions like
the induced distribution or the independence would be inherited from those in the
sample space. In this respect, Puri and Ralescu [156] (see, also, Klement et al. [116])
defined alternatively, but not equivalently, a fuzzy random variable associated with
a probability space as a Borel-measurable mapping in connection with the metric
d∞(Ũ , Ṽ ) = supα∈[0,1] dH(Ũα, Ṽα), which leads to a non-separable metric space.
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Anyway, this d∞-Borel measurability is stronger than the level-wise one in Defini-
tion 1.4.2 (see Colubi et al. [32, 33], Kim [115] and Terán [196]).

On Fc(Rp), several equivalences to the level-wise measurability can be stated in
terms of metrics (see González-Rodríguez et al. [90] and Gil et al. [83] for a detailed
study on one of these equivalences and some interesting implications).

Proposition 1.4.2. Let (Ω,A, P ) be a probability space. A mapping X : Ω →
Fc(Rp) is a random fuzzy set if and only if

i) it is measurable with respect to the Borel σ-algebra generated by the topology
induced by the metric Dφ

θ on Fc(Rp) (or Dφ
θ , d

φ
1 and dφ

2), whatever the prob-
ability measure φ and the parameter θ may be;

ii) the mapping sX = s ◦ X : Ω → H2 is a random element of H2 (the Borel
measurability of this random element being associated with the corresponding
distance in the isometric embedding within this Hilbert space);

iii) for each α ∈ [0, 1] and u ∈ Sp−1, the real-valued function sX (u, α) is a real-
valued random variable;

iv) for each α ∈ [0, 1] and u ∈ Sp−1, the real-valued functions mid sX (u, α) and
spr sX (u, α) are real-valued random variables, the second one being always non-
negative.

It should be remarked again that the Borel measurability of random compact
convex sets and random fuzzy sets ensures that one can properly refer to the induced
distribution of these random elements, the independence of two of them, and so on,
without needing to state these notions.

1.4.3 Aumann and Aumann-type mean of random sets and
random fuzzy sets

Location measures are the first natural attempt when we want to summarize the
distribution of either a random compact convex set or a random fuzzy set. The
best known location measures are the so-called Aumann mean for random compact
convex sets (see Aumann [6], and Artstein and Vitale [5]) and Aumann-type mean
value for random fuzzy sets (see Puri and Ralescu [157]), which are formalized as
follows:
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Definition 1.4.3. [6] Let (Ω,A, P ) be a probability space and X : Ω → Kc(Rp) be an
associated random compact convex set which is integrably bounded (i.e., E(∥X∥) <
∞, where ∥X∥ is the random vector sup{∥x∥, : x ∈ X}). The (population) Au-
mann mean or expected value of X is the set value E[X] ∈ Kc(Rp) such that

E[X] =
{
E(f) / f : Ω → Rp, f ∈ L1(Ω,A, P ), f ∈ X a.s. [P ]

}
,

that is, it is the set of the mean values of all the ‘selections’ of X.

The Aumann mean of a random compact convex set can be equivalently defined
(see, for instance, Vitale [212]) as

Proposition 1.4.3. [212] Let (Ω,A, P ) be a probability space and X : Ω → Kc(Rp)

be an associated integrably bounded random compact convex set. Then, E[X] satisfies
that

sE[X] = E(sX),

where the right-hand side is a Bochner integral.

In the fuzzy set-valued case

Definition 1.4.4. [157] Let (Ω,A, P ) be a probability space and X : Ω → Fc(Rp)

be an associated random fuzzy set which is integrably bounded (i.e., E(∥X0∥) < ∞).
The (population) Aumann-type mean or expected value of X is the fuzzy value
Ẽ(X ) ∈ Fc(Rp) such that for all α ∈ [0, 1](

Ẽ(X )
)
α
= E[Xα].

The Aumann-type mean of a random fuzzy set can be equivalently defined (see
Puri and Ralescu [156]) as

Proposition 1.4.4. [156] Let (Ω,A, P ) be a probability space and X : Ω → Fc(Rp)

be an associated integrably bounded random fuzzy set. Then, Ẽ(X ) satisfies that

sẼ(X ) = E(sX ),

where the right-hand side is a Bochner integral.

The preceding imprecise-valued means satisfy several valuable properties similar
to those in the classical case. In this way (see for reviews Molchanov [138] and
González-Rodríguez et al. [90]):
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Proposition 1.4.5. E and Ẽ are equivariant under affine transformations on Kc(Rp)

and Fc(Rp), respectively, that is, if γ ∈ R, K ∈ Kc(Rp), Ũ ∈ Fc(Rp) and X and
X are integrably bounded random compact convex set and random fuzzy set, respec-
tively, then

E[γ · X+K] = γ · E[X] +K, Ẽ(γ · X + Ũ) = γ · Ẽ(X ) + Ũ .

Proposition 1.4.6. E and Ẽ are additive, that is, if X and Y are integrably bounded
random compact convex sets associated with the same probability space and X and Y
are integrably bounded random fuzzy sets associated with the same probability space,
then

E[X+ Y] = E[X] + E[Y], Ẽ(X + Y) = Ẽ(X ) + Ẽ(Y).

Proposition 1.4.7. E and Ẽ are coherent with the usual set- and fuzzy set-valued
arithmetics, respectively, so that if X and X are finite-valued random compact convex
set and random fuzzy set, respectively, that is, X(Ω) = {K1, . . . , Km} ⊂ Kc(Rp)

and X (Ω) = {Ũ1, . . . , Ũm} ⊂ Fc(Rp), then if pi = P
(
{ω ∈ Ω : X(ω) = Ki}

)
or

pi = P
(
{ω ∈ Ω : X (ω) = Ũi}

)
, we have that

E[X] = p1 ·K1 + . . .+ pm ·Km, Ẽ(X ) = p1 · Ũ1 + . . .+ pm · Ũm.

In fact, the sample Aumann mean associated with a simple random sample
(X1, . . . ,Xn) from a random compact convex set X (i.e., X1, . . . ,Xn are independent
random compact convex sets which are identically distributed as X) is given by

Xn =
1

n
·
[
X1 + . . .+ Xn

]
.

Analogously, the sample Aumann-type mean associated with a simple random
sample (X1, . . . ,Xn) from a random fuzzy set X (i.e., X1, . . . ,Xn are independent
random fuzzy sets which are identically distributed as X ) is given by

Xn =
1

n
·
[
X1 + . . .+ Xn

]
.

The computation of the Aumann-type mean is now illustrated by considering
the situation in Example 1.3.1.

Example 1.4.1. We consider the ‘sample’ of the 66 conical fuzzy vectors represent-
ing the main fundamental type colors and modifiers shown in Figure 1.7.

These 66 fuzzy vectors are such that No. i corresponds to the right cone C̃i such
that for each α ∈ [0, 1]

C̃ i
α = circle with centre (xi, yi) and radius 10(1− α).

All the centres have been detailed in Table 1.1.
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C̃• centre C̃• centre C̃• centre C̃• centre C̃• centre C̃• centre

1 (0, 0) 12 (5
√
3, 5) 23 (10

√
3, 20) 34 (15

√
3, 45) 45 (20

√
3, 80) 56 (30

√
3, 70)

2 (0, 10) 13 (5
√
3, 15) 24 (10

√
3, 30) 35 (15

√
3, 55) 46 (25

√
3, 25) 57 (35

√
3, 35)

3 (0, 20) 14 (5
√
3, 25) 25 (10

√
3, 40) 36 (15

√
3, 65) 47 (25

√
3, 35) 58 (35

√
3, 45)

4 (0, 30) 15 (5
√
3, 35) 26 (10

√
3, 50) 37 (15

√
3, 75) 48 (25

√
3, 45) 59 (35

√
3, 55)

5 (0, 40) 16 (5
√
3, 45) 27 (10

√
3, 60) 38 (15

√
3, 85) 49 (25

√
3, 55) 60 (35

√
3, 65)

6 (0, 50) 17 (5
√
3, 55) 28 (10

√
3, 70) 39 (20

√
3, 20) 50 (25

√
3, 65) 61 (40

√
3, 40)

7 (0, 60) 18 (5
√
3, 65) 29 (10

√
3, 80) 40 (20

√
3, 30) 51 (25

√
3, 75) 62 (40

√
3, 50)

8 (0, 70) 19 (5
√
3, 75) 30 (10

√
3, 90) 41 (20

√
3, 40) 52 (30

√
3, 30) 63 (40

√
3, 60)

9 (0, 80) 20 (5
√
3, 85) 31 (15

√
3, 15) 42 (20

√
3, 50) 53 (30

√
3, 40) 64 (45

√
3, 45)

10 (0, 90) 21 (5
√
3, 95) 32 (15

√
3, 25) 43 (20

√
3, 60) 54 (30

√
3, 50) 65 (45

√
3, 55)

11 (0, 100) 22 (10
√
3, 10) 33 (15

√
3, 35) 44 (20

√
3, 70) 55 (30

√
3, 60) 66 (50

√
3, 50)

Table 1.1: Centres (xi, yi) of the 66 fundamental type colors in Fig-
ure 1.7 (Example 1.3.1)

By using Proposition 1.4.4, the sample Aumann-type mean,
1

66
·
[
C̃1 + . . .+ C̃66

]
,

satisfies that for all α ∈ [0, 1] and u ∈ S1

s 1
66

·[C̃1+...+C̃66](α,u) =
1

66

66∑
i=1

sC̃i(α,u).

In accordance with the expression given for sC̃i(α,u) in Example 1.3.1, we can
conclude that

s 1
66

·[C̃1+...+C̃66](α,u) = cos βu · 1

66

66∑
i=1

xi + sin βu · 1

66

66∑
i=1

yi + 10(1− α)

=
50
√
3

3
· cos βu + 50 · sin βu + 10(1− α),

which is the support function associated with the right cone C̃∗ such that for each
α ∈ [0, 1]

C̃∗
α = circle with centre (50

√
3/3, 50) and radius 10(1− α).

Obviously, this mean value does not coincide with any of the 66 fundamental
type colors, but it is surrounded by C̃34, C̃35 and C̃42.

If we consider the detail type color triangle delimited by these three main colors
(see Figure 1.12 on the left), we obtain that the centre corresponds to white (No.
104), which is surrounded by six neighboring colors (No. 101 − No. 107), all of
them surrounded by No. 34, No. 35 and No. 42. Therefore, C̃∗ corresponds to the
right cone associated with white and being displayed in Figure 1.12 (on the right).
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Figure 1.12: Conical fuzzy vectors in the usual color triangle

Although other possible definitions for the mean of random imprecise-valued
elements have been suggested in the literature, it should be pointed out that the
Aumann and Aumann-type concepts are supported by Strong Laws of Large Num-
bers for random sets (see, for instance, Artstein and Vitale [5], Giné et al. [86],
Puri and Ralescu [155], Molchanov [136] and Terán [198]) and for random fuzzy sets
(see, for instance, Klement et al. [116], Colubi et al. [35], Molchanov [137], Proske
and Puri [153] and Terán [195]). In accordance with these results, the population
Aumman and Aumman-type means are the almost sure limit (in different metrics’
sense) of the sample Aumann and Aumann-type means, respectively.

Furthermore, the Aumann and Aumann-type means are the Fréchet expectations
for all the L2 metrics considered in this work. It is already known (see, for instance,
González-Rodríguez et al. [90]) that

E[X] = arg min
K∈Kc(Rp)

E
([

dφθ (X, K)
]2) and Ẽ(X ) = arg min

Ũ∈Fc(Rp)
E

([
Dφ

θ (X , Ũ)
]2)

.

This is also true under quite general conditions when the mid/spr-based L2

metric is replaced by the support/Steiner-based L2 one. Thus,

Proposition 1.4.8. Let φ be an absolutely continuous probability measure on the
measurable space ([0, 1],B[0,1]) with positive mass function on (0, 1), θ ∈ (0, 1] be a pa-
rameter and X be a random fuzzy set associated with the probability space (Ω,A, P ).
Assume that sX ∈ L2(Ω,A, P ) and that u · sX (α,u) fulfills sufficient conditions to
ensure the exchange of the iterated integrals of this vector-valued function on Ω and
[0, 1]× Sp−1, then

Ẽ(X ) = arg min
Ũ∈Fc(Rp)

E

([
Dφ

θ (X , Ũ)
]2)

.
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1.4.4 Symmetric random fuzzy numbers/intervals

The behaviour of location measures when the distribution is symmetric is especially
interesting. The notion of symmetry of a distribution can be extended from the
real- to the interval- and fuzzy number-valued cases in a natural way. To formalize
this extension one can state the following:

Definition 1.4.5. Let (Ω,A, P ) be a probability space and let X : Ω → Fc(R) be
a random fuzzy number associated with (Ω,A, P ). X is said to be symmetric
about c ∈ R if, and only if, X − c

d
= c − X or, equivalently, X d

= 2c − X , where
d
= denotes the identity in distribution.

Obviously, X is a symmetric random fuzzy number about c if, and only if, X − c

is a symmetric random fuzzy number about 0. Then, if X is a symmetric random
fuzzy number about c, it can be rewritten as X = E + c, where E is a symmetric
random fuzzy number about 0.

To interpret this notion, we can consider the following three examples. The first
one, really simple, indicates a key divergence with respect to the real-valued settings:
the fact that the space is nonlinear.

Example 1.4.2. Let X be a random fuzzy number associated with a probability
space (Ω,A, P ) and let OX = X − X . For any ω ∈ Ω, we have that OX (ω) is a
symmetric fuzzy number about 0.

The second example is based on the one supplied by Chou [30].

Example 1.4.3. In many social surveys, respondents are customarily asked by
means of a questionnaire to indicate their choices from a set of prefixed Likert-type
items. Many researchers consider Likert-type labels as fuzzy number-valued ones,
by identifying the generic response to a question with a fuzzy linguistic variable (see,
for instance, Serrano-Guerrero et al. [168] or Porcel et al. [152] for recent studies
about). As indicated by Chou [30], “often the wording of response levels clearly
implies a symmetry of response levels about a middle category; at the very least,
such an item would fall between ordinal-level and interval-level measurement... The
use of fuzzy sets is central in computing with words or labels as they provide a
means of modeling the vagueness underlying most natural linguistic terms (see, for
instance, Zadeh [220]). The semantic elements of the term set are given by fuzzy
numbers defined on a bounded interval (say [0, 1]).
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In practice, triangular fuzzy numbers are a uniformly distributed ordered set
of linguistic terms, so they provide a relatively simple way to capture the vague-
ness of linguistic assessments,...”, like the ones graphically displayed in Figure 1.13,
where vd = strongly disagree, d = disagree, sd = somewhat disagree,
n = neither agree nor disagree, sa= somewhat agree, a=agree and
va = strongly agree.

vd d              sd n sa              a va

Figure 1.13: Semantic elements of a term set given by 7 fuzzy trian-
gular numbers

Assume that the survey has been performed in a population/sample {ω1, . . . , ω953}
of 953 respondents and that the distribution of the random response X is the fol-
lowing:

label VD D SD N SA A VA
absol. freq. 38 143 207 177 207 143 38

Since
vd = 1− va, d = 1− a, sd = 1− sa,

and
#{ωj : X (ωj) = vd} = 38 = #{ωj : X (ωj) = va},

#{ωj : X (ωj) = d} = 143 = #{ωj : X (ωj) = a},

#{ωj : X (ωj) = sd} = 207 = #{ωj : X (ωj) = sa},

then the random fuzzy set X is symmetric about c = 0.5.

The third example has been drawn from the so-called ‘characterizing fuzzy rep-
resentation’ of real-valued random variables (see González-Rodríguez et al. [89]).
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Example 1.4.4. Let X be a random variable associated with a probability space
and assume that X has a Binomial distribution Bin(4, 0.5). González-Rodríguez et
al. [89] have introduced a generalized fuzzy representation that characterizes the
distribution of a real-valued random variable by means of the Aumann-type ex-
pected value of the random fuzzy set corresponding to the composition of the fuzzy
representation and the random variable.
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Figure 1.14: Values of a characterizing fuzzy representation of an RV
taking on values 0, 1, 2, 3 and 4

In this way, if X ∼ Bin(4, 0.5), the random fuzzy number X = γ(2) ◦X such that
for all α ∈ [0, 1]

(
γ(2)(x)

)
α
=


[
x− (1− α)1/(3−x), x+ (1− α)3−x

]
if x = 0, 1

[
x− (1− α)x−1, x+ (1− α)1/(x−1)

]
if x = 2, 3, 4

is a symmetric random fuzzy number about c = 2. The five different fuzzy values
it takes on have been graphically displayed on Figure 1.14 and their corresponding
probabilities are those associated with the five values of the Binomial.

Now it will be proven that the symmetry of a random fuzzy number entails the
symmetry of all its α-level random intervals:

Proposition 1.4.9. Let X be a random fuzzy number associated with a probability
space (Ω,A, P ). If X is symmetric about c ∈ R, then, for all α ∈ [0, 1], the α-level
random interval Xα is symmetric about c.
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The converse assertion is not true, that is, if for each α ∈ [0, 1] the random
interval Xα is symmetric about c, the random fuzzy number X is not necessarily
symmetric about c. As a counterexample we can consider the following:

Example 1.4.5. Let Ω = {ω1, ω2, ω3, ω4}, A = P(Ω) and P being associated with
a uniform distribution on Ω. Let X be the random fuzzy number such that

X (ω1)(x) =


x2/2 if x ∈ [0, 1]

−(x2 − 4x+ 2)/2 if x ∈ (1, 3]

(x− 4)2/2 si x ∈ (3, 4]

0 otherwise

X (ω2)(x) = Tri(0, 2, 4),

where Tri(a, b, c) denotes the triangular fuzzy number such that Tri(a, b, c)0 = [a, c],
Tri(a, b, c)1 = {b},

X (ω3)(x) =


−x/2 if x ∈ (−1, 0]

−(x2 + 4x+ 2)/2 if x ∈ (−3,−1]

(x+ 4)/2 si x ∈ [−4,−3]

0 otherwise

X (ω4)(x) =



x2/2 if x ∈ (−1, 0]

−x/2 if x ∈ (−2,−1]

(x+ 4)/2 if x ∈ (−3,−2]

(x+ 4)2/2 si x ∈ [−4,−3]

0 otherwise

One can easily prove that, for all α ∈ [0, 1], the random interval Xα is symmetric
about 0:

• on one hand, for all α ∈ [0, 0.5]

Xα(ω1) = −Xα(ω4), Xα(ω2) = −Xα(ω3),

whence, because of P being associated with the uniform distribution on Ω, Xα

and −Xα are identically distributed, i.e., Xα is symmetric about 0;

• on the other hand, for all α ∈ (0.5, 1]

Xα(ω1) = −Xα(ω3), Xα(ω2) = −Xα(ω4),

whence, because of P being associated with the uniform distribution on Ω, Xα

and −Xα are identically distributed, i.e., Xα is symmetric about 0.
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However, each of the four distinct values of X differ from the four distinct values
of −X , so X is not symmetric about 0.

The Aumann-type mean value of a symmetric random fuzzy number satisfies the
following property:

Proposition 1.4.10. Let (Ω,A, P ) be a probability space and let X be an integrably
bounded symmetric random fuzzy number about c ∈ R. Then, the Aumann-type
mean value of X is a symmetric fuzzy number about c.

The result in Proposition 1.4.10 is now illustrated by computing the mean values
of the symmetric random fuzzy numbers in Examples 1.4.3 and 1.4.4.

Example 1.4.6. The Aumann-type mean value of the symmetric random fuzzy
number about 0.5 in Example 1.4.3 is graphically displayed in Figure 1.15:
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Figure 1.15: Aumann-type mean (in black) of the 953 responses in
Example 1.4.3

The Aumann-type mean expected value of the symmetric random fuzzy number
about 2 in Example 1.4.4 is graphically displayed in Figure 1.16.

1.5 Motivating and clarifying simulation studies

This section aims to illustrate empirically (and sometimes simultaneously) several
facts. Although similar conclusions could be drawn for both set- and fuzzy set-
valued data, the empirical analysis will be focused on the more general case of fuzzy
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Figure 1.16: Aumann-type mean (in black) of the characterizing fuzzy
representation of the Bin(4, 0.5) in Example 1.4.4

set-valued data. Actually, the simulations involve trapezoidal fuzzy numbers and
interval-valued data are indeed special trapezoidal fuzzy numbers.

The most relevant fact to be illustrated refers to the evidence that, although the
Aumann and Aumann-type means are the most common candidates to get some
idea about the central tendency of a sample or population of set- or fuzzy set-valued
data, they not only inherit from the real-valued case the properties indicated at the
end of last section, but also the sensitivity of the mean to either data perturbations
or the existence of extreme values (outliers).

The second aspect we will focus on is related to the comparison of the behaviour
of the mid/spr and the support/Steiner-based L2 metrics, as well as the effect the
choice of the weight parameter θ has on them. The third point is analogous to the
second one, but replacing L2 by L1 metrics.

The first simulations are addressed to the first target. They have been per-
formed as follows:

Step 1. A sample of size n = 100000 of trapezoidal fuzzy numbers has been simulated
for each of several different situations in such a way that
• to generate the trapezoidal fuzzy data, we have considered four real-

valued random variables as follows: X = Tra(X1 − X2 − X3, X1 − X2,

X1 + X2, X1 +X2 +X4), with X1 = midX1, X2 = sprX1, X3 = inf X1

− inf X0, X4 = supX0 − supX1;

• each sample is assumed to be split into a subsample of size n(1−cp) (where
cp denotes the proportion of contamination and is supposed to range in
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{0, 0.1, 0.2, 0.4}) associated with a non-contaminated distribution and a
subsample of size n · cp associated with a contaminated one. CD plays an
additional contamination role, measuring how far the distribution of the
contaminated subsample is from the distribution of the non-contaminated
one (and ranges in {0, 1, 5, 10, 100});

• 16 situations for different values of cp and CD have been considered and
for each of them two cases have been selected, namely, one in which the
random variables Xi are independent (CASE 1) and another one in which
they are dependent (CASE 2). More specifically, CASE 1 assumes that:

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the non-contaminated sub-

sample,

•• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the contaminated

subsample,

whereas CASE 2 assumes that:

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 for the non-
contaminated subsample (with χ2

1 independent of X1),

•• X1 ∼ N (0, 3)+CD and X2, X3, X4 ∼ 1/(X2
1 +1)2 +0.1 ·χ2

1 +CD for
the contaminated subsample (with χ2

1 independent of X1),

obviously, being χ2
1 independent from 1/(X2

1 + 1)2.

Step 2. N = 1000 replications of Step 1 have been considered, so that for each of
the 16 situations concerning cp and cD there are 1000 available samples of
size n = 100000.

Step 3. The population Aumann-type mean for the non-contaminated distribution
has been approximated by a Monte Carlo approach on the basis of the
1000 × 100000 data from the first situation (cp = CD = 0). For each of
the 16 situations, the 1000 sample Auman-type means are computed as
estimates of the population Aumann-type mean for the non-contaminated
distribution and

• the mean distance between the non-contaminated distribution to each
sample mixed Aumann-type mean is computed and finally the mean over
the 1000 samples (MD) is obtained;

• the mean of the 1000 distances (DM) between the mixed and non-contam-
inated Aumann-type means is obtained.
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CASE 1 CASE 2

cp cD MD DM MD DM

0 0 1.590684 0.005446 1.0027501 0.003035

0.1 0 1.685077 0.340882 1.004752 0.012257
0.1 1 1.727329 0.457775 0.990237 0.120268
0.1 5 1.958604 0.965272 1.085708 0.641559
0.1 10 2.355203 1.614466 1.568303 1.306176
0.1 100 13.552122 13.479923 13.187656 13.156037

0.2 0 1.825401 0.680722 1.007136 0.023612
0.2 1 1.946608 0.924358 0.988365 0.241804
0.2 5 2.601743 1.952914 1.548887 1.283131
0.2 10 3.658885 3.261031 2.728677 2.5792370
0.2 100 26.827333 26.793580 26.308354 26.292482

0.4 0 2.212263 1.364644 1.012141 0.046735
0.4 1 2.558034 1.874279 1.025340 0.485976
0.4 5 4.194068 3.860446 2.701750 2.551476
0.4 10 6.646680 6.470993 5.211615 5.133452
0.4 100 54.186654 54.170428 51.864586 51.856741

Table 1.2: Mean distances of the mixed Aumann-type mean to the
non-contaminated distribution (MD), and distances between the sample
mixed and non-contaminated Aumann-type means (DM)

Distances have been computed by considering the L2 metric ρ2 = Dℓ
1 = Dℓ

1. The
outputs of this simulation study have been collected in Table 1.2.

On the basis of the outputs in Table 1.2, one can conclude from an empirical point
of view that in CASE 1 the higher the perturbation (especially, the one through cD),
the worse the sample mean summarizes the non-contaminated distribution. More
concretely, for a fixed level of contamination cp,

• the farther the contaminated distribution from the non-contaminated one, the
substantially greater mean distance between the approximated mean and the
non-contaminated distribution;

• the farther the contaminated distribution from the non-contaminated one,
the substantially greater distance between the contaminated and the non-
contaminated means.

The behaviour is quite close, although slightly less monotonic in CASE 2. Therefore,
this first empirical study greatly motivates the developments in Chapters 2 and 3 of
this work.

The second simulations will be addressed to the two first targets and they
have been performed as follows:

Step 1 and Step 2 are similar to those for the first simulations.
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Step 3’. The population Aumann-type mean for the non-contaminated distribution
has been approximated by a Monte Carlo approach on the basis of the
1000×100000 data from from the first situation (cp = CD = 0). For each
of the 16 situations, the 1000 sample Auman-type means are computed as
estimates of the population Aumann-type mean for the non-contaminated
distribution. The mean squared error (MSE) of the estimator has been
approximated by the mean squared distance between the sample mixed and
the approximate population mean for the non-contaminated distribution.

Distances have been computed by considering the L2 metrics Dℓ
θ and Dℓ

θ. The
outputs for this simulation study have been collected in Table 1.3 for Dℓ

θ, and those
for Dℓ

θ are in Table 1.4. It is convenient to realize that

M̂SE(X , Ẽ(X )) = E

([
Dφ

θ (X , Ẽ(X ))
]2)

= V1 + θ · V2,

M̂SE(X , Ẽ(X )) = E

([
Dφ

θ (X , Ẽ(X ))
]2)

= V1 + θ ·V2,

with
V1 =

∫
[0,1]

Var(midXα) dφ(α), V2 =

∫
[0,1]

Var(sprXα) dφ(α),

CASE 1 CASE 2

cp cD V1 V2 M̂SE V1 V2 M̂SE

0 0 0.000014 0.000023 0.000014 + 0.000023 θ 0.000010 0.000003 0.000010 +0.000003 θ

0.1 0 0.000019 0.127470 0.000019 + 0.127470 θ 0.000015 0.000243 0.000015 +0.000243 θ
0.1 1 0.003466 0.221471 0.003466 + 0.221471 θ 0.003402 0.011613 0.003402 + 0.011613 θ
0.1 5 0.079311 0.923035 0.079311 + 0.923035 θ 0.086931 0.336959 0.086931 +0.336959 θ
0.1 10 0.334994 2.401428 0.334994 + 2.401428 θ 0.336682 1.375143 0.336682 + 1.375143 θ
0.1 100 32.67661 153.0056 32.67661 + 153.0056 θ 32.81563 141.5788 32.81563+141.5788 θ

0.2 0 0.000024 0.515910 0.000024 + 0.515910 θ 0.000017 0.000874 0.000017 + 0.000874 θ
0.2 1 0.013199 0.927162 0.013199 + 0.927162 θ 0.013452 0.047189 0.013452 + 0.047189 θ
0.2 5 0.337335 3.648890 0.337335 + 3.648890 θ 0.334835 1.341384 0.334835 +1.341384 θ
0.2 10 1.356971 9.576707 1.356971 + 9.576707 θ 1.298018 5.573106 1.298018 +5.573106 θ
0.2 100 127.7962 616.7393 127.7962 + 616.7393 θ 134.6084 552.2032 134.6084+552.2032 θ

0.4 0 0.000033 2.092744 0.000033 + 2.092744 θ 0.000025 0.003553 0.000025 + 0.003553 θ
0.4 1 0.052931 3.657312 0.052931 + 3.657312 θ 0.053656 0.188999 0.053656 + 0.188999 θ
0.4 5 1.330965 14.69655 1.330965 + 14.69655 θ 1.358108 5.459095 1.358108 + 5.459095 θ
0.4 10 5.257283 39.60472 5.257283 + 39.60472 θ 5.622794 21.18859 5.622794+ 21.18859 θ
0.4 100 542.4229 2425.985 542.4229 + 2425.985 θ 542.4764 2244.256 542.4764+2244.256 θ

Table 1.3: Approximate Dℓ
θ-based mean squared error of the Aumann-

type sample-mean estimator based on mixed samples

V1 = Var(wablφ(X )),



56 Chapter 1. Preliminary tools and supporting results

CASE 1 CASE 2

cp cD V1 V2 M̂SE V1 V2 M̂SE

0 0 0.000013 0.000024 0.000013 + 0.000024 θ 0.000010 0.000003 0.000010 + 0.000003 θ

0.1 0 0.000018 0.127471 0.000018 + 0.127471 θ 0.000015 0.000243 0.000015 + 0.000243 θ
0.1 1 0.003465 0.221472 0.003465 + 0.221472 θ 0.003402 0.011613 0.003402 + 0.011613 θ
0.1 5 0.079310 0.923036 0.079310 + 0.923036 θ 0.086931 0.336959 0.086931 + 0.336959 θ
0.1 10 0.334993 2.401429 0.334993 + 2.401429 θ 0.336682 1.375143 0.336682 + 1.375143 θ
0.1 100 32.67661 153.0056 32.67661 + 153.0056 θ 32.81563 141.5788 32.81563+141.5788 θ

0.2 0 0.000022 0.515911 0.000022 + 0.515911 θ 0.000017 0.000874 0.000017 + 0.000874 θ
0.2 1 0.013198 0.927163 0.013198 + 0.927163 θ 0.013452 0.047189 0.013452 + 0.047189 θ
0.2 5 0.337334 3.648892 0.337334 + 3.648892 θ 0.334835 1.341384 0.334835 + 1.341384 θ
0.2 10 1.356969 9.576708 1.356969 + 9.576708 θ 1.298018 5.573106 1.298018 + 5.573106 θ
0.2 100 127.7962 616.7393 127.7962 + 616.7393 θ 134.6084 552.2032 134.6084+552.2032 θ

0.4 0 0.000031 2.092746 0.000031 + 2.092746 θ 0.000025 0.003553 0.000025 +0.003553 θ

0.4 1 0.052929 3.657314 0.052929 + 3.657314 θ 0.53656 0.188999 0.53656 +0.188999 θ

0.4 5 1.330964 14.696555 1.330964 + 14.69655 θ 1.358108 5.459095 1.358108 + 5.459095 θ
0.4 10 5.257282 39.604723 5.257282 + 39.60472 θ 5.622794 21.18859 5.622794 + 21.18859 θ
0.4 100 542.4228 2425.9857 542.4228 + 2425.985 θ 542.4764 2244.256 542.4764+ 2244.256 θ

Table 1.4: Approximate Dℓ
θ-based mean squared error of the Aumann-

type sample-mean estimator based on mixed samples

V2 =
1

2

∫
[0,1]

Varφ(ldevφX (α)) dφ(α) +
1

2

∫
[0,1]

Varφ(rdevφX (α)) dφ(α).

On the basis of the last two tables, one can conclude empirically in connection
with the first target that the sample mean is quite sensitive. More specifically, the
approximated mean squared error substantially increases with the contamination,
especially when the distribution of the contaminated subsample is very far from the
distribution of the non-contaminated one (i.e., with large cD). The sensitivity also
increases with the value of the parameter θ, which weighs the effect of the deviation
in ‘shape’ with respect to the deviations in the center.

It is also interesting to note that using Dφ
θ instead of Dφ

θ scarcely affects the
conclusions, regarding the second target.

The third simulations will be addressed to the first and third targets. The
simulations have been performed as the second ones, but computing the distances
by means of the L1 metric Dℓ

θ, where

Dℓ
θ(Ũ , Ṽ ) =

∫
[0,1]

[
|mid Ũα −mid Ṽα|+ θ · |spr Ũα − spr Ṽα|

]
dℓ(α).

Note that due to the fact that the mid/spr representation of fuzzy numbers does not
have associated sufficient conditions to characterize fuzzy numbers, it will not be
used hereinafter. When θ = 1, the Dℓ

θ metric reduces to d1 by Klement et al. [116].
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Secondly, the distance D ℓ
θ will be considered.

CASE 1 CASE 2

cp cD M̂E (θ = 1/3) M̂E (θ = 2/3) M̂E (θ = 1) M̂E (θ = 1/3) M̂E (θ = 2/3) M̂E (θ = 1)

0 0 0.000022 0.000036 0.000054 0.000012 0.000015 0.000018

0.1 0 0.014645 0.056992 0.127061 0.000060 0.000153 0.000294
0.1 1 0.040604 0.127047 0.262563 0.007495 0.014028 0.23038
0.1 5 0.311624 0.728550 1.335324 0.203591 0.391977 0.651849
0.1 10 1.039781 2.252823 3.981161 0.794486 1.552579 2.604948
0.1 100 83.41995 167.5429 284.8067 82.74281 161.1959 269.7601

0.2 0 0.055559 0.218843 0.489873 0.000171 0.000520 0.001064
0.2 1 0.165305 0.513345 1.057647 0.029820 0.056282 0.092764
0.2 5 1.250706 2.925262 5.365626 0.791848 1.542378 2.583662
0.2 10 4.177762 8.946755 15.71538 3.193542 6.210516 10.38316
0.2 100 325.989 655.7083 1115.892 333.0015 648.4194 1084.466

0.4 0 0.224389 0.889759 1.996140 0.000552 0.001872 0.003986
0.4 1 0.658307 2.051380 4.232302 0.117735 0.221450 0.364607
0.4 5 5.083451 11.96329 21.99130 3.133536 6.135763 10.30930
0.4 10 16.24498 35.48329 62.95539 13.09717 25.45884 42.52502
0.4 100 1334.663 2637.734 4448.512 1309.402 2573.645 4322.966

Table 1.5: Approximate Dℓ
θ-based mean squared error of the Aumann-

type sample-mean estimator based on mixed samples

CASE 1 CASE 2

cp cD M̂E (θ = 1/3) M̂E (θ = 2/3) M̂E (θ = 1) M̂E (θ = 1/3) M̂E (θ = 2/3) M̂E (θ = 1)

0 0 0.000021 0.000035 0.000054 0.000012 0.000015 0.000018

0.1 0 0.014628 0.056960 0.127013 0.000060 0.000153 0.000294
0.1 1 0.040603 0.127044 0.262560 0.007495 0.010285 0.023038
0.1 5 0.311623 0.728550 1.335323 0.203591 0.391977 0.651849
0.1 10 1.039781 2.252823 3.981160 0.794486 1.552579 2.604948
0.1 100 83.41995 167.5429 284.8067 82.74281 161.1959 269.7601

0.2 0 0.055519 0.218763 0.489753 0.000171 0.000520 0.001064
0.2 1 0.165304 0.513343 1.057644 0.029820 0.056282 0.092763
0.2 5 1.250702 2.925254 5.365614 0.791848 1.542378 2.583662
0.2 10 4.177758 8.946746 15.71536 3.193542 6.210516 10.38316
0.2 100 325.9893 655.7083 1115.892 333.0015 648.4194 1084.466

0.4 0 0.224304 0.889589 1.995886 0.000552 0.001872 0.003986
0.4 1 0.658305 2.051376 4.232296 0.117735 0.221450 0.364607
0.4 5 5.083451 11.96329 21.99130 3.133536 6.135763 10.30930
0.4 10 16.24498 35.48329 62.95539 13.09717 25.45884 42.52502
0.4 100 1334.663 2637.734 4448.512 1309.402 2573.645 4322.966

Table 1.6: Approximate Dℓ
θ-based mean squared error of the Aumann-

type sample-mean estimator based on mixed samples

The outputs for this simulation study have been collected in Tables 1.5 (for Dℓ
θ)

and 1.6 (for D ℓ
θ). Since one cannot get a general expression of the mean squared
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errors as a function of θ when the distance is L1-type, we now present the outputs
for three choices of θ (actually, θ = 1/3, 2/3, 1).

Analyzing the last two tables, the empirical conclusion in connection with the
first target in this section is that the sample mean is quite sensitive, especially with
respect to the changes in cD. The sensitivity also increases with the value of the
parameter θ.

On the other hand, regarding the third target, it is also interesting to note that
using Dφ

θ instead of Dφ
θ scarcely affects the conclusions (indeed, the difference is so

tiny that more digits would be needed to show it).

1.6 Concluding remarks of this chapter

This chapter has presented the preliminary and supporting concepts and results cor-
responding to the type of data to be dealt with, as well as the basic models and tools
to formalize and handle them in a probabilistic/statistical setting. Nevertheless, the
statistical literature on robust location measures that have inspired or have been ex-
tended/adapted in Chapters 2 and 3 has not been reviewed due to the presupposed
background and expertise of the potential readers of this work.

It should be noted that the set- and fuzzy set-valued data as used here could be
assumed to be more general, say: unbounded (or having unbounded 0-level in the
fuzzy case); non-convex; subsets or fuzzy subsets of infinite dimensional or non-
Euclidean spaces, etc. However, for practical purposes, the spaces Kc(Rp) and
Fc(Rp) fit and cover most of the real-life and realistic imprecise data and their
mathematical management and analysis are pretty simplified.

It should also be clarified that, although several concepts and results in this
chapter are well-known ones from the existing literature, some other ones have been
expressly conceived for this work. In this regard, the main contribution in the
chapter refers to:

• the wabl/ldev/rdev representation of fuzzy numbers in Definition 1.1.8, along
with the associated L2 and L1 metrics (Proposition 1.3.5 and Definition 1.3.8,
respectively) and properties for all in Propositions 1.1.4, 1.2.10, 1.3.6, 1.3.8
and 1.3.9,

• the support/Steiner representation of fuzzy vectors in Definition 1.1.9 along
with the associated L2 metric in Definition 1.3.5 and properties for both in
Propositions 1.1.5, 1.2.11, 1.3.2, 1.3.3, 1.3.4 and 1.4.8,
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• the concept of symmetry of a random fuzzy number in Definition 1.4.5 and
the related results in Propositions 1.4.9 and 1.4.10,

• and the simulation developments in Section 1.5, which provide valuable argu-
ments to motivate the study in the two other chapters and support the choices
of some metrics in them.

The new ideas and results in this chapter have been gathered in several published,
accepted or submitted manuscripts, namely, Sinova et al. [173, 176, 179, 180, 182,
185].





Chapter 2

Trimmed means
for imprecise-valued data

In dealing with real-valued data, an appealing robust measure of location is the
class of trimmed means, introduced by Tukey [204] which includes the median as a
very special element. In the real-valued settings, trimming entails removing a given
percentage of data from the tails of the distribution and computing the mean of the
remaining central observations. The median would correspond to the special case
in which all, except one or two data, are removed from the tails.

Although one can properly refer to the distribution of the random element gen-
erating imprecise-valued data, one cannot properly talk about its ‘tails’. As it has
already been remarked,

• there is no universally accepted ranking of elements in either Kc(Rp) or Fc(Rp),
so how could we model formally the tails of such a distribution?;

• there are not easy-to-use and realistic models for such a distribution yet.

Fortunately, despite the last drawbacks, trimmed means in Hilbert spaces have
already been defined and studied in the literature under some ideal conditions.
Furthermore, an algorithm to calculate the trimmed mean estimate of the center of
a functional distribution has been proposed.

Cuesta-Albertos and Fraiman [46] have introduced the trimmed mean in the
vector space L2[0, 1] = {f : [0, 1] → R : f is square integrable}, although most of
the results apply more generally to uniformly convex Banach spaces. Theoretical
properties of the trimmed mean, like the existence, consistency of the corresponding
estimator and qualitative robustness under some conditions, have been examined
and discussed. Moreover, Cuesta-Albertos and Fraiman [46] have proposed an algo-
rithm that approximates the empirical trimmed mean associated with a sample by

61
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obtaining an element of the sample that converges to the trimmed mean whenever
this value is in the support of the considered distribution. However, this algorithm is
not applicable for large data sets given its computational complexity and it is clearly
theoretically oriented, while our interest is not only theoretical, but also practical.

This chapter first focuses on the trimmed means in separable Hilbert spaces. As
a consequence, these results and conclusions will be applicable not only to functional
data, but also to set- and fuzzy set-valued ones.

The performance of trimmed means will be discussed paying attention to con-
tamination models. The problem of finding the empirical trimmed mean is discussed
and a new algorithm is proposed to find the solution in a more efficient way. This
algorithm is inspired by the FAST-LTS (see Rousseeuw and Van Driessen [158]).
The effectiveness and efficiency of this algorithm will be shown to be higher than
those for the Cuesta-Albertos and Fraiman algorithm theoretically and empirically.
One of the most important measures of robustness, the finite sample breakdown
point, will be considered in order to analyze the behaviour of the new estimator of
the trimmed mean.

Since there are other robust location measures in functional Hilbert spaces, such
as the usual functional median or the trimmed mean based on depth functions (see
Cuevas and Fraiman [51] and Cuesta-Albertos and Nieto-Reyes [49]), a comparison
with representative estimators of this type will be also shown. Despite the fact that
both the sample mean and the trimmed means will be compared in all the examples
and applications to unify the studies, it is important to note that, although the
trimmed means are estimators of the population mean in the location-scale model,
this is not true in a general Hilbert space because it lacks symmetry, which is
necessary for the population trimmed means to coincide with the population mean.

In Section 2.1, the population trimmed mean for a Hilbert space-valued random
element is presented, and the already known theoretical results related to its exis-
tence and uniqueness are recalled. Section 2.2 is devoted to the empirical trimmed
mean and it introduces the proposed algorithm for its computation and discusses
some of its main properties, such as the consistency and the finite sample break-
down point. The suggested algorithm will be compared with the existing one by
Cuesta-Albertos and Fraiman, both theoretically and empirically, in Section 2.3.
The performance against estimators of this type will be analyzed in Section 2.4.
Applications to fuzzy and set-valued data are shown in Section 2.5. The chapter
ends with a Section 2.6 containing the summary of the novelties and the related
publications derived from it.
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2.1 Population trimmed means
for Hilbert space-valued random elements

In this section, the population trimmed mean of a Hilbert space-valued random
element, along with some remarks about its existence and uniqueness, is recalled
(for details, see Cuesta-Albertos and Fraiman [46]).

Definition 2.1.1. [46] Consider a random element X : Ω → H, where (Ω,A, P )

is a probability space, (H, ∥ · ∥H) is a separable Hilbert space and PX is the induced
probability distribution on the Borel σ-algebra on H. For any β ∈ (0, 1), the cor-
responding population trimmed mean is any hPX

∈ H such that there exists a
trimming function τPX

∈ Pβ, where

Pβ =

{
τ : H → [0, 1] : τ measurable,

∫
H
τ(x) dPX(x) ≥ 1− β

}
,

satisfying that∫
H
∥x− hPX

∥2HτPX
(x) dPX(x) = inf

h∈H, τ∈Pβ

∫
H
∥x− h∥2Hτ(x) dPX(x).

Note that this definition generalizes the notion of trimmed means based on trim-
ming regions, since that situation is equivalent to using as trimming function only
indicator functions of sets, i.e.,

min
A∈E

∫
A

∥x− E(X|A)∥2H dPX(x) = min
A∈E, h∈H

∫
A

∥x− h∥2H dPX(x),

where E = {A ⊂ H : PX(A) = 1− β}.
However, it turns out that the best trimming function essentially coincides with

the indicator function of a set (as proven in Cuesta-Albertos et al. [47] for random
vectors and in Cuesta-Albertos and Fraiman [46] for Hilbert space-valued random
elements), so we can restrict ourselves to this case.

Remark 2.1.1. The existence of the trimmed mean and sufficient conditions for
its uniqueness have already been established in Cuesta-Albertos and Fraiman [46].
These ideal conditions do not cover contamination models and general sample dis-
tributions in robust statistics.

To illustrate this assertion one can consider the following example. The ideal
conditions guaranteeing uniqueness in [46] require the existence of a point m0 in the
functional space L2[0, 1] such that P (B(m0, r)) > P (B(m, r)) for all m in L2([0, 1])

and all nonnegative real values r.
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Let X be a continuous L2[0, 1]-valued random element satisfying this assumption.
Choose ϵ and r > 0 such that P (B(m0, r)) < ϵ. If a fraction ϵ of outliers is now
inserted at B(m1, r) with m1 ̸= m0, then P (B(m1, r)) ≥ ϵ and thus the uniqueness
condition is not satisfied anymore.

2.2 Empirical trimmed means
for Hilbert space-valued data

This section aims to analyze the consistency and robustness of a new trimmed mean
estimator.

Let (H, ∥ · ∥H) be a separable Hilbert space, (Ω,A, P ) be a probability space,
X : Ω → H be a continuous random element and hn = (h1, . . . , hn) be a sample
of independent observations.

For each β ∈ (0, 1), we consider the problem of finding the β-trimmed mean
(or simply trimmed mean) and the trimming region Ê, given by

Ê = argmin
E∈E

1

nβ

∑
i∈E

∥∥∥∥∥hi −
1

nβ

∑
j∈E

hj

∥∥∥∥∥
2

H

= argmin
E∈E

Var(hn|E)

where nβ = n− [nβ] is the cardinal of the trimming region Ê and the set

E = {E ⊂ {1, . . . , n} : #E = nβ}

consists of all the subsets of nβ different natural numbers which are up to the sample
size. Therefore, the trimming region, for a fixed proportion of trimming, can be
seen as the set containing the remaining proportion of sample data with minimum
variance.

This problem has at least one solution because it is finite combinatorial. Once
a trimming region Ê is determined, the associated trimmed mean and variance are
simply the mean and variance of the sample conditioned to Ê.

The proposed algorithm to find one of the solutions for the trimming problem
is to be inspired on the common strategy in real-valued settings. This strategy
makes an initial choice of the trimming region (the simplest way would be a random
choice); then, this region is adjusted with a method to construct new trimming
regions which are more concentrated than the previous ones (see Rousseeuw and
Van Driessen [158]). Following a similar reasoning for the Hilbert case, it is easy
to prove that the variance decreases as the set of the nβ closest observations to the
mean of the original region is considered as the new region. The theorem below
formalizes this theoretical conclusion:
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Theorem 2.2.1. Let E1 ∈ E and denote by E2 ∈ E a set of indices corresponding
to the nβ observations with smallest distances to

∑
i∈E1

hi/nβ. Then,

Var(hn|E2) ≤ Var(hn|E1),

where the equality holds if and only if E1 = E2.

Proof. Since E2 corresponds to the indices of the nβ closest observations to 1
nβ

∑
j∈E1

hj,
we have that:

1

nβ

∑
i∈E2

∥hi −
1

nβ

∑
j∈E1

hj∥2H ≤ 1

nβ

∑
i∈E1

∥hi −
1

nβ

∑
j∈E1

hj∥2H = Var(hn|E1).

It is well-known that the mean minimizes the sum of the squared distances to all
the considered observations, so:

Var(hn|E2) =
1

nβ

∑
i∈E2

∥hi −
1

nβ

∑
j∈E2

hj∥2H ≤ 1

nβ

∑
i∈E2

∥hi −
1

nβ

∑
j∈E1

hj∥2H

and the inequality follows.

As a consequence, to compute the trimmed mean of a sample we can consider
the following strategy:

Algorithm to compute the trimmed mean of a sample (ETMA)

Step 1. Set nβ = n− ⌊nβ⌋ ∈ {1, . . . , n} (⌊·⌋ = floor function), the size of the trim-
ming region, fix NS the number of starting points and nbest the number of
best trimming regions selected after nrep initial steps. Initialize MSE = ∞;

Step 2. Choose at random either three data from the sample (considered a seed) and
compute its mean, f , or an observation considered as an initial mean, f . It
is then possible to build a first region of size nβ centered around f . Since
the three data or the observation are chosen randomly, this first region will
be also random;

Step 3. Select the nβ closest data to the mean f (where closeness refers to the
distance corresponding to the norm associated with the inner product of the
Hilbert space):

{hk1 , . . . , hknβ
};

Step 4. Compute the mean f ∗ of the nβ observations in Step 3, and then calculate
the corresponding mean squared error given by

f ∗ =

nβ∑
i=1

hki/nβ, MSE∗ =

nβ∑
i=1

∥hki − f ∗∥2H/nβ;

Update the value of the upper bound, that is,

MSE = MSE∗;
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Step 5. Steps 3 and 4 are repeated nrep times;

Step 6. Repeat Steps 2-5 NS times and choose the nbest trimming regions with
lowest associated MSE∗;

Step 7. For each of the nbest trimming regions, repeat Steps 3-4 until convergence;

Step 8. The estimate associated with the smallest MSE∗ will be the final estimate
of the trimmed mean. Moreover, the corresponding value MSE∗ will be the
trimmed Mean Squared Error associated with it.

According to Theorem 2.2.1, one can easily conclude that the convergence of this
iteration process is always reached after a finite number of iterations. Furthermore,
due to Step 2, this new algorithm always performs at least as well as the Cuesta-
Albertos and Fraiman alternative.

2.2.1 Consistency and robustness of the ETMAs

Some properties of the empirical trimmed mean as estimator of its population value
can be analyzed now. The following result is similar as in [46] and shows the strong
consistency of the sample trimmed mean as estimator of the population trimmed
mean under uniqueness conditions.

Theorem 2.2.2. Let β ∈ (0, 1) and assume that the probability measure PX has
a unique trimmed mean parameter. Let {Xn}n∈N be a sequence of i.i.d. random
elements with distribution PX , and denote by Pn the empirical probability measure,
that is,

Pn(ω) :=
1

n

∑
i≤n

δXi(ω) for all n ∈ N, ω ∈ Ω,

with δx being the Dirac delta measure on x, and hω
n being any of its corresponding

empirical trimmed means. Then,

lim
n→∞

∥hω
n − hPX

∥H = 0 a.s. [P ].

It should be emphasized that the difference between the consistency for the
estimator from the new algorithm and the one from [46] lies in the fact that the
latter does not search for the point hω

n, but for the (also consistent) estimate m̂ω
kn

,
which is the result of constraining to the support of Pn the search of the minimum
in computing the trimmed mean.

The breakdown point of hω
n as estimator of the empirical trimmed mean is de-

rived now. As indicated by Cuevas et al. [50] this notion, originally introduced by
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Hampel [99] and formalized later in the current way by Donoho and Huber [59], can
be adapted to estimators taking values in general metric spaces. Following Donoho
and Huber, the finite sample breakdown point (denoted fsbp) of the sample trimmed
mean corresponding to a sample of size n from a random element X : Ω → H, where
(Ω,A, P ) is a probability space and (H, ∥ · ∥H) is a separable Hilbert space, is given
by

fsbp((̂hPX
)n,hn, d) =

1

n
min

{
k ∈ {1, . . . , n} : sup

Qn,k

d(hPn , hQn,k
) = ∞

}
,

where hn denotes the considered sample of n observations from the metric space
(H, d) (being d the distance associated with the inner product) in which sup

h,h′∈H
d(h, h′)

= ∞, Pn is the empirical distribution of hn and Qn,k is the empirical distribution
of sample yn,k obtained from the original sample hn by perturbing up to k of its
elements. Then, we have that

Theorem 2.2.3. Consider a continuous random element X : Ω → H such that

sup
h,h′∈H

d(h, h′) = ∞

(with d the distance associated with the inner product), where (Ω,A, P ) is a prob-
ability space, (H, ∥ · ∥H) is a separable Hilbert space and PX is a fixed probability
distribution on the Borel σ-algebra on H. For any β ∈ (0, 1), the finite sample
breakdown point of the corresponding sample trimmed mean equals

fsbp
(
(̂hPX

)n,hn, d
)
=

⌊n · β⌋+ 1

n
.

Proof. First note that

min

{
k ∈ {1, . . . , n} : sup

Qn,k

d(hPn , hQn,k
) = ∞

}
≤ ⌊n · β⌋+ 1.

Indeed, if there are at least ⌊n ·β⌋+1 perturbed points (k ≥ ⌊n ·β⌋+1 fixed) which
lie arbitrarily far from the original observations, then any possible trimming region
of size nβ = n−⌊n ·β⌋ must contain at least one of these ‘contaminated’ points and
the estimate of the trimmed mean (the mean over the trimming region), hQn,k

, will
be arbitrarily far from the original observations too, so that sup

Qn,k

d(hPn , hQn,k
) = ∞.

Now, it is proved that
sup
Qn,k

d(hPn , hQn,k
) < ∞

for any k ≤ ⌊n · β⌋, so that the other inequality also holds. For this purpose two
type of regions can be distinguished, namely,
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• The regions of size nβ with no contaminated points and, therefore, a finite
trimmed mean and variance.

• The regions of size nβ containing at least one contaminated point, with trimmed
mean arbitrarily far away and arbitrarily big variance.

Therefore, the trimming region minimizing the corresponding trimmed mean squared
error will correspond to the first type: it will not contain any contaminated points
and its trimmed mean will be finite, so

sup
Qn,⌊n·β⌋

d(hPn , hQn,⌊n·β⌋) < ∞. �

Clearly, the finite sample breakdown point tends to β as n tends to ∞, so the
asymptotic breakdown point is β.

2.3 Comparative study between the ETMA and
the Cuesta-Albertos and Fraiman algorithm

In this section the algorithm introduced in Section 2.2 is compared to the algorithm
of Cuesta-Albertos and Fraiman. As it has already been pointed out, whereas the
new algorithm searches for the empirical trimmed mean, the algorithm in [46] selects
an element of the sample converging to the trimmed mean whenever it belongs to
the support of the distribution.

Table 2.1 compares the theoretical complexity of both algorithms by distinguish-
ing all the involved steps. Steps of the Empirical Trimmed Mean Algorithm (ETMA)
have been detailed in Section 2.2. The steps for the algorithm by Cuesta-Albertos
and Fraiman (C&F) can be summarized as follows:

Step 1. Fix 0 < nβ ≤ n;

Step 2. Compute the squared distances between all the observations;

Step 3. Compute the mean and MSE corresponding to the nβ closest elements of
each observation;

Step 4. The outcome is the observation with minimal MSE of the associated region
(consisting of the nβ closest points to this observation).

Denote by Q and q the costs of computing the squared norms and the means, re-
spectively, and by lt the number of evaluations MSE∗ < MSE, then the complexity
of the algorithms is gathered in Table 2.1.
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Step ETMA C&F

1 - -
2 - ≈ Q× n2

3 NS× n logn ≈ n2 logn

4 ≈ NS× (Q+ q)× n -
5 ≈ NS× ((Q+ q)× n

+n logn)× nrep It does not apply
6 NS logNS It does not apply
7 ≈ nbest× ((Q+ q)× n It does not apply

+n logn)× nrep

8 nbest lognbest It does not apply

Total O(n logn) O(n2 logn)

Table 2.1: Complexity of the structure of the two algorithms, ETMA and C&F

The cost Q of computing the squared norms is obviously much bigger than q,
the cost of computing the means only using additions and division. For that reason,
when the sample size n is small, the influence of Q in this calculus is enormous.
Because of this, computing the distances between all the observations in Cuesta-
Albertos and Fraiman’s algorithm is very expensive from the computational point
of view. On the other hand, these squared distances are only computed between
each observation and a reference element, the mean, in the proposed algorithm (and
the same happens with the quicksort function). The new algorithm is also more
efficient, unless the sample size is smaller than the constant NS, since its compu-
tational complexity (O(n logn)) is smaller than the one of the existing algorithm
(O(n2 logn)). Otherwise, the Empirical Trimmed Mean Algorithm is clearly not
faster than the Cuesta-Albertos and Fraiman alternative.

To illustrate this assertion, and support the effectiveness of the ETMA by reach-
ing a more desirable solution, we consider an example.

Example 2.3.1. The considered database, which can be found in the R package
fda, is ‘Canadian average annual weather cycle’.

It collects the daily temperature and precipitation at 35 different locations in
Canada averaged over 1960 to 1994 (see Ramsay and Silverman [162] and Figure 2.1
on the left).

The trimmed mean is not computed for these functions, but for their smoothed
version estimated using the 65-element Fourier basis (see Figure 2.1 on the right),
which is common for functional data.
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Figure 2.1: On the left, average daily temperature and precipitation in 35 different
Canadian locations over 1960 to 1994; on the right, the smoothed functions for the
average daily temperature and precipitation over 1960 to 1994

The 10%, 20% and 30% trimmed means for this smoothed database are now
computed by using the Empirical Trimmed Mean Algorithm 400 times and the
Cuesta-Albertos and Fraiman just once. For each of them, a graph of the smoothed
sample observations and both estimates is displayed in Figure 2.2 for the average
daily temperature and in Figure 2.3 for the average daily precipitation.

Cuesta-Albertos and Fraiman’s estimate always refers to the same optimal sam-
ple element after having compared all the possibilities, whereas the estimate given
by the ETMA is the average of the corresponding fraction of most concentrated
data, reached at different times depending on the starting point.
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Figure 2.2: The smoothed database for the average daily temperature
and the 10% (top left), 20% (top right) and 30% (bottom) trimmed
means computed using the ETMA and the C&F algorithm

Moreover, this can be seen in Tables 2.2 and 2.3 where the computation time,
the mean squared error (MSE) in the trimming region and the number of distances
computed in both cases are gathered.

As it has been just shown, the algorithm in Section 2.2 reaches its solution
faster (in mean) than Cuesta-Albertos and Fraiman’s. This relates to the number of
distances to be computed, which is smaller for the new algorithm even in the worst
case in which the initial seed of the algorithm lies far from the true value of the
trimmed mean.

Furthermore, in this example it turns out that for all random starts the new
algorithm converged to a better solution since its corresponding trimmed mean
squared error is smaller than for Cuesta and Fraiman’s solution (actually, C&F
algorithm does not search for the sample trimmed mean, but for the element in the
sample minimizing the trimmed mean squared error).
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Figure 2.3: The smoothed database for the average daily precipitation
and the 10% (top left), 20% (top right) and 30% (bottom) trimmed mean
computed using the ETMA and the C&F algorithm

Algorithm ETMA C&F

Trimming 10% 20% 30% 10% 20% 30%

Time 1.56 s 2.15 s 2.12 s 8.01 s 7.97 s 8.04 s
MSE 10797 6490 4267 11128 6852 4551

Distances 105 (66.75%) 105 (37.75%) 105 (24.50%) 630 630 630
140 (33.25%) 140 (9.50%) 140 (21.75%)

175 (18.25%) 175 (38.50%)
210 (32.25%) 210 (15.25%)
245 (4.25%)

Table 2.2: Computation time, mean squared error (MSE) and number of distances (in
parentheses, the percentage over the 400 times this number has been obtained) computed
for the ETMA and the C&F algorithms when estimating the 10%, 20%, and 30% trimmed
means for the average daily temperature
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Algorithm ETMA C&F

Trimming 10% 20% 30% 10% 20% 30%

Time 2.33 s 2.29 s 2.65 s 10.09 s 10.01 s 10.04 s
MSE 537 369 280 593 422 342

Distances 105 (31.25%) 105 (28.25%) 105 (31.00%) 630 630 630
140 (28.25%) 140 (40.75%) 140 (18.50%)
175 (18.25%) 175 (28.00%) 175 (18.25%)
210 (40.50%) 210 (3.00%) 175 (30.25%)

245 (2.00%)

Table 2.3: Computation time, mean squared error (MSE) and number of distances (in
parentheses, the percentage over the 400 times this number has been obtained) computed
for the ETMA and the C&F algorithms when estimating the 10%, 20%, and 30% trimmed
means for the average daily precipitation

Similar behaviour is observed for the case of the average daily precipitation when
computing the 10%, 20% and 30% trimmed means (see Figure 2.3 and Table 2.3).

Finally, the last graph for the daily temperature in the Canadian locations shows
that the results are almost the same when some outliers occur in the sample. Fig-
ure 2.4 shows the estimates when the three first coefficients (the most important
ones) of the seven first functions (20% of the sample) have been reduced to half
of its original value. It can be seen that, although some outliers are present, the
estimate does not change much because of its robustness.
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Figure 2.4: The smoothed database for the contaminated average daily
temperature and the 20% trimmed mean computed using the ETMA and
the C&F algorithm
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2.4 Simulation studies about trimmed means
for Hilbert space-valued data

This section develops a simulation study for functional data following the scheme
of this kind of comparisons in the literature (see, for instance, Fraiman and Muniz
[75] and López-Pintado and Romo [125]):

• N = 500 replications in order to compute the mean squared error;

• n = 50, 80 sample size considered, that is to say, number of curves generated;

• q = .05, .1 contamination proportion;

• M = 5, 25 contamination magnitude;

• β = .2 trimming proportion;

• T = 30 number of equidistant points chosen as a partition of [0.1].

The considered models analyze different types of outliers. Since a curve is an
outlier if it is generated in a different way than the other curves in the sample, this
could happen due to many reasons. In Model 1 there is no contamination. Models
2-5 contain magnitude outliers, that is, curves that are really far from the mean
value. Models 6-9 contain shape outliers that are not necessarily far from the mean,
but present a different shape or pattern. Only curves defined on the domain [0, 1] are
considered. More concretely, concerning Models 1-5, the situations are the following:

• Model 1: In this model, the curves, represented by Xi(t) for i = 1, . . . , n, are
generated following the distribution:

Xi(t) = 4t+ ei(t),

where ei(t) is a Gaussian stochastic process with mean 0 and covariance func-
tion γ(s, t) = e−|t−s|.

• Model 2: Symmetric contamination obtained by generating the curves:

Yi(t) = Xi(t) + εiσiM, 1 ≤ i ≤ n

where {εi}ni=1 and {σi}ni=1 are independent sequences of random variables fol-
lowing a Bernoulli distribution B(q) and a discrete uniform on {−1, 1} distri-
butions, respectively.

• Model 3: Asymmetric contamination given by the curves:

Yi(t) = Xi(t) + εiM, 1 ≤ i ≤ n.
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• Model 4: Partial (trajectories) contamination represented by the curves:

Yi(t) =

{
Xi(t) + εiσiM, if t ≥ Ti

Xi(t), if t < Ti

,

where 1 ≤ i ≤ n and the corresponding Ti is a random number generated from
an U(0, 1) distribution.

• Model 5: Peaks contamination introduced by the expression:

Yi(t) =

{
Xi(t) + εiσiM, if Ti ≤ t ≤ Ti + l

Xi(t), if t /∈ [Ti, Ti + l]
,

for 1 ≤ i ≤ n, l = 2/30 and the corresponding Ti is a random number generated
from an U(0, 1− l) distribution.

For the remaining situations (containing shape outliers), a basic model has been
considered, namely,

Xi(t) = g(t) + e1i(t), 1 ≤ i ≤ n,

where the function g(t) is either g(t) = 4t or g(t) = 4t2 and e1i(t) is the Gaussian
process with mean 0 and covariance function γ1(s, t) = e−|t−s|2 .

The contamination is introduced by mixing this basic model with:

Yi(t) = g(t) + e2i(t), 1 ≤ i ≤ n,

where now the Gaussian process e2i(t) still has mean 0, but its covariance function is
γ2(s, t) = k ·e−c|t−s|µ , with nonnegative parameters k, c and µ (for more details about
this family of models, see Wood and Chan [217]). The role of these parameters is to
control the shape of the curves: when increasing µ and k the generated functions are
softer, whereas when increasing c, they become more irregular. The contaminated
models then are

Zi(t) = (1− ε)Xi(t) + εYi(t), 1 ≤ i ≤ n,

where ε follows a Bernoulli distribution B(q). The different choices for the parame-
ters are the following:

• Model 6: k = 1, c = 1, µ = .2 and g(t) = 4t.

• Model 7: k = 1, c = 1, µ = .1 and g(t) = 4t.

• Model 8: k = 1, c = 1, µ = .2 and g(t) = 4t2.

• Model 9: k = 1, c = 1, µ = .1 and g(t) = 4t2.
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For any of the 500 iterations, the integrated squared error has been calculated
in Models 1-5 as follows:

E(j) =
1

T

T∑
k=1

[
ĝn

(
k

T

)
− g

(
k

T

)]2
,

where ĝn represents any of the proposed estimators (mean, trimmed mean, trimmed
mean defined through a depth or trimmed mean computed using the Cuesta-Albertos
and Fraiman’s algorithm).

In Models 6-9, instead of using the Euclidean distance to compute both the
trimmed means and the integrated error, the distance defined by means of the norm
on the Sobolev space W 1,2((0, 1)) is chosen. The reason is that shape outliers are not
properly identified when computing the Euclidean distances because they are quite
close to the mean value. However, the distance on the Sobolev space is defined not
only involving the Euclidean distance between the functions, but also the Euclidean
distance between their corresponding derivatives, so it is more practical for finding
differences due to the shape of the functions.

Finally, the sample depth considered to sort all the curves and choose the deepest
ones is:

D(Xi0(t))n = 1− 1

T

T∑
t=0

∣∣∣∣∣12 − 1

n

n∑
i=1

I(−∞,Xi0
(t)](Xi(t))

∣∣∣∣∣ ,
for any fixed i0 ∈ {1, . . . , n} and I(−∞,Xi0

(t)] denoting the indicator function of the
set (−∞, Xi0(t)].

Therefore, after sorting (from deeper to less deep) the curves, the sample depth
trimmed mean is computed as:

µ̂D
n,β(t) =

∑n−⌊nβ⌋
i=1 X(i)(t)

n− ⌊nβ⌋
.

Obviously, the sample mean is µ̂n(t) =
∑n

i=1Xi(t)/n. The remaining estimators
have previously been introduced.

To compare the behaviour of these estimators, the mean squared error (MSE)
and its standard deviation (s) have been computed:

MSE =
1

N

N∑
j=1

E(j), s =

√√√√ 1

N

N∑
j=1

(E(j)−MSE)2.

Figure 2.5 shows an example of the sample of curves generated in one of the 500

replications considering each contamination model.
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Figure 2.5: An example of the sample of curves generated in each of
the Models 1-9 (starting on the top left corner to the right and down)



78 Chapter 2. Trimmed means for imprecise-valued data

n
q

M
E
st

im
at

or
M

od
el

1
M

od
el

2
M

od
el

3
M

od
el

4
M

od
el

5

50
.0

5
5

M
ea

n
.0

1
9
4
4
3

(.
01

94
70

)
.0

45
08

9
(.

05
84

01
)

.1
00

94
0

(.
11

76
72

)
.0

33
17

8
(.

03
33

96
)

.0
2
0
6
8
6

(.
01

88
55

)
E
T

M
A

.0
41

96
7

(.
04

44
12

)
.0

36
43

1
(.

04
29

72
)

.0
37

84
9

(.
04

12
94

)
.0

38
45

1
(.

04
66

63
)

.0
42

35
1
(.

04
77

67
)

D
T

M
.0

27
28

3
(.

02
86

92
)

.0
2
8
2
2
7

(.
03

09
84

)
.0

2
7
7
4
5

(.
03

19
89

)
.0

3
1
9
5
8

(.
03

36
87

)
.0

28
91

9
(.

02
73

45
)

C
&

F
.2

35
81

4
(0

.2
19

80
1)

.2
80

49
0
(.

28
58

87
)

.2
89

69
1
(.

31
37

62
)

.2
79

87
5
(.

26
63

19
)

.2
73

20
6
(.

27
59

33
)

80
.0

5
5

M
ea

n
.0

1
2
7
3
6

(.
01

40
75

)
.0

28
16

4
(.

03
77

72
)

.0
80

47
1
(.

03
01

94
)

.0
20

01
9
(.

02
57

48
)

.0
1
3
5
1
2

(.
02

92
45

)
E
T

M
A

.0
28

05
9
(.

03
06

84
)

.0
23

72
4
(.

03
00

90
)

.0
19

35
7
(.

03
01

94
)

.0
19

41
2
(.

02
57

48
)

.0
17

22
5
(.

02
92

45
)

D
T

M
.0

16
76

5
(.

01
72

03
)

.0
1
6
7
7
0

(.
01

84
14

)
.0

1
9
3
5
7

(.
02

09
12

)
.0

1
9
4
1
2

(.
01

93
76

)
.0

17
22

5
(.

01
84

45
)

C
&

F
.1

79
29

5
(.

12
03

92
)

.2
07

06
8
(.

18
27

55
)

.1
90

71
4
(.

12
40

06
)

.1
88

38
4
(.

10
95

06
)

.1
96

13
7
(.

19
65

00
)

50
.1

5
M

ea
n

.0
1
9
4
4
3

(.
01

94
70

)
.0

74
80

6
(.

09
35

68
)

.3
16

38
8
(.

26
82

33
)

.0
46

79
6
(.

05
29

95
)

.0
2
2
7
6
2

(.
02

20
55

)
E
T

M
A

.0
41

96
7

(.
04

44
12

)
.0

37
58

8
(.

04
47

66
)

.0
3
1
4
9
9

(.
03

55
69

)
.0

3
4
7
5
1

(.
03

79
54

)
.0

37
52

2
(.

04
08

79
)

D
T

M
.0

27
28

3
(.

02
86

92
)

.0
2
6
7
0
6

(.
02

84
57

)
.0

44
88

5
(.

06
11

08
)

.0
38

81
3
(.

04
05

08
)

.0
30

92
0
(.

03
28

98
)

C
&

F
.2

35
81

4
(0

.2
19

80
1)

.4
04

50
5
(.

42
69

30
)

.3
44

14
6
(.

40
20

58
)

.2
95

27
6
(.

31
63

43
)

.2
84

44
9
(.

31
64

69
)

80
.1

5
M

ea
n

.0
1
2
7
3
6

(.
01

40
75

)
.0

46
14

2
(.

05
88

36
)

.2
88

91
6
(.

21
37

07
)

.0
26

05
8
(.

02
78

37
)

.0
1
4
1
6
7

(.
01

29
59

)
E
T

M
A

.0
28

05
9
(.

03
06

84
)

.0
20

69
3
(.

02
36

29
)

.0
2
1
1
8
3
2

(.
02

33
67

)
.0

23
47

9
(.

02
76

29
)

.0
24

34
5
(.

02
47

38
)

D
T

M
.0

16
76

5
(.

01
72

03
)

.0
1
8
5
7
7

(.
02

17
04

)
.0

34
28

5
(.

04
04

83
)

.0
2
3
0
8
1

(.
02

22
72

)
.0

18
08

1
(.

01
66

79
)

C
&

F
.1

79
29

5
(.

12
03

92
)

.2
67

90
4
(.

31
31

02
)

.2
41

44
7
(.

20
49

03
)

.2
35

75
9
(.

20
04

04
)

.2
42

18
1
(.

32
65

59
)

50
.0

5
25

M
ea

n
.0

1
9
4
4
3

(.
01

94
70

)
.5

98
50

5
(.

87
78

71
)

2.
00

70
5
(2

.1
86

51
)

.3
57

19
9
(.

45
22

84
)

.0
58

92
0
(.

03
70

00
)

E
T

M
A

.0
41

96
7

(.
04

44
12

)
.0

38
32

4
(.

04
53

85
)

.0
39

74
4
(.

04
79

38
)

.0
3
9
5
5
8

(.
04

46
55

)
.0

3
9
1
4
3

(.
04

25
50

)
D

T
M

.0
27

28
3

(.
02

86
92

)
.0

2
8
2
2
4

(.
03

47
22

)
.0

2
8
5
8
1

(.
04

56
68

)
.1

42
17

7
(.

21
66

43
)

.0
73

97
4
(.

05
25

80
)

C
&

F
.2

35
81

4
(0

.2
19

80
1)

.2
93

02
0
(.

32
57

71
)

.3
06

67
8
(.

30
77

32
)

.3
15

21
6
(.

37
33

83
)

.3
16

69
2
(.

36
07

12
)

80
.0

5
25

M
ea

n
.0

1
2
7
3
6

(.
01

40
75

)
.3

80
56

6
(.

55
45

07
)

2.
00

26
53

(1
.8

92
88

7)
.2

14
52

4
(.

25
68

44
)

.0
37

19
2
(.

02
16

57
)

E
T

M
A

.0
28

05
9
(.

03
06

84
)

.0
28

05
9
(.

03
06

84
)

.0
26

69
7
(.

02
92

34
)

.0
2
5
2
0
4

(.
02

69
08

)
.0

2
5
0
3
4

(.
02

88
28

)
D

T
M

.0
16

76
5

(.
01

72
03

)
.0

1
9
3
3
8

(.
02

13
05

)
.0

2
3
8
7
5

(.
05

72
93

)
.0

81
43

1
(.

11
03

93
)

.0
47

30
6
(.

02
93

42
)

C
&

F
.1

79
29

5
(.

12
03

92
)

.2
02

42
4
(.

16
13

79
)

.1
99

86
0
(.

17
42

67
)

.2
00

35
7
(.

15
80

83
)

.1
98

27
5
(.

12
48

42
)

50
.1

25
M

ea
n

.0
1
9
4
4
3

(.
01

94
70

)
1.

43
84

2
(2

.0
91

70
)

7.
67

76
7
(6

.2
07

11
)

.6
50

73
0
(.

79
36

54
)

.1
04

66
3
(.

05
64

80
)

E
T

M
A

.0
41

96
7

(.
04

44
12

)
.0

4
4
6
7
9

(.
10

32
49

)
.0

4
0
3
8
4

(.
10

99
95

)
.0

3
5
0
4
6

(.
03

93
77

)
.0

3
5
9
3
8

(.
04

03
79

)
D

T
M

.0
27

28
3

(.
02

86
92

)
.0

71
07

0
(.

35
99

90
)

.2
79

06
6
(.

90
79

98
)

.2
66

24
6
(.

32
51

32
)

.1
27

60
4
(.

07
21

96
)

C
&

F
.2

35
81

4
(0

.2
19

80
1)

.4
13

35
6
(.

49
10

66
)

.4
44

63
5
(.

63
89

04
)

.3
87

78
7
(.

46
01

57
)

.4
87

70
6
(1

.8
57

52
7)

80
.1

25
M

ea
n

.0
1
2
7
3
6

(.
01

40
75

)
.7

21
36

8
(.

98
50

35
)

7.
13

88
2
(4

.8
19

52
)

.3
93

98
2
(.

48
25

38
)

.0
58

35
5
(.

02
87

07
)

E
T

M
A

.0
28

05
9
(.

03
06

84
)

.0
20

87
5
(.

02
19

87
)

.0
2
3
6
1
6

(.
04

22
21

)
.0

2
2
3
2
3

(.
02

57
96

)
.0

1
9
2
0
7

(.
01

96
72

)
D

T
M

.0
16

76
5

(.
01

72
03

)
.0

1
9
2
1
5

(.
02

22
41

)
.1

77
19

4
(.

76
61

25
)

.1
75

46
1
(.

21
68

69
)

.0
72

07
1
(.

03
61

72
)

C
&

F
.1

79
29

5
(.

12
03

92
)

.2
94

91
2
(.

40
06

97
)

.2
58

05
6
(.

28
04

00
)

.2
83

76
0
(.

35
08

24
)

.2
44

36
3
(.

25
85

18
)

Ta
bl

e
2.

4:
R

es
ul

ts
of

th
e

si
m

ul
at

io
ns

fo
r

fu
nc

ti
on

al
da

ta
to

co
m

pa
re

th
e

be
ha

vi
ou

r
of

th
e

m
ea

n,
th

e
tr

im
m

ed
m

ea
n

(E
T

M
A

),
th

e
de

pt
h

tr
im

m
ed

m
ea

n
(D

T
M

)
an

d
th

e
C

ue
st

a-
A

lb
er

to
s

an
d

Fr
ai

m
an

’s
tr

im
m

ed
m

ea
n

(C
&

F
)

in
ea

ch
of

th
e

M
od

el
s

1-
5



Simulation studies for Hilbert space-valued data 79

n q Estimator Model 6 Model 7 Model 8 Model 9

50 .05 Mean .274843 (.274843) .318066 (.201209) .279586 (.175522) .332575 (.221595)
ETMA .102215 (.088751) .098173 (.087392) .102305 (.089215) .101730 (.090843)
DTM .387662 (.242542) .452014 (.298218) .392610 (.265891) .478837 (.330253)
C&F .680324 (.690054) .691095 (.774417) .749653 (.793939) .748472 (.930509)

80 .05 Mean .177057 (.093181) .202028 (.112033) .170289 (.089113) .197961 (.103885)
ETMA .066588 (.059385) .064461 (.056836) .067025 (.059580) .064443 (.057663)
DTM .249272 (.135467) .289686 (.163318) .238519 (.125843) .285359 (.154928)
C&F .401234 (.373435) .405943 (.427162) .441619 (.532938) .410888 (.415632)

50 .1 Mean .499788 (.254557) .558465 (.295773) .521980 (.272500) .590299 (.312491)
ETMA .098882 (.096812) .099748 (.092386) .101381 (.095071) .100544 (.094835)
DTM .716873 (.379071) .809014 (.443945) .746505 (.400653) .855152 (.460487)
C&F 1.09877 (1.27201) 1.37985 (7.06320) 1.14676 (1.44264) 1.22649 (1.55378)

80 .1 Mean .309428 (.127167) .357100 (.162768) .304456 (.128494) .363893 (.155640)
ETMA .059315 (.051736) .063023 (.057198) .063683 (.060024) .059159 (.053112)
DTM .441946 (.189800) .517605 (.244283) .436498 (.195145) .526328 (.227663)
C&F .685767 (.963506) .594373 (.781261) .674865 (.947538) .579299 (.695001)

Table 2.5: Results of the simulations for functional data to compare the behaviour
of the mean, the trimmed mean (ETMA), the depth trimmed mean (DTM) and the
Cuesta-Albertos and Fraiman’s trimmed mean (C&F) in each of the Models 6-9

The empirical results obtained can be seen in Tables 2.4 and 2.5. The numbers
in parenthesis are the standard errors of the mean squared errors of the estimators
and the bold number is the minimum mean squared error obtained in each situation
and for each of the models.

For instance, independently of the case of study, the best estimator of the pop-
ulation mean is the sample mean in Model 1, what is logical because in that model
there is no contamination at all.

In approximately half of the models with magnitude outliers the best choice
is the trimmed mean based on the depth and in the other half, the trimmed mean
proposed in this article, but one important remark is that in almost all the situations
with more contamination (bigger values of q and M), the estimator chosen is this
last one.

Moreover, the empirical trimmed mean is always the estimator with smallest
mean squared error in all models with only shape outliers.
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2.5 Applications to set- and fuzzy set-valued data

This section aims to particularize the ideas and developments about trimmed means
for Hilbert space-valued data in previous sections to the special cases of set- and
fuzzy set-valued data. On one hand, the particularization will be illustrated by
means of two real-life examples and, on the other hand, simulations are carried out
to compare in such cases the behaviour of the trimmed means in contrast to the
alternative approaches introduced in Chapter 2.

2.5.1 Illustrative examples

This subsection illustrates the computation of the trimmed means for real-life ap-
plications of both fuzzy-valued data and set-valued data.

First of all, the computation of these location measures will be illustrated for a
data set of fuzzy sets.

Example 2.5.1. The experiment called ‘Perceptions’ consists of measuring the sub-
jective human perception about the relative length of different lines. Both the soft-
ware developed and the whole data set (with its complete description) can be found
on the web page http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html.

The experiment was carried out as follows: 9 men and 8 women had to compare
the relative length of a line segment in contrast to the reference line segment showing
the largest length considered. Their answer had to be given in two ways: using
a linguistic descriptor (among ‘Very Small’, ‘Small’, ‘Medium’, ‘Large’ and
‘Very Large’) and using a fuzzy set, as shown in Figure 2.6.
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��������� �	��
���
 ��
�	 �	� �
��� �
��� ����	
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��� ������ ���  �� !�� "�� #�� $�� %�� &��

Figure 2.6: An example of an answer in the experiment ‘Perceptions’

For a more detailed explanation, see Colubi et al. [34] and González-Rodríguez
et al. [90].



Applications to set- and fuzzy set-valued data 81

The first 27 trials of each person correspond to random ordered relative sizes (of
the line segment shown with respect to the reference one) in the fixed grid 3.7%,
15.2%, 26.8%, 38.4%, 50%, 61.5%, 73.1%, 84.7% and 96.3%. In the complete data
set the answers of people who did not reach the 27 trials appear as well. In order
to study the first 27 trials per person, the data set in González-Rodríguez et al. [90]
will be used instead. Indeed, only the three trials referring to the line segment with
length of about 84.7% per person will be considered.

In Figure 2.7 (left), the sample of fuzzy sets which is used in this example can
be seen. The calculated location measures are given in Table 2.6 (their graphical
display can be seen in Figure 2.7 (right)). Both in this example and in Example 2.5.2
(which deals with compact convex set-valued data), the weight parameter θ involved
in the distance has been chosen to be equal to 1/3 and the trimming proportion to
be equal to .2.

Figure 2.7: The sample considered in the experiment ‘Perceptions’ (left) and the graphical
display of the estimates of the sample Aumann-type mean value, the empirical trimmed
mean, the depth trimmed mean and the approximation of the empirical trimmed mean by
Cuesta-Albertos and Fraiman (right)

For the computation of the depth trimmed mean, a partition of the domain
determined by the 0-level of all the sample fuzzy sets had to be considered in order
to express each fuzzy set as a function and apply the functional depth of Fraiman
and Muniz [75].

It can be seen that all the estimates except for the approximation of the empirical
trimmed mean by Cuesta-Albertos and Fraiman (which has to be an element from
the sample) have the same shape. However, if they are seen as estimates of the cen-
tral tendency, the sample Aumann-type mean value is observed to be located more
to the left, influenced by the fuzzy number whose 0-level infimum is smaller (while
the trimmed means, more robust, do not take that fuzzy number into account).
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Estimator inf 0-level inf 1-level sup 1-level sup 0-level

Mean 77.42118 82.10667 88.07588 92.71765

ETMA 78.39098 83.07537 88.82756 93.50585

DTM 78.85927 83.24390 88.36415 92.77488

C&F 78.68 80.94 89.90 94.02

Table 2.6: Estimates of the sample Aumann-type mean value, the empirical
trimmed mean (ETMA), the depth trimmed mean (DTM) and the approximation
of the empirical trimmed mean by Cuesta-Albertos and Fraiman (C&F)

Now, an example of the computation of these location measures for a random
(compact and convex) set is given.

Example 2.5.2. The temporary exhibition ‘Spanish Drawings from the British
Museum: Renaissance to Goya’ was held in the Museo Nacional del Prado (Madrid,
Spain) until 16th June 2013. Jointly organized with The British Museum, it consists
of 71 works and two additional paintings from the collection of the Museo Nacional
del Prado for which the corresponding drawings from the British Museum were
preparatory. For more information, visit the web page:

http://www.museodelprado.es/en/exhibitions/exhibitions/at-the-museum/

el-trazo-espanol-en-el-british-museum-dibujos-del-renacimiento-a-goya/

The exhibit list, detailing the title, author, year and size of each drawing, can
be also found on the web page:

http://bellman.ciencias.uniovi.es/SMIRE/Drawings.html

To organize the distribution of the drawings, it is useful to focus on their dimen-
sions instead of their surface. The empirical trimmed mean and its approximation
by Cuesta-Albertos and Fraiman were computed as well as the Aumann mean. As
the support function of the Aumann mean is the mean of the support functions, it
could be proven that indeed the sample Aumann mean is the rectangle with mean
dimensions an × bn, being ai × bi (i = 1, . . . , n) the dimensions of the i-th drawing.

In Figure 2.8 (left) all the drawings are represented by a centered rectangle
in order to compute the estimates. Note that there is a huge rectangle (Painting
a)) that is a clear outlier. In Figure 2.8 (right), the sample is plotted again after
removing that painting to be able to see the remaining observations more clearly.
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Figure 2.8: On the left, the sample of sets considered in this example; each drawing of
dimensions a × b mm is represented by the centered rectangle [−a/2, a/2] × [−b/2, b/2].
On the right, all the drawings (in grey) except from the outlier (Painting a); in black, the
drawings that belong to the trimming region, used to compute the trimmed mean through
the proposed algorithm

The values for the location measures are as follows:

• The sample Aumann-type mean value is the rectangle with width 323.4 mm
and height 280.9 mm.

• The sample trimmed mean proposed (with trimming proportion .2) is the
rectangle with dimensions 255.7 mm × 202.7 mm.

• The trimmed mean computed using the algorithm by Cuesta-Albertos and
Fraiman (also with trimming proportion .2) is the rectangle with dimensions
255 mm × 215 mm.

All these estimates are plotted in Figure 2.9. As it can be seen, when estimating
the central tendency, the mean is influenced by the outlier (Painting a)), while both
trimmed means trim this outlier and their estimates have smaller dimensions, which
correspond better to the majority of the sample.

In this case the depth trimmed mean does not appear because it is developed
for functional data and no straightforward adaptation to compact and convex sets
has been found. In Example 2.5.1, after taking a partition of the domain where
all the elements of the sample are, the considered fuzzy numbers were expressed as
functions and the depth could be computed. However, this approach is not valid for
the rectangles, which cannot be treated as functions.
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Figure 2.9: The rectangles corresponding to the estimates for the mean (con-
tinuous line), the trimmed mean (discontinuous line) and the Cuesta-Albertos
and Fraiman’s trimmed mean (dotted line)

2.5.2 Simulation-based comparative analysis

In this subsection some simulations with fuzzy number-valued data are shown to
compare the ETMA, DTM and C&F procedures. More specifically, this empirical
study joins the main design of the previous one with functional data in Section 2.4
and the simulation procedure in Section 1.5. The simulations in this subsection
have been generated by dividing the generated sample of n fuzzy sets into a non-
contaminated subsample, of size n(1 − cp), and a contaminated subsample, distin-
guishing CASE 1 and CASE 2 in Section 1.5.

The main change in the simulation procedure lies in Steps 2 and 3. Other changes
affect the sample sizes and number of replications. The simulation steps are:

Step 1. A sample of size n = 100 of trapezoidal fuzzy numbers has been simulated
for each of some different situations by following the scheme in Step 1 of the
first simulations in p. 52.

Step 2. NMC = 10000 replications of Step 1 have been considered for the situa-
tion cp = CD = 0, in order to approximate the population values of the
Aumann-type mean, the trimmed mean, the depth trimmed mean and the
Cuesta-Albertos and Fraiman’s trimmed mean for the non-contaminated
distribution by Monte Carlo. These three last measures have been approxi-
mated for both the considered trimming proportions (0.2 and 0.45).
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That is to say, the sample Aumann-type mean, the ETMA, the DTM and
the C&F estimates have been computed for each of the 10000 samples and,
for each of the four measures, the mean of these 10000 estimates has been
obtained.

Step 3. N = 500 replications of Step 1 have been considered for all the 16 situations
concerning cp and CD. For each situation and each of the 500 samples,
the sample Aumann-type mean, the ETMA, the DTM and the C&F have
been computed as estimates of their corresponding population values for
the non-contaminated distribution. Afterwards, for each considered location
measure, the mean squared distance between the 500 sample estimates and
its population value approximated in Step 2 (i.e., the mean squared error)
is obtained. Finally, the standard deviation of the mean squared error is
computed too.

The values chosen for other parameters are:

• θ = 1/3 in the Dφ
θ distance between fuzzy sets;

• nX0 = 500 number of equidistant points chosen as a partition of the domain
[min{inf Xi0}ni=1,max{supXi0}ni=1] to represent the trapezoidal fuzzy sets as
functions (in order to compute the depth, defined for functional data).

Taking into account that every fuzzy set with support function belonging to H2

can be ‘identified’ with an element of a Hilbert space (its own support function), for
each β ∈ (0, 1) and a fixed probability distribution on the Borel σ algebra on H2,
PX , the corresponding trimmed mean of X is defined as E(sX |APX

), the trimming
region being given by∫

APX

∥sx̃ − E(sX |APX
)∥2H2

dPX(sx̃) = min
A⊂H2

PX (A)≥1−β

∫
A

∥sx̃ − E(sX |A)∥2H2
dPX(sx̃).

Analogously, the sample trimming region is given by

Ê = arg min
E⊂{1,...,n}

#E=h

1

h

∑
i∈E

∥∥∥∥∥sx̃i
− 1

h

∑
j∈E

sx̃j

∥∥∥∥∥
2

H2

= argmin
E

Var(sx̃n|E)

and the sample trimmed mean, 1
h

∑
i∈Ê sx̃i

(where sx̃n = (sx̃1 , . . . , sx̃n) denotes the
sample obtained from X ).

The results appear in Tables 2.7 and 2.8. The minimum mean squared error
reached in each case is in bold letters, so it can be seen that the mean and the depth
trimmed mean are the best estimators of the corresponding population value when
there is no contamination.
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cp CD Mean ETMA (β = .2) Depth TMean (β = .2) C&F (β = .2)

.0 - .020239 (.019538) .030947 (.036265) .019270 (.019659) .155957 (.161301)

.1 0 .071213 (.059865) .033773 (.039581) .032877 (.034691) .167204 (.160890)

.1 1 .107164 (.073137) .031587 (.036203) .035388 (.037037) .194660 (.184163)

.1 5 .413908 (.191479) .030264 (.029436) .068187 (.081826) .195983 (.186874)

.1 10 1.176410 (.481783) .027250 (.028361) .192900 (.289635) .207873 (.243604)

.1 100 86.942010 (33.71212) .031655 (.034465) 16.465730 (25.80862) .246895 (.231829)

.2 0 .199625 (.128763) .056396 (.050108) .065299 (.050222) .233768 (.214643)

.2 1 .345419 (.190534) .059860 (.046930) .089312 (.070942) .263960 (.274717)

.2 5 1.547838 (.623109) .054135 (.043152) .230970 (.253302) .868819 (1.082253)

.2 10 4.620137 (1.608131) .069707 (.049117) .681509 (.957643) 1.685437 (2.416464)

.2 100 328.1507 (111.1436) .070683 (.050285) 67.827430 (105.1396) 1.888415 (2.916228)

cp CD Mean ETMA (β = .45) Depth TMean (β = .45) C&F (β = .45)

.4 0 .740745 (.373957) .105939 (.086270) .093973 (.073935) .215359 (.176504)

.4 1 1.285396 (.615249) .090338 (.076172) .130757 (.142755) .215994 (.201366)

.4 5 6.234710 (2.113790) .081873(.066977) .922707 (1.340607) .340222 (.496529)

.4 10 18.20170 (5.113324) .084563 (.060761) 3.992455 (5.973074) .412731 (.553588)

.4 100 1371.088 (411.6347) .081888 (.059663) 363.3129 (530.8564) .451198 (.605826)

Table 2.7: CASE 1. Results of the simulations for fuzzy data to compare the
behaviour of the mean, the trimmed mean (ETMA), the depth trimmed mean
(Depth TMean) and the Cuesta-Albertos and Fraiman’s trimmed mean (C&F)
with trimming proportions .2 and .45

When the error proportion increases, the best choice is to use the trimmed mean
defined in this section (with either .2 or .45 trimming proportion, depending on the
amount of contamination in the considered sample).

The behaviour of the trimmed means is always more robust than for the Aumann
mean, which has a finite sample breakdown point of only 1/n. The adaption of the
depth trimmed mean is not good enough because of the different 0-levels (support)
of the fuzzy numbers generated, not having a common domain as in the functional
case.

The population trimmed mean was approached by the Monte Carlo method
in order to compute the squared error E(j) = (Dφ

θ (ĝn, g))
2 , where ĝn represents

any of the proposed estimators, as seen before, and g represents the corresponding
population value (see Figure 2.10).

The mean squared error (MSE) and its standard deviation (s) were computed
through the same formulas as in the functional case.
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cp CD Mean ETMA (β = .2) Depth TMean (β = .2) C&F (β = .2)

.0 - .009870 (.011829) .021766 (.030875) .016095 (.019398) .039595 (.056565)

.1 0 .016444 (.022615) .026524 (.034710) .026389 (.036668) .041681 (.052192)

.1 1 .023079 (.024650) .025725 (.030593) .031291 (.038429) .044325 (.057795)

.1 5 .220575 (.106323) .021713 (.025494) .072698 (.114937) .052428 (.135639)

.1 10 .884834 (.372503) .024308 (.029090) .205296 (.307968) .062374 (.177092)

.1 100 83.75032 (32.45057) .022880 (.029948) 16.01512 (25.96815) .059158 (.200482)

.2 0 .018996 (.025317) .025711 (.034392) .029631 (.038858) .049089 (.071175)

.2 1 .053481 (.048911) .032670 (.030657) .062243 (.076196) .055639 (.119129)

.2 5 .833135 (.316060) .025657 (.023731) .210033 (.329815) .631538 (.980040)

.2 10 3.310474 (1.281787) .022801 (.020999) .762788 (1.147577) .959677 (1.194475)

.2 100 332.6713 (118.6947) .023279 (.019954) 63.21118 (100.7086) 1.167254 (1.718109)

cp CD Mean ETMA (β = .45) Depth TMean (β = .45) C&F (β = .45)

.4 0 .030258 (.043187) .052824 (.077102) .097097 (.132565) .077202 (.112341)

.4 1 .158696 (.112643) .091076 (.083862) .204219 (.263046) .088566 (.164482)

.4 5 3.283897 (1.121385) .066523 (.045807) 1.295878 (2.255459) .120824 (.289803)

.4 10 13.16870 (4.255767) .067270 (.046376) 5.044778 (8.545120) .159640 (.423301)

.4 100 1309.785 (443.1194) .068764 (.045543) 401.3903 (715.6379) .210200 (.577308)

Table 2.8: CASE 2. Results of the simulations for fuzzy data to compare the behaviour of
the mean, the trimmed mean (ETMA), the depth trimmed mean (Depth TMean) and the
Cuesta-Albertos and Fraiman’s trimmed mean (C&F) with trimming proportions .2 and .45

2.6 Concluding remarks of this chapter

This chapter has been devoted to introduce a new algorithm to compute the sample
trimmed mean in general Hilbert spaces. Its complexity and efficiency have been
compared with the Cuesta-Albertos and Fraiman algorithm, although one should be
aware that this last algorithm only attempts to approximate (not to compute) the
empirical trimmed mean. Furthermore, the consistency has been established and
the finite sample breakdown point of trimmed means has been derived to quantify
its robustness.

The main contribution in the Chapter refers to

• the empirical studies focused on functional data, so fundamental in contem-
porary research, and on fuzzy (set-valued) data;

• since not only the proposed trimmed mean is applicable to those spaces, but
also other trimmed means defined in different ways (through depths or other
algorithms) and other location values, the simulation studies have considered
some representative possibilities;
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Figure 2.10: CASE 1: Population values of the mean and its Monte Carlo estimates for
the trimmed mean, the depth trimmed mean and Cuesta-Albertos and Fraiman (C&F)
trimmed mean when the trimming proportion is .2 (left above) and .45 (left below).
CASE 2: Population values of the mean and its Monte Carlo estimates for the trimmed
mean, the depth trimmed mean and Cuesta-Albertos and Fraiman (C&F) trimmed mean
when the trimming proportion is .2 (right above) and .45 (right below)

• the robustness of the different estimators has been shown with the simulation
studies, confirming the good behaviour of the new trimmed mean;

• the comparison has also been carried out for real-life examples involving fuzzy
set-valued data;

• in the general application to set- and fuzzy set values of high dimension, the
trimmed mean becomes quite useful.

The ideas and results in this chapter have been gathered in a submitted manuscript
(González-Rodríguez et al. [92]) and two communications to conferences (Sinova et
al. [177, 178]).



Chapter 3

Location M-estimates from
imprecise-valued data

Another approach to estimating location that currently has considerable practical
value consists of what are called M-estimators. M-estimators were introduced in
estimating location from real-valued data by Huber [106] with the aim of limiting
the influence of outliers in methods like the least squares one. For this purpose,
the key idea consisted of replacing the square of the ‘errors’ with a (usually less
rapidly increasing) loss function of the data and the parameter estimate. In this
respect, M-estimators were presented as intermediaries between the sample mean
and median.

In this chapter we are going to extend the notion of M-estimators to deal with
imprecise-valued data. Since there exist some ideas and results in the literature
which can be easily adapted to deal with Hilbert space-valued data, this adaptation
is to be first carried out. Later, sufficient conditions of the loss function guarantee-
ing that the particularization leads to well-defined estimates are to be established.
Nevertheless, some interesting and natural choices for the loss functions do not fulfill
such conditions, so some ad hoc developments are to be considered in case of fuzzy
number- and interval-valued data.

Following Huber ideas [106, 108], a location M-estimate of a Hilbert space-valued
random element is formalized as follows: if {h1, . . . , hn} is a sample of independent
values from a random element X taking on values on the Hilbert space H, an estimate
Tn defined by the minimization problem

n∑
i=1

ρ(∥ hi − Tn ∥H) = min
g∈H

n∑
i=1

ρ(∥ hi − g ∥H),

where ρ is an arbitrary real-valued function (which will be referred to hereinafter as
the loss function) is said to be a location M-estimate.

89
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In Section 3.1 location M-estimates of a Hilbert-valued random element will be
studied, and their expression will be discussed under some conditions over the loss
function. Simulations for the functional-valued case are carried out in Section 3.1.5.
In Section 3.2 the particularization of the M-estimates in Section 3.1 to the set- and
fuzzy set-valued cases is examined.

In Sections 3.3, 3.4 and 3.5, solutions to some special choices of the loss function
that are not covered by the preceding conditions will be achieved in the special case
of random fuzzy numbers and random intervals through the use of ad hoc techniques.
More concretely, the minimization problem above are to be solved

• when ρ is the absolute value function and two different norms associated with
L1 metrics on Fc(R) are considered, and

• for random intervals when ρ is the square root of the absolute value and an
L2 metric on Fc(R) is considered.

Given (x̃1, . . . , x̃n) a sample of independent values from a random fuzzy num-
ber X , Section 3.3 deals with the minimization problem (see notations in Proposi-
tion 1.3.7, p. 37)

n∑
i=1

∥ιx̃i
− ιT̃n

∥φ1 = min
Ũ∈Fc(R)

n∑
i=1

∥ιx̃i
− ιŨ∥

φ
1 = min

Ũ∈Fc(R)

n∑
i=1

ρ1(x̃i, Ũ),

whereas Section 3.4 deals with the minimization problem (see notations in Proposi-
tion 1.3.8, p. 38)

n∑
i=1

∥υφ
x̃i
− υφ

T̃n
∥φ⋆θ = min

Ũ∈Fc(R)

n∑
i=1

∥υφ
x̃i
− υφ

Ũ
∥φ⋆θ = min

Ũ∈Fc(R)

n∑
i=1

Dφ
θ (x̃i, Ũ).

Given (x1, . . . , xn) a sample of independent values from a random interval X, Sec-
tion 3.5 concerns the minimization problem (notations in Proposition 1.3.1, p. 24)

n∑
i=1

√
∥ηxi

− ηTn
∥θ = min

K∈Kc(R)

n∑
i=1

√
∥ηxi

− ηK∥θ = min
K∈Kc(R)

n∑
i=1

dθ(xi, K).

Section 3.6 is devoted to illustrate the main ideas in the chapter by means of
some real-life examples. The chapter ends with a summary of the novelties and the
related publications derived from it in Section 3.7.

3.1 Location M-estimates
for Hilbert space-valued random elements

In searching for a robust nonparametric density estimator, Kim and Scott [114] (see
also Kim [112], and Kim and Scott [113]) have combined a traditional kernel density
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estimator with ideas from classical M-estimation. They have interpreted the kernel
density estimator based on a radial, positive semi-definite kernel as a sample mean
in the associated reproducing kernel Hilbert space (see, for instance, Steinwart and
Christmann [190] for details about). To lower the sensitivity of the sample mean to
outliers, Kim and Scott suggest to estimate it robustly via M-estimates yielding a
robust kernel density estimator.

Despite the fact that Kim and Scott ideas have been developed for reproducing
kernel Hilbert spaces, they have also generalized the results to other Hilbert spaces,
always within the setting of kernel density estimation. Therefore, and although the
adaptation of Kim and Scott’s results and corresponding proofs to Hilbert space-
valued random elements is straightforward, it is to be detailed now in the context
of M-estimates from Hilbert space-valued data.

Then, in this section we will present the adaptation of the concepts and results
by Kim and Scott for general Hilbert-valued random elements.

3.1.1 Basic concepts for location M-estimates
of Hilbert space-valued random elements

The population and sample M-estimates of location for Hilbert space-valued random
elements are defined as follows:

Definition 3.1.1. Let H be a Hilbert space with associated norm ∥ · ∥H, (Ω,A, P )

be a probability space, X : Ω → H be an associated Hilbert-valued random element
and ρ be an arbitrary loss function. The population M-estimate of location is
the element gMP ∈ H minimizing

JP (g) =

∫
Ω

ρ(∥X(ω)− g∥H) dP (ω),

i.e.,
gMP = argmin

g∈H
E[ρ(∥X(ω)− g∥H)].

Definition 3.1.2. Let H be a Hilbert space with associated norm ∥ · ∥H, (Ω,A, P )

be a probability space, X : Ω → H be an associated Hilbert-valued random element,
(X1, . . . , Xn) be a simple random sample from X and ρ be an arbitrary loss function.
The sample M-estimate of location is the Hilbert-valued statistic ĝM [X]n such
that for each realization from the simple random sample, hn = (h1, . . . , hn), the
Hilbert value(s) ĝM [hn] is (are) the solution(s) of the following optimization problem:

min
g∈H

J(g) = min
g∈H

1

n

n∑
i=1

ρ(∥hi − g∥H).
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3.1.2 Representer theorem for the sample location
M-estimates of Hilbert space-valued random elements

An interesting contribution of Kim and Scott’s studies lies in their analysis of the
conditions to ensure the existence of sample M-estimates of location as well as the
conditions to express them as weighted linear combinations of the sample elements.

First, necessary conditions for ĝM [hn] to be a minimizer of J in Definition 3.1.2
will be found. In this case, as the function J is defined over a Hilbert space, the
necessary conditions are formulated by using the Gâteaux differential. Recall that
given a vector space (in particular, the Hilbert space H) and a function J : H → R,
the Gâteaux differential of J at g ∈ H with incremental h ∈ H is defined as

δJ(g;h) = lim
ς→0

J(g + ςh)− J(g)

ς

= lim
ς→0

1

n

n∑
i=1

ρ(∥hi − (g + ςh)∥H)−
1

n

n∑
i=1

ρ(∥hi − g∥H)

ς

= lim
ς→0

1

n ς

n∑
i=1

[ρ(∥hi − (g + ςh)∥H)− ρ(∥hi − g∥H)] .

In case δJ(ĝM [hn];h) is defined for all h ∈ H, a necessary condition for ĝM [hn] to
be a minimum of J is that δJ(ĝM [hn];h) = 0 for all h ∈ H (see Luenberger [128]).
The following lemma stems from such a condition:

Lemma 3.1.1. Let ϕ(x) = ρ′(x)/x and suppose the assumptions below are satisfied:

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,

• ϕ(0) , limx→0 ϕ(x) exists and it is finite.

Then, the Gâteaux differential of J at g ∈ H is δJ(g;h) = −⟨V (g), h⟩H, where

V : H → H
g 7→ V (g) =

1

n

n∑
i=1

ϕ(∥hi − g∥H) · (hi − g)

and a necessary condition for ĝM [hn] to be a minimizer of J is V (ĝM [hn]) = 0.

Proof. To calculate the Gâteaux differential of J , two cases can be distinguished.
Thus,

• If hi − (ĝM [hn] + ςh) ̸= 0, then

∂

∂ς
ρ(∥hi − (ĝM [hn] + ςh)∥H)
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= ρ′(∥hi − (ĝM [hn] + ςh)∥H) ·
∂

∂ς
∥hi − (ĝM [hn] + ςh)∥H

= ρ′(∥hi − (ĝM [hn] + ςh)∥H) ·
∂

∂ς

√
∥hi − (ĝM [hn] + ςh)∥2H

= ρ′(∥hi − (ĝM [hn] + ςh)∥H) ·

∂

∂ς
∥hi − (ĝM [hn] + ςh)∥2H

2

√
∥hi − (ĝM [hn] + ςh)∥2H

=
ρ′(∥hi − (ĝM [hn] + ςh)∥H)
2∥hi − (ĝM [hn] + ςh)∥H

· ∂
∂ς

(
∥hi − ĝM [hn]∥2H + ς2∥h∥2H − 2⟨hi − ĝM [hn], ςh⟩H

)
=

ρ′(∥hi − (ĝM [hn] + ςh)∥H)
2∥hi − (ĝM [hn] + ςh)∥H

·
(
2ς∥h∥2H − 2⟨hi − ĝM [hn], h⟩H

)

=
ρ′(∥hi − (ĝM [hn] + ςh)∥H)
∥hi − (ĝM [hn] + ςh)∥H

·
(
ς∥h∥2H − ⟨hi − ĝM [hn], h⟩H

)
= ϕ(∥hi − (ĝM [hn] + ςh)∥H) ·

(
−⟨hi − (ĝM [hn] + ςh), h⟩H

)
.

• Otherwise (i.e., if hi − (ĝM [hn] + ςh) = 0),

∂

∂ς
ρ(∥hi − (ĝM [hn] + ςh)∥H)

= lim
κ→0

ρ(∥hi − (ĝM [hn] + ςh+ κh)∥H)− ρ(∥hi − (ĝM [hn] + ςh)∥H)
κ

.

Since hi − (ĝM [hn] + ςh) = 0, then

∂

∂ς
ρ(∥hi − (ĝM [hn] + ςh)∥H) = lim

κ→0

ρ(∥κh∥H)− ρ(0)

κ

= lim
κ→0

ρ(κ∥h∥H)
κ

=


lim
κ→0

ρ(0)

κ
if h = 0

lim
κ→0

ρ(κ∥h∥H)
κ∥h∥H

∥h∥H otherwise.

As ρ(0) = 0 and limx→0 ρ(x)/x = 0, for any of the two last situations we have
that the limit vanishes, and because ϕ(0) is well-defined under the assumptions
in the lemma

∂

∂ς
ρ(∥hi − (ĝM [hn] + ςh)∥H) = 0

= ϕ(∥hi − (ĝM [hn] + ςh)∥H)
(
−⟨hi − (ĝM [hn] + ςh), h⟩H

)
.
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Therefore, for any ĝM [hn], h ∈ H and hi ∈ H:

∂

∂ς
ρ(∥hi−(ĝM [hn]+ςh)∥H) = ϕ(∥hi−(ĝM [hn]+ςh)∥H)

(
−⟨hi − (ĝM [hn] + ςh), h⟩H

)
,

whence

δJ(ĝM [hn];h) = lim
κ→0

J(ĝM [hn] + κh)− J(ĝM [hn])

κ

= lim
κ→0

J(ĝM [hn] + (ς + κ)h)− J(ĝM [hn] + ςh)

κ

∣∣∣∣∣
ς=0

=
∂

∂ς
J(ĝM [hn] + ςh)

∣∣∣
ς=0

=
∂

∂ς

(
1

n

n∑
i=1

ρ(∥hi − (ĝM [hn] + ςh)∥H)

)∣∣∣∣∣
ς=0

=
1

n

n∑
i=1

∂

∂ς
ρ(∥hi − (ĝM [hn] + ςh)∥H)

∣∣∣
ς=0

=
1

n

n∑
i=1

ϕ(∥hi − (ĝM [hn] + ςh)∥H) · (−⟨hi − (ĝM [hn] + ςh), h⟩H)
∣∣∣
ς=0

= − 1

n

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H) · ⟨hi − ĝM [hn], h⟩H

= −⟨ 1
n

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H) · (hi − ĝM [hn]), h⟩H

= −⟨V (ĝM [hn]), h⟩H.

Since a necessary condition for ĝM [hn] to be a minimizer of J is that δJ(ĝM [hn];h)

= 0 for all h ∈ H, the equivalent expression we have just found, allows us to conclude
that a necessary condition to minimize J can be rewritten as V (ĝM [hn]) = 0, i.e.,

1

n

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H) · (hi − ĝM [hn]) = 0.

Lemma 3.1.1 is now considered to establish the representer theorem that ex-
presses the sample location M-estimate as a convex linear combination of the sample
components, h1, . . . , hn. Thus,

Theorem 3.1.2. Under the assumptions

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,

• ϕ(0) exists and it is finite, and

•
∑n

i=1 ϕ(∥hi − ĝM [hn]∥H) > 0,
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the sample M-estimate of location exists and it can be expressed as

ĝM [hn] =
n∑

i=1

wi · hi,

where wi ≥ 0 and
∑n

i=1 wi = 1. Furthermore, wi ∝ ϕ(∥hi − ĝM [hn]∥H).

Proof. By using Lemma 3.1.1, the considered assumptions guarantee that

1

n

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H) · (hi − ĝM [hn]) = 0,

and solving this estimation equation for ĝM [hn] one gets that

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H) · hi =
n∑

i=1

ϕ(∥hi − ĝM [hn]∥H) · ĝM [hn].

As ĝM [hn] does not depend on i,

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H) · hi = ĝM [hn]
n∑

i=1

ϕ(∥hi − ĝM [hn]∥H).

Since
∑n

i=1 ϕ(∥hi − ĝM [hn]∥H) > 0, then

ĝM [hn] =

∑n
i=1 ϕ(∥hi − ĝM [hn]∥H) · hi∑n

j=1 ϕ(∥hj − ĝM [hn]∥H)
=

n∑
i=1

ϕ(∥hi − ĝM [hn]∥H)∑n
j=1 ϕ(∥hj − ĝM [hn]∥H)

· hi.

By denoting wi = ϕ(∥hi − ĝM [hn]∥H)/
∑n

j=1 ϕ(∥hj − ĝM [hn]∥H), one can express the

M-estimate as ĝM [hn] =
∑n

i=1wi · hi and

n∑
i=1

wi =
n∑

i=1

[
ϕ(∥hi − ĝM [hn]∥H)/

n∑
j=1

ϕ(∥hj − ĝM [hn]∥H)

]
= 1,

wi = ϕ(∥hi − ĝM [hn]∥H)/
n∑

j=1

ϕ(∥hj − ĝM [hn]∥H) ≥ 0

because ϕ(0) = 0 and ϕ(x) = ρ′(x)/x ≥ 0 if x > 0 due to ρ having been assumed to
be non-decreasing.

The necessary condition for ĝM [hn] =
∑n

i=1wi ·hi to be the minimizer of J proved
in Theorem 3.1.2 is also sufficient (which guarantees then existence and uniqueness)
by adding another assumption on J , as it can be seen in the following result:
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Theorem 3.1.3. Under the assumptions

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,

• ϕ(0) exists and it is finite, and

• J is strictly convex,

the following conditions

i) ĝM [hn] =
∑n

i=1 wi · hi,

ii) wi ∝ ϕ(∥hi − ĝM [hn]∥H),

iii)
∑n

i=1wi = 1

are sufficient conditions for ĝM [hn] to minimize J(g) = 1
n

∑n
i=1 ρ(∥hi − g∥H).

Proof. If J is strictly convex, the global minimum should be unique. Furthermore,
ĝM [hn] =

∑n
i=1 wi · hi with wi ∝ ϕ(∥hi − ĝM [hn]∥H) and

∑n
i=1wi = 1 yields a

minimum because V (ĝM [hn]) = 0 whence (see Lemma 3.1.1) δJ(ĝM [hn];h) = 0 for
all h ∈ H.

Finally, some sufficient conditions for the function J to be strictly convex are
given.

Proposition 3.1.4. The function J is strictly convex provided either of the following
conditions is fulfilled:

i) ρ is strictly convex and non-decreasing.

ii) ρ is convex, strictly increasing, n ≥ 3 and A = (⟨hi, hj⟩H)ni,j=1 is positive
definite.

Proof. Indeed, whatever γ ∈ (0, 1) and g, h ∈ H with g ̸= h may be

J(γg + (1− γ)h) =
1

n

n∑
i=1

ρ(∥hi − γg − (1− γ)h∥H)

=
1

n

n∑
i=1

ρ(∥γ(hi − g) + (1− γ)(hi − h)∥H).

The triangular inequality for ∥ · ∥H along with the fact that ρ is non-decreasing
ensures that

J(γg + (1− γ)h) ≤ 1

n

n∑
i=1

ρ(λ∥hi − g∥H + (1− λ)∥hi − h∥H).

The last inequality is strict under condition i), since the strict convexity of ρ

implies that
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1

n

n∑
i=1

ρ(λ∥hi − g∥H + (1− λ)∥hi − h∥H)

<
1

n

n∑
i=1

λρ(∥hi − g∥H) + (1− λ)ρ(∥hi − h∥H) = λJ(g) + (1− λ)J(h).

To prove this strict inequality under condition ii), suppose by reductio ad absur-
dum that this inequality holds with equality. Since ρ is strictly increasing, this can
happen only if

∥λ(hi− g)+ (1−λ)(hi−h)∥H = λ∥hi− g∥H+(1−λ)∥hi−h∥H for all i ∈ {1, . . . , n}.

Equivalently, it can only happen if hi − g and hi − h are linearly dependent for all
i ∈ {1, . . . , n}.

However, from n ≥ 3 and due to the positive definiteness of A, there exist
three distinct hi’s (let’s denote them by z1, z2 and z3) with positive definite matrix
A′ = (⟨zi, zj⟩H)3i,j=1. Should this be the case, one can prove that hi − g and hi − h

are linearly independent for some i ∈ {1, 2, 3}, so the inequality is strict. First, we
have that

• Let z1, . . . , zm be distinct elements in H. If A = (⟨zi, zj⟩H)mi,j=1 is positive
definite, then z1, . . . , zm are linearly independent.

Furthermore, we can conclude that

• If H denotes a Hilbert space, z1, z2, z3 are distinct elements in H and the matrix
A = (⟨zi, zj⟩H)3i,j=1 is positive definite, then zi − g and zi − h are linearly
independent for some i ∈ {1, 2, 3} whatever g, h ∈ H with g ̸= h may be.

Indeed, by reductio ad absurdum assume that zi − g and zi − h are linearly
dependent for all i ∈ {1, 2, 3}. Then, there exists (ςi, κi) ̸= (0, 0) for all
i ∈ {1, 2, 3} such that

ς1(z1−g)+κ1(z1−h) = 0, ς2(z2−g)+κ2(z2−h) = 0, ς3(z3−g)+κ3(z3−h) = 0.

Since g ̸= h, then ςi + κi ̸= 0 for all i ∈ {1, 2, 3}, and two cases are to be
discussed, namely,

– Case ς2 = 0: In such a situation, κ2(z2−h) = 0, so h = z2 . Furthermore,
ς1 ̸= 0 (otherwise, κ1(z1−h) = 0 and h = z1, but z1 ̸= z2) and analogously
ς3 ̸= 0. As a consequence, ς1(z1 − g) + κ1(z1 − h) = 0 and ς3(z3 − g)

+ κ3(z3 − h) = 0 assure that
κ1

ς1
(z1 − z2) + z1 = g,

κ3

ς3
(z3 − z2) + z3 = g,
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and hence

g =
ς3 + κ3

ς3
z1 −

κ3

ς3
z2, g =

ς1 + κ1

ς1
z1 −

κ1

ς1
z2

or, equivalently,

ς1 + κ1

ς1
z1 +

(
κ3

ς3
− κ1

ς1

)
z2 −

ς3 + κ3

ς3
z3 = 0

with at least one of the coefficients being non-zero, what leads to a contra-
diction because z1, z2 and z3 are linearly independent under the positive
definiteness of A.

– Case ς2 ̸= 0: In this situation, ς2 (ς1(z1 − g) + κ1(z1 − h)) = 0 and
ς1 (ς2(z2 − g) + κ2(z2 − h)) = 0, whence

(ς1κ2 − ς2κ1)h = −ς2(ς1 + κ1)z1 + ς1(ς2 + κ2)z2.

Note that ς1κ2 − ς2κ1 ̸= 0 (otherwise, −ς2(ς1 + κ1)z1 + ς1(ς2 + κ2)z2 = 0

and, because of z1 and z2 being linearly independent, ς2(ς1 + κ1) = 0 and
hence ς2 = 0 which is not the case).

Therefore, h can be expressed as h = γ1z1 + γ2z2, with

γ1 =
−ς2(ς1 + κ1)

ς1κ2 − ς2κ1

, γ2 =
ς1(ς2 + κ2)

ς1κ2 − ς2κ1

.

Similarly, one can argue that h can be expressed as h = γ3z2+ γ4z3, with

γ3 =
−ς3(ς2 + κ2)

ς2κ3 − ς3κ2

, γ4 =
ς2(ς3 + κ3)

ς2κ3 − ς3κ2

.

Consequently, γ1z1 + γ2z2 = γ3z2 + γ4z3, so γ1z1 + (γ2 − γ3)z2 − γ4z3 = 0.
The linear independence of z1, z2 and z3 entails that γ1 = 0, γ2 = γ3 and
γ4 = 0, but γ1 = 0 implies that ς2 = 0 (since ς1 + κ1 ̸= 0), which is not
the case.

Then, we have that

J(λg + (1− λ)h) <
1

n

n∑
i=1

ρ(λ∥hi − g∥H + (1− λ)∥hi − h∥H),

and because of the convexity of ρ we have that

1

n

n∑
i=1

ρ(λ∥hi − g∥H + (1− λ)∥hi − h∥H)

≤ 1

n

n∑
i=1

λρ(∥hi − g∥H) + (1− λ)ρ(∥hi − h∥H) = λJ(g) + (1− λ)J(h).
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Remark 3.1.1. The importance of Proposition 3.1.4 is that J can be strictly convex
even for loss functions like the well-known Huber loss [108],

ρa(x) =


x2/2 if |x| ≤ a

a(|x| − a/2) otherwise,

(with a > 0 the so-called tuning parameter) which is convex, but not strictly convex.
Huber’s loss mean a hybrid approach between squared and absolute error losses, so
that it corresponds to a parabola in the vicinity of 0 and increases linearly at a given
level a so that one can put appropriate emphasis on large and small errors.

Remark 3.1.2. It should be pointed out that, in the context of M -estimates, the
fulfillment of the sufficient conditions for ρ in this section should be simply checked
on the interval [0,∞), since ρ is to be applied on the considered norm.

3.1.3 An algorithm to compute the sample location
M-estimates of Hilbert space-valued random elements

In Kim and Scott [114] an iterative algorithm is proposed for the computation
of the sample location M-estimate in the considered setting, since the problem
argmin

g∈H

∑n
i=1 ρ(∥hi − g∥H) does not have an explicit solution in general. The al-

gorithm in this subsection, which is an extension of the iteratively re-weighted least
squares algorithm used in classical M-estimation (see Huber [106]), will be adapted
to cover the M-estimation in general Hilbert spaces.

Step 1. Take the initial weights w(0)
i ∈ R, for i ∈ {1, . . . , n}, such that w(0)

i ≥ 0 and∑n
i=1w

(0)
i = 1. Fix a tolerance ε.

Step 2. Generate a sequence {gM(k)}k∈N by iterating on the following procedure:

gM(k) =
n∑

i=1

w
(k−1)
i · hi, w

(k)
i =

ϕ(∥hi − gM(k)∥H)∑n
j=1 ϕ(∥hj − gM(k)∥H)

.

Step 3. Terminate the algorithm when

|J(gM(k+1))− J(gM(k))|
J(gM(k))

< ε.

This procedure can be interpreted as looking for a fixed point of the function

f((w1, . . . , wn)) =
ϕ(∥hi −

∑n
i=1wi · hi∥H)∑n

j=1 ϕ(∥hj −
∑n

i=1wi · hi∥H)
.
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For the computation of ∥hj − gM(k)∥H take into account that

∥hj − gM(k)∥2H = ⟨hj − gM(k), hj − gM(k)⟩H = ⟨hj, hj⟩H − 2⟨hj, g
M
(k)⟩H + ⟨gM(k), gM(k)⟩H

and, as gM(k) =
∑n

i=1w
(k−1)
i · hi,

• ⟨hj, g
M
(k)⟩H =

∑n
i=1w

(k−1)
i ⟨hj, hi⟩H

• ⟨gM(k), gM(k)⟩H =
∑n

i=1

∑n
l=1w

(k−1)
i w

(k−1)
l ⟨hi, hl⟩H,

and hence

∥hj − gM(k)∥2H = ⟨hj, hj⟩H − 2
n∑

i=1

w
(k−1)
i ⟨hj, hi⟩H +

n∑
i=1

n∑
l=1

w
(k−1)
i w

(k−1)
l ⟨hi, hl⟩H.

Note that the computational complexity is O(n2) per iteration.

The convergence of the algorithm in terms of {J(gM(k))}∞k=1 and {gM(k)}∞k=1 is now
to be characterized. Thus,

Theorem 3.1.5. Under the assumptions:

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,

• ϕ(0) exists and it is finite,

• ρ, ρ′ and ϕ are continuous,

• ϕ is non-increasing,

the sequence {J(gM(k))}∞k=1 monotonically decreases and converges. Also, the set S

= {g ∈ H : V (g) = 0} is nonempty and

∥gM(k) − S∥H , inf
g∈S

∥gM(k) − g∥H −→
k→∞

0,

where, as it has already been said, {gM(k)}∞k=1 denotes the sequence produced by the
algorithm.

Proof. First, the monotone decreasing property of {J(gM(k))}∞k=1 is to be proved.
Given r ∈ R, define the function

u(x; r) = ρ(r)− 1

2
rρ′(r) +

1

2
ϕ(r)x2.

Since ϕ is assumed to be non-increasing, then u is a surrogate function of ρ (i.e.,
it is a function that mimics most of the properties of ρ, but it is much simpler
either analytically or computationally). In Huber [108] (pp. 184–186), the following
properties are proved:
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− u(r; r) = ρ(r);

− u(x; r) ≥ ρ(x) for all x.

The first property is trivial. To prove the second one, consider the difference

z(x) = u(x; r)− ρ(x) = ρ(r)− 1

2
rρ′(x) +

1

2
ϕ(r)x2 − ρ(x).

It satisfies
z(r) = z(−r) = 0, z′(r) = z′(−r) = 0,

since z′(x) = ρ′(r) ·x/r−ρ′(x) and ρ′(−r) = −ρ′(r). Moreover, ϕ(x) = ρ′(x)/x

is supposed to be decreasing for x > 0, so that

z′(x) =


ρ′(r)
r

x− ρ′(x) ≤ ρ′(x)
x

x− ρ′(x) = 0 if 0 < x ≤ r

ρ′(r)
r

x− ρ′(x) ≥ ρ′(x)
x

x− ρ′(x) = 0 if x ≥ r.

Hence, r is a minimum and z(x) ≥ z(r) = 0 for x ≥ 0 (and, because of the
symmetry, z(x) ≥ 0 also for x ≤ 0). Then, u(x; r) ≥ ρ(x) for all x.

Now, define

Q(g; gM(k)) =
1

n

n∑
i=1

u(∥hi − g∥H, ∥hi − gM(k)∥H).

Since ρ′ and ϕ are assumed to be continuous, then Q(·; ·) is continuous in both
arguments, that is,

− Q(x; ·) is continuous because ρ, ρ′, ϕ and ∥ · ∥H are continuous and Q(x; ·)
corresponds to the sum, product and composition of continuous functions;

− Q(·; r) is obviously continuous because of being a quadratic form.

Then, by using that u(r; r) = ρ(r),

Q(gM(k); g
M
(k)) =

1

n

n∑
i=1

u(∥hi − gM(k)∥H, ∥hi − gM(k)∥H)

=
1

n

n∑
i=1

ρ(∥hi − gM(k)∥H) = J(gM(k)). (3.1)

By using that u(x; r) ≥ ρ(x), for all g ∈ H

Q(g; gM(k)) =
1

n

n∑
i=1

u(∥hi − g∥H, ∥hi − gM(k)∥H)

≥ 1

n

n∑
i=1

ρ(∥hi − g∥H) = J(g). (3.2)
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The next iterate gM(k+1) is the minimizer of Q(g; gM(k)), since

gM(k+1) =
n∑

i=1

w
(k)
i hi =

n∑
i=1

ϕ(∥hi − gM(k)∥H)∑n
j=1 ϕ(∥hj − gM(k)∥H)

· hi

= argmin
g∈H

n∑
i=1

ϕ(∥hi − gM(k)∥H) · ∥hi − g∥2H.

The last equality holds because of the weighted mean minimizing the weighted sum
of squared norms

∑n
i=1 ϕ(∥hi − gM(k)∥H) · ∥hi − g∥2H. Therefore,

gM(k+1) = argmin
g∈H

n∑
i=1

ρ(∥hi − gM(k)∥H)

−1

2
∥hi − gM(k)∥Hρ′(∥hi − gM(k)∥H) +

1

2
ϕ(∥hi − gM(k)∥H)

= argmin
g∈H

1

n

n∑
i=1

u(∥hi − g∥H, ∥hi − gM(k)∥H) = argmin
g∈H

Q(g; gM(k)),

whence
gM(k+1) = argmin

g∈H
Q(g; gM(k)), (3.3)

i.e., Q(gM(k+1); g
M
(k)) ≤ Q(g; gM(k)) for all g ∈ H. So,

J(gM(k)) = Q(gM(k); g
M
(k)) ≥ Q(gM(k+1); g

M
(k+1)) ≥ J(gM(k+1)),

by sequentially applying Equations 3.1, 3.3 and 3.2.
Next, it is to be proved that every limit point m∗ of the sequence {gM(k)}∞k=1

belongs to S = {g ∈ H : V (g) = 0}. For this purpose, it is first to be checked that

• Given h1, . . . , hn elements of H, let Gn ⊂ H be defined as Gn = {g ∈ H :

g =
∑n

i=1wihi, wi ≥ 0,
∑n

i=1wi = 1}. The set Gn is compact.

It is enough to notice that Gn = W (A), where A = {(w1, . . . , wn) ∈ Rn :

wi ≥ 0,
∑n

i=1wi = 1} is compact and

W : A −→ H
(w1, . . . , wn) 7−→ W ((w1, . . . , wn)) =

∑n
i=1 wihi

is continuous.

Theorem 3.1.2 ensures that gM(k) =
∑n

i=1w
(k−1)
i hi with w

(k−1)
i ≥ 0 and

∑n
i=1w

(k−1)
i

= 1, so gM(k) belongs to Gn for all k. Then, {gM(k)}∞k=1 has a convergent subsequence
{gM(kl)}

∞
l=1. If m∗ is the limit of {gM(kl)}

∞
l=1, then

Q(gM(kl+1)
; gM(kl+1)

) = J(gM(kl+1)
) ≤ J(gM(kl+1)) ≤ Q(gM(kl+1); g

M
(kl)

) ≤ Q(g; gM(kl)),
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for all g ∈ H using Equation 3.1, the property of J of monotonically decreasing
(kl+1 ≥ kl + 1) and Equations 3.2 and 3.3 (in this order).

By taking the limit on both sides of the inequality,

Q(m∗;m∗) ≤ Q(g;m∗) for all g ∈ H,

since Q is continuous for both arguments. Therefore, by following the reasoning in
Equation 3.3,

m∗ = argmin
g∈H

Q(g;m∗) =
n∑

i=1

ϕ(∥hi −m∗∥H)∑n
j=1 ϕ(∥hj −m∗∥H)

hi,

and thus, either(
n∑

i=1

ϕ(∥hi −m∗∥H)∑n
j=1 ϕ(∥hj −m∗∥H)

hi

)
−
∑n

j=1 ϕ(∥hj −m∗∥H)∑n
j=1 ϕ(∥hj −m∗∥H)

m∗ = 0

or
n∑

i=1

ϕ(∥hi −m∗∥H)∑n
j=1 ϕ(∥hj −m∗∥H)

· (hi −m∗) = 0.

As the denominator does not depend on index i, one gets that
n∑

i=1

ϕ(∥hi −m∗∥H) · (hi −m∗) = 0.

So m∗ ∈ S by recalling that V (g) = 1
n

∑n
i=1 ϕ(∥hi − g∥H) · (hi − g).

Finally, by reductio ad absurdum one can verify that ∥gM(k) − S∥H → 0. Suppose
that infg∈S ∥gM(k) − g∥H 9 0. Then, there exists ε > 0 such that for all k ∈ N, there
exists k0 ≥ k with infg∈S ∥gM(k0) − g∥H ≥ ε.

Thus, an increasing sequence of indices {kl}∞l=1 such that infg∈S ∥gM(kl) − g∥H ≥ ε

for all l ∈ N can be constructed.
Since {gM(kl)}

∞
l=1 lies in the compact set Gn, there is a subsequence from it con-

verging to some m0. One can choose j such that ∥gM(kj) −m0∥H < ε
2
.

Moreover, m0 is also a limit point of {gM(k)}∞k=1, so m0 ∈ S. But one gets the
contradiction that

ε ≤ inf
g∈S

∥gM(kj) − g∥H ≤ ∥gM(kj) −m0∥H <
ε

2
.

Theorem 3.1.5 can be interpreted by saying that gM(k) gets arbitrarily close to the
set of stationary points of J (those g ∈ H for which δJ(g;h) = 0 for all h ∈ H) as
the number of iterations grows.
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Corollary 3.1.6. If the strict convexity of J is added to the assumptions in Theo-
rem 3.1.5, then {gM(k)}∞k=1 converges to ĝM [hn] in the H-norm.

Proof. Under the strict convexity of J , there is a unique minimum and, therefore,
only one element in S. We know that ĝM [hn] ∈ S, so S = {ĝM [hn]} and

∥gM(k) − ĝM [hn]∥H = inf
g∈S

∥gM(k) − g∥H −→
k→∞

0,

using the convergence proved in Theorem 3.1.5.

3.1.4 Consistency and robustness of the sample M-estimates
of Hilbert space-valued random elements

In analyzing the inferential behaviour of the sample M-estimates from Hilbert space-
valued random elements, we are first going to prove their strong consistency. Al-
though Vandermeulen and Scott [208] have discussed such a problem within Kim and
Scott’s settings, the conditions assumed on the loss function are rather restrictive,
and they do not cover some of the best known loss functions. Consequently, devel-
opments have not been adapted from it. On the other hand, under the assumptions
for the representer theorem, one can attempt to prove consistency by applying limit
theorems for randomly weighted means of Hilbert space-valued random elements,
but in this case weights depend on the random elements in the sample, and the
required results are beyond the scope of this work.

The approach that has been considered involve sufficient assumptions to ensure
Huber’s conditions for consistency in [107], that is, those in the following:

Lemma 3.1.7. Let (Ω,A, P ) be a probability space, the parameter set Λ be a a
locally compact space with a countable base, and q(ω, g) be some real-valued function
on Ω× Λ. Assume that ω1, ω2, . . . are independent random variables with values in
Ω having the common probability distribution P . Let Tn(ω1, . . . , ωn) be any sequence
of functions Tn : Ωn → Λ, measurable or not, such that

lim
n→∞

[
1

n

n∑
i=1

q(ωi, Tn(ω1, . . . , ωn))− inf
g∈Λ

1

n

n∑
i=1

q(ωi, g)

]
= 0 a.s. [P ].

Then, under Huber’s sufficient conditions (see Huber [107]), namely,

• Assumption (A-1): For each fixed g0 ∈ Λ, the function

q0 : Ω −→ R, ω 7−→ q(ω, g0)
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is A-measurable and separable in Doob’s sense (i.e., there is a P -null set N

and a countable subset S ⊂ Λ such that for every open set U ⊂ Λ and every
closed interval A, the sets

V1 = {ω : q(ω, g) ∈ A for all g ∈ U}, V2 = {ω : q(ω, g) ∈ A for all g ∈ U ∩ S}

differ by at most a subset of N);

• Assumption (A-2): The function q is a.s. lower semi-continuous in g0, that
is,

inf
g∈U

q(ω, g) −→ q(ω, g0),

as the neighborhood U of g0 shrinks to {g0};

• Assumption (A-3): There is a measurable function a : Ω → R such that

E[q(ω, g)− a(ω)]− < ∞ for all g ∈ Λ,

E[q(ω, g)− a(ω)]+ < ∞ for some g ∈ Λ;

Thus, γ(g) = E[q(ω, g)− a(ω)] is well-defined for all g;

• Assumption (A-4): There is a g0 ∈ Λ such that γ(g) > γ(g0) for all g ̸= g0;

• Assumption (A-5): There is a continuous function b(g) > 0 such that

– for some integrable h,

inf
g∈Λ

q(ω, g)− a(ω)

b(g)
≥ h(ω);

– the following condition is satisfied:

lim inf
g→∞

b(g) > γ(g0);

where ∞ denotes here the point at infinity in its one-point compactifica-
tion;

– it is also fulfilled that

E

[
lim inf
g→∞

q(ω, g)− a(ω)

b(g)

]
≥ 1;

the sequence {Tn}n converges almost surely to g0.

On the basis of this supporting result, one can state that

Theorem 3.1.8. Let X be a Hilbert-valued random element associated with a prob-
ability space (Ω,A, P ). Under the assumptions:

• ρ is continuous, non-decreasing and subadditive,

• Λ, the parameter set, is a locally compact space with a countable basis,
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• the population M-estimate of location, gMP [X], exists and it is unique,

• E
[
lim infg→∞

ρ(∥X(ω)−g∥H)−ρ(∥X(ω)∥H)
ρ(∥g∥H)+1

]
≥ 1,

the sample M-estimate of location, ĝM [X]n, is a strongly consistent estimator of
gMP [X].

Proof. To prove the strong consistency, we are going to check that all Huber’s con-
ditions required in Lemma 3.1.7 are fulfilled under the assumptions in this theorem.
The first condition of being the parameter set Λ a locally compact space with a
countable base has been directly imposed in this theorem.

If q is the following real-valued function

q : Ω× Λ → R, (ω, g) 7−→ q(ω, g) := ρ(∥X(ω)− g∥H),

then the other assumptions fulfill. Thus,

• Assuming that ω1, ω2, . . . are independent Ω-valued random elements with
common probability distribution P , the sequence of functions {Tn}n∈N, de-
fined as Tn(ω1, . . . , ωn) = ̂gM [(X(ω1), . . . , X(ωn))]n, satisfies that

lim
n→∞

[
1

n

n∑
i=1

q(ωi, Tn(ω1, . . . , ωn))− inf
g∈Λ

1

n

n∑
i=1

q(ωi, g)

]
= 0,

i.e.,

lim
n→∞

[
1

n

n∑
i=1

ρ(∥X(ωi)− ̂gM [(X(ω1), . . . , X(ωn))]n)∥H)

− inf
g∈Λ

1

n

n∑
i=1

ρ(∥X(ωi)− g∥H)

]
= 0,

because of the definition of sample M-estimate of location of a Λ-valued random
element (which is also an element of Λ).

• (A-1) For each fixed g0 ∈ Λ, the function q0

q0 : Ω −→ R
ω 7−→ q0(ω) = q(ω, g0) = ρ(∥X(ω)− g∥H)

is A-measurable (because both the norm and ρ are continuous and X is A-
measurable). It is also separable in Doob’s sense. Thus, Λ is second-countable
(that is to say, it has a countable basis) and that implies the separability.
Therefore, Λ contains a countable dense subset, say S. Then, for every open
set U ⊂ Λ and every closed interval A, it will be seen that the sets

V1 = {ω : q(ω, g) ∈ A for all g ∈ U}, V2 = {ω : q(ω, g) ∈ A for all g ∈ U ∩ S}
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coincide. Obviously, V1 ⊆ V2. On the other hand, by reductio ad absurdum
suppose that V2 ∩ V c

1 ̸= ∅. If ω0 ∈ V2 ∩ V c
1 , then

– Since ω0 ∈ V2, q(ω0, g) ∈ A for all g ∈ U ∩ S;

– Since ω0 ∈ V c
1 , there exists g0 ∈ U such that q(ω0, g0) ∈ Ac. Ac is an

open set, so there exists a ball of radius r > 0 such that

(q(ω0, g0)− r, q(ω0, g0) + r) ⊆ Ac.

Notice now that, for a fixed ω0 ∈ Ω, the function

qω0 : Λ −→ R, g 7−→ qω0(g)= q(ω0, g) = ρ(∥X(ω0)− g∥H)

is continuous (since both the norm and ρ are continuous). Therefore, the
set q−1

ω0
(q(ω0, g0) − r, q(ω0, g0) + r) is an open subset of Λ and, furthermore,

U ∩ q−1
ω0
(q(ω0, g0)− r, q(ω0, g0)+ r) ̸= ∅ too since g0 belongs to the intersection.

S is a dense set of Λ, so that

U ∩ q−1
ω0
(q(ω0, g0)− r, q(ω0, g0) + r) ∩ S ̸= ∅.

Let g∗ ∈ U ∩ q−1
ω0
(q(ω0, g0) − r, q(ω0, g0) + r) ∩ S. Then, g∗ ∈ U ∩ S, whence

q(ω0, g
∗) ∈ A. But also,

q(ω0, g
∗) ∈ (q(ω0, g0)− r, q(ω0, g0) + r) ⊂ Ac.

This is a contradiction, so the conclusion is that V2 ⊆ V1, and hence both
subsets coincide.

• (A-2) Indeed, this assumption can be proved for all ω ∈ Ω. Let ω be an
arbitrary element of Ω and let g0 be any (fixed) point of Λ.

First, notice that any sequence of neighborhoods {Un}n∈N of g0 with Un ↓
satisfies that {

inf
g∈Un

q(ω, g)

}
n

=

{
inf
g∈Un

ρ(∥X(ω)− g∥H)
}

n

is a monotonically increasing sequence. Moreover, this sequence is bounded
since

inf
g∈Un

ρ(∥X(ω)− g∥H) ≤ ρ(∥X(ω)− g0∥H)

for all n ∈ N because g0 ∈ ∩∞
n=1Un. Therefore, the sequence converges to its

supremum, which corresponds to ρ(∥X(ω)− g0∥H). By reductio ad absurdum,
suppose that there is a smaller upper bound

c = ρ(∥X(ω)− g0∥H)− ε,
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for an arbitrary ε > 0. Let’s denote by Un0 a neighborhood of g0 satisfying
that Un0 ⊆ B(g0, ε

∗), with ε∗ > 0 such that ρ(ε∗) < ε
2
. Then, it can be seen

that c < infg∈Un0
ρ(∥X(ω)− g∥H), so c cannot be the supremum.

Thus, by using the triangular inequality for norms and the fact that the ρ

function is non-decreasing and subadditive,

inf
g∈Un0

ρ(∥X(ω)− g∥H) ≥ inf
g∈B(g0,ε∗)

ρ(∥X(ω)− g∥H)

≥ inf
g∈B(g0,ε∗)

[ρ(∥X(ω)− g0∥H)− ρ(∥g − g0∥H)]

= ρ(∥X(ω)− g0∥H)− sup
g∈B(g0,ε∗)

ρ(∥g − g0∥H).

When g ∈ B(g0, ε
∗), ∥g − g0∥H < ε∗ and, by making use again of the non-

decreasing property of ρ, one gets that ρ(∥g − g0∥H) ≤ ρ(ε∗) < ε/2, whence
supg∈B(g0,ε∗) ρ(∥g − g0∥H) ≤ ε/2 < ε and hence

inf
g∈Un0

ρ(∥X(ω)− g∥H) > ρ(∥X(ω)− g0∥H)− ε = c.

Now this result is to be extended to general sequences {Un}n. Consider the
suprema and the infima radii reached in every neighborhood, namely,

rn = sup
g∈Un

∥g − g0∥H, sn = inf
g∈Un

∥g − g0∥H.

It is known that limn→∞ rn = 0, since {Un}n∈N shrinks to {g0}. Moreover,
limn→∞ sn = 0 since 0 ≤ sn ≤ rn for all n ∈ N.

Let ε be any nonnegative number and consider ε∗ > 0 such that ρ(ε∗) < ε/2.
As limn→∞ rn = 0, there exists n1 ∈ N such that for all n > n1, rn < ε∗. Then,
Un ⊆ B(g0, rn) and

inf
g∈Un

ρ(∥X(ω)− g∥H) ≥ inf
g∈B(g0,rn)

ρ(∥X(ω)− g∥H)

≥ ρ(∥X(ω)− g0∥H)− sup
g∈B(g0,rn)

ρ(∥g − g0∥H).

If g ∈ B(g0, rn), then ∥g − g0∥H < rn < ε∗ and, as ρ is non-decreasing,
ρ(∥g − g0∥H) ≤ ρ(ε∗) < ε/2, so that

inf
g∈Un

ρ(∥X(ω)− g∥H) > ρ(∥X(ω)− g0∥H)− ε.

Analogously, since limn→∞ sn = 0, there exists n2 ∈ N such that for all n > n2,
sn < ε∗. Then, Un ⊇ B(g0, sn) and

inf
g∈Un

ρ(∥X(ω)− g∥H) ≤ inf
g∈B(g0,sn)

ρ(∥X(ω)− g∥H)
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≤ ρ(∥X(ω)− g0∥H) + inf
g∈B(g0,sn)

ρ(∥g − g0∥H)

≤ ρ(∥X(ω)− g0∥H) + sup
g∈B(g0,sn)

ρ(∥g − g0∥H).

Again, if g ∈ B(g0, sn), ρ(∥g − g0∥H) ≤ ρ(ε∗) < ε/2 and

inf
g∈Un

ρ(∥X(ω)− g∥H) < ρ(∥X(ω)− g0∥H) + ε.

Consequently, for any ε > 0, there exists n0 = max{n1, n2}, such that for all
n > n0,

ρ(∥X(ω)− g0∥H)− ε < inf
g∈Un

ρ(∥X(ω)− g∥H) < ρ(∥X(ω)− g0∥H) + ε,

that is to say, ∣∣∣∣ infg∈Un

ρ(∥X(ω)− g∥H)− ρ(∥X(ω)− g0∥H)
∣∣∣∣ < ε,

so the sequence
{

inf
g∈Un

ρ(∥X(ω)− g∥H)
}

n

converges to ρ(∥X(ω)− g0∥H).

• (A-3) Let a be the measurable function (see (A-1 )):

a : Ω −→ R
ω 7−→ ρ(∥X(ω)∥H).

For any arbitrarily fixed g ∈ Λ,

E[ρ(∥X(ω)− g∥H)− a(ω)]−

=

∫
Ω

−min{ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H), 0} dP (ω)

=

∫
{ω ∈ Ω : ρ(∥X(ω)∥H) > ρ(∥X(ω)− g∥H)}

[
ρ(∥X(ω)∥H)− ρ(∥X(ω)− g∥H)

]
dP (ω).

By the triangular inequality and the subadditivity of ρ,

E[ρ(∥X(ω)− g∥H)− a(ω)]−

≤
∫

{ω ∈ Ω : ρ(∥X(ω)∥H) > ρ(∥X(ω)− g∥H)}

[
ρ(∥X(ω)− g∥H) + ρ(∥g∥H)

−ρ(∥X(ω)−g∥H)
]
dP (ω) = ρ(∥g∥H)·P

(
{ω : ρ(∥X(ω)∥H) > ρ(∥X(ω)−g∥H)}

)
≤ ρ(∥g∥H) < ∞.

Analogously,
E[ρ(∥X(ω)− g∥H)− a(ω)]+
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=

∫
Ω

max{ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H), 0} dP (ω)

=

∫
{ω ∈ Ω : ρ(∥X(ω)∥H) ≤ ρ(∥X(ω)− g∥H)}

[
ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)

]
dP (ω).

By the triangular inequality and the subadditivity of ρ,

E[ρ(∥X(ω)− g∥H)− a(ω)]+

≤
∫

{ω ∈ Ω : ρ(∥X(ω)∥H) ≤ ρ(∥X(ω)− g∥H)}

[
ρ(∥X(ω)∥H) + ρ(∥g∥H)

−ρ(∥X(ω)∥H)
]
dP (ω) = ρ(∥g∥H) · P

(
{ω : ρ(∥X(ω)∥H) ≤ ρ(∥X(ω)− g∥H)}

)
≤ ρ(∥g∥H) < ∞.

So the second inequality also holds for all g ∈ Λ in this case.

• (A-4) The population M-estimate of location exists and it is unique, so that∫
Ω

ρ(∥X(ω)− gMP [X]∥H)dP (ω) = min
g∈Λ

∫
Ω

ρ(∥X(ω)− g∥H),

that is to say,
gMP [X] = argmin

g∈Λ
E[ρ(∥X(ω)− g∥H)]

= argmin
g∈Λ

(
E[ρ(∥X(ω)− g∥H)]− E[ρ(∥X(ω)∥H)]

)
= argmin

g∈Λ
E
[
ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)

]
= argmin

g∈Λ
γ(g),

and g0 = gMP [X] fulfills this assumption.

• (A-5) There is a continuous function b(g) > 0

b : Λ −→ R
g 7−→ b(g) = ρ(∥g∥H) + 1

such that

– for the integrable function h(ω) := −1,

inf
g∈Λ

ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)
ρ(∥g∥H) + 1

≥ −1,

since by the triangular inequality, ∥X(ω)− g∥H ≥ ∥X(ω)∥H − ∥g∥H, and
because of ρ being subadditive

inf
g∈Λ

ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)
ρ(∥g∥H) + 1

≥ inf
g∈Λ

ρ(∥X(ω)∥H)− ρ(∥g∥H)− ρ(∥X(ω)∥H)
ρ(∥g∥H) + 1

= inf
g∈Λ

−ρ(∥g∥H)
ρ(∥g∥H) + 1

≥ −1.
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– the following condition is satisfied:

lim inf
g→∞

b(g) > γ(g0) = E [ρ(∥X(ω)− g0∥H)− ρ(∥X(ω)∥H)] .

Let {gn}n∈N ⊂ Λ be any sequence with limn→∞ gn = ∞ (and hence,
limn→∞ ∥gn∥H = ∞). Then,

M = E [ρ(∥X(ω)− g0∥H)− ρ(∥X(ω)∥H)] ∈ R,

where g0 represents the minimum found in (A-4), and let M∗ be a real
number such that ρ(M∗) ≥ M . Note that, even if ρ is bounded by
C, it is possible to choose this M∗ because M = E [ρ(∥X(ω)− g0∥H)]
− E [ρ(∥X(ω)∥H)] ≤ E [ρ(∥X(ω)− g0∥H)] ≤ C.

Then, there exists n0 ∈ N such that for all n ≥ n0, ∥gn∥H > M∗, whence
for all n ≥ n0,

inf
k≥n

b(gk) = inf
k≥n

(ρ(∥gk∥H) + 1) ≥ ρ(M∗) + 1 ≥ M + 1.

Finally,

lim inf
n→∞

b(gn) = lim
n→∞

(inf
k≥n

b(gk)) ≥ M + 1 > M = γ(g0).

The third part of Huber’s condition (A-5) is fulfilled due to the assump-
tion

E

[
lim inf
g→∞

ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)
ρ(∥g∥H) + 1

]
≥ 1.

The following result slightly modifies the statement of Theorem 3.1.8 by replacing
the last condition by a sufficient one. More concretely,

Proposition 3.1.9. Let X be a Hilbert-valued random element associated with a
probability space (Ω,A, P ). The last assumption in Theorem 3.1.8 can be proved to
be satisfied when ρ is non-decreasing, subadditive and also unbounded.

Proof. Under the assumed condition in, in case of ρ is subadditive, one can ensure
that

E

[
lim inf
g→∞

ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)
b(g)

]
≥ 1.

Thus, for any fixed ω ∈ Ω,

lim inf
g→∞

ρ(∥X(ω)− g∥H)− ρ(∥X(ω)∥H)
ρ(∥g∥H) + 1
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= lim
n→∞

(
inf
k≥n

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

)
.

The sequence {
inf
k≥n

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

}
n

is monotonically increasing and it is upper bounded by 1, since for all k ∈ N, by
applying the triangular inequality and the subadditivity of ρ, one gets that

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

≤ ρ(∥gk∥H)
ρ(∥gk∥H) + 1

≤ 1.

So, it converges to its supremum

lim
n→∞

(
inf
k≥n

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

)

= sup
n

(
inf
k≥n

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

)
We are now going to see that this supremum is at least equal to 1. By reductio ad
absurdum, suppose that

sup
n

(
inf
k≥n

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

)
= 1− ε,

for some ε > 0. One gets then a contradiction because one finds an n∗ ∈ N such
that

inf
k≥n∗

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

> 1− ε

since for all k ≥ n∗

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)
ρ(∥gk∥H) + 1

≥ 1− ε

2
> 1− ε.

Take, for the fixed arbitrary ω ∈ Ω, M := 2
ε
− 1 + 4

ε
· ρ(∥X(ω)∥H) ∈ R. Consider,

as ρ is unbounded, M∗ > 0 with ρ(M∗) > M . Recall that limn→∞ gn = ∞, so there
exists n∗ ∈ N such that for all n ≥ n∗, ∥gn∥H > M∗. Therefore, by the subadditivity
and non-decreasing property of ρ,

ρ(∥gn −X(ω)∥H) ≥ ρ(∥gn∥H)− ρ(∥X(ω)∥H) ≥ ρ(M∗)− ρ(∥X(ω)∥H) > M − ρ(∥X(ω)∥H).

We can easily check that 1− ε/2 is a lower bound of the sequence{
ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)

ρ(∥gk∥H) + 1

}
k≥n∗

.
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For any k ≥ n∗,

ρ(∥X(ω)− gk∥H)− ρ(∥X(ω)∥H)

=
(
1− ε

2

)
ρ(∥X(ω)− gk∥H) +

ε

2
ρ(∥X(ω)− gk∥H)

−
(
1− ε

2

)
ρ(∥X(ω)∥H)−

ε

2
ρ(∥X(ω)∥H)

≥
(
1− ε

2

)
ρ(∥gk∥H)−

(
1− ε

2

)
ρ(∥X(ω)∥H) +

ε

2
ρ(∥X(ω)− gk∥H)

−
(
1− ε

2

)
ρ(∥X(ω)∥H)−

ε

2
ρ(∥X(ω)∥H)

=
(
1− ε

2

)
ρ(∥gk∥H) +

ε

2
ρ(∥X(ω)− gk∥H)−

(
2− ε

2

)
ρ(∥X(ω)∥H)

>
(
1− ε

2

)
ρ(∥gk∥H) +

ε

2

(
2

ε
− 1 +

(4
ε
− 1
)
ρ(∥X(ω)∥H)

)
−
(
2− ε

2

)
ρ(∥X(ω)∥H) =

(
1− ε

2

)
ρ(∥gk∥H) + 1− ε

2
=
(
1− ε

2

)
(ρ(∥gk∥H) + 1).

The robustness of the M-estimates is now to be analyzed empirically. By means
of simulations dealing with functional data, we are going to see that its empirical
value for two well-known loss functions fulfilling the required conditions amounts
1

n
· ⌊n+ 1

2
⌋: the Huber loss function (Remark 3.1.1) with a = 1.345 (one of the

most usual choices for this tuning parameter -see, for instance, Wang et al. [213])
and the Hampel loss function [100], which corresponds to

ρa,b,c(x) =



x2/2 if 0 ≤ |x| < a

a(|x| − a/2) if a ≤ |x| < b
a(|x| − c)2

2(b− c)
+

1

2
a(b+ c− a) if b ≤ |x| < c

1

2
a(b+ c− a) if c ≤ |x|,

where the nonnegative parameters a < b < c allow us to control the degree of
supression of the outliers. The smaller their values, the greater this degree. To fix
them, the ideas in Kim and Scott [114] have been followed, that is,

1. to choose the initial seed in this case, the mean has been considered;

2. to compute the distances between the observations and the seed;

3. a will be the median, b the 75th percentile and c the 85th percentile of these
distances.
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Two cases have been considered in the simulation study, namely, an even sam-
ple size (n = 100) and an odd sample size (n = 101). In each situation, a sample
of functions have been generated from Model 1 in Section 2.4 (see p. 74) and M-
estimates, using both Huber and Hampel loss functions, have been computed. Af-
terwards, i ∈ {1, . . . , n} observations have been highly contaminated (concretely, i
functions have been translated 107 units) and Huber and Hampel M-estimates have
been computed. Distances between them and the non-contaminated estimates for
each amount of modified observations are plotted in Figure 3.1. The value in red
represents the minimum number of perturbed observations that makes the distance
between the non-contaminated and the contaminated corresponding M-estimates
increase arbitrarily, i.e., the finite sample breakdown point.
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Figure 3.1: Empirical value (in red) obtained for the finite sample breakdown point of
the M-estimators for functional data and distances between the non-contaminated and
contaminated estimates using the Huber (blue) and Hampel (green) loss functions when
the sample size is even (left) and odd (right).

Therefore, it can be checked that the empirical value for the finite sample break-
down point has been 50 for the sample size n = 100 and 51 for the sample size
n = 101 independently of the chosen loss function.

3.1.5 Simulation studies about M-estimates
of location for Hilbert space-valued data

The aim of this subsection is to compare the behavior of the M-estimates of location
and the mean through some simulation studies dealing with functional data and
mimicking the usual scheme for this kind of comparisons. The empirical robustness
of the M-estimates of location is also examined.
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n q Estimator Model 6 Model 7 Model 8 Model 9

50 .05 Mean .274843 (.274843) .318066 (.201209) .279586 (.175522) .332575 (.221595)
Huber .023834 (.031628) .021681 (.023717) .534812 (.194016) .534853 (.182469)
Hampel .059589 (.079215) .054867 (.063509) .557492 (.302287) .577072 (.306548)

80 .05 Mean .177057 (.093181) .202028 (.112033) .170289 (.089113) .197961 (.103885)
Huber .015659 (.018343) .014882 (.018069) .532897 (.151203) .535929 (.154593)
Hampel .038747 (.047992) .038024 (.047002) .563185 (.249383) .570632 (.254555)

50 .1 Mean .499788 (.254557) .558465 (.295773) .521980 (.272500) .590299 (.312491)
Huber .023966 (.027664) .023019 (.025300) .548149 (.190937) .539698 (.174565)
Hampel .052455 (.063761) .056005 (.065200) .593019 (.316606) .561826 (.295460)

80 .1 Mean .309428 (.127167) .357100 (.162768) .304456 (.128494) .363893 (.155640)
Huber .013608 (.015213) .014354 (.016560) .531472 (.147077) .539704 (.148112)
Hampel .031621 (.038699) .033124 (.041502) .552189 (.236073) .562649 (.251195)

Table 3.2: Results of the simulations for functional data to compare the behaviour
of the mean and the M-estimates of location using both Huber and Hampel loss
functions in each of the Models 6-9

The different models, the value of the parameters and the calculus of the measures
coincide with the detailed procedure explained in Section 2.4 (see p. 74). Indeed,
notice that Huber and Hampel M-estimates have been computed on the basis of the
same generated samples in that section in order to be able to compare them with
the trimmed means in the next chapter.

The empirical results obtained can be seen in Tables 3.1 and 3.2. The numbers
in parenthesis are the standard errors of the mean squared errors of the estimators
and the bold number is the minimum mean squared error obtained in each situation
and for each of the models.

For instance, as it happened in the comparison with the trimmed means, inde-
pendently of the case of study, the best estimator of the population mean is the
sample mean in Model 1, what is logical because in that model there is no contami-
nation at all.

The estimator chosen is the M-estimator with Huber loss function in almost all
the situations in Models 2-7 (except from half of the cases in Model 5, in which the
mean was the best option, and two cases in Model 3, for which the M-estimate with
Hampel loss function behaved better), whereas in Models 8-9, the mean was the
best estimator in all situations, but one.
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One remark is that, apart from the best performance of the Huber loss function
with respect to the Hampel loss function in this simulation study, the computation
of the latter is slower because the parameters a, b and c depend here on the sample,
so they have to be updated not only for every situation and model, but also for
every Monte Carlo iteration. Of course, other alternatives to fix these parameters
could be analyzed.

3.2 Application of the representer theorem
to the set and fuzzy set-valued cases

In order to calculate the M-estimates of location for imprecise-valued random el-
ements, we have to recall that set- and fuzzy- valued data can be identified with
functional data thanks to the isometrical embedding of Fc(Rp) into a convex cone
of a Hilbert space using the support functions, as explained in Section 1.3.1, for
certain metrics. More concretely, the norms defined associated with distances Dφ

θ

and Dφ
θ arise in the usual way from the corresponding inner products, so the results

in this section will be applicable to both of them and also to any other metric whose
associated norm satisfies the parallelogram law. From now on in this section, D will
denote an arbitrary metric on Fc(Rp) associated with a norm ∥ · ∥D (in the Hilbert
space in which the space of fuzzy set-valued data is embedded) fulfilling the previous
condition and d, an arbitrary metric on Kc(Rp) associated with a norm ∥ · ∥d (in
the Hilbert space in which the space of set-valued data is embedded) satisfying the
same condition.

Definition 3.2.1. Consider Fc(Rp) with an arbitrary associated metric D. Let
(Ω,A, P ) be a probability space, X : Ω → Fc(Rp) be an associated random fuzzy
vector and ρ be an arbitrary loss function. The population fuzzy M-estimate of
location is the element g̃MP ∈ Fc(Rp) minimizing

JP (g̃) =

∫
Ω

ρ(∥sX (ω) − sg̃∥D) dP (ω),

i.e.,
g̃MP = arg min

g̃∈Fc(Rp)
E[ρ(D(X (ω), g̃)].

In particular, consider Kc(Rp) with an arbitrary associated distance d. Let
(Ω,A, P ) be a probability space, X : Ω → Kc(Rp) be an associated random compact
convex set and ρ be an arbitrary loss function. The population set M-estimate
of location is the element gMP ∈ Kc(Rp) minimizing

JP (g) =

∫
Ω

ρ(∥sX(ω) − sg∥d) dP (ω),
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i.e.,
gMP = arg min

g∈Kc(Rp)
E[ρ(d(X(ω), g)].

Definition 3.2.2. Consider Fc(Rp) with an arbitrary associated metric D. Let
(Ω,A, P ) be a probability space, X : Ω → Fc(Rp) be an associated random fuzzy
vector and ρ be an arbitrary loss function. The sample fuzzy M-estimate of
location is the fuzzy set-valued statistic ̂̃gM [X ]n such that for each realization from
the simple random sample, x̃n = (x̃1, . . . , x̃n), the fuzzy set value(s) ˜̂gM [x̃n] is (are)
the solution(s) of the following optimization problem:

min
g̃∈Fc(Rp)

J(g̃) = min
g̃∈Fc(Rp)

1

n

n∑
i=1

ρ(D(x̃i, g̃)).

In particular, consider Kc(Rp) with an arbitrary associated norm d. Let (Ω,A, P )

be a probability space, X : Ω → Kc(Rp) be an associated random compact convex set
and ρ be an arbitrary loss function. The sample set M-estimate of location is
the fuzzy set-valued statistic ĝM [X ]n such that for each realization from the simple
random sample, xn = (x1, . . . , xn), the set value(s) ĝM [xn] is (are) the solution(s) of
the following optimization problem:

min
g∈Kc(Rp)

J(g) = min
g∈Kc(Rp)

1

n

n∑
i=1

ρ(d(xi, g)).

By particularizing the results in Subsection 3.1.2 to the set- and fuzzy set-valued
cases one can briefly state from Theorem 3.1.2 that the sample location M-estimate
associated with either a random fuzzy vector or a random compact convex set can
be expressed as a convex linear combination of the sample components. Thus,

Theorem 3.2.1. Let (Ω,A, P ) be a probability space, X : Ω → Fc(Rp) be an as-
sociated random fuzzy vector and ρ be an arbitrary loss function. Consider Fc(Rp)

with an arbitrary associated metric D, and let x̃n = (x̃1, . . . , x̃n) be a sample of
independent observations from X . Under the assumptions

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,

• ϕ(0) exists and it is finite, and

•
∑n

i=1 ϕ(D(x̃i, ˜̂gM [x̃n])) > 0,

the sample M-estimate of location exists and it can be expressed as

˜̂gM [x̃n] =
n∑

i=1

wi · x̃i,

where wi ≥ 0 and
∑n

i=1 wi = 1. Furthermore, wi ∝ ϕ(D(x̃i, ˜̂gM [x̃n])).
In particular, if X : Ω → Kc(Rp) is a random compact convex set, Kc(Rp) is asso-

ciated with a metric d, and xn = (x1, . . . , xn) is a sample of independent observations
from X, then under the two first assumptions above and
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•
∑n

i=1 ϕ(d(xi, ĝ
M [xn])) > 0,

the sample M-estimate of location exists and it can be expressed as

ĝM [xn] =
n∑

i=1

wi · xi,

where wi ≥ 0 and
∑n

i=1 wi = 1. Furthermore, wi ∝ ϕ(d(xi, ĝM [xn])).

And the necessary condition to minimize J proved in Theorem 3.2.1 is also
sufficient by adding another assumption on J , as it can be seen by particularizing
Theorem 3.1.3 and using the result in Proposition 3.1.4.

Theorem 3.2.2. Let (Ω,A, P ) be a probability space, X : Ω → Fc(Rp) be an as-
sociated random fuzzy vector and ρ be an arbitrary loss function. Consider Fc(Rp)

with an arbitrary associated metric D, and let x̃n = (x̃1, . . . , x̃n) be a sample of
independent observations from X . Under the assumptions

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,

• ϕ(0) exists and it is finite, and

• J is strictly convex (for which sufficient conditions are given by either

•• ρ is strictly convex and non-decreasing, or
•• ρ is convex, strictly increasing, n ≥ 3 and A = (⟨sx̃i

, sx̃j
⟩D)ni,j=1 is positive

definite),

the following conditions

i) ˜̂gM [x̃n] =
∑n

i=1wi · x̃i,

ii) wi ∝ ϕ(D(x̃i, ˜̂gM [x̃n])),

iii)
∑n

i=1wi = 1

are sufficient conditions for ˜̂gM [x̃n] to minimize J(g̃) = 1
n

∑n
i=1 ρ(D(x̃i, g̃)).

In particular, if X : Ω → Kc(Rp) is a random compact convex set, Kc(Rp) is asso-
ciated with a metric d, and xn = (x1, . . . , xn) be a sample of independent observations
from X, then under the assumptions above the following conditions

i) ĝM [xn] =
∑n

i=1wi · xi,

ii) wi ∝ ϕ(d(xi, ĝM [xn])),

iii)
∑n

i=1wi = 1

are sufficient conditions for ĝM [xn] to minimize J(g) = 1
n

∑n
i=1 ρ(d(xi, g)).
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Remark 3.2.1. It should be clearly remarked that the particularization above has
been possible to accomplish, due to the semilinearity of Fc(Rp) and Kc(Rp), which
guarantees that the estimates ˜̂gM [x̃n] and ĝM [xn] fall in the corresponding parameter
spaces, since they can be expressed as convex linear combinations of elements in the
spaces Fc(Rp) and Kc(Rp), respectively.

In computing M-estimates of location, different choices for the loss function ρ

satisfying the above-mentioned conditions have been found, most of them being
parameterized by some scale factors. In dealing with set- and fuzzy set-valued data,
the computation also involves the choice of the metric the norm is based on.

Recall that the required conditions in order to represent the M-estimates of
location as weighted linear combinations of the sample elements (the result that
allows us to guarantee that the M-estimates of location for fuzzy- and set- valued
data are within the convex cone of the isometrical embedding) and to prove the
convergence of the algorithm are:

• ρ continuous, non decreasing, ρ(0) = 0 and either

– strictly convex or
– convex, strictly increasing, n ≥ 3 and (⟨sx̃i

, sx̃j
⟩)nj,i=1 positive definite;

• ρ′ exists, continuous and limx→0 ρ(x)/x = 0;

• ϕ exists, continuous and ϕ(0) , lim
x→0

ϕ(x) exists and is finite.

The following example illustrates such a computation in case one considers the
well-known Huber loss function (Remark 3.1.1) with a = 1.345.

Example 3.2.1. Consider the random fuzzy number taking on values x̃1 = Tra(0, 2,

3, 4), x̃2 = Tri(1, 1.5, 2) and x̃3 = Tri(3, 4, 5) (see Figure 3.2 on the left) with the
induced probabilities equal to 1/3.

The corresponding M-estimate of location with the ℓ-wabl/ldev/rdev-based L2

metric and the Huber loss function (Remark 3.1.1) can be determined by means of
the algorithm detailed in Section 3.1.3 particularized to random fuzzy numbers:

Step 1. Take as initial estimate g̃M(1) (k = 1) a ‘central’ value. In this case, as the
sample size is 3, the seed has been chosen to be the trapezoidal fuzzy number
which is placed in the ‘central position’, Tra(0, 2, 3, 4). In future examples
or simulations, other robust location measures will be considered as seeds.
Fix a tolerance ε = 10−7.

Step 2. Update the weights

w
(k)
i =

ϕ(Dℓ
1/3(x̃i, g̃

M
(k)))∑n

j=1 ϕ(D
ℓ
1/3

(x̃j, g̃M(k)))
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Figure 3.2: The Huber M-estimate of location of a random fuzzy number (using Dℓ
1/3)

(which does not necessarily corresponds to a value the random fuzzy number takes on)

and the estimate

g̃M(k+1) =
n∑

i=1

w
(k)
i · x̃i.

Step 3. Terminate the algorithm when

|J(g̃M(k+1))− J(g̃M(k))|
J(g̃M(k))

< ε.

The final estimate is given by the fuzzy number in Figure 3.2 on the right which,
in spite of being unique, does not coincide with any of the three values the random
fuzzy number takes on.

Analogously, by using the mid/spr-based L2 metric and the Huber loss function,
the estimate is a fuzzy number which does not coincide with any of the three values
of the random fuzzy number, as Figure 3.3 shows.

The resulting values cannot be distinguished at first glance, because the two
estimates are really close: Tra(1.289103, 2.460193, 2.802372, 3.631283) for the metric
Dℓ

1/3, and Tra(1.288801, 2.459921, 2.802161, 3.631041) for Dℓ
1/3.

The sufficient conditions over the loss function allowing us to guarantee the
existence of sample M-estimates of location as well as their expression as convex
linear combinations of the sample elements are satisfied for different interesting
choices of the loss function ρ, as it has just been verified. However, there are some
other interesting choices of ρ for which such conditions fail and ad hoc developments
should be considered.

In this respect, if one chooses either ρ(x) = |x| or ρ(x) =
√
|x|, one cannot

apply the results in Section 3.1, and those in this subsection either. In the next



122 Chapter 3. Location M-estimates from imprecise-valued data

Figure 3.3: The Huber M-estimate of location of a random fuzzy number (using Dℓ
1/3)

(which does not necessarily corresponds to a value the random fuzzy number takes on)

three subsections some ad hoc developments are to be carried out to get the (exact)
M-estimates associated with the first choice in case of dealing with fuzzy number-
valued data, and the (approximate) M-estimates with the second choice in case of
dealing with interval-valued data.

Since the study of the robustness of the M-estimates only has been analyzed
empirically for functional data, it will be repeated now in order to deal with fuzzy-
valued data too.

Remark 3.2.2. The empirical computation of the finite sample breakdown point
in Section 3.1.4 can be reproduced for interval- and fuzzy number-valued data. For
instance, two sample sizes are considered: one even (n = 100) and another odd
(n = 101). For each of these two samples,

• A sample of n fuzzy numbers has been generated in a random way following the
CASE 1 non-contaminated distribution presented in Step 1 of the simulation
studies in Section 1.5.

• The M-estimates using both Huber and Hampel loss functions have been com-
puted.

• Afterwards, i ∈ {1, . . . , n} observations have been highly contaminated, that
is, they have been replaced by other observations obtained from the following
distributions:

X1 ∼ N (0, 3) + 107,

X2, X3, X4 ∼ χ2
4 + 100.
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• Huber and Hampel M-estimates are computed for the contaminated sample.

• Dℓ
θ distances, with θ = 1/3 and θ = 1, between the (Huber and Hampel) M-

estimates for the original and the contaminated samples have been computed
for each amount of perturbed observations and plotted in Figures 3.4 and 3.5.

• The value of the finite sample breakdown point is given by the minimum num-
ber of perturbed observations for which distance between the non-contaminated
and the contaminated corresponding M-estimates is arbitrarily big. This value
has been emphasized in red.

In Figure 3.4, the Dℓ
θ=1/3 distances between the non-contaminated and the con-

taminated Huber (blue color) and Hampel (green color) M-estimates have been
plotted for the even sample size (left graphical display) and for the odd one (right
graphical display). It can be seen that, independently from the considered loss func-
tion, the empirical value of the finite sample breakdown point is 50 when n = 100

and 51 when n = 101, that is, 1
n
· ⌊n+1

2
⌋.
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Figure 3.4: Empirical value (in red) obtained for the finite sample breakdown point of the
M-estimators for fuzzy number-valued data and distances between the non-contaminated
and contaminated estimates using the Huber (blue) and Hampel (green) loss functions and
the Dℓ

θ=1/3-metric when the sample size is even (left) and odd (right).

In Figure 3.5, the metric used to compute the distances between the non-contami-
nated and the contaminated Huber and Hampel M-estimates is the Dℓ

θ=1 metric.
Again, it can be seen that, independently from the considered loss function, the
empirical value of the finite sample breakdown point is 50 when n = 100 (left
graphical display) and 51 when n = 101 (right graphical display), that is, 1

n
· ⌊n+1

2
⌋.

From Figures 3.4 and 3.5 we can also conclude that the value of the finite sample
breakdown point has not depended on the considered metric.
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Figure 3.5: Empirical value (in red) obtained for the finite sample breakdown point of the
M-estimators for fuzzy number-valued data and distances between the non-contaminated
and contaminated estimates using the Huber (blue) and Hampel (green) loss functions and
the Dℓ

θ=1-metric when the sample size is even (left) and odd (right).

An analogue study has been performed for interval-valued data, the same con-
clusions arising from the outputs. However, as the details of the simulation studies
dealing with intervals have not been specified yet, it will not be presented here.

3.3 The 1-norm median for a random fuzzy number
The population and sample 1-norm median for random fuzzy numbers are defined
as follows:

Definition 3.3.1. Given a probability space (Ω,A, P ) and an associated random
fuzzy number X , the population 1-norm median(s) of X is the fuzzy number(s)

M̃e(X ) = arg min
Ũ∈Fc(R)

E
(
ρ1

(
X , Ũ

))
,

whenever these expectations exist.

Definition 3.3.2. Given a probability space (Ω,A, P ), an associated random fuzzy
number X , and a simple random sample (X1, . . . ,Xn) from X , the sample 1-norm
median(s) of X is(are) the fuzzy number-valued statistic(s)

̂̃
Me(X )n = arg min

Ũ∈Fc(R)

1

n

n∑
i=1

(
ρ1

(
Xi, Ũ

))
.

Two key questions at this stage are whether the 1-norm median exists and
whether it can be computed easily in practice. A result is first to be established
for the population measure. The result guarantees that at least one such median
always exists and it is rather easy to compute.
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Theorem 3.3.1. Given a probability space (Ω,A, P ) and an associated random fuzzy
number X , for any α ∈ [0, 1], the fuzzy number M̃e(X ) ∈ Fc(R) such that(

M̃e(X )
)
α
=
[
Me
(
inf Xα

)
,Me

(
supXα

)]
,

(where in case Me
(
inf Xα

)
or Me

(
supXα

)
are non-unique the most usual conven-

tion, in accordance with which Me
(
inf Xα

)
and Me

(
supXα

)
is chosen to be the

midpoint of the interval of medians of inf Xα and supXα, respectively, is considered)
is a population 1-norm median of X .

Proof. Indeed, on one hand whatever α ∈ [0, 1] may be, inf Ũα, sup Ũα ∈ R, and
inf Xα and supXα are real-valued random variables, so for all Ũ ∈ Fc(R) one has
that

E
[
| inf Xα −Me

(
inf Xα

)
|
]
≤ E

[
| inf Xα − inf Ũα|

]
,

E
[
| supXα −Me

(
supXα

)
|
]
≤ E

[
| supXα − sup Ũα|

]
,

whence
E
(
ρ1

(
X , Ũ

))
=

1

2

∫
[0,1]

E
[
| inf Xα − inf Ũα|

]
dℓ(α)

+
1

2

∫
[0,1]

E
[
| supXα − sup Ũα|

]
dℓ(α) ≥ 1

2

∫
[0,1]

E
[
| inf Xα −Me

(
inf Xα

)
|
]
dℓ(α)

+
1

2

∫
[0,1]

E
[
| supXα −Me

(
supXα

)
|
]
dℓ(α) = E

(
ρ1

(
X , M̃e(X )

))
.

On the other hand, intervals
[
Me
(
inf Xα

)
,Me

(
supXα

)]
correspond to the α-

levels of a fuzzy number, what can be proved by checking the sufficient conditions in
Proposition 1.1.3. Thus, for any α ∈ [0, 1] they are well-defined intervals, because of
the considered convention inf Xα ≤ supXα entails that Me

(
inf Xα

)
≤ Me

(
supXα

)
.

Moreover, Me
(
inf X1

)
≤ Me

(
supX1

)
ensures that the 1-level is nonempty.

Since inf Xα and supXα are non-decreasing and non-increasing functions of α,
respectively, then Me

(
inf Xα

)
and Me

(
supXα

)
are also non-decreasing and non-

increasing, respectively.
One should also verify that Me

(
inf Xα

)
and Me

(
supXα

)
are left-continuous at

every α ∈ (0, 1]. If {αn}n ↑ α ∈ (0, 1] as n → ∞, then for all element in Ω we have
that {inf Xαn}n ↑ inf Xα and because of the considered convention the sequence{
Me
(
inf Xαn

)}
n
↑ is bounded above, Me

(
inf Xα

)
being an upper bound. Hence,

a limit for this sequence exists and will be denoted by Lα = limn→∞Me
(
inf Xαn

)
≤ Me

(
inf Xα

)
.

Furthermore, Lα = Me
(
inf Xα

)
, since for all ω ∈ Ω we have that

0.5 ≤ P
(
inf Xαn ≤ Me

(
inf Xαn

))
≤ P (inf Xαn ≤ Lα)
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and {(
inf Xαn ≤ Lα

)}
n
↓

∞∩
n=1

(
inf Xαn ≤ Lα

)
=
(
inf Xα ≤ Lα

)
,

whence

P (inf Xα ≤ Lα) = P
(
lim
n→∞

(
inf Xαn ≤ Lα

))
= lim

n→∞
P
(
inf Xαn ≤ Lα

)
≥ 0.5.

Following similar arguments,

P (inf Xα < Lα) = P

(
∞∪
n=1

(
inf Xα < Me

(
inf Xαn

)))
= P

(
lim
n→∞

(
inf Xα < Me

(
inf Xαn

)))
= lim

n→∞
P
(
inf Xα < Me

(
inf Xαn

))
≤ lim

n→∞
P
(
inf Xαn < Me

(
inf Xαn

))
≤ 0.5.

Consequently, taking into account the considered convention, we have that Lα

≥ Me
(
inf Xα

)
and, therefore, Lα = Me

(
inf Xα

)
.

Analogously, if {αn}n ↑ α ∈ (0, 1] as n → ∞, it holds that {supXαn}n ↓ supXα

and the sequence
{
Me
(
supXαn

)}
n

↓ and it is bounded below by Me
(
supXα

)
so that there exists L′

α = limn→∞ Me
(
supXαn

)
and we can easily prove that L′

α

= Me
(
supXα

)
.

Finally, the right-continuity at 0 of Me
(
inf Xα

)
and Me

(
supXα

)
should be

proved. If {αn}n ↓ 0 as n → ∞, then for all element in Ω we have that {inf Xαn}n ↓
inf X0 and because of the considered convention the sequence

{
Me
(
inf Xαn

)}
n
↓ is

bounded below, Me
(
inf X0

)
being a lower bound. Hence, a limit for this sequence

exists and will be denoted by L0 = limn→∞ Me
(
inf Xαn

)
≥ Me

(
inf X0

)
. Further-

more, L0 = Me
(
inf X0

)
, since for all ω ∈ Ω we have that{(

inf Xαn < L0

)}
n
↑

∞∪
n=1

(
inf Xαn < L0

)
=
(
inf X0 < L0

)
,

whence

P (inf X0 < L0) = P
(
lim
n→∞

(
inf Xαn < L0

))
= lim

n→∞
P
(
inf Xαn < L0

)
≤ lim

n→∞
P
(
inf Xαn < Me

(
inf Xαn

))
≤ 0.5.

Following similar arguments,

P (inf X0 ≤ L0) = P

(
∞∩
n=1

(
inf X0 ≤ Me

(
inf Xαn

)))
= P

(
lim
n→∞

(
inf X0 ≤ Me

(
inf Xαn

)))
= lim

n→∞
P
(
inf X0 ≤ Me

(
inf Xαn

))
≥ lim

n→∞
P
(
inf Xαn ≤ Me

(
inf Xαn

))
≥ 0.5.

In an analogous way one can verify the right-continuity at 0 of Me
(
supXα

)
. �

Similarly, for the sample approach
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Theorem 3.3.2. Given a probability space (Ω,A, P ), an associated random fuzzy
number X , and a simple random sample (X1, . . . ,Xn) from X , the fuzzy number-
valued statistic (

̂̃
Me(X )n

)
α

=
[

̂Me(inf Xα)n,
̂Me(supXα)n

]
,

where ̂Me(inf Xα)n and ̂Me(supXα)n denote the sample medians of the corresponding
real-valued random variables and with a convention similar to that in Theorem 3.3.1,
is a sample 1-norm median.

Remark 3.3.1. It should be pointed out that with the convention in Theorems 3.3.1
and 3.3.2, it is easy to compute exactly a fuzzy numbered solution of Definitions 3.3.1
and 3.3.2, respectively. However, if we do not consider some valid conventions, then
the result can fail. That is, in case Me

(
inf Xα

)
or Me

(
supXα

)
are non-unique, there

are choices for them which do not determine a fuzzy number.

As a counterexample, consider the random fuzzy number X taking on the trian-
gular values x̃1 = Tri(0, 1, 2) and x̃2 = Tri(1, 2, 3) both with induced probabilities
P (X = x̃1) = P (X = x̃2) = 0.5; then, for α = 0.75 we have that Me

(
inf X0.75

)
is

any value in [0.75, 1.75], whereas Me
(
supX0.75

)
is any value in [1.25, 2.25], so that

some choices for the medians of inf X0.75 and supX0.75 would lead to empty α-levels.

To avoid an unnecessary cumbersome checking and to ease the study of the
properties of the median, from now on the population and sample 1-norm medians
will be assumed to be defined as the unique fuzzy number in Theorems 3.3.1 and
3.3.2, respectively.

Remark 3.3.2. In contrast to the median for random variables, the 1-norm median
of a random fuzzy number does not necessarily correspond to one of the values of the
random fuzzy number. As an example corroborating this assertion and illustrating
the computation of the median we can consider, for instance, the random fuzzy
number introduced in Example 3.2.1.

The corresponding 1-norm median can be trivially determined and it is given by
the fuzzy number in Figure 3.6 on the right, which does not coincide with any of the
three values of the random fuzzy number, and this is not affected by the convention
which has not been required in this example. In cases the 1-norm median cannot
be that easily obtained, it can be approximated by using a large number of levels,
following ideas similar to those by Trutschnig and Lubiano [202].
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Figure 3.6: Counterexample: the 1-norm median of a random fuzzy number,
even if uniquely valued, does not necessarily corresponds to a value the random
fuzzy number takes on

3.3.1 Basic properties of the 1-norm median
of a random fuzzy number

The 1-norm median of a random fuzzy number preserves most of the basic properties
of the median of a random variable, irrespective of the considered version being the
population or the sample one. Thus, on the basis of the results in Theorems 3.3.1
and 3.3.2, it can be straightforwardly proved that

Proposition 3.3.3. M̃e is equivariant under ‘linear’ transformations, that is, if
γ ∈ R, Ũ ∈ Fc(R) and X is a random fuzzy number, then

M̃e(γ · X + Ũ) = γ · M̃e(X ) + Ũ .

Consequently, if X is a random fuzzy number associated with the probability space
(Ω,A, P ) and the distribution of X is degenerate at a fuzzy number Ũ ∈ Fc(R) (i.e.,
X = Ũ a.s. [P ]), then M̃e(X ) = Ũ .

The median of a real-valued random variable is usually defined in two equivalent
ways, namely: either as a value minimizing the mean distance to the distribution of
the variable through an L1-type metric or as a ‘middle position’ value with respect to
a specified ranking. Although fuzzy numbers cannot be ranked through a universally
acceptable total ordering, it can be verified that the 1-norm median of a random
fuzzy number can be also formalized as a ‘middle position’ value with respect to the
fuzzy max partial order, whenever this order applies. The fuzzy max order on Fc(R)
was introduced by Dubois and Prade [60], and equivalent definitions were stated
by Ramík and Římánek [160] and more recently by Valvis [207]. It is the natural
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level-wise extension through the inf/sup representation of the product order on R2,
so that Ũ - Ṽ if and only if for all α, λ ∈ [0, 1] one has that

λ sup Ũα + (1− λ) inf Ũα ≤ λ sup Ṽα + (1− λ) inf Ṽα.

The main practical drawback for this ranking lies in the fact that it only leads to a
partial ordering and many fuzzy numbers cannot be compared with it. However, it
is often viewed as a widely accepted ranking criterion and as a pattern which should
be preserved for any other suggested partial or total ranking.

Proposition 3.3.4. For any sample or finite population (ω1, . . . , ωn) for which the
values of a random fuzzy number X satisfy that

X (ω1) - . . . - X (ωn)

we have that

• if n is odd, then
M̃e(X ) = X (ω(n+1)/2),

• if n is even, then
M̃e(X ) =

1

2
·
(
X (ωn/2 + X (ω(n/2)+1

)
.

Remark 3.3.3. It should be pointed out that alternate approaches to the median
extension could be stated in terms of total orderings on the space of fuzzy num-
bers, since one can state a notion of empirical or population distribution function.
Nevertheless, in addition of none of these rankings being universally accepted, the
formalization of the properties in this subsection and especially those in the next
one could be unfeasible.

Another interesting property in examining the adequacy of the 1-norm median for
random fuzzy numbers as a central tendency measure is now discussed by considering
their behaviour in case of symmetrically distributed random fuzzy numbers.

In the real-valued case a well-known result is that the median of a symmetric
random variable coincides with the point the variable is symmetric about whenever
it is unique. As for the Aumann-type mean, in case of considering random fuzzy
numbers and the 1-norm median this assertion should be slightly modified, due to
the involved fuzziness. Thus, the 1-norm median shows a suitable central tendency
behaviour since it leads to a fuzzy number which is symmetric about the symmetry
point. Moreover, this measure neither necessarily coincides nor corresponds to any
of the values the random fuzzy number takes on. Thus,
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Proposition 3.3.5. Let (Ω,A, P ) be a probability space, and let X be a symmetric
random fuzzy number about c ∈ R. Then, the 1-norm median of X is a symmetric
fuzzy number about c.

Proof. Since X d
= 2c − X , then M̃e(X ) = M̃e(2c − X ), whence because of the

equivariance properties of M̃e under affine transformations, we have that

M̃e(X ) = 2c− M̃e(X ).

By adding M̃e(X ) to the two members in the last equality, 2 M̃e(X ) = 2c+ M̃e(X )

− M̃e(X ) and, hence,

M̃e(X ) = c+
1

2
· OM̃e(X ),

whence for each α ∈ [0, 1](
M̃e(X )

)
α
=
[
c− spr

(
M̃e(X )

)
α
, c+ spr

(
M̃e(X )

)
α

]
,

which leads to a symmetric fuzzy number about c. �

The result in Proposition 3.3.5 is now illustrated by computing the two 1-norm
medians of the symmetric random fuzzy numbers in Examples 1.4.3 and 1.4.4.

Example 3.3.1. To compute the 1-norm median of the symmetric random fuzzy
number about 0.5 in Example 1.4.3 (p. 47) we should take into account that

label VD D SD N SA A VA

absol. freq. 38 143 207 177 207 143 38

infα 0 α
6

α+1
6

α+2
6

α+3
6

α+4
6

α+5
6

supα
1−α
6

2−α
6

3−α
6

4−α
6

5−α
6

6−α
6 1

whence, by developing a comparison of the values in each row as a function of α,
one can easily conclude that

M̃e(X ) = N.

To compute the 1-norm median of the symmetric random fuzzy number about 2
in Example 1.4.4 (p. 49) we should take into account that

label γ(2)(0) γ(2)(1) γ(2)(2) γ(2)(3) γ(2)(4)

probab. .0625 .25 .375 .25 .0625

infα − 3
√
1− α 1−

√
1− α 1 + α 3− (1− α)2 4− (1− α)3

supα (1− α)3 1 + (1− α)2 3− α 3 +
√
1− α 4 + 3

√
1− α
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whence, by developing a comparison of the values in each row as a function of α for
the 1-norm median, one can easily conclude that M̃e(X ) = γ(2)(2).

Consequently, one can assert that for symmetric random fuzzy numbers about c,
both the Aumann-type mean and the 1-norm median are symmetric fuzzy numbers
about c, but they do not necessarily coincide even if it is unique.

Examples 1.4.3, 1.4.4 and 3.3.1 show that the Aumann-type mean is not neces-
sarily a value of the symmetric random fuzzy number, even in case the number of
different values is an odd one, and the same happens (although not that frequently)
with the 1-norm median. Anyway, the examined examples make us think that the
behaviour of the 1-norm median seems to be closer to that of the real-valued case
than the behaviour of the mean value. An empirical discussion on this point is now
carried out.

Thus, in measuring the central tendency for symmetric random fuzzy numbers
the 1-norm median behaves in a more suitable and advisable way than the Aumann-
type mean. In addition to provide us with more robust estimates than the mean
(as it will be seen in the next subsection), the 1-norm median also leads to a fuzzy
value which is closer to the one which occupies the ‘central position’.

To illustrate this assertion we have considered three different random fuzzy num-
bers that are symmetric about 0, assumption made for the sake of simplicity and
unification although not being relevant.

These symmetric random fuzzy numbers have been obtained by composing the
aforementioned characterizing fuzzy representation (González-Rodríguez et al. [89])
given by

(
γ(0)(x)

)
α
=


[
x− (1− α)1+x, x+ (1− α)1/(1+x)

]
if x ≥ 0

[
x− (1− α)1/(1−x), x+ (1− α)1−x

]
if x < 0

with three symmetric real-valued random variables: a standard normal X ∼ N (0, 1);
a uniform X ∼ Uniform(−0.5, 0.5); and a translated binomial X ∼ Bin(5, 0.5)−2.5.

The (population) 1-norm median and Aumann-type mean of each of the random
fuzzy numbers γ(0) ◦X are now graphically displayed in Figures 3.7-3.9.

Figure 3.7 shows that when the considered random fuzzy number is γ(0)◦N (0, 1),
then the 1-norm median coincides with the central position value, whereas the
Aumann-type mean is not that close.

Analogously, Figure 3.8 shows that when the considered random fuzzy number is
γ(0)◦Uniform(−0.5, 0.5), then the 1-norm median coincides with the central position
value, whereas the Aumann-type mean is not that close.
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Figure 3.7: Aumann-type mean and 1-norm median
Me = γ(0)(0) of the random fuzzy number γ(0) ◦N (0, 1)

Figure 3.8: Aumann-type mean and 1-norm median Me = γ(0)(0)

of the random fuzzy number γ(0) ◦Uniform(−0.5, 0.5)

Remark 3.3.4. It should be emphasized that the coincidence M̃e
(
γ(0)◦X) = γ(0)(0)

is not at all casual. Whenever X has a either a symmetric continuous distribution
or a discrete one with an odd number of distinct values, then the equality holds.
This is due to the fact that both inf(γ(0) ◦ X)α and sup(γ(0) ◦ X)α are strictly
increasing functions of X, whence for each α ∈ [0, 1] we have that Me

(
inf(γ(0)◦X)α

)
= inf

(
γ(0)(0)

)
α

and Me
(
sup(γ(0) ◦X)α

)
= sup

(
γ(0)(0)

)
α
.

The above-mentioned coincidence does not hold in general when the number of
distinct values of X is even. In such a case, we cannot properly talk about ‘central
position’ and conventions should be made, so the use of γ(0)(0) as the central position
value is not completely fair. Anyway, it serves us to illustrate that the behaviour of
the 1-norm median in contrast to that of the mean is preserved.
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Figure 3.9: Aumann-type mean and 1-norm median of
the random fuzzy number (Me) of the random fuzzy number
γ(0) ◦ [Bin(5, 0.5)− 2.5], and comparison with γ(0)(0)

In this way, Figure 3.9 shows the scenario when the considered random fuzzy
number is γ(0) ◦ [Bin(5, 0.5)− 2.5], a random fuzzy number symmetric about 0 and
taking on 6 different values. In this case, the 1-norm median is very close to γ(0)(0)

(which does not exactly correspond to a central position) but the Aumann-type
mean is not very close to it.

3.3.2 Consistency and robustness of the sample
1-norm median and comparisons with the sample mean

The inferential behaviour of the 1-norm median of a random fuzzy number is now
to be analyzed. In this respect, the ρ1-strong consistency and the finite sample
breakdown point to examine its robustness are to be discussed.

As for the real-valued case, under rather mild conditions the sample median is
shown to be a strongly consistent estimator of the population median, that is,

Theorem 3.3.6. Let X be a random fuzzy number associated with a probability
space (Ω,A, P ) satisfying that for each α ∈ [0, 1] the real-valued population medians
Me
(
inf Xα

)
and Me

(
supXα

)
exist and they are actually unique (i.e., they are unique

without applying the convention in Theorem 3.3.1).

If ̂̃
Me(X )n denotes the sample median corresponding to a simple random sam-

ple (X1, . . . ,Xn) from X , and the two sequences of the real-valued sample medians{ ̂Me(inf Xα)n
}
n

and
{ ̂Me(supXα)n

}
n

as functions of α over [0, 1] are both uniformly

integrable, then ̂̃
Me(X )n is a strongly consistent estimator of M̃e(X ) in ρ1-sense
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(and hence in the sense of all the topologically equivalent metrics), i.e.

lim
n→∞

ρ1

(̂̃
Me(X )n, M̃e(X )

)
= 0 a.s. [P ].

Proof. Indeed,

P

(
lim
n→∞

ρ1

(̂̃
Me(X )n, M̃e(X )

)
= 0

)

= P

(
lim
n→∞

(
1

2

∫
[0,1]

| ̂Me(inf Xα)n −Me(inf Xα)| dℓ(α)

+
1

2

∫
[0,1]

| ̂Me(supXα)n −Me(supXα)| dℓ(α)
)

= 0

)

= P

((
lim
n→∞

∫
[0,1]

| ̂Me(inf Xα)n −Me(inf Xα)| dℓ(α) = 0

)
∩(

lim
n→∞

∫
[0,1]

| ̂Me(supXα)n −Me(supXα)| dℓ(α) = 0

))
Under the assumption of uniqueness for the median of inf Xα, the sample median

is a strongly consistent estimator of the population median, and hence

P
(
lim
n→∞

(
̂Me(inf Xα)n −Me(inf Xα)

)
= 0
)
= 1.

On the other hand, assumptions for ̂Me(inf Xα)n and Me
(
inf Xα

)
guarantee that

conditions to apply Vitali’s Convergence Theorem are fulfilled, whence

P

((
lim
n→∞

∫
[0,1]

| ̂Me(inf Xα)n −Me(inf Xα)| dℓ(α) = 0

))
= 1.

By following similar arguments, one can prove that

P

((
lim
n→∞

∫
[0,1]

| ̂Me(supXα)n −Me(supXα)| dℓ(α) = 0

))
= 1.

Consequently,

P

(
lim
n→∞

ρ1

(̂̃
Me(X )n, M̃e(X )

)
= 0

)
= 1. �

Remark 3.3.5. Assumptions in Theorem 3.3.6 are not very restrictive in practice,
since many real-life conditions accomplish them. In this respect, a very common sit-
uation involves random fuzzy sets which are bounded (more concretely, their 0-level
mappings are bounded random variables), so the conclusions from Theorem 3.3.6
would directly apply.
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CASE 1 CASE 2

cP cD ρ1 ρ2 ρ1 ρ2

0 0 1.386439 1.552950 0.827758 1.032440

0.1 0 1.392037 1.564486 0.827719 1.031691
0.1 1 1.393240 1.569681 0.828281 1.037552
0.1 5 1.394710 1.566279 0.829544 1.043102
0.1 10 1.395252 1.568843 0.829840 1.044393
0.1 100 1.395479 1.569227 0.829921 1.045329

0.2 0 1.413077 1.593075 0.827801 1.030994
0.2 1 1.421773 1.602914 0.829706 1.043201
0.2 5 1.431524 1.615051 0.836509 1.056944
0.2 10 1.433923 1.617811 0.837271 1.058855
0.2 100 1.434000 1.617947 0.837488 1.061132

0.4 0 1.558658 1.759157 0.827868 1.028484
0.4 1 1.659079 1.865478 0.840436 1.061503
0.4 5 1.795391 2.014625 0.897220 1.124580
0.4 10 1.862582 2.092274 0.907626 1.138088
0.4 100 1.873241 2.101532 0.909834 1.142909

Table 3.3: Mean distances of the mixed (partially contaminated and non-contaminated)
sample 1-norm median to the non-contaminated distribution of a random fuzzy number

The comparative robustness of the sample 1-norm median of a random fuzzy
number as an estimator of the population median, in contrast to that of the sample
mean of a random fuzzy number as an estimator of the population mean, is now to
be discussed.

Before presenting a formal discussion and comparison, the first simulations in
Section 1.5 (p. 54) when the mean is replaced by the 1-norm median are to be
analyzed. To determine the effect of the contamination on the median of the random
fuzzy number X , the mean distance between the non-contaminated ‘distribution’
and the Monte Carlo approximated 1-norm median is collected in Table 3.3 for
the different values of cp and CD and CASES 1 and 2. Contrary to the results in
Section 1.5, the results in Table 3.3 show that the expected distance between the
non-contaminated distribution and the sample median only slightly changes when
the amount of contamination is increased, even when the contamination lies far from
the non-contaminated distribution.

The analysis of the robustness of the 1-norm median in comparison to the mean
is now made through the finite sample breakdown point, quantifying the minimum
proportion of sample data which should be perturbed to get an arbitrarily large or
small estimator value. Following Donoho and Huber [59], the fsbp of the sample
median in a sample of size n from a random fuzzy number X is given by

fsbp(
̂̃
Me(X )n, x̃n,ρ1)
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=
1

n
min

{
k ∈ {1, . . . , n} : sup

Qn,k

ρ1(
̂̃
Me(Pn),

̂̃
Me(Qn,k)) = ∞

}
,

where x̃n denotes the considered sample of n data from the metric space (Fc(R),ρ1)

in which supŨ ,Ṽ ∈Fc(R) ρ1(Ũ , Ṽ ) = ∞, Pn is the empirical distribution of x̃n and Qn,k

is the empirical distribution of sample ỹn,k obtained from the original one x̃n by
perturbing at most k components. Then, we have that

Proposition 3.3.7. The finite sample breakdown point of the sample 1-norm median

from a random fuzzy number X , fsbp
(̂̃
Me(X )n, x̃n,ρ1

)
, equals

fsbp
(̂̃
Me(X )n, x̃n,ρ1

)
=

1

n
· ⌊n+ 1

2
⌋,

where ⌊·⌋ denotes the floor function.

Proof. First note that the condition supŨ ,Ṽ ∈Fc(R) ρ1(Ũ , Ṽ ) = ∞ is satisfied in this
case, since ρ1

(
1[n−1,n+1],1[−n−1,−n+1]

)
= 2n.

Furthermore,

ρ1(
̂̃
Me(Pn), ˜̂Me(Qn,k)) ≥

∫
[0,1]

1

2
· | inf

( ̂̃
Me(Pn)

)
α
− inf

( ̂
M̃e(Qn,k)

)
α
| dℓ(α)

=

∫
[0,1]

1

2
· | ̂Me

(
inf(Pn)α

)
− ̂Me

(
inf(Qn,k)α

)
| dℓ(α).

Therefore, by recalling the fsbp for the sample median of a real-valued random
variable, one can conclude that whenever at least ⌊n+1

2
⌋ elements x̃i ∈ Fc(R) of x̃n

are replaced by other arbitrarily ‘large’ elements in Fc(R) so that

sup
Qn,k

∫
[0,1]

1

2
· | ̂Me

(
inf(Pn)α

)
− ̂Me

(
inf(Qn,k)α

)
| dℓ(α) = ∞,

we have that
sup
Qn,k

ρ1(
̂̃
Me(Pn),

̂̃
Me(Qn,k))

≥ 1

2
· sup
Qn,k

∫
[0,1]

1

2
· | ̂Me

(
inf(Pn)α

)
− ̂Me

(
inf(Qn,k)α

)
| dℓ(α) = ∞,

whence
fsbp(

̂̃
Me(X )n, x̃n,ρ1) ≤

1

n
· ⌊n+ 1

2
⌋.

On the other hand, by using the fsbp for the sample median of a real-valued
random variable, we have that for all α

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me
(
inf(Pn)α

)
− ̂Me

(
inf(Qn,k)α

)
| = ∞

}
= ⌊n+ 1

2
⌋,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me
(
sup(Pn)α

)
− ̂Me

(
sup(Qn,k)α

)
| = ∞

}
= ⌊n+ 1

2
⌋,
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whence

sup
Q

n,⌊n+1
2 ⌋−1

| ̂Me
(
inf(Pn)α

)
− ̂Me

(
inf(Qn,⌊n+1

2
⌋−1)α

)
| = M1 < ∞,

sup
Q

n,⌊n+1
2 ⌋−1

| ̂Me
(
sup(Pn)α

)
− ̂Me

(
sup(Qn,⌊n+1

2
⌋−1)α

)
| = M2 < ∞,

and therefore
sup

Q
n,⌊n+1

2 ⌋−1

ρ1(
̂̃
Me(Pn),

̂
M̃e(Qn,⌊n+1

2
⌋−1))

= sup
Q

n,⌊n+1
2 ⌋−1

[
1

2

∫
[0,1]

| ̂Me
(
inf(Pn)α

)
− ̂Me

(
inf(Qn,⌊n+1

2
⌋−1)α

)
| dℓ(α)

+
1

2

∫
[0,1]

| ̂Me
(
inf(Pn)α

)
− ̂Me

(
inf(Qn,⌊n+1

2
⌋−1)α

)
| dℓ(α)

]
≤ M1 +M2

2
< ∞.

Consequently,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

ρ1(
̂̃
Me(Pn),

̂̃
Me(Qn,k)) = ∞

}
> ⌊n+ 1

2
⌋ − 1,

whence

fsbp(
̂̃
Me(X )n, x̃n,ρ1) ≥

1

n
·⌊n+ 1

2
⌋. �

The following result formalizes the comparison of the robustness of the sample
1-norm median and the sample mean of a random fuzzy number. Thus,

Theorem 3.3.8. The finite sample breakdown point of the sample mean from a
random fuzzy number X , fsbp

(
Xn

)
, is lower than that for the sample median for

sample sizes n > 2.

Proof. Indeed, by arguing like for the preceding proposition we have that

fsbp(Xn, x̃n,ρ1) =
1

n
,

and, consequently,

fsbp(
̂̃
Me(X )n, x̃n,ρ1) ≥

n/2

n
=

1

2
>

1

n
= fsbp(Xn, x̃n,ρ1). �

The sample mean has the lowest possible breakdown point while the sample
median can withstand up to 50% of contamination. This huge difference can be also
stressed in the fuzzy case. It means that the definition of fuzzy median in this paper
succeeds in inheriting the robustness properties of the real valued sample median.
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The theoretical conclusion in Theorem 3.3.8 can be corroborated empirically by
analyzing the simulations in Section 1.5 and those in Table 3.3. Moreover, and on
the basis of these simulations an additional table has been constructed.

Table 3.4 gathers empirical results for the influence of contamination on both
the sample mean and 1-norm median, by computing the distances between the
mean/median of the non-contaminated sample and the mean/median of the con-
taminated sample, respectively, for the different values of cp and CD and the CASES
1 and 2 in Tables 1.2 and 3.3.

CASE 1 CASE 2

mean 1-norm median mean 1-norm median

cP cD ρ1 ρ2 ρ1 ρ2 ρ1 ρ2 ρ1 ρ2

0.0 0 0.004850 0.005446 0.004936 0.005688 0.002796 0.003035 0.001443 0.001726
0.1 0 0.334582 0.340882 0.139385 0.141140 0.011580 0.012257 0.002781 0.003251
0.1 1 0.444295 0.457775 0.153509 0.156870 0.107663 0.120268 0.019206 0.021525
0.1 5 0.901119 0.965272 0.169022 0.179650 0.576996 0.641559 0.040033 0.044311
0.1 10 1.485318 1.614466 0.172593 0.184649 1.177204 1.306176 0.042455 0.046530
0.1 100 12.147356 13.479923 0.175099 0.186307 11.806141 13.156037 0.042852 0.046511
0.2 0 0.668190 0.680722 0.309054 0.313257 0.022772 0.023612 0.005022 0.005626
0.2 1 0.897204 0.924358 0.352139 0.360181 0.216280 0.241804 0.040727 0.045634
0.2 5 1.830108 1.952914 0.398174 0.423064 1.152823 1.283131 0.085405 0.095957
0.2 10 3.010209 3.261031 0.409606 0.436820 2.319878 2.579237 0.090404 0.100944
0.2 100 24.129091 26.793580 0.407285 0.436193 23.572994 26.292482 0.091153 0.100430
0.4 0 1.339551 1.364644 0.806692 0.821507 0.045481 0.046735 0.012593 0.013589
0.4 1 1.821615 1.874279 1.025370 1.052681 0.436245 0.485976 0.100506 0.114768
0.4 5 3.606433 3.860446 1.260487 1.360074 2.290189 2.551476 0.244459 0.271295
0.4 10 5.964314 6.470993 1.374637 1.499189 4.616273 5.133452 0.263837 0.291161
0.4 100 48.697644 54.170428 1.396510 1.515434 46.673034 51.856741 0.267270 0.289860

Table 3.4: Distances between the sample mixed (partially contaminated and non-
contaminated) mean/1-norm median to the non-contaminated one for a random fuzzy number

On the basis of these simulations and by comparing the results in Tables 1.2 and
Table 3.3, and the results in Table 3.4, one can empirically conclude that

• for a fixed level of contamination cP , the farther the contaminated distribution
from the non-contaminated one, the substantially greater mean ρ2-distance be-
tween the approximated mean and the non-contaminated distribution, whereas
for the approximated 1-norm median the increase is modest; actually this mean
distance asymptotically would only depend on a certain fractile of the non-
contaminated distribution;

• for a fixed level of contamination cP , the farther the contaminated distribution
from the non-contaminated one, the substantially greater distance between
the contaminated and the non-contaminated means, whereas for the 1-norm
medians the increase is not really substantial.
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To conclude this section, three remarks should be made. The first one relates
to the fact that replacing ρ1 by ρφ

1 does not affect the minimization problem in
this section. The second and the third concern the particularization of the 1-norm
median to the interval-valued case and its extension to the fuzzy vector-valued case,
respectively.

Remark 3.3.6. The minimization problem and solutions in Definitions 3.3.1 and
Theorems 3.3.1 and 3.3.2 would remain clearly invariant if one replaces ρ1 by ρφ

1 .

Remark 3.3.7. All the notions and results in this section can be trivially particu-
larized to the interval-valued case, so that the 1-norm median of a random interval
X is given by the interval value [Me(inf X),Me(supX)].

Remark 3.3.8. The extension of the 1-norm median to the fuzzy vector-valued
case cannot be made by extending arguments in Theorem 3.3.1. In other words, by
using ρ1 defined on Fc(Rp) on the basis of the support function and for a random
fuzzy set X , if one attempts to define M̃e(X ) as the value in Fc(Rp) such that

sM̃e(X )(α,u) = Me(sX (α,u))

for all α ∈ [0, 1] and u ∈ Sp−1, this is not right in general since this real-valued
median does not necessarily determine the support function of a fuzzy set. Reasons
for the last assertion lie in the fact that, whereas the median of a real-valued random
variable preserves monotonicity and continuity, and hence necessary and sufficient
conditions characterizing fuzzy numbers by means of the inf/sup representation
(see Theorem 3.3.1), it does not preserve subadditivity, so that the necessary and
sufficient conditions characterizing fuzzy set values by means of the support function
(Proposition 1.1.2) are not generally fulfilled.

3.4 The φ-wabl/ldev/rdev median
for a random fuzzy number

One of the main advantages of the 1-norm median in practice is that it can be
computed on the basis of the medians of certain real-valued random variables. This
makes computations rather easy-to-perform and, mainly, easy to implementing and
programming in R or others. At this point, we should indicate that when the involved
L1 metric is replaced by other ones, the minimization problem can become a very
difficult task, and often infeasible at least to get the exact solution.
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In this section an L1 metric based on another representation of fuzzy numbers
for which there exists a set of sufficient conditions characterizing them is to be
considered for purposes similar to those in the preceding section. This L1 metric
extends Hausdorff’s one from the interval to the fuzzy number-valued case and
corresponds to Dφ

θ introduced in Definition 1.3.8.
The population and sample φ-wabl/ldev/rdev median for random fuzzy numbers

are defined as follows:

Definition 3.4.1. Given a probability space (Ω,A, P ), an absolutely continuous
probability measure φ on the measurable space ([0, 1],B[0,1]) with positive mass func-
tion on (0, 1), and an associated random fuzzy number X , the population φ-
wabl/ldev/rdev median(s) of X is the fuzzy number(s)

M̃φ(X ) = arg min
Ũ∈Fc(R)

E
(
Dφ

1

(
X , Ũ

))
,

whenever these expectations exist.

Definition 3.4.2. Given a probability space (Ω,A, P ), an absolutely continuous
probability measure φ on the measurable space ([0, 1],B[0,1]) with positive mass func-
tion on (0, 1), an associated random fuzzy number X , and a simple random sample
(X1, . . . ,Xn) from X , the sample φ-wabl/ldev/rdev median(s) of X is(are) the
fuzzy number-valued statistic(s)

̂̃
Mφ(X )n = arg min

Ũ∈Fc(R)

1

n

n∑
i=1

(
Dφ

1

(
Xi, Ũ

))
.

As for the 1-norm median, two key questions at this stage are whether the φ-
wabl/ldev/rdev median exists and whether it can be computed easily in practice. A
result is first to be established for the population measure. The result guarantees
that at least one such median always exists and it is easy to compute.

Theorem 3.4.1. Given a probability space (Ω,A, P ), an absolutely continuous prob-
ability measure φ on the measurable space ([0, 1],B[0,1]) with positive mass function
on (0, 1), and an associated random fuzzy number X , for any α ∈ [0, 1], the fuzzy
number M̃φ(X ) ∈ Fc(R) such that(
M̃φ(X )

)
α
=
[
Me
(
wablφ(X )

)
−Me

(
ldevφX (α)

)
,Me

(
wablφ(X )

)
+Me

(
rdevφX (α)

)]
,

(where in case Me
(
wablφ(X )

)
, Me

(
ldevφX (α)

)
or Me

(
rdevφX (α)

)
are non-unique the

most usual convention, in accordance with which these real-valued median(s) are
chosen to be the midpoint of the interval of medians of is considered) is a population
φ-wabl/ldev/rdev median of X .
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Proof. Indeed, on one hand, whatever α ∈ [0, 1] and Ũ ∈ Fc(R) may be, since
ldevφ

Ũ
(α), rdevφ

Ũ
(α),wablφ(Ũ) ∈ R, and ldevφX (α), rdev

φ
X (α), and wablφ(X ) are real-

valued random variables, we have that

E
[
|ldevφX (α)−Me

(
ldevφX (α)

)
|
]
≤ E

[
|ldevφX (α)− ldevφ

Ũ
(α)|

]
,

E
[
|rdevφX (α)−Me

(
rdevφX (α)

)
|
]
≤ E

[
|rdevφX (α)− rdevφ

Ũ
(α)|

]
,

E
[
|wablφ(X )−Me

(
wablφ(X )

)
|
]
≤ E

[
|wablφ(X )− wablφ(Ũ)|

]
,

whence
E
(
Dφ

1

(
X , Ũ

))
≥ E

(
Dφ

1

(
X , M̃φ(X )

))
.

On the other hand, M̃φ(X ) ∈ Fc(R) since it satisfies the three conditions in
Proposition 1.1.4 (p. 8) as one can see now.

Regarding Condition i) in Proposition 1.1.4, over all Ω we have that ldevφX (α) and
rdevφX (α) are non-increasing functions of α in [0, 1] whence, because of the considered
convention, Me(ldevφX (α)) and Me(rdevφX (α)) are non-increasing functions of α in
[0, 1].

Furthermore, functions Me(ldevφX (α)) and Me(rdevφX (α)) are left-continuous at
every α ∈ (0, 1]. Indeed, if {αn}n ↑ α ∈ (0, 1] as n → ∞, then for all element
in Ω we have that {ldevφX (αn)}n ↓ ldevφX (α) and because of the considered con-
vention the sequence

{
Me
(
ldevφX (αn)

)}
n
↓ is bounded below, Me

(
ldevφX (α)

)
be-

ing a lower bound. Hence, a limit for this sequence exists and will be denoted
by Lφ

α = limn→∞Me
(
ldevφX (αn)

)
≥ Me

(
ldevXα

)
. Actually, one can prove that

Lφ
α = Me

(
ldevφX (α)

)
, since for all ω ∈ Ω we have that

0.5 ≤ P
(
ldevφX (αn) ≥ Me

(
ldevφX (αn)

))
≤ P

(
ldevφX (αn) ≤ Lφ

α

)
and {(

ldevφX (αn) ≥ Lφ
α

)}
n
↓

∞∩
n=1

(
ldevφX (αn) ≥ Lφ

α

)
=
(
ldevφX (α) ≥ Lφ

α

)
,

whence
P
(
ldevφX (α) ≥ Lφ

α

)
= P

(
lim
n→∞

(
ldevφX (αn) ≥ Lφ

α

))
= lim

n→∞
P
(
ldevφX ≥ Lφ

α

)
≥ 0.5.

Following similar arguments,

P
(
ldevφX (α) > Lφ

α

)
= P

(
∞∪
n=1

(
ldevφX (α) > Me

(
ldevφX (αn)

)))
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= P

(
lim
n→∞

(
ldevφX (α) > Me

(
ldevφX (αn)

)))
= lim

n→∞
P
(
ldevφX (α) > Me

(
ldevφX (αn)

))
≤ lim

n→∞
P
(
ldevφX (αn) > Me

(
ldevφX (αn)

))
≤ 0.5.

Consequently, taking into account the considered convention, we have that Lφ
α

= Me
(
ldevφX (α)

)
.

Analogously, if {αn}n ↑ α ∈ (0, 1] as n → ∞, it holds that {rdevφX (αn)}n
↓ rdevφX (α) and the sequence

{
Me
(
rdevφX (αn)

)}
n
↓ and it is bounded below by

Me
(
rdevφX (α)

)
, so that there exists L′φ

α = limn→∞ Me
(
rdevφX (αn)

)
and we can easily

prove that L
′φ
α = Me

(
rdevφX (α)

)
.

The right-continuity at 0 of both, Me(ldevφX (α)) and Me(rdevφX (α)), can be
proved by following similar arguments.

Condition ii) holds, since −ldevφX (1) ≤ rdevφX (1) over all Ω whence, because of
the considered convention, one can guarantee that

−ldevφ
M̃φ(X )

(1) = Me(−ldevφX (1)) ≤ Me(rdevφX (1)) = rdevφ
M̃φ(X )

(1).

Finally,∫
[0,1]

ldevφ
M̃φ(X )

(α) dφ(α) =

∫
[0,1]

Me(ldevφX (α)) + Me(rdevφX (α))

2
dφ(α)

=

∫
[0,1]

rdevφ
M̃φ(X )

(α) dφ(α),

whence Condition iii) is clearly fulfilled. �

Similarly, for the sample approach

Theorem 3.4.2. Given a probability space (Ω,A, P ), an absolutely continuous prob-
ability measure φ on the measurable space ([0, 1],B[0,1]) with positive mass func-
tion on (0, 1), an associated random fuzzy number X , and a simple random sample
(X1, . . . ,Xn) from X , the fuzzy number-valued statistic such that for each α ∈ [0, 1]( ˜̂Mφ(X )n

)
α

=
[

̂Me(wablφX )n − ̂Me(ldevφX (α))n,
̂Me(wablφX )n + ̂Me(rdevφX (α))n

]
,

where M̂e(·) denotes the sample median of the corresponding real-valued random
variable and makes use of a convention similar to that in Theorem 3.4.1, is a sample
φ-wabl/ldev/rdev-median of X .

Remark 3.4.1. It should be emphasized that the φ-wabl/ldev/rdev median has
been introduced, and results in Theorems 3.4.1 and 3.4.2 have been developed, on
the basis of the L1 metric Dφ

θ when θ = 1. However, the conclusions and proofs in
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Theorems 3.4.1 and 3.4.2 do not depend at all of such a choice, in the same way
that the Aumann-type mean value of a random fuzzy number does not depend on
the possible weight θ of the considered L2 metrics. Of course, they depend on the
choice of φ, as will be illustrated in the second part of Example 3.4.1.

Remark 3.4.2. As for the 1-norm median, the wabl/ldev/rdev ones is not neces-
sarily a value the random fuzzy number takes on, even when we don’t need to make
use of the convention. As an example corroborating this assertion and illustrating
the computation of the median we can consider, the situation in Example 3.2.1 (see
Figure 3.10 on the left) with the induced probabilities equal to 1/3.

Figure 3.10: Counterexample: the φ-wabl/ldev/rdev median of a
random fuzzy number, even if uniquely valued, does not necessarily
corresponds to a value the random fuzzy number takes on

The corresponding ℓ-wabl/ldev/rdev can be trivially determined and it is given
by the fuzzy number in Figure 3.10 on the right, which does not coincide with any
of the three values of the random fuzzy number, and this is not affected by the con-
vention which has not been required in this example. In cases the φ-wabl/ldev/rdev
median cannot be immediately derived, it can be approximated by using a large
number of levels.

3.4.1 Basic properties of the φ-wabl/ldev/rdev median
of a random fuzzy number

The φ-wabl/ldev/rdev median of a random fuzzy number preserves most of the
basic properties of the median of a random variable, irrespective of the considered
version being the population or the sample one. Thus, on the basis of the results in
Theorems 3.4.1 and 3.4.2, it can be straightforwardly proved that
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Proposition 3.4.3. M̃φ is equivariant under ‘linear’ transformations, that is, if
γ ∈ R, Ũ ∈ Fc(R) and X is a random fuzzy number, then

M̃φ(γ · X + Ũ) = γ · M̃φ(X ) + Ũ .

Consequently, if X is a random fuzzy number associated with the probability space
(Ω,A, P ) and the distribution of X is degenerate at a fuzzy number Ũ ∈ Fc(R) (i.e.,
X = Ũ a.s. [P ]), then M̃φ(X ) = Ũ .

Remark 3.4.3. The φ-wabl/ldev/rdev median of a random fuzzy number cannot be
formalized as a ‘middle position’ value with respect to the fuzzy max partial order.
Actually, although one can find a partial orderings w.r.t. which a property similar
to that in Proposition 3.3.4 holds for the φ-wabl/ldev/rdev median, it is not as sim-
ple and easy-to-interpret as the fuzzy max one. In this way, the φ-wabl/ldev/rdev
median can be formalized as a ‘middle position’ value with respect to the partial
ordering which is the level-wise extension through the φ-wabl/ldev/rdev representa-
tion of the product order on R3, so that Ũ -wlr Ṽ if and only if wablφ(Ũ) ≤ wablφ(Ṽ )

and for all α ∈ [0, 1] one has that ldevφ
Ũ
(α) ≤ ldevφ

Ṽ
(α), rdevφ

Ũ
(α) ≤ rdevφ

Ṽ
(α) (or

the two last inequalities are just the opposite simultaneously).

Another interesting property in examining the adequacy of the φ-wabl/ldev/rdev
median for random fuzzy numbers as a central tendency measure is now discussed
by considering their behaviour in case of symmetrically distributed random fuzzy
numbers. As for the 1-norm median, the φ-wabl/ldev/rdev median shows a suitable
central tendency behaviour since it leads to a fuzzy number which is symmetric
about the symmetry point. Moreover, this measure neither necessarily coincides nor
corresponds to any of the values the random fuzzy number takes on. Thus,

Proposition 3.4.4. Let (Ω,A, P ) be a probability space, φ be an absolutely con-
tinuous probability measure on the measurable space ([0, 1],B[0,1]) with positive mass
function on (0, 1), and let X be a symmetric random fuzzy number about c ∈ R.
Then, the φ-wabl/ldev/rdev median of X is a symmetric fuzzy number about c.

Proof. Since X d
= 2c − X , then M̃φ(X ) = M̃φ(2c − X ), whence because of the

equivariance properties of M̃φ under affine transformations, we have that

M̃φ(X ) = 2c− M̃φ(X ).

By adding M̃φ(X ) to the two members in the last equality, 2 M̃φ(X ) = 2c+ M̃φ(X )−
M̃φ(X ) and, hence,

M̃φ(X ) = c+
1

2
· OM̃φ(X ),
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whence for each α ∈ [0, 1](
M̃φ(X )

)
α
=
[
c− spr

(
M̃φ(X )

)
α
, c+ spr

(
M̃φ(X )

)
α

]
,

which leads to a symmetric fuzzy number about c. �

The result in Proposition 3.4.4 is now illustrated by computing the two ℓ-
wabl/ldev/rdev medians of the symmetric random fuzzy numbers in Examples 1.4.3
and 1.4.4.

Example 3.4.1. To compute the ℓ-wabl/ldev/rdev median of the symmetric ran-
dom fuzzy number about 0.5 in Example 1.4.3 (see also Example 3.3.1, p. 130) we
should take into account that

label VD D SD N SA A VA

absol. freq. 38 143 207 177 207 143 38

wablℓ 1/24 4/24 8/24 12/24 16/24 20/24 23/24

ldevℓ(α) 1/24 (1− α)/6 (1− α)/6 (1− α)/6 (1− α)/6 (1− α)/6 (3− 4α)/24

rdevℓ(α) (3− 4α)/24 (1− α)/6 (1− α)/6 (1− α)/6 (1− α)/6 (1− α)/6 1/24

whence, by developing a comparison of the values in each row as a function of α,
one can easily conclude that

M̃ℓ(X ) = N.

To compute the ℓ-wabl/ldev/rdev and the φ ≡ β(1, 500)-wabl/ldev/rdev me-
dians of the symmetric random fuzzy number about 2 in Example 1.4.4 (see also
Example 3.3.1, p. 130) we should take into account that

label γ(2)(0) γ(2)(1) γ(2)(2) γ(2)(3) γ(2)(4)

probab. 0.0625 0.25 0.375 0.25 .0625

wablℓ −1/4 5/6 2 19/6 17/4

ldevℓ(α) − 1
4
+ 3

√
1− α − 1

6
+

√
1− α 1− α 1

6
+ (1− α)2 1

4
+ (1− α)3

rdevℓ(α) 1
4
+ (1− α)3 1

6
+ (1− α)2 1− α − 1

6
+

√
1− α − 1

4
+ 3

√
1− α

label γ(2)(0) γ(2)(1) γ(2)(2) γ(2)(3) γ(2)(4)

probab. 0.0625 0.25 0.375 0.25 .0625

wablβ(1,500) −0.0027 0.9985 2 3.0015 4.0023

ldevβ(1,500)(α) −0.0027 + 3
√
1− α −0.0015 +

√
1− α 1− α 0.0015 + (1− α)2 0.0023 + (1− α)3

rdevβ(1,500)(α) 0.0027 + (1− α)3 0.0015 + (1− α)2 1− α −0.0015 +
√
1− α −0.0023 + 3

√
1− α

whence, the ℓ-wabl/ldev/rdev and the φ ≡ β(1, 500)-wabl/ldev/rdev medians of
γ(2) ◦ Bin(4, 0.5) has been graphically displayed in Figure 3.11, and they are very
close to γ(2)(0), especially for the second choice for φ.
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Figure 3.11: The ℓ-wabl/ldev/rdev median (in black on the left) and the φ ≡
β(1, 500)-wabl/ldev/rdev median (in black on the right) of the characterizing
fuzzy representation of the Bin(4, 0.5) in Example 1.4.4

Consequently, one can assert that for symmetric random fuzzy numbers about
c the two main central tendencies (i.e., the Aumann-type mean and the median,
defined in accordance with the two approaches based on L1 metrics between fuzzy
numbers in this work) are symmetric fuzzy numbers about c, but they do not nec-
essarily coincide.

To check whether the φ-wabl/ldev/rdev median is mostly closer than the Aumann-
type mean (although maybe not that much as the 1-norm median) to the one which
occupies the ‘central position’ in symmetric random fuzzy numbers, the three ones
γ(0)◦N (0, 1), γ(0)◦Uniform(−0.5, 0.5) and γ(0)◦ [Bin(5, 0.5)−2.5] in Subsection 3.3.1
are to be examined.

After representing the (population) 1-norm median, ℓ-wabl/ldev/rdev median
and Aumann-type mean of each of the random fuzzy numbers γ(0) ◦X graphically,
distances between each of the summary measures and the correspondent central
position value γ(0)(0) have been computed and graphically displayed (as functions
of θ when the distance is parameterized). Conclusions are now presented.

Figure 3.12 shows that when the considered random fuzzy number is γ(0)◦N (0, 1),
whereas the 1-norm median coincides with the central position value, the ℓ-wabl/
ldev/rdev median is quite close to it, but the Aumann-type mean is not that close.

This is also corroborated by computing the Dℓ
θ-, D ℓ

θ- and ρ1-distances between
each summary measure and γ(0)(0), the two first distances as functions of the weight-
ing parameter θ. Thus,

ρ1

(
M̃e
(
γ(0) ◦ N (0, 1)

)
, γ(0)(0)

)
= 0,

ρ1

(
M̃ℓ
(
γ(0) ◦ N (0, 1)

)
, γ(0)(0)

)
= 0.0092,

ρ1

(
Ẽ
(
γ(0) ◦ N (0, 1)

)
, γ(0)(0)

)
= 0.0530,
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Figure 3.12: Aumann-type mean, ℓ-wabl/ldev/rdev median (M) and
1-norm median (Me) = γ(0)(0) of the random fuzzy number γ(0)◦N (0, 1)

and the Dℓ
θ- and the D ℓ

θ-distances have been displayed in Figure 3.13.

Figure 3.13: Dℓ
θ-distance (on the left) and the Dℓ

θ-distance (on the right) between
γ(0)(0) and the Aumann-type mean, ℓ-wabl/ldev/rdev median (M) and 1-norm
median (Me) of the random fuzzy number γ(0) ◦ N (0, 1) as functions of θ

Analogously, Figure 3.14 shows that when the considered random fuzzy number is
γ(0)◦Uniform(−0.5, 0.5), then the 1-norm median coincides with the central position
value, and the ℓ-wabl/ldev/rdev median is quite close to it, whereas the Aumann-
type mean is not that close.

The D ℓ
θ- and the D ℓ

θ-distances have been displayed in Figure 3.15, and

ρ1

(
M̃e
(
γ(0) ◦ Uniform(−0.5, 0.5)

)
, γ(0)(0)

)
= 0,

ρ1

(
M̃ℓ
(
γ(0) ◦ Uniform(−0.5, 0.5)

)
, γ(0)(0)

)
= 0.0032,

ρ1

(
Ẽ
(
γ(0) ◦ Uniform(−0.5, 0.5)

)
, γ(0)(0)

)
= 0.1797.
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Figure 3.14: Aumann-type mean, ℓ-wabl/ldev/rdev median (M) and 1-norm
median Me = γ(0)(0) of the random fuzzy number γ(0) ◦Uniform(−0.5, 0.5)

Figure 3.15: Dℓ
θ-distance (on the left) and the Dℓ

θ-distance (on the right) between
γ(0)(0) and the Aumann-type mean, ℓ-wabl/ldev/rdev median (M) and 1-norm median
(Me) of the random fuzzy number γ(0) ◦Uniform(−0.5, 0.5) as functions of θ

Finally, Figure 3.16 shows for γ(0) ◦ [Bin(5, 0.5) − 2.5] that the 1-norm and ℓ-
wabl/ldev/rdev medians do not coincide with γ(0)(0), but they are slightly closer to
it than the Aumann-type mean, the 1-norm median being the closest one.

Furthermore, Dℓ
θ-, D ℓ

θ-distances between each summary measure and γ(0)(0),
have been graphically displayed in Figure 3.17, and

ρ1

(
M̃e
(
γ(0) ◦ [Bin(5, 0.5)− 2.5]

)
, γ(0)(0)

)
= 0.0108,

ρ1

(
M̃ℓ
(
γ(0)[Bin(5, 0.5)− 2.5]

)
, γ(0)(0)

)
= 0.0224,

ρ1

(
Ẽ
(
γ(0) ◦ [Bin(5, 0.5)− 2.5]

)
, γ(0)(0)

)
= 0.0274.
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Figure 3.16: Aumann-type mean, ℓ-wabl/ldev/rdev median (M) and 1-norm median
Me of the random fuzzy number γ(0) ◦ [Bin(5, 0.5)− 2.5], and comparison with γ(0)(0)

Figure 3.17: Dℓ
θ-distance (on the left) and the Dℓ

θ-distance (on the right) between
γ(0)(0) and the Aumann-type mean, ℓ-wabl/ldev/rdev median (M) and 1-norm median
(Me) of the random fuzzy number γ(0) ◦ [Bin(5, 0.5)− 2.5] as functions of θ

3.4.2 Consistency and robustness of the sample
φ-wabl/ldev/rdev median
and comparisons with the sample mean

This section analyzes the Dφ
θ -strong consistency and the finite sample breakdown

point of the φ-wabl/ldev/rdev sample median. As for the real-valued case, and the
1-norm median, under rather mild conditions the sample median is shown to be a
strongly consistent estimator of the population median, that is,

Theorem 3.4.5. Let (Ω,A, P ) be a probability space, φ be an absolutely continuous
probability measure on the measurable space ([0, 1],B[0,1]) with positive mass function
on (0, 1), and let X be a random fuzzy number associated with (Ω,A, P ) and satisfy-
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ing that Me(wablφ(X )), Me
(
ldevφX (α)

)
and Me

(
rdevφX (α)

)
are actually unique (for

each α ∈ [0, 1] in case of the ones for ldev and rdev).

If ̂̃
Mφ(X )n denotes the sample median corresponding to a simple random sam-

ple (X1, . . . ,Xn) from X , and the two sequences of the real-valued sample medians{ ̂Me(ldevφX (α))n
}
n

and
{ ̂Me(rdevφX (α))n

}
n

as functions of α over [0, 1] are both uni-

formly integrable, then for each θ ∈ (0, 1] the estimator ̂̃
Mφ(X )n is strongly consistent

in Dφ
θ -sense (and hence in the sense of all the topologically equivalent metrics), i.e.

lim
n→∞

Dφ
θ

( ̂̃
Mφ(X )n, M̃

φ(X )
)
= 0 a.s. [P ].

Proof. Indeed,

P

(
lim
n→∞

Dφ
θ

( ̂̃
Mφ(X )n, M̃

φ(X )
)
= 0

)

= P

(
lim
n→∞

(
| ̂Me(wablφ(X ))n −Me(wablφ(X ))|

+
θ

2

∫
[0,1]

| ̂Me(ldevφX (α))n −Me(ldevφX (α))| dφ(α)

+
θ

2

∫
[0,1]

| ̂Me(rdevφX (α))n −Me(rdevφX (α))| dφ(α)
)
= 0

)

= P

((
lim
n→∞

| ̂Me(wablφ(X ))n −Me(wablφ(X ))| = 0
)

∩(
lim
n→∞

∫
[0,1]

| ̂Me(ldevφX (α))n −Me(ldevφX (α))| = 0
)

∩(
lim
n→∞

∫
[0,1]

| ̂Me(rdevφX (α))n −Me(rdevφX (α))| = 0
))

.

On one hand,

P
(
lim
n→∞

| ̂Me(wablφ(X ))n −Me(wablφ(X ))| = 0
)

= P
(
lim
n→∞

(
̂Me(wablφ(X ))n −Me(wablφ(X ))

)
= 0
)
= 1,

due to the strong consistency of ̂Me(wablφ(X ))n.
On the other hand, under the assumption of uniqueness for the medians of

ldevφX (α) and rdevφX (α), the sample medians are strongly consistent estimators of
the corresponding population medians, and hence

P
(
lim
n→∞

(
̂Me(ldevφX (α))n −Me(ldevφX (α))

)
= 0
)
= 1,

P
(
lim
n→∞

(
̂Me(rdevφX (α))n −Me(rdevφX (α))

)
= 0
)
= 1.
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Moreover, assumptions for ̂Me(ldevφX (α))n and Me
(
ldevφX (α)

)
guarantee that condi-

tions to apply Vitali’s Convergence Theorem are fulfilled, whence

P

((
lim
n→∞

∫
[0,1]

| ̂Me(ldevφX (α))n −Me(ldevφX (α))| dφ(α) = 0

))
= 1.

By following similar arguments, one can prove that

P

((
lim
n→∞

∫
[0,1]

| ̂Me(rdevφX (α))n −Me(rdevφX (α))| dφ(α) = 0

))
= 1.

Consequently,
P

(
lim
n→∞

Dφ
θ

( ̂̃
Mφ(X )n, M̃

φ(X )
)
= 0

)
. �

The comparative robustness of the sample ℓ-wabl/ldev/rdev median of a random
fuzzy number as an estimator of the population median, in contrast to that of the
sample mean and the 1-norm median of a random fuzzy number as an estimator of
the population mean and 1-norm median, respectively, is now to be discussed.

Before presenting a formal discussion and comparison, the first simulations in
Section 1.5 (p. 54) when the mean is replaced by the ℓ-wabl/ldev/rdev median are
to be analyzed. To determine the effect of the contamination on the median of the
random fuzzy number X , the mean distance between the non-contaminated ‘distri-
bution’ and the Monte Carlo approximated ℓ-wabl/ldev/rdev median is collected in
Table 3.5 for the different values of cp and CD and CASES 1 and 2. The results
in Table 3.5 show that, as for the 1-norm median, the expected distance between
the non-contaminated distribution and the sample ℓ-wabl/ldev/rdev median only
slightly changes when the amount of contamination is increased, even when the
contamination lies far from the non-contaminated distribution.

Actually, it seems even slightly more robust than the 1-norm median (see columns
for ρ2 in Tables 3.3 and 3.5).

The analysis of the robustness of the φ-wabl/ldev/rdev median in comparison
to the mean is now made through the finite sample breakdown point of the sample
median in a sample of size n from a random fuzzy number X , which is now given by

fsbp(
̂̃
Mφ(X )n, x̃n,D

φ
θ )

=
1

n
min

{
k ∈ {1, . . . , n} : sup

Qn,k

Dφ
θ (
˜̂Mφ(Pn),

̂
M̃φ(Qn,k)) = ∞

}
,

where x̃n denotes the considered sample of n data from the metric space (Fc(R),Dφ
θ )

in which supŨ ,Ṽ ∈Fc(R) D
φ
θ (Ũ , Ṽ ) = ∞, Pn is the empirical distribution of x̃n and Qn,k

is the empirical distribution of sample ỹn,k obtained from the original one x̃n by
perturbing at most k components. Then, we have that
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CASE 1 CASE 2

cP cD Dℓ
1/3

ρ2 Dℓ
1/3

ρ2

0 0 1.227657 1.554372 0.9504636 1.0092032

0.1 0 1.229411 1.553082 0.9506150 1.0128246
0.1 1 1.229757 1.553262 0.9519204 0.9949145
0.1 5 1.231567 1.554583 0.9537212 0.9960642
0.1 10 1.232087 1.554976 0.9543808 0.9967514
0.1 100 1.232150 1.555065 0.9544468 0.9967801

0.2 0 1.236350 1.563680 0.950800 1.016413
0.2 1 1.238210 1.565674 0.957562 0.986686
0.2 5 1.247372 1.572603 0.966244 0.992840
0.2 10 1.250346 1.574932 0.968865 0.994872
0.2 100 1.250324 1.575027 0.968361 0.993515

0.4 0 1.300707 1.711233 0.9519090 1.0267570
0.4 1 1.317032 1.742423 0.9903528 1.0154772
0.4 5 1.383328 1.802162 1.0436144 1.0676748
0.4 10 1.411993 1.817192 1.0674811 1.0911364
0.4 100 1.412609 1.829062 1.0671669 1.0918211

Table 3.5: Mean distances of the mixed (partially contaminated
and non-contaminated) sample ℓ-wabl/ldev/rdev median to the
non-contaminated distribution of a random fuzzy number

Proposition 3.4.6. The finite sample breakdown point of the sample φ-wabl/ldev/rdev

median from a random fuzzy number X , fsbp
( ̂̃
Mφ(X )n

)
, equals

fsbp(
̂̃
Mφ(X )n, x̃n,D

φ
θ ) =

1

n
· ⌊n+ 1

2
⌋.

Proof. First note that the condition supŨ ,Ṽ ∈Fc(R) D
φ
θ (Ũ , Ṽ ) = ∞ is satisfied in this

case, since Dφ
θ

(
1[n−1,n+1],1[−n−1,−n+1]

)
= 2n (of course, other examples could be

provided for the same purpose).
Furthermore,

Dφ
θ (
˜̂Mφ(Pn),

̂
M̃φ(Qn,k)) ≥ |wablφ( ˜̂Mφ(Pn))− wablφ(

̂
M̃φ(Qn,k)

)
α
)|

= | ̂Me(wablφ(Pn))− ̂Me(wablφ(Qn,k))|.

Therefore, by recalling the fsbp for the sample median of a real-valued random
variable, one can conclude that whenever at least ⌊n+1

2
⌋ elements x̃i ∈ Fc(R) of x̃n

are replaced by other arbitrarily ‘large’ elements in Fc(R) so that

sup
Qn,k

| ̂Me(wablφ(Pn))− ̂Me(wablφ(Qn,k))| = ∞,
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we have that

sup
Qn,k

Dφ
θ (
˜̂Mφ(Pn),

̂
M̃φ(Qn,k)) ≥ sup

Qn,k

| ̂Me(wablφ(Pn))− ̂Me(wablφ(Qn,k))| = ∞,

whence
fsbp(

̂̃
Mφ(X )n, x̃n,D

φ
θ ) ≤

1

n
· ⌊n+ 1

2
⌋.

On the other hand, by using the fsbp for the sample median of a real-valued
random variable, we have that for all α ∈ [0, 1]

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me(wablφ(Pn))− ̂Me(wablφ(Qn,k))| = ∞

}
= ⌊n+ 1

2
⌋,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me
(
ldevφPn

(α)
)
− ̂Me

(
ldevφQn,k

(α)
)
| = ∞

}
= ⌊n+ 1

2
⌋,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me
(
rdevφPn

(α)
)
− ̂Me

(
rdevφQn,k

(α)
)
| = ∞

}
= ⌊n+ 1

2
⌋,

whence for all α ∈ [0, 1]

sup
Q

n,⌊n+1
2 ⌋−1

| ̂Me(wablφ(Pn))− ̂Me(wablφ(Qn,k))| = M1 < ∞,

sup
Q

n,⌊n+1
2 ⌋−1

| ̂Me
(
ldevφPn

(α)
)
− ̂Me

(
ldevφQn,k

(α)
)
| = M2 < ∞,

sup
Q

n,⌊n+1
2 ⌋−1

| ̂Me
(
rdevφPn

(α)
)
− ̂Me

(
rdevφQn,k

(α)
)
| = M3 < ∞,

and therefore
sup

Q
n,⌊n+1

2 ⌋−1

Dφ
θ (
˜̂Mφ(Pn),

̂
M̃φ(Qn,⌊n+1

2
⌋−1))

= sup
Q

n,⌊n+1
2 ⌋−1

[
| ̂Me(wablφ(Pn))− ̂Me(wablφ(Qn,k))|

+
θ

2

∫
[0,1]

| ̂Me
(
ldevφPn

(α)
)
− ̂Me

(
ldevφQ

n,⌊n+1
2 ⌋−1

(α)
)
| dφ(α)

+
θ

2

∫
[0,1]

| ̂Me
(
ldevφPn

(α)
)
− ̂Me

(
ldevφQ

n,⌊n+1
2 ⌋−1

(α)
)
| dφ(α)

]

≤ M1 +
M2 +M3

2
θ < ∞.

Consequently,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

Dφ
θ (
˜̂Mφ(Pn),

̂
M̃φ(Qn,k)) = ∞

}
> ⌊n+ 1

2
⌋ − 1,
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whence

fsbp(
̂̃
Mφ(X )n, x̃n,D

φ
θ ) ≥

1

n
· ⌊n+ 1

2
⌋. �

The following result formalizes the comparison of the robustness of the sample
φ-wabl/ldev/rdev median and the sample mean and 1-norm median of a random
fuzzy number. Thus,

Theorem 3.4.7. The finite sample breakdown point of the sample mean from a
random fuzzy number X , fsbp

(
Xn

)
, is lower than that for the sample (either φ-

wabl/ldev/rdev or 1-norm) median for sample sizes n > 2.

Proof. Indeed, by arguing like for the preceding proposition we have that

fsbp(Xn, x̃n,D
φ
θ ) = fsbp(Xn, x̃n, ρ1) =

1

n
,

and, consequently,

fsbp(
̂̃
Mφ(X )n, x̃n,D

φ
θ ) = fsbp(

̂̃
Me(X )n, x̃n,ρ1)

≥ n/2

n
=

1

2
>

1

n
= fsbp(Xn, x̃n,ρ1) = fsbp(Xn, x̃n,D

φ
θ ). �

The theoretical conclusion in Theorem 3.4.7 can be corroborated empirically by
analyzing the simulations in Section 1.5 and those in Table 3.5. Moreover, and on
the basis of these simulations an additional table has been constructed.

Table 3.6 gathers empirical results for the influence of contamination on both the
sample mean and median, by computing the distances between the mean/median of
the non-contaminated sample and the mean/ℓ-wabl/ldev/rdev median of the con-
taminated sample, respectively, for the different values of cp and CD and the CASES
1 and 2 in Tables 1.2, 3.3 and 3.5.

On the basis of these simulations and by comparing the results in Tables 1.2, 3.3
and 3.5, and the results in Tables 3.3 and 3.5, one can empirically conclude that

• for a fixed level of contamination cP , the farther the contaminated distribution
from the non-contaminated one the substantially greater mean ρ2-distance be-
tween the approximated mean and the non-contaminated distribution, whereas
for both the approximated 1-norm and ℓ-wabl/ldev/redv medians the increase
is modest; actually this mean distance asymptotically would only depend on
a certain fractile of the non-contaminated distribution;
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CASE 1 CASE 2

mean ℓ-w/l/r median mean ℓ-w/l/r median

cP cD Dℓ
1/3 ρ2 Dℓ

1/3 ρ2 Dℓ
1/3 ρ2 Dℓ

1/3 ρ2

0.0 0 0.004141 0.005446 0.004736 0.005744 0.002935 0.003035 0.004041 0.004609
0.1 0 0.115821 0.340882 0.041959 0.117079 0.006640 0.012257 0.008726 0.017791
0.1 1 0.200101 0.457775 0.057713 0.122703 0.083433 0.120268 0.045510 0.089681
0.1 5 0.549571 0.965272 0.105273 0.144576 0.429103 0.641559 0.088103 0.113566
0.1 10 0.985210 1.614466 0.113848 0.149298 0.863819 1.306176 0.094945 0.117746
0.1 100 8.801379 13.479923 0.112416 0.150624 8.714803 13.156037 0.095313 0.117737
0.2 0 0.224863 0.680722 0.091140 0.266010 0.010471 0.023612 0.014003 0.033147
0.2 1 0.402916 0.924358 0.132474 0.287719 0.168120 0.241804 0.099201 0.197792
0.2 5 1.095563 1.952914 0.234256 0.333697 0.867697 1.283131 0.194468 0.249352
0.2 10 1.972511 3.261031 0.253764 0.350314 1.740925 2.579237 0.210592 0.261186
0.2 100 17.620494 26.793580 0.253381 0.347141 17.588028 26.292482 0.209108 0.262428
0.4 0 0.469059 1.364644 0.275940 0.829457 0.019153 0.046735 0.026856 0.071649
0.4 1 0.797371 1.874279 0.381792 0.890780 0.337019 0.485976 0.231633 0.472210
0.4 5 2.209684 3.860446 0.655998 1.055769 1.720116 2.551476 0.462176 0.611100
0.4 10 3.973298 6.470993 0.726146 1.085354 3.497305 5.133452 0.525197 0.651425
0.4 100 35.370045 54.170428 0.722964 1.114021 35.107081 51.856741 0.521087 0.653929

Table 3.6: Distances between the sample mixed (partially contaminated and non-
contaminated) mean/ℓ-wabl/ldev/rdev median to the non-contaminated one for a random fuzzy
number

• for a fixed level of contamination cP , the farther the contaminated distribution
from the non-contaminated one, the substantially greater distance between the
contaminated and the non-contaminated means, whereas for the 1-norm and
the ℓ-wabl/ldev/redv medians the increase is not really substantial;

• by simply comparing the two L1 medians, the behaviour of the ℓ-wabl/ldev/redv
median is slightly more stable than that of the 1-norm median in CASE 1, and
the opposite situation arises in CASE 2.

To conclude this section, three remarks should be made. The first and the second
ones concern the particularization of the φ-wabl/ldev/rdev median to the interval-
valued case and its extension to the fuzzy vector-valued case, respectively.

Remark 3.4.4. All the notions and results in this section can be trivially particu-
larized to the interval-valued case, so that the φ-wabl/ldev/rdev median of a random
interval X is given by the interval value [Me(midX)−Me(sprX),midX)+Me(sprX)].

Remark 3.4.5. The extension of the φ-wabl/ldev/rdev median to the fuzzy vector-
valued case through the use of an L1 metric based on the support/Steiner represen-
tation of fuzzy vectors cannot be made by extending arguments in Theorem 3.4.1,
because of the reasons argued for the extension of the 1-norm median.

Remark 3.4.6. It should be pointed out that, as for the 1-norm median, one of
the main advantages of the φ-wabl/ldev/rdev median is that they can be computed
on the basis of the medians for certain real-valued random variables. This makes
computations rather easy-to-perform and, mainly, easy to implementing and pro-
gramming in R or others.
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At this point, we should indicate that when the involved L1 metric is replaced
by other ones, the minimization problem can become a very difficult task, and often
infeasible at least to get the exact solution.

In this respect, if we consider the L1 metric extending Hausdorff one from Kc(R)
to Fc(R), and given (Klement et al. [116]) by

d1(Ũ , Ṽ ) =

∫
[0,1]

(∣∣∣mid Ũα −mid Ṽα

∣∣∣+ ∣∣∣spr Ũα − spr Ṽα

∣∣∣) dℓ(α)

one cannot reason as for ρ1 since there is not a set of sufficient conditions for the
mid/spr representation characterizing fuzzy numbers.

More concretely, and arguing as in Remark 3.3.8, if following the solutions for
ρ1 one is tempted to use as a possible solution minimizing E

([
d1(X , Ũ)

])
over

Ũ ∈ Fc(R), the level-wise solution in Remark 3.4.4

Mα = [Me(midXα)−Me(sprXα),Me(midXα) + Me(sprXα)]

for each α ∈ [0, 1], the class {Mα}α does not define in general a fuzzy number.

As a counterexample illustrating the assertions in Remark 3.4.6, we can consider
the following:

Example 3.4.2. Consider a random fuzzy number X taking with probability 0.2
each of five different values x̃1 (i ∈ {1, . . . , 5} which, in accordance with their vertical
view, are given by

(mid x̃1)α = 1− α/2, (spr x̃1)α = 1.1− α,

(mid x̃2)α =

{
0.75 if α ≤ 0.5

1.25− α otherwise
, (spr x̃2)α = 1.1− α,

(mid x̃3)α = 0.6 + 0.3α, (mid x̃4)α = 0, (mid x̃5)α = 2,

(spr x̃3)α = (spr x̃4)α = (spr x̃5)α =

{
0.75− α if α ≤ 0.5

0.4− 0.3α otherwise,

which are graphically displayed in Figure 3.18
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Figure 3.18: Five different values of a random set (that takes
them with the same probability)

The value for the mean, the 1-norm median and the ℓ-wabl/ldev/rdev median
can be found graphically displayed in Figure 3.19

Figure 3.19: Mean, 1-norm median and ℓ-wabl/ldev/rdev median of the random fuzzy
number being uniformly distributed on the set of fuzzy number values in Figure 3.18

In this case we have that

Me(midXα) =

{
0.75 if α ≤ 0.5

1− α/2 otherwise,
Me(sprXα) =

{
0.75− α if α ≤ 0.5

0.4− 0.3α otherwise,

whence the intervals [Me(midXα) −Me(sprXα),Me(mid,Xα) + Me(sprXα)] do not
lead to a fuzzy number, but to the function in Figure 3.20.
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Figure 3.20: Result of representing the fuzzy number (?) with α-levels given by
[Me(midXα) −Me(sprXα),Me(mid,Xα) +Me(sprXα)], which is not a fuzzy number

3.5 The spatial median for a random interval

As for the last two sections, the sufficient conditions over the loss function in Sec-
tion 3.1 allowing us to guarantee the existence of sample M-estimates of location,
and their expression as convex linear combinations of the sample elements, are not
fulfilled by some interesting choices of ρ, like ρ(x) =

√
|x|. Consequently, one should

face this problem by developing ad hoc methods.

In addition to the use of L1 metrics, as those in Sections 3.3 and 3.4, it should
be noted that a well-known generalization of the median of real-valued random vari-
ables to the multivariate settings is the spatial median or mediancentre (see, for
example, Gower [93] or Milasevic and Ducharme [132]), which is based on an L2-
type metric. To develop an appropriate extension of the notion of spatial median to
fuzzy number-valued random elements becomes a very hard task. So, for a simpler
approximation to the problem, the interval-valued case is first to be examined. As it
will be shown, the first empirical conclusions based on synthetic examples lead us to
conclude that concerning robustness there is no evidence of major and general ad-
vantages of the spatial median versus the particularized 1-norm and wabl/ldev/rdev
justifying the effort associated with the extension to the fuzzy number-valued case.
Furthermore, the computation of the spatial median is mich more complex than
that of the medians in Sections 3.3 and 3.4, which is immediate to perform because
of being based in the already implemented tools for the real-valued case.
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To adapt the ideas behind the spatial median approach to random intervals, we
are going to consider the generalized L2 metric dθ introduced by Bertoluzza et al. [16]
(and expressed by Gil et al. [84] in terms of the mid/spr representation of interval
values), which is the mid/spr-based L2 metric between interval values (see p. 22)
and also coincides with the support/Steiner-based L2 metric, dθ, between them (see
p. 25). This is a very wide, intuitive, and valuable family of distances for interval
values, and the well-known Vitale’s L2 metric (see Vitale [211]), δ2, on Kc(R) is a
particular element of this family. It also shares an interesting feature with Hausdorff
metric on Kc(R): it weights the squared distances between mids and those between
the spreads.

Inspired by the spatial median as extension of the median to higher dimensional
Euclidean spaces and even Banach spaces (see Cadre [23]) using an L2-type metric
on Kc(R) the population and sample dθ-medians are to be introduced.

Definition 3.5.1. Given a probability space (Ω,A, P ) and an associated random
interval X : Ω → Kc(R), the population dθ-median(s) of X is the interval value
Mθ[X] ∈ Kc(R) such that

Mθ[X] = arg min
K∈Kc(R)

E
(
dθ
(
X, K

))
,

whenever the involved expectations exist.

Definition 3.5.2. Given a probability space (Ω,A, P ), an associated random inter-
val X : Ω → Kc(R), and a simple random sample (X1, . . . ,Xn) from X, the sample
dθ-median(s) of X is(are) the interval-valued statistic(s)

M̂θ[X]n = arg min
K∈Kc(R)

1

n

n∑
i=1

(
dθ
(
Xi, K

))
= arg min

(y,z)∈R×[0,∞)

1

n

n∑
i=1

√
(midXi − y)2 + θ · (sprXi − z)2,

where K, y and z depend in fact on (X1, . . . ,Xn) (although, for the sake of simplicity,
this has been omitted from the notation).

The use of the dθ metric in formalizing the median of a random interval al-
lows us to guarantee its existence and to state conditions for its uniqueness. How-
ever, one cannot provide in general with an explicit expression for the dθ-median
in a way similar to what has been established for the M-estimates associated with
loss function satisfying sufficient conditions in Subsection 3.1.2 and the 1-norm and
wabl/ldev/rdev medians in Theorems 3.3.1 and 3.4.1.

The convexity of the objective function to be minimized in Definition 3.5.2 is
now to be proven. Thus,
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Proposition 3.5.1. Whatever the sample of independent interval-valued observa-
tions xn = (x1, . . . , xn) from the random interval X may be, the function

f : D = R× [0,∞) −→ R

(y, z) 7−→ 1

n

n∑
i=1

√
(mid xi − y)2 + θ · (spr xi − z)2,

is strictly convex unless all the sample points {(mid xi, spr xi)}ni=1 are collinear (in
such a situation, the function f is convex).

Proof. Indeed, the dominium D is convex and given any two different elements
(y1, z1), (y2, z2) ∈ D and λ ∈ (0, 1):

f
(
λ(y1, z1) + (1− λ)(y2, z2)

)
= f

(
λy1 + (1− λ)y2, λz1 + (1− λ)z2

)
=

1

n

n∑
i=1

√(
mid xi − λy1 − (1− λ)y2

)2
+ θ
(
spr xi − λz1 − (1− λ)z2

)2
=

1

n

n∑
i=1

[(
λ ·mid xi − λy1 + (1− λ)mid xi − (1− λ)y2

)2
+ θ
(
λ · spr xi − λz1 + (1− λ)spr xi − (1− λ)z2

)2]1/2
=

1

n

n∑
i=1

[
λ2
(
(mid xi−y1)

2+θ(spr xi−z1)
2
)
+ (1−λ)2

(
(mid xi−y2)

2+θ(spr xi−z2)
2
)

+2λ(1− λ)
(
(mid xi − y1)(mid xi − y2) + θ(spr xi − z1)(spr xi − z2)

)]1/2
.

On the other hand,
λ · f(y1, z1) + (1− λ)f(y2, z2)

=
1

n

n∑
i=1

√
λ2
(
(mid xi − y1)2 + θ(spr xi − z1)2

)
+
1

n

n∑
i=1

√
(1− λ)2

(
(mid xi − y2)2 + θ(spr xi − z2)2

)
.

Since not all the sample points are collinear, then(
(mid xi − y1)(spr xi − z2)− (spr xi − z1)(mid xi − y2)

)2
> 0

for at least a subindex i ∈ {1, . . . , n}. Consequently,

2θ(mid xi − y1)(mid xi − y2)(spr xi − z1)(spr xi − z2)

< θ(mid xi − y1)
2(spr xi − z2)

2 + θ(spr xi − z1)
2(mid xi − y2)

2.
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By adding (mid xi − y1)
2(mid xi − y2)

2 + θ2(spr xi − z1)
2(spr xi − z2)

2 to both sides of
the inequation and taking square roots we have that

(mid xi − y1)(mid xi − y2) + θ(spr xi − z1)(spr xi − z2)

<
[
(mid xi − y1)

2(mid xi − y2)
2 + θ2(spr xi − z1)

2(spr xi − z2)
2

+ θ(mid xi − y1)
2(spr xi − z2)

2 + θ(spr xi − z1)
2(mid xi − y2)

2
]1/2

,

whence for λ ∈ (0, 1)

λ(1− λ)((mid xi − y1)(mid xi − y2) + θ(spr xi − z1)(spr xi − z2))

<
√

λ2[(mid xi − y1)2 + θ(spr xi − z1)2] · (1− λ)2[(mid xi − y2)2 + θ(spr xi − z2)2].

After adding λ2[(mid xi−y1)
2+θ(spr xi−z1)

2]+(1−λ)2[(mid xi−y2)
2+ θ(spr xi−z2)

2]

to both sides of the last inequation and by taking square roots, one can conclude
that

f
(
λ(y1, z1) + (1− λ)(y2, z2)

)
< λ · f(y1, z1) + (1− λ)f(y2, z2).

Of course, if all the sample points are collinear, all the previous strict inequalities
reduce simply to inequalities.

The existence of the sample dθ-median is now to be discussed.

Theorem 3.5.2. Given a simple random sample (X1, . . . ,Xn) from a random inter-
val X : Ω → Kc(R), the corresponding sample dθ-median always exists. Moreover,
the sample dθ-median is unique for any sample realization xn = (x1, . . . , xn) for
which the two-dimensional sample points {(mid xi, spr xi)}ni=1 are not all collinear.

Proof. First of all, consider the particular case in which all the sample interval-
valued data xi are real numbers. Then, spr xi = 0 for all i ∈ {1, . . . , n}. Should this
be the case, the aim would be to find the solution of the minimization problem

min
(y,z)∈R×[0,∞)

1

n

n∑
i=1

√
(mid xi − y)2 + θ · z2.

By taking into account that

min
(y,z)∈R×[0,∞)

1

n

n∑
i=1

√
(mid xi − y)2 + θ · z2

≥ min
y∈R

1

n

n∑
i=1

√
(mid xi − y)2 = min

y∈R

1

n

n∑
i=1

|mid xi − y|,
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the sample dθ-median is the interval with mid-point y = Me({mid xi}ni=1) and spread
z = 0. As a consequence, the dθ-median coincides with the median for the real-valued
case (i.e., since dθ extends the Euclidean distance in R, the dθ-median extends the
median of a real-valued random variable).

The case in which at least one sample interval-valued datum is not degenerated
at a real number (i.e., there exists i0 such that spr xi0 ̸= 0) is now to be examined.
Note that the possibility of proposing a degenerated dθ-median with spread zero is
excluded, so the considered dominium be D = R× (0,∞), and

f

(
y, 2 · min

i : spr xi ̸=0
{spr xi}

)

=
1

n

n∑
i=1

√
(mid xi − y)2 + θ(spr xi − 2 · min

i : spr xi ̸=0
{spr xi})2 =

1

n

n∑
i=1

[
(mid xi − y)2

+ θ(spr xi)
2 + 4θ ·

(
min

i : spr xi ̸=0
{spr xi}

)2

− 4θ · spr xi min
i : spr xi ̸=0

{spr xi}

]1/2

=
1

n

n∑
i=1

√
(mid xi − y)2 + θ(spr xi)2 + 4θ min

i : spr xi ̸=0
{spr xi}[ min

i : spr xi ̸=0
{spr xi} − spr xi]

<
1

n

n∑
i=1

√
(mid xi − y)2 + θ(spr xi)2 = f(y, 0).

By the necessary condition for local maximum and minimum of real-valued functions
of several variables, if there exists any (y0, z0) interior point of D = R × (0,∞) for
which a local maximum or local minimum of f is achieved, where

f : D ⊂ R2 −→ R

(y, z) 7−→ 1

n

n∑
i=1

√
(mid xi − y)2 + θ · (spr xi − z)2

in which the partial derivatives fy and fz exist, then fy(y0, z0) = fz(y0, z0) = 0.
Therefore, if a local minimum is achieved at (y0, z0), one of the following situations
will hold:

• Either the point associated with the local minimum belongs to the interior of
D, and fy and fz exist at this point. In this case, the conditions fy(y0, z0)

= fz(y0, z0) = 0 are satisfied, i.e.,

0 = fy(y0, z0) =
n∑

i=1

mid xi − y0√
(mid xi − y0)2 + θ(spr xi − z0)2

,
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0 = fz(y0, z0) =
n∑

i=1

spr xi − z0√
(mid xi − y0)2 + θ(spr xi − z0)2

.

In fact, f(y0, z0) is a local minimum and not a local maximum because of the
second derivative criterion for local minimum, that is,

– the partial derivatives

fy(y, z) =
1

n

n∑
i=1

y −mid xi√
(mid xi − y)2 + θ(spr xi − z)2

,

fz(y, z) =
1

n

n∑
i=1

θ(z − spr xi)√
(mid xi − y)2 + θ(spr xi − z)2

,

are continuous and have continuous partial derivatives on the domain
D \ {(mid xi, spr xi)}ni=1 ⊂ R2;

– fy(y0, z0) = fz(y0, z0) = 0 for an interior point (y0, z0) of the domain;

– fyy(y0, z0) =
1

n

n∑
i=1

θ(spr xi − z0)
2√

(mid xi − y0)2 + θ(spr xi − z0)2)3
> 0;

– finally, by using the Cauchy-Swartz Inequality (strict inequality whenever
not all the sample points are not collinear),

fyyfzz(y0, z0) =
θ2

n2

(
n∑

i=1

(spr xi − z0)
2√

((mid xi − y0)2 + θ(spr xi − z0)2)3

)

·

(
n∑

i=1

(y0 −mid xi)
2√

((mid xi − y0)2 + θ(spr xi − z0)2)3

)

>
θ2

n2

(
n∑

i=1

spr xi − z0
4
√

((mid xi − y0)2 + θ(spr xi − z0)2)3

· y0 −mid xi
4
√
((mid xi − y0)2 + θ(spr xi − z0)2)3

)

=

(
1

n

n∑
i=1

θ(y0 −mid xi)(spr xi − z0)√
((mid xi − y0)2 + θ(spr xi − z0)2)3

)2

= f 2
yz(y0, z0).

So, all the sufficient conditions of the criterion are fulfilled and f has a
local minimum at (y0, z0).
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• Or the local minimum is achieved at a point belonging to the interior of D but
fy or fz do not exist at it. This can only happen if any of the square roots
is equal to zero, i.e., if the point we are considering belongs to the sample
{(mid xi, spr xi)}ni=1.

Of course, the other possible situations cannot hold under the assumed condi-
tions. Thus,

• if y0 < min
1≤i≤n

{mid xi}, then fy(y0, z0) > 0 and (y0, z0) does not belong to the

sample;

• if y0 > max
1≤i≤n

{mid xi}, then fy(y0, z0) < 0 and (y0, z0) does not belong to the

sample;

• if z0 < min
1≤i≤n

{spr xi}, then fz(y0, z0) > 0 and (y0, z0) does not belong to the

sample;

• if z0 > max
1≤i≤n

{spr xi}, then fy(y0, z0) < 0 and (y0, z0) does not belong to the

sample.

Consequently, if (y0, z0) exists, it belongs to the rectangle[
min
1≤i≤n

{mid xi}, max
1≤i≤n

{mid xi}
]
×
[
min
1≤i≤n

{spr xi}, max
1≤i≤n

{spr xi}
]
.

As the restriction of the objective function f to this closed and bounded subset
of R2 is continuous, the Weierstrass theorem guarantees that f has at least one
minimum within this subset. Indeed, the function f is convex, so any local minimum
is also a global minimum. Since the function is strictly convex whenever not all the
sample data are collinear, the global minimum is unique in such a case.

3.5.1 Consistency and robustness of the dθ-median

In analyzing the inferential behaviour of the sample dθ-median for random intervals,
we are first going to analyze their strong consistency.

Proposition 3.5.3. Let X be a random interval associated with a probability space
(Ω,A, P ) and satisfying that the population dθ-median Mθ[X] exists and it is unique.
Then, the sample dθ-median, M̂θ[X]n, is a strongly consistent estimator of the popula-
tion dθ-median in dθ-sense (and hence in the sense of all the topologically equivalent
metrics), that is,

lim
n→∞

dθ(M̂θ[X]n,Mθ[X]) = 0 a.s. [P ].
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Proof. Recalling that the spatial median is the M-estimate of location for the special
choice of ρ(x) =

√
|x|, it is sufficient to check that this loss function satisfies the

assumptions required by Theorem 3.1.8 and Proposition 3.1.9, and this can be done
easily. The rest of the conditions are fulfilled since the parameter set (the cone R×
[0,∞) with the topology induced by the norm associated with the dθ-metric through
the isometrical embedding from Kc(R)) is a locally compact space with a countable
basis, (Ω,A, P ) is a probability space and it is supposed that the population dθ-
median exists and is unique.

On the other hand, and concerning robustness, following Donoho and Huber
[59], the finite sample breakdown point of the sample dθ-median on a realization of
a simple random sample of size n from a random interval X, xn, is given by

fsbp(M̂θ[X]n, xn, dθ)

=
1

n
min

{
k ∈ {1, . . . , n} : sup

yn,k

dθ(M̂θ[xn], M̂θ[yn,k]) = ∞

}
,

with the metric space (Kc(R), dθ) satisfying that

sup
K,K′∈Kc(R)

dθ(K,K ′) = ∞

(since dθ([n − 1, n + 1], [−n − 1,−n + 1]) = 2n) and M̂θ[yn,k] is the sample median
of a sample yn,k obtained from xn by perturbing at most k observations. Then, we
have that

Proposition 3.5.4. The finite sample breakdown point of the sample dθ-median
from a random interval X equals

fsbp
(
M̂θ[X]n, xn, dθ

)
=

1

n
· ⌊n+ 1

2
⌋,

where ⌊·⌋ denotes the floor function.

Proof. The proof is prompted by some of the ideas by Lopuhaä and Rousseeuw
[126] to compute the fsbp of the L1 estimator in Rp. However, the situation is now
different, because dθ is not translational equivariant.

First, one can see that

fsbp(M̂θ[X]n, xn, dθ) >
1

n
·
(
⌊n+ 1

2
⌋ − 1

)
=

1

n
· ⌊n− 1

2
⌋,

that is, min

{
k ∈ {1, . . . , n} : sup

yn,k

dθ(M̂θ[xn], M̂θ[yn,k]) = ∞

}
> ⌊n− 1

2
⌋ or, equiva-

lently,
sup

y
n,⌊n−1

2 ⌋

dθ

(
M̂θ[xn], ̂Mθ[yn,⌊n−1

2
⌋]
)
< ∞.
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Thus, by using the triangular inequality, we have that

sup
y
n,⌊n−1

2 ⌋

dθ

(
M̂θ[xn], ̂Mθ[yn,⌊n−1

2
⌋]
)

≤ sup
y
n,⌊n−1

2 ⌋

dθ

(
M̂θ[xn], {0}

)
+ sup

y
n,⌊n−1

2 ⌋

dθ

(
{0}, ̂Mθ[yn,⌊n−1

2
⌋]
)
.

The first term, which does not depend on the perturbed sample, is finite. So,
it is enough to prove that the other one is also finite. Let η = max1≤i≤n dθ({0}, xi)
and let B(0, 2η) be the closed ball with center 0 = (0, 0) and radius 2η. Let

d = inf
(midV, sprV ) ∈ B(0, 2η)

V ∈ Kc(R)

dθ

(
̂Mθ[yn,⌊n−1

2
⌋], V

)

denote the distance between ̂Mθ[yn,⌊n−1
2

⌋] and B(0, 2η), so that

dθ

(
{0}, ̂Mθ[yn,⌊n−1

2
⌋]
)
≤ d+ 2η.

Then, for each of the ⌊n−1
2
⌋ replaced yj’s, it holds by using the triangular inequality

that
dθ

(
yj, ̂Mθ[yn,⌊n−1

2
⌋]
)
≥ dθ(yj, {0})− dθ

(
{0}, ̂Mθ[yn,⌊n−1

2
⌋]
)

≥ dθ(yj, {0})− (d+ 2η). (3.4)

Suppose the distance between ̂Mθ[yn,⌊n−1
2

⌋] and B(0, 2η) is large so that d > 2η⌊n−1
2
⌋.

This assumption can be proved to be wrong. Thus, since (mid xi, spr xi) ∈ B(0, η),
for each of the n− ⌊n−1

2
⌋ original xl’s in yn,⌊n−1

2
⌋ we have that

dθ(xl, ̂Mθ[yn,⌊n−1
2

⌋]) ≥ η + d ≥ dθ({0}, xl) + d. (3.5)

From Equations 3.4 and 3.5,
n∑

i=1

dθ(yi, ̂Mθ[yn,⌊n−1
2

⌋])

=
n∑

i = 1

i : yi replaced

dθ(yi, ̂Mθ[yn,⌊n−1
2

⌋]) +
n∑

i = 1

i : yi original

dθ(yi, ̂Mθ[yn,⌊n−1
2

⌋])

≥
n∑

i = 1

i : yi replaced

(dθ(yi, {0})− (d+ 2η)) +
n∑

i = 1

i : yi original

(dθ({0}, xi) + d)

=
n∑

i=1

dθ(yi, {0})− ⌊n− 1

2
⌋(d+ 2η) +

n∑
i = 1

i : xi original

d
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=
n∑

i=1

dθ(yi, {0}) +
(
n− ⌊n− 1

2
⌋
)
d− ⌊n− 1

2
⌋(d+ 2η)

=
n∑

i=1

dθ(yi, {0}) + nd− ⌊n− 1

2
⌋d− ⌊n− 1

2
⌋d− 2η⌊n− 1

2
⌋

=
n∑

i=1

dθ(yi, {0}) + d− 2η⌊n− 1

2
⌋ >

n∑
i=1

dθ(yi, {0})

by using the assumption d > 2η⌊n−1
2
⌋. But this inequality is not valid because

̂Mθ[yn,⌊n−1
2

⌋] minimizes the mean dθ distance to all the interval-valued data from the
sample yn,⌊n−1

2
⌋. Therefore, d ≤ 2η⌊n−1

2
⌋ and the following inequalities are satisfied:

sup
y
n,⌊n−1

2 ⌋

dθ

(
{0}, ̂Mθ[yn,⌊n−1

2
⌋]
)
≤ d+ 2η ≤ 2η⌊n− 1

2
⌋+ 2η = 2η⌊n+ 1

2
⌋ < ∞.

The second inequality, fsbp(M̂θ[X]n, xn, dθ) ≤
1

n
· ⌊n+ 1

2
⌋, is now to be proved.

This is equivalent to see that

min

{
k ∈ {1, . . . , n} : sup

yn,k

dθ(M̂θ[xn], M̂θ[yn,k]) = ∞

}
≤ ⌊n+ 1

2
⌋,

i.e., sup
y
n,⌊n+1

2 ⌋

dθ

(
M̂θ[xn], ̂Mθ[yn,⌊n+1

2
⌋]
)
= ∞.

To see this, it is enough to find a corrupted collection y∗
n,⌊n+1

2
⌋ (by replacing at

most ⌊n+1
2
⌋ points of xn) such that dθ

(
M̂θ[xn], ̂Mθ[y∗n,⌊n+1

2
⌋]
)
= ∞. For this purpose,

and for an arbitrary m ∈ N, ⌊n+1
2
⌋ observations of xn are replaced by the same

number of points that are all equal to the value y(m) ∈ Kc(R) with

inf
V ∈ Kc(R)

(midV, sprV ) ∈ B(0, η)

dθ(y
(m), V ) = m ∈ N.

The new sample y∗
n,⌊n+1

2
⌋ contains q = n− ⌊n+1

2
⌋ of the original points. We are now

going to verify that ̂Mθ[y∗n,⌊n+1
2

⌋] = y(m).

Since y∗
n,⌊n+1

2
⌋ = (x1, . . . , xq,

(n−q times)︷ ︸︸ ︷
y(m), . . . , y(m)), for any z ∈ Kc(R) \ {y(m)} we have

that
n∑

i=1

dθ(y
∗
i , z) =

q∑
i=1

dθ(xi, z) +
n∑

i=q+1

dθ(y
(m), z)

=

q∑
i=1

dθ(xi, z) + (n− q) · dθ(y(m), z) ≥
q∑

i=1

dθ(xi, z) + q · dθ(y(m), z)

=

q∑
i=1

(
dθ(xi, z) + dθ(y

(m), z)
)
≥

q∑
i=1

dθ(xi, y
(m))
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=

q∑
i=1

dθ(xi, y
(m)) +

n∑
i=q+1

dθ(y
(m), y(m)) =

n∑
i=1

dθ(y
∗
i , y

(m)).

Therefore, and due to the fact that M̂θ[xn] ∈ B(0, η),

sup
y
n,⌊n+1

2 ⌋

dθ

(
M̂θ[xn], ̂Mθ[yn,⌊n+1

2
⌋]
)
≥ dθ

(
M̂θ[xn], ̂Mθ[y∗

n⌊n+1
2

⌋]
)

= dθ(M̂θ[xn], y
(m)) ≥ m.

Since m ∈ N could be chosen to be arbitrarily large

sup
y
n,⌊n+1

2 ⌋

dθ

(
M̂θ[xn],

̂
Mθ

[
yn,⌊n+1

2
⌋

])
= ∞.

The following result formalizes the comparison of the robustness of the sample
dθ-median and the sample mean of a random interval. Thus,

Theorem 3.5.5. The finite sample breakdown point of the sample mean from a
random interval X, fsbp

(
Xn

)
, is lower than that for the sample dθ-median for sample

sizes n > 2.

Proof. Indeed, by arguing like for the preceding proposition we have that

fsbp(Xn, xn, dθ) = fsbp(Xn, xn, δ1) =
1

n
,

and, consequently,
fsbp(M̂θ[X]n, xn, dθ) = fsbp(M̂θ[X]n, xn, δ1)

≥ n/2

n
=

1

2
>

1

n
= fsbp(Xn, xn, δ1) = fsbp(Xn, xn, dθ). �

3.5.2 An algorithm to compute the sample spatial median

A natural algorithm to compute the sample dθ-median is to be explained and an-
alyzed along this subsection. Weiszfeld [215] (the English translation of this paper
and some annotations can be found in Weiszfeld and Plastria [216]) proposed this
iterative algorithm for Euclidean spaces and distances, the algorithm being redis-
covered some more times in the literature.

The objective function in the minimization problem in Definition 3.5.2 is differen-
tiable at any point of the domain R×(0,∞) but the sample points {(mid xi, spr xi)}ni=1.
The minimum will be reached either at a sample point or at the point for which
both partial derivatives equal zero, that is to say, at the point (y0, z0) satisfying that

y0 =

n∑
i=1

mid xi√
(mid xi − y0)2 + θ · (spr xi − z0)2

n∑
i=1

1√
(mid xi − y0)2 + θ · (spr xi − z0)2
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and

z0 =

n∑
i=1

spr xi√
(mid xi − y0)2 + θ · (spr xi − z0)2

n∑
i=1

1√
(mid xi − y0)2 + θ · (spr xi − z0)2

.

An immediate remark after observing these expressions is that the mid-point
and the spread of the sample dθ-median are a weighted mean of the mid-points and
the spreads of the intervals in the sample, respectively. The steps of the algorithm
used are now to be detailed and, afterwards, its convergence is to be proved.

Step 0. Firstly, compute the mid-points and spreads of the interval-valued data,
namely,

mid xi =
inf xi + sup xi

2
, spr xi =

sup xi − inf xi
2

for i = 1, . . . , n.

Step 1. Fix the maximum number of iterations, the tolerance of the approximation
and set m = 1. Moreover, fix a seed (ym, zm) ∈ R × [0,∞) and the weight
θ > 0, and calculate the corresponding error

Errorm =
1

n

n∑
i=1

√
(mid xi − ym)2 + θ · (spr xi − zm)2. (3.6)

Step 2. Compute the weights

wi =

1√
(mid xi − ym)2 + θ · (spr xi − zm)2

n∑
j=1

1√
(mid xj − ym)2 + θ · (spr xj − zm)2

for all i = 1, . . . , n

and update the estimate

ym+1 =
n∑

i=1

wi ·mid xi, zm+1 =
n∑

i=1

wi · spr xi.

Step 3. For the new estimate (ym+1, zm+1), compute the corresponding error Errorm+1

as given by (3.6). If the difference Errorm − Errorm+1 exceeds the specified
tolerance and the number of iterations is lower than the maximum, then
increase m by 1 and go to Step 2. Otherwise, go to Step 4.
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Step 4. Compare the final error Errorm+1 obtained in Step 3 with the errors Error(xj)
corresponding to each interval data xj, where

Error(xj) =
1

n

n∑
i=1

√
(mid xi −mid xj)2 + θ · (spr xi − spr xj)2

If Errorm+1 < minj Error(xj), then retake the solution (ym+1, zm+1). Other-
wise, retake the solution (mid xj0 , spr xj0) where j0 = argminj Error(xj).

The following theorem, proving the convergence of this algorithm, is based on
the ideas by Kuhn [121] to show the convergence of the analogous algorithm in
computing the spatial median in a Euclidean space (with the Euclidean distance).

Theorem 3.5.6. Given a realization of a simple random sample from a random
interval X, xn = (x1, . . . , xn), and any P0 ∈ R× (0,∞) \ {(mid xi, spr xi)}ni=1, define
Pr := T r(P0) = T (T (. . . T (P0))) for r = 1, 2, . . ., where

T : R× (0,∞) \ {(mid xi, spr xi)}ni=1 −→ R× (0,∞)

P 7−→


n∑

i=1

mid xi/d
i
θ(P )

n∑
i=1

1/diθ(P )

,

n∑
i=1

spr xi/d
i
θ(P )

n∑
i=1

1/diθ(P )

,

with diθ(P ) standing for the simplified notation of dθ(xi, P ). If no Pr is a vertex,
then lim

r→∞
Pr = M̂θ[xn].

Proof. With the possible exception of P0, the sequence {Pr}r lies in the convex hull
of the vertices, which is a compact set. Hence, by the Bolzano-Weierstrass Theorem,
there exists at least one point P and a subsequence {Prl}l such that lim

l→∞
Prl = P . To

prove the theorem, one should verify that P coincides with the minimum, denoted
by M̂θ[xn]. All the possible situations can be examined:

• Case Pr+1 = T (Pr) = Pr for some r.

Then, the sequence repeats from that point and P = Pr. Since Pr is not a
vertex and T (P ) = P (the necessary condition to be the minimum M̂θ[xn])),
P equals M̂θ[xn] because there is only a unique minimum.

• Case Pr+1 = T (Pr) ̸= Pr for all r and P not being a vertex.

In this case, f(T (Pr)) < f(Pr) and this holds for all r, since Pr ̸= T (Pr) and,
hence,

g(T (Pr)) =
n∑

i=1

1

diθ(Pr)
(diθ(T (Pr)))

2 <
n∑

i=1

1

diθ(Pr)
(diθ(Pr))

2 = f(Pr)
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because T (Pr) is the center of gravity of weights 1/diθ(Pr) placed at the ver-
tices (mid xi, spr xi) and, therefore, the unique minimum of the strictly convex
function g(Q) :=

∑n
i=1(d

i
θ(Q))2/diθ(Pr). On the other hand,

g(T (Pr)) =
n∑

i=1

1

diθ(Pr)
(diθ(Pr) + (diθ(T (Pr))− diθ(Pr)))

2

=
n∑

i=1

diθ(Pr) + 2
n∑

i=1

diθ(T (Pr))− 2
n∑

i=1

diθ(Pr)

+
n∑

i=1

1

diθ(Pr)
(diθ(T (Pr))− diθ(Pr))

2

= f(Pr) + 2f(T (Pr))− 2f(Pr) +
n∑

i=1

1

diθ(Pr)
(diθ(T (Pr))− diθ(Pr))

2.

Therefore,

2f(T (Pr)) ≤ 2f(T (Pr)) +
n∑

i=1

1

diθ(Pr)
(diθ(T (Pr))− diθ(Pr))

2 < 2f(Pr).

Hence, f(P0) > f(P1) > . . . > f(Pr) > f(Pr+1) > . . . f(M̂θ[xn]) and further-
more liml→∞(f(Prl)− f(T (Prl))) = 0.

Consequently, if P = liml→∞ Prl , and by using the continuity of T and f ,

f(P )− f(T (P )) = f( lim
l→∞

Prl)− f( lim
l→∞

T (Prl))

= lim
l→∞

(f(Prl)− f(T (Prl))) = 0,

i.e., f(P ) = f(T (P )). By using again what has just been proven (if T (P ) ̸= P ,
then f(T (P )) < f(P )), it is concluded that P = T (P ). Finally, P is not a
vertex, so P = M̂θ[xn] like for the first case.

• Case P = (mid xj, spr xj) for some j ∈ {1, . . . , n}.

Like the cases before, the proof can be adapted from the reasoning in Kuhn
[121] to this different situation (dθ metric, space of non-empty compact inter-
vals and constant weights in the objective function) without extra difficulties.
Suppose that (mid xj, spr xj) ̸= M̂θ[xn]. By the result in Kuhn [121], there
exists δ > 0 such that 0 < djθ(P ) ≤ δ and that implies djθ(T

s(P )) > δ and
djθ(T

s−1(P )) ≤ δ for some positive integer s. Consequently, the subsequence
Prl → (mid xj, spr xj) can be chosen such that djθ(T (Prl)) > δ for all l, that is
to say, the ratio djθ(T (Prl))/d

j
θ(Prl) is unbounded.
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Another result in Kuhn [121] which can be immediately adapted to interval-
valued data is the calculus of the following limit:

lim
P→(mid xj ,spr xj)

djθ(T (P ))

djθ(P )
=

∣∣∣∣∣∑
i ̸=j

(mid xi, spr xi)− (mid xj, spr xj)

diθ((mid xj, spr xj))

∣∣∣∣∣ < ∞.

This contradict the considered assumption, so one can immediately conclude
that (mid xj, spr xj) = M̂θ[xn].

3.5.3 Simulation-based comparison between
the Aumann mean value and the dθ-median

The aim of this subsection is to compare synthetically the behaviour of the Aumann
mean value and the dθ-median for interval-valued data.

The simulations have been performed as follows:
Step 1. A sample of size n = 100 interval-valued data has been simulated from a

random interval X for each of some different situations in such a way that
• to generate the interval-valued data, we have considered two real-valued

random variables as follows: X = [X1 −X2, X1 +X2], with X1 = midX,
X2 = sprX;

• each sample is assumed to be split into a subsample of size n(1 − cp)

(where cp denotes the proportion of contamination and is supposed to
range in {0, 0.1, 0.2, 0.4}) associated with a non-contaminated distribu-
tion and a subsample of size n · cp associated with a contaminated one,
where an additional contamination role is played by CD (which measures
the relative distance between the distribution of the two subsamples and
ranges in {0, 1, 5, 10, 100}). In total, the 16 situations for different values
of cp and CD have been considered;

• for each of these situations three cases have been selected, namely, one in
which random variables Xi are independent (CASE 1) and two in which
they are dependent (CASES 2 and 2’). First, the non contaminated data
are generated according to

∗ midX ∼ N (0, 1) and sprX ∼ χ2
1 for CASE 1,

∗ midX ∼ N (0, 1) and sprX ∼
(

1
(midX)2+1

)2
+ 0.1 · χ2

1 for CASE 2,

∗ midX ∼ N (0, 1) and sprX ∼ 1
(midX)2+1

+
√
χ2
1 for CASE 2’.

Then, n · cp data from that sample are contaminated (contaminating
either the location or the spread or both of them) using the following
distributions:
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∗ midX ∼ N (0, 3) + CD and sprX ∼ χ2
4 + CD for CASE 1,

∗ midX ∼ N (0, 3) + CD and sprX ∼
(

1
(midX)2+1

)2
+ 0.1 · χ2

1 + CD for
CASE 2,

∗ midX ∼ N (0,
√
3)+CD and sprX ∼ 1

(midX)2+1
+
√

χ2
1+CD for CASE

2’.

As it can be noticed, the difference between CASE 2 and CASE 2’ derives
from the way of generating the spread of the contaminated observations.

Step 2. Since the population parameters (i.e. the Aumann expected value and pop-
ulation ρ1 and dθ-medians) cannot be derived analytically for random inter-
vals X according to the above distributions, N = 1000 replications of Step 1
have been considered for the situation cp = CD = 0 in order to approximate
them by using a Monte Carlo approach. These targets appear on the first
row of Tables 3.7, 3.8 and 3.9.

Step 3. In order to choose the parameter θ, a sensitivity analysis of the influence of
such a choice on the bias

dθ

(
E[M̂ [X]n],M [X]

)
,

the variance
E
(
d2θ(M̂ [X]n, E[M̂ [X]n])

)
and the mean squared error

E
(
d2θ(M̂ [X]n,M [X])

)
of the dθ-median has been first developed by distinguishing (abscise labels)
the 16 different situations in terms of the considered choices of the parame-
ters cp and CD. More concretely,

1 ≡ (cp = 0, CD = 0), 2 ≡ (cp = 0.1, CD = 0),

3 ≡ (cp = 0.1, CD = 1), 4 ≡ (cp = 0.1, CD = 5),

5 ≡ (cp = 0.1, CD = 10), 6 ≡ (cp = 0.1, CD = 100),

7 ≡ (cp = 0.2, CD = 0), 8 ≡ (cp = 0.2, CD = 1),

9 ≡ (cp = 0.2, CD = 5), 10 ≡ (cp = 0.2, CD = 10),

11 ≡ (cp = 0.2, CD = 100), 12 ≡ (cp = 0.4, CD = 0),

13 ≡ (cp = 0.4, CD = 1), 14 ≡ (cp = 0.4, CD = 5),

15 ≡ (cp = 0.4, CD = 10), 16 ≡ (cp = 0.4, CD = 100).
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Figure 3.21: Bias (top), variance (middle) and MSE (bottom) of the
dθ-median in CASES 1 (left column), 2 (middle) and 2’ (right column)
for different choices of θ: 1/3, 2/3, 1, 5 and 10

N = 1000 replications of Step 1 have been considered for all the situations
(cp, CD), the three measures have been computed for each of them ( ̂M [X]j1000
denotes the sample dθ-median of the jth sample, j ∈ {1, . . . , 1000}) and the
Monte Carlo approximation has been given by

dθ

(
1

1000

1000∑
i=1

M̂ [X]i1000,M [X]

)
for the bias,

1

1000

1000∑
i=1

d2θ

(
M̂ [X]i1000, E[M̂ [X]1000]

)
for the variance and

1

1000

n∑
i=1

d2θ

(
M̂ [X]i1000,M [X]

)
for the mean squared error.
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Figure 3.21 summarizes some of the most noteworthy obtained results.

Although the study has also taken into account other possible values of θ,
they have not been included in the graphical displays because they have not
visibly improved the ones selected for them.

The value of θ that rather uniformly minimizes the bias, variance and mean
squared error is θ = 5. Apart from considering this value, θ = 1 has been
chosen too in the computation of the dθ-median, because this corresponds
to ρ2, the analogous L2-type of the ρ1 distance.

Step 4. N = 1000 replications of Step 1 have been considered for all the situations
(cp, CD) and the approximated bias, variance and mean squared error have
been computed for each location measure (Aumann mean, ρ1-median, dθ=1-
and dθ=5-medians) and in every situation (cp, CD) following the scheme in
Step 3 and in terms of the three considered metrics: ρ1, dθ=1 and dθ=5.

The results for CASES 1, 2 and 2’ are shown in Tables 3.7, 3.8 and 3.9, respec-
tively. The bias, variance and mean squared error have been computed for each
location measure and for every situation in terms of the three considered metrics:
ρ1 (left), dθ=1 (center) and dθ=5 (right). The minimum value for each choice of cp
and CD (each row) and each metric has been highlighted in bold letters.

These tables show that the estimates of all the medians are much less influenced
by the contamination than the sample (Aumann) mean.

Furthermore,

• in CASE 1 the dθ=5-median is the best choice in terms of bias, mean squared
error and for most of the situations cp and CD when looking at the variance;

• in CASE 2 the most convenient measure in terms of bias and mean squared
error and also of variance is the ρ1-median for most of the choices of cp and
CD;

• in CASE 2’ the ρ1-median is again the best choice in terms of bias, variance
and mean squared error in most of the situations.

The simulation study was also developed for a sample size of n = 5000, but the
conclusions were the same than for the considered sample size.
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cp cD feature Mean ρ1-Median dθ=1-Median dθ=5-Median

.0 0 Estimate [−1.00363, .99079] [−.75301, .73239] [−.61602, .60027] [−.55149, .53517]
Bias 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0

Variance .0237 ⋆ .0281 ⋆ .1040 .0222 ⋆ .0272 ⋆ .0789 .0182 ⋆ .0221 ⋆ .0621 .0179 ⋆ .0218 ⋆ .0599

MSE .0237 ⋆ .0281 ⋆ .1040 .0222 ⋆ .0272 ⋆ .0789 .0182 ⋆ .0221 ⋆ .0621 .0179 ⋆ .0218 ⋆ .0599

.1 0 Estimate [−1.20792, 1.22446] [−.82329, .85281] [−.68828, .71099] [−.61441, .63869]

Bias .2189 ⋆ .2194 ⋆ .4898 .0953 ⋆ .0985 ⋆ .2146 .0914 ⋆ .0934 ⋆ .2054 .0832 ⋆ .0856 ⋆ .1872

Variance .0374 ⋆ .0445 ⋆ .1636 .0264 ⋆ .0323 ⋆ .0981 .0221 ⋆ .0268 ⋆ .0789 .0218 ⋆ .0267 ⋆ .0753

MSE .0827 ⋆ .0927 ⋆ .4035 .0348 ⋆ .0420 ⋆ .1442 .0297 ⋆ .0355 ⋆ .1211 .0283 ⋆ .0340 ⋆ .1103

.1 1 Estimate [−1.24314, 1.34182] [−.84280, .85998] [−.70045, .72645] [−.62565, .65218]
Bias .2952 ⋆ .3004 ⋆ .6625 .1086 ⋆ .1103 ⋆ .2437 .1053 ⋆ .1073 ⋆ .2363 .0955 ⋆ .0979 ⋆ .2148

Variance .0375 ⋆ .0447 ⋆ .1625 .0275 ⋆ .0332 ⋆ .0981 .0229 ⋆ .0276 ⋆ .0820 .0226 ⋆ .0273 ⋆ .0781

MSE .1208 ⋆ .1350 ⋆ .6016 .0380 ⋆ .0454 ⋆ .1575 .0329 ⋆ .0392 ⋆ .1378 .0308 ⋆ .0369 ⋆ .1243

.1 5 Estimate [−1.30759, 1.85151] [−.81899, .92700] [−.66771, .79271] [−.591700, .71218]
Bias .5823 ⋆ .6454 ⋆ 1.331 .1302 ⋆ .1453 ⋆ .2983 .1220 ⋆ .1409 ⋆ .2818 .1086 ⋆ .1283 ⋆ .2523

Variance .0776 ⋆ .0985 ⋆ .3425 .0287 ⋆ .0352 ⋆ .1081 .0248 ⋆ .0302 ⋆ .0907 .0245 ⋆ .0295 ⋆ .0862

MSE .4324 ⋆ .5151 ⋆ 2.115 .0467 ⋆ .0563 ⋆ .1971 .0415 ⋆ .0500 ⋆ .1702 .0381 ⋆ .0460 ⋆ .1499

.1 10 Estimate [−1.42225, 2.50618] [−.81255, .93881] [−.65708, .80637] [−.58126, .72727]

Bias .9670 ⋆ 1.111 ⋆ 2.230 .1329 ⋆ .1519 ⋆ .3062 .1235 ⋆ .1486 ⋆ .2884 .1109 ⋆ .1374 ⋆ .2610

Variance .1587 ⋆ .2087 ⋆ .6513 .0277 ⋆ .0340 ⋆ .1006 .0243 ⋆ .0299 ⋆ .0880 .0246 ⋆ .0300 ⋆ .0851

MSE 1.153 ⋆ 1.444 ⋆ 5.627 .0471 ⋆ .0570 ⋆ .1944 .0428 ⋆ .0520 ⋆ .1712 .0403 ⋆ .0489 ⋆ .1532

.1 100 Estimate [−3.20663, 13.87819] [−.80369, .93273] [−.63829, .80506] [−.56320, .73136]
Bias 7.545 ⋆ 9.244 ⋆ 17.69 .1255 ⋆ .1461 ⋆ .2904 .1135 ⋆ .1456 ⋆ .2697 .1039 ⋆ .1389 ⋆ .2500

Variance 10.89 ⋆ 15.10 ⋆ 41.48 .0312 ⋆ .0379 ⋆ .1129 .0267 ⋆ .0322 ⋆ .0941 .0266 ⋆ .0319 ⋆ .0893

MSE 75.92 ⋆ 100.5 ⋆ 354.6 .0489 ⋆ .0593 ⋆ .1973 .0441 ⋆ .0534 ⋆ .1669 .0423 ⋆ .0512 ⋆ .1519

.2 0 Estimate [−1.45244, 1.43712] [−.96369, .95769] [−.82747, .82451] [−.75115, .74535]

Bias .4475 ⋆ .4475 ⋆ 1.000 .2179 ⋆ .2181 ⋆ .4874 .2178 ⋆ .2179 ⋆ .4871 .2049 ⋆ .2049 ⋆ .4582

Variance .0583 ⋆ .0681 ⋆ .2658 .0346 ⋆ .0418 ⋆ .1377 .0308 ⋆ .0368 ⋆ .1239 .0302 ⋆ .0363 ⋆ .1197

MSE .2519 ⋆ .2685 ⋆ 1.267 .0770 ⋆ .0894 ⋆ .3753 .0737 ⋆ .0843 ⋆ .3613 .0679 ⋆ .0784 ⋆ .3297

.2 1 Estimate [−1.48406, 1.70003] [−.96885, 1.05911] [−.83062, .91792] [−.74210, .83336]

Bias .5948 ⋆ .6057 ⋆ 1.335 .2712 ⋆ .2768 ⋆ .6091 .2661 ⋆ .2710 ⋆ .5973 .2444 ⋆ .2502 ⋆ .5491

Variance .0714 ⋆ .0826 ⋆ .3252 .0383 ⋆ .0466 ⋆ .1499 .0345 ⋆ .0415 ⋆ .1435 .0350 ⋆ .0423 ⋆ .1438

MSE .4182 ⋆ .4496 ⋆ 2.107 .1058 ⋆ .1233 ⋆ .5210 .1011 ⋆ .1150 ⋆ .5003 .0913 ⋆ .1049 ⋆ .4454

.2 5 Estimate [−1.66475, 2.69900] [−.91026, 1.16926] [−.75377, 1.02697] [−.65478, .93147]

Bias 1.184 ⋆ 1.295 ⋆ 2.700 .2970 ⋆ .3283 ⋆ .6787 .2822 ⋆ .3170 ⋆ .6474 .2497 ⋆ .2895 ⋆ .5774

Variance .2032 ⋆ .2615 ⋆ .9013 .0447 ⋆ .0551 ⋆ .1727 .0401 ⋆ .0494 ⋆ .1600 .0402 ⋆ .0490 ⋆ .1509

MSE 1.641 ⋆ 1.939 ⋆ 8.192 .1368 ⋆ .1629 ⋆ .6334 .1268 ⋆ .1499 ⋆ .5791 .1110 ⋆ .1329 ⋆ .4844

.2 10 Estimate [−1.82779, 3.96648] [−.89244, 1.17874] [−.71878, 1.05280] [−.62321, .96513]

Bias 1.899 ⋆ 2.183 ⋆ 4.382 .2928 ⋆ .3306 ⋆ .6726 .2776 ⋆ .3281 ⋆ .6450 .2508 ⋆ .3082 ⋆ .5888

Variance .5682 ⋆ .7688 ⋆ 2.426 .0484 ⋆ .0596 ⋆ .1848 .0427 ⋆ .0525 ⋆ .1682 .0439 ⋆ .0539 ⋆ .1607

MSE 4.440 ⋆ 5.535 ⋆ 21.63 .1406 ⋆ .1689 ⋆ .6373 .1323 ⋆ .1602 ⋆ .5843 .1231 ⋆ .1489 ⋆ .5073

.2 100 Estimate [−5.91430, 26.91285] [−.91153, 1.17310] [−.71181, 1.05516] [−.61891, .97184]

Bias 15.41 ⋆ 18.65 ⋆ 36.03 .2999 ⋆ .3315 ⋆ .6853 .2753 ⋆ .3287 ⋆ .6413 .2520 ⋆ .3124 ⋆ .5930

Variance 42.49 ⋆ 57.28 ⋆ 148.9 .0502 ⋆ .0619 ⋆ .1964 .0468 ⋆ .0571 ⋆ .1836 .0468 ⋆ .0571 ⋆ .1717

MSE 309.4 ⋆ 405.3 ⋆ 1447 .1450 ⋆ .1719 ⋆ .6661 .1377 ⋆ .1651 ⋆ .5949 .1288 ⋆ .1547 ⋆ .5235

.4 0 Estimate [−1.90223, 1.89912] [−1.27397, 1.27655] [−1.16865, 1.16930] [−1.08960, 1.09451]

Bias .9034 ⋆ .9034 ⋆ 2.020 .5325 ⋆ .5326 ⋆ 1.190 .5608 ⋆ .5608 ⋆ 1.254 .5487 ⋆ .5488 ⋆ 1.227

Variance .1231 ⋆ .1398 ⋆ .5899 .0692 ⋆ .0826 ⋆ .3122 .0701 ⋆ .0812 ⋆ .3336 .0738 ⋆ .0860 ⋆ .3479

MSE .9297 ⋆ .9561 ⋆ 4.671 .3433 ⋆ .3663 ⋆ 1.730 .3796 ⋆ .3958 ⋆ 1.906 .3690 ⋆ .3872 ⋆ 1.853

.4 1 Estimate [−1.97052, 2.38461] [−1.32775, 1.56285] [−1.25645, 1.44984] [−1.16511, 1.37739]

Bias 1.180 ⋆ 1.199 ⋆ 2.6479 .7025 ⋆ .7141 ⋆ 1.576 .7450 ⋆ .7523 ⋆ 1.669 .7279 ⋆ .7368 ⋆ 1.631

Variance .1761 ⋆ .2054 ⋆ .8566 .1069 ⋆ .1270 ⋆ .4972 .1224 ⋆ .1394 ⋆ .6038 .1337 ⋆ .1526 ⋆ .6593

MSE 1.562 ⋆ 1.644 ⋆ 7.868 .5918 ⋆ .6370 ⋆ 2.981 .6755 ⋆ .7053 ⋆ 3.389 .6626 ⋆ .6956 ⋆ 3.321

.4 5 Estimate [−2.28312, 4.42717] [−1.25364, 2.16264] [−1.17114, 1.96028] [−0.99879, 1.83575]

Bias 2.357 ⋆ 2.592 ⋆ 5.381 .9654 ⋆ 1.071 ⋆ 2.208 .9575 ⋆ 1.038 ⋆ 2.178 .8739 ⋆ .9725 ⋆ 2.002

Variance .7400 ⋆ .9841 ⋆ 3.455 .2185 ⋆ .2674 ⋆ .9993 .2525 ⋆ .3017 ⋆ 1.246 .2496 ⋆ .3057 ⋆ 1.217

MSE 6.482 ⋆ 7.707 ⋆ 32.41 1.195 ⋆ 1.415 ⋆ 5.875 1.224 ⋆ 1.380 ⋆ 5.993 1.099 ⋆ 1.251 ⋆ 5.218

.4 10 Estimate [−2.74184, 6.92206] [−1.22611, 2.31048] [−1.11704, 2.11321] [−.91925, 2.01288]

Bias 3.834 ⋆ 4.370 ⋆ 8.8273 1.025 ⋆ 1.164 ⋆ 2.358 1.006 ⋆ 1.126 ⋆ 2.307 .9227 ⋆ 1.076 ⋆ 2.136

Variance 2.049 ⋆ 2.769 ⋆ 8.568 .2214 ⋆ .2793 ⋆ .8894 .2558 ⋆ .3231 ⋆ 1.212 .2665 ⋆ .3418 ⋆ 1.187

MSE 17.66 ⋆ 21.87 ⋆ 86.49 1.337 ⋆ 1.636 ⋆ 6.453 1.368 ⋆ 1.593 ⋆ 6.538 1.278 ⋆ 1.501 ⋆ 5.753

.4 100 Estimate [−11.43411, 52.31994] [−1.24750, 2.32713] [−1.09851, 2.19196] [−.91253, 2.14301]

Bias 30.87 ⋆ 37.03 ⋆ 72.01 1.044 ⋆ 1.180 ⋆ 2.399 1.037 ⋆ 1.176 ⋆ 2.384 .9844 ⋆ 1.165 ⋆ 2.287

Variance 162.1 ⋆ 217.9 ⋆ 565.4 .2281 ⋆ .2897 ⋆ .9339 .2798 ⋆ .3578 ⋆ 1.323 .3052 ⋆ .3949 ⋆ 1.343

MSE 1220 ⋆ 1589 ⋆ 5751 1.382 ⋆ 1.683 ⋆ 6.692 1.477 ⋆ 1.740 ⋆ 7.009 1.470 ⋆ 1.752 ⋆ 6.577

Table 3.7: Monte Carlo approximation, bias, variance and mean
squared error of the location measures in CASE 1
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cp cD feature Mean ρ1-Median dθ=1-Median dθ=5-Median

.0 0 Estimate [−.60357, .59748] [−1.04536, 1.04316] [−.78298, .77889] [−.70305, .69865]

Bias 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0

Variance .0102 ⋆ .0111 ⋆ .0161 .0108 ⋆ .0128 ⋆ .0226 .0182 ⋆ .0196 ⋆ .0275 .0191 ⋆ .0207 ⋆ .0298

MSE .0102 ⋆ .0111 ⋆ .0161 .0108 ⋆ .0128 ⋆ .0226 .0182 ⋆ .0196 ⋆ .0275 .0191 ⋆ .0207 ⋆ .0298

.1 0 Estimate [−.59104, .59191] [−1.03738, 1.03652] [−.77475, .77271] [−.69428, .69089]

Bias .0084 ⋆ .0084 ⋆ .0189 .0046 ⋆ .0047 ⋆ .0103 .0078 ⋆ .0079 ⋆ .0175 .0082 ⋆ .0083 ⋆ .0184

Variance .0159 ⋆ .0169 ⋆ .0222 .0129 ⋆ .0152 ⋆ .0262 .0210 ⋆ .0227 ⋆ .0317 .0225 ⋆ .0243 ⋆ .0340

MSE .0159 ⋆ .0170 ⋆ .0226 .0128 ⋆ .0152 ⋆ .0263 .0209 ⋆ .0227 ⋆ .0320 .0225 ⋆ .0244 ⋆ .0344

.1 1 Estimate [−.60679, .72450] [−1.04268, 1.07424] [−.78818, .83681] [−.71048, .76413]

Bias .0656 ⋆ .0879 ⋆ .1581 .0168 ⋆ .0227 ⋆ .0407 .0309 ⋆ .0392 ⋆ .0733 .0364 ⋆ .0455 ⋆ .0859

Variance .0175 ⋆ .0189 ⋆ .0258 .0110 ⋆ .0135 ⋆ .0262 .0198 ⋆ .0216 ⋆ .0309 .0202 ⋆ .0222 ⋆ .0328

MSE .0230 ⋆ .0266 ⋆ .0508 .0119 ⋆ .0140 ⋆ .0279 .0210 ⋆ .0232 ⋆ .0362 .0218 ⋆ .0243 ⋆ .0402

.1 5 Estimate [−.68677, 1.21743] [−1.04988, 1.11860] [−.77104, .89670] [−.69004, .81353]

Bias .3521 ⋆ .4407 ⋆ .8308 .0426 ⋆ .0544 ⋆ .1012 .0626 ⋆ .0816 ⋆ .1327 .0621 ⋆ .0803 ⋆ .1297

Variance .0378 ⋆ .0467 ⋆ .1054 .0075 ⋆ .0102 ⋆ .0234 .0188 ⋆ .0207 ⋆ .0311 .0190 ⋆ .0210 ⋆ .0327

MSE .1839 ⋆ .2410 ⋆ .7957 .0114 ⋆ .0132 ⋆ .0336 .0244 ⋆ .0273 ⋆ .0487 .0245 ⋆ .0275 ⋆ .0496

.1 10 Estimate [−.77077, 1.85755] [−1.04035, 1.11780] [−.76427, .90253] [−.68559, .81644]

Bias .7142 ⋆ .8972 ⋆ 1.686 .0381 ⋆ .0534 ⋆ .0921 .0689 ⋆ .0863 ⋆ .1349 .0658 ⋆ .0827 ⋆ .1301

Variance .1215 ⋆ .1622 ⋆ .3910 .0087 ⋆ .0116 ⋆ .0259 .0210 ⋆ .0230 ⋆ .0335 .0211 ⋆ .02332 ⋆ .0349

MSE .7326 ⋆ .9672 ⋆ 3.236 .0126 ⋆ .0145 ⋆ .0344 .0274 ⋆ .0305 ⋆ .0517 .0270 ⋆ .0301 ⋆ .0519

.1 100 Estimate [−2.29196, 13.43840] [−1.04257, 1.11976] [−.76356, .90700] [−.68530, .81891]

Bias 7.265 ⋆ 9.156 ⋆ 17.17 .0395 ⋆ .0548 ⋆ .0963 .0715 ⋆ .0895 ⋆ .1398 .0672 ⋆ .0845 ⋆ .1329

Variance 10.33 ⋆ 14.39 ⋆ 38.85 .0076 ⋆ .0101 ⋆ .0225 .0196 ⋆ .0216 ⋆ .0316 .0205 ⋆ .0227 ⋆ .0341

MSE 73.74 ⋆ 98.23 ⋆ 333.8 .0114 ⋆ .0131 ⋆ .0318 .0266 ⋆ .0296 ⋆ .0512 .0268 ⋆ .0298 ⋆ .0518

.2 0 Estimate [−.58781, .57649] [−1.03204, 1.02691] [−.76973, .76150] [−.68802, .67912]

Bias .0178 ⋆ .0187 ⋆ .0402 .0120 ⋆ .0124 ⋆ .0272 .0159 ⋆ .0164 ⋆ .0358 .0172 ⋆ .0177 ⋆ .0388

Variance .0182 ⋆ .0194 ⋆ .0254 .0143 ⋆ .0166 ⋆ .0286 .0218 ⋆ .0236 ⋆ .0325 .0236 ⋆ .0255 ⋆ .0356

MSE .0183 ⋆ .0198 ⋆ .0271 .0140 ⋆ .0168 ⋆ .0294 .0218 ⋆ .0238 ⋆ .0338 .0236 ⋆ .0258 ⋆ .0371

.2 1 Estimate [−.61501, .83663] [−1.03871, 1.10449] [−.79484, .89450] [−.71970, .83118]

Bias .1258 ⋆ .1674 ⋆ .3023 .0322 ⋆ .0440 ⋆ .0745 .0631 ⋆ .0803 ⋆ .1496 .0746 ⋆ .0933 ⋆ .1760

Variance .0242 ⋆ .0267 ⋆ .0410 .0105 ⋆ .0136 ⋆ .0297 .0206 ⋆ .0231 ⋆ .0366 .0204 ⋆ .0232 ⋆ .0391

MSE .0454 ⋆ .0548 ⋆ .1324 .0134 ⋆ .0156 ⋆ .0352 .0258 ⋆ .0296 ⋆ .0590 .0275 ⋆ .0319 ⋆ .0701

.2 5 Estimate [−.77078, 1.83803] [−1.03638, 1.17067] [−.75380, 1.01836] [−.67919, .93675]

Bias .7044 ⋆ .8835 ⋆ 1.663 .0665 ⋆ .0909 ⋆ .1536 .1321 ⋆ .1684 ⋆ .2685 .1292 ⋆ .1678 ⋆ .2721

Variance .1188 ⋆ .1555 ⋆ .3681 .0091 ⋆ .0148 ⋆ .0404 .0210 ⋆ .0244 ⋆ .0416 .0214 ⋆ .0244 ⋆ .0412

MSE .7142 ⋆ .9362 ⋆ 3.133 .0200 ⋆ .0230 ⋆ .0640 .0459 ⋆ .0528 ⋆ .1137 .0453 ⋆ .0526 ⋆ .1152

.2 10 Estimate [−1.04070, 3.10648] [−1.04170, 1.17202] [−.75429, 1.02898] [−.68130, .94562]

Bias 1.473 ⋆ 1.799 ⋆ 3.453 .0652 ⋆ .0918 ⋆ .1596 .1372 ⋆ .1759 ⋆ .2818 .1325 ⋆ .1739 ⋆ .2846

Variance .4080 ⋆ .5437 ⋆ 1.364 .0096 ⋆ .0155 ⋆ .0419 .0221 ⋆ .0259 ⋆ .0437 .0229 ⋆ .0261 ⋆ .0428

MSE 2.887 ⋆ 3.781 ⋆ 13.28 .0207 ⋆ .0239 ⋆ .0674 .0488 ⋆ .0568 ⋆ .1231 .0482 ⋆ .0563 ⋆ .1238

.2 100 Estimate [−4.86615, 26.03105] [−1.03277, 1.17267] [−.74618, 1.04094] [−.67600, .95717]

Bias 14.84 ⋆ 18.23 ⋆ 34.84 .0693 ⋆ .0924 ⋆ .1533 .1472 ⋆ .1850 ⋆ .2905 .1410 ⋆ .1824 ⋆ .2947

Variance 40.36 ⋆ 54.02 ⋆ 137.2 .0106 ⋆ .0172 ⋆ .0464 .0223 ⋆ .0262 ⋆ .0445 .0230 ⋆ .0263 ⋆ .0435

MSE 293.4 ⋆ 386.4 ⋆ 1351 .0221 ⋆ .0258 ⋆ .0700 .0524 ⋆ .0605 ⋆ .1289 .0513 ⋆ .0596 ⋆ .1304

.4 0 Estimate [−.56563, .56857] [−1.01743, 1.01583] [−.75167, .74884] [−.67084, .66527]

Bias .0328 ⋆ .0328 ⋆ .0734 .0249 ⋆ .0249 ⋆ .0557 .0312 ⋆ .0313 ⋆ .0699 .0327 ⋆ .0328 ⋆ .0733

Variance .0278 ⋆ .0293 ⋆ .0372 .0182 ⋆ .0214 ⋆ .0381 .0261 ⋆ .0281 ⋆ .0391 .0283 ⋆ .0304 ⋆ .0421

MSE .0280 ⋆ .0303 ⋆ .0426 .0177 ⋆ .0221 ⋆ .0412 .0262 ⋆ .0291 ⋆ .0440 .0285 ⋆ .0315 ⋆ .0474

.4 1 Estimate [−.65245, 1.07968] [−1.04341, 1.16200] [−.83031, 1.02147] [−.77495, .98004]

Bias .2661 ⋆ .3410 ⋆ .6321 .0611 ⋆ .0847 ⋆ .1487 .1443 ⋆ .1730 ⋆ .3365 .1766 ⋆ .2044 ⋆ .4082

Variance .0405 ⋆ .0472 ⋆ .0856 .0118 ⋆ .0177 ⋆ .0458 .0225 ⋆ .0273 ⋆ .0547 .0216 ⋆ .0268 ⋆ .0578

MSE .1328 ⋆ .1635 ⋆ .4852 .0215 ⋆ .0248 ⋆ .0680 .0489 ⋆ .0572 ⋆ .1680 .0582 ⋆ .0686 ⋆ .2245

.4 5 Estimate [−1.04593, 3.06623] [−1.02759, 1.37928] [−.77180, 1.29272] [−.71840, 1.18035]

Bias 1.456 ⋆ 1.772 ⋆ 3.409 .1752 ⋆ .2385 ⋆ .4021 .2603 ⋆ .3614 ⋆ .6181 .2485 ⋆ .3395 ⋆ .6020

Variance .4217 ⋆ .5584 ⋆ 1.326 .0382 ⋆ .0590 ⋆ .1780 .0450 ⋆ .0608 ⋆ .1342 .0389 ⋆ .0486 ⋆ .0917

MSE 2.848 ⋆ 3.698 ⋆ 12.94 .0971 ⋆ .1159 ⋆ .3398 .1625 ⋆ .1914 ⋆ .5163 .1379 ⋆ .1639 ⋆ .4541

.4 10 Estimate [−1.44327, 5.54909] [−.97458, 1.40392] [−.71332, 1.35805] [−.67236, 1.22567]

Bias 2.896 ⋆ 3.549 ⋆ 6.793 .2140 ⋆ .2600 ⋆ .3935 .3222 ⋆ .4103 ⋆ .6532 .2770 ⋆ .3719 ⋆ .6202

Variance 1.634 ⋆ 2.220 ⋆ 5.563 .0547 ⋆ .0842 ⋆ .2370 .0649 ⋆ .0857 ⋆ .1770 .0592 ⋆ .0709 ⋆ .1201

MSE 11.51 ⋆ 14.82 ⋆ 51.71 .1291 ⋆ .1518 ⋆ .3919 .2224 ⋆ .2541 ⋆ .6037 .1830 ⋆ .2093 ⋆ .5049

.4 100 Estimate [−9.51527, 50.95382] [−.98241, 1.40652] [−.70326, 1.38340] [−.67636, 1.23637]

Bias 29.63 ⋆ 36.15 ⋆ 69.42 .2114 ⋆ .2609 ⋆ .4020 .3399 ⋆ .4290 ⋆ .6769 .2804 ⋆ .3793 ⋆ .6364

Variance 155.2 ⋆ 206.6 ⋆ 521.3 .0506 ⋆ .0789 ⋆ .2232 .0655 ⋆ .0856 ⋆ .1746 .0574 ⋆ .0683 ⋆ .1148

MSE 1153 ⋆ 1514 ⋆ 5341 .1234 ⋆ .1470 ⋆ .3848 .2324 ⋆ .2697 ⋆ .6328 .1823 ⋆ .2122 ⋆ .5199

Table 3.8: Monte Carlo approximation, bias, variance and mean
squared error of the location measures in CASE 2
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cp cD feature Mean ρ1-Median dθ=1-Median dθ=5-Median

.0 0 Estimate [−1.45257, 1.45454] [−1.59709, 1.59680] [−1.46444, 1.45955] [−1.41036, 1.40514]

Bias 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0 0 ⋆ 0 ⋆ 0

Variance .0121 ⋆ .0143 ⋆ .0303 .0116 ⋆ .0139 ⋆ .0332 .0140 ⋆ .0164 ⋆ .0339 .0134 ⋆ .0157 ⋆ .0341

MSE .0121 ⋆ .0143 ⋆ .0303 .0116 ⋆ .0139 ⋆ .0332 .0140 ⋆ .0164 ⋆ .0339 .0134 ⋆ .0157 ⋆ .0341

.1 0 Estimate [−1.43436, 1.45139] [−1.58183, 1.59857] [−1.44531, 1.46310] [−1.39227, 1.40871]

Bias .0106 ⋆ .0130 ⋆ .0250 .0085 ⋆ .0108 ⋆ .0173 .0113 ⋆ .0137 ⋆ .0207 .0108 ⋆ .0130 ⋆ .0195

Variance .0167 ⋆ .0192 ⋆ .0369 .0125 ⋆ .0151 ⋆ .0369 .0143 ⋆ .0168 ⋆ .0353 .0137 ⋆ .0162 ⋆ .0354

MSE .0168 ⋆ .0193 ⋆ .0375 .0126 ⋆ .0152 ⋆ .0372 .0144 ⋆ .0170 ⋆ .0358 .0138 ⋆ .0164 ⋆ .0358

.1 1 Estimate [−1.45938, 1.57164] [−1.61134, 1.65225] [−1.48605, 1.52761] [−1.43292, 1.47959]

Bias .0619 ⋆ .0829 ⋆ .1491 .0348 ⋆ .0404 ⋆ .0806 .0448 ⋆ .0504 ⋆ .1029 .0485 ⋆ .0550 ⋆ .1115

Variance .0169 ⋆ .0194 ⋆ .0391 .0132 ⋆ .0161 ⋆ .0408 .0157 ⋆ .0186 ⋆ .0411 .0151 ⋆ .0179 ⋆ .0417

MSE .0222 ⋆ .0263 ⋆ .0613 .0145 ⋆ .0178 ⋆ .0473 .0178 ⋆ .0212 ⋆ .0517 .0175 ⋆ .0209 ⋆ .0541

.1 5 Estimate [−1.53508, 2.07426] [−1.62057, 1.71687] [−1.48329, 1.59478] [−1.42656, 1.53334]

Bias .3511 ⋆ .4420 ⋆ .8297 .0717 ⋆ .0865 ⋆ .1676 .0770 ⋆ .0965 ⋆ .1818 .0722 ⋆ .0913 ⋆ .1708

Variance .0429 ⋆ .0535 ⋆ .1209 .0151 ⋆ .0179 ⋆ .0436 .0173 ⋆ .0203 ⋆ .0432 .0169 ⋆ .0199 ⋆ .0437

MSE .1932 ⋆ .2489 ⋆ .8095 .0212 ⋆ .0254 ⋆ .0717 .0250 ⋆ .0296 ⋆ .0763 .0237 ⋆ .0282 ⋆ .0729

.1 10 Estimate [−1.59340, 2.70553] [−1.60011, 1.72678] [−1.45983, 1.61214] [−1.40402, 1.54998]

Bias .6959 ⋆ .8901 ⋆ 1.652 .0665 ⋆ .0919 ⋆ .1616 .0785 ⋆ .1079 ⋆ .1831 .0755 ⋆ .1025 ⋆ .1723

Variance .1210 ⋆ .1607 ⋆ .4100 .0140 ⋆ .0172 ⋆ .0453 .0157 ⋆ .0189 ⋆ .0431 .0152 ⋆ .0182 ⋆ .0426

MSE .7218 ⋆ .9531 ⋆ 3.139 .0210 ⋆ .0257 ⋆ .0714 .0254 ⋆ .0305 ⋆ .0766 .0239 ⋆ .0287 ⋆ .0723

.1 100 Estimate [−3.48429, 14.28107] [−1.61363, 1.72107] [−1.47242, 1.60739] [−1.41681, 1.54443]

Bias 7.429 ⋆ 9.182 ⋆ 17.46 .0704 ⋆ .0886 ⋆ .1663 .0779 ⋆ .1046 ⋆ .1877 .0728 ⋆ .0986 ⋆ .1759

Variance 9.728 ⋆ 13.31 ⋆ 34.32 .0142 ⋆ .0171 ⋆ .0431 .0174 ⋆ .0205 ⋆ .0454 .0168 ⋆ .0200 ⋆ .0457

MSE 72.81 ⋆ 97.63 ⋆ 339.4 .0207 ⋆ .0249 ⋆ .0708 .0261 ⋆ .0314 ⋆ .0807 .0245 ⋆ .0297 ⋆ .0767

.2 0 Estimate [−1.43149, 1.44011] [−1.58705, 1.59286] [−1.44542, 1.45640] [−1.39032, 1.40123]

Bias .0177 ⋆ .0180 ⋆ .0398 .0069 ⋆ .0076 ⋆ .0159 .0110 ⋆ .0136 ⋆ .0260 .0119 ⋆ .0144 ⋆ .0279

Variance .0197 ⋆ .0225 ⋆ .0415 .0132 ⋆ .0159 ⋆ .0393 .0151 ⋆ .0178 ⋆ .0374 .0146 ⋆ .0172 ⋆ .0374

MSE .0198 ⋆ .0229 ⋆ .0431 .0133 ⋆ .0160 ⋆ .0396 .0152 ⋆ .0180 ⋆ .0380 .0147 ⋆ .0174 ⋆ .0382

.2 1 Estimate [−1.49435, 1.68002] [−1.65003, 1.71026] [−1.53713, 1.60213] [−1.48452, 1.55883]

Bias .1336 ⋆ .1621 ⋆ .3126 .0832 ⋆ .0885 ⋆ .1884 .1076 ⋆ .1131 ⋆ .2432 .1139 ⋆ .1206 ⋆ .2578

Variance .0241 ⋆ .0276 ⋆ .0514 .0170 ⋆ .0202 ⋆ .0518 .0189 ⋆ .0222 ⋆ .0516 .0190 ⋆ .0223 ⋆ .0520

MSE .0437 ⋆ .0538 ⋆ .1492 .0232 ⋆ .0281 ⋆ .0874 .0288 ⋆ .0350 ⋆ .1107 .0301 ⋆ .0369 ⋆ .1185

.2 5 Estimate [−1.65137, 2.66631] [−1.65785, 1.87142] [−1.51606, 1.76165] [−1.44957, 1.69308]

Bias .7052 ⋆ .8683 ⋆ 1.656 .1676 ⋆ .1988 ⋆ .3899 .1768 ⋆ .2167 ⋆ .4148 .1635 ⋆ .2054 ⋆ .3863

Variance .1168 ⋆ .1539 ⋆ .3826 .0209 ⋆ .0265 ⋆ .0743 .0237 ⋆ .0294 ⋆ .0734 .0229 ⋆ .0282 ⋆ .0684

MSE .7064 ⋆ .9078 ⋆ 3.126 .0551 ⋆ .0661 ⋆ .2263 .0631 ⋆ .0764 ⋆ .2455 .0579 ⋆ .0704 ⋆ .2177

.2 10 Estimate [−1.81346, 3.97370] [−1.63723, 1.89056] [−1.49540, 1.79558] [−1.42822, 1.72534]

Bias 1.440 ⋆ 1.799 ⋆ 3.396 .1669 ⋆ .2096 ⋆ .3942 .1834 ⋆ .2386 ⋆ .4377 .1690 ⋆ .2267 ⋆ .4070

Variance .4002 ⋆ .5338 ⋆ 1.340 .0225 ⋆ .0279 ⋆ .0771 .0257 ⋆ .0316 ⋆ .0786 .0253 ⋆ .0310 ⋆ .0750

MSE 2.863 ⋆ 3.772 ⋆ 12.87 .0589 ⋆ .0718 ⋆ .2326 .0718 ⋆ .0885 ⋆ .2702 .0669 ⋆ .0824 ⋆ .2407

.2 100 Estimate [−6.03844, 26.72992] [−1.64179, 1.88729] [−1.49645, 1.79678] [−1.43480, 1.71998]

Bias 14.93 ⋆ 18.16 ⋆ 34.95 .1675 ⋆ .2078 ⋆ .3943 .1846 ⋆ .2395 ⋆ .4401 .1696 ⋆ .2232 ⋆ .4061

Variance 41.43 ⋆ 56.20 ⋆ 144.0 .0222 ⋆ .0280 ⋆ .0808 .0263 ⋆ .0328 ⋆ .0839 .0254 ⋆ .0316 ⋆ .0787

MSE 294.6 ⋆ 386.1 ⋆ 1365 .0591 ⋆ .0712 ⋆ .2363 .0738 ⋆ .0902 ⋆ .2776 .0668 ⋆ .0814 ⋆ .2437

.4 0 Estimate [−1.41693, 1.42175] [−1.58826, 1.58947] [−1.44519, 1.44446] [−1.38863, 1.38977]

Bias .0342 ⋆ .0342 ⋆ .0765 .0080 ⋆ .0081 ⋆ .0180 .0171 ⋆ .0172 ⋆ .0384 .0185, ⋆ .0188 ⋆ .0415

Variance .0292 ⋆ .0326 ⋆ .0535 .0158 ⋆ .0190 ⋆ .0421 .0196 ⋆ .0225 ⋆ .0424 .0191 ⋆ .0220 ⋆ .0428

MSE .0296 ⋆ .0337 ⋆ .0593 .0158 ⋆ .0191 ⋆ .0424 .0196 ⋆ .0228 ⋆ .0438 .0192 ⋆ .0224 ⋆ .0445

.4 1 Estimate [−1.49881, 1.92425] [−1.69753, 1.88527] [−1.60777, 1.79981] [−1.55359, 1.77199]

Bias .2579 ⋆ .3337 ⋆ .6144 .1944 ⋆ .2159 ⋆ .4448 .2417 ⋆ .2610 ⋆ .5495 .2550 ⋆ .2784 ⋆ .5811

Variance .0461 ⋆ .0542 ⋆ .1055 .0308 ⋆ .0375 ⋆ .1034 .0328 ⋆ .0403 ⋆ .1112 .0344 ⋆ .0419 ⋆ .1135

MSE .1357 ⋆ .1656 ⋆ .4831 .0706 ⋆ .0842 ⋆ .3013 .0920 ⋆ .1084 ⋆ .4132 .1005 ⋆ .1195 ⋆ .4513

.4 5 Estimate [−1.85535, 3.91731] [−1.75626, 2.45461] [−1.64767, 2.33840] [−1.54410, 2.25335]

Bias 1.432 ⋆ 1.764 ⋆ 3.365 .5084 ⋆ .6169 ⋆ 1.189 .5310 ⋆ .6348 ⋆ 1.237 .4909 ⋆ .6071 ⋆ 1.154

Variance .4226 ⋆ .5622 ⋆ 1.356 .0839 ⋆ .1134 ⋆ .3590 .0878 ⋆ .1198 ⋆ .3638 .0821 ⋆ .1108 ⋆ .3100

MSE 2.842 ⋆ 3.675 ⋆ 12.68 .4069 ⋆ .4940 ⋆ 1.773 .4374 ⋆ .5228 ⋆ 1.894 .3954 ⋆ .4795 ⋆ 1.642

.4 10 Estimate [−2.43213, 6.41147] [−1.75240, 2.51641] [−1.65208, 2.44767] [−1.53502, 2.35117]

Bias 2.968 ⋆ 3.572 ⋆ 6.928 .5374 ⋆ .6594 ⋆ 1.261 .5878 ⋆ .7111 ⋆ 1.374 .5353 ⋆ .6747 ⋆ 1.265

Variance 1.628 ⋆ 2.167 ⋆ 5.269 .0935 ⋆ .1291 ⋆ .3782 .1074 ⋆ .1468 ⋆ .4089 .1077 ⋆ .1421 ⋆ .3523

MSE 11.58 ⋆ 14.93 ⋆ 53.27 .4630 ⋆ .5640 ⋆ 1.968 .5444 ⋆ .6526 ⋆ 2.297 .4956 ⋆ .5974 ⋆ 1.953

.4 100 Estimate [−9.57178, 52.00442] [−1.70707, 2.51529] [−1.59118, 2.48420] [−1.48280, 2.38771]

Bias 29.33 ⋆ 36.20 ⋆ 68.93 .5142 ⋆ .6541 ⋆ 1.218 .5757 ⋆ .7300 ⋆ 1.363 .5275 ⋆ .6966 ⋆ 1.264

Variance 152.8 ⋆ 203.9 ⋆ 520.4 .0837 ⋆ .1131 ⋆ .3304 .1026 ⋆ .1397 ⋆ .3827 .1061 ⋆ .1377 ⋆ .3336

MSE 1139 ⋆ 1514 ⋆ 5273 .4331 ⋆ .5409 ⋆ 1.8160 .5438 ⋆ .6726 ⋆ 2.241 .5027 ⋆ .6230 ⋆ 1.932

Table 3.9: Monte Carlo approximation, bias, variance and mean
squared error of the location measures in CASE 2’
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Spatial

cp cD Case 1 Case 2 Case 2’

0.0 0 0.003245 0.001503 0.003451

0.1 0 0.004349 0.003103 0.003176

0.1 1 0.003040 0.002462 0.003303

0.1 5 0.003773 0.002684 0.002879

0.1 10 0.002415 0.004036 0.004215

0.1 100 0.002882 0.003122 0.004140

0.2 0 0.004299 0.003837 0.003091

0.2 1 0.005382 0.004384 0.003277

0.2 5 0.003776 0.004167 0.004741

0.2 10 0.002993 0.005597 0.004991

0.2 100 0.003904 0.005066 0.004936

0.4 0 0.003310 0.004491 0.003683

0.4 1 0.0036030 0.005110 0.003415

0.4 5 0.005399 0.004911 0.004935

0.4 10 0.004122 0.005416 0.004658

0.4 100 0.003382 0.006818 0.004225

Table 3.10: Maximum range of the weights (i.e., the difference between
the maximum and minimum allocated weights) in the computation of the
spatial median considering 11 different values of θ

Remark 3.5.1. Although the parameter θ is involved in the computation of the
spatial median, its influence on the estimation is modest as it has been checked
empirically with the following simulation study:

Step 1 is similar to that for the simulations already developed in this subsection;

Step 2. For each situation (cp and CD), the spatial median has been approximated by
Monte Carlo, using N = 1000 replications of Step 1, for some different choices
of the parameter θ ∈ {0.1, 1/3, 0.5, 2/3, 0.9, 1, 5, 10, 20, 50, 100}.

Step 3. The range of each of the 100 weights (corresponding to each of the 100 ob-
servations) has been computed over the 11 possible values of θ. Finally, for
each situation (cp and CD), the maximum of the 100 ranges is represented in
Table 3.10.

It can be seen that, independently from the case, the maximum range obtained
is quite small, always smaller than 1/100. Therefore, none of the weights vary very
much when θ changes.

One should not worry about this limited influence of θ on the estimation of the
spatial median, since the Aumann mean and the wabl/ldev/rdev median, in spite
of being defined by means of a distance that also involves the theta parameter, do
not depend on theta.
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3.6 Illustrative application to real-life example

A real-life example involving interval-valued data is first to be considered, aiming
to compare the behaviour of the Aumann mean value and the different approaches
to extend the median in this chapter.

Example 3.6.1. The IBEX 35 is the benchmark stock market index of the Bolsa de
Madrid, Spain’s principal stock exchange. Administered and calculated by Sociedad
de Bolsas (a subsidiary of the company which runs Spain’s securities markets in-
cluding the Bolsa de Madrid), it is composed of the 35 securities listed on the Stock
Exchange Interconnection System of the four Spanish Stock Exchanges, which were
most liquid during the control period pursuant to the terms of the regulation. For
more details, visit the web page of the Bolsa de Madrid (http://www.bolsamadrid.es/
ing/aspx/Portada/Portada.aspx).

In this example, the daily fluctuation of the IBEX 35 during 6 months (from
the 14th June to the 14th December of 2012) has been considered. To measure such
fluctuation, the minimum and the maximum values achieved by the index every day
along this period of time have been recorded. Table 3.11 shows the data obtained
and Figure 3.22 represents the daily fluctuation along the considered period of time.

By using the algorithm proposed in this section, the sample dθ-median has been
calculated:

M
(1)
θ=1/3[X] = [7598.308, 7740.571],

and also the Aumann-type mean value and the location measures defined in this
chapter (M-estimates of location, 1-norm median and φ-wabl/ldev/rdev median):

E(1)[X] = [7338.07, 7502.121],

Me(1)[X] = [7594.94, 7733.85],

Mφ(1)[X] = [7603.375, 7742.275],

gMHuber, θ=1/3

(1)
[X] = [7598.022, 7740.281],

gMHampel, θ=1/3

(1)
[X] = [7665.158, 7804.915].

The M-estimates of location have been computed by means of two well-known
loss functions satisfying the assumptions of the representer theorem (Theorem 3.2.1),
the Huber and the Hampel loss functions.

First, the considered loss function will be Huber’s one (Remark 3.1.1) with a =

1.345. The function ρa, its derivative ρ′a and ϕa corresponding to the quotient of ρ′a
and the identity function are displayed in Figure 3.23 (top left).

The second one is Hampel’s loss function, introduced in Subsection 3.1.5.
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Date Low High Date Low High Date Low High

14/06/2012 6558.6 6696.4 15/08/2012 7066.8 7146.7 16/10/2012 7741.6 7941.8

15/06/2012 6659.0 6829.8 16/08/2012 7123.3 7419.3 17/10/2012 7987.0 8131.9

18/06/2012 6503.3 6862.6 17/08/2012 7452.5 7612.1 18/10/2012 8035.5 8156.6

19/06/2012 6479.4 6717.4 20/08/2012 7387.4 7645.0 19/10/2012 7880.9 8070.6

20/06/2012 6668.2 6806.9 21/08/2012 7430.4 7558.4 22/10/2012 7841.5 7955.7

21/06/2012 6675.4 6914.9 22/08/2012 7326.4 7516.0 23/10/2012 7699.8 7886.6

22/06/2012 6697.1 6960.0 23/08/2012 7176.9 7427.0 24/10/2012 7653.2 7819.7

25/06/2012 6612.3 6857.5 24/08/2012 7183.0 7323.1 25/10/2012 7766.3 7851.3

26/06/2012 6512.3 6708.3 27/08/2012 7216.8 7398.9 26/10/2012 7665.6 7803.7

27/06/2012 6513.0 6666.9 28/08/2012 7284.2 7404.1 29/10/2012 7684.5 7779.7

28/06/2012 6593.5 6724.5 29/08/2012 7274.3 7365.4 30/10/2012 7755.9 7844.0

29/06/2012 6872.5 7102.2 30/08/2012 7178.8 7304.7 31/10/2012 7830.9 7939.9

02/07/2012 7036.9 7178.4 31/08/2012 7161.4 7424.7 01/11/2012 7790.3 7928.8

03/07/2012 7122.2 7219.5 03/09/2012 7351.2 7442.1 02/11/2012 7834.6 7995.9

04/07/2012 7116.2 7202.7 04/09/2012 7444.2 7542.8 05/11/2012 7793.3 7894.7

05/07/2012 6912.2 7180.8 05/09/2012 7421.6 7562.4 06/11/2012 7800.9 7868.3

06/07/2012 6726.7 6921.2 06/09/2012 7533.0 7864.9 07/11/2012 7638.5 7918.6

09/07/2012 6611.6 6785.7 07/09/2012 7834.4 8027.0 08/11/2012 7606.4 7718.0

10/07/2012 6638.2 6812.2 10/09/2012 7796.9 7890.8 09/11/2012 7496.0 7674.0

11/07/2012 6679.0 6829.7 11/09/2012 7730.0 7933.4 12/11/2012 7548.1 7633.3

12/07/2012 6600.8 6755.3 12/09/2012 7928.7 8076.6 13/11/2012 7490.6 7715.5

13/07/2012 6563.3 6687.5 13/09/2012 7865.1 7968.3 14/11/2012 7642.8 7756.5

16/07/2012 6485.1 6659.2 14/09/2012 8087.5 8231.0 15/11/2012 7610.4 7744.3

17/07/2012 6529.7 6642.6 17/09/2012 8049.6 8156.6 16/11/2012 7588.2 7721.8

18/07/2012 6497.2 6607.8 18/09/2012 7949.1 8099.7 19/11/2012 7601.7 7775.1

19/07/2012 6579.5 6682.5 19/09/2012 8031.5 8149.4 20/11/2012 7695.5 7787.2

20/07/2012 6232.6 6668.1 20/09/2012 7961.4 8088.0 21/11/2012 7716.8 7825.4

23/07/2012 5905.3 6240.5 21/09/2012 8035.9 8230.7 22/11/2012 7809.0 7894.4

24/07/2012 5950.8 6254.6 24/09/2012 8082.9 8182.1 23/11/2012 7825.1 7915.6

25/07/2012 5939.4 6093.1 25/09/2012 8117.5 8197.9 26/11/2012 7842.6 7893.0

26/07/2012 5955.0 6368.8 26/09/2012 7840.4 8082.5 27/11/2012 7819.7 7955.2

27/07/2012 6244.2 6617.6 27/09/2012 7790.6 7914.8 28/11/2012 7753.7 7854.9

30/07/2012 6589.2 6805.5 28/09/2012 7678.7 7939.2 29/11/2012 7883.8 7975.5

31/07/2012 6691.1 6913.7 01/10/2012 7703.0 7838.5 30/11/2012 7922.7 7989.6

01/08/2012 6569.2 6787.2 02/10/2012 7710.2 7913.7 03/12/2012 7874.1 8027.8

02/08/2012 6364.8 6864.6 03/10/2012 7802.3 7900.8 04/12/2012 7870.9 7945.7

03/08/2012 6296.1 6755.7 04/10/2012 7784.4 7913.3 05/12/2012 7844.7 7976.7

06/08/2012 6738.4 7061.9 05/10/2012 7825.5 7972.8 06/12/2012 7841.8 7947.8

07/08/2012 7013.0 7218.7 08/10/2012 7855.2 7913.1 07/12/2012 7813.1 7942.6

08/08/2012 7039.8 7232.2 09/10/2012 7734.9 7901.5 10/12/2012 7670.8 7804.4

09/08/2012 7026.6 7235.8 10/10/2012 7664.5 7765.1 11/12/2012 7806.2 7927.0

10/08/2012 6962.2 7079.9 11/10/2012 7565.5 7777.7 12/12/2012 7927.3 7988.3

13/08/2012 6991.9 7119.8 12/10/2012 7652.4 7791.5 13/12/2012 7977.3 8037.0

14/08/2012 7074.3 7153.1 15/10/2012 7624.7 7723.4 14/12/2012 8003.6 8045.3

Table 3.11: Daily fluctuation of the IBEX 35 Index during 6 months
(from 14/06/2012 to 14/12/2012) obtained from Bolsa de Madrid

To fix the three parameters involved in the Hampel loss function, the ideas in
Kim and Scott [114] have been followed, that is,

1. to choose the initial seed in this case, the 1-norm median has been considered;

2. to compute the distances between the observations and the seed,

di = dθ=1/3(xi,Me[X]) for all i = 1, . . . , n;

3. a will be the median of {di}ni=1, b the 75th percentile of {di}ni=1 and c, the 85th

percentile of {di}ni=1.

The distance involved in the algorithm to compute the M-estimates has been dθ,
because this choice makes the isometrical embedding to lie in a Hilbert space. The
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Figure 3.22: The daily fluctuation of the IBEX 35 Index from
14/06/2012 to 14/12/2012

parameter θ has been assumed to be equal to 1/3. So, we obtain that a = 315.9961,
b = 699.6943 and c = 984.5077 and the graphics of ρa,b,c, its derivative and ϕa,b,c are
displayed in Figure 3.23.

Observe in Figure 3.22 that at the end of July and the beginning of August the
daily values of the IBEX 35 Index were much lower (looking at their midpoint they
are outliers) and more variable (and looking at their spread too) than the remaining
days of the period of time considered. Other days with a huge increase or decrease
(big spread) can be also found, but at least these outliers have too much influence on
the Aumann-type mean value, but not on the others location measures. Therefore,
these last intervals will have a midpoint and a spread more similar to the data set
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Figure 3.23: Huber loss function ρ1.345, its derivative ρ′1.345 and ϕ1.345

(top left), Hampel loss function ρa,b,c (top right), its derivative ρ′a,b,c
(bottom left) and ϕa,b,c (bottom right) with a = 973.2789, b = 2552.638

and c = 4238.018

(bigger midpoint and smaller spread than the Aumann-type mean value).
By removing, for instance, the most extreme values (those achieved on 23rd, 24th,

25th, 26th and 27th July, 2nd and 3rd August), the Aumann-type mean value is not
so far from the sample medians:

M
(2)
θ=1/3[X] = [7624.197, 7765.431],

E(2)[X] = [7407.758, 7560.681],

Me(2)[X] = [7624.7, 7775.1],

Mφ(2)[X] = [7630.05, 7767.85],

gMHuber θ=1/3

(2)
[X] = [7624.615, 7765.657],

gMHampel θ=1/3

(2)
[X] = [7689.12, 7827.5].
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Figure 3.24: From bottom to top: Aumann-type mean, dθ=1/3-median,
1-norm median, φ-wabl/ldev/rdev median, Huber M-estimate and Ham-
pel M-estimate (from each of them, the original estimate (bottom) and
the estimate after the removal of the outliers (top))

Notice that for the new computation of the Hampel M-estimate, the new values
of the three parameters are a = 262.8862, b = 592.2556 and c = 958.2533. In
Figure 3.24, all the estimates before (light color) and after (dark color) the removal
of the outliers are shown, in order to compare the robustness of the estimators
visually.

It can be checked that, although outliers make all the measures be farther, the
Aumann-type mean value is strongly perturbed by them, whereas the medians and
M-estimates are more robust to these ‘extreme’ observations:

dθ=1/3(M
(1)
θ=1/3[X],M

(2)
θ=1/3[X]) = 25.37624,

dθ=1/3(E
(1)[X],E(2)[X]) = 64.20441,

dθ=1/3(Me(1)[X],Me(2)[X]) = 35.65489,

dθ=1/3(M
φ(1)[X],Mφ(2)[X]) = 26.12693,

dθ=1/3(g
M
Huber θ=1/3

(1)
[X], gMHuber θ=1/3

(2)
[X]) = 25.98687,

dθ=1/3(g
M
Hampel θ=1/3

(1)
[X], gMHampel θ=1/3

(2)
[X]) = 23.27689.
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Huber Hampel

cp cD Case 1 Case 2 Case 2’ Case 1 Case 2 Case 2’

.0 0 0.000745 0.000418 0.000675 0.00055542 0.00048121 0.00052294

0.1 0 0.005638 0.000649 0.000697 0.00491613 0.00501037 0.00535308
0.1 1 0.007181 0.006603 0.003999 0.00644601 0.00569424 0.00569457
0.1 5 0.005461 0.007320 0.007301 0.00544466 0.00236087 0.00300744
0.1 10 0.003215 0.004077 0.004002 0.00544466 0.00236087 0.00300744
0.1 100 0.000700 0.000446 0.000775 0.00054933 0.00033402 0.00050894

0.2 0 0.005207 0.000469 0.000773 0.0053485 0.0047826 0.00490651
0.2 1 0.007106 0.006329 0.003608 0.00585253 0.00652674 0.00570962
0.2 5 0.005930 0.008328 0.008073 0.00817223 0.00735479 0.00787581
0.2 10 0.003754 0.004691 0.004658 0.00833543 0.00598578 0.00687753
0.2 100 0.000919 0.000495 0.000761 0.00060516 0.00037831 0.00042655

0.4 0 0.003676 0.000573 0.001148 0.0058407 0.00479858 0.00467297
0.4 1 0.005320 0.005271 0.002449 0.00639711 0.0061476 0.00533589
0.4 5 0.007067 0.009577 0.009073 0.00990732 0.01076321 0.01039308
0.4 10 0.004897 0.006376 0.006138 0.01194383 0.01120573 0.01204855
0.4 100 0.001937 0.000867 0.001146 0.0026441 0.00144126 0.00200212

Table 3.12: Maximum range of the weights (i.e., the difference between
the maximum and minimum allocated weights) in the computation of
the M-estimator with Huber (left) and Hampel (right) loss functions,
considering 11 different values of θ

Remark 3.6.1. Note that a study on the variation of the weights involved in the
computation of the M-estimators when changing the parameter θ can be made as
in Remark 3.5.1. Both Huber and Hampel loss functions will be considered and the
three different cases have already been detailed in Subsection 3.5.3.

The outputs obtained for the M-estimator based on the Huber loss function
are contained in Table 3.12 (left columns) and those for the M-estimator using the
Hampel loss function, in Table 3.12 (right columns).

As it happened when studying the spatial median, it can be checked that the
maximum range is really small in all situations. Recall that the range for each of
the 100 weights is the difference between the maximum and minimum corresponding
values obtained for them all over the 11 possible choices of the parameter θ.

For the M-estimator computed using the Huber loss function, the conclusions
coincide with those given for the dθ-median: all the ranges are smaller than 1/100,
so it has been shown empirically that the parameter has little influence on the esti-
mation of the spatial median. Note that when the chosen loss function is Hampel’s
one, the results are similar. In all but a pair of situations, the maximum range
remains smaller than 1/100. Moreover, in those two situations, the maximum range
is only slightly higher than the reference 1/100.
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A real-life example involving fuzzy-valued data is now to be considered, aiming to
compare the behaviour of the Aumann-type mean value and the different approaches
to extend the median in this chapter.

Example 3.6.2. TIMSS (Trends in International Mathematics and Science Study)
is an international assessment of mathematics and science at the fourth and eighth
grades that has been conducted every four years since 1995, with the most recent
assessment in 2011. Countries and regional benchmarking entities could participate
in the fourth grade assessment, the eighth grade assessment, or both.

PIRLS (Progress in International Reading Literacy Study) is an international
assessment of reading comprehension at the fourth grade that has been conducted
every five years since 2001.

In 2011, the TIMSS and PIRLS data collection schedules came into alignment
for the first time in the history of these international assessments. This provided
countries with the opportunity to assess their fourth grade students in three funda-
mental curricular areas: mathematics, science, and reading. 34 countries and three
benchmarking entities took advantage of this unique opportunity to assess the same
students in all three subjects. Taken together, the fourth grade students in these 34
countries and three benchmarking participants have achievement data in the three
core academic areas (reading, mathematics, and science) accompanied by an exten-
sive array of background questionnaire data about the home, school, and classroom
contexts for learning these three subjects.

In general, participating countries use TIMSS and PIRLS in various ways to ex-
plore educational issues, including: monitoring system-level achievement trends in
a global context, establishing achievement goals and standards for educational im-
provement, stimulating curriculum reform, improving teaching and learning through
research and analysis of the data, conducting related studies. More information
about can be found in http://timss.bc.edu/.

In 2011, the Spanish Institute of Educational Evaluation (INEE) has commis-
sioned a member of the SMIRE Research Group in the Department of Statistics,
OR and DM of the University of Oviedo in Spain (Prof. Norberto Corral) to de-
velop such a data analysis with data collected through some of the TIMSS/PIRLS
questionnaires conducted in Spanish schools (see Corral et al. [44] for a summary of
conclusions). These questionnaires are standard ones in which concern responses,
and most of the responses have to be chosen among those in a Likert scale with
4 points (namely, disagree a lot, disagree a little, agree a little and
agree a lot).
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As indicated in De la Rosa de Sáa et al. [53], for purposes of analyzing and sum-
marizing the obtained responses, they are traditionally viewed as values of linguistic
variables, and they are often encoded by means of consecutive integer numbers, in
spite of the many concerns associated with such an encoding. One of the crucial
drawbacks are related to the fact that descriptive and inferential statistics which can
be developed with the responses from one of Likert scale-based questionnaires are
quite limited, even in case the responses are encoded in terms of integer numbers.

The fuzzy rating scale has been introduced (Hesketh et al. [102]) as an approach
allowing to combine a free-response format with a fuzzy valuation. In the fuzzy
rating scale, along a continuous line between two end-points

• a respondent selects or draws a ‘representative position/interval’ of the respon-
dent rating (i.e., the set of points which she/he considers to be fully compatible
with such a rating),

• and the respondent also indicates ‘latitudes of acceptance’ on either side by
determining the highest and lowest possible positions for the respondent rating
(i.e., the set of points which she/he considers to be compatible to some extent
with such a rating).

As it has been shown De la Rosa de Sáa et al. [53], one can achieve more accurate
conclusions, as well as explore and exploit more information, by considering the fuzzy
rating scale than Likert-based and even fuzzy linguistic ones.

As outlined in De la Rosa de Sáa et al. [53], although fuzzy rating scale-based
questionnaires are not exactly friendly-to-use ones, a minor training is usually enough
to respond; this can become a shortcoming in cases a quick response is required (say,
in surveys at street, by phone, etc.), but to make non-experts to understand the rudi-
ments to respond these questionnaires just a short time is needed (see Hesketh et
al. [102]).

To show how this fuzzy rating scale works by means of a simple example, some of
the questions for the Student questionnaire TIMSS/PIRLS (see http://timss.bc.edu/
timss2011/downloads/T11_StuQ_4.pdf) have been adapted in accordance with this
scale, and the questionnaire has been conducted on the fourth grade students of the
Colegio San Ignacio in Oviedo-Asturias (Spain).

The questions have been formulated with a double-type response (namely, Likert
scale and fuzzy rating scale-based).

Data from three of these adapted questions (in fact those related to Maths) are
now to be analyzed, and some of the M-estimates of response location in this chapter
are to be computed.



188 Chapter 3. Location M-estimates from imprecise-valued data

First, the training of the students has been carried out by providing them with
some instructions to fill out the questionnaire. Since drawing a trapezoidal fuzzy
set is difficult to explain to students at this level, because they do not have yet the
required background about real-valued functions, we have made use of the notion
of trapezium, which can be trivially identified with that of a trapezoidal fuzzy set.
No remarkable problems have been found either in the training or in the obtained
responses being coherent and plausible.

The questionnaire has been designed in both paper-and-pencil and computerized
formats, so that teachers of the students have been finally the ones deciding about
the way to fill out them. In this case, teachers have decided 24 of the students fill
out the paper-and-pencil format and 44 of them complete the computerized version,
and this will become certainly interesting for future studies beyond the scope of this
work.

The computerized format (in Spanish) has been designed by Professor Carlos
Carleos from the Department of Statistics, OR and DM of the University of Oviedo
and it can be found in http://carleos.epv.uniovi.es:8080/ (see Figure 3.25 for an ex-
ample of a question from the computerized version of such a questionnaire).

The students have followed the instructions they have received which have been
gathered in the guideline in Figures 3.26 and 3.27.

Figure 3.25: Example of a question in the computerized version (in
Spanish) of the Likert and fuzzy rating scale-based questionnaire
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Figure 3.26: Directions to fill out the double-type (Likert scale and
fuzzy rating scale-based) response questionnaire (1st page)
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Figure 3.27: Directions to fill out the double-type (Likert scale and
fuzzy rating scale-based) response questionnaire (2nd page)
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Figure 3.28: The three questions about mathematics to fill out in the
double-response questionnaire

The three selected questions to analyze with the M-estimates in this chapter
refer to the agreement with three statements about mathematics. Questions have
not been modified with respect to the original questionnaire, but simply the second
way to respond has been added. The paper-and-pencil format corresponding to
these three questions are graphically displayed in Figure 3.28.
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Data from the 68 fourth grade students from Colegio San Ignacio have been
collected in Table 3.13. Note that MS2 has been only answered by 67 students.

MS1 MS2 MS3

inf Ã0 sup Ã0 sup Ã1 inf Ã1 inf Ã0 sup Ã0 sup Ã1 inf Ã1 inf Ã0 sup Ã0 sup Ã1 inf Ã1

2.35 3 4 4.8 8.4 9 10 10 5.2 6 7 7
5.65 6.2 7.475 9.8 9.2 9.2 9.975 9.98 0 0 0 2.95
9.85 9.85 9.875 9.975 8.925 9.95 9.95 9.95 6 6.425 7.35 7.875
8.025 9.05 9.9 9.975 0.1 0.1 0.625 1.98 0 0 0.775 1.225
3.525 3.75 6.25 6.725 3.5 3.55 6.25 7.5 0 0 2.15 2.15

9 9.225 9.775 10 10 10 10 10 10 10 10 10
2.5 2.975 5.3 5.35 4.375 5.175 7.5 7.5 7.9 7.95 8.7 8.7
2 2.45 3 3 3 3 3.45 4 9 9 9.4 10

3.1 4 4 4.5 8.6 10 10 10 9 10 10 10
4.325 5.025 7.925 8.5 1.75 2.5 3.675 3.68 4.975 4.975 5.325 5.4
7.525 7.525 7.55 9.025 6.975 6.975 7.5 7.5 7.6 7.6 8.35 8.65

9 9 10 10 10 10 10 10 2 2 4 4
9.4 10 10 10 8.9 9.4 10 10 0 0 0 0.45

5.025 5.95 7.025 8.95 7.3 8.05 9.575 10 9.975 10 10 10
5.75 5.775 9.55 9.875 5.95 6 9.2 10 0 0 1.575 1.575
6.85 8 10 10 6.75 7.025 9.975 9.98 2.225 2.225 3.125 3.125
4.025 5.75 8.725 10 4.9 4.9 8.45 9.98 1.9 1.95 3 3.15
4.2 4.925 6.975 7.2 4.4 4.725 6.25 7.8 4.875 5.05 5.45 5.625
3.75 3.75 7.5 7.5 6.225 6.25 7.5 7.5 6.15 6.15 6.75 6.75
5.85 7.025 9.05 9.1 0 0.125 2.05 2.55 3.45 3.45 4.425 4.425
3.1 3.25 3.85 4.5 10 10 10 10 2.5 3.2 3.3 4.45
6 6.7 7.2 8 8.7 9.4 10 10 3 3.6 4.2 5.05

6.1 6.4 6.75 7.1 9 10 10 10 3 3 3 3
10 10 10 10 9.975 9.975 9.975 9.98 0 0.6 1.25 1.65
9 9.5 9.5 10 8 8.5 8.5 9 0 0.5 0.5 1

2.4 3 3.65 3.65 6 6 6.6 7.7 2.5 3 3.6 3.6
6 6.15 6.55 7 8.1 8.2 8.6 9 3 3.2 3.6 4.2

2.5 2.95 6.25 7.5 3.4 4.825 9.95 9.95 10 10 10 10
9.975 10 10 10 9.975 9.975 10 10 10 10 10 10
2.975 3.05 10 10 3 3 7.95 7.95 6.975 6.975 7.925 7.925
2.5 3.75 6.25 7.5 2.5 3.75 6.25 7.5 0 0 2.575 2.575
3.8 4.25 5.5 6 9.6 9.8 10 10 6 6.45 7.4 8
4.6 4.75 5.15 5.35 9.2 9.8 10 10 2.35 2.8 3.25 3.5
6.2 6.4 6.85 7.1 5.2 5.4 5.65 6 3.15 3.4 3.6 4
3.05 4.05 7.95 9.025 8.725 8.95 9.7 10 0 0.625 2.725 2.75
8 9.15 10 10 8 9 10 10 0 0 1 2

9.925 9.95 10 10 7 7.025 8.9 8.98 4.925 5.025 5.95 6.3
0 0.025 0.025 0.025 9.975 9.975 9.975 10 10 10 10 10

2.925 2.975 5.95 5.975 9.45 9.45 9.925 10 0 0.825 2.425 2.425
0 1.125 1.2 1.275 2.5 3.75 3.9 5.45 0 0.325 1.475 1.475

3.7 3.75 7.225 7.25 6.9 8.175 9.225 9.98 5.15 5.35 6.15 6.15
3.825 4.9 6.05 6.725 6.7 7.775 8.9 10 8.55 8.85 9.625 10
8.975 8.975 8.975 10 3.175 5.025 7.5 9.95 0 0 0 0.725
10 10 10 10 10 10 10 10 0 0 0 0
10 10 10 10 8.05 8.65 10 10 10 10 10 10
6 6.65 7.25 7.25 8 8.5 9.2 9.2 7 7.4 8.2 8.4
2 2 5 5 5 6 6.125 8 4.05 4.05 4.7 4.775

8.975 8.975 9.975 9.975 9.025 9.025 9.95 9.95 10 10 10 10
2.5 2.975 5.5 6.5 8 8.5 9.85 9.88 0 0.85 1.5 1.825
4.85 5 7.05 7.875 7.95 9 10 10 1.6 1.825 2.425 3.075
3.075 3.1 4 7.5 9.325 9.375 10 10 3.125 3.275 3.7 4.05
0.975 3.875 4.075 4.075 3.975 4.925 6.875 6.93 9.9 9.9 10 10
6.675 6.675 6.675 6.7 0.225 3 6.875 9.9 0 0 1.125 1.125

7 7 8 9 7 8 9 9 6 6 7 8
8 8.3 8.55 9 9 10 10 10 1 1.8 2.35 3.1

7.925 7.95 8 8 6.075 6.15 9.05 9.05 0 0.075 1 1.35
9 10 10 10 8 10 10 10 0 0 0 0

8.3 9.3 9.8 10 0 0.4 0.95 1.75
0.05 0.05 0.075 0.075 9.025 9.025 9.95 9.95 10 10 10 10
1.45 1.95 4.95 5.725 5.6 6.7 9.15 10 8.8 8.8 9.5 9.575
2.9 3.75 6.25 7.8 9.85 9.85 9.9 9.9 4.6 6.15 6.15 6.85

9.875 9.95 9.95 9.975 4.225 5.7 7.025 8.9 3.6 3.925 4.575 4.575
2.5 4.075 7.175 8.15 5.825 5.85 9.875 9.95 3.875 3.875 5.6 5.6
2.5 2.55 4.275 4.3 2.5 4.625 4.625 6.9 0 0.25 1.025 1.025
8 8.025 9.8 9.975 9.8 9.8 10 10 10 10 10 10

8.55 9.15 9.7 10 8.6 9.15 9.75 10 0.3 0.45 1.15 1.5
3.5 4.2 5 5.45 5.1 6 6.75 7.3 5.5 6.1 6.9 7.4
2.5 2.5 5.1 7.5 10 10 10 10 6.325 6.925 7.175 7.65

Table 3.13: Fuzzy rating scale-based responses given by
4th grade students in Colegio San Ignacio (Oviedo, Spain)
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This table includes for each of the three questions the 4-tuple corresponding to
each fuzzy rating scale-based answer Ã, that is, inf Ã0, sup Ã0, sup Ã1 and inf Ã1.

The M-estimates of the response location have been as follows (see Figures 3.29,
3.30 and 3.31):

Figure 3.29: Sample fuzzy data and location M-estimates
of the 68 fuzzy rating scale-based responses to Question MS1

Figure 3.30: Sample fuzzy data and location M-estimates
of the 67 fuzzy rating scale-based responses to Question MS2

Remark 3.6.2. The computations for the Huber (with a = 1.345) and Hample
M-estimates (where the parameters have been fixed like in Example 3.6.1 with the
initial seed being the 1-norm median) have been based on the Dℓ

1/3 metric, although
no perceptible differences have been found with those based on Dℓ

1/3.
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Figure 3.31: Sample fuzzy data and location M-estimates
of the 68 fuzzy rating scale-based responses to Question MS3

One can easily check that, because of the conditions concerning the existence
and expression of the M-estimates as a convex linear combination of the fuzzy trape-
zoidal data in the sample sample of size 68 are fulfilled, both estimates preserve the
trapezoidal shape of the sample data.

It is interesting to comment that the medians of the Likert-type responses after
integer encoding have been agree a little, agree a lot and agree a little

for MS1, MS2 and MS3, respectively. These would correspond to 6.
︷︷
6 , 10 and

6.
︷︷
6 , respectively, in the re-scaling to [0,10]. So, as already pointed out by De la

Rosa de Sáa et al. [53], the fuzzy rating scale-based ones offer richer nuances and
expressiveness, this being especially evident in this example for Question MS3.

On the other hand, it should be remarked that the way to proceed in this example
follows accurately the path suggested by Zadeh, who has coined it as the “precisiation
of the imprecise” (see Zadeh [221]).

To illustrate the computation of M-estimates of location for functional data, the
following example is considered:

Example 3.6.3. The considered data set consists of n = 472 radar waves registered
by the satellite Topex/Poseidon around an area of 25 kilometers upon the Amazon
River, with the aim of use them for altimetric and hydrological purposes. To repre-
sent the curves, their discretized version is obtained from a partition of t = 70 mo-
ments in time, i.e., for all i = 1, . . . , n, Xi = (Xi(t1), . . . , Xi(t70)). The data set and
this brief description have been obtained from the web page http://www.math.univ-
toulouse.fr/staph/npfda/npfda-datasets.html and deeper information can be found in
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Frappart [76].

Figure 3.32: Waveforms numbers 21 (top left), 3 (top middle), 1 (top
right), 5 (bottom left) and 4 (bottom right)

As it is outlined in the web page and shown in Figure 3.32, there are different
kinds of waves, namely,

• curves with one heavy peak, like curve number 21;

• curves with one less heavy peak, like curve 3;

• curves that look to have more than one peak, like curve 1;

• curves that look as they had no really peak, like number 5;

• ‘flat noised curves’, e.g., observation number 4

and so on.
The considered loss function will be Huber’s one with a = 1.345, and Hampel’s

one where the parameters have been fixed like in Example 3.6.1 but the initial seed
is now the 0.2-trimmed mean.

The estimates obtained for the mean, the trimmed mean (with the often used
trimming proportion of 0.2) and the M-estimators with Huber and Hampel loss
functions are plotted in Figure 3.33, where the difference between the mean, more
influenced by the perturbations of the curves, and the rest of measures, with a more
robust behavior, is evident.
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Figure 3.33: The estimates for the mean, the 0.2-trimmed mean, the
Huber M-estimator and the Hampel M-estimator in Example 3.6.3

3.7 Concluding remarks of this chapter

This chapter has been devoted to establish M-estimates of location for imprecise-
valued data. For this purpose, some recent developments combining ideas in kernel
density estimation with those from classical M-estimation have been adapted to de-
velop M-estimates of location for Hilbert space-valued data. Necessary and sufficient
conditions for the existence and expression of the M-estimates, as well as an algo-
rithm to approximate them, have been also adapted. These conditions have been
shown to be especially interesting in particularizing to imprecise-valued data, due to
the semi-linearity of the spaces of imprecise values we have considered in this work,
since one can guarantee they lead to estimates within the parameter space.

Although for many valuable loss functions, the above-mentioned necessary and
sufficient conditions are fulfilled, there are some other useful and reasonable ones
for which they do not. For some of the most outstanding ones among the latter,
ad hoc developments have been performed. In this way, two new M-estimates have
been suggested for fuzzy number-valued data on the basis of L1 metrics introduced
in Chapter 1, and another M-estimate for interval-valued data which extends the
spatial median has been proposed. Their properties have been also analyzed in
detail.
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The main contribution in the Chapter refers to

• the adapted studies of M-estimation on Hilbert spaces, along with the wide
(but not general enough) conditions to be fulfilled for the existence and conve-
nient expression of the solutions (the convenience being intended in terms of
its particularization to the imprecise-valued case leading to a valid estimate);

• the new approaches involving a situation which is not covered by the condi-
tions before, and based on L1 metrics between imprecise values, which lead to
exactly and easily computable M-estimates and showing also the main prop-
erties;

• the new approach involving another situation which is not covered by the
conditions before, and based on and L2 metric between interval values, which
lead to approximate M-estimates sharing the main properties, especially those
related to robustness;

• the comparison with the mean leads for all the approaches to better estimates
of location.

The ideas and results in this chapter have been gathered in three published/ac-
cepted papers (Sinova et al. [173, 180, 182]), one manuscript already prepared to be
submitted (Sinova and Van Aelst [189]) and eleven communications to conferences
(Sinova et al. [171, 172, 174, 175, 178, 181, 183, 184, 186, 187, 188]). Some other
ones are being prepared in connection with the M-estimates under the conditions in
Sections 3.1 and 3.2.





Chapter 4

Comparative simulation studies
between location estimates
for imprecise-valued data

In Chapters 2 and 3 different approaches to the robust measurement/estimation of
location for imprecise-valued random elements or data sets have been either intro-
duced or adapted. The robustness for all the approaches have been compared with
that of the (Hilbert space, Aumann or Aumann-type) mean from a theoretical per-
spective, through the finite sample breakdown point, and from an empirical point
of view through simulations.

In this chapter, a comparative simulation is set up to check the robustness of
the approaches in Chapters 2 and 3 when dealing with the most common types of
set-, fuzzy set- and Hilbert space-valued data, namely, interval-, fuzzy number- and
functional-valued data.

Section 4.1 is to be devoted to discuss the interval case, Section 4.2 is addressed
to discuss the fuzzy numbers one, and Section 4.3 corresponds to the functional case.
The chapter ends with Section 4.4, in which the information obtained from these
empirical developments is summarized.

4.1 Comparative simulations
for interval-valued data

The simulations in this section have been carried out by following basically the ideas
in those included in the preceding chapters. Now, four different studies have been
conducted varying the sample size (n = 100, n = 10000), the non-contaminated
(symmetric and asymmetric) and the contaminated distributions.
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For each of the four studies, the comparisons have concerned the following loca-
tion measures/estimates: trimmed means, Huber and Hampel M-estimates (using
the dθ-metric), 1-norm median, generalized Hausdorff median corresponding to the
interval-valued particularization of the wabl/ldev/rdev median and the spatial me-
dian, where in all of them θ is assumed to range in {1/3, 1}. When n = 100,
the medians and trimmed means based on the well-known halfspace and simplicial
depths (see Tukey [205, 206] and Liu [124], respectively) have been also considered.
The reason not to include them in the comparisons when n = 10000 is that the
computation of depths is usually hard when the sample size increases.

For each of the measures/estimates, the characteristics in Subsection 3.5.3 have
been determined, namely, the Monte Carlo approximation of the estimate, the bias,
the variance and the mean squared error of the estimate.

The general scheme of the four studies has been as follows:

Step 1. A sample of n interval-valued data has been simulated from a random in-
terval X for each of some different situations in such a way that

• to generate the interval-valued data, we have considered two real-valued
random variables as follows: X = [X1 −X2, X1 +X2], with X1 = midX,
X2 = sprX or, alternatively, two order real-valued statistics X(1) and X(2)

such that X = [X(1), X(2)], i.e., X(1) = inf X, X(2) = supX;
• each sample is assumed to be split into a subsample of size n(1 − cp)

(where cp denotes the proportion of contamination and is supposed to
range in {0, 0.1, 0.2, 0.4}) associated with a non-contaminated distribu-
tion and a subsample of size n · cp associated with a contaminated one,
where an additional contamination role is played by CD (which measures
the relative distance between the distribution of the two subsamples and
ranges in {0, 1, 5, 10, 100});

• 16 situations for different values of cp and CD have been considered for
simulations and for each of these situations two cases have been selected,
namely, one in which random variables Xi (or X(i)) are independent
(CASES 1 and 3) and another one in which they are dependent (CASES
2, 2’ and 4).

Step 2. N = 1000 replications of Step 1 have been considered for the situation
cp = CD = 0 in order to approximate the population measures by using a
Monte Carlo approach.

Step 3. N = 1000 replications of Step 1 have been considered for all the situations
(cp, CD) and the approximated estimates, bias, variance and mean squared
error have been computed for each location measure.



Comparative simulations for interval-valued data 201

Study 1

In this first study, the choices correspond to:

• n = 100;

• CASE 1 assumes that

•• X1 ∼ N (0, 1) and X2 ∼ χ2
1 for the non-contaminated subsample,

•• X1 ∼ N (0, 3) + CD and X2 ∼ χ2
4 + CD for the contaminated subsample,

whereas CASE 2 assumes that

•• X1 ∼ N (0, 1) and X2 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 for the non-contaminated
subsample,

•• X1 ∼ N (0, 3) + CD and X2 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 + CD for the con-
taminated subsample.

and CASE 2’ assumes that

•• X1 ∼ N (0, 1) and X2 ∼ 1/(X2
1 + 1)2 +

√
χ2
1 for the non-contaminated

subsample,

•• X1 ∼ N (0, 3)+CD and X2 ∼ 1/(X2
1+1)2+

√
χ2
1+CD for the contaminated

subsample.

The estimates of all the considered measures in this simulation study will be
presented through Tables 4.1-4.3, whereas the outputs for the bias, the variance and
the mean squared error will be summarized in Table 4.7.

Study 2

In this second study, the choices correspond to:

• n = 10000;

• In CASES 1, 2 and 2’ the distributions for X1 and X2 in the non-contaminated
and the contaminated samples coincide with those for Study 1.

The estimates of all the considered measures in this simulation study will be
presented through Tables 4.4-4.6, whereas the outputs for the bias, the variance and
the mean squared error will be summarized in Table 4.8.
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Study 3

In this third study, the choices correspond to:

• n = 100;

• CASE 3 assumes that

•• X(1), X(2) ∼ Beta(5, 1) (they are simply chosen at random and ordered)
for the non-contaminated subsample,

•• X(1), X(2) ∼ Beta(1, CD + 1) for the contaminated subsample,

whereas CASE 4 assumes that

•• X1 ∼ Beta(5, 1) and X2 ∼ Uniform[0,min{X1, 1 − X1}] for the non-
contaminated subsample,

•• X1 ∼ Beta(1, CD + 1) and X2 ∼ min{X1, 1 − X1} · Beta(1, CD + 1) for
the contaminated subsample.

The estimates of all the considered measures in this simulation study will be
presented through Tables 4.9-4.10, whereas the outputs for the bias, the variance
and the mean squared error will be summarized in Table 4.13.

Study 4

In this fourth study, the choices correspond to:

• n = 10000;

• In CASES 3 and 4 the distributions for X(1), X(2), X1 and X2 in the non-
contaminated and contaminated samples coincide with those for Study 3.

The estimates of all the considered measures in this simulation study will be
presented through Tables 4.11-4.12, whereas the outputs for the bias, the variance
and the mean squared error will be summarized in Table 4.14.

To avoid excessive information in the outputs of the simulations, the details
about bias, variance and mean squared error can be found in the following link:

http://bellman.ciencias.uniovi.es/SMIRE/Intsimul.html

Concerning Study 1 and Study 2, the estimates are given by
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1) Hausdorff median 1-norm median

0 0 [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ]
0,1 0 [ 0,2197 , 0,2198 ] [ 0,0894 , 0,0895 ] [ 0,0862 , 0,0862 ] [ 0,0925 , 0,0927 ] [ 0,0978 , 0,0979 ]
0,1 1 [ 0,2949 , 0,2994 ] [ 0,0975 , 0,0978 ] [ 0,0957 , 0,0959 ] [ 0,1026 , 0,1046 ] [ 0,1171 , 0,1185 ]
0,1 5 [ 0,5795 , 0,6379 ] [ 0,0748 , 0,0749 ] [ 0,0954 , 0,0954 ] [ 0,0957 , 0,1140 ] [ 0,1205 , 0,1290 ]
0,1 10 [ 0,9306 , 1,0857 ] [ 0,0719 , 0,0720 ] [ 0,0952 , 0,0953 ] [ 0,0881 , 0,1135 ] [ 0,1122 , 0,1229 ]
0,1 100 [ 7,5097 , 9,2922 ] [ 0,0818 , 0,0819 ] [ 0,1025 , 0,1026 ] [ 0,0971 , 0,1234 ] [ 0,1276 , 0,1390 ]
0,2 0 [ 0,4384 , 0,4385 ] [ 0,2067 , 0,2067 ] [ 0,2007 , 0,2008 ] [ 0,2089 , 0,2089 ] [ 0,2157 , 0,2158 ]
0,2 1 [ 0,5911 , 0,5984 ] [ 0,2382 , 0,2382 ] [ 0,2356 , 0,2356 ] [ 0,2307 , 0,2325 ] [ 0,2631 , 0,2647 ]
0,2 5 [ 1,1568 , 1,2723 ] [ 0,2621 , 0,2628 ] [ 0,3260 , 0,3281 ] [ 0,2270 , 0,2694 ] [ 0,2942 , 0,3201 ]
0,2 10 [ 1,9214 , 2,1943 ] [ 0,3090 , 0,3091 ] [ 0,4002 , 0,4007 ] [ 0,2315 , 0,2777 ] [ 0,3000 , 0,3283 ]
0,2 100 [ 15,1008 , 18,3581 ] [ 0,3235 , 0,3235 ] [ 0,4386 , 0,4387 ] [ 0,2299 , 0,2710 ] [ 0,2964 , 0,3222 ]
0,4 0 [ 0,8845 , 0,8845 ] [ 0,2778 , 0,2778 ] [ 0,2255 , 0,2256 ] [ 0,5404 , 0,5404 ] [ 0,5137 , 0,5138 ]
0,4 1 [ 1,2136 , 1,2305 ] [ 0,3356 , 0,3356 ] [ 0,2623 , 0,2623 ] [ 0,7644 , 0,7685 ] [ 0,7159 , 0,7237 ]
0,4 5 [ 2,3496 , 2,5724 ] [ 0,2471 , 0,2475 ] [ 0,2663 , 0,2672 ] [ 0,8026 , 0,8693 ] [ 0,9707 , 1,0652 ]
0,4 10 [ 3,8902 , 4,3671 ] [ 0,2838 , 0,2839 ] [ 0,3166 , 0,3166 ] [ 0,8494 , 0,9233 ] [ 1,0513 , 1,1665 ]
0,4 100 [ 30,5828 , 36,7510 ] [ 0,2782 , 0,2782 ] [ 0,3139 , 0,3139 ] [ 0,8008 , 0,8864 ] [ 1,0343 , 1,1632 ]

cp cD spatial (θ = 1/3) spatial (θ = 1) Tukey Liu trimmed Tukey

0 0 [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ]
0,1 0 [ 0,1042 , 0,1044 ] [ 0,0981 , 0,0982 ] [ 0,1167 , 0,1168 ] [ 0,1160 , 0,1163 ] [ 0,1736 , 0,1738 ]
0,1 1 [ 0,1238 , 0,1254 ] [ 0,1142 , 0,1158 ] [ 0,1369 , 0,1394 ] [ 0,1332 , 0,1349 ] [ 0,2256 , 0,2271 ]
0,1 5 [ 0,1299 , 0,1421 ] [ 0,1159 , 0,1285 ] [ 0,1368 , 0,1486 ] [ 0,1371 , 0,1466 ] [ 0,3328 , 0,3472 ]
0,1 10 [ 0,1149 , 0,1346 ] [ 0,1052 , 0,1248 ] [ 0,1218 , 0,1416 ] [ 0,1210 , 0,1353 ] [ 0,3892 , 0,4181 ]
0,1 100 [ 0,1239 , 0,1483 ] [ 0,1133 , 0,1384 ] [ 0,1345 , 0,1584 ] [ 0,1343 , 0,1547 ] [ 1,7100 , 1,9098 ]
0,2 0 [ 0,2307 , 0,2307 ] [ 0,2193 , 0,2193 ] [ 0,2517 , 0,2517 ] [ 0,2478 , 0,2478 ] [ 0,3630 , 0,3631 ]
0,2 1 [ 0,2810 , 0,2825 ] [ 0,2601 , 0,2617 ] [ 0,3237 , 0,3249 ] [ 0,3222 , 0,3236 ] [ 0,4812 , 0,4835 ]
0,2 5 [ 0,3140 , 0,3449 ] [ 0,2814 , 0,3139 ] [ 0,3351 , 0,3649 ] [ 0,3497 , 0,3766 ] [ 0,8520 , 0,9002 ]
0,2 10 [ 0,3172 , 0,3565 ] [ 0,2864 , 0,3279 ] [ 0,3387 , 0,3763 ] [ 0,3491 , 0,3830 ] [ 1,3219 , 1,4376 ]
0,2 100 [ 0,3013 , 0,3439 ] [ 0,2749 , 0,3212 ] [ 0,3129 , 0,3511 ] [ 0,3185 , 0,3591 ] [ 8,8525 , 10,2364 ]
0,4 0 [ 0,5625 , 0,5625 ] [ 0,5452 , 0,5453 ] [ 0,6285 , 0,6285 ] [ 0,6112 , 0,6112 ] [ 0,7426 , 0,7426 ]
0,4 1 [ 0,7876 , 0,7926 ] [ 0,7644 , 0,7701 ] [ 0,8869 , 0,8923 ] [ 0,8688 , 0,8736 ] [ 1,0452 , 1,0518 ]
0,4 5 [ 1,0499 , 1,1154 ] [ 0,9621 , 1,0367 ] [ 1,2054 , 1,2591 ] [ 1,2225 , 1,2763 ] [ 1,9265 , 2,0203 ]
0,4 10 [ 1,1533 , 1,2379 ] [ 1,0520 , 1,1508 ] [ 1,4328 , 1,4981 ] [ 1,4095 , 1,4781 ] [ 3,0377 , 3,2359 ]
0,4 100 [ 1,1081 , 1,2245 ] [ 1,0205 , 1,1578 ] [ 1,2086 , 1,2967 ] [ 1,3052 , 1,3976 ] [ 21,2461 , 23,8563 ]

cp cD trimmed Liu Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ] [ 0,0000 , 0,0000 ]
0,1 0 [ 0,1779 , 0,1781 ] [ 0,1262 , 0,1263 ] [ 0,1006 , 0,1008 ] [ 0,0799 , 0,0800 ] [ 0,0714 , 0,0715 ]
0,1 1 [ 0,2342 , 0,2358 ] [ 0,1622 , 0,1637 ] [ 0,1232 , 0,1250 ] [ 0,0841 , 0,0843 ] [ 0,0753 , 0,0755 ]
0,1 5 [ 0,3414 , 0,3592 ] [ 0,1801 , 0,1937 ] [ 0,1272 , 0,1431 ] [ 0,0659 , 0,0659 ] [ 0,0813 , 0,0813 ]
0,1 10 [ 0,3929 , 0,4284 ] [ 0,1656 , 0,1868 ] [ 0,1176 , 0,1420 ] [ 0,0631 , 0,0634 ] [ 0,0832 , 0,0833 ]
0,1 100 [ 1,1373 , 1,3251 ] [ 0,1706 , 0,1950 ] [ 0,1228 , 0,1520 ] [ 0,0706 , 0,0706 ] [ 0,0898 , 0,0898 ]
0,2 0 [ 0,3720 , 0,3721 ] [ 0,2700 , 0,2701 ] [ 0,2161 , 0,2162 ] [ 0,1799 , 0,1799 ] [ 0,1625 , 0,1626 ]
0,2 1 [ 0,4900 , 0,4926 ] [ 0,3388 , 0,3406 ] [ 0,2603 , 0,2625 ] [ 0,1986 , 0,1986 ] [ 0,1792 , 0,1792 ]
0,2 5 [ 0,8784 , 0,9322 ] [ 0,4079 , 0,4400 ] [ 0,2876 , 0,3266 ] [ 0,1870 , 0,1880 ] [ 0,2080 , 0,2099 ]
0,2 10 [ 1,3684 , 1,4998 ] [ 0,4090 , 0,4526 ] [ 0,2908 , 0,3431 ] [ 0,1997 , 0,1998 ] [ 0,2345 , 0,2351 ]
0,2 100 [ 9,2485 , 10,7854 ] [ 0,3946 , 0,4425 ] [ 0,2819 , 0,3407 ] [ 0,2101 , 0,2102 ] [ 0,2522 , 0,2522 ]
0,4 0 [ 0,7313 , 0,7313 ] [ 0,5879 , 0,5880 ] [ 0,4971 , 0,4972 ] [ 0,4675 , 0,4675 ] [ 0,4202 , 0,4202 ]
0,4 1 [ 1,0406 , 1,0480 ] [ 0,7991 , 0,8050 ] [ 0,6937 , 0,7006 ] [ 0,6172 , 0,6177 ] [ 0,5520 , 0,5531 ]
0,4 5 [ 1,9146 , 2,0156 ] [ 1,1112 , 1,1889 ] [ 0,9074 , 0,9987 ] [ 0,9338 , 0,9458 ] [ 0,7186 , 0,7553 ]
0,4 10 [ 3,0450 , 3,2539 ] [ 1,2111 , 1,3132 ] [ 0,9985 , 1,1194 ] [ 1,1134 , 1,1258 ] [ 0,7970 , 0,8538 ]
0,4 100 [ 21,6476 , 24,4015 ] [ 1,1767 , 1,3175 ] [ 0,9695 , 1,1374 ] [ 1,1564 , 1,1685 ] [ 0,8078 , 0,8771 ]

Table 4.1: Estimates of the location in Study 1-CASE 1
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1) Hausdorff median 1-norm median

0 0 [ -0,6044 , 0,5962 ] [ -0,7114 , 0,6991 ] [ -0,7102 , 0,7012 ] [ -0,5910 , 0,5742 ] [ -1,0499 , 1,0368 ]
0,1 0 [ -0,5901 , 0,5919 ] [ -0,6918 , 0,6857 ] [ -0,6919 , 0,6869 ] [ -0,5690 , 0,5679 ] [ -1,0393 , 1,0378 ]
0,1 1 [ -0,6073 , 0,7201 ] [ -0,7344 , 0,7534 ] [ -0,7254 , 0,7495 ] [ -0,6140 , 0,6572 ] [ -1,0397 , 1,0766 ]
0,1 5 [ -0,6776 , 1,2281 ] [ -0,6423 , 0,6767 ] [ -0,6416 , 0,6775 ] [ -0,5673 , 0,7076 ] [ -1,0420 , 1,1216 ]
0,1 10 [ -0,7617 , 1,8724 ] [ -0,6571 , 0,6643 ] [ -0,6591 , 0,6628 ] [ -0,5662 , 0,7107 ] [ -1,0443 , 1,1215 ]
0,1 100 [ -2,2977 , 13,3144 ] [ -0,6571 , 0,6598 ] [ -0,6568 , 0,6612 ] [ -0,5605 , 0,7084 ] [ -1,0425 , 1,1200 ]
0,2 0 [ -0,5917 , 0,5770 ] [ -0,6821 , 0,6648 ] [ -0,6832 , 0,6648 ] [ -0,5669 , 0,5515 ] [ -1,0364 , 1,0239 ]
0,2 1 [ -0,6251 , 0,8323 ] [ -0,7839 , 0,8001 ] [ -0,7810 , 0,7961 ] [ -0,6662 , 0,7379 ] [ -1,0492 , 1,1008 ]
0,2 5 [ -0,7859 , 1,8372 ] [ -0,6155 , 0,6244 ] [ -0,6047 , 0,6141 ] [ -0,5704 , 0,8358 ] [ -1,0478 , 1,1679 ]
0,2 10 [ -1,0072 , 3,0819 ] [ -0,6028 , 0,6033 ] [ -0,6027 , 0,6035 ] [ -0,5430 , 0,8546 ] [ -1,0378 , 1,1708 ]
0,2 100 [ -4,8637 , 25,6411 ] [ -0,5983 , 0,6066 ] [ -0,5982 , 0,6067 ] [ -0,5456 , 0,8552 ] [ -1,0381 , 1,1711 ]
0,4 0 [ -0,5787 , 0,5573 ] [ -0,7951 , 0,7789 ] [ -0,7967 , 0,7838 ] [ -0,5428 , 0,5239 ] [ -1,0241 , 1,0073 ]
0,4 1 [ -0,6558 , 1,0661 ] [ -1,0282 , 1,0589 ] [ -0,9855 , 1,0260 ] [ -0,7800 , 0,9433 ] [ -1,0441 , 1,1567 ]
0,4 5 [ -1,0100 , 3,0385 ] [ -0,6268 , 0,6799 ] [ -0,6259 , 0,6814 ] [ -0,5385 , 1,1835 ] [ -1,0034 , 1,3769 ]
0,4 10 [ -1,5111 , 5,5613 ] [ -0,6545 , 0,6377 ] [ -0,6549 , 0,6376 ] [ -0,5091 , 1,2287 ] [ -0,9985 , 1,3993 ]
0,4 100 [ -10,3903 , 51,1549 ] [ -0,6452 , 0,6364 ] [ -0,6457 , 0,6365 ] [ -0,4946 , 1,2483 ] [ -0,9963 , 1,4069 ]

cp cD spatial (θ = 1/3) spatial (θ = 1) Tukey Liu trimmed Tukey

0 0 [ -0,8414 , 0,8230 ] [ -0,7909 , 0,7724 ] [ -0,7205 , 0,6857 ] [ -0,6362 , 0,6143 ] [ -0,6199 , 0,0000 ]
0,1 0 [ -0,8266 , 0,8248 ] [ -0,7747 , 0,7735 ] [ -0,7101 , 0,6795 ] [ -0,6362 , 0,5996 ] [ -0,6075 , 0,1738 ]
0,1 1 [ -0,8346 , 0,8845 ] [ -0,7839 , 0,8376 ] [ -0,6748 , 0,8160 ] [ -0,5852 , 0,7684 ] [ -0,6271 , 0,2271 ]
0,1 5 [ -0,8146 , 0,9554 ] [ -0,7619 , 0,9022 ] [ -0,6418 , 0,8987 ] [ -0,5465 , 0,8438 ] [ -0,6197 , 0,3472 ]
0,1 10 [ -0,8175 , 0,9654 ] [ -0,7653 , 0,9119 ] [ -0,6509 , 0,9110 ] [ -0,5469 , 0,8544 ] [ -0,6191 , 0,4181 ]
0,1 100 [ -0,8143 , 0,9633 ] [ -0,7635 , 0,9079 ] [ -0,6571 , 0,8930 ] [ -0,5555 , 0,8351 ] [ -0,6336 , 1,9098 ]
0,2 0 [ -0,8261 , 0,8105 ] [ -0,7752 , 0,7588 ] [ -0,7220 , 0,6504 ] [ -0,6593 , 0,5628 ] [ -0,6069 , 0,3631 ]
0,2 1 [ -0,8531 , 0,9318 ] [ -0,8044 , 0,8890 ] [ -0,6786 , 0,9163 ] [ -0,6114 , 0,8617 ] [ -0,6469 , 0,4835 ]
0,2 5 [ -0,8182 , 1,0645 ] [ -0,7721 , 1,0125 ] [ -0,7139 , 0,9992 ] [ -0,6123 , 0,9671 ] [ -0,7282 , 0,9002 ]
0,2 10 [ -0,7882 , 1,0839 ] [ -0,7459 , 1,0310 ] [ -0,6852 , 1,0147 ] [ -0,5814 , 0,9818 ] [ -0,8193 , 1,4376 ]
0,2 100 [ -0,7908 , 1,0896 ] [ -0,7504 , 1,0359 ] [ -0,6855 , 1,0166 ] [ -0,5755 , 0,9898 ] [ -2,5106 , 10,2364 ]
0,4 0 [ -0,8120 , 0,7920 ] [ -0,7609 , 0,7405 ] [ -0,6793 , 0,6513 ] [ -0,6338 , 0,5608 ] [ -0,6116 , 0,7426 ]
0,4 1 [ -0,8766 , 1,0437 ] [ -0,8366 , 1,0081 ] [ -0,7474 , 1,0438 ] [ -0,7040 , 1,0238 ] [ -0,7155 , 1,0518 ]
0,4 5 [ -0,8137 , 1,4125 ] [ -0,7484 , 1,2934 ] [ -0,7538 , 1,3045 ] [ -0,7381 , 1,3001 ] [ -0,9121 , 2,0203 ]
0,4 10 [ -0,8046 , 1,4994 ] [ -0,7360 , 1,3473 ] [ -0,7875 , 1,3185 ] [ -0,7591 , 1,3197 ] [ -1,1699 , 3,2359 ]
0,4 100 [ -0,7903 , 1,5511 ] [ -0,7278 , 1,3779 ] [ -0,7903 , 1,2776 ] [ -0,7720 , 1,3024 ] [ -5,5993 , 23,8563 ]

cp cD trimmed Liu Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ -0,6186 , 0,6124 ] [ -0,6237 , 0,6157 ] [ -0,6255 , 0,6175 ] [ -0,7372 , 0,7260 ] [ -0,7177 , 0,7072 ]
0,1 0 [ -0,6060 , 0,6060 ] [ -0,6147 , 0,6136 ] [ -0,6164 , 0,6153 ] [ -0,7188 , 0,7147 ] [ -0,7005 , 0,6977 ]
0,1 1 [ -0,6264 , 0,6637 ] [ -0,6511 , 0,7057 ] [ -0,6520 , 0,7066 ] [ -0,7594 , 0,7783 ] [ -0,7307 , 0,7488 ]
0,1 5 [ -0,6241 , 0,6890 ] [ -0,6835 , 0,8553 ] [ -0,6393 , 0,8000 ] [ -0,6770 , 0,7026 ] [ -0,6602 , 0,6850 ]
0,1 10 [ -0,6255 , 0,6925 ] [ -0,6826 , 0,8678 ] [ -0,6388 , 0,8091 ] [ -0,6915 , 0,6929 ] [ -0,6742 , 0,6758 ]
0,1 100 [ -0,6123 , 0,7005 ] [ -0,6822 , 0,8635 ] [ -0,6389 , 0,8039 ] [ -0,6913 , 0,6870 ] [ -0,6740 , 0,6701 ]
0,2 0 [ -0,6074 , 0,5916 ] [ -0,6184 , 0,6016 ] [ -0,6200 , 0,6033 ] [ -0,7112 , 0,6945 ] [ -0,6960 , 0,6770 ]
0,2 1 [ -0,6358 , 0,7527 ] [ -0,6952 , 0,7878 ] [ -0,6961 , 0,7896 ] [ -0,8130 , 0,8253 ] [ -0,7825 , 0,7957 ]
0,2 5 [ -0,6888 , 1,1250 ] [ -0,7955 , 1,1266 ] [ -0,6908 , 1,0022 ] [ -0,6556 , 0,6600 ] [ -0,6323 , 0,6485 ]
0,2 10 [ -0,7308 , 1,6282 ] [ -0,7832 , 1,1701 ] [ -0,6737 , 1,0320 ] [ -0,6493 , 0,6563 ] [ -0,6272 , 0,6468 ]
0,2 100 [ -1,7315 , 9,8117 ] [ -0,7817 , 1,1894 ] [ -0,6695 , 1,0453 ] [ -0,6503 , 0,6599 ] [ -0,6315 , 0,6431 ]
0,4 0 [ -0,6025 , 0,5872 ] [ -0,6071 , 0,5915 ] [ -0,6087 , 0,5930 ] [ -0,6813 , 0,6701 ] [ -0,6682 , 0,6558 ]
0,4 1 [ -0,6838 , 0,9216 ] [ -0,7773 , 0,9765 ] [ -0,7793 , 0,9812 ] [ -0,9188 , 0,9619 ] [ -0,9036 , 0,9508 ]
0,4 5 [ -0,8564 , 1,7241 ] [ -1,1053 , 1,9458 ] [ -0,8237 , 1,6439 ] [ -1,2713 , 1,4865 ] [ -0,5875 , 0,8700 ]
0,4 10 [ -1,0354 , 2,8694 ] [ -1,1195 , 2,1378 ] [ -0,8046 , 1,7670 ] [ -1,3723 , 1,6332 ] [ -0,6104 , 0,9872 ]
0,4 100 [ -4,1640 , 21,9958 ] [ -1,1224 , 2,2419 ] [ -0,8012 , 1,8275 ] [ -1,3642 , 1,6439 ] [ -0,6158 , 1,0367 ]

Table 4.2: Estimates of the location in Study 1 - CASE 2
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1) Hausdorff median 1-norm median

0 0 [ -1,2947 , 1,3015 ] [ -1,3956 , 1,3981 ] [ -1,3447 , 1,3444 ] [ -1,2095 , 1,2150 ] [ -1,4633 , 1,4652 ]
0,1 0 [ -1,2939 , 1,2809 ] [ -1,3841 , 1,3777 ] [ -1,3375 , 1,3293 ] [ -1,2089 , 1,1953 ] [ -1,4636 , 1,4560 ]
0,1 1 [ -1,3066 , 1,4150 ] [ -1,4291 , 1,4374 ] [ -1,3765 , 1,3853 ] [ -1,2503 , 1,2901 ] [ -1,4778 , 1,5158 ]
0,1 5 [ -1,3715 , 1,9204 ] [ -1,3435 , 1,3694 ] [ -1,3123 , 1,3367 ] [ -1,2045 , 1,3488 ] [ -1,4812 , 1,5848 ]
0,1 10 [ -1,4764 , 2,5614 ] [ -1,3538 , 1,3526 ] [ -1,3223 , 1,3219 ] [ -1,2090 , 1,3510 ] [ -1,4862 , 1,5856 ]
0,1 100 [ -3,2593 , 14,0864 ] [ -1,3591 , 1,3531 ] [ -1,3262 , 1,3201 ] [ -1,2126 , 1,3472 ] [ -1,4832 , 1,5823 ]
0,2 0 [ -1,2774 , 1,2759 ] [ -1,3596 , 1,3701 ] [ -1,3204 , 1,3309 ] [ -1,1904 , 1,1973 ] [ -1,4600 , 1,4601 ]
0,2 1 [ -1,3201 , 1,5388 ] [ -1,4747 , 1,4868 ] [ -1,4205 , 1,4381 ] [ -1,2953 , 1,3748 ] [ -1,5038 , 1,5754 ]
0,2 5 [ -1,4828 , 2,5413 ] [ -1,3110 , 1,3445 ] [ -1,2812 , 1,3179 ] [ -1,2302 , 1,5059 ] [ -1,5116 , 1,7405 ]
0,2 10 [ -1,6984 , 3,7884 ] [ -1,3050 , 1,3031 ] [ -1,3031 , 1,3013 ] [ -1,2213 , 1,5227 ] [ -1,5140 , 1,7540 ]
0,2 100 [ -5,5409 , 26,4624 ] [ -1,3000 , 1,3009 ] [ -1,2990 , 1,2995 ] [ -1,2184 , 1,5162 ] [ -1,5093 , 1,7524 ]
0,4 0 [ -1,2665 , 1,2708 ] [ -1,4485 , 1,4311 ] [ -1,3690 , 1,3604 ] [ -1,1830 , 1,1858 ] [ -1,4572 , 1,4629 ]
0,4 1 [ -1,3691 , 1,7643 ] [ -1,6746 , 1,6900 ] [ -1,5907 , 1,6097 ] [ -1,4081 , 1,5585 ] [ -1,5785 , 1,7359 ]
0,4 5 [ -1,6821 , 3,7885 ] [ -1,3330 , 1,3657 ] [ -1,3030 , 1,3429 ] [ -1,3332 , 1,9915 ] [ -1,6147 , 2,3166 ]
0,4 10 [ -2,1175 , 6,2707 ] [ -1,3496 , 1,3419 ] [ -1,3254 , 1,3167 ] [ -1,2789 , 2,0488 ] [ -1,5922 , 2,3640 ]
0,4 100 [ -10,4824 , 51,7643 ] [ -1,3496 , 1,3447 ] [ -1,3247 , 1,3230 ] [ -1,2995 , 2,0596 ] [ -1,5973 , 2,3628 ]

cp cD spatial (θ = 1/3) spatial (θ = 1) Tukey Liu trimmed Tukey

0 0 [ -1,3794 , 1,3844 ] [ -1,3268 , 1,3321 ] [ -1,3156 , 1,3300 ] [ -1,2973 , 1,3059 ] [ -1,2869 , 1,2906 ]
0,1 0 [ -1,3799 , 1,3678 ] [ -1,3274 , 1,3162 ] [ -1,3111 , 1,3067 ] [ -1,2956 , 1,2820 ] [ -1,2869 , 1,2764 ]
0,1 1 [ -1,4030 , 1,4472 ] [ -1,3509 , 1,3977 ] [ -1,3388 , 1,3936 ] [ -1,3178 , 1,3760 ] [ -1,3139 , 1,3767 ]
0,1 5 [ -1,3926 , 1,5325 ] [ -1,3362 , 1,4707 ] [ -1,3307 , 1,4834 ] [ -1,3107 , 1,4534 ] [ -1,3277 , 1,5013 ]
0,1 10 [ -1,3984 , 1,5387 ] [ -1,3412 , 1,4764 ] [ -1,3352 , 1,4861 ] [ -1,3222 , 1,4577 ] [ -1,3332 , 1,5540 ]
0,1 100 [ -1,4009 , 1,5356 ] [ -1,3441 , 1,4724 ] [ -1,3592 , 1,4715 ] [ -1,3327 , 1,4475 ] [ -1,4755 , 2,2835 ]
0,2 0 [ -1,3661 , 1,3728 ] [ -1,3145 , 1,3206 ] [ -1,2944 , 1,3077 ] [ -1,2749 , 1,2891 ] [ -1,2729 , 1,2721 ]
0,2 1 [ -1,4373 , 1,5190 ] [ -1,3863 , 1,4704 ] [ -1,3753 , 1,4704 ] [ -1,3462 , 1,4581 ] [ -1,3448 , 1,4739 ]
0,2 5 [ -1,4363 , 1,7092 ] [ -1,3724 , 1,6394 ] [ -1,3678 , 1,6697 ] [ -1,3532 , 1,6422 ] [ -1,4594 , 1,9944 ]
0,2 10 [ -1,4325 , 1,7350 ] [ -1,3679 , 1,6607 ] [ -1,3629 , 1,6730 ] [ -1,3599 , 1,6567 ] [ -1,5850 , 2,5718 ]
0,2 100 [ -1,4319 , 1,7396 ] [ -1,3666 , 1,6638 ] [ -1,3804 , 1,6739 ] [ -1,3617 , 1,6616 ] [ -3,8129 , 12,6211 ]
0,4 0 [ -1,3616 , 1,3666 ] [ -1,3091 , 1,3158 ] [ -1,2764 , 1,2896 ] [ -1,2603 , 1,2629 ] [ -1,2610 , 1,2703 ]
0,4 1 [ -1,5339 , 1,6930 ] [ -1,4841 , 1,6522 ] [ -1,4565 , 1,6529 ] [ -1,4435 , 1,6408 ] [ -1,4398 , 1,6580 ]
0,4 5 [ -1,6051 , 2,2880 ] [ -1,5104 , 2,2006 ] [ -1,5841 , 2,3154 ] [ -1,5875 , 2,3172 ] [ -1,7136 , 2,7976 ]
0,4 10 [ -1,5873 , 2,4157 ] [ -1,4824 , 2,3056 ] [ -1,5952 , 2,4305 ] [ -1,5879 , 2,4456 ] [ -2,0093 , 4,0747 ]
0,4 100 [ -1,5979 , 2,4714 ] [ -1,4982 , 2,3496 ] [ -1,5715 , 2,3370 ] [ -1,5546 , 2,3942 ] [ -8,2275 , 27,4212 ]

cp cD trimmed Liu Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ -1,2818 , 1,2860 ] [ -1,3152 , 1,3225 ] [ -1,3062 , 1,3130 ] [ -1,4128 , 1,4148 ] [ -1,3481 , 1,3504 ]
0,1 0 [ -1,2790 , 1,2719 ] [ -1,3164 , 1,3066 ] [ -1,3067 , 1,2970 ] [ -1,4037 , 1,3919 ] [ -1,3428 , 1,3349 ]
0,1 1 [ -1,3104 , 1,3756 ] [ -1,3502 , 1,4012 ] [ -1,3380 , 1,3898 ] [ -1,4468 , 1,4525 ] [ -1,3813 , 1,3897 ]
0,1 5 [ -1,3202 , 1,4929 ] [ -1,3819 , 1,5520 ] [ -1,3330 , 1,4945 ] [ -1,3678 , 1,3887 ] [ -1,3215 , 1,3399 ]
0,1 10 [ -1,3101 , 1,5128 ] [ -1,3831 , 1,5651 ] [ -1,3331 , 1,5032 ] [ -1,3773 , 1,3744 ] [ -1,3300 , 1,3281 ]
0,1 100 [ -1,2980 , 1,6033 ] [ -1,3904 , 1,5667 ] [ -1,3394 , 1,5027 ] [ -1,3831 , 1,3710 ] [ -1,3340 , 1,3241 ]
0,2 0 [ -1,2646 , 1,2715 ] [ -1,3016 , 1,3061 ] [ -1,2923 , 1,2973 ] [ -1,3797 , 1,3903 ] [ -1,3259 , 1,3380 ]
0,2 1 [ -1,3436 , 1,4793 ] [ -1,3911 , 1,4917 ] [ -1,3763 , 1,4782 ] [ -1,4928 , 1,5009 ] [ -1,4278 , 1,4397 ]
0,2 5 [ -1,4474 , 1,9831 ] [ -1,4896 , 1,8422 ] [ -1,3839 , 1,7230 ] [ -1,3402 , 1,3693 ] [ -1,2927 , 1,3354 ]
0,2 10 [ -1,5467 , 2,5591 ] [ -1,4883 , 1,8813 ] [ -1,3786 , 1,7506 ] [ -1,3474 , 1,3533 ] [ -1,3073 , 1,3275 ]
0,2 100 [ -3,3423 , 12,2810 ] [ -1,4863 , 1,8924 ] [ -1,3756 , 1,7556 ] [ -1,3466 , 1,3478 ] [ -1,3125 , 1,3146 ]
0,4 0 [ -1,2546 , 1,2617 ] [ -1,2959 , 1,3054 ] [ -1,2865 , 1,2956 ] [ -1,3628 , 1,3733 ] [ -1,3169 , 1,3274 ]
0,4 1 [ -1,4346 , 1,6619 ] [ -1,4869 , 1,6770 ] [ -1,4699 , 1,6644 ] [ -1,6114 , 1,6406 ] [ -1,5550 , 1,5887 ]
0,4 5 [ -1,6911 , 2,7736 ] [ -1,8045 , 2,6757 ] [ -1,5511 , 2,4102 ] [ -1,9195 , 2,1312 ] [ -1,4001 , 1,7003 ]
0,4 10 [ -1,9334 , 4,0590 ] [ -1,7987 , 2,8677 ] [ -1,5156 , 2,5413 ] [ -1,9229 , 2,2091 ] [ -1,3781 , 1,8080 ]
0,4 100 [ -6,9431 , 26,9526 ] [ -1,8225 , 2,9667 ] [ -1,5314 , 2,6012 ] [ -1,9713 , 2,2729 ] [ -1,3786 , 1,8597 ]

Table 4.3: Estimates of the location in Study 1 - CASE 2’
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1)

0 0 [ -1,0003 , 1,0005 ] [ -0,6618 , 0,6609 ] [ -0,5416 , 0,5412 ]
0,1 0 [ -1,2267 , 1,2267 ] [ -0,7471 , 0,7472 ] [ -0,6205 , 0,6213 ]
0,1 1 [ -1,2516 , 1,3504 ] [ -0,7543 , 0,7598 ] [ -0,6266 , 0,6333 ]
0,1 5 [ -1,3458 , 1,8467 ] [ -0,7349 , 0,7398 ] [ -0,6302 , 0,6377 ]
0,1 10 [ -1,4617 , 2,4681 ] [ -0,7407 , 0,7408 ] [ -0,6394 , 0,6395 ]
0,1 100 [ -4,0463 , 13,6796 ] [ -0,7415 , 0,7407 ] [ -0,6400 , 0,6401 ]
0,2 0 [ -1,4536 , 1,4537 ] [ -0,8651 , 0,8641 ] [ -0,7350 , 0,7338 ]
0,2 1 [ -1,4984 , 1,7022 ] [ -0,8940 , 0,9076 ] [ -0,7650 , 0,7850 ]
0,2 5 [ -1,7043 , 2,7006 ] [ -0,9100 , 0,9422 ] [ -0,8333 , 0,9136 ]
0,2 10 [ -1,9264 , 3,9641 ] [ -0,9707 , 0,9855 ] [ -0,9198 , 0,9792 ]
0,2 100 [ -6,4039 , 26,4565 ] [ -1,0003 , 1,0000 ] [ -1,0003 , 1,0000 ]
0,4 0 [ -1,8987 , 1,8980 ] [ -0,7806 , 0,7815 ] [ -0,6036 , 0,6044 ]
0,4 1 [ -1,9933 , 2,3986 ] [ -0,8131 , 0,8348 ] [ -0,6187 , 0,6446 ]
0,4 5 [ -2,4369 , 4,3930 ] [ -0,7286 , 0,7658 ] [ -0,6174 , 0,6703 ]
0,4 10 [ -2,8299 , 6,9172 ] [ -0,7718 , 0,7743 ] [ -0,6822 , 0,6867 ]
0,4 100 [ -11,9526 , 52,2807 ] [ -0,7732 , 0,7732 ] [ -0,6861 , 0,6861 ]

cp cD Hausdorff median 1-norm median spatial (θ = 1/3) spatial (θ = 1)

0 0 [ -0,4552 , 0,4552 ] [ -0,7384 , 0,7384 ] [ -0,6538 , 0,6538 ] [ -0,6031 , 0,6031 ]
0,1 0 [ -0,5423 , 0,5426 ] [ -0,8410 , 0,8416 ] [ -0,7621 , 0,7623 ] [ -0,7032 , 0,7034 ]
0,1 1 [ -0,5325 , 0,5663 ] [ -0,8440 , 0,8794 ] [ -0,7649 , 0,7994 ] [ -0,7016 , 0,7365 ]
0,1 5 [ -0,4884 , 0,6085 ] [ -0,8201 , 0,9236 ] [ -0,7347 , 0,8528 ] [ -0,6676 , 0,7835 ]
0,1 10 [ -0,4793 , 0,6144 ] [ -0,8107 , 0,9290 ] [ -0,7206 , 0,8607 ] [ -0,6540 , 0,7926 ]
0,1 100 [ -0,4857 , 0,6145 ] [ -0,8179 , 0,9301 ] [ -0,7198 , 0,8613 ] [ -0,6524 , 0,7945 ]
0,2 0 [ -0,6602 , 0,6596 ] [ -0,9639 , 0,9636 ] [ -0,8944 , 0,8937 ] [ -0,8282 , 0,8275 ]
0,2 1 [ -0,6459 , 0,7190 ] [ -0,9722 , 1,0518 ] [ -0,9066 , 0,9824 ] [ -0,8317 , 0,9086 ]
0,2 5 [ -0,5545 , 0,8126 ] [ -0,9278 , 1,1729 ] [ -0,8563 , 1,1208 ] [ -0,7664 , 1,0287 ]
0,2 10 [ -0,5333 , 0,8298 ] [ -0,9088 , 1,1888 ] [ -0,8232 , 1,1437 ] [ -0,7357 , 1,0551 ]
0,2 100 [ -0,5357 , 0,8284 ] [ -0,9090 , 1,1891 ] [ -0,8044 , 1,1434 ] [ -0,7162 , 1,0596 ]
0,4 0 [ -1,0044 , 1,0037 ] [ -1,2769 , 1,2772 ] [ -1,2391 , 1,2389 ] [ -1,1667 , 1,1665 ]
0,4 1 [ -1,1168 , 1,2795 ] [ -1,3387 , 1,5607 ] [ -1,3459 , 1,5271 ] [ -1,2628 , 1,4540 ]
0,4 5 [ -0,9615 , 1,5709 ] [ -1,3100 , 2,1757 ] [ -1,4078 , 2,1158 ] [ -1,2360 , 1,9719 ]
0,4 10 [ -0,8819 , 1,6379 ] [ -1,2441 , 2,3190 ] [ -1,3262 , 2,2692 ] [ -1,1460 , 2,1312 ]
0,4 100 [ -0,9033 , 1,6537 ] [ -1,2688 , 2,3228 ] [ -1,2938 , 2,3274 ] [ -1,1139 , 2,2037 ]

cp cD Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ -0,8604 , 0,8604 ] [ -0,7507 , 0,7507 ] [ -0,6241 , 0,6237 ] [ -0,4996 , 0,4992 ]
0,1 0 [ -0,9916 , 0,9917 ] [ -0,8522 , 0,8523 ] [ -0,6989 , 0,6989 ] [ -0,5648 , 0,5653 ]
0,1 1 [ -1,0037 , 1,0445 ] [ -0,8527 , 0,8923 ] [ -0,7019 , 0,7079 ] [ -0,5664 , 0,5729 ]
0,1 5 [ -0,9813 , 1,1230 ] [ -0,8156 , 0,9490 ] [ -0,6870 , 0,6923 ] [ -0,5753 , 0,5827 ]
0,1 10 [ -0,9652 , 1,1337 ] [ -0,8009 , 0,9606 ] [ -0,6928 , 0,6934 ] [ -0,5848 , 0,5849 ]
0,1 100 [ -0,9653 , 1,1354 ] [ -0,8000 , 0,9630 ] [ -0,6933 , 0,6935 ] [ -0,5856 , 0,5856 ]
0,2 0 [ -1,1379 , 1,1374 ] [ -0,9694 , 0,9688 ] [ -0,8017 , 0,8006 ] [ -0,6574 , 0,6562 ]
0,2 1 [ -1,1624 , 1,2509 ] [ -0,9717 , 1,0579 ] [ -0,8191 , 0,8321 ] [ -0,6705 , 0,6872 ]
0,2 5 [ -1,1349 , 1,4469 ] [ -0,9007 , 1,1968 ] [ -0,7958 , 0,8257 ] [ -0,6779 , 0,7320 ]
0,2 10 [ -1,0967 , 1,4780 ] [ -0,8664 , 1,2292 ] [ -0,8200 , 0,8331 ] [ -0,7149 , 0,7516 ]
0,2 100 [ -1,0774 , 1,4801 ] [ -0,8475 , 1,2365 ] [ -0,8361 , 0,8377 ] [ -0,7499 , 0,7542 ]
0,4 0 [ -1,4655 , 1,4651 ] [ -1,2571 , 1,2569 ] [ -1,0977 , 1,0974 ] [ -0,9228 , 0,9225 ]
0,4 1 [ -1,5489 , 1,7515 ] [ -1,3266 , 1,5322 ] [ -1,2039 , 1,2614 ] [ -0,9992 , 1,0826 ]
0,4 5 [ -1,6264 , 2,4161 ] [ -1,2958 , 2,0868 ] [ -1,4608 , 1,7393 ] [ -1,0202 , 1,4704 ]
0,4 10 [ -1,5230 , 2,5876 ] [ -1,1911 , 2,2559 ] [ -1,5515 , 1,9162 ] [ -0,9521 , 1,6143 ]
0,4 100 [ -1,4870 , 2,6589 ] [ -1,1548 , 2,3338 ] [ -1,6457 , 1,9672 ] [ -0,9848 , 1,6567 ]

Table 4.4: Estimates of the location in Study 2 - CASE 1
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1)

0 0 [ -0,5998 , 0,6004 ] [ -0,7067 , 0,7073 ] [ -0,7071 , 0,7074 ]
0,1 0 [ -0,5929 , 0,5921 ] [ -0,6914 , 0,6911 ] [ -0,6918 , 0,6914 ]
0,1 1 [ -0,6162 , 0,7171 ] [ -0,7493 , 0,7553 ] [ -0,7444 , 0,7506 ]
0,1 5 [ -0,6977 , 1,2154 ] [ -0,6560 , 0,6609 ] [ -0,6562 , 0,6615 ]
0,1 10 [ -0,8464 , 1,8256 ] [ -0,6573 , 0,6575 ] [ -0,6575 , 0,6578 ]
0,1 100 [ -3,0848 , 13,1638 ] [ -0,6572 , 0,6571 ] [ -0,6576 , 0,6573 ]
0,2 0 [ -0,5855 , 0,5855 ] [ -0,6774 , 0,6762 ] [ -0,6779 , 0,6766 ]
0,2 1 [ -0,6308 , 0,8352 ] [ -0,7934 , 0,8080 ] [ -0,7912 , 0,8060 ]
0,2 5 [ -0,8379 , 1,8233 ] [ -0,5981 , 0,6207 ] [ -0,5939 , 0,6171 ]
0,2 10 [ -1,1274 , 3,0817 ] [ -0,5992 , 0,6016 ] [ -0,5992 , 0,6017 ]
0,2 100 [ -5,7732 , 25,4170 ] [ -0,5999 , 0,5999 ] [ -0,5999 , 0,5999 ]
0,4 0 [ -0,5712 , 0,5700 ] [ -0,8012 , 0,8028 ] [ -0,8008 , 0,8016 ]
0,4 1 [ -0,6677 , 1,0697 ] [ -1,0606 , 1,0839 ] [ -1,0491 , 1,0728 ]
0,4 5 [ -1,0692 , 3,0624 ] [ -0,6364 , 0,6664 ] [ -0,6365 , 0,6673 ]
0,4 10 [ -1,5941 , 5,5766 ] [ -0,6410 , 0,6439 ] [ -0,6412 , 0,6442 ]
0,4 100 [ -10,3318 , 50,6535 ] [ -0,6423 , 0,6425 ] [ -0,6425 , 0,6428 ]

cp cD Hausdorff median 1-norm median spatial (θ = 1/3) spatial (θ = 1)

0 0 [ -0,5797 , 0,5805 ] [ -1,0781 , 1,0788 ] [ -0,8380 , 0,8388 ] [ -0,7859 , 0,7868 ]
0,1 0 [ -0,5697 , 0,5692 ] [ -1,0746 , 1,0744 ] [ -0,8324 , 0,8322 ] [ -0,7801 , 0,7798 ]
0,1 1 [ -0,6187 , 0,6533 ] [ -1,0871 , 1,1142 ] [ -0,8544 , 0,8899 ] [ -0,8009 , 0,8416 ]
0,1 5 [ -0,5722 , 0,6978 ] [ -1,0871 , 1,1432 ] [ -0,8393 , 0,9613 ] [ -0,7783 , 0,9067 ]
0,1 10 [ -0,5708 , 0,7027 ] [ -1,0878 , 1,1437 ] [ -0,8405 , 0,9701 ] [ -0,7788 , 0,9138 ]
0,1 100 [ -0,5691 , 0,7048 ] [ -1,0871 , 1,1437 ] [ -0,8390 , 0,9732 ] [ -0,7781 , 0,9165 ]
0,2 0 [ -0,5599 , 0,5587 ] [ -1,0711 , 1,0700 ] [ -0,8271 , 0,8259 ] [ -0,7745 , 0,7733 ]
0,2 1 [ -0,6671 , 0,7404 ] [ -1,0911 , 1,1382 ] [ -0,8691 , 0,9446 ] [ -0,8155 , 0,9002 ]
0,2 5 [ -0,5772 , 0,8331 ] [ -1,0786 , 1,1686 ] [ -0,8352 , 1,0790 ] [ -0,7796 , 1,0253 ]
0,2 10 [ -0,5660 , 0,8494 ] [ -1,0787 , 1,1709 ] [ -0,8246 , 1,0967 ] [ -0,7740 , 1,0412 ]
0,2 100 [ -0,5614 , 0,8484 ] [ -1,0716 , 1,1709 ] [ -0,8185 , 1,1005 ] [ -0,7689 , 1,0450 ]
0,4 0 [ -0,5360 , 0,5365 ] [ -1,0598 , 1,0603 ] [ -0,8117 , 0,8121 ] [ -0,7587 , 0,7591 ]
0,4 1 [ -0,7960 , 0,9573 ] [ -1,0849 , 1,1644 ] [ -0,8969 , 1,0622 ] [ -0,8503 , 1,0262 ]
0,4 5 [ -0,5671 , 1,1928 ] [ -1,0413 , 1,3759 ] [ -0,8555 , 1,4236 ] [ -0,7798 , 1,2962 ]
0,4 10 [ -0,5145 , 1,2468 ] [ -1,0225 , 1,4009 ] [ -0,8293 , 1,5208 ] [ -0,7511 , 1,3602 ]
0,4 100 [ -0,5027 , 1,2504 ] [ -0,9973 , 1,4011 ] [ -0,8111 , 1,5608 ] [ -0,7340 , 1,3833 ]

cp cD Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ -0,6196 , 0,6202 ] [ -0,6214 , 0,6220 ] [ -0,7319 , 0,7325 ] [ -0,7102 , 0,7107 ]
0,1 0 [ -0,6159 , 0,6152 ] [ -0,6176 , 0,6170 ] [ -0,7181 , 0,7178 ] [ -0,6979 , 0,6975 ]
0,1 1 [ -0,6614 , 0,7048 ] [ -0,6621 , 0,7061 ] [ -0,7737 , 0,7821 ] [ -0,7423 , 0,7501 ]
0,1 5 [ -0,7007 , 0,8537 ] [ -0,6510 , 0,7955 ] [ -0,6850 , 0,6924 ] [ -0,6660 , 0,6735 ]
0,1 10 [ -0,7063 , 0,8710 ] [ -0,6520 , 0,8058 ] [ -0,6867 , 0,6894 ] [ -0,6681 , 0,6703 ]
0,1 100 [ -0,7050 , 0,8748 ] [ -0,6517 , 0,8087 ] [ -0,6869 , 0,6888 ] [ -0,6683 , 0,6697 ]
0,2 0 [ -0,6117 , 0,6109 ] [ -0,6134 , 0,6125 ] [ -0,7055 , 0,7043 ] [ -0,6866 , 0,6854 ]
0,2 1 [ -0,7017 , 0,7934 ] [ -0,7025 , 0,7954 ] [ -0,8207 , 0,8370 ] [ -0,7893 , 0,8063 ]
0,2 5 [ -0,8224 , 1,1419 ] [ -0,7049 , 1,0093 ] [ -0,6446 , 0,6639 ] [ -0,6208 , 0,6529 ]
0,2 10 [ -0,8230 , 1,1878 ] [ -0,6983 , 1,0391 ] [ -0,6479 , 0,6550 ] [ -0,6249 , 0,6461 ]
0,2 100 [ -0,8192 , 1,1974 ] [ -0,6944 , 1,0432 ] [ -0,6520 , 0,6554 ] [ -0,6334 , 0,6372 ]
0,4 0 [ -0,6015 , 0,6016 ] [ -0,6031 , 0,6031 ] [ -0,6778 , 0,6785 ] [ -0,6620 , 0,6625 ]
0,4 1 [ -0,7865 , 0,9855 ] [ -0,7889 , 0,9904 ] [ -0,9303 , 0,9761 ] [ -0,9175 , 0,9669 ]
0,4 5 [ -1,1551 , 1,9705 ] [ -0,8613 , 1,6572 ] [ -1,3990 , 1,5979 ] [ -0,5915 , 0,8604 ]
0,4 10 [ -1,1555 , 2,1715 ] [ -0,8245 , 1,7863 ] [ -1,4481 , 1,7198 ] [ -0,5834 , 0,9762 ]
0,4 100 [ -1,1416 , 2,2496 ] [ -0,8064 , 1,8308 ] [ -1,4106 , 1,7003 ] [ -0,5956 , 1,0378 ]

Table 4.5: Estimates of the location in Study 2 - CASE 2
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1)

0 0 [ -1,2981 , 1,2973 ] [ -1,3998 , 1,3994 ] [ -1,3478 , 1,3471 ]
0,1 0 [ -1,2903 , 1,2901 ] [ -1,3864 , 1,3862 ] [ -1,3393 , 1,3392 ]
0,1 1 [ -1,3159 , 1,4147 ] [ -1,4404 , 1,4465 ] [ -1,3841 , 1,3910 ]
0,1 5 [ -1,3955 , 1,9135 ] [ -1,3538 , 1,3601 ] [ -1,3212 , 1,3277 ]
0,1 10 [ -1,5622 , 2,5296 ] [ -1,3550 , 1,3552 ] [ -1,3235 , 1,3239 ]
0,1 100 [ -3,9820 , 13,7923 ] [ -1,3553 , 1,3553 ] [ -1,3242 , 1,3241 ]
0,2 0 [ -1,2828 , 1,2838 ] [ -1,3721 , 1,3735 ] [ -1,3303 , 1,3317 ]
0,2 1 [ -1,3313 , 1,5324 ] [ -1,4842 , 1,5001 ] [ -1,4284 , 1,4462 ]
0,2 5 [ -1,5524 , 2,5278 ] [ -1,3135 , 1,3356 ] [ -1,2879 , 1,3126 ]
0,2 10 [ -1,7305 , 3,7884 ] [ -1,2967 , 1,2998 ] [ -1,2964 , 1,2996 ]
0,2 100 [ -6,8962 , 26,1227 ] [ -1,2985 , 1,2981 ] [ -1,2985 , 1,2981 ]
0,4 0 [ -1,2675 , 1,2670 ] [ -1,4608 , 1,4583 ] [ -1,3792 , 1,3773 ]
0,4 1 [ -1,3736 , 1,7676 ] [ -1,6983 , 1,7201 ] [ -1,6040 , 1,6301 ]
0,4 5 [ -1,7405 , 3,7759 ] [ -1,3347 , 1,3639 ] [ -1,3035 , 1,3369 ]
0,4 10 [ -2,3565 , 6,2391 ] [ -1,3400 , 1,3420 ] [ -1,3157 , 1,3180 ]
0,4 100 [ -11,2494 , 51,3700 ] [ -1,3406 , 1,3410 ] [ -1,3166 , 1,3171 ]

cp cD Hausdorff median 1-norm median spatial (θ = 1/3) spatial (θ = 1)

0 0 [ -1,2114 , 1,2105 ] [ -1,4642 , 1,4634 ] [ -1,3845 , 1,3837 ] [ -1,3306 , 1,3297 ]
0,1 0 [ -1,2044 , 1,2039 ] [ -1,4624 , 1,4624 ] [ -1,3799 , 1,3797 ] [ -1,3261 , 1,3259 ]
0,1 1 [ -1,2535 , 1,2874 ] [ -1,4860 , 1,5166 ] [ -1,4149 , 1,4495 ] [ -1,3604 , 1,3968 ]
0,1 5 [ -1,2168 , 1,3420 ] [ -1,4888 , 1,5855 ] [ -1,4110 , 1,5316 ] [ -1,3484 , 1,4686 ]
0,1 10 [ -1,2166 , 1,3468 ] [ -1,4933 , 1,5890 ] [ -1,4151 , 1,5414 ] [ -1,3514 , 1,4761 ]
0,1 100 [ -1,2162 , 1,3481 ] [ -1,4925 , 1,5893 ] [ -1,4148 , 1,5445 ] [ -1,3511 , 1,4786 ]
0,2 0 [ -1,1971 , 1,1985 ] [ -1,4608 , 1,4614 ] [ -1,3751 , 1,3763 ] [ -1,3214 , 1,3225 ]
0,2 1 [ -1,2988 , 1,3721 ] [ -1,5094 , 1,5773 ] [ -1,4479 , 1,5225 ] [ -1,3934 , 1,4721 ]
0,2 5 [ -1,2469 , 1,4995 ] [ -1,5367 , 1,7436 ] [ -1,4684 , 1,7131 ] [ -1,3950 , 1,6388 ]
0,2 10 [ -1,2176 , 1,5186 ] [ -1,5173 , 1,7527 ] [ -1,4422 , 1,7387 ] [ -1,3695 , 1,6625 ]
0,2 100 [ -1,2329 , 1,5129 ] [ -1,5324 , 1,7532 ] [ -1,4635 , 1,7468 ] [ -1,3864 , 1,6652 ]
0,4 0 [ -1,1825 , 1,1819 ] [ -1,4575 , 1,4568 ] [ -1,3654 , 1,3646 ] [ -1,3116 , 1,3110 ]
0,4 1 [ -1,4078 , 1,5661 ] [ -1,5790 , 1,7423 ] [ -1,5379 , 1,7024 ] [ -1,4852 , 1,6603 ]
0,4 5 [ -1,3500 , 1,9908 ] [ -1,6454 , 2,3160 ] [ -1,6389 , 2,2948 ] [ -1,5354 , 2,2006 ]
0,4 10 [ -1,3251 , 2,0403 ] [ -1,6492 , 2,3771 ] [ -1,6660 , 2,4368 ] [ -1,5395 , 2,3108 ]
0,4 100 [ -1,3009 , 2,0382 ] [ -1,6264 , 2,3783 ] [ -1,6367 , 2,4838 ] [ -1,5141 , 2,3497 ]

cp cD Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ -1,3189 , 1,3182 ] [ -1,3099 , 1,3091 ] [ -1,4179 , 1,4175 ] [ -1,3560 , 1,3554 ]
0,1 0 [ -1,3143 , 1,3141 ] [ -1,3050 , 1,3048 ] [ -1,4059 , 1,4056 ] [ -1,3479 , 1,3477 ]
0,1 1 [ -1,3605 , 1,4031 ] [ -1,3476 , 1,3914 ] [ -1,4563 , 1,4651 ] [ -1,3911 , 1,3992 ]
0,1 5 [ -1,4011 , 1,5557 ] [ -1,3457 , 1,4949 ] [ -1,3754 , 1,3845 ] [ -1,3289 , 1,3374 ]
0,1 10 [ -1,4103 , 1,5736 ] [ -1,3498 , 1,5054 ] [ -1,3767 , 1,3802 ] [ -1,3312 , 1,3336 ]
0,1 100 [ -1,4106 , 1,5778 ] [ -1,3506 , 1,5087 ] [ -1,3772 , 1,3802 ] [ -1,3319 , 1,3338 ]
0,2 0 [ -1,3093 , 1,3105 ] [ -1,2999 , 1,3010 ] [ -1,3931 , 1,3944 ] [ -1,3392 , 1,3407 ]
0,2 1 [ -1,4003 , 1,4914 ] [ -1,3850 , 1,4785 ] [ -1,4992 , 1,5185 ] [ -1,4345 , 1,4538 ]
0,2 5 [ -1,5319 , 1,8502 ] [ -1,4150 , 1,7225 ] [ -1,3446 , 1,3653 ] [ -1,2990 , 1,3314 ]
0,2 10 [ -1,5002 , 1,8905 ] [ -1,3828 , 1,7547 ] [ -1,3418 , 1,3512 ] [ -1,3014 , 1,3266 ]
0,2 100 [ -1,5340 , 1,9063 ] [ -1,4068 , 1,7587 ] [ -1,3447 , 1,3487 ] [ -1,3118 , 1,3153 ]
0,4 0 [ -1,2996 , 1,2986 ] [ -1,2897 , 1,2888 ] [ -1,3679 , 1,3665 ] [ -1,3234 , 1,3219 ]
0,4 1 [ -1,4884 , 1,6846 ] [ -1,4711 , 1,6727 ] [ -1,6109 , 1,6574 ] [ -1,5544 , 1,6065 ]
0,4 5 [ -1,8474 , 2,6848 ] [ -1,5847 , 2,4106 ] [ -1,9225 , 2,1278 ] [ -1,4001 , 1,6912 ]
0,4 10 [ -1,8996 , 2,9007 ] [ -1,5845 , 2,5494 ] [ -1,9332 , 2,2029 ] [ -1,3705 , 1,7857 ]
0,4 100 [ -1,8678 , 2,9805 ] [ -1,5523 , 2,5983 ] [ -1,9916 , 2,2813 ] [ -1,3806 , 1,8592 ]

Table 4.6: Estimates of the location in Study 2 - CASE 2’
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For the bias, variance and mean square error, the conclusions for the three cases
in Studies 1 and 2 are summarized in Tables 4.7 and 4.8.

STUDY 1 CASE 1 CASE 2 CASE 2’

Bias

cp ≤ 0.2 Hampel Hampel (θ = 1) Hampel (θ = 1)

cp = 0.4 trimmed trimmed (θ = 1) trimmed (θ = 1)

cD = 0 1-norm median 1-norm median
Dispersion none low low

Variance

cp = 0 Huber (θ = 1) mean 1-norm median

cp ≤ 0.2
Huber 1-norm median 1-norm median

Hampel (θ = 1) trimmed Liu trimmed (θ = 1)

cp = 0.4 trimmed (θ = 1) trimmed (θ = 1) trimmed (θ = 1)

cD = 0

Dispersion none medium none

MSE

cp = 0 Huber (θ = 1) mean 1-norm median

cp ≤ 0.2

1-norm median
Hampel trimmed Liu 1-norm median

Hampel (θ = 1)

cp = 0.4 trimmed trimmed (θ = 1/3) trimmed (θ = 1)

cD = 0

Dispersion none medium low

Table 4.7: Summary of the main conclusions from Study 1:
the most suitable (if any) location measures/estimates

STUDY 2 CASE 1 CASE 2 CASE 2’

Bias

cp ≤ 0.2 Hampel
1-norm median

Hampel (θ = 1)
Hampel (θ = 1)

cp = 0.4 trimmed
1-norm median

trimmed (θ = 1)
trimmed (θ = 1)

cD = 0 1-norm median

Dispersion none medium medium

Variance

cp = 0 Huber (θ = 1) mean 1-norm median

cp ≤ 0.2 Hampel
Huber Hampel

Hampel (θ = 1) trimmed (θ = 1)

cp = 0.4 trimmed trimmed (θ = 1) trimmed (θ = 1)

cD = 0/1 1-norm median 1-norm median
Dispersion none none low

MSE

cp = 0 Huber (θ = 1) mean 1-norm median

cp ≤ 0.2 Hampel Hampel (θ = 1) Hampel (θ = 1)

cp = 0.4 trimmed trimmed (θ = 1) trimmed (θ = 1)

cD = 0/1 1-norm median 1-norm median
Dispersion none medium low

Table 4.8: Summary of the main conclusions from Study 2:
the most suitable (if any) location measures/estimates

Concerning Study 3 and Study 4, the estimates are given by
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1) Hausdorff median 1-norm median

0 0 [ 0,7582 , 0,9094 ] [ 0,8080 , 0,9311 ] [ 0,8117 , 0,9286 ] [ 0,7912 , 0,9088 ] [ 0,7825 , 0,9331 ]
0,1 0 [ 0,7265 , 0,8975 ] [ 0,7960 , 0,9261 ] [ 0,7985 , 0,9235 ] [ 0,7762 , 0,9027 ] [ 0,7675 , 0,9277 ]
0,1 1 [ 0,7115 , 0,8895 ] [ 0,7915 , 0,9249 ] [ 0,7936 , 0,9220 ] [ 0,7713 , 0,9009 ] [ 0,7617 , 0,9259 ]
0,1 5 [ 0,6965 , 0,8804 ] [ 0,7912 , 0,9243 ] [ 0,7931 , 0,9217 ] [ 0,7718 , 0,8996 ] [ 0,7614 , 0,9259 ]
0,1 10 [ 0,6913 , 0,8773 ] [ 0,7909 , 0,9244 ] [ 0,7926 , 0,9218 ] [ 0,7718 , 0,8984 ] [ 0,7606 , 0,9257 ]
0,1 100 [ 0,6848 , 0,8747 ] [ 0,7904 , 0,9239 ] [ 0,7921 , 0,9214 ] [ 0,7735 , 0,8974 ] [ 0,7603 , 0,9259 ]
0,2 0 [ 0,6941 , 0,8861 ] [ 0,7790 , 0,9200 ] [ 0,7809 , 0,9172 ] [ 0,7570 , 0,8951 ] [ 0,7475 , 0,9213 ]
0,2 1 [ 0,6673 , 0,8718 ] [ 0,7685 , 0,9159 ] [ 0,7700 , 0,9134 ] [ 0,7478 , 0,8908 ] [ 0,7383 , 0,9176 ]
0,2 5 [ 0,6344 , 0,8565 ] [ 0,7595 , 0,9127 ] [ 0,7604 , 0,9110 ] [ 0,7442 , 0,8881 ] [ 0,7328 , 0,9173 ]
0,2 10 [ 0,6241 , 0,8506 ] [ 0,7586 , 0,9114 ] [ 0,7593 , 0,9102 ] [ 0,7470 , 0,8867 ] [ 0,7328 , 0,9177 ]
0,2 100 [ 0,6114 , 0,8431 ] [ 0,7593 , 0,9103 ] [ 0,7596 , 0,9098 ] [ 0,7497 , 0,8833 ] [ 0,7336 , 0,9171 ]
0,4 0 [ 0,6296 , 0,8630 ] [ 0,7973 , 0,9270 ] [ 0,8067 , 0,9256 ] [ 0,7065 , 0,8743 ] [ 0,6957 , 0,9072 ]
0,4 1 [ 0,5739 , 0,8367 ] [ 0,7884 , 0,9242 ] [ 0,7932 , 0,9216 ] [ 0,6677 , 0,8557 ] [ 0,6514 , 0,8964 ]
0,4 5 [ 0,5069 , 0,8014 ] [ 0,7834 , 0,9213 ] [ 0,7852 , 0,9188 ] [ 0,6440 , 0,8365 ] [ 0,6187 , 0,8935 ]
0,4 10 [ 0,4871 , 0,7973 ] [ 0,7838 , 0,9217 ] [ 0,7853 , 0,9194 ] [ 0,6437 , 0,8333 ] [ 0,6162 , 0,8946 ]
0,4 100 [ 0,4605 , 0,7820 ] [ 0,7837 , 0,9210 ] [ 0,7852 , 0,9188 ] [ 0,6494 , 0,8297 ] [ 0,6168 , 0,8925 ]

cp cD spatial (θ = 1/3) spatial (θ = 1) Tukey Liu trimmed Tukey

0 0 [ 0,7836 , 0,9217 ] [ 0,7876 , 0,9212 ] [ 0,7960 , 0,9254 ] [ 0,7961 , 0,9254 ] [ 0,7708 , 0,9150 ]
0,1 0 [ 0,7685 , 0,9158 ] [ 0,7725 , 0,9154 ] [ 0,7809 , 0,9196 ] [ 0,7822 , 0,9201 ] [ 0,7490 , 0,9069 ]
0,1 1 [ 0,7632 , 0,9141 ] [ 0,7673 , 0,9136 ] [ 0,7770 , 0,9183 ] [ 0,7774 , 0,9184 ] [ 0,7405 , 0,9028 ]
0,1 5 [ 0,7628 , 0,9139 ] [ 0,7668 , 0,9134 ] [ 0,7764 , 0,9184 ] [ 0,7764 , 0,9185 ] [ 0,7356 , 0,8998 ]
0,1 10 [ 0,7619 , 0,9135 ] [ 0,7659 , 0,9131 ] [ 0,7755 , 0,9185 ] [ 0,7756 , 0,9180 ] [ 0,7332 , 0,8984 ]
0,1 100 [ 0,7618 , 0,9137 ] [ 0,7660 , 0,9132 ] [ 0,7751 , 0,9188 ] [ 0,7762 , 0,9189 ] [ 0,7327 , 0,8974 ]
0,2 0 [ 0,7487 , 0,9089 ] [ 0,7529 , 0,9086 ] [ 0,7627 , 0,9138 ] [ 0,7622 , 0,9133 ] [ 0,7231 , 0,8982 ]
0,2 1 [ 0,7392 , 0,9049 ] [ 0,7435 , 0,9045 ] [ 0,7555 , 0,9103 ] [ 0,7557 , 0,9107 ] [ 0,7024 , 0,8880 ]
0,2 5 [ 0,7336 , 0,9038 ] [ 0,7379 , 0,9037 ] [ 0,7505 , 0,9105 ] [ 0,7487 , 0,9102 ] [ 0,6754 , 0,8769 ]
0,2 10 [ 0,7339 , 0,9044 ] [ 0,7382 , 0,9041 ] [ 0,7508 , 0,9113 ] [ 0,7497 , 0,9113 ] [ 0,6685 , 0,8731 ]
0,2 100 [ 0,7344 , 0,9040 ] [ 0,7389 , 0,9038 ] [ 0,7507 , 0,9117 ] [ 0,7489 , 0,9109 ] [ 0,6607 , 0,8685 ]
0,4 0 [ 0,6965 , 0,8912 ] [ 0,7018 , 0,8911 ] [ 0,7167 , 0,8996 ] [ 0,7155 , 0,8989 ] [ 0,6830 , 0,8859 ]
0,4 1 [ 0,6540 , 0,8771 ] [ 0,6604 , 0,8768 ] [ 0,6829 , 0,8871 ] [ 0,6819 , 0,8869 ] [ 0,6327 , 0,8655 ]
0,4 5 [ 0,6218 , 0,8682 ] [ 0,6301 , 0,8680 ] [ 0,6613 , 0,8814 ] [ 0,6584 , 0,8801 ] [ 0,5683 , 0,8373 ]
0,4 10 [ 0,6179 , 0,8687 ] [ 0,6265 , 0,8692 ] [ 0,6568 , 0,8844 ] [ 0,6548 , 0,8841 ] [ 0,5486 , 0,8347 ]
0,4 100 [ 0,6197 , 0,8677 ] [ 0,6280 , 0,8684 ] [ 0,6562 , 0,8849 ] [ 0,6504 , 0,8833 ] [ 0,5239 , 0,8226 ]

cp cD trimmed Liu Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ 0,7695 , 0,9146 ] [ 0,7582 , 0,9094 ] [ 0,7582 , 0,9094 ] [ 0,8145 , 0,9336 ] [ 0,8205 , 0,9316 ]
0,1 0 [ 0,7459 , 0,9055 ] [ 0,7265 , 0,8975 ] [ 0,7265 , 0,8975 ] [ 0,8038 , 0,9291 ] [ 0,8086 , 0,9269 ]
0,1 1 [ 0,7372 , 0,9013 ] [ 0,7115 , 0,8895 ] [ 0,7115 , 0,8895 ] [ 0,8005 , 0,9283 ] [ 0,8045 , 0,9259 ]
0,1 5 [ 0,7330 , 0,8984 ] [ 0,6965 , 0,8804 ] [ 0,6965 , 0,8804 ] [ 0,7990 , 0,9273 ] [ 0,8030 , 0,9252 ]
0,1 10 [ 0,7324 , 0,8975 ] [ 0,6913 , 0,8773 ] [ 0,6913 , 0,8773 ] [ 0,7987 , 0,9274 ] [ 0,8026 , 0,9252 ]
0,1 100 [ 0,7350 , 0,8960 ] [ 0,6848 , 0,8747 ] [ 0,6848 , 0,8747 ] [ 0,7983 , 0,9271 ] [ 0,8023 , 0,9249 ]
0,2 0 [ 0,7195 , 0,8962 ] [ 0,6941 , 0,8861 ] [ 0,6941 , 0,8861 ] [ 0,7886 , 0,9236 ] [ 0,7930 , 0,9213 ]
0,2 1 [ 0,6976 , 0,8856 ] [ 0,6673 , 0,8718 ] [ 0,6673 , 0,8718 ] [ 0,7806 , 0,9204 ] [ 0,7842 , 0,9181 ]
0,2 5 [ 0,6683 , 0,8733 ] [ 0,6344 , 0,8565 ] [ 0,6344 , 0,8565 ] [ 0,7765 , 0,9191 ] [ 0,7789 , 0,9171 ]
0,2 10 [ 0,6601 , 0,8684 ] [ 0,6241 , 0,8506 ] [ 0,6241 , 0,8506 ] [ 0,7770 , 0,9189 ] [ 0,7790 , 0,9171 ]
0,2 100 [ 0,6521 , 0,8617 ] [ 0,6114 , 0,8431 ] [ 0,6114 , 0,8431 ] [ 0,7783 , 0,9189 ] [ 0,7802 , 0,9172 ]
0,4 0 [ 0,6805 , 0,8842 ] [ 0,6296 , 0,8630 ] [ 0,6296 , 0,8630 ] [ 0,7492 , 0,9097 ] [ 0,7531 , 0,9067 ]
0,4 1 [ 0,6271 , 0,8620 ] [ 0,5739 , 0,8367 ] [ 0,5739 , 0,8367 ] [ 0,7211 , 0,9028 ] [ 0,7257 , 0,8992 ]
0,4 5 [ 0,5570 , 0,8311 ] [ 0,5069 , 0,8014 ] [ 0,5069 , 0,8014 ] [ 0,6997 , 0,9044 ] [ 0,7110 , 0,9016 ]
0,4 10 [ 0,5339 , 0,8267 ] [ 0,4871 , 0,7973 ] [ 0,4871 , 0,7973 ] [ 0,7079 , 0,9077 ] [ 0,7252 , 0,9061 ]
0,4 100 [ 0,5064 , 0,8116 ] [ 0,4605 , 0,7820 ] [ 0,4605 , 0,7820 ] [ 0,7228 , 0,9087 ] [ 0,7386 , 0,9082 ]

Table 4.9: Estimates of the location in Study 3 - CASE 3
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1) Hausdorff median 1-norm median

0 0 [ 0,7526 , 0,9141 ] [ 0,8363 , 0,9434 ] [ 0,8376 , 0,9408 ] [ 0,8203 , 0,9198 ] [ 0,8104 , 0,9496 ]
0,1 0 [ 0,7337 , 0,8977 ] [ 0,8265 , 0,9397 ] [ 0,8277 , 0,9370 ] [ 0,8121 , 0,9134 ] [ 0,7990 , 0,9460 ]
0,1 1 [ 0,7261 , 0,8854 ] [ 0,8226 , 0,9375 ] [ 0,8240 , 0,9347 ] [ 0,8102 , 0,9083 ] [ 0,7954 , 0,9428 ]
0,1 5 [ 0,7189 , 0,8726 ] [ 0,8220 , 0,9361 ] [ 0,8233 , 0,9335 ] [ 0,8129 , 0,9043 ] [ 0,7955 , 0,9414 ]
0,1 10 [ 0,7177 , 0,8677 ] [ 0,8235 , 0,9360 ] [ 0,8249 , 0,9333 ] [ 0,8163 , 0,9033 ] [ 0,7980 , 0,9411 ]
0,1 100 [ 0,7136 , 0,8633 ] [ 0,8230 , 0,9357 ] [ 0,8244 , 0,9330 ] [ 0,8157 , 0,9025 ] [ 0,7969 , 0,9413 ]
0,2 0 [ 0,7145 , 0,8815 ] [ 0,8141 , 0,9356 ] [ 0,8156 , 0,9327 ] [ 0,8024 , 0,9058 ] [ 0,7864 , 0,9413 ]
0,2 1 [ 0,7031 , 0,8594 ] [ 0,8084 , 0,9300 ] [ 0,8098 , 0,9272 ] [ 0,8018 , 0,8969 ] [ 0,7824 , 0,9350 ]
0,2 5 [ 0,6891 , 0,8331 ] [ 0,8048 , 0,9271 ] [ 0,8061 , 0,9247 ] [ 0,8058 , 0,8874 ] [ 0,7806 , 0,9321 ]
0,2 10 [ 0,6844 , 0,8246 ] [ 0,8056 , 0,9263 ] [ 0,8068 , 0,9239 ] [ 0,8102 , 0,8850 ] [ 0,7829 , 0,9309 ]
0,2 100 [ 0,6800 , 0,8176 ] [ 0,8073 , 0,9252 ] [ 0,8086 , 0,9227 ] [ 0,8115 , 0,8830 ] [ 0,7844 , 0,9307 ]
0,4 0 [ 0,6801 , 0,8506 ] [ 0,8735 , 0,9563 ] [ 0,8757 , 0,9537 ] [ 0,7811 , 0,8884 ] [ 0,7585 , 0,9299 ]
0,4 1 [ 0,6571 , 0,8081 ] [ 0,8671 , 0,9491 ] [ 0,8687 , 0,9465 ] [ 0,7710 , 0,8626 ] [ 0,7382 , 0,9107 ]
0,4 5 [ 0,6335 , 0,7597 ] [ 0,8670 , 0,9444 ] [ 0,8689 , 0,9419 ] [ 0,7764 , 0,8407 ] [ 0,7327 , 0,8985 ]
0,4 10 [ 0,6190 , 0,7403 ] [ 0,8681 , 0,9432 ] [ 0,8699 , 0,9407 ] [ 0,7815 , 0,8357 ] [ 0,7341 , 0,8964 ]
0,4 100 [ 0,6038 , 0,7188 ] [ 0,8675 , 0,9416 ] [ 0,8693 , 0,9389 ] [ 0,7842 , 0,8269 ] [ 0,7328 , 0,8931 ]

cp cD spatial (θ = 1/3) spatial (θ = 1) Tukey Liu trimmed Tukey

0 0 [ 0,8115 , 0,9352 ] [ 0,8167 , 0,9353 ] [ 0,8369 , 0,9448 ] [ 0,8368 , 0,9446 ] [ 0,7815 , 0,9252 ]
0,1 0 [ 0,8016 , 0,9303 ] [ 0,8070 , 0,9301 ] [ 0,8288 , 0,9393 ] [ 0,8294 , 0,9394 ] [ 0,7680 , 0,9145 ]
0,1 1 [ 0,7989 , 0,9266 ] [ 0,8043 , 0,9262 ] [ 0,8293 , 0,9361 ] [ 0,8294 , 0,9363 ] [ 0,7635 , 0,9066 ]
0,1 5 [ 0,7992 , 0,9246 ] [ 0,8048 , 0,9241 ] [ 0,8296 , 0,9341 ] [ 0,8306 , 0,9344 ] [ 0,7604 , 0,8983 ]
0,1 10 [ 0,8016 , 0,9245 ] [ 0,8072 , 0,9240 ] [ 0,8302 , 0,9335 ] [ 0,8298 , 0,9334 ] [ 0,7618 , 0,8961 ]
0,1 100 [ 0,8006 , 0,9244 ] [ 0,8063 , 0,9239 ] [ 0,8302 , 0,9332 ] [ 0,8305 , 0,9337 ] [ 0,7597 , 0,8960 ]
0,2 0 [ 0,7902 , 0,9246 ] [ 0,7957 , 0,9240 ] [ 0,8214 , 0,9340 ] [ 0,8220 , 0,9342 ] [ 0,7534 , 0,9031 ]
0,2 1 [ 0,7878 , 0,9175 ] [ 0,7934 , 0,9166 ] [ 0,8211 , 0,9264 ] [ 0,8210 , 0,9264 ] [ 0,7445 , 0,8851 ]
0,2 5 [ 0,7877 , 0,9126 ] [ 0,7937 , 0,9114 ] [ 0,8221 , 0,9201 ] [ 0,8223 , 0,9204 ] [ 0,7338 , 0,8628 ]
0,2 10 [ 0,7898 , 0,9118 ] [ 0,7960 , 0,9105 ] [ 0,8261 , 0,9198 ] [ 0,8247 , 0,9195 ] [ 0,7314 , 0,8561 ]
0,2 100 [ 0,7908 , 0,9110 ] [ 0,7972 , 0,9098 ] [ 0,8247 , 0,9185 ] [ 0,8240 , 0,9187 ] [ 0,7285 , 0,8524 ]
0,4 0 [ 0,7655 , 0,9104 ] [ 0,7714 , 0,9090 ] [ 0,7985 , 0,9174 ] [ 0,7996 , 0,9177 ] [ 0,7528 , 0,8929 ]
0,4 1 [ 0,7505 , 0,8888 ] [ 0,7563 , 0,8863 ] [ 0,7850 , 0,8904 ] [ 0,7865 , 0,8906 ] [ 0,7316 , 0,8554 ]
0,4 5 [ 0,7501 , 0,8724 ] [ 0,7559 , 0,8686 ] [ 0,7755 , 0,8580 ] [ 0,7720 , 0,8529 ] [ 0,7083 , 0,8061 ]
0,4 10 [ 0,7524 , 0,8700 ] [ 0,7582 , 0,8659 ] [ 0,7755 , 0,8518 ] [ 0,7727 , 0,8468 ] [ 0,6999 , 0,7906 ]
0,4 100 [ 0,7510 , 0,8662 ] [ 0,7572 , 0,8621 ] [ 0,7744 , 0,8484 ] [ 0,7714 , 0,8440 ] [ 0,6857 , 0,7722 ]

cp cD trimmed Liu Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ 0,7806 , 0,9246 ] [ 0,7526 , 0,9141 ] [ 0,7526 , 0,9141 ] [ 0,8541 , 0,9494 ] [ 0,8566 , 0,9473 ]
0,1 0 [ 0,7661 , 0,9129 ] [ 0,7337 , 0,8977 ] [ 0,7337 , 0,8977 ] [ 0,8456 , 0,9464 ] [ 0,8479 , 0,9440 ]
0,1 1 [ 0,7599 , 0,9037 ] [ 0,7261 , 0,8854 ] [ 0,7261 , 0,8854 ] [ 0,8426 , 0,9443 ] [ 0,8450 , 0,9420 ]
0,1 5 [ 0,7552 , 0,8936 ] [ 0,7189 , 0,8726 ] [ 0,7189 , 0,8726 ] [ 0,8415 , 0,9429 ] [ 0,8440 , 0,9407 ]
0,1 10 [ 0,7561 , 0,8905 ] [ 0,7177 , 0,8677 ] [ 0,7177 , 0,8677 ] [ 0,8428 , 0,9427 ] [ 0,8455 , 0,9405 ]
0,1 100 [ 0,7559 , 0,8929 ] [ 0,7136 , 0,8633 ] [ 0,7136 , 0,8633 ] [ 0,8428 , 0,9425 ] [ 0,8452 , 0,9402 ]
0,2 0 [ 0,7508 , 0,9012 ] [ 0,7145 , 0,8815 ] [ 0,7145 , 0,8815 ] [ 0,8351 , 0,9428 ] [ 0,8378 , 0,9404 ]
0,2 1 [ 0,7401 , 0,8816 ] [ 0,7031 , 0,8594 ] [ 0,7031 , 0,8594 ] [ 0,8311 , 0,9383 ] [ 0,8337 , 0,9360 ]
0,2 5 [ 0,7285 , 0,8579 ] [ 0,6891 , 0,8331 ] [ 0,6891 , 0,8331 ] [ 0,8277 , 0,9353 ] [ 0,8306 , 0,9332 ]
0,2 10 [ 0,7254 , 0,8502 ] [ 0,6844 , 0,8246 ] [ 0,6844 , 0,8246 ] [ 0,8284 , 0,9345 ] [ 0,8315 , 0,9326 ]
0,2 100 [ 0,7250 , 0,8495 ] [ 0,6800 , 0,8176 ] [ 0,6800 , 0,8176 ] [ 0,8295 , 0,9333 ] [ 0,8324 , 0,9312 ]
0,4 0 [ 0,7532 , 0,8927 ] [ 0,6801 , 0,8506 ] [ 0,6801 , 0,8506 ] [ 0,8131 , 0,9341 ] [ 0,8159 , 0,9313 ]
0,4 1 [ 0,7313 , 0,8551 ] [ 0,6571 , 0,8081 ] [ 0,6571 , 0,8081 ] [ 0,7998 , 0,9196 ] [ 0,8023 , 0,9171 ]
0,4 5 [ 0,7057 , 0,8038 ] [ 0,6335 , 0,7597 ] [ 0,6335 , 0,7597 ] [ 0,8007 , 0,9110 ] [ 0,8020 , 0,9081 ]
0,4 10 [ 0,6963 , 0,7866 ] [ 0,6190 , 0,7403 ] [ 0,6190 , 0,7403 ] [ 0,8049 , 0,9127 ] [ 0,8065 , 0,9101 ]
0,4 100 [ 0,6805 , 0,7676 ] [ 0,6038 , 0,7188 ] [ 0,6038 , 0,7188 ] [ 0,8108 , 0,9166 ] [ 0,8135 , 0,9151 ]

Table 4.10: Estimates of the location in Study 3 - CASE 4
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1)

0 0 [ 0,7577 , 0,9092 ] [ 0,8106 , 0,9317 ] [ 0,8132 , 0,9287 ]
0,1 0 [ 0,7254 , 0,8977 ] [ 0,7973 , 0,9268 ] [ 0,7989 , 0,9236 ]
0,1 1 [ 0,7114 , 0,8913 ] [ 0,7929 , 0,9253 ] [ 0,7945 , 0,9222 ]
0,1 5 [ 0,6943 , 0,8831 ] [ 0,7911 , 0,9244 ] [ 0,7925 , 0,9216 ]
0,1 10 [ 0,6893 , 0,8816 ] [ 0,7912 , 0,9245 ] [ 0,7926 , 0,9216 ]
0,1 100 [ 0,6827 , 0,8785 ] [ 0,7912 , 0,9244 ] [ 0,7925 , 0,9216 ]
0,2 0 [ 0,6935 , 0,8864 ] [ 0,7798 , 0,9203 ] [ 0,7813 , 0,9171 ]
0,2 1 [ 0,6649 , 0,8728 ] [ 0,7672 , 0,9159 ] [ 0,7686 , 0,9131 ]
0,2 5 [ 0,6313 , 0,8584 ] [ 0,7582 , 0,9126 ] [ 0,7590 , 0,9108 ]
0,2 10 [ 0,6209 , 0,8544 ] [ 0,7573 , 0,9113 ] [ 0,7579 , 0,9100 ]
0,2 100 [ 0,6078 , 0,8471 ] [ 0,7573 , 0,9095 ] [ 0,7575 , 0,9091 ]
0,4 0 [ 0,6295 , 0,8634 ] [ 0,8064 , 0,9299 ] [ 0,8135 , 0,9278 ]
0,4 1 [ 0,5718 , 0,8360 ] [ 0,7932 , 0,9257 ] [ 0,7958 , 0,9221 ]
0,4 5 [ 0,5055 , 0,8107 ] [ 0,7843 , 0,9222 ] [ 0,7857 , 0,9194 ]
0,4 10 [ 0,4838 , 0,7996 ] [ 0,7839 , 0,9216 ] [ 0,7852 , 0,9191 ]
0,4 100 [ 0,4580 , 0,7857 ] [ 0,7841 , 0,9216 ] [ 0,7853 , 0,9191 ]

cp cD Hausdorff median 1-norm median spatial (θ = 1/3) spatial (θ = 1)

0 0 [ 0,7910 , 0,9081 ] [ 0,7822 , 0,9330 ] [ 0,7832 , 0,9212 ] [ 0,7873 , 0,9207 ]
0,1 0 [ 0,7754 , 0,9021 ] [ 0,7665 , 0,9279 ] [ 0,7673 , 0,9156 ] [ 0,7715 , 0,9152 ]
0,1 1 [ 0,7712 , 0,9007 ] [ 0,7619 , 0,9264 ] [ 0,7630 , 0,9142 ] [ 0,7671 , 0,9137 ]
0,1 5 [ 0,7703 , 0,8997 ] [ 0,7606 , 0,9260 ] [ 0,7614 , 0,9138 ] [ 0,7655 , 0,9135 ]
0,1 10 [ 0,7712 , 0,8990 ] [ 0,7607 , 0,9262 ] [ 0,7615 , 0,9140 ] [ 0,7657 , 0,9137 ]
0,1 100 [ 0,7721 , 0,8980 ] [ 0,7606 , 0,9261 ] [ 0,7615 , 0,9140 ] [ 0,7657 , 0,9137 ]
0,2 0 [ 0,7568 , 0,8949 ] [ 0,7475 , 0,9219 ] [ 0,7482 , 0,9090 ] [ 0,7526 , 0,9087 ]
0,2 1 [ 0,7458 , 0,8906 ] [ 0,7358 , 0,9183 ] [ 0,7368 , 0,9051 ] [ 0,7411 , 0,9047 ]
0,2 5 [ 0,7429 , 0,8881 ] [ 0,7317 , 0,9182 ] [ 0,7320 , 0,9043 ] [ 0,7365 , 0,9042 ]
0,2 10 [ 0,7442 , 0,8868 ] [ 0,7315 , 0,9180 ] [ 0,7319 , 0,9045 ] [ 0,7363 , 0,9044 ]
0,2 100 [ 0,7467 , 0,8842 ] [ 0,7315 , 0,9177 ] [ 0,7320 , 0,9042 ] [ 0,7366 , 0,9041 ]
0,4 0 [ 0,7076 , 0,8741 ] [ 0,6966 , 0,9070 ] [ 0,6973 , 0,8912 ] [ 0,7025 , 0,8911 ]
0,4 1 [ 0,6666 , 0,8548 ] [ 0,6507 , 0,8963 ] [ 0,6526 , 0,8764 ] [ 0,6590 , 0,8761 ]
0,4 5 [ 0,6372 , 0,8392 ] [ 0,6151 , 0,8953 ] [ 0,6160 , 0,8700 ] [ 0,6244 , 0,8701 ]
0,4 10 [ 0,6390 , 0,8347 ] [ 0,6138 , 0,8943 ] [ 0,6140 , 0,8686 ] [ 0,6224 , 0,8692 ]
0,4 100 [ 0,6439 , 0,8298 ] [ 0,6138 , 0,8942 ] [ 0,6142 , 0,8678 ] [ 0,6229 , 0,8687 ]

cp cD Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ 0,7577 , 0,9092 ] [ 0,7577 , 0,9092 ] [ 0,8159 , 0,9337 ] [ 0,8212 , 0,9315 ]
0,1 0 [ 0,7254 , 0,8977 ] [ 0,7254 , 0,8977 ] [ 0,8040 , 0,9293 ] [ 0,8084 , 0,9269 ]
0,1 1 [ 0,7114 , 0,8913 ] [ 0,7114 , 0,8913 ] [ 0,8003 , 0,9280 ] [ 0,8046 , 0,9257 ]
0,1 5 [ 0,6943 , 0,8831 ] [ 0,6943 , 0,8831 ] [ 0,7985 , 0,9273 ] [ 0,8024 , 0,9250 ]
0,1 10 [ 0,6893 , 0,8816 ] [ 0,6893 , 0,8816 ] [ 0,7984 , 0,9272 ] [ 0,8023 , 0,9250 ]
0,1 100 [ 0,6827 , 0,8785 ] [ 0,6827 , 0,8785 ] [ 0,7983 , 0,9272 ] [ 0,8023 , 0,9250 ]
0,2 0 [ 0,6935 , 0,8864 ] [ 0,6935 , 0,8864 ] [ 0,7885 , 0,9236 ] [ 0,7927 , 0,9211 ]
0,2 1 [ 0,6649 , 0,8728 ] [ 0,6649 , 0,8728 ] [ 0,7788 , 0,9202 ] [ 0,7824 , 0,9179 ]
0,2 5 [ 0,6313 , 0,8584 ] [ 0,6313 , 0,8584 ] [ 0,7759 , 0,9191 ] [ 0,7782 , 0,9171 ]
0,2 10 [ 0,6209 , 0,8544 ] [ 0,6209 , 0,8544 ] [ 0,7769 , 0,9191 ] [ 0,7788 , 0,9171 ]
0,2 100 [ 0,6078 , 0,8471 ] [ 0,6078 , 0,8471 ] [ 0,7776 , 0,9188 ] [ 0,7794 , 0,9170 ]
0,4 0 [ 0,6295 , 0,8634 ] [ 0,6295 , 0,8634 ] [ 0,7495 , 0,9095 ] [ 0,7537 , 0,9066 ]
0,4 1 [ 0,5718 , 0,8360 ] [ 0,5718 , 0,8360 ] [ 0,7198 , 0,9021 ] [ 0,7245 , 0,8985 ]
0,4 5 [ 0,5055 , 0,8107 ] [ 0,5055 , 0,8107 ] [ 0,7004 , 0,9054 ] [ 0,7110 , 0,9023 ]
0,4 10 [ 0,4838 , 0,7996 ] [ 0,4838 , 0,7996 ] [ 0,7097 , 0,9074 ] [ 0,7248 , 0,9056 ]
0,4 100 [ 0,4580 , 0,7857 ] [ 0,4580 , 0,7857 ] [ 0,7286 , 0,9093 ] [ 0,7395 , 0,9087 ]

Table 4.11: Estimates of the location in Study 4 - CASE 3
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cp cD mean trimmed (θ = 1/3) trimmed (θ = 1)

0 0 [ 0,7528 , 0,9141 ] [ 0,8375 , 0,9437 ] [ 0,8388 , 0,9411 ]
0,1 0 [ 0,7345 , 0,8981 ] [ 0,8277 , 0,9404 ] [ 0,8290 , 0,9376 ]
0,1 1 [ 0,7284 , 0,8875 ] [ 0,8251 , 0,9380 ] [ 0,8265 , 0,9354 ]
0,1 5 [ 0,7223 , 0,8748 ] [ 0,8253 , 0,9368 ] [ 0,8266 , 0,9341 ]
0,1 10 [ 0,7210 , 0,8721 ] [ 0,8262 , 0,9365 ] [ 0,8275 , 0,9339 ]
0,1 100 [ 0,7182 , 0,8675 ] [ 0,8265 , 0,9360 ] [ 0,8279 , 0,9333 ]
0,2 0 [ 0,7165 , 0,8825 ] [ 0,8164 , 0,9364 ] [ 0,8179 , 0,9334 ]
0,2 1 [ 0,7033 , 0,8598 ] [ 0,8093 , 0,9303 ] [ 0,8108 , 0,9275 ]
0,2 5 [ 0,6905 , 0,8345 ] [ 0,8072 , 0,9273 ] [ 0,8086 , 0,9247 ]
0,2 10 [ 0,6883 , 0,8289 ] [ 0,8088 , 0,9269 ] [ 0,8101 , 0,9244 ]
0,2 100 [ 0,6853 , 0,8223 ] [ 0,8113 , 0,9261 ] [ 0,8126 , 0,9236 ]
0,4 0 [ 0,6813 , 0,8516 ] [ 0,8769 , 0,9575 ] [ 0,8781 , 0,9545 ]
0,4 1 [ 0,6587 , 0,8098 ] [ 0,8703 , 0,9500 ] [ 0,8715 , 0,9474 ]
0,4 5 [ 0,6289 , 0,7552 ] [ 0,8691 , 0,9452 ] [ 0,8704 , 0,9426 ]
0,4 10 [ 0,6214 , 0,7417 ] [ 0,8706 , 0,9439 ] [ 0,8720 , 0,9412 ]
0,4 100 [ 0,6111 , 0,7248 ] [ 0,8724 , 0,9426 ] [ 0,8739 , 0,9397 ]

cp cD Hausdorff median 1-norm median spatial (θ = 1/3) spatial (θ = 1)

0 0 [ 0,8214 , 0,9200 ] [ 0,8112 , 0,9501 ] [ 0,8123 , 0,9355 ] [ 0,8174 , 0,9355 ]
0,1 0 [ 0,8134 , 0,9137 ] [ 0,8005 , 0,9465 ] [ 0,8028 , 0,9307 ] [ 0,8081 , 0,9304 ]
0,1 1 [ 0,8128 , 0,9095 ] [ 0,7982 , 0,9438 ] [ 0,8012 , 0,9276 ] [ 0,8066 , 0,9271 ]
0,1 5 [ 0,8164 , 0,9053 ] [ 0,7994 , 0,9424 ] [ 0,8028 , 0,9256 ] [ 0,8083 , 0,9250 ]
0,1 10 [ 0,8180 , 0,9044 ] [ 0,8004 , 0,9424 ] [ 0,8037 , 0,9254 ] [ 0,8094 , 0,9249 ]
0,1 100 [ 0,8188 , 0,9035 ] [ 0,8011 , 0,9421 ] [ 0,8042 , 0,9251 ] [ 0,8100 , 0,9247 ]
0,2 0 [ 0,8044 , 0,9065 ] [ 0,7885 , 0,9422 ] [ 0,7921 , 0,9253 ] [ 0,7977 , 0,9246 ]
0,2 1 [ 0,8020 , 0,8966 ] [ 0,7822 , 0,9355 ] [ 0,7876 , 0,9175 ] [ 0,7932 , 0,9165 ]
0,2 5 [ 0,8085 , 0,8883 ] [ 0,7837 , 0,9323 ] [ 0,7902 , 0,9130 ] [ 0,7961 , 0,9116 ]
0,2 10 [ 0,8121 , 0,8861 ] [ 0,7861 , 0,9321 ] [ 0,7924 , 0,9125 ] [ 0,7985 , 0,9113 ]
0,2 100 [ 0,8148 , 0,8847 ] [ 0,7889 , 0,9318 ] [ 0,7946 , 0,9121 ] [ 0,8008 , 0,9111 ]
0,4 0 [ 0,7832 , 0,8885 ] [ 0,7600 , 0,9312 ] [ 0,7670 , 0,9112 ] [ 0,7730 , 0,9098 ]
0,4 1 [ 0,7735 , 0,8639 ] [ 0,7422 , 0,9120 ] [ 0,7534 , 0,8899 ] [ 0,7593 , 0,8877 ]
0,4 5 [ 0,7779 , 0,8411 ] [ 0,7336 , 0,8988 ] [ 0,7510 , 0,8726 ] [ 0,7566 , 0,8688 ]
0,4 10 [ 0,7835 , 0,8363 ] [ 0,7369 , 0,8970 ] [ 0,7543 , 0,8703 ] [ 0,7601 , 0,8663 ]
0,4 100 [ 0,7902 , 0,8301 ] [ 0,7410 , 0,8952 ] [ 0,7577 , 0,8681 ] [ 0,7638 , 0,8643 ]

cp cD Huber (θ = 1/3) Huber (θ = 1) Hampel (θ = 1/3) Hampel (θ = 1)

0 0 [ 0,7528 , 0,9141 ] [ 0,7528 , 0,9141 ] [ 0,8557 , 0,9499 ] [ 0,8580 , 0,9477 ]
0,1 0 [ 0,7345 , 0,8981 ] [ 0,7345 , 0,8981 ] [ 0,8470 , 0,9469 ] [ 0,8493 , 0,9446 ]
0,1 1 [ 0,7284 , 0,8875 ] [ 0,7284 , 0,8875 ] [ 0,8449 , 0,9449 ] [ 0,8472 , 0,9427 ]
0,1 5 [ 0,7223 , 0,8748 ] [ 0,7223 , 0,8748 ] [ 0,8448 , 0,9436 ] [ 0,8471 , 0,9414 ]
0,1 10 [ 0,7210 , 0,8721 ] [ 0,7210 , 0,8721 ] [ 0,8455 , 0,9434 ] [ 0,8479 , 0,9411 ]
0,1 100 [ 0,7182 , 0,8675 ] [ 0,7182 , 0,8675 ] [ 0,8457 , 0,9429 ] [ 0,8481 , 0,9406 ]
0,2 0 [ 0,7165 , 0,8825 ] [ 0,7165 , 0,8825 ] [ 0,8371 , 0,9435 ] [ 0,8395 , 0,9410 ]
0,2 1 [ 0,7033 , 0,8598 ] [ 0,7033 , 0,8598 ] [ 0,8313 , 0,9384 ] [ 0,8338 , 0,9361 ]
0,2 5 [ 0,6905 , 0,8345 ] [ 0,6905 , 0,8345 ] [ 0,8298 , 0,9354 ] [ 0,8325 , 0,9333 ]
0,2 10 [ 0,6883 , 0,8289 ] [ 0,6883 , 0,8289 ] [ 0,8311 , 0,9349 ] [ 0,8338 , 0,9328 ]
0,2 100 [ 0,6853 , 0,8223 ] [ 0,6853 , 0,8223 ] [ 0,8326 , 0,9340 ] [ 0,8353 , 0,9319 ]
0,4 0 [ 0,6813 , 0,8516 ] [ 0,6813 , 0,8516 ] [ 0,8147 , 0,9348 ] [ 0,8174 , 0,9319 ]
0,4 1 [ 0,6587 , 0,8098 ] [ 0,6587 , 0,8098 ] [ 0,8019 , 0,9203 ] [ 0,8045 , 0,9178 ]
0,4 5 [ 0,6289 , 0,7552 ] [ 0,6289 , 0,7552 ] [ 0,7998 , 0,9101 ] [ 0,8010 , 0,9072 ]
0,4 10 [ 0,6214 , 0,7417 ] [ 0,6214 , 0,7417 ] [ 0,8061 , 0,9125 ] [ 0,8077 , 0,9099 ]
0,4 100 [ 0,6111 , 0,7248 ] [ 0,6111 , 0,7248 ] [ 0,8156 , 0,9172 ] [ 0,8182 , 0,9156 ]

Table 4.12: Estimates of the location in Study 4 - CASE 4
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STUDY 3 CASE 3 CASE 4

Bias

cp ≤ 0.2 Hampel (θ = 1/3) trimmed Liu
cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

cD = 0

Dispersion none high

Variance

cp = 0
mean

Hampel (θ = 1)
Huber

cp ≤ 0.2 trimmed (θ = 1) Hampel (θ = 1)

cp = 0.4 trimmed (θ = 1) trimmed (θ = 1)

cD = 0

Dispersion high low

MSE

cp = 0
mean

Hampel (θ = 1)
Huber

cp ≤ 0.2
trimmed

Hampel (θ = 1)
Hampel (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

cD = 0 1-norm median
Dispersion medium none

Table 4.13: Summary of the main conclusions from Study 3:
the most suitable (if any) location measures/estimates

STUDY 4 CASE 3 CASE 4

Bias

cp ≤ 0.2 Hampel (θ = 1/3) Hampel
cp = 0.4 trimmed (θ = 1/3) trimmed
cD = 0

Dispersion none medium

Variance

cp = 0 trimmed (θ = 1) Hampel (θ = 1)

cp ≤ 0.2
trimmed Hampel (θ = 1)

Hampel Hausdorff
cp = 0.4 trimmed (θ = 1/3) trimmed
cD = 0

Dispersion high high

MSE

cp = 0 trimmed (θ = 1) Hampel (θ = 1)

cp ≤ 0.2 Hampel (θ = 1/3) Hampel
cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

cD = 0

Dispersion none medium

Table 4.14: Summary of the main conclusions from Study 4:
the most suitable (if any) location measures/estimates

On the basis of the conclusions gathered in Tables 4.7, 4.8, 4.13 and 4.14, one can
conclude that there is no uniformly most appropriate location estimate. Actually,
the outputs seem to depend much more on the distribution considered for the non-
contaminated and contaminated distributions, or the involved case, than on the
sample size. A rather general assertion is that M-estimates behave better for lower
and moderate levels of contamination, whereas trimmed means are more convenient
for very high contamination level.
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4.2 Comparative simulations
for fuzzy number-valued data

The simulations in this section also mimic the studies presented in the previous
chapters, adapting the four different situations analyzed in Section 4.1 to the fuzzy
valued-case. Therefore, two choices of the sample size (n = 100, n = 10000) and
different non-contaminated (symmetric and asymmetric) and contaminated distri-
butions have been considered. Only trapezoidal fuzzy numbers have been considered
in order to ease the computation.

Dealing with fuzzy number-valued data, the comparisons have concerned the
following location measures/estimates: trimmed means, Huber and Hampel M-
estimates (using the Dℓ

θ metric), 1-norm median and wabl/ldev/rdev-median, where
in all of them θ is assumed to range in {1/3, 1}.

For each of the measures/estimates, the Monte Carlo approximation of the esti-
mate, the bias, the variance and the mean squared error of the estimate have been
determined.

The general scheme of the four studies is the same detailed in Section 4.1, just
replacing the generation of interval-valued data in the first point of Step 1 by the
procedure that will be explained now.

Step 1. A sample of n trapezoidal fuzzy number-valued data has been simulated
from a random fuzzy number X for each of some different situations in such
a way that

• to generate the trapezoidal fuzzy data, we have considered four real-
valued random variables as follows: X = Tra(X1−X2−X3, X1−X2, X1+

X2, X1 + X2 + X4), with X1 = midX1, X2 = sprX1, X3 = inf X1 −
inf X0 and X4 = supX0 − supX1 or, alternatively, four order real-valued
statistics X(1), X(2), X(3) and X(4) such that X = [X(1), X(2), X(3), X(4)],

i.e., X(1) = inf X0, X(2) = inf X1, X(3) = supX1 and X(4) = supX0;

The rest of Step 1 and both Step 2 and Step 3 coincide with those presented in
the previous section.

The choices of the non contaminated and contaminated distributions in each
study will be specified now. Notice that they are the natural adaption of the ones
considered for the interval-valued case, so differences between the behavior of the
estimates dealing with these two kinds of imprecise data become apparent.
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Study 1

In this first study, the choices correspond to:

• n = 100;

• CASE 1 assumes that

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the non-contaminated subsample,

•• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the contaminated

subsample,

whereas CASE 2 assumes that

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 for the non-
contaminated subsample,

•• X1 ∼ N (0, 3) +CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 +CD for the
contaminated subsample.

and CASE 2’ assumes that

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1+1)2+

√
χ2
1 for the non-contaminated

subsample,

•• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√
χ2
1 + CD for the

contaminated subsample.

The simulations in this study have been presented through Figures 4.1-4.6 and
Table 4.15.

Study 2

In this second study, the choices correspond to:

• n = 10000;

• In CASES 1, 2 and 2’ the distributions for X1, X2, X3 and X4 in the no-
contaminated and the contaminated samples coincide with those for Study
1.

The simulations in this study have been presented through Figures 4.7-4.12 and
Table 4.16.

Concerning Study 1 and Study 2, the estimates are given by
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Figure 4.1: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 1 - CASE 1
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Figure 4.2: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 1 - CASE 1
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Figure 4.3: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 1 - CASE 2
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Figure 4.4: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 1 - CASE 2
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Figure 4.5: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 1 - CASE 2’
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Figure 4.6: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 1 - CASE 2’
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Figure 4.7: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 2 - CASE 1
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Figure 4.8: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 2 - CASE 1
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Figure 4.9: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 2 - CASE 2
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Figure 4.10: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 2 - CASE 2
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Figure 4.11: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 2 - CASE 2’
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Figure 4.12: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 2 - CASE 2’
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For the bias, variance and mean square error, the conclusions for the three cases
in Studies 1 and 2 are summarized in Tables 4.15 and 4.16. For more details about
the outputs, visit the link http://bellman.ciencias.uniovi.es/SMIRE/Fuzsimul.html.

STUDY 1 CASE 1 CASE 2 CASE 2’

Bias

cp ≤ 0.2 Hampel 1-norm median Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

cD = 0 Huber (θ = 1/3) 1-norm median
Dispersion none low low

Variance

cp = 0 1-norm median 1-norm median
1-norm median

mean

cp ≤ 0.2
1-norm median

1-norm median 1-norm median
Hampel (θ = 1)

cp = 0.4
wabl median

1-norm median trimmed (θ = 1)
trimmed (θ = 1)

cD = 0

Dispersion low low high

MSE

cp = 0
Huber (θ = 1)

1-norm median
1-norm median

1-norm median mean

cp ≤ 0.2 Hampel 1-norm median
1-norm median
Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

cD = 0

Dispersion low low high

Table 4.15: Summary of the main conclusions from Study 1:
the most suitable (if any) location measures/estimates

STUDY 2 CASE 1 CASE 2 CASE 2’

Bias

cp ≤ 0.2 Hampel 1-norm median Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

cD = 0 1-norm median

Dispersion none medium low

Variance

cp = 0 Huber (θ = 1) 1-norm median 1-norm median

cp ≤ 0.2 Hampel
1-norm median 1-norm median
Hampel (θ = 1) trimmed

trimmed (θ = 1/3) Hampel (θ = 1)

cp = 0.4 trimmed trimmed trimmed

cD = 0/1 1-norm median 1-norm median
Dispersion medium low medium

MSE

cp = 0 Huber (θ = 1) 1-norm median 1-norm median

cp ≤ 0.2 Hampel 1-norm median Hampel (θ = 1)

cp = 0.4 trimmed 1-norm median trimmed (θ = 1)

cD = 0/1 1-norm median 1-norm median
Dispersion none low low

Table 4.16: Summary of the main conclusions from Study 2:
the most suitable (if any) location measures/estimates
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Study 3

In this third study, the choices correspond to:

• n = 100;

• CASE 3 assumes that

•• X(1), X(2), X(3), X(4) ∼ Beta(5, 1) (they are simply chosen at random and
ordered) for the non-contaminated subsample,

•• X(1), X(2), X(3), X(4) ∼ Beta(1, CD + 1) for the contaminated subsample,

whereas CASE 4 assumes that

•• X1 ∼ Beta(5, 1), X2 ∼ Uniform[0,min{X1, 1−X1}], X3 ∼ Uniform[0, X1−
X2] and X4 ∼ Uniform[0, 1−X1−X2] for the non-contaminated subsam-
ple,

•• X1 ∼ Beta(1, CD + 1), X2 ∼ min{X1, 1 − X1} · Beta(1, CD + 1), X3 ∼
(X1 −X2) ·Beta(1, CD +1) and X4 ∼ (1−X1 −X2) ·Beta(1, CD +1) for
the contaminated subsample.

The simulations in this study have been presented through Figures 4.13-4.16 and
Table 4.17.

Study 4

In this fourth study, the choices correspond to:

• n = 10000;

• In CASES 3 and 4 the distributions for X(1), X(2), X(3), X(4), X1, X2, X3 and
X4 in the non-contaminated and contaminated samples coincide with those
for Study 3.

The simulations in this study have been presented through Figures 4.17-4.20 and
Table 4.18.

Concerning Study 3 and Study 4, the estimates are given by
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Figure 4.13: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 3 - CASE 3
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Figure 4.14: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 3 - CASE 3
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Figure 4.15: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 3 - CASE 4
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Figure 4.16: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 3 - CASE 4
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Figure 4.17: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 4 - CASE 3
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Figure 4.18: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 4 - CASE 3
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Figure 4.19: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 4 - CASE 4
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Figure 4.20: Monte Carlo estimates of different location measures (mean, trimmed, Huber,
Hampel, 1-norm and wabl/ldev/rdev) from the simulated fuzzy data in Study 4 - CASE 4
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STUDY 3 CASE 3 CASE 4

Bias

cp ≤ 0.2
Hampel (θ = 1/3)

Hampel (θ = 1/3)
trimmed (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

cD = 0

Dispersion none low

Variance

cp = 0
mean

1-norm median
Huber (θ = 1/3)

cp ≤ 0.2
trimmed (θ = 1) 1-norm median
wabl median Huber (θ = 1/3)

cp = 0.4 trimmed (θ = 1)
wabl median

trimmed (θ = 1/3)

cD = 0

Dispersion high high

MSE

cp = 0
mean mean

Huber (θ = 1/3) 1-norm median

cp ≤ 0.2
trimmed (θ = 1/3)

Huber (θ = 1/3)

Hampel (θ = 1/3)
Hampel (θ = 1/3)

wabl median

cp = 0.4 trimmed (θ = 1/3)
trimmed (θ = 1/3)

wabl median
cD = 0

Dispersion medium high

Table 4.17: Summary of the main conclusions from Study 3:
the most suitable (if any) location measures/estimates

STUDY 4 CASE 3 CASE 4

Bias

cp ≤ 0.2
Hampel (θ = 1/3)

Hampel (θ = 1/3)
trimmed (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

cD = 0

Dispersion none low

Variance

cp = 0 1-norm median wabl median

cp ≤ 0.2

trimmed (θ = 1) Hampel
Hampel (θ = 1/3) trimmed (θ = 1)
1-norm median 1-norm median

cp = 0.4 trimmed (θ = 1)
trimmed (θ = 1/3)
1-norm median

cD = 0

Dispersion medium high

MSE

cp = 0 wabl median
mean

wabl median

cp ≤ 0.2
Hampel (θ = 1/3)

Hampel
trimmed (θ = 1/3)

cp = 0.4 trimmed (θ = 1/3) trimmed (θ = 1/3)

cD = 0

Dispersion low medium

Table 4.18: Summary of the main conclusions from Study 4:
the most suitable (if any) location measures/estimates
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For the bias, variance and mean square error, the conclusions for the two cases
in Studies 3 and 4 are summarized in Tables 4.17 and 4.18.

On the basis of the conclusions gathered in Tables 4.15, 4.16, 4.17 and 4.18,
one can conclude that there is no uniformly most appropriate location estimate.
Actually, the outputs seem to depend even more on the distribution considered for
the non-contaminated and contaminated distributions, or the involved case, than
on the sample size. A rather general assertion is that the 1-norm median is the
best choice in many cases of Study 1 and Study 2 in terms of any of the considered
measures (bias, variance or mean square error), above all in Case 2. In the rest of
cases and studies, the best estimate is not as clear as in Case 2 or in the general
comments given for interval-valued data, but the Huber and Hampel M-estimators
still behave well for small amounts of contamination and the trimmed means when
this proportion of contamination is increased. In Cases 3 and 4, with asymmetric
non-contaminated distribution and fuzzy numbers having 0-levels contained in the
interval [0, 1], the distinction between the advantages of using these estimates in
situations of small or big amounts of contamination is not as evident.

The comparisons in this section have only involved trapezoidal fuzzy numbers.
For practical purposes, and to ease both the drawing and the computing pro-
cesses, the fuzzy rating method has been usually applied by considering trapezoidal
fuzzy numbers, but this is not at all mandatory. Actually, Pedrycz [148], Grze-
gorzewski [94, 95, 96], Grzegorzewski and Pasternak-Winiarska [97], Ban et al. [12]
and others have provided with different arguments to employ triangular or trape-
zoidal fuzzy numbers or approximations preserving ambiguity, expected interval,
etc.

Anyway, as it has been recently outlined in [21] “... in connection with the shape
of fuzzy values (i.e. with subjectivity in drawing them) and from a statistical side,
there is an open problem which must be addressed: a deep sensitivity analysis on
the choice of the fuzzy sets considered to express the experimental data with respect
to the statistical conclusions drawn by applying the statistical methodology in [20].
Although sporadically we have made analyses in the course of some studies, we have
not yet attempted to develop a unifying wide analysis to be submitted for publication.”
A first attempt in this respect is gathered in the contribution by Lubiano et al. [127].

4.3 Comparative simulations for functional data

In connection with the comparative analysis for functional-valued data, simulations
have already been presented in Section 2.4 (see p. 74) and Subsection 3.1.5 (see
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p. 114), and no new simulation developments have been conducted.
The comparison for Models 1 to 5 from Tables 2.4 (p. 78) and 3.1 (p. 115) leads

to the conclusions in Table 4.19.

Model (1-5) Contamination Best choice

Model 1 M = 5/25 mean

Model 2 M = 5/25 Huber

Model 3 M = 5/25 Huber

Model 4 M = 5/25 Huber

Model 5
M = 5 mean
M = 25 Huber

Table 4.19: Summary of the main conclusions from Models 1-5 in
Tables 2.4 and 3.1: the most suitable location measures/estimates

The comparison for Models 6 to 9 from Tables 2.5 (p. 79) and 3.2 (p. 116) leads
to the conclusions in Table 4.20.

Model (6-9) Contamination Best choice

Model 6 M = 5/25 Huber

Model 7 M = 5/25 Huber

Model 8 M = 5/25 trimmed (ETMA)

Model 9 M = 5/25 trimmed (ETMA)

Table 4.20: Summary of the main conclusions from Models 6-9 in
Tables 2.5 and 3.2: the most suitable location measures/estimates

Consequently, as a rather general conclusion one can state that there is no uni-
formly best choice but M-estimates (in some few cases with low values of M) behave
better than trimmed means in Models 1-7, whereas trimmed means behave better
otherwise.

4.4 Concluding remarks of this chapter

In this section, the location measures introduced along this work have been compared
in the interval-, fuzzy- and functional-valued cases in terms of not only estimates,
but also their bias, variance and mean squared errors. Although there is not any
estimate behaving uniformly better, both the Huber and Hampel M-estimators and
the trimmed means seem to be the best options in many of the studied situations.
Indeed, Huber and Hampel M-estimators behave better for small amounts of con-
tamination and the benefit of trimmed means is usually better with big amounts of
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contamination. Other measures, like the 1-norm median, become the most appropri-
ate ones especially in certain situations of the fuzzy-valued case, but this advantage
is apparently related to the distribution of the samples.



Final conclusions and open problems

In describing some of the most immediate open problems from this work, one should
distinguish among the new challenges which could be addressed and those which
directly derives from the developments in the work.

Among the new challenges we can mention the following:

• Robust approaches to measure location for imprecise-valued data have to be
supplemented by robust approaches to measure scale, probably in a simulta-
neous way.

• Robust location estimates should be also complemented with robust testing
hypothesis procedures concerning the locations estimates.

Among the future directions in connection with the studies already collected in
this work, we can mention the following:

• To determine the influence function of different robust location measures in
Chapters 2 and 3.

• In connection with the trimmed means, the solutions for non ideal conditions
could be examined by determining the maximum bias in the simulation set-
tings too. The theoretical study of how the maximum possible bias could be
obtained would be a natural and important future step.

• Regarding M-estimates of location coming from the particularization of those
for Hilbert space-valued data, different choices for the loss function fulfilling
the suitable assumptions and the involved L2 distances could be examined and
compared.

• Concerning M-estimates of location based on the φ-wabl/ldev/rdev represen-
tation of fuzzy numbers and the associated L1 metric, they have been shown
to depend on the choice of φ, so a sensitivity analysis about the choice of this
measure as well as how this choice can affect the robustness of the correspond-
ing M-estimate would be interesting.
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• With respect to the M-estimates of location extending the spatial median, it
would be interesting to attempt the extension to fuzzy-valued data, and to
develop comparisons like those in Section 4.2.



Conclusiones finales
y problemas abiertos

Al describir los problemas abiertos más inmediatos en relación con esta memoria,
conviene distinguir entre los nuevos retos que interesaría abordar y los que se derivan
directamente de los desarrollos recogidos en el trabajo.

Entre los primeros cabe destacar los siguientes:

• Los estudios robustos sobre la medición de la tendencia central para datos con
valores imprecisos deben complementarse con estudios robustos de la medición
de la dispersión, probablemente simultaneando ambos.

• Otro complemento para las estimaciones robustas de la tendencia central
pueden ser los procedimientos de contraste de hipótesis sobre tales estima-
ciones.

Entre las futuras líneas de investigación estrechamente ligadas a los estudios
llevados a cabo en esta memoria, deben mencionarse los siguientes:

• La determinación de la función de influencia de las distintas medidas/estimacio-
nes de tendencia central de los Capítulos 2 y 3.

• Por lo que se refiere a las medias recortadas, hay que examinar en el marco de
los estudios de simulación las soluciones en condiciones no ideales con el fin de
determinar el sesgo máximo. También sería interesante y natural realizar un
análisis teórico de cómo puede alcanzarse el mayor sesgo posible.

• En relación con las M-estimaciones de tendencia central que se obtienen por
la particularización de las correspondientes a datos con valores en espacios de
Hilbert, pueden examinarse y compararse las basadas en elecciones diferentes
tanto de la función de pérdida que satisfaga las suposiciones indicadas como
de las métricas tipo L2 involucradas.

• Por lo que concierne a las M-estimaciones de tendencia central basadas en la
representación φ-wabl/ldev/rdev de números fuzzy y la métrica L1 asociada,
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se ha comprobado que dependen de φ, por lo que sería conveniente desarrollar
un análisis de sensibilidad acerca de la elección de esa medida de ponderación
y una discusión de cómo tal elección puede afectar a la robustez de las M-
estimaciones correspondientes.

• Con respecto a las M-estimaciones de tendencia central que extienden la media
espacial, sería interesante abordar su extensión a datos con valores fuzzy, y
desarrollar así comparaciones como las recogidas dentro de la Sección 4.2.



Finale conclusies en open problemen

Bij de beschrijving van de meest voor de hand liggende open problemen gerelateerd
aan dit werk moet men een onderscheid maken tussen de nieuwe uitdagingen die
aangepakt kunnen worden en deze die direct afstammen van de ontwikkelingen in
dit werk.

Bij de nieuwe uitdagingen kunnen we de volgende vernoemen:
• Robuuste procedures om de locatie van niet-precieze gegevens te bepalen

moeten aangevuld worden met robuuste procedures om de schaal te meten,
waarschijnlijk gelijktijdig met de locatie.

• Robuuste locatieschattingen moeten ook aangevuld worden met robuuste pro-
cedures voor hypothesetoetsen met betrekking tot de locatie op basis van deze
schattingen.

Als richtingen voor toekomstig onderzoek in verband met de studies verzameld
in dit werk, kunnen we de volgende vermelden:

• De invloedsfunctie bepalen van de verschillende robuuste locatieschatters in
Hoofdstukken 2 en 3.

• In verband met de getrimde gemiddelden kunnen de oplossingen in niet ideale
situaties nog verder onderzocht worden door het bepalen van de maximum bias
in de simulatie settings. Theoretisch onderzoek om na te gaan hoe de max-
imum bias bereikt kan worden is een natuurlijke en belangrijke toekomstige
stap.

• Met betrekking tot M-schatters voor locatie afkomstig van deze schatters
voor Hilbertruimte-waardige gegevens kunnen verschillende verliesfuncties die
voldoen aan de voorwaarden en de betrokken L2 afstanden onderzocht en
vergeleken worden.

• Voor de M-schatters voor locatie gebaseerd op de φ-wabl/ldev/rdev represen-
tatie voor vaaggetallen en de bijbehorende L1 metriek werd aangetoond dat
ze afhangen van de keuze van φ, zodat het interessant zou zijn om via een
sensitiviteitsanalyse na te gaan wat het effect is van de keuze van φ en hoe
deze keuze de robuustheid van de overeenkomstige M-schatter beïnvloedt.
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• Wat betreft de M-schatter of locatie als uitbreiding van de spatiale mediaan,
zou het interessant zijn om deze te proberen uitbreiden naar vaagwaardige
gegevens en om vergelijkingen zoals in Sectie 4.2 uit te voeren.



Appendix. Proofs of the new results
on preliminary and supporting tools

Proof of Proposition 1.1.4. (p. 8)

First, consider Ũ ∈ Fc(R). Because of the properties stated in Proposition 1.1.3,
the functions ldevφ

Ũ
and rdevφ

Ũ
should be left-continuous functions of α on (0, 1] and

right-continuous at 0. They should also be non-increasing functions of α on [0, 1].
Moreover,

rdevφ
Ũ
(1) ≥ −ldevφ

Ũ
(1),

∫
[0,1]

ldevφ
Ũ
(α) dφ(α) =

∫
[0,1]

rdevφ
Ũ
(α) dφ(α) ≥ 0.

Since wablφ(Ũ) ∈ R and for all α ∈ [0, 1] it holds that

Ũα =
[
wablφ(Ũ)− ldevφ

Ũ
(α),wablφ(Ũ) + rdevφ

Ũ
(α)
]
,

it follows that the real number wablφ(Ũ) and the two functions ldevφ
Ũ

and rdevφ
Ũ

indeed satisfy Conditions i)− iii).
On the other hand, given m ∈ R, if l∗ : [0, 1] → R, r∗ : [0, 1] → R are mappings

satisfying Conditions i) − ii), then, the functions l : [0, 1] → R and r : [0, 1] → R
given by

l(α) = l∗(α)−m, r(α) = m+ r∗(α)

satisfy that l and r are left-continuous non-increasing functions in (0, 1] and right-
continuous at α = 0, and −l(1) = m − l∗(1) ≤ m + r∗(1) = r(1), whence Proposi-
tion 1.1.3 ensures that there exists a unique Ũ ∈ Fc(R) such that for α ∈ [0, 1]

Ũα = [−l(α), r(α)] = [m− l∗(α),m+ r∗(α)] .

Furthermore, if there is an absolutely continuous probability measure φ on
([0, 1],B[0,1]), with positive mass function on (0, 1) and

∫
[0,1]

l∗(α) dφ(α) =

∫
[0,1]

r∗(α) dφ(α),

then ∫
[0,1]

l(α) dφ(α) = m−
∫
[0,1]

l∗(α) dφ(α)
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= m−
∫
[0,1]

r∗(α) dφ(α) = 2m−
∫
[0,1]

r(α) dφ(α).

Hence,

m =

∫
[0,1]

l(α) + r(α)

2
dφ(α) =

∫
[0,1]

mid Ũα dφ(α) = wablφ(Ũ).

Moreover, for all α ∈ [0, 1]

ldevφ
Ũ
(α) = wablφ(Ũ)− inf Ũα = m− l(α) = l∗(α),

rdevφ
Ũ
(α) = sup Ũα − wablφ(Ũ) = r(α)−m = r∗(α). �

Proof of Proposition 1.3.2. (p. 26)

Indeed, Dφ
θ satisfies

• the nonnegativity (or separation axiom); it is trivial that Dφ
θ (Ũ , Ṽ ) ≥ 0 what-

ever Ũ , Ṽ ∈ Fc(Rp) may be;

• the identity of indiscernibles (or coincidence axiom); actually, a necessary
and sufficient condition for Dφ

θ (Ũ , Ṽ ) to vanish is that ρφ
2(Ũ , Ṽ ) also vanishes

whence, because of ρφ
2 being a metric, Ũ = Ṽ ;

• the symmetry; it is trivial that Dφ
θ (Ũ , Ṽ ) = Dφ

θ (Ṽ , Ũ) whatever Ũ , Ṽ ∈ Fc(Rp)

may be;

• the subadditivity (or triangle inequality); if Ũ , Ṽ , W̃ ∈ Fc(Rp), then since
∥ · ∥ is a norm and ρφ

2 is a metric,[
Dφ

θ (Ũ , Ṽ )
]2

≤ (1− θ)
[
∥Sφ(Ũ)− Sφ(W̃ )∥+ ∥Sφ(W̃ )− Sφ(Ṽ )∥

]2
+ θ
[
ρφ
2(Ũ , W̃ ) + ρφ

2(W̃ , Ṽ )
]2

=
[
Dφ

θ (Ũ , W̃ )
]2

+
[
Dφ

θ (W̃ , Ṽ )
]2

+2(1− θ)∥Sφ(Ũ)− Sφ(W̃ )∥ · ∥Sφ(W̃ )− Sφ(Ṽ )∥+ 2 θ ρφ
2(Ũ , W̃ ) · ρφ

2(W̃ , Ṽ ),

and, due to the fact that[
(1− θ)∥Sφ(Ũ)− Sφ(W̃ )∥ · ∥Sφ(W̃ )− Sφ(Ṽ )∥+ θ ρφ

2(Ũ , W̃ ) · ρφ
2(W̃ , Ṽ )

]2
=
[
Dφ

θ (Ũ , W̃ )
]2

·
[
Dφ

θ (W̃ , Ṽ )
]2

− θ(1− θ)
[
∥Sφ(Ũ)− Sφ(W̃ )∥ · ρφ

2(W̃ , Ṽ )− ∥Sφ(W̃ )− Sφ(Ṽ )∥ · ρφ
2(Ũ , W̃ )

]2
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≤
[
Dφ

θ (Ũ , W̃ )
]2

·
[
Dφ

θ (W̃ , Ṽ )
]2

,

we have that [
Dφ

θ (Ũ , Ṽ )
]2

≤
[
Dφ

θ (Ũ , W̃ ) +Dφ
θ (W̃ , Ṽ )

]2
. �

Proof of Proposition 1.3.4. (p. 27)

Indeed,

Dφ
θ (Ũ , Ṽ ) =

√
(1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2 + θ

[
ρφ
2(Ũ , Ṽ )

]2
≥
√

θ
[
ρφ
2(Ũ , Ṽ )

]2
=

√
θ · ρφ

2(Ũ , Ṽ ).

On the other hand,

∥Sφ(Ũ)− Sφ(Ṽ )∥2 =

∥∥∥∥∥
∫
[0,1]×Sp−1

u ·
[
sŨ(α,u)− sṼ (α,u)

]
dλp(u) dφ(α)

∥∥∥∥∥
2

≤
∫
[0,1]×Sp−1

∥∥u ·
[
sŨ(α,u)− sṼ (α,u)

] ∥∥2 dλp(u) dφ(α)

=

∫
[0,1]×Sp−1

∥sŨ(α,u)− sṼ (α,u)∥
2 dλp(u) dφ(α) =

[
ρφ
2(Ũ , Ṽ )

]2
,

whence

Dφ
θ (Ũ , Ṽ ) ≤ ρφ

2(Ũ , Ṽ ). �

Proof of Proposition 1.3.5. (p. 32)

Indeed, in case p = 1 we have that

Sφ(Ũ) = wablφ Ũ ,

−devφ

Ũ
(α,−1) = wablφ Ũ − inf Ũα = ldevφ

Ũ
(α),

devφ

Ũ
(α, 1) = sup Ũα − wablφ Ũ = rdevφ

Ũ
(α). �

Proof of Proposition 1.3.6. (p. 33)

Indeed, for each α ∈ [0, 1]

1

2

∫
[0,1]

[(
wablφ(Ũ)− ξ · ldevφ

Ũ
(α)
)
−
(
wablφ(Ṽ )− ξ · ldevφ

Ṽ
(α)
)]2

dν(ξ)
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+
1

2

∫
[0,1]

[(
wablφ(Ũ) + ξ · rdevφ

Ũ
(α)
)
−
(
wablφ(Ṽ ) + ξ · rdevφ

Ṽ
(α)
)]2

dν(ξ)

=
[
wablφ(Ũ)− wablφ(Ṽ )

]2
+

1

2

[
ldevφ

Ũ
(α)− ldevφ

Ṽ
(α)
]2

·
∫
[0,1]

ξ2 dν(ξ)

+
1

2

[
rdevφ

Ũ
(α)− ldevφ

Ũ
(α)
]2

·
∫
[0,1]

ξ2 dν(ξ)−
[
wablφ(Ũ)− wablφ(Ṽ )

]2
·
∫
[0,1]

2ξ dν(ξ)

+
[
wablφ(Ũ)− wablφ(Ṽ )

]
·
[
mid Ũα −mid Ṽα

]
·
∫
[0,1]

2ξ dν(ξ),

whence Dφ
ϑ(Ũ , Ṽ ) = Dφ

θν
(Ũ , Ṽ ) with θν =

∫
[0,1]

ξ2 dν(ξ).
Consequently, for any non-degenerate symmetric probability measure ϑ on [−1, 1]

there is a probability measure ν on [0, 1] and non-degenerate at 0 such that ϑ(ξ)

= .5·ν(−ξ)+.5·ν(ξ) and Dφ
ϑ(Ũ , Ṽ ) = Dφ

θν
(Ũ , Ṽ ) with θν =

∫
[0,1]

ξ2 dν(ξ). Conversely,
for any parameter value θ ∈ (0, 1] there are probability measures νθ on [0, 1] and non-
degenerate at 0 such that Dφ

ϑθ
(Ũ , Ṽ ) = Dφ

θ (Ũ , Ṽ ) for ϑθ(ξ) = .5 · νθ(−ξ) + .5 · νθ(ξ).
For instance, we can consider νθ to be the Bernoulli distribution with parameter
{(
√
1 + 4θ − 1)/2} or the Beta

(
(
√
θ2 + 8θ + θ)/2, 1)

)
distribution, etc. �

Proof of Proposition 1.3.9. (p. 39)

Indeed, because of the properties for the absolute value we can conclude for each
α that

|υφ

Ũ
(α)− υφ

Ũ
(α)|1θ = |wablφ(Ũ)− wablφ(Ṽ )|

+
θ

2
·|wablφ(Ũ)−inf Ũα−wablφ(Ṽ )+inf Ṽα|+

θ

2
·| sup Ũα−wablφ(Ũ)−sup Ṽα+wablφ(Ṽ )|.

Therefore, on one hand

|υφ

Ũ
(α)− υφ

Ũ
(α)|1θ ≥ |wablφ(Ũ)− wablφ(Ṽ )|

+
θ

2
· | inf Ũα − inf Ṽα| −

θ

2
· |wablφ(Ũ)− wablφ(Ṽ )|

+
θ

2
· | sup Ũα − sup Ṽα| −

θ

2
· |wablφ(Ũ)− wablφ(Ṽ )|

= (1− θ) · |wablφ(Ũ)−wablφ(Ṽ )|+ θ ·
[
1

2
· | inf Ũα − inf Ṽα|+

1

2
· | sup Ũα − sup Ṽα|

]
≥ θ ·

[
1

2
· | inf Ũα − inf Ṽα|+

1

2
· | sup Ũα − sup Ṽα|

]
,

whence one derives the first inequality.
On the other hand, one can conclude for each α that

|υφ

Ũ
(α)− υφ

Ũ
(α)|1θ ≤ |wablφ(Ũ)− wablφ(Ṽ )|
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+
θ

2
· | inf Ũα − inf Ṽα|+

θ

2
· |wablφ(Ũ)− wablφ(Ṽ )|

+
θ

2
· | sup Ũα − sup Ṽα|+

θ

2
· |wablφ(Ũ)− wablφ(Ṽ )|

= (1+θ) · |wablφ(Ũ)−wablφ(Ṽ )|+θ ·
[
1

2
· | inf Ũα − inf Ṽα|+

1

2
· | sup Ũα − sup Ṽα|

]
,

whence
|wablφ(Ũ)− wablφ(Ṽ )| =

∣∣∣∣ ∫
[0,1]

[
mid Ũα −mid Ṽα

]
dφ(α)

∣∣∣∣
≤
∫
[0,1]

|mid Ũα −mid Ṽα| dφ(α) ≤
∫
[0,1]

dH(Ũα, Ũα) dφ(α) = dφ
1(Ũ , Ṽ ),

and due to the fact that dφ
1(Ũ , Ṽ ) ≤ 2 · ρφ

1(Ũ , Ṽ ), one can easily derive the second
inequality. �

Proof of Proposition 1.4.8. (p. 46)

Indeed,

E

([
Dφ

θ (X , Ũ)
]2)

= (1− θ)E
(∥∥Sφ(X )− Sφ(Ũ)

∥∥2)+ θ E
([

ρφ
2(X , Ũ)

]2)
.

On one hand, it is well-known that Ẽ(X ) is the Fréchet expectation associated with
ρφ
2 , that is,

Ẽ(X ) = arg min
Ũ∈F∗

c (Rp)
E
([

ρφ
2(X , Ũ)

]2)
.

On the other hand, if X is a random fuzzy vector, then Sφ(X ) is a random vector
(see, for instance, Aletti and Bongiorno [3], in case φ is the Lebesgue measure on
([0, 1],B[0,1]), result that can be straightforwardly extended for any φ). Furthermore,

E(Sφ(X )) = arg min
Ũ∈F∗

c (Rp)
E
(∥∥Sφ(X )− Sφ(Ũ)

∥∥2)
and, because of the sufficient conditions allowing us to apply Fubini’s Theorem, we
have that

E(Sφ(X )) =

∫
[0,1]×Sp−1

E
(
u · sX (α,u)

)
dλp(u) dφ(α)

=

∫
[0,1]×Sp−1

u · E
(
sX (α,u)

)
dλp(u) dφ(α).

Since E(sX (·, ·)) = sẼ(X )(·, ·), then

E(Sφ(X )) =

∫
[0,1]×Sp−1

u · sẼ(X )(α,u) dλp(u) dφ(α) = Sφ(Ẽ(X )),
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whence the result is proved. �

Proof of Proposition 1.4.9. (p. 49)

Indeed, whatever α ∈ [0, 1] and the compact interval K may be, we have that

X−1
α (K) = {ω ∈ Ω :

(
X (ω)

)
α
= K}

=
∪

x̃∈X (Ω) : x̃α=K

{ω ∈ Ω : X (ω) = x̃} =
∪

x̃∈X (Ω) : x̃α=K

X−1
α ({x̃}),

(2c−X )−1
α (K) = {ω ∈ Ω :

(
2c−X (ω)

)
α
= K}

=
∪

x̃∈(2c−X )(Ω) : x̃α=K

{ω ∈ Ω : (2c−X )(ω) = x̃}

=
∪

x̃∈(2c−X )(Ω) : x̃α=K

{ω ∈ Ω : X (ω) = 2c− x̃}

=
∪

x̃∈(2c−X )(Ω) : x̃α=K

X−1
α ({2c− x̃}),

whence, because of the symmetry of X about c, X−1
α (K)

a.s. [P ]
= (2c−X )−1

α (K) and,
in consequence, Xα and (2c−X )α are identically distributed. �

Proof of Proposition 1.4.10. (p. 51)

Since X d
= 2c−X , then Ẽ(X ) = Ẽ(2c−X ). Because of the equivariance of the

Aumann-type mean value under affine transformations, we have that

Ẽ(X ) = 2c− Ẽ(X ).

By adding Ẽ(X ) to both members in the last equality,

2 Ẽ(X ) = 2c+ Ẽ(X )− Ẽ(X )

and, hence,

Ẽ(X ) = c+
1

2
· OẼ(X ),

that is, for all α ∈ [0, 1](
Ẽ(X )

)
α
=
[
c− spr

(
Ẽ(X )

)
α
, c+ spr

(
Ẽ(X )

)
α

]
.

Consequently, Ẽ(X ) is a symmetric fuzzy number about c. �
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C&F: algorithm for trimmed means
by Cuesta-Albertos and
Fraiman, 68

dH = δ∞ : Hausdorff metric, 20
d
= : identity in distribution, 47
d1 : Klement et al.’s L1 metric

between fuzzy set values, 36
dφ
1 : extended Klement et al.’s L1

metric between fuzzy set
values, 37

d2 : Klement et al.’s L2 metric
between fuzzy set values, 21

dφ
2 : extended Klement et al.’s L2

metric between fuzzy set
values, 21

Dφ
θ : mid/spr-based L2 metric

between fuzzy set values
θ = weight parameter for ‘center’,

22
φ = weighting measure for

‘shape’, 22
dθ : mid/spr-based L2 metric between

set values, 22
Dφ

θ : support/Steiner-based L2 metric
between fuzzy set values

θ = weight parameter for ‘center’,
26

φ = weighting measure for
‘shape’, 26

dθ : support/Steiner-based L2 metric
between set values, 26

DTM: depth-based trimmed mean, 78
δ1 : Vitale’s L1 metric between set

values, 36
δ2 : Vitale’s L2 metric between set

values, 21
Dφ

θ : wabl/ldev/rdev-based L1 metric,
38

dθ : wabl/ldev/rdev-based L1 metric
between interval values, 38

ηK : mid/spr representation of
K ∈ Kc(R), 5

ETMA: algorithm to compute the
trimmed mean of a sample
from a Hilbert space-valued
random element, 65

E[X] : Aumann mean of a random
compact convex set, 43

Ẽ(X ) : Aumann-type mean of a
random fuzzy set, 43

ϕ(x) = ρ′(x)/x, 92
ϕ(0) , limx→0 ϕ(x), 92
fsbp: finite sample breakdown point,

135, 151
Fc(R) : space of fuzzy numbers, 5
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Fc(Rp) : space of fuzzy vectors, 5

gMP : population set M-estimate of
location, 117

g̃MP : population fuzzy M-estimate of
location, 117

gMP : population M-estimate of
location, 91

ĝMn : sample set M-estimate of
location, 118

ˆ̃g
M

n : sample fuzzy M-estimate of
location, 118

ĝMn : sample M-estimate of location,
91

H1 : space of L1-type 2-dimensional
vector-valued functions
defined on [0, 1], 37

H⋆
1: space of L1-type 3-dimensional

vector-valued functions
defined on [0, 1], 38

H2: space of L2 type real-valued
functions defined on
[0, 1]× Sp−1 w.r.t. ℓ⊗ λp, 24

ιK : inf/sup representation of
K ∈ Kc(R), 5

ιŨ : inf/sup representation of
Ũ ∈ Fc(R), 6

⟨·, ·⟩ : s inner product on Rp, 3

Kc(R) : space of interval values, 3
Kc(Rp) : space of set values, 3

λp : normalized Lebesgue measure on
Sp−1, 11

ℓ : Lebesgue measure in [0, 1], 9
ldevφ : left deviation function, 8

M̃e(X ) : population 1-norm median,
124

̂̃
Me(X )n : sample 1-norm median, 124
M̃φ(X ) : population φ-wabl/ldev/rdev

median, 140
̂̃
Mφ(X )n : sample φ-wabl/ldev/rdev

median, 140
Mθ[X] : population dθ-median, 159
M̂θ[X]n : sample dθ-median, 159
midK : mid-point or centre of

interval K, 5

∥ · ∥ : Euclidean norm on Rp, 3

OX = X − X , 47

ρ1 : Diamond and Kloeden’s L1

metric between fuzzy set
values, 36

ρφ
1 : extended Diamond and

Kloeden’s L1 metric between
fuzzy set values, 36

ρ2 : Diamond and Kloeden’s L2

metric between fuzzy set
values, 21

ρφ
2 : extended Diamond and

Kloeden’s L2 metric between
fuzzy set values, 21

rdevφ : right deviation function, 8
ρ : loss function in M-estimation of

location, 91, 117
ρa : Huber’s loss function in

M-estimation of location, 99
ρa,b,c : Hampel’s loss function in

M-estimation of location, 113

sŨ : support function of Ũ ∈ Fc(Rp),
6

sK : support function of K ∈ Kc(Rp),
3
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sprK : spread or radius of interval K,
5

Sφ(Ũ) : φ-Steiner point of
Ũ ∈ Fc(Rp), 11

τφ

Ũ
: φ-support/Steiner

representation, 11

υφ

Ũ
: φ-wabl/ldev/rdev representation

of Ũ ∈ Fc(R), 8

wablφ : weighted averaging based on
levels, 7




