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Chapter 1
Introduction

This report is devoted to the study of optimal control problems governed by partial
differential equations. In an optimal control problem we have to minimize a functional
which depends on two variables. The control variable, which will be denoted by u and
the state variable, which will be denoted by y. The state and the control are related
by some functional equation, where the control stands for some data of the equation
and the state, which will be called associate state is the solution of the equation. In the
problems here treated, for each control u there is a unique associate state, which will be
denoted by y,. Normally we will choose the control in a family of admissible controls K,
and we will have certain constraints on the state y € C.

One of the first examples that come up is that of a control problem governed by
an ordinary differential equation. Let f and g be functions, g : R x R® x R® — R,
f:RxR*xR®™ — R*®, K C R™ non empty and a a given initial state. We can
formulate the control problem as:

| Find y € Wh°(0,T;R"), u € L*(0,T;R™)
T
which minimize J(y,u) = / g(t,y(),u(?)) dt,
0
where u(t) € K for a.e. t € [0,T],

y(0) = a,

y(t) = f(t,y(t), u(t)) for ae. t € [0,T),
The optimal control theory started with the study of problems governed by ordinary
differential equations, and still today this kind of problems is object of study. Basic
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10 1. Introduction N =
references about this topic are the books by Fleming [57], Pontryagin [73] or Cesari [40].
The range of applications of control problems is very wide. See for instance [58].

We will dedicate to control problems governed by partial differential equations. The
reference point for the study of this kind of problems is the book by J. L. Lions [66]. May
be one of the most simple examples of control problems governed by partial differential
equations is the so called linear-quadratic problem with pointwise constraints on the
control and without constraints on the state

Find y € L%(Q),u € L®(Q)

which minimize J(y,u) = / ly(z) — y4(z)|? dz + g / u(z)?dz
o Q

where a < u(z) < b for a.e. z € Q,

—-Ay=wuin Q,

y=0onT.

The problem becomes more complicated when we add constraints on the state. Con-
trol problems governed by partial differential equations for different kinds of constraints
of the state have been studied. For instance, integral constraints, both inequality and
equality constraints

[ weras < [ 1uerr =5

pointwise constraints on a finite number of points
y(@;)=46; forj=1,...,n;
pointwise constraints on an infinite number of points
y(z) <4 for allz € Q.

Chapter 9 is devoted to the study for the numerical analysis of a problem with this kind

of constraints.
Another kind of constraints are the integral constraints on the gradient of the state

/n Vy(@)Pds < 6.

This thesis is mainly devoted to problems with this kind of constraints. There are few
results avalaible for problems with constraints on the gradient of the state. Casas and



1.1. Notation 11

Fernéndez [29] treat a problem with constraints on the gradient of the state in which,
due to the assumptions made, you can assure that the the solution is C*, simplifying
in an important way the difficulties that appear. Fattorini [53, 54] deals with control
problems formulated in an abstract frame. The adjoint state equation is not a partial
differential equation and must be understood in a formal way.

Other of the difficulties that can be added to this kind of problem is considering that
the equation that relates the control and the state is nonlinear. Control problems gov-
erned by quasilinear equations have been studied by Ferndndez [56], Casas and Ferndndez
[24, 23, 25, 28, 26, 27, 30], Casas, Ferndndez and Yong [32], Hu and Yong [60] or Casas
and Yong [38]. In this thesis we study control problems governed by semilinear equations,
both elliptic and parabolic. There is also bibliography about this topic. Let us cite here
Lions [67], Bonnans [7], Bonnans and Casas (8, 9, 11], Casas [19, 20, 21, 22], Casas and
Ferndndez [29), Fattorini [55, 52|, Yong [92], Casas and Mateos [33], Hu and Yong [60],
Raymond [75], Raymond and Zidani [78, 79], Unger [88] or Casas and Tréltzsch [37).

Finally, we will say that the functional J can be more complicates than the above
exposed. Usually J is a functional that depends both on the control and on the associate
state.

1.1 Notation

We will introduce now the spaces we are going to use in this thesis. There exist many
references where properties of these spaces can be found. See for instance [2, 70, 43, 68,
13, 86] among others. Let 2 be an open set of RY. We will denote (2 its closure and I'
its boundary. On this set we can define the function spaces

C(Q) ={y: Q — R, continuous},
and form e N={1,2,...},
C™(Q) = {y: @ — R, such that °y € C(f) for every multiindex |a| < m}.
Forl1<p<o
17(Q) = {y : @ — R, Lebesgue measurable, such that ||y|| Le()'< 00},

lylize) = (fn |y($)|pd$)%,

where
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if1 < p < oo and
[yllzoo() = sup ess{[y(z)| : = € Q}.

Remember that an element in a Lebesgue space is a class of functions that are equal in
almost every point, i.e., but on a set of zero Lebesgue measure. Normally we will write
a.e. to shorten almost every point. The Lebesgue measure of a set A will be denoted by
|Al. .

We define the Sobolev norms on C™(2) as

[¥llwmec) = (Z /f;la“yl”dx)

lat<m?

-1

if 1 < p< oo and

lyllwmeo(qy = |E|12'3(n {supess{|8®y(z)| : z € Q}}.

With this norms, the spaces C™({) are not complete. We will denote
Wm(Q) = Cm({),

where the bar indicates the closure in the sense of the Sobolev norm above defined. For
p = 2, we will usually write
w™2(Q) = H™(R).

Given o € (0, 1], we will say that the boundary of 2 is of class C™° [resp. C™] if there
exist numbers a > 0, § > 0, coordinate systems (Zki,Zk2,-..,ZkN), short (Z},Zkn),
k=1,2,...,A, and functions by of class C™ [resp. C™] in the closed N —1 dimensional
cubes |zp| < @, 4 = 1,2,...,N — 1, in such a way that every point z of I can be
represented at least in one of these systems as z = (z}, b (=})). It is also supposed that
the points (z},z,y) such that z}, € [—a,a]V7?, bi(z}) < zknw < be(z}) + B are in Q,
meanwhile the points (%, zxn) such that z}, € [—a, @]V, bi(z}) — B < zry < bi(z})
are out of Q (cf: Neéas [72]). If the boundary is of class C%! we will say it is Lipschitz.

A rigorous definition of the Lebesgue spaces on the boundary using partitions of the
unity and coordinate systems associated to a covering can be found in [72, pp. 82,83].

If Q is of class C™, we can define the trace mapping forl < m

n:C™Q) — [[ (@)
Jj=0
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(o B
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where n is the outer unitary vector normal to I'. This mapping is extended in a contin-
uous way to W™P(Q). The image of W™P(RQ2) by ~; is
;
n(Wm(Q)) = [Twmi-re(r).
=0
Normally we will write v with no subindex for 7. To define 7 it is enough that I is
Lipschitz.
We define now
W (Q) = {ye W™PQ): Ym-1y=0,}

with the same norm than W™?(Q). It is known that if I" is Lipschitz,
C*(2) = {y € C™(R2) : supp y C N is compact }

and if we denote
D(Q) = [) C&(9),

m>1

then
WP (Q) = D(Q),

see Necas [72].

The space of continuous and bounded functions on 2 is named C,(£2).

Given a normed space X we will denote by X’ its dual, i.e., the space of continuous
and linear functionals on X. We define

WmE(Q) = (Ws™(Q))' .
Given o € (0, 1) we define the Holder functions spaces as

(@)= ly € O@): sup '”(I?_‘f,ff')' < o0}

The norm in this space is

ly(z) — y(')|
y”G’-" 1) = 8sup T gla "
” ) z,z' €1 I.’E - mllo
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For 0 = 1, C%!(Q) is named space of Lipschitz functions, and coincides with W*((2).
Also
C™(Q) ={y e C™(N) : 8°y € C"(Q) for o = m}.

We define the fractionary Sobolev spaces as follows. Let o € (0,1). Let us take

Ia,p(y) — ‘/r; |y($) ! y(.’l)’) |pd$ d:l,",

x0 |$ - $’|N+”
and for s > 0
Wer(Q) = {y e WIIP(Q) : 1,_1,(6%) < oo for || = [s]},
where [s] is the integer part of s. The norm in this space is given by
P
lyllwescay = (nyusm.,m, + 3 I.~[.],p(a“y)’> -
|al=[s]
We have the following result of continuous inclusion

We(Q) c LI(Q) for q < N”p if N —sp>0,

N-—s

Wer(Q) c C**(Q) for0< A < s— %, if sp— N > 0.
If I is Lipschitz, the following inclusion is compact
WP (Q) ¢ WH(Q) for o > 0.
Given T > 0, we define the Lebesgue vector spaces, for 1 < 7 < 0o as

L' (0, T; w*P(Q)) = {y :(0,T)xQ —R: ”y“Lf(o,T;W-.p(n)) < oo}

where

r

T
[ ———— ( [t -)||ar..,m,dr)

if1 <1 <o0and

lyllzoo(o.mwera)) = supess {|ly(t, -)llwsray : t € (0,T)}
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We can also define Sobolev vector spaces:

Wb (0,T; WP()) = {y € L™(0,T; W*?(Q2)) such that % e L(0,T; W"‘"(Q))},

where the derivative is taken in the distributions sense.
We also define

C(0,T],C**(Q) ={y: [0,T]x 2 —R: | Yllcqoancoe@y < oo},

where
s = 8su t,- @ (i)
HUHQ[O,T],CO @) te[og'] ly (2, *)llco (1)
In this thesis, and if this does not lead to confusion, we will use the following shorten-
ing: L"(W*?), L*(H'), Wim(W'?)), L¥(L*(Q)), L?(L°(T)), and C(C**()) respec-
tively for L7(0,T; W*?(Q)), L?(0,T; H(R)), WL (0,T; (WP(2))), L¥(0,T; L*)),

L?(0,T; L°(T)) y C([0, T); C*#()), for , 3, p, k, k, &, 0 y € real numbers. We will also
denote, as it is usual

W.(0,T) = {y € L*(0, T; H(Q)) % e I2(0, T; H'(Q)')}.

Given a metric space X, we will denote the ball of center z and radius r by Bx(z,r).
As it is usual, we will write RY = {z = (z1,---,zn) € R" such that zy > 0}.

1.2 Plan of exposition

The aim of this thesis is to study is to study the following control problems:

Elliptic problem Let  be an open set in R¥, T its boundary, A an elliptic operator
and f, g and L functions f : 1 xR2 -2 R, g: T =2 R, L: Q x R2 - R Let n!, ng?
be nonnegative integers and let g, : 2 x RN — R be functions for 1 < j < n; +ngq4. Our

1nimero de igualdades=number of equalities
2ptimero de desigualdes=number of inequalities
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first control problem is formulated as
" Minimize J(u) = / L(z, yu(z), u(z))dz,
o
u€Uu={u: Q2 R: u(z) € Ko(z) a.e. €N},
[ 9@ V@i =0, 155 <m,

ﬂyj(z, Viu(2))dz < 0, n; +1<j < n; +ny,

(Pa)

where
Ay, = f(za Yu, u) in Q
aru Yo = ¢ onT,

and Kg is a measurable multimapping with nonempty closed image in P(R).

Parabolic problem Let Q be an open set in R, I its boundary and T > 0. Let us
state @ = 2x]0,T[ and ¥ = I'x]0,T[. Let A be an elliptic operator. Let us consider
functions F: QxR — R G:IXRXxR — R, L: OxR—R, f:@XRXxR — R,
g:ExRXxR— R and y: 2 — R The control problem is the following:

min J (v) =/(;T/‘;F($,t,yv) dz dt+/oT/rG(s,t,y,,, v) ds dt
(Pp) 4 +_/‘;L(za Y(z,T)) dz

V€ Voa ={v € L®(X): v(s,t) € Ky(s,t) for ae. (3,2) € T},
Vayw € C C (L7(0, T; L2(Q)))",

.

where 5
] 'ai/tg + Ayu = f(za ts y'l) iIl Qi
Oy _
e g(s,t,yv,v) on X,
w(,0) = yo in Q,

Ky is a measurable multimapping with nonempty compact image in P(R) and C is
closed convex and with nonempty interior subset of (L7(0,T; L?(Q2)))".

We have decided to introduce a distributed control for the elliptic problem and a
boundary control for the parabolic case just to illustrate these two cases, since writing
all the possible cases would have increased the length of the thesis. Nevertheless, after
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the detailed study of these problems we will state results for other problems that can be
treated following the same techniques.

The plan of the work is the following:

In the first part we study the equations that appear in the studied control problems.
In Chapter 2 we make an study on regularity for linear equations. These results will
be applied later to state the regularity both for the state and for the adjoint state. In
Chapter 3 we study the state equations that govern the control problems. We show the
continuity and differentiability relations between that state and the control. We also
perform a sensitivity analysis of the state with respect to diffuse perturbations of the
control.

The second part constitutes the central kernel of the thesis. Here we study optimality
conditions, both necessary and sufficient, for the control problems. In Chapter 4 we ex-
pose the properties of the functionals that appear in the control problems: The objective
functional and the constraints. We study under what conditions they are differentiable
and, since we expect to prove Pontryagin's Principle, we ,make a sensitivity analysis
with respect to diffuse perturbations of the control. In Chapter 5 we expose Pontrya-
gin’s Principle. In Chapter 6 we introduce first and second order optimality conditions.
Finally, in Chapter 7 we introduce a new type of second order conditions in which the
Hamiltonian is involved.

In every chapter we intercalate the elliptic and the parabolic case.

In the third part we make a study of the numerical approximations of the following
control problem: Let Q be an open set in RV, I' its boundary, A an elliptic operator, U,y
a subset of L*(Q) and L : @ x K2 — R a function. Let g : 2 x R — R a continuous
function. We formulate the optimal control problem

min J(u) = fn L (z, yu(z), u(z)) dz (1.2.1)

v€K g(zu() <6 Vzed,

(Ps)

where
Ay = f(z,y)+u inQ

y =0 onT

The topics about existence of solution and optimality conditions for this problem have
already been treated by Casas in [18].
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Study of the equations
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In the first part of the thesis we study the equations that appear in the control
problems we are going to deal with. This study is divided into two main parts. First,
we make the study of linear equations, which will allow us to treat later the linearized
state equation and the adjoint state equation. Finally, we will establish the properties
of the mapping that relates the control and the state.

In our case, since we are studying control problems with integral constraints on the
gradient of the state, the study of equations (linearized and state equation) is very
similar, since, grosso modo, we have to prove W'?(Q) regularity of the solution of a
linear equation, for p € (1, c0).

The second part is the study of the relation between the control and the state. In
our case, for every control there exists a unique state. There exist studies for control
problems where this is not verified. For instance, Casas and Fernindez [24] or Bonnans
and Casas (8] study a multistate control problem. Abergel and Casas [1] study multistate
control problems which appear in fluid mechanics.

In our case, since we deal problems governed by semilinear equations, the functional,
let us name it G, that relates the state y with the control u is nonlinear. We must prove
that there exist a unique solution, that it is in the correct space and that it depends
continuously on the control. In the second part of the thesis we obtain first and second
order conditions. To do that we also study under what conditions G is C* or C?. If we
write the functional that we want to to minimize as

J(v) = F(y,,u) = F(G(u), u),

using the chain rule, we can prove that some of the properties of G are inherited by J.
This is seen in detail in the second part of the thesis.

Finally, to deal with the non convex case, we introduce a Taylor expansion based in
diffuse perturbations of the control. The aim is to deduce a Pontryagin Principle. To do
this, we use the Taylor expansions (Theorems 3.3.2 and 3.3.4) for the solution of the state
equation with a remainder converging to zero in the norm of L7 (0, T; W'#(Q)) in the
parabolic case and in the norm of W#(Q) in the elliptic case (the norm corresponding
to the state constraint).

In order to state this result, in the parabolic case, we use the compact injection
of L7(0,T; Wite2(Q)) N W (0, T, (W'¥(Q))) in L7(0,T; W'#(Q)) (see the proof of
Theorem 3.3.4). To do that we have to establish regularity results in L7(0, T; W+s?(Q))
for the linearized state equation in section 2.2.






Chapter 2

Regularity results for linear
equations

2.1 Elliptic equations

In this section, we are concerned with the W1¥?({2) regularity of the solutions
of Dirichlet and Neumann problems. This section comes to fill up the gap
between some known results and counterexamples to this regularity. The
aim is to deduce the existence, uniqueness and estimates in W'?(Q) of the
solution under minimal regularity assumptions on the coefficients of the main
part of the elliptic operator and on the boundary of the domain. Continuous
coefficients and C' boundary is enough for this regularity. The case of a
Lipschitz boundary is investigated too.

Although the results exposed here are more or less known by the specialists
in PDE, we have not found a clear reference for them. We introduce them
here for completeness and clearness in the exposition.

Introduction and main results
Let Q be a bounded open set in RN with boundary I'" and let us set
N
Ay =- Z azj [aijaz.'y] ’ (2'1-1)
ij=1

23



24 2. Regularity results for linear equations

where the coefficients a;; belong to L*®(2) and satisfy

N
m[[€]? < ) aii(2)&&s < M||€||* VE € RY and Vz € Q. (2.1.2)
ig=1
for some m, M > 0. We also introduce ag € L"(§2), ao(z) > 0 in €, where we choose
r>Np/(N+p)ifp>N,r>N/2if N(N—1) <p< N and r > N¢/(N +p) if
p < N/(N —1), with p' = p/(p— 1). For instance, if p > N, we can choose r = p/2.
Let fp € W-12(Q), f € (W'¥'(Q))' with 1/p+1/¢ = 1 and g € W™#*(T), with
p € (1,00).
The purpose of this section is to study W+?(§2) regularity for the solution of Dirichlet’s
problem

(2.1.3)

Ay+ay = fp inQ
y =0 onl

and, assuming ag # 0, of Neumann’s problem

A = in
ytay = f (2.1.4)
On,y = g onl.

The existence, uniqueness and regularity of u in W*?((2) depends on the regularity
of I" and the coefficients a;; and a,.

If p > 2, we can reduce Dirichlet’s problem to the case ap = 0 and Neumann’s
problem to the case ag = 1: if p > 2, then, due to Lemmas 2.1.4 and 2.1.12, there exists
a unique solution y € H(Q2) N L**(R), where p* = oo if p > N, p* is any number in
[1,00) if p= Ny p* = Np/(N —p) if 2 < p < N. Therefore apy € LW%(Q). So, due
to Sobolev inequalities, for Dirichlet’s problem agy € W-1#(Q) and we can add —agy to
equation (2.1.2) and if we rename fp as fp — agy, we will have to solve the problem

Ay = in 0
v = Jo in (2.1.5)
y =0 onrl.

And for Neumann’s problem, we can replace f for f —agy +y € (WI*P'(Q))’ and so we
will have

{Ayﬂ' =/ 8 (2.1.6)

On,y = g onl.
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For p < 2 the result is achieved by duality and transposition.

It is known (Troianiello [87, Th. 3.16(iv)]) that if the coefficients a;; are Holder
continuous and the domain is of class C*¢, with 0 < é§ < 1, then W?(2) regularity of
the solution can be assured, both for Dirichlet’s and for Neumann’s problem. It is also
known (Serrin [81]) that if the coefficients are not continuous, this can fail.

Example 2.1.1 Let Q be the unit ball in RV, N > 1 and v(z) = z:(|z|* — 1) with
A =1—N. We have that v € Wy (Q) for all r € [1,522;) and v & Wy*(Q) for any
p> 52 Let us set a = 4n=3) and ay; = 6 + (a - 1) Then coefficients a;; are
bounded and (2.1.2). holds. Now it is easy to check that v solves the following Dirichlet

problem
Ay = in
{ . g” "‘F @.1.7)
y = onl,

where (a—1)(N —2)
_ a— — 4)T1
fp (.’L') = I xlg J

Function fp is in LI(Q) for every ¢ < N, therefore fp € W=1(Q) for all p < +o00.
This proves that the regularity fails for non continuous coefficients.

On the other hand, we know that there ezists a unique solution y in H} (Q) c Wi (Q)
to the previous problem. Since v & HE(Q), theny # v and both are solutions in W' (Q)
to (2.1.7), so we deduce that uniqueness fails in this space.

Our results come to fill up this gap between Troianiello’s result and previous coun-
terexample. We will see below that continuity of the coefficients is enough to obtain
uniqueness and regularity.

On the other hand, the C* regularity of the boundary I" assumed by Troianiello
[87, Th. 3.16(iv)] can be relaxed. Indeed Theorems 2.1.1 and 2.1.3 state the W1?(Q)
regularity of the solutions of problems (2.1.3) and (2.1.4) assuming C* regularity of I'.
Theorem 2.1.1 was established by Simader [82] and Jerison and Kenig [62] for Laplace
operator, A = —A and by Morrey [71, page 156).

The question is whether the same result can be achieved just by supposing I' to be
Lipschitz. Jerison and Kenig [62, Th. 0.5, 1.1, 1.3] answered this question for problem
(2.1.3) in the case of Laplace operator, A = —A. They proved that if the boundary I is
Lipschitz, then we can only assure W'#(Q) regularity for p} < p < p1, with p; = 4+¢(Q)
if N=2and py =3+¢(Q)if N > 3, with 0 < () < 1/2. Furthermore this result
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is sharp. Indeed, in [62], it is proved that for any p > 4 if N =2,0rp > 3if N > 3,
there exists a Lipschitz domain Q and a function fp € C*({2) such that the solution of
(2.1.3)is not in W''P(Q). Theorem 2.1.2 extends [62] to the case of an elliptic operator
A with continuous coefficients.

It has also been proved (Dauge [47]) that if Q is a convex polyhedrical domain (N < 3)
and the coefficients of the operator are continuous, then y € Wi P(Q2), with 1 < p < o©
for Dirichlet problem, and with 6/(3 +/5) < p < 6/(3 — v/5) for Neumann problem.

The continuity of the coefficients a;; is relaxed by Chiarenza [41] by assuming that
ay are bounded mean oscillation functions whose integral oscillation over balls shrinking
to a point converge uniformly to zero. This is made for Dirichlet problem under C*:
regularity of I'

In all the above cited references, except in [87], the symmetry of the operator A was
assumed, a;; = aj;. We remove this assumption, which does not change the proof for
Dirichlet problem, but it introduces some extra difficulties when dealing with Neumann
problem; see Remark 2.1.3. Let us mention that the proof of regularity for Neumann
problem is not carried out in (87).

There exist estimates in W'®(R) for continuous coefficients which could lead to the
results here introduced (cf. [3, Theorems 15.3',15.17]), at least in the case of symmetric
coefficients. Nevertheless, we have decided to include here the proofs, since we have
not been able to find a detailed proof of the method, and we think that the case of non
symmetric coefficients is interesting enough and it is not treated in the existent literature

Let us state the theorems to be proved in this section.

Theorem 2.1.1 If T is of class C' and the coefficients a;; € C(Q2), then there ezists a
unique solution y € Wo(Q) to Dirichlet’s problem (2.1.5). Moreover, the estimate

||y||wg-v(n) < C"fD"w—l-r(n) (2.1.8)

holds, where C i3 a constant which only depends on p, the dimension N, the coefficients

ai; and 2.

Theorem 2.1.2 IfT is Lipschitz and the coefficients a;; € C(§) then there ezist £(Q) >
0 and a unique solution y € WoP(Q) to Dirichlet’s problem (2.1.5) for all 7, < p < py,
wherep) =4+e(Q) if N=2yp, =3+¢(Q) if N > 3. Moreover, the estimate

”y"vvol-l’(n) < C||follw-12(n)



2.1. Elliptic equations 27

holds, where C i3 a constant which only depends on p, the dimension N, the coefficients
Q;j and .

Theorem 2.1.3 If T is of class C* and the coefficients a;; € C(Q), then there erist a
unique variational solution y € W?(Q) of Neumann’s problem (2.1.6). Moreover, the

estimate

lwlbwaom < CUMN gy ayy + 1903 ey

holds, where C is a constant which only depends on p, the dimension N, the coefficients
ai; and S.

In this level of regularity the normal derivative has no sense (cf. Lions y Magenes
[68]). Let us precise what we mean with variational solution to the problem (2.1.6).

Definition 2.1.1 We shall call variational solution of (2.1.6) to the solution of the vari-

ational problem

a(y, 2) = {/, z)(wl.p’(n))'xwu'(n) + (g, 'Y”)W—,J;.p(r)xwfg.p'm Vze Wl.p’(n)’ (2.1.9)

where

N
a(y,2) = Z / @ij0z,Yy0z, 2 + / aoy2 (2.1.10)
i,j=1 2 2
is the bilinear form associated to the operator A and v : W'¥(Q) — W%""(I‘) is the
trace operator.

In the previous theorems the dependence of the estimates with respect to the coeffi-
cients a;; is through m, M and their continuity modulus.

Remark 2.1.1 Some authors have studied the case corresponding to data f and g, in
the above problems, which are measures in §) and I respectively, see, for instance, Casas
[16] or Boccardo [6]. Since a measure in Q is an element of (W¥ (Q))' and a measure
on T belongs to W=Y/P(T) for every p < N/(N — 1), then Theorems 2.1.1 and 2.1.8
state the ezistence and uniqueness of solutions in WlP(Q) for every p < N/(N — 1),
which is the classical result.
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Dirichlet problem. Proof of Theorems 2.1.1 and 2.1.2

For the proof of Theorems 2.1.1 and 2.1.2 we shall use the following result, due to
Stampacchia [84].

Lemma 2.1.4 Let us suppose p > 2. Then there ezists a unique function y € H}(Q) N
L’ (), where p* = 00 if p > N, p* is any numberin [1,00) ifp = N yp* = Np/(N —p)
if 2 < p < N, satisfying the equation (2.1.3). Moreover, the estimate

[1¥llze~@y < Cllfpllw-15(q)

holds, where C is a constant which only depends on p, the dimension N, m, M and the
measure of Q. Notice that obviously also y € LP(Q) and

I¥llzey < Cllfollw-12()-

We shall also use the following lemma about operators with constant coefficients.

Lemma 2.1.5 Let us suppose that the coefficients ai; of the operator A are constant for
1<4,j<N. If

1. Tisof class C' and 1 < p < 0o or

2. T is Lipschitz and p| < p < p,, where p; depends on Q, p; > 3 if N =3 andp, > 4
if N=2,

then there exists a unique function y € Wol”' () satisfying the partial differential equation

Ay = fp inQ
y =0 onT.

(2.1.11)

Moreover, the estimate
[¥llwzs(ay < Collf pllw-15(a)
holds, where Cy depends on a;j, S}, N and p.

Proof. There is no loss of generality in assuming that a;; = aj;. Then hypothesis
(2.1.2) implies that A = (a;;) is symmetric and positive definite, therefore there exists a
real and regular matrix P such that A = P PT. Let T = P~1. Through a linear change
of variable

=Tz
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we can transform problem (2.1.11) into

Aj = fp ml (2.1.12)
= 0 ondf,

w2

where j =yo T, fp = fp o T-1 y Q) = T(Q).
Applying Jerison and Kenig’s result [62] we have that (2.1.12) has a unique solution
§ € Wi*() and that

l§llws2y < Cllfollw-1ay

where C depends on p, N and on the Lipschitz constant of the boundary Q.
Undoing the change of variable we obtain that y € W,*(Q) and the estimate

L -
yllwzeg < (detT)7 Cllfollw*()

holds O

We are now ready to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. Thanks to the continuity of the coefficients, we know that
for all € > 0 there exists p > 0 such that

N
Z |laij(z1) — a4j(Z2)| < € Vz1,22 € Q, con |z; — 25| < p. (2.1.13)
i,j=1

Let {C} }:‘=1 be a collection of open sets covering 2, every set C3 having a boundary
of class C! which leaves the interior of the set at one side of the boundary and its
diameter is less or equal than p. Let us choose z, € C3 a fixed point, and let {y,},_; be
a partition of the unity relative to the covering.

First let us consider the case p > 2. Let us take y € H} ()N LP(Q)as in Lemma 2.1.4
and let us set

Ys = .y, for 1 < s < p. (2.1.14)
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We have that y, verifies the equation

i

N N
AsYs = Pafp - Z a‘j(z)a’i ‘pﬁa-"—'iy - Z a-'l-'_i (aﬁ(m)yazi¢a) -
iJ=1 i,Jj=1
N
Z z; [(0ij(%s) — a15(7) )0z, Ys] in C;
i fei
Y = 0 on 4C4,

(2.1.15)
where A, is the operator associated to the constant coefficients matrix (a;j(z,)). In the
case N > 3, in a first stage we shall assume that

2N
PEN_2
Lemma 2.1.4, the conditions imposed to p and the conditions on the support of ¢,
allow us deduce that

wsfD — Z ] (.’L') i Ps z«y Z a‘,(a:)yc'),‘ga,) W-l’p(Q)-

1,J=1 5,7=1

Firstly, we have the inequality

l@sfollw-ro@) £ C (l@sllwre@) | follw-1e@)- (2.1.16)
Also, thanks to Lemma 2.1.4, we have

| Z (8:90z:0s) ||W-1P(ﬂ) < Z \|a4jy0z, s "L’(ﬂ) <

iy=1 i,j=1

< C (llassllzeogay, l|@sllwree@y) | follw-1e@)- (2.1.17)

On the other hand, the conditions imposed to p imply that L2(Q) ¢ W-¥(Q) c
H-1(Q), the inclusions being continuous. Using the usual estimates in H}(2) we have

1Y 6i0epu0syllw-1o0) < 11D 8i00,028s,yll 23y <

ij=1 ij=1
N
D llassllzooy l@allwroogay |02, yll Loy <
1,7=1
< C (llasjllzeoay, llpallwreoqay) llyllagmy < (2.1.18)
C (llassllzooa), llpsllwre) I folla-1ay < Clifpllw-12q)
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Let us see that y, € WP(Q2) and that the estimate

Nysllwre@y < C||fpllw-1e0)- (2.1.19)

holds. In order to prove this, let us introduce some notation. Given & € Wy*(R), we
define T as follows

N
Te(2) = < fopsz>+ /n Z aij(2)Y(Z)0z,ps(Z) Bz, 2(Z)

l,j:l

N
+ /,, D 64i(2)32,y(2)95, 04 () 2(2)

ij=1

+‘/(;. Z (ai(Z5) — aij(2)) Os ik (2)0z; 2().

s i,j=1

It is obvious that T; € W~1*(2) and by using Lemma 2.1.5 we deduce the existence and
uniqueness of a solution u; € Wy'*(2) of the variational equation

as(ye, 2) = Te(2) Vz € Wy (),

where a,(-, ) is the bilinear form associated to the operator A,. Moreover the following
estimate holds

lyellwzz) < CollTellw-1.2),

where C; depends on ||a;j|| L=(n),  and of p.
Now using this notation and taking into account that the support of ¢, is compact,
equation (2.1.15) can be written in variational form as follows

as(ys; 2) =Ty, (2) Vz € Wol’p‘(ﬂ)

The mapping £ — y¢ i8 contractive. Indeed let us take £;,&; € WoP(Q) and y; =
Ye,, Y2 = Yg;. Then the following equality is satisfied

8a(t1 — U3, 2) = T, (2) — To(2) V2 € Wo® (D).
From here we deduce

ltr — vallwregy < CollTe — Teo|lw-10()- (2.1.20)
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We have that

Ta2) = Tea@)l = | |3 (@us(oe) = 04(a) Bus(z) — Ea(2))0, (o)

s iyj=1
S EN“{I - £2 "WS"(ﬂ)”z”W‘}-”(n)’ (2.121)

which implies
[Tz, — Tea w2y < €Nl = Eolliiogy- (2.1.22)

Taking 0 < € < 3% min {1,1/C,}, from (2.1.20) and (2.1.22) we deduce the contractivity
of the mapping £ — y,. Therefore there exists a unique fixed point § of this mapping.
On the other hand, in Hj () there is also a unique fixed point, which is necessarily y,.
But §j € Wy*P(R2) C H}(R) is also a fixed point, and therefore § = y,.

Let us see now that the estimate (2.1.19) is satisfied. Using the continuity condition
(2.1.13) like in (2.1.21) and the choice of €, we have that

N
" Z aﬂ’j [(D.ij(z,) - a.,(m))a,_.,y,] |'W‘1"’(ﬂ) < EN”ya”Wol-p(ﬂ) <

§,j=1

1 .
< 5 min {1,1/Co} lysllw2 e (q)-
This inequality, together with (2.1.16), (2.1.17) and (2.1.18) leads to

1
lysllwe iy < 5llusllwie@y + C (lassllzo@), ll@sllwreimy, R,0) [|follw-1sg).

Let us note that ||, ||lw:.0(q), depends on the size of the support of the function which
depends on p, and this one depends on the modulus of continuity of the functions a;;
and of €, which, as said before, only depends on €, ||a;;||L=(q), N and p.

Once this estimate is got, adding all the y, up, we obtain the estimate (2.1.8):

b b
”y”Wo‘-'(n) = Zya"Wol"’(ﬂ) < Z ||ya||wg-n(n) < #CllfD”w—l.p(n),
=1 =1
where the number u of functions in the partition of the unity only depends on p, and
therefore on £, |las;||z=(q), N, p and the modulus of continuity of the functions ay;.
Let us suppose now that p > %_a if N=3or N=4and

oN oN
N—2SPSy_3
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if N > 5. In this case, all the previous arguments remain valid, except the inequality
(2.1.18).Instead of 1nclusmns L}(Q) cwkr(Q) C H ~1(Q) we use now that L’gﬁf( Q) C
wW-r(Q) c W~ Lity () and the fact that u € WO’W(Q), as well as the estimates we
have just obtained to get

[ z 04 () Oz s O Yllw-r10) < | Z 035(Z) Oz, s ::jy”u&l!,(n)

i,j=1 i,j=1
N
> llas(@m@llllwsme 18z, vll iy ) <
§,j=1

IN

Cllassllzo=a), ll@sllwreo@) |yl w5 g

C(aij, ||@sllwreo(@)s P, N, Q)”fDIIW_l.,@eL,m) < Clifollw-1xa)-
This process can be repeated taking p greater each time, and the result is proved for
2 < p < 00. Thus we have already proved that the mapping

A:WyP(Q) — W H(Q)
is an isomorphism for p > 2, therefore its adjoint operator
A WT(Q) — WP (Q)

is also an isomorphism. This allows us conclude that the theorem is also valid for
l1<p<2. 00O

Proof of Theorem 2.1.2.

The proof is like the proof of Theorem 2.1.1, with two exceptions. The collection of
open sets {C? }:=1 must be taken with Lipschitz boundaries. Moreover, the conditions
imposed to p in the theorem imply that L2(Q2) c W-P(Q) c H1(f) and there is no
need to impose additional conditions to p along the proof. O

Neumann problem. Proof of Theorem 2.1.3

To make this proof we will first get estimates for a problem in the space and in the
half space. We will use some of the ideas exposed in Grisvard [59, Section 2.3.2], although
his methods can not be straightforward applied.

We will denote by E the fundamental solution for the operator —A -+ 1.
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Lemma 2.1.8 The convolution operator by E is continuous from WhP(RN) to Wk+2.p(RN)

for every integer k.

Proof. It is well known that for every f € L?(RV), Exf € WP(RV) and there exists
a constant satisfying
1B * fllwse@ny < C|f l|oen)- (2.1.23)

For k < 0 the proof is based in two facts: the first is that every f € W*P(R") can be
written as the sum of derivatives up to the |k|-th order of functions f, of LP(RV):

= Y et
0<ax|< (K|
and the norm of f in W*?(RM) can be expressed in terms of the norms of the f,
in LIP(RY). The second is that ||0%(E * fo)|lwr+aesmny < C||E * follwaswn) for any
multiindex o of order less or equal than |k|, and thanks to (2.1.23) ||E * fa|wasmn) <
C||fallzs@w)- So we can estimate the W*+2(RV)-norm of E * f in terms of the L?(R")-
norms of the f, and therefore in terms of the W*®(RN)-norm of f.

If k > 0 we only have to take into account that for any multiindex § = a + a; with
la| =k, |ag| =2, ||0P(E * f)||o@ny = ||0°*(E % 0°f)|| o). By the definition of the
norm in W22, this quantity is less or equal then || E *8* f||y2,@w~) and applying (2.1.23),
this is less or equal than C||0%f||ze@®n~) < C|fllwro@mn)- O

Corollary 2.1.7 Let A = (a;;) be a positive definite matriz of real entries, A > 0 and
f e (W (RVN)) = W-LP(RN). Then there eists a unique solution y € W*?(RY) of
the equation
N
=Y 8sy(0uy) + Ay =f in RV (2.1.24)

ij=1
Moreover, the estimate

”y"WI-P(R") < C"f”(wl.p’(glv))'

holds for some C depending on the coefficients of the operator, N and p.

Proof. If we rename f = f /A and b;; = (a;j + a;s)/(2A), then (2.1.24) can be written

N
=Y Oy (bijBey) +y=fin RV (2.1.25)

i,J=1



2.1. Elliptic equations 35

Since B = (b;;) is a symmetric positive definite matrix, there exists P regular such that
B = PPT. We make the change of variable z = % and we define j = yoP and f = fo P,

80 (2.1.25) can be written
~Afj+j=FfinRY. (2.1.26)

Since E is the fundamental solution of the operator —A +1, then j = E * f € Wis(RN)
is the unique solution of (2.1.26) and
e Yol 1 ——

Uniqueness can be deduced by means of Fourier transform or taking into account the
density of the space WP(RN) N H!(RM) in WiP(RV).

Undoing the change of variable, we get that y € W1?(RV) is the unique solution of
(2.1.24) and

lyllwre@ny < C| f ||(W1.,'(m~))',
where C depends on p, N y (a;;)- O

Now we are going to get some estimates in the half space. Let us start with problems
involving only Laplace operator.

We shall introduce some notation, following Grisvard [59, pp 97-105]. For every
function f defined in M, f is its extension by zero to the whole space.

0 else.

f(:r,)={ f@) ifzeRY

With dy we denote Dirac’s measure on the variable zy and 6} its derivative in the
distribution sense in R. For any s > 1/p and p > 1, the mapping

1w : WoR(RY) — We/re(RN-1)
denotes the trace operator on the zy axis. For g € W*?(RV-!), 3 < 0, we define

g® by € (WHr-# (RY ))'

(g ® On, u) = (g, Tvu).
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Let Fy stand for the partial Fourier transform of ¢ in z;,...,ZN-1-
1 —igz! N Joe!
e z')dz’.
(2m) % ./1;1'-1 #(z)

Lemma 2.1.8 For f € (Wl.p’(M))' there erists a unique variational solution y €
Wte(RY) of Neumann problem

“Ayty = f iR (2.1.27)
Oyy = 0 on RN x {0}

Fyp=

Moreover, the following estimate is satisfied:

||y||w1-»(nﬁ) < C”f“(wl,p'(]gﬁ))'i
where C depends on N and p.

Remark 2.1.2 Remember that all the time we are talking about the solution of a vari-
ational problem, and that the writing of the problem as a partial differential equation is
just symbolic, and allows us to keep a knk in the notation with Dirichlet’s case.

Proof. Let us take a sequence of functions f; in D(RY) converging to f in (W¥ (RY))’
and set
W = E x fk-

We have that wy € WP(RV) and
|lwllwismey < Cllfellw-remny = C“fk”(wl,p'(m{:))"
Now let us define, for zy > 0
(2, zn) = wi(2', zn) + wi(z', —zN).
Clearly in RY
—Ay + yi = [ Awi (', zx) + wi (2, zx)] + [~ Awi(', —zn) + w2, —zn)] =

=fr+0=fx (2.1.28)

and since wy € W2?(RY) we can write

Oy (2, 0) = Bpywi(z', 0) — Bz wi(z’,0) = 0. (2.1.29)
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Now (2.1.28) and (2.1.29) lead to

/N (VyeVz + y2) =< fr, 2> Vz € WP (RY). (2.1.30)
m‘F

Moreover
“yk“wm(nf) < ”wk“WI-r(M) o ”wk"wl-r(nzi_\’) = ”wk”Wl-P(RN)
and hence
”ykllwl-"(lkﬁ_’) < C”fk"(wl.p’(gl_'\_f))"
From the continuity of the convolution, we deduce that wy = E * fi > w=Ex f
in WYP(RM), and consequently, y — y in W'P(RY), with y(z',zn) = w(z',zn) +
w(z',—zy). Now it is easy to pass to the limit in (2.1.30) to deduce that y is the

variational solution of (2.1.27).
Uniqueness comes from the density of W?(RY) n H(RY) in W?(RY). O

We give now a key result to deal with Neumann’s problem when the coefficient matrix is
non symmetric. It is a result for a problem with oblique derivative. The same problem
has been considered by Grisvard in [59], where he proved W2P-regularity of the solution
for a more regular datum.

Lemma 2.1.9 For g € W‘I/P"’(]RN‘I) and my,...,mny € R, my # 0, there exists a
unigue variational solution y € WhP(RY) of the problem

-Ay+y = 0 mRY

N

2.1.31
Zm,-azjy = g on RN_I X {0} ( )
j=1

Moreover, the following estimate i3 satisfied:

”y”WI‘P(Rﬁ) < C"Q"w—l/p.p(mlv-l)
for some constant C' depending on N, p and the coefficients m;.

Proof. Notice that for functions in WP(RY), and 1 < j < N —1, 3,,y(z',0) =
(82, 7y)(z') € W-YPP(RN-1). Therefore the variational solution of (2.1.31) is the
solution of the variational problem

N-1
my 1 /
/I;N(Vsz+yz) + Z r_nj < Oy, YNZ >= P < g,z > Vze WY (RY).
+ Jj=1
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We are going to adapt some of the ideas in Grisvard [59]. For that purpose we take a
sequence of functions g, € W'~1/PP(RN-1) with g, — g in W-V/PP(RN-1), Let us study
the variational equations

/ (Vsz+yz)+NZ_1ﬂ<6y z>=L< z> Vze W (RY)

- n n P mn z; Yns YN — Gns IN .

(2.1.32)

These equations can be written as
—Ayn+ys = 0 in RI-:-,
N
Zm,-&mjyn = g, onRV-1x {0}.
o
Thanks to Grisvard [59], we know that each of these equations has a unique solution

Yn € W2P(RY), and that it can be explicitly represented by means of Fourier transforms
as

Y = —E * (k3 ® 8y + k7 ® Ow), (2.1.33)
where
k} = F~'bFg,,
kT = F~'p_bFgy,
N-1 -1
b= (mNp_ + Z im,-fj)

i=1

and

p- = —iv1+ ¢
We want an estimate of the W'P(RY )-norm of y, in terms of the W~/##(RV-1)-norm

of gn, so that we can take the limit in (2.1.32).
Lemma 2.3.2.5 in Grisvard [59] implies that

kT € W-l/ep(RN-1)

and
KT [lw-1/50(r-1) < Cllgnllw-1/5.5@n-1y- (2.1.34)

Applying Lemma 2.3.2.2 in Grisvard [59], with 8 = —1/p, we get that

T® by € WHP(RN)
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and
kT ® onllw-re@ny < ClIETlw-1/p0@n-1)- (2.1.35)

Lemma 2.1.6 implies that
E x (k? ® 6y) € WHP(RY)

and that
1B % (kT ® 6n) lwrs@ny < ClIk} ® O llw-1oggn)- (2.1.36)

So putting together (2.1.34), (2.1.35) and (2.1.36) we have that

IE * (K @ ) lws.s@y < Cllgnllw-vrpoga—1)- (2.1.37)

In the same way, using Lemmas 2.3.2.5 and 2.3.2.2 in Grisvard [59] we have that
ky € Wi /ra(RY1),
|Ik3|IW—1/p-p(mN-1) S C”gn"W—llmp(]RN—l),
kP ® oy € WLP(RN)

and
kg ® nllw-15mny < Cllkgllw-v/5.pmn-1). (2.1.38)

Following again the same method than for £}, we get

E + (k7 ® 6y) € W(RV)

and
| E * (kg ® 6n)|lwre@ry < Cllgnllw-1/opma-1y-
Therefore
2y |E * (K} ® 6)] € LP(RY)
and
|02y [E * (kg ® 5N)||]LP(RN) < C||9'n||w—1/m(nN-1)-
But
Ozy [E * (k§ @ On)] = E * (k] @ 0y), (2.1.39)
80

Ex (K ®8y) € L*(RY)
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and
1B * (k5 ® Ox)||e@ny < Cllgallw-1/pe@n-1). (2.1.40)

To see that E x (k} ® %) € WHP(RY), we just have to prove that its derivatives
belong to LP(RY). For 1 < j < N — 1 we can write
s,k = Fi£;bF g,
and then, using Lemmas 2.3.2.5 and 2.3.2.2 in Grisvard and Lemma 2.1.6 we have that

By, kp € W-Ypo(RN-1),

||azjk3||w-1/m(RN~1) < C||gn||w-1/P-P(RN~1)a
B:,k5 ® oy € WH(RY),
102, k3 ® o llw-1.0mavy < C||8z; k5 llw-1/5.ma-1y,
E x (85,k3 ® 6n) € WP(RV) (2.1.41)
and
| B * (Oz;k5 ® 6n)|lwrsmyy < Clignllw-1/esmn-1y-
And therefore we have that
Oz, [E * (kg @ 8y)] € IP(RY)
and
[1Bs; [E « (kg ® 6y)] || zomay < O”Qnuw—l/p.p(wv—l). (2.1.42)

To get Oy [E * (k§ ® 8)y)] € LP(RY) and an estimate of its norm in terms of the
norm of g, in W-1/P?(RV-1), we can write

N-1
Oon [E % (k3 ® b)) = 0% [E * (k§ ® 6n)] = Ex(k§®@dn)—) 03 [B * (k§ ® dy)] in RY
Jj=1
since E is an elementary solution of —A + 1 and k} ® dy is a distribution with support
on RV-1 x {0}. We already know that E * (k§ ® dy) € LP(R") and an estimate of
its norm in terms of | gn||w-1/ssgn-1) (indeed, we know that it belongs to W?(R")).
Taking into account (2.1.41) and writingfor 1 <j< N -1

0% (B * (K} ® 0)] = 0x, [E » (05,5 ® 6n)] ,
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we have that
3:; [E * (k ® 6n)] € LP(RY)

and
"6’2’? & » (kg ® JN)] ”L’(RN) < C”gn”W—llp-p(RN..1).

So finally we have that
8oy [E * (k3 ® 0y)] € LP(RY)

and
18zn [E % (k§ ® 63)] ||zomer) < Clignllw-1/pmgn-1)- (2.1.43)

Putting together (2.1.40), (2.1.42) and (2.1.43), we have that

E * (k§ ® 6y) € W'(RY)

| E * (kg ®6§V)”W1-P(]Rf) < C”Qn”w—l/p.p(mnr—l)- (2.1.44)

Now from (2.1.33), (2.1.37) and (2.1.44), we deduce that

||!ln||w1m(mg) < C”!Jn”w-l/v-r(nﬂ-l)-

Now we can take y the limit of y, in WL?(RY), and pass to the limit in equation
(2.1.32). Thus we obtain that y is a variational solution of our problem.
Uniqueness follows again from the density of W?(RY) N H*(RY) in WP(RY). O

Corollary 2.1.10 For f € (W' (RY)), g € W-Y/»»(RN-1) and my,...,my € R,
my # 0, there ezists a unique variational solution y € WP(RY ) of the problem

~Ay+y = f inRY

N
Zm,-a%.y = g onRV-! x {0}.

J=1
Moreover, the following estimate is satisified:
[¥llwomyy < C (151l sy + lgllr-simos)

where C' depends on N, p and the coefficients m;.
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Proof. Thanks to Lemma 2.1.8,we know that there exists a unique variational solution
v € WP(RY) of
—Av+v = f inRY
{ 0;xv = 0 onRMN-! x {0}
This function satisfies
lollwsms) < O o gy (21.45)

Then we have that yvv € W'~Y/PP([RN-1), and for 1 < j < N—1, 8;,yvv € W-Y/P#(RV-1)
and

1827wl w-1/pp(mn-1) < [|v] |W1-p(m$)- (2.1.46)
Thanks to Lemma 2.1.9 we can solve the problem
-Aw+w = 0 in RY
N N-1
z m;O,w = 9-— Z m;0, (ywv) on RV~! x {0}
j=1 j=1

We have that w € WhP(RY) and that

N-1
||w||w1m(m§{) <C (||9||w-1/m(n~—1) + || zm'jaa:j'Yanw-l/p.p(RN-l)) -
i=1

Using this inequality with (2.1.46) and (2.1.45), we get

”wllwl-"(lkﬂ) < Cc (”f“(wl.p'(kg))' + ||g! Iw-llp.p(]gn-l)) . (2.1.47)

We have that y = v +w € WIP(RY) is the solution of our problem, and from (2.1.45)
and (2.1.47) it is easily deduced that the required estimate is satisfied. O

Corollary 2.1.11 Let A = (ai;) be a positive definite matriz of real entries, A > 0 and
f e (W (RY ))'. Then, there exists a unique solution y € W4#(RY) of the variational
equality

N
Z as‘jf O, Y0z, 2 + Af yz=<f,z2> VYzeWW(RY). (2.1.48)
RY RY

ij=1
Moreover, the estimate
”7/”W1-P(]R§) < C”f' I(w1.p'(mg))" (2-1-49)
holds, where C is a constant depending only on p, m, M, X and N
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Proof. If we call B = (bi;), bij = (aij + a)/(2)), and we rename f = /A, then our
equation can formally be written

N
— Y 85,(bi05y)+y = f inRY

ij=1

(2.1.50)
ViyAn = 0 onRN-! x {0},

where v = (0,...,0,1)T. Notice that .Av does not belong to RN~ x {0}.

The matrix B is symmetric and positive definite, so there exists a regular matrix P
such that B = PPT. If we write T = P~! and make the change of variable # = Tz, then
(2.1.50) in transformed into

~Aj+§ = f inTRY
VIiTAn = 0 onT(RV! x {0}),
where §j = yoP and f = foP. Notice again that since T is regular T.Av ¢ T(RN-1 x {0}).
Let us take an orthogonal matrix Q such that QT(RV-! x {0}) = R¥-! x {0} and
QTRY =RY. Ifwecall £ =Q%, j=§o Q" and f=foQ!, we get the equation
A1 ) = F in N
j+g = f R (2.1.51)
VT§jQTAn = 0 onRMN-! x {0}.

Again since @ is regular QT Av & RVN-! x {0}. If we call m = QT Av, this means that
mn # 0 and we are under the conditions of Corollary 2.1.10. Therefore there exists a
unique variational solution §j € W#(RY) and

Il < N oy

Undoing the changes of variable, we get that there exists a unique variational solution
y € WH(RY) of (2.1.48) and it satisfies the estimate (2.1.49). O

Remark 2.1.3 Let us note that the boundary condition of (2.1.51) is reduced to 8;, 9 =0
on RN=1 x {0} whenever the matriz A = (ay;) i3 symmetric. In such a case Lemma 2.1.9
18 not needed to establish 2.1.11, the proof being much simpler and carried out just by
applying Lemma 2.1.8.
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Now we are ready to prove Theorem 2.1.3. In what follows we shall denote fxy =
f+gov and we have that fy € (W#(Q))". Then (2.1.9) can be written in the following

way.
a(y,z) = {fn,2) Yz € W (Q). (2.1.52)

We shall use a result analogous to Lemma 2.1.4; see Troianiello [87] and Stampacchia
[84] for the proof.

Lemma 2.1.12 Let us suppose p > 2. Then there erists a unique variational solution
y € H(Q) N L**(Q) satisfying the equation (2.1.4). Moreover, the estimate

¥l @) < CllInll rw ayy (2.1.53)

holds, where C i3 a constant which only depends on p, the dimension N, m, M and the
measure of ). Notice that obviously also

Illz0) < ClliNll rrr gy

Proof of Theorem 2.1.8. First let us consider the case 2 < p < +oo if N = 2 and
2<p<2N/(N-2)if N > 3. Let y € H(Q) N L*(N) be as in Lemma 2.1.12. The plan
of the proof is as follows

1. We take a collection of coordinate systems of I' and a subdomain of 2, as well as a
partition of unity relative to this collection. Then equation (2.1.52) is studied on
each of these domains.

2. A change of variables is made in order to have a problem with continuous co-
efficients in a rectangle. Furthermore we know that the support of the solution
intersects at most one of the sides of the rectangle and it is “far away” from the
others.

3. We “freeze” the coeflicients, so that we have a problem with constant coefficients
in a rectangle. The support of the solution may be either in the interior of the
rectangle or just intersecting one side as before.

4. We extend the problem to the whole space or to the half-space and solve it.
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Step 1.
Since the boundary of 2 is of class C?, there exist (cf: Neéas [72]) numbers a > 0, 8 >
0, coordinate systems (Zk1, Zk2, - - - , ZkN ), shortly (Z}, Zen), £ =1,2,..., A, and functions

b of class C! in the N — 1 dimensional closed cubes |zx;| < @,i=1,2,...,N—1,in
such a way that each point z in I' may be represented at least in one of these systems like
T = (z}, bx (z})). It is also supposed that the points (z}, zxn) such that z), € [-a, o]V,
br(z}) < zen < bi(z})+ B are in Q, while the points (=}, zxn) such that z} € [~a, o]V,
b,,(a:;) —B<zkN < b,,(z;,) are out of 2.

Foreach k=1,2,...,A let us denote

Gx = {(z}, br(z}) +1), 7, € (~a, @)V}, 0< t < B},

and let us take an open set Gy C Gp41 C Q such that {Gy,...,Ga,Ga+1} is a covering
by open sets of the closure of 2. We also choose {%1,...,%¥a,¥a+1} a partition of unity
relative to this covering.

Taking
Ye = Vry
and
N N
< fryz2>=< "pkaa z> —/ z zaijaziyaz,¢k+/ 'J'yam'/’kaz,-z Vz e Wl'p' (Gk)
G 4,j=1 Gk i i4=1

it is easy to check that gy, verifies the equation

N
f Z i Oz, Yr0z; 2 + f w2 =< fr,2> Yze WY (G,).
G G

k §,j=1
Using Lemma 2.1.12, assumptions on p established above and arguing as in relations
(2.1.16)—(2.1.18), we get that f € (Wl"'(Gk))'.
Notice that the support of both y; and f; are “far away” of the part of the boundary
of G, which does not intersect I

Step 2.
Now we are going to make a change of variable in order to transform the domain Gy
in a rectangle. For k = 1,2,..., A let us define Ji : Gy — R = (—a,+a)¥~1 x (0, 8)

by
y = Ji(z) = (¢, —be(z) + z4).
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Ji is a C! diffeomorphism. The function 2i(Z) = yx(Z', be(Z') +Z ) satisfies the varia-
tional equation
ar(2k, 2) =< fE, 2> Vze W' (R),

where f% € (W'¥(R))' is the transformed of f; by the change of variable and
ax(zk, 2) = / Vi (DJi) A(DJk)T V2T |Jacd; | + szzlJach'lI,
R

where A is the matrix (a;).

The bilinear form a; has continuous coefficients and it is coercive in H'(R). We
shall denote the coefficients of a; by afj and af. By construction we know that z; €
HY(R)N LP(R) and that its support intersects one of the sides of R and it is “far away”
from the others. Let us prove that z; € WHP(R) and that the estimate

zellwzmy < Cllfll oy (2.1.54)

For G+ we do not need to make any change of variable. In this case the support of

Up+1 i8 in Gpqs.
Step 3.

This part of the proof is analogous to that of Dirichlet’s case. Using (2.1.13), we take
again a covering by open sets of diameter less or equal than p, {C},‘"}:=1. These sets are
squares for k = 1,2,..., A or have a C*® boundary for k = A + 1. We choose a point
Ty, € C:". We also take a partition of unity relative to that covering {¢.}._,. We
take zy, for 1 < 8 < u like in (2.1.14) and so we have that 2z, satisfies the variational

equation
akaa(zk,u z) = T:;T,, (z) Yz € Wi¥ (R)

where

N
aa(2,0) = Y afi(zh,s) /1; 5,204, v + af (Tk,s) j; 2v

i,j=1
and

T?’(Z) = <fN,tpk,,z>+l .Eﬂ afj(z)z(a:)ax‘.qak,,(z)azjz(z)+

i,5=1

l §n: afj(x)azizk(z)a.’ﬂj QOA-,,,(:L')Z(:E) +

1,j=L
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/;«:,, Z (ij(xic,a) = Gij(m)) 6z£§(x)az’_z(m) g

i,j=1

[, (@hans) - dh@) €2
o

[

for any £ € W1#(R). For k = A+1 the previous relations hold by replacing R for Gp+1.

Step 4.

Notice that thanks to the properties of the supports of z; and ¢, only two cases
can appear:

e First case: the support of 2, is inside C¥*.

¢ Second case: the support of 2, intersects one side of C’,’,‘” and is “far away” from
the others.

Taking E = R" in the first case and E = RY in the second one, we have that 2, €
H(E)N LP(E) and satisfies the following variational equality

Gka(2k0,2) =T (2) Vz € W (E),

where .
dk,s(2,v) = Z afj(:z:k,,) / az,.za,,,v+af§(xk,,) / 2v.
o1 E E
Using Corollaries 2.1.7 y 2.1.11 we deduce the existence of a unique solution z; € W?(E)
of
Gr,s(2,2) = T (2) V2 € W' (E)

for every £ € W?(E). As in the proof of Theorem 2.1.1 we can show the contractivity
of the mapping £ — 2z for p small enough. Therefore there exists a unique fixed point
of this mapping, which is 2z, So we have 2z, € WP(R) and z, satisfies estimate
(2.1.54).

So the proof can be concluded adding up all the z ,, undoing the change of variable,
and adding up all the y.

Once again, arguing as in the proof of Theorem 2.1.1, the result can be extended for
allp > 2N/(N —2) and by duality to every 1 <p < 2. O



48 2. Regularity results for linear equations

2.2 Parabolic equations

In this section we study the regularity in L7(0,T; Wt%P(£2)), € > 0 of the
solution of a parabolic problem with Neumann boundary condition. The
purpose is to deduce regularity L7(0,T;W'*s?(Q)) of the solution under
minimal assumptions on the regularity of the coefficients of the main part
of the operator and on the boundary of the domain. As in the elliptic case,
continuous coefficients and C! boundary are enough for this regularity if
e = 0. If € > 0, Holder continuous coefficients and a C**¢ boundary will be
needed.

Introduction

Let Q be an open, bounded, and connected set of RV Again we will denote T
the boundary of . Let T be a positive real number. Let us take Q@ = Qx]0, T and
¥ =T'x]0,T[. We introduce the elliptic operator

Ay=- Z 2 (a35(, 1) Bz, y)

i,j=1

The purpose of this section is to study regularity results in L7 (0, T; W'*s?(Q)) of the
solution of the problem

_19_t +af;y = f in Qa
—Z. = 2.2.1
B, g onk, ( )

y(,0) = 0 inQ.

In this section, whenever it does not lead to confusion, we shall use the following
shortening: L™(W*?), L2(H?), Wi ((Whe)"), L*(L*¥(§)), L¥(L"(T")), and C(C({)) re-
spectively for L7 (0, T; W*?(Q)), L*(0, T; HY(R)), Wi (0, T; (W'*(2))"), L¥ (0, T; L*(Q2)),
I7(0,T; L7(T')) and C((0, T); CO<(Q)).

There exist in the literature various results related to this. To make the exposition
more simple, and since most of the references are related to Dirichlet’s problem, we will
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consider in this introduction Dirichlet’s problem
gt_—y +Ay = f inQ
y = 0 onX (2.2.2)

y(0) = 0 inQ2x {0}

The results we are looking for are related to maximal regularity results in the space
L7(0,T; WhP(Q) (L"(W'P)-MRR to shorten):

“The mapping A that relates f with the solution y of the equation (2.2.2) is
continuous from L7(0,T; W~1#(Q)) into L7 (0, T; Wy P(Q))nW7 (0, T; W-1#(Q)).”

As it is explained in Theorem 2.2.1, this regularity result is closely linked to this other

“The mapping A that relates f with the solution y of (2.2.2) is continuous
from L7(0, T; L*(Y)) into L7 (0, T; W2P(Q) N W,*(Q)) N WL (0, T; L*(R)).”

We will refer to it as maximal regularity result in L™(W?2?) (L™(W2?)-MRR to shorten).
There are some references for this kind of results:

If the boundary of Q2 is of class C?, the operator is in non divergence form and
aij(z,t) € C(Q), then L"(W?P)-MRR can be found in Schlag [80] or Ladyzhenska-
ya, Solonnikov and Ural'tseva [64] for p = 7, Dore and Venni [48] or Amann [4] for
p # 7 but a;; independent of time. For a;; dependent of time, a L™(W??)-MRR can be
found in for I of class C* in Von Wahl [90]. Amann announces at the end of Chapter
IV of [4] that other results will appear in the second volume of his monography [5].
Labbas and Moussaoui in [63] establish a L™(W??)-MRR. supposing that I is of class
C?, a;(z,t) € C(Q), %': € L*(Q), y aij(z,t) = a1(z)az(t) if i = j, a;; = 0 else. In
Cannarsa and Vespri [14] a L™(W??)-MRR is established for 2 = R¥, with bounded
coefficients a; j(z,t) € C(Q), ﬁ%‘éfﬁ € C(Q).

Let us see that a L”(W*)-MRR can be deduced from a L"(W?%?)-MRR by duality,
transposition and interpolation

Theorem 2.2.1 If the mapping A which associates the solution y of (2.2.2) to f is
continuous from L7(0,T; L*()) to L"(0, T; W22(Q) N W,y *(Q)) NWL7(0, T; L*(R)) then
A is also continuous from L7 (0, T; W=1#(Q)) to L7 (0, T; WaP(Q))NWL7 (0, T; W=1#(Q)).
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Proof. Let us consider the parabolic equation

—% +Ay = f inQ
y =0 onX (2.2.3)
y(T) = 0 inQx{T}

From the continuity assumption on A, one can easily deduce that the mapping L which
associates the solution y of (2.2.3) with f is continuous from L™ (L*) into L™ (W?F N
W) N W' (L¥). Now we suppose that f belongs to L™((W2* N W ¥')"). We can
define the solution to (2.2.2) by the so-called transposition method in the following way:
We say that y € L™(L?) is a solution of (2.2.2) (when f € L™(W2* nWy*Y) ) if

y=L*f (2.2.4)

(where L* is the adjoint operator of the operator L above defined), that is
(—%+A )dzdt = (f, p) (2.2.5)
Q " P)ATAL = \Ts @i Lr (was nwgr® y)xL (W2 (Wi ) -

for all € L™ (W2 N W) n Wi (1¥).

Since L is continuous from L™ (L*' to L™ (W2¥ N W2¥), then L* is continuous from
L™ (W nW;¥'Y) to L7 (L?).

Observe that L™(L?) may be identified with a subspace of L™((W?F N W2*)’) and
that if f € L™(L?) then Af = L*f.

Therefore L* is a continuous operator from L™(L?)+LT((W2¥ N\Wa*')') = L™((W2¥ N
WEP)) into L7(L?). It is also continuous from L7(L?) into LT (W2F N WF).

Therefore L* is a continuous operator from

@), L w oweey)

into

[L‘r (Lp), L’ (W2,p' N Wol,})’)] 2 =7 (W(}s?)’

(where [, -]1/2 is the complex interpolation functor of exponent 1/2).
By using Triebel [85, Theorem 1.11.3] and with the identity

[L™(L7), L7 (W2 N Wo* )y = L7 (Wo ™),
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we obtain
[L7(LP), L (W N Wy*))]ye = LT(W-1P).

Therefore L* (or A) is a continuous operator from L™(W =) to L(W,"*).
Now if y is a solution of (2.2.2) we can write

dy ad
(Et- ‘P)w—lm(n)xwé""(n) ={f,0) - /‘;(Z 6ij0r; Y0a, p)dz
$,j=1
for every © € W&""(Q). Since y € L7(W,*) it follows that the vector distribution 3—!:

belongs to L™(W~1*) and satisfies

dy
| < O\ fllzriw-soy

Lr(W-1p)

The proof is complete. O

The aim of this section is to get a regularity result in L™(W'?) with continuous
coefficients and a C? boundary. Under these conditions it is impossible, to our knowledge,
to obtain a result in L™ (W??), and therefore the previous theorem is unappliable. The
only similar result we have found in the literature is of Vespri [89, Theorem 3.1).

The technique we use is that of perturbation of the constant coefficient case, and we
apply it directly to deduce L™(W*%?) regularity.

Preliminary estimates

We suppose that 7 € (1,00) and p € (1,00) are given fixed throughout the section.
We now state some hypotheses.

¢ The boundary I is of class C'*¢ for some 0 < € < 1.

o The coefficients a;; belong to C([0, T]; C%(f2)) and satisfy

N
mlEl? < ) aij(z, )€ < M|E|1* for all € € RV and all (z,t) € Q

=1

for some m, M > 0.
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Recall the following regularity results. Assume that the boundary I is of class C2.
Set @;; = a4;(Z,%) and Ay = — Eﬁ,‘=1 Ox, (ij0z,y), where (Z,?) is any point in Q. Then
the mapping that associates f with the solution y of

%+Ay = f inQ,
9y

6TA = 0 onE,

y(,0) = 0 inQ,

is continuous from L¥'(L¥ (Q)) into LT(W+**) when one of the following conditions is

satisfied
€k N 1 1 N

1 -
0< 2 < —4"H4--—— - ifk < k < 2.2.
2 2P+T+2 2k1 kl’ lf l_Pa-nd 157, ( 6)
€k N 1 N . 7
— L=t == ifk < dk > 2.
0<2<21u+2 gy Th<pandk > (2.2.7)
g 1 1 1 | -
0 < - < - S T k k < ’ okie
5 T+2 I ifky >pand k; <7 (2.2.8)
O<e <1, ifky >pand k> (2.2.9)
For non homogeneous boundary data, the mapping that associates § with the solution
y of
O | 3 :
5 +Ay = 0 inQ,
57;6% = g onx
y(-,0) = 0 inQ,
is continuous from L% (L (T')) into L™(W!'****) when one of the following conditions is
satisfied:
eg N 1 N - 1 1 0 -~
20 & D e — < < 2.1
0<2<2p+T %1 5o ifo, <pand 6, <7, (2.2.10)
ee N N-1 -
—<———— ifo1 < d 2.2.
0<2<2p 2 ifoy,<pand 6, > T, (2.2.11)
0<€—"<l+l—l if oy > déo < (2.2.12)
D) 2p - 5’1’ 01 pandao; ST, 4.
0<es < %, ifo, >pand 6, > 7. (2.2.13)

The previous regularity results may be proved by using the same techniques as in
[77, Prop. 3.2].
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In all what follows € > 0 is given fixed, strictly less than min(é,2/7,2/p), and less
or equal than min(e,,€x), where €,, €; are chosen as in (2.2.6)—(2.2.13). We make the

following hypotheses on k;, k1, &1, 01.

« The pair (k1, k1) satisfies one of the conditions (2.2.6)—(2.2.9) and

EAl + -1— <1 (2.2.14)

2k;  k

o The pair (G1,0,) satisfies one of the conditions (2.2.10)-(2.2.13) and

N-1,_1 1
20, a2

(2.2.15)

Remark 2.2.1 Conditions (2.2.14) and (2.2.15) are needed to prove Propositions 2.2.7
and 2.2.9.

A regularity result in L™ (W'*¢¥®) for the linearized state equation is proved in Proposition
2.2.7. We first establish some preliminary estimates.

Proposition 2.2.2 Assume that the boundary I i3 of class C2. Set a;; = as;(%,%) and
Ay =— ijﬂ Ba, (802,y), where (z,1) is any point in Q. Let f be in L* (L*(Q)) and
§ be in L7 (L°'(T')). Then the weak solution y to the equation

Widy = 7 inQ,
* &
== = § 2.2.16
Bz g onk, ( )
y(-,0) = 0 inQ,
belongs to L™(W'+P) N L?(H!), and satisfies
lwllze wr+emynzaany < 0(”f||;,£1(z,h(n)) + 18l z21 (Le1 (1‘))), (2.2.17)

where C depends on Q, T, €, ki, ki, 61, and oy but is independent of the point (z,1).

Proof. The proof may be performed by using estimates on analytic semigroup as in
[77, Proposition 3.2]. Observe that the conditions linking El, k., &1, and oy, with p, 7,
€, and € are needed to prove the above estimate. O
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Proposition 2.2.3 Suppose that the boundary " is of class C?, and define the coeffi-
cients @y as in Proposition 2.2.2. Let f be in (L™(W9)NL?(Q))¥, with min(p, ) <
g < p. Then the weak solution y to the variational equation

/ dxdt+/ Za,,amyazjqbdzdt—/f V¢ dz dt

:,,1—1

for all ¢ € C*(Q) such that ¢(T') =0, belongs to L™(W'+*9) N L2(H*) and satisfies

"y"Lr(w1+t,q)nL2(H1) S C”ﬂI(Lr(wc.q)nLa(Q))N,

where C is independent of (Z,%) € Q and of ¢ € [min(p, 2% 52),0l.

Proof. The estimate in L?(H'), when f belongs to (L?(Q)) is classical. Let us
prove the estimate in L™(W!'*¢9). From maximal regularity results for equations with
regular coefficients, we deduce that the mapping f =Yy (where Yy denotes the solution
to the equation) is continuous from L™(W9) into L™(W29), and from L7(L9(R)) into
L™ (W) (see [89]). Moreover the constant in the corresponding estimates may be chosen
independent of ¢ € [min(p, 33552), pl. Since (L7(W?9), L™ (W)).q = LT(W'*49) (see
Triebel [85], or Daners and Medina [46]), the result follows by means of real interpolation.
0

Proposition 2.2.4 Suppose that the boundary T is of class C?, and define the coeffi-
cients @;; as in Proposition 2.2.2. Let f be in L%(Q), and let y be the weak solution in
L%(H?) to the variational equation

/Qy%"’dde/ Z% Oy, Oy,  dz dt = /qudzdt

‘I,J].

for all ¢ € C*(Q) such that ¢(T) =0. If p < 2, then
Iyl - wr+emynraany < C|| fllzaq)-
If T<2andp > 2, then

9]l zrwrtenynzacay < C|lfllzag)s

with ¢ = ,,,2,”'25. IftT>2yp>2, then

|9l wrrenynzz @y < Cllfl|za(q)s
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for any q > 2 satisfying % +3< 5’% + % + 3 — §. Moreover, in the above estimates, the
constants C are independent of (Z,1) € Q.

Proof. If p < 2, using estimates on analytic semigroups, we can prove that y belongs
to L™(W'*%2) for every 7 > 2 such that 1/2 < 1/7+1/2—¢/2. Since € < 2/7, y belongs
to L™(W'*%2) for every 7 > 2. If < 2 and p > 2, then y belongs to L?(W?22). In this
case, the estimate follows from Sobolev embeddings. The last case can also be treated
by using estimates on analytic semigroups. O

Proposition 2.2.5 Suppose that the boundary I' is of class C3, and define the coeffi-
cients @;; as in Proposition 2.2.2. Let f be in L"(W*9) N L*(Q), with min(p, g2r-s) <
g < p. Then the weak solution y to the variational equation

o¢ 2
— y—da:dt+/ ag-aziy63.¢dxdt=/f¢d$dt

/; ot Q,',jz___]_ ’ ! Q
for all ¢ € C*(Q) such that ¢(T) = 0, belongs to L™(W*ted) N L*(H*) with § = ﬂ if
g< N, g=p ifq> N, and satisfies

”y"L"(WH"-ﬂ)nLﬂ(Hl) < C”f"[,f(wa.q)nm(q),
where C is independent of (%,%) € Q and of q € [min(p, g2z ).0l.

Proof. Usingreal interpolation, as in the proof of Proposition 2.2.3, we can first prove
that
lyllr(wateaynLaary < C|lf || weapnra(q)-
We conclude with Sobolev embeddings. O

Lemma 2.2.8 Let e < & <é. For all g € [min(p, 5255).0], all a € C([0, T}; C*4()),
ally € L™(W*1), ay belongs to L™ (W*1), and
layl|z-(weey < Cllallcqomm;coe lyllLr(wee)s
where C' does not depend on g € [min(p, T::zﬂl 52):0].
Proof. Using the definition of the norm in L™(W*¥), with straightforward calculations
we obtain

& z,t)y(z,t) — a(z’, t)y(z', t)|9 /e
laylZrawen = fo ( fn nIa( W(2,t) — a(a’, thy(',t)|* dxl) it
X

|z — z'|ﬂ+8q
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<o ([ lmpsor e dzdz,)*’th

P P
) I = AL T/q
a y(z,t) — y(z',t)|
+C'/; (/nxn ekt |z — z'|n+eq dzdz’) dt

; da’ T/e pT /4
< Cloffonsymesen ([ o= smveeen) ) ([ W@tirde) " as+Claligy lulE-coeoy

The proof is complete. O

Once stated these auxiliary estimates, we are now ready to write the needed regularity
results for the study of the equations involved in the control problem. Let us start with
the main result of this section.

Proposition 2.2.7 Let a be in L¥1 (L% (Q)), b be in L7(Lo1(T)), f be in L& (L7 (Q))
and § be in L% (L' (T")). Then the solution y in L*(H') N C([0,T]); L?) to the equation

. %+é4y+ay = f inQ
Seth =3 o (2:2.18)
y(-0) = 0 inQ,
satisfies the estimate
1y llzrwiresy < CUIFNl Lo zms gy + 18122123 ) (2.2.19)

where C only depends on N, T, A and an upper bound for "“”Lix(Lh(n)) + ”b”L"l(L"l(I‘))-
Proof. Due to (2.2.14) and (2.2.15), first natice that y € L*(Q) (see Casas, Raymond
and Zidani [35]), and that

[l < C(”f“:,h(nkl(n)) + ”.&”Lﬂl(Lﬂ(r)))s (2.2.20)

Therefore it is sufficient to consider the case where a = 0 and b = 0. We now suppose
that we are in this case. To prove (2.2.19), when the coefficients as; € C([0,T); C4(9)),
we use a technique of freezing coefficients as in Vespri (89, Theorem 3.1]. Up to Step 3,
we suppose that the boundary I is regular.

Step 1.
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First we prove an estimate in L™(W*?). From LadyZenskaja et al. [64, Chapter 3,
Theorem 5.1], we know that the weak solution to (2.2.18) belongs to L%(0,T; H*(2)) N
C([0, T); L?(Q2)), and satisfies

lly"L’(O,T;H1(n))r‘IG([O,T];L’(ﬂ)) s C(”f”[h(Lh ()] T gl z#1 (Le1 (I‘)))- (2-2-21)

Choose 7 and r, such that § + 1=f = ,1-,, and £+ 22 = 1, where £ is an exponent strictly
greater than €. Since ||yllz7z-(a)) < Cllyllz=(g) and [L7(Q), W12(2)]e — W=*(§2), from
(2.2.20) and (2.2.21), and by interpolation it follows that

||y||Lf(W='P) = C("f“Lil(th(n)) + ||§||L51(L°1(I‘)))-

Step 2.

Forany p>0,let 0=1¢; <t3 <... <ty <... <tg =T be a regular subdivision of
[0, T), such that t; — tx_; = £(p) and

max{||a; (2, ) —aii (¥, )l coemy | £ € [te-1, 2], € [te-1, 8,1 <4, S N,2<k <K} <p.

Let {C‘,‘}}f=1 be a collection of open sets of class C'*, of diameter less or equal than p > 0
such that
QcuUi_,C,,

and let {¢,},_, be a partition of unity subordinate to this covering. Let %4 be the
continuous function on [0, T'), affine on each interval [t, £,+1], which is equal to 1 on
and 0 on ¢; if j # k. For a given fixed point z, € C;, set

a,: = aij(Z5tk) Y Ysk(Z; t) = Yr(t) s (z)y(z,t) for 1 < s < B 1<k< K. (2222)

Let us fix 1 < k < K and 1 < s < p. For every £ € L*(H?), define the operator T}’ by
10) = [ dupfodsit+ [ wapdsa

/ Ue'S” a5yl b di / b S adu0,,pubdadt

G,J_l J—l

+ / (p,y.f'&¢dmdt+ / o f Z(a,J 6i5)0r, €02, ¢ dz dt,

c; ,J=1
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with the convention ¢y =¢; = 0 and tx4, = tx = T. For every £ € L*(H?), let z(¢) be
the unique solution in L?(H?) to the variational equation

/ 9 4z dt + / Z 8210, 20s, 6 dz dt = TH(g) (2.2.23)
1,3_1
for all ¢ € C*(Q) such that ¢(T) = 0. Observe that z(yx) = ysx. Let us prove that, if p is
small enough, then the mapping £ — 2(£) admits a fixed point in L™(Wte?1) N L2(H?),
where p; = min(p, z2%5). Due to Lemma 2.2.6, if £ € L™(W+*#) N L%(H?), then
;AL1( ¥ — a;)0z,€ belongs to LT(WeP1) N L%(Q) for all 1 < j < N. Notice that
Ve 0sf belongs to L1 (L*(R)), vrw.d belongs to L7 (L*(T)). Due to step 1 and Lemma
2.2.6, Y 31, a;j¥0s,ps belongs to L™ (W) N L3 Q) for 1 < j < N. Also observe
that i Z' ; =1 8ij0z,Y0s; ¢, belongs to L*Q), and w,ym belongs to L*(Q). From
Propositions 2.2.2 to 2.2.4, it follows that z(£) belongs to L™ (W*te) N L2(H?) for all
£ € L"(Witen) n L2(H?).
On the other hand, due to Proposition 2.2.3 and to Lemma 2.2.6, it follows that

|l2(&1)—2(&2) ||Lr(wr+errynraqany < C Z (@85 —045) (Bzi 61— 05:&2) | Lr(weenn L2 (a1 tasa [xCB)

$,j=1

<C (mmfi,jﬂﬁ., — 6ij(ths ) llgosey) + maxijllasi(t, ) — aii (logar-rtunbcoscs )))
”VEI - V€2”(L"(W‘-P1)nL2(Q))N
< C(F~% + p)|IVE& — V|| (weenynrag)s

for some € €]e,£[. Therefore, for p small enough, the mapping € — 2(£) is a contraction
in L7(W'teP1) N L2(H!). Since the solution z of the equation

fz—dzdt+f E""Bz,zam,qbdwd.t T {v)

I,jl

for all ¢ € C*(Q) such that ¢(T) = 0, is unique in L?(H*) and is equal to y,, this fixed
point is y,&. From the equality y = LK 3 .y, it follows that y belongs to L™ (Wlter),

Paso 8.

If p = p, the proof is complete. Otherwise, we set p; = —ﬂ—:", if p, < N, and p; =p if
p1 > N. We repeat Step 2. We want to prove that the mapping £ — 2(¢) admits a fixed
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point in L7 (WteP2) 0 L2(H'). Due to Lemma 2.2.6, if £ € L™(W*%P2) N L2(H!), then
Zﬁl(&;’; — a4j)0;,€ belongs to L™(W*P2) N L%(Q) for all 1 < j < N. Since y belongs to
LT (Witen) o, Efgﬂ 0ij0z, Y0z, s belongs to L™(W*P1) N L*(Q), and due to Sobolev
inequalities, 1 Zfil ai;Y0s,ps belongs to L™(WeP2) N L2(Q) for 1 < j < N.

As before %0, f belongs to L¥(L¥1(K2)), wp.d belongs to L% (L°*(T)), and 0y Tt
belongs to L*(Q). From Propositions 2.2.2, 2.2.3 and 2.2.5,it follows that z(¢) belongs
to L™ (W'*eP2) N L2(H?) for all £ € L"(W+=P2)n L2(H'). We conclude by proving that
the mapping £ —+ 2(¢) is a contraction in L™(W'*5Pa) N L?( H) for the same p as in step
2, and that y belongs to L™ (W'+%#2). Repeating this argument a finite number of times,
we finally prove that y belongs to L™(W!**?) and that

”y||L"(W1+"’) < C("f"z,il(z,kl(g)) + ||§“L51(L°1(r)))-

Observe that the first iteration of Step 2 (with p, ) is different from the second one. Indeed,
for the first iteration we only know that vy Z:f'a-:l 0ij0z,Y0y, 05 belongs to L*(Q), and we
use Proposition 2.2.4. For the second iteration of Step 2, we know that ;. Zf:.:l @40z YO, Ps
belongs to L™(W**1) N L%(Q), and we use Proposition 2.2.5.

Step 4.

If the boundary T is of class C*#¢, by making a change of variable in the variational
formulation of equation (2.2.18), the equation can be reduced to an equation similar
to (2.2.18)but with a regular boundary. Due to steps 1-3, the corresponding solution
belongs to L™(W'+¢#), By making the reverse change of variable, we can prove that the
solution to equation (2.2.18) satisfies (2.2.19). O

Suppose now that the regularity assumptions on I' and the coefficients are replaced
by

¢ The boundary T is of class C*.
¢ The coefficients a;; belong to C(Q) and satisfy
N
mllél* < " ay(z, )6&; < MIIE|1? for all € € RY and all (z.) € Q
1,j=1
for some m, M > 0.

In this case, we can adapt the proof of Proposition 2.2.7 to establish the following result.
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Proposition 2.2.8 Let a be in L¥(L* (), b be in L7 (Lo (T)), f be in LE1(L¥(Q))
and § bein L7 (L°'(T')). Then the solutiony in L2(H')NC([0, T]; L%(R)) to the equation

Oy o

—+Ay+ay = f inQ,

ot By
=l = { 2.2.24
B + by g onk, ( )

y(0) = 0 inQ,
satisfies the estimate
”y“Lf(lev) < O(”f”Lil(Lh(n)) + ”ﬁ”Lﬁ(Lﬂ(I‘))), (2-2-25)
where C only depends on Q, T, A and an upper bound for ||a|| ;& zr: ay + 1bll 222 (zor (o) -
Proposition 2.2.9 Let a be in L¥(L*(Q)), b be in L%(L°:(T)), f be in L¥:(L¥(Q)) ,
§ be in L% (L°:(T")) and ¢ be in L™(W'P). Then the solution y to the equation
J @+Ay+ay = f¢ nQ,
~—+by = g onZ, (2.2.26)
y(,0) = 0 inQ,
satisfies the estimate
yllzr oy < CUIFllgor gz gy + 18122 @) 1€ |y, (2.2.27)
where C only depends on Q, T, A and an upper bound for ||a||L;1(L;,l @yt 1Bl|ze1 (221 (1)) -

Proof. For simplicity we only treat the case where k; < p, fcl <7, 0, <p, and
01 < 7. The other cases can be treated in a similar way.

Notice that f¢ belongs to L*(L*) with § = z- +iand § =5+ NT"? ifp<N, every
k <k, ifp= N, and k = k; if p > N. Due to condition (2.2.14) satisfied by k; and k;,
we can verify that

%% 2 2
We can also verify that §¢ belongs to L?(L°(T")) with ; = 7+ 7 and = - + -(—E;V,' 5 if
p< N, everyo <o,ifp= N, and 0 = oy if p > N. Due to condition (2.2.15) satisfied

by o, and &;, we can verify that
N-1
20

N
2p

1 1
+-<—+-.
o T
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Therefore, if a = 0 and b = 0 we can prove that y belongs to L™(W®), and that the
estimate (2.2.27) is satisfied. For a in L¥*(L*¥') and b in L% (L°), (2.2.27) can be proved
by a fixed point argument as in the end of the proof of Proposition 2.2.10. O

To deal with the adjoint state equation for control problems governed by parabolic
equations, it is necessary to give it a sense. Consider the following equation.

—?2+A‘cp = divi] inQ,
L :
' ani. = —ij-7 onX, (2.2.28)
o(,T) = 0 in &,

where 7i is the outward unit normal to I, and 7 is supposed to be regular. (As usual A*
denotes the formal adjoint of A.) By definition, a function ¢ € L!(W*!) is a solution to
(2.2.28) if, and only if,

Oy
pt AR
./q((‘aat

for all y € C(Q) such that y(0) = 0. The variational equation (2.2.29) is still meaningful
if 77 belongs to L"(Q) for some r > 1, even if the normal trace 7 - 7i is not defined.

For simplicity, we still continue to write the variational equation (2.2.29) in the form
(2.2.28), even if the writing 77 - i may be abusive when 7 is not regular.

N
Z @4j0r, 90z, y) dz dt = —f - Vydzdt (2.2.29)

i,j=1 Q

In the rest of the section Eg, k2, 62, 02 and v are constants satisfying

N 1< N-1 1

*2T2+.—__1,

T 2 13 %, and v > 2 (2.2.30)
2

where &/ (resp. ki, o}, 1) is the conjugate exponent of k; (resp. ki, 01, 51). We also
suppose thatl?:l, k1, 61, and o, satisfy the following additional conditions

kbi>1 627,
Ny

— and o > W-1)p

k2N 2 Nong—Nig PN

Proposition 2.2.10 Let a be in L1 (L¥1(R)), b be in L7 (L°1(T)), F be in Lk (L (Q)),
if be in (L™ (L*))N, G be in Lo2(L°)(T")) and L be in L(Q). Then there exists a unigque
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@ € L™ (W) + L?(H") satisfying the equation

_%+A*¢+azp — F+div1’f in Q,
Op A
—r P — . 2.2.31
e + by G-7-i onkL, ( )
90(', T) = L in £,

and the following estimate holds

ol wreyiraqary < Clllnllizrrzsyw + 1 grazpagayy + 1Gllzeaesry + 15l v@y),

where C depends only on 0, T, A and an upper bound for ||al| i, pu, q)) + |18l 252 @es (ry)-
Moreover, if y is the solution to equation (2.2.18), the following Green formula is
satisfied

/¢(%+Ay+ay) dzdt+/‘.gtp(-a% +by) ds dt = (2232)

/qﬁ‘ydzdt = f ii- Vydzdt + / G‘ydsdt+/ Ly(T) dz.
Q Q z n

Proof. We first consider the case where F=0L=0, and G=0.

If a =0 and b = 0, and if the coefficients of the operator A are regular and indepen-
dent of time, the existence of ¢ € L™ (W*'¥) satisfying (2.2.31) can be obtained using
duality techniques, interpolation and maximal regularity results as in Vespri (89, Theo-
rem 3.3] and references therein. The passage from regular to continuous coefficients (also
depending on time) for A may be performed by localization and a fixed point theorem
as in [89, Theorem 3.1].

The case a # 0and b # 0 may be deduced from the previous one by using a fixed point
argument. Indeed, observe that if £ € L™ (W'¥) then & € L™ (I¥"), §z € L™ (LA(T)),
where p'* = p'N/(N—p') and § = (N~1)p')/(N-p') if p’ < N, p* and J are any real in
(1,400) if p > N. Since a € L¥ (L (Q)), b € L% (L (T")), we verify that af € L7(L")
and b¢jz € L#(L*(T)), where 1/7 = 1/ky +1/7', 1/r = 1/ks + 1/p"™, 1/5 = 1/6, + 1/7'
and 1/s = 1/o; + 1/8. Using (2.2.14) and (2.2.15), it follows that

]_v_+l<l_v_.+i+l and b+.];<N+}._
2r 7 2o T 2 23 § 22 1

Suppose that 1/k, > 1/p’—1/p" and 1/0; > 1/p' —1/8. In this case, the mapping that
associates the solution (¢ of the equation

—Q-E§+A‘tpfidivi)’—a5inQ, a_‘pf_=_ﬁ.ﬁ_b§on2, we(+T)=0in Q,
ot Ona-
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with ¢ is affine continuous from L™ (W'#') into itself. Usingthis property, we can prove
that & — ¢ is a contraction in L™ (0,%; W'¥') for  small enough. The estimate in
L™ (W'¥) may next be deduced by a standard technique. If 1/k; < 1/p' — 1/p™ or
1/01 < 1/p' — 1/8, the above fixed point method may be performed by replacing k; by

min(ky, (1/p' — 1/p"*)™"), and o1 by min(oy, (1/8' - 1/8)7).

Consider the case where F', L, and G are different from zero. The equation

ot

admits a unique solution ¢ satisfying

—%+A'tp+a<p=ﬁ‘inQ, r—aa(p+b<p=G'on2, o(-,T)=L in Q,

ellzagarsy < CUE N yia ginqay + 1C zoagaeseyy + 1 Ellzvien)

(see [64]). The Green formula is true for regular functions y, and it follows from a
denseness argument. O






Chapter 3

Study of the state equations

In this chapter we will study the non linear equations that relate the con-
trol and the state in the control problems studied in the second part of the
thesis.Results on existence and uniqueness of the solutions are established,
and also the continuous dependence of them with respect to the control. Un-
der extra assumptions we prove first and second order differentiability of the
solution with respect to the control.

Finally we make a Taylor expansion of the state with respect to diffuse per-
turbations of the control. This is needed when the set of controls is not
convex In this case it is not necessary to suppose differentiability conditions
with respect to the control.

In this chapter, unless we specifically state another thing, 2 will denote an
open bounded and conected subset of R¥, whose boundary T is of class C*.

3.1 Elliptic equations

Let A an elliptic operator of continuous coefficients of the form (2.1.1) (page 23),
p> N, ao € L*/?(Q), f a function f: Q xR2 — Rand g: ' = R, g € L*~*(T'). Let us
consider

Usd = {u:Q 2 R: u(z) € Ka(z) ae. z €},

where Kq is a measurable multimapping with non empty and closed image in P(R).

65
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Theorem 3.1.1 Let us suppose that f : Q@ x (R x R) — R is Carathéodory function,
decreasing monotone in the second variable and such that

EO0 - for all M > 0 there ezists a function ¥y € LP/2(Q) such that |f(z,t, u(z)| < ¥m(z)
forae. z€Q, forall |t| < M and for all u € Uyy.

Then, for all u € Uyq there erists a unique variational solution y, € W1P(Q) of the
problem

{Ay,,+aoy,, = f(zyuu) nQ (3.1.1)

avAyu = g onl.

and a constant Cy,, such that
lvullwie) € Cu,y  for all u € Uy,

Moreover, if {u;}32; C Usd and u;(z) = u(z) a.e. T € Q with u € Uy, then yu; — yu
in Whep(Q).

Proof. Let us take u € Upgg.

First we will suppose that there exists ¢ € LP2(Q) such that |f(z,y, u(z))| < ¥(z)
for all y € R and almost all = € 2.

Let us show first that there exists a solution. Let us define F : L?(2) — L?(2) such
that F(z) =y if and only if

Ay+agy = f(z,2z,u) inQ
Opay = 0 onl.

Since p > N, there exists a solution y, = F(z) € H(Q) and ||F(z)||g3a) < cll¥llLerz(q)-
From the compact inclusion H}(Q) C L?(f2) we have that F is a compact operator from
L?(Q) into L?(Q), and due to Schauder’s fixed point theorem, there exists a solution
y € H}(Q) of (3.1.1).

Uniqueness follows from the monotonicity of f in the second variable.

Let us see that the solution is bounded. Let us take k > 0. We define

y—k if y>k
0 if -k<y<k
y+k if y<-k.

Y&
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We have that y, € H'(Q) for it is the composition of a function in H'(Q2) with a
Lipschitz function. Moreover y; has the same sign than y. Using all this and that where
yx # 0, we have that the partial derivatives of y; coincide with those of y, and that

fn agyryr dz < fn GoYYk, we have that

m||yk 3@y < 6 We vr) < a(y, vi)
< a(y, ux) — /n (F(2 9, u(2)) = £(,0, u(z))ye do

= [ f@0,ue)ueds
< |If(=,0, u(2))||ze13(q) lyklloro-2q),
where a(-,+) is the bilinear form associated to the operator and is defined in (2.1.10)
(page 27). Using the continuous inclusion of W'#'(Q) in L*/(*-2)(Q) we have that
mllyellingy < Cluellwis ay

Now we follow with the normal procedure. Set Ay = {z € Q: [y(z)| > k} On the right

hand we have -
losllwawrcay < ClAKF llgall ey,

then
P
lyellrey < ClAK =

And on the left hand

lyell a2 ) 2 ||yk||L,e§,(n) = llys "L%(A;.)
Take now h > k. In Aj, we have that |y| > A — k, and moreover IIy,,IIL,@u,(A) >
- ! ]
"y"”Lﬁ‘—!!(A;.)" Since

N=3 N-2
av \ W any_\ ¥ N-3
= - > h— - — —k
loell, (fm. |ye| ¥ a) > ( A..l k| :) (h — k)| 44| 77,

we have
- 2—p'
(h— k)| 4n| T < cj A,

or what is the same:

o sl
| Ak | erz(N_;;

&
|A-h|—c(h_k)ﬁj_\r_2
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Now we may apply the Lemma of Kinderlehrer-Stampacchia, taking into account that
2N/(N—2) > 0 and that the conditions imposed on p imply that (2—g’)N/(p'(N —2)) >
1, and we have that |Ax| = 0 for all k > d, with d a constant that only depends on ,
N, p, and | f(2,0,4(z))| zor3q) Then y € L*(€) and

|yl o) < d.

The regularity W1?(Q) of y follows immediately from Theorem 2.1.3 and the inclusion
LP1(Q) c (w¥'(9))'.

Let us suppose now that there does not exist necessarily a function ¢ that bounds f
independently of y, but that EO0 holds. In that case we may define

f(z, g u(z)) if y>j
filzy,u@) =4  f(z,yu(z) if -j<y<j
flz,—ju(z)) i y<-j
We have that f; is decreasing monotone in the second variable and that |f(z,y, u(z)| <
¥;(z) for almost all z € Q with ¢; € LP/?(Q). Therefore, there exists a unique y; €
W1P(Q) such that
{Aw+%w = fi(z,y,u) inQ
avAy.i =9 onT.
Moreover, [|y;||z=@) < d for all j. Thus, for j > d, f;(z,y;, u(z)) = f(z,y;, u(z)) and
we have that y; is the solution of (3.1.1). From the monotonicity of f respect to y we
deduce the uniqueness of the solution g, of (3.1.1) in W#(§), which implies y, = y; for
allj > d.
From Theorem 2.1.3 and the inclusion LP/%(Q) c (W“"(Q))', we get, for M >
[y ull oo ()
lyullwie@) < Cll¥mllzeraiq)-
But as we have seen before, the norm in L*(Q) of y, is bounded by a constant which
only depends on , N, p, and || f(,0, %(z))|| »/2)- Hence, we can find an M big enough
and such that if we denote Cy,, = C|[ym||s12(q), We have that

lyullwsz@) < Cu,,-

Let us take now u;(z) — u(z) a.e. £ € Q. From the previous bound condition, we
have that there exists y € W?(Q) such that y,; — y weakly in W'?(Q),and there-
fore yy; — y uniformly. Thus, using EO and the dominated convergence theorem,
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f (@, yu;ru5) = f(z,y,u) in L*2(Q) and, when we pass to the limit in the equation,
necessarily y = y,. Subtracting the equations that satisfy y,, and y, and applying
Theorem 2.1.1, it follows immediately that y,; — yu in WP(Q). O

Theorem 3.1.2 Suppose that

E1- f:Q xR? =R is of class C* respect to the second and third variables, f(-,0,0) €
L*2(Q), for all M > 0 there ezist a constant Cp > 0 and a function ¥u € LP/3(Q)
such that

< ¥u(z)

of
’6_31 (z,t, )

if |t,[s| < M forae z €, and

<Cm and \?—ai(x,t,s)

%(z, t,8) <0

for all (t,5) € R? and a.e. z € Q.

Then, for all u € L™(N2) there eTists a unique solution of the state equation

{ Ayu+ ooy = f(T,pu,u) inQ (3.1.2)

Ovsllu = ¢ onT.

and the mapping G : L®(Q) — WYP(Q) that relates the control to the state, given by
G(u) = yu, 18 of class C*. If u, h € L*°(Q) y, = G(u) and 2z, = G'(u)h, then z) is the
solution of

{AZ'I'aOz = ?—oﬁ(z,ymu)z'*' g_i(xayu)u)h in 2 (313)

0,2 = 0 onT.

Proof. Observe that the assumptions in this theorem are enough to deduce for every
u € L*®(f2) existence and uniqueness of a solution in W?((2), y, satisfying (3.1.1), just
applying Theorem 3.1.1. Therefore, the mapping G is well defined. To check that G is
of class C', we take

V(A) = {y e W'*(Q): Ay+aoy € LP(Q), 8,y € IP7(T)}
with the norm

lyllviay = [[¥llwre) + | AY + a0yl zerzqy + [|On oyl ze—1ry-
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let us define now the function F : V(A) x L*(Q) — L*2(Q2) x L>~1(T"), F(y,u) =
(Ay + aoy — f(z,y,u),0,,y — g). The assumptions on f imply that F is of class C?.

Moreover —(y,u)z = (Az + apz — E(z,y,u)z, On,2) is an isomorphism from V/(A)

into ZP/2(Q) x LP~(T') due to Theorem 2.1.2. Taking into account that F(y,u) = 0
if and only if y = G(u), we can apply the implicit function theorem (see for instance [15]
or Zeidler [93]) to deduce that G is of class C! and satisfies that

F(G(u),u) =0.
From this equality, derivating, (3.1.3) is deduced. O
Theorem 3.1.3 Suppose that the assumptions in condition E1 of the previous theorem
hold and that

E2 - f is of class C? respect to the second and third variables and for all M > 0 there
ezists Yur € L*/%(R) such that

61; ’ ’auay(“ )‘

if |t],|8| < M fora.e. z € Q.

&f
Ou?

(1, 8)

< ¥um(z)

Then the mapping G is of class C?, and if we take hy,hy € L*®(R2), 2z; = G'(u)h; and
212 = G"(u)[hy, h2), we have

[ 5} i i

Azg +agziy = %(m,yu, u)z1a + ayf (z, Yu, u) 2122 + au,f(m Yu, u) hihg
& '
. T By6u 2o (T Yus 1) (21h2 + 22h) in §)
aqulz = 0 on F.
(3.1.4)

Proof. Notice that the assumptions of this theorem are enough to deduce for every
u € L*(R) existence and uniqueness of solution in W#(Q) of y, satisfying (3.1.1), just
applying Theorem 3.1.1. Therefore, the mapping G is well defined. Let us introduce
again the space V(A) and the mapping F' just like in the proof of Theorem 3.1.2. The
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properties of the derivatives of f imply that F is of class C2. Moreover, % (y,u) is again

an isomorphism from V(A) into L#/2(Q) x LP~*(T"). Taking into account that F(y,u) =0
if and only if y = G(u), again we can apply the implicit function theorem to deduce that
G is of class C? and that satisfies that

F(G(u),u) =0.

From this equality, derivating twice, (3.1.4) is deduced. O

3.2 Parabolic equations

Set T, Q, Xy A, p, 7, ki, IEI, 01, 01 as in Section 2.2, with the coefficients of the
operator A of class C([0,T); C(f2)). Let us take f, g, yo functions, f : @ x R — R,
g:ZXRxR—Ryy:Q2—R, y € L®(Q)NWP(Q). We are going to study the
parabolic equation ;

Viay = f@uy) mQ
Ay
aTA_ = g(sat’y"v) on X, (321)
y(,0) = o in Q.

For every v we will denote by g, the solution of the equation (3.2.1).
Suppose that

Pl- Forally €R, f(-,-,y) is measurable in Q. For almost all (z,t) € Q, f(z,t,-) is of
class C! in R. The following inequalities are satisfied:

|f(zv A o)l < Ml(z7t)s CU 2 ?_a;(mit’ y) 2 Ml(a” t)'?(h!l),

where C, € R, 7 is a decreasing function from R* into R*, and M; € LF1 (L% (Q)).

For all y,v € R, g(+,-,y,v) is measurable on X. For all v € R and almost all
(s,t) € I, g(s,t,-,v) is of class C'! in R For almost all (s,t) € X, g(s,t,-) and
gy(s,,-) are continuous in R2. The following inequalities hold:

l9(s,%,0,v)| < N1(8,2) + v, Co2> %(s,t, ¥ v) = (Nu(s,2) + [v])n(ly]),

where N; € L#1(L7:(T)).
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Then we have

Theorem 3.2.1 For every v € L™(X) there ezists a unique y, € L™ (W*?) N C,(Q\ 2 x
{0}) solution of (3.2.1). Moreover, the mapping ®, given by ®(v) = y, is continuous
from L2(Z) into L"(WH?) NCy(Q \ Q x {0}) forany N+1 < a < o0o.

Proof. Taking into account Proposition 2.2.8, the proof may be performed as in
Casas, Raymond and Zidani [35), or Raymond and Zidani [78, 79]. O

Giving enough differentiability assumptions on the functions involved, we can assure that
& is differentiable.

Theorem 3.2.2 Suppose that P1 holds and

P2 - For a.e. (s,t) €, g(s,t,") is of class C* and the following inequality holds.

< (Ma(s, %) + [o])n(ly]). (3.2.2)

% (5,4,3,9)

Then the mapping ® : L®(Z) —» L7 (W'P(Q)), given by &(v) = y is of class C*
Moreover, if v, h € L®(Z), yy = ®(v) y 25, = ®'(v)h, then 2, is the solution of

{ % + Azh = g_';(za ta yv)zh in Q,
Oz _ 6y % 3.2.3
B ay(s, t, Yo, V) 2n + 5 (8, %, ys,v)h onZ, ( )

Zy(-,0) := 0 in Q.

Proof. From the previous theorem, we have that the mapping is well defined an is
continuous. We are going to act as in the elliptic case to see that it is of class C'. For
that purpose set

V(4) = {y € L'(W*) : 8y + Ay € LB (I*(Q)), Bpay € L (L(T)), y(0) € L°°(9)} :
The mapping
F:V(A) x L®(Z) — L¥(L*(Q)) x L (L7*(T)) x L®(R)
F(y,v)= B+ Ay — f(,y): Onay —9(-y,9), ¥(0) — %)

is of class C'. Moreover,

aa_g(y; 'U)z = (atz + Az — g_.;('!y)za aﬂAz - %(’ Y 'U)Z, Z(O))
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is an isomorphism from V(A) into Lk (L% (Q)) x L1 (L**(T")) x L®(R). (This follows
immediately from Proposition 2.2.8 and the discussion about the exponents in the proof
of Proposition 2.2.9). Since F(y,v) = 0 if and only if y = ®(v), we have that

F(®(v),v)=0
Applying the implicit function theorem, we obtain that & is of class C' and derivating,
we get the expression (3.2.3). O
If we also make the following extra assumptions on the regularity of f and g, we can

prove that the mapping that relates the state and the control is of class C2.

P3 - For a.e. (z,t) € Q, f(z,t,-) is of class C? and the following inequality holds.

12 @,1)] < (2, 0D 3:2.4)
For a.e. (s,t) € 5, g(s,¢,) is of class C’2 and the following inequality holds
d%g d%g
2Lt 0)|+ |2 500t + 2 0,81 0)] < (Walo,)+ (), (529

Under these assumptions, we can prove that the mapping that relates the control and
the state is of class C2.

Theorem 3.2.3 Suppose that P1, P2 and P38 hold. Then the mapping ® : L*(Z) —
L™ (W'*(Q)) is of class C2. Moreover, if we take hy, hy € L®(E), z = G'(v)h; ¥y
212 = G"(v)[hy, h2), we get

f 0 &2 _
% +Azp = '55(17, t,Yu)212 + #(:c,t, Yu)2122 in Q,
2
\ %:—j = %(8, L, Yy, ”)312 + %(sas:a Yu, 'U)lez-l-
+%‘g'(si t’ Y, U)h1h2 = 'é'y?gv(s!ts Yo, U)(zth + z2h'1) on E:
| z,(,0) = 0 in Q.

(3.2.6)

Proof. Define V(A) and F(y,v) as in the proof of the previous theorem. Now
assumption P3 allows us assure that F is of class C2. Since %F(y, v) is an isomorphism,
the implicit function theorem lets us assure that & is of class C?. Derivating twice, we
obtain expression (3.2.6). O
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3.3 Sensitivity of the state with respect to diffuse
perturbations of the control

To establish Pontryagin’s principle for the problems of page 16, we must state another
kind of Taylor expansion, based on diffuse perturbations of the control. Now it is not
necessary to suppose differentiability of the involved functions with respect to the control,
and we only suppose that they are C' with respect to the state.

3.3.1 Elliptic case

Let A be the elliptic operator introduced in Section 3.1, p > N, ag € L*/%(Q), f a
function f: @ x R2 — Rand g: ' = R, g € L»"}(T"). Let us start with the following
lemma.

Lemma 3.3.1 For all p € (0,1), there ezists a sequence of measurable sets E} C Q such
that
|E) = pl)]

and

.1 .
lﬂ ;ng =1 weakly* in L*(), (3.3.1)

where xgs is the characteristic function of the set E: .

Proof. There exist two different proofs of this important lemma in the literature.
A constructive one, due to Casas [22] and one by Raymond and Zidani [78] which uses
Liapunov’s convexity Theorem. 0O

Let us take
Uww={u:Q > R: u(z) € Kq(z) ae. z € R},

where Kq is a measurable multimapping with non empty and closed values in P(R).
Theorem 3.3.2 Suppose that E0 (mge 66) holds and that

ES-f:QxRxR — R is C! respect to y, continuous respect to u and measurable
respect to z, for all M > 0 there exists Car > 0 such that

gi(z, t,u(z))| < Cu

Y
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if|t| <M forallu € Uy and a.e. z € Q, and
of
—(z,t,u(z)) <0
oy (5t u(o)

forallt eR, allu € Uy and a.e. z € Q.

Then for all p € (0,1) and all uy,u2 € U,q there erists a measurable set E, C Q such
that

,EPI = pIQl!
and i
Yp = Y1+ pz +1,, with ,}ai—lrltl] ;”Tp”wm(n) =0, (3.3.2)

where

U1 in \ Ep

%, = _
uy in E,,
Yo = Vupy Y1 = Yu1»

and

0 .
Az+agz = %(:L‘, v, u1)z + f(z, 9, u2) — f(zy1,u1) in Q
On,2 = 0 onI.
Proof. Set (E%)), as in Lemma 3.3.1 and set

E_ U1 in Q\Eg
| w inEE

U

Yp = Vup
and .
k_yp_yl_z.

Ep_T

We have the following equation

{A§:+ao£,’,‘+a:,'§ = fr+ht inQ

anAE: =0 on F,

where g
a.ﬁ = —/ a—f(m, h+ H(y:,‘ - y1),u:) db,
0o oY
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1
= (/0 %(z, v+ 9(1/: - yl),uz)dﬂ— %(z, U1=U1)) z
and

h,’; = (1 - ;XE") (f(.’l], Y1, 'Url) f(z, Y, 'lla)) .
We may write £& = €% + €52, where
AERt + aot®! +akeht = f5 inQ
a"AE,l’c,l = 0 onTl,

and

AEE2 4 gogh? 4 akgh? = B i Q
G682 = 0 onT.

Due to Theorem 2.1.3
€5 lwrecey < CIFELoqey- (3.3.3)
We will denote ¢* the solution of
ACk + aoCl + aCf = hf inQ
OnaC* = 0 onT,

where
a= —5‘5(21, Y1, ul)'

The operator 7 that relates ¢, the solution in W':?(2) of

AC+ag(+al = h inQ
O = 0 onT,

with h is continuous from (W¥ (9))' into W'?(Q) (regularity Theorem 2.1.3). Since
the injection from L*(Q) into (W'¥ (Q))' is compact, 7 can be considered a compact
operator from L () into W?(f2). From (3.3.1) it follows that

. k — . /2
lcllglo h, = 0 weakly in L*/%(Q),

and hence
JBm [|¢Fllwsey = 0.
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So for all p € (0,1) there exists k(p) such that

Notice that

(€52l wregay < p. (3.3.4)

k(o) () —
},%u (z) = wa(z) for a.e. z€Q

and, for Theorem 3.1.1 and the continuous injection from W?(Q) into C(f2), we have

that

Therefore

and

Obviously

{ (g — ¢

and

If we write

lim y:(") =1y, in C(Q).
p—0

tim [| 39| ooy = O, (3:3.5)
:‘l,li% ||a - a’;(’)HLm(n) =i (336)

:(p)) +a0(E:(p).2 Ck(p)) +ak(p)(£k(p)2 C ) = (a_al;(p))d:(p) in Q
O (27" — %) = 0 onT,
165972 = &G @llwsaa) < lla — a§P ey 1G5 llwraey. (3.3.7)

I §f(p)||wl-ﬂ(n) =|| 5::(9),1 + E:(p)# - C:(p) + C:f(”)ﬂwlm @ <

< ||f,’f(p)’1||w1.p( ) + ”52(0).2 - C:(p)llwlv’(ﬂ) + ||C,’f(p)||wl-v(n):

taking into account (3.3.3), (3.3.5), (3.3.4), (3.3.6) and (3.3.7), we have that

gk
lim €5 1.0y = 0.

Let us take hence E, = Ef®). We have that r, = p£5” and (3.3.2) holds. O
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3.3.2 Parabolic case

Let us suppose T, Q, £y A, p, 7, k1, El, 01, 61 a8 in Section 2.2. We will suppose
some adttional regularity for the problem introduced in Section 3.2- We will suppose
that the boundary T is of class C'*¢ and the coefficients of the operator A are of class
C([0, T); C*#(£2)), for some 0 < & < 1. Set f, g, yo functions, f : Q x R — R,
g:ETxRxR—Ryy:0Q—R, g € L®(Q) NWL?(Q).

Due to the regularity and continuity results, we are now ready to establish Taylor
expansions for the state. For a proof of the following lemmas see for instance [22] or [78].

Lemma 3.3.3 For p € (0,1), there ezists a sequence of measurable sets E:,‘ C X such
that
| B} = p|Z|

lim leu =1 weakly-* in L=(Z), (3.3.8)
k—oo p”?
where XEp 18 that characteristic function of the set E",‘.

Remark 3.3.1 Now, with |E:| we denote the Lebesgue measure on I, and not on RV x
R, because all the measures would be zero if not

Set
Vaa = {v € L®(Z) : v(s,t) € Kx(s,t) for a.e. (s,t) € L},

where Ky is a measurable multimapping with non empty, compact values in P(R)

Theorem 3.3.4 Suppose P1 holds. Then for all p € (0,1), and all v1,v; € Vg4, there
ezrists a measurable set E, C ¥ such that

|E,| = plZ],

and i
Yp=1" + pz + Tp with ,]61—Ib% ;"Tp”L"(Wl'P) =), (339)

where

v, X\ E
'UP(S, t) = { b . E\ 4 ] yp — yu,,; yl = y‘fl!
Vg N L,
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and
[7)
a—:+Az = fy(zt, )2 in Q,
0z
s - 9y(8,t,y1,v1)z + g(s,t,91,v2) — 9(3,¢,41,1) on I,
2(,0) = 0 in Q x {0}.

Proof. Let us prove (3.3.9). Take a sequence (E}) as in Lemma 3.3.3. Define

v; inX\ E* y" -0
vs(S,t) = - r y,’,‘ = Yyh and E: = £ — 2.
v In EI, [

The function £ satisfies equation

[ _ai: A k kek k .
'6t'+ £p+ap£p = fp va
a &
a—m';—+b"§£"; = gk+ht onZ%,
£(,0) = 0 in 0,
with .
ot (z,t) = — / £t (3 + (3t — 9))) 8,
0
fpk = (—f;,(.'l,', t: yl) _a:)z’
1
(s, 8) = — f dy(5:t, (s -+ 6(u — 1)), o%) db,
g5 = (=g, (s, t,y1, v1) — )z,
and

1
h’; = (1 - EXE#)(Q(S: t: yl,'Ul) _ g(siti yliv2))'

Denote by £%! the solution of

355,1 k1 | kekl ko
e + A¢y +a6, = f; in@,
3{&:,1
5 P

ot = s,

gbl(,0) = 0 in,
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by €52 the solution of

) k,2 )
‘ aEk,2 3.3.10
o, TUET = B, onZ, -

%2,0) = 0 inQ,

L

and by ¢* the solution of

b k
#+AC§+“C: =0 inQ,
k
gni+bc",° = ht o3, (3.3.11)
A
¢5(,0) = 0 in,

where a(z,t) = —f;(,%,31(z,1)), and b(s, t) = —gj(s,,41(8, t), v1(s, t)). From (3.3.10)
and (3.3.11) it follows that:

. k2 _ rk
(3 2_ $) + AR — ¢k + a:(ff’z —¢) = (@—df)¢t inQ,
o( :,2 - Cﬁ) FoEE2—¢ch) = (b—bE)¢E onE

Ony prp ? e ,

(€52 — ¢4)(,0) = 0 in Q.

Due to Propositions 2.2.8 and 2.2.9, £, ¢%2 and ¢* belong to L™(W?®) and the following
estimates hold:

€52 = & lle-wrey < Co (Ha — &5 iy gragay + 1o = b’;“:.h(m(r))) 16311z sy, (3.3.12)

”fz'lnlﬁ(wl-’) < C2(”f:”1,i1(r,h(n)) + ||9§”L51(Lv1(r))), (3.3.13)

where the constants C; and C; do not depend on k.
The operator 7 that relates ¢, the solution in L™(W'+#) N WL ((W'#)") of

%+AC+aC = 0 inQ,

ot
s+ = h o, (33.14)
¢(+,0) = 0 inQ,
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with A, is continuous from L7 (L°!(T")) into L™ (Wte®) n WL ((W'#)"). The continuity
in L™ (W*%?) follows from Proposition 2.2.7. With equation (3.3.14) we prove that ¢
belongs to W7 ((W#')"), and the corresponding estimate follows from the estimate in
L™(Wte?), in asimilar way as is done at the end of the proof of Theorem 2.2.1. Since the
injection from W'*%?(Q) in W'?(Q) is compact, (see Grisvard [59]), then the injection
from L7(Wte?) n Wi ((W'¥')) en L7(W'P) is compact (see Simon, [83, Corollary
4]). So T can be considered a compact operator from L% (L°!(T")) into L™(W#). From

(3.3.8) it follows that
Jlim h5 = 0 weakly in L% (L°*(T)),

and hence
Jim [¢¥]| - ey = O

So for every p € (0,1), there exists k(p) such that
“C;G(p)“LT(Wl-P) <p (3.3.15)

Notice that
’l,i_r)%v,’f(”) = v, in L*(Z) for any a < oco.

Therefore, due to Theorem 3.2.1, we have that

lim %) = g, in Cy(Q \ © x {0}). (3.3.16)
p

p—0

Relation (3.3.16) implies that
. k —N: k . - & o
lim f3 ®) =0 in L*(L*(Q)), %gj"’ =0 in L% (L (T)), (3.3.17)

and

lim(a — k) = 0 in L* (L*(Q)), }Ji_x’%(b — b)) = 0 in Lo (L71(T)). (3.3.18)

With (3.3.12), (3.3.13), (3.3.15), (3.3.17) y (3.3.18), we obtain

E_ﬁ% ||§:(p)||Lf(W1-v) =0. (3.3.19)

Set E, = EX). We have that r, = p£5®). Then (3.3.9) follows from (3.3.19). O
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Optimality Conditions
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This part of the thesis, which is its kernel, is devoted to the study of first and second
order optimality conditions for the treated control problems.

For first order conditions, two main ways exist. Deduce an Euler-Lagrange equation
in case the set of controls is convex or to show that Pontryagin’s Principle holds in case
it is not convex.

Euler-Lagrange conditions will be deduced from general results for abstract optimiza-
tion problems. Nevertheless Pontryagin’s Principle requires an study more adapted to
control problems. In this case the key is in doing an adequate Taylor expansion for
the state, as it was done in Chapter 3, and for the functional, based in appropriate
perturbations of the control. In our case we use diffuse perturbations.

We will also study in this part second order conditions for problems with a finite
number of state constraints and a convex set of admissible controls First we will apply
results for abstract optimization problems. In this case we just have to see that under
the assumptions imposed, our control problems verify the conditions in the abstract
theorems. The assumptions to be verified for a result on necessary conditions are not
specially difficult. It is when we deduce sufficient conditions when the proof becomes
more complicated. The abstract results are due to Casas and Tréltzsch [36]. In that
paper it is also explained how to apply it to various control problems and the difficulties
that appear. They remark that the regularity of the adjoint state becomes sometimes the
main difficulty to deduce sufficient conditions. We must give strong enough regularity
conditions on the derivatives of the functions in the objective and the restrictions to
obtain a regular enough adjoint state.

Finally, we establish second order conditions that involve the Hamiltonian.



|



Chapter 4

Functionals involved in the control
problems

In this chapter we study the functionals involved in the control problems.
We establish, under adequate assumptions, properties of continuity and dif-
ferentiability. The goal is to satisfy the assumptions of a theorem about
optimality conditions for general optimization problems. For problems with
a non convex set of admissible controls, we establish a Taylor expansion of the
functional with respect to diffuse perturbations of the control. The purpose
in this case is to establish optimalitv conditions in the form of Pontryagin’s
principle.

4.1 Differentiability properties

4.1.1 Elliptic case

We will suppose again that 2 is of class C*, I its boundary, A an elliptic operator
with continuous coefficients of the form (2.1.1) (page 23), p > N, ag € I*3(Q2), f a
function f: Q xR2 — Rand g: T =+ R, g € LF71(D).

Theorem 4.1.1 Suppose that the assumption on C' differentiability of f E1 (mge 69)
holds and that L : 2 x R x R — R i3 a function

E4 - measurable in z and of class C! in the second and third variables and that for all

87



88 4. Functionals involved in the control problems

M > 0 there ezists ¢y € L'(Q) such that |L(z,0,0)| < Ym(z) for a.e. z € Q and

< Yu(z)

’%(x,y,u) + ‘%L(z,y,u)

iflyl, |u| < M for ae. z € Q.
Then, the functional J : L*°(2) = R, given by

J(u) = / L(z, Yu, u)dz (4.1.1)
Q
is of class C'. Moreover, for all u,h € L®(R)
J'(u)h = ./9 (%(z, Yu, u) + gao.,%(a:, y.,,u)) hdz (4.1.2)

where y, = G(u) (G(u) defined as in Theorem 3.1.2) and o, € W'¥(Q) is the unigue
solution of the problem

{ A%+ agp %(z, y..,u)c_P 4 %’{i(z, Yu,u) inQ

(4.1.3)
anA.‘P =0 on F,

where A* is the adjoint operator of A
6
wp=-3 L ( ).
i,j=1

Proof. Consider the function Fp : C() x L*(Q) — R defined by

Foly,u) = [ L(z,y(2), u(z)) ds.

Due to the assumptions on L it is straight to prove that Fy is of class C'. Now, ap-
plying the chain rule to J(u) = Fy(G(u),u) and using Theorem 3.1.2 and the fact that
WiP(Q) c C() we obtain that J is of class C' and

(w)h = /( (T, Yus u) zh+%(z,y.,,u)h) dz,

where 2z, = G'(u)h and is given by (3.1.3). Let us take now (o, solution of (4.1.3).
The assumptions made on the derivatives of f and L and Theorem 2.1.3 assure us that
wou € W1?'(Q). We can therefore apply Green’s formula and deduce (4.1.2) from the
previous equality. 0O
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Theorem 4.1.2 Suppose that the assumptions on the differentiability on f E1 (page 69)
and E2 (page 70) and on L E4 (page 87) hold. Suppose also that

E5 - L is of class C? in y, u and for all M > 0 there exists Yy € L*(R), such that

3L

+ a;i(zl Y, u)

< Yum(z)

&L 8%L
S| + | o e,
if lyl, |u| < M for a.e. z€ Q.

Then, the functional J : L*°(2) = R i3 of class C? and for all u,hy, hy € L*(Q)
J"(u)hyhy =

8L &L L
[] [W(x, Yu, 'M)zlzz + a—y'a—;;(iﬂ, Yu,s U)(Z]_hg -+ z2h1) + -a?(a:, Wiz u)hlhz

o2 o2 02
+Pou (#(z, Yu, U) 2122 + Srow éf(:z:, Yu, u)(21h2 + 22h1) + Eu_i(z’ yu,u)hlhg)] dz
(4.1.4)
where y, = G(u) (G(u) defined as in Theorem 8.1.2), po, € W¥(Q) is the unique
solution of problem (4.1.3) and z = G'(u)h;, i =1,2.

Proof. Consider again the function Fy : C(f2) x L*(2) — R defined by

Fo(y,u) = [ L(z,y(z), u(z)) dz.

Due to the assumptions on L it is straight to prove that Fy is of class C2. Now, ap-
plying the chain rule to J(u) = Fy(G(u),u) and using Theorem 3.1.3 and the fact that
WL*(Q) c C(f) we obtain that J is of class C? and the formula (4.1.4) for the second
derivative. O

Theorem 4.1.3 Suppose that the assumptions on C* differentiability of f in E1 (mge
69) hold and that for all 1 < j < ng+ni, gj : 2 x RV = R is a function

E6 - measurable in z, of class C! in the variable n (y denotes the variable for the gra-
dient) and there ezist a constant C > 0 and a function y, € L” () such that

%(zm)] < ClnP + ()

for a.e. €.
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Then for all 1 < j < nq+ ni, the functional G; : L*°(Q) — R, given by

6 = [ 9s(z (o), (415)
is of class C*. Moreover, for all u,h € L*(Q)
Gi(uh = f tpjug(z, Yu, u)h dT (4.1.6)
n = Ou

where yy, = G(u), pju € WP (Q) is the unigque solution f the problem

d . [ 0g; .
A+ 0P = a‘f(z, Yu, )P ju — div (%(z, Vyu)) in Q

OngpPiu = 0 onT,

(4.1.7)

Proof. 1t is enough to consider the function of class C! F; : WlP(Q2) — R defined by

Fi(y) = /n 9i(z, Vy(z)) dz.

Taking into account Theorem 3.1.2, we know that y, € W?(Q). Moreover, due to
assumption E6, .

B (5 Vi) € 7 (2);

therefore, Theorem 2.1.3 can be used to deduce that ¢;, is well defined and belongs to
W (Q). Derivating Fj, using the chain rule and making an integration by parts, we
obtain expression (4.1.6) for the derivative. O

Theorem 4.1.4 Suppose that the assumptions on the differentiability of f E1 (page 69)
and E2 (page 70) and of g; E6 hold. Suppose also that

E7 - g; is of class C? with respect to n) and there ezist a constant C' > 0 and a function
Pg € LP/®-2(Q) such that

5a:
E’g'g'z(m, 77)} < CInIP~2 + yu(z) a.e. z € Q.

Then for all 1 < j < ng+ ni, the functional G; : L°(Q) — R is of class C%. Moreover,
for all u, hy, ha € L*®(0)

GJ(whiha = [ [szQ

9]

&g;
2 6’72
+Pju (é?(z, Yu, u)2122 + %(z, Yus u) (21h2 + 22h1) + %(z, Yus 'u)h1h2)] (tizl .

(z, Vi)V 24
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where y, = G(u), pju € W'¥(Q) is the unigue solution of problem (4.1.7) and z =
G'(u)h;, i=1,2.

Proof. The function F; : W1?(Q2) — R defined by

Fy(y) = / 0i(z, Vy(z)) dz

is of class C2. Derivating with the chain rule, we obtain expression (4.1.8) for the second
derivative. Assumption E7 assures us that the second derivative of g; with respect to
the gradient of the state belongs to LP?*-?)(Q), and assumption E1 assures us that
the gradient of 2; is in LP(Q), and hence the integral is well defined. The second term
of the integral must be understood as the duality product in W¥' (), because, since
17/2(Q) c (W' (2))’, due to E2 this is well defined. O

Remark 4.1.1 Remember that the solution of equation (4.1.7) must be interpreted in
the variational sense

N
fn (Z a:'i(z)a;;"(w)g—z(z)+ao( )Pru(Z)%( -'B)) / By (Z, Yu, u)Pru(z)%(z) dT

ij=1

+Zfagk Vyu)%(w)dw

i=1

for allp € Whe(Q).

4.1.2 Parabolic case

Set Q, T, T, Q, £ and A, p, 7, ki, k1, 01, 61 as in Section 2.2, with the boundary
I of class C! and the coefficients of the operator A of class C([0, T]; C(R)). Set f, 9, %o
functions, f: @ XR— R, g: EXRXR— R F:@QxR—R, G:ExR—R
and yo : @ — R, yo € L®(Q) NWP(Q). Take ks, ks, 0, &2 and v as in section 2.2.
To show that the functional

=/OT/nF(z,t,y,,) dz dt+/onrG(s,t,ymv) ds dt+/nL(z,yu(z,T)) dz

is of class C, we will use the following assumption.
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P4 - for ally € R, F(-,-,y) is measurable in Q. For a.e. (z,t) € Q, F(z,t,-) is of class
C! in R. The following estimates hold:

IF(z,£,0)] < Ma(z, ), ’%ﬁmﬂsm@ﬁww,

where M, € L¥ (L% (0)).

For all y,v € R, G(-,y,v) is measurable in . for all v € R and a.e (s,?) € L,
G(s,t,+,v) is of class C' en R For ae. (s,t) € E, G(s,t,-) and Gy(s,t,-) are
continuous in R2. The following estimates hold:

|G(s,,0,)| < Na(s,) + [v], l%g(s,t,y,v) < (Nas,2) + |v])n(ly)),

where N, € L%(L°*(T")).

For all y € R, L(-,y) is measurable in . For a.e. z € Q, L(z,-) is of class C! in
R The following estimates hold:

wmwsmw,|%mﬂsmwmm

where M;(z) € L*(Q) and M, € L¥(Q).

P5 - G(s,t,v,-) is of class C'! en R The following estimate holds:

< (N3 (s,2) + loD)n(lyl),

oG
("6_;(3: Y, ?J)
where N} € L!(Z).
Theorem 4.1.5 Suppose that the assumptions on f and g, P1 and P2 and the assump-

tions on F, G and L P4 and P5 hold. Then the functional J : L*(X) — R is of class
Cl. Moreover, for allv, h € L*(X)

_ 0G dg
J’(‘U)h = L (%(S, t: Yo, ’U) ry @00%(3: t: ymv)) h ds dt!

where y, = ®(v) is the solution of the equation (3.2.1), o, € L™ (WYP) + L2(H') is the
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unique solution of the problem

r aa.‘tp + A% — gf (x! i, yﬂ)‘p = %(IE, t, yv) in Q,
\I ai#_‘p - g_:(sat: ymv)‘p = %y?—(s,t, yﬂ,v) on 2, (4.1.9)
| o1 = SEym)  ino,

Proof. Consider the function Fp : L™(W'?(2)) x L®(Z) — R defined by

Fo(y,v) = fo ' /n F(z,t,y) dz dt + fo ‘ /F Gls,t,y,v) ds dt + /n L(z, y(z,T)) dz

Due to the assumptions on F, G and L it is straight to prove that Fp is of class C.
Now, applying the chain rule to J(v) = Fy(®(v),v) and using Theorem 3.2.2 we have
that J is of class C' and

T T
J’(v)h=/ /%‘-‘(z,t,y)zhdzdt+/ f%—G(s, t,Y,v)2, ds dt+

/ /'6 (s,t,y,v)h ds dt+/ —(z,y(z, T))zn(T) dz

where z, = ®'(v)h and is given by (3.2.3). Let us take now ¢y, solution of (4.1.9). The
assumptions made on the derivatives of f, g, F', G and L and Proposition 2.2.10 assure
us that g, € L™ (W'¥(Q)) + L*(H") and that we can apply Green’s formula to deduce
the expression for the derivative from the previous inequality. O

To get a twice differentiable functional, we will suppose that

P6 - F(z,t,y) is of class C? en y and there exists ¥; € L'(Q) such that

%—lﬁz‘—(m,t,y) < t(z, t)n(lyl)

for a.e. (z,t) € Q.
G(s,t,y,v) is of class C? in y and in v and there exists %, € L*(Z) such that

&G
6 2 (8 t! y’ v)

2

gya(i (3,8,9,0)| + < (¥a(s,2) + [v]}n(ly])

G
w(s: t: Y, ’U)
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for a.e. (s,t) € Z.
L(z,y) is of class C? in y and there exists %3 € L'(f2) such that

2k )| < ws(alnti)

for a.e. z € Q.

Theorem 4.1.6 Suppose that P1-P6 hold. Then, the functional J : L*(X) — R is of
class C2. Moreover for all v, hy, hy € L®(Z)

J”(v)h1 hz =

G 2
N [,: (%(8’ bl v)az + %(3’ ty Yur v) (21ha + 22h1) + gg(s, t, Yo v)hlhz) ds dt+

+ ‘L Poy (%(31 t’ yvs 0)212’2 + %(3) t: yv, 1))(21’12 + z2h1) + gz_ug(s, t) ym v)hlhl) ds dt:

where y, is the solution of the equation (3.2.1), gy is the solution of (4.1.9) and z; is
the solution of (3.2.3) respectively for h;, i € {1,2}.

Proof. Consider Fj as in the proof of the previous result. Due to the assumptions on
f, g, F, G and L we have that Fj is of class C?. Applying the chain rule and Theorem
3.2.3, we obtain that J is of class C? and the expression for its second derivative. O

Finally we are going to state adequate differentiability conditions for the constraints.
In Problem (Pp) of page 16 we define

C={f€ L.,(L,,)N:/OTQ (/ng,(z,t,fjdx) dt=0if1<j < ny

T
/ ¢ (/gj(z,t,f.)dx) dt<0ifn; +1 Sani+na},
0 0

where ¢j : R — R and g; : @ x R¥ — R are functions.

Example 4.1.1 If we hadan inequality constraint with (;(s) = s"/P—6/T and g(z,t, f) =
|f — 94(z,t)|P, with 6 € R and gq4 € L™(LP)N given, the constraint would be

T z
/ ( f |Vy — ga(z, t)l’dz) "dt <o,
Q Q

i.e., C = Br-(zs)(9a, 6).
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We are interested in differentiability properties of

Gj(v) = /; i G ( fn gi(zt, V,y.,)da:) dt.

P7 - ¢j(s) is C* and g;(z,t,7) is of class C' in n and there exist a constant C > 0 and
a function ¢ € L™ (L*') such that

Suppose that

'] T a j .
e < Clals and | %(a, )| < Ol + 90z,

for a.e. (z,t) € Q.
The we have the following result.

Theorem 4.1.7 Suppose that P1, P2 and P7 hold. Then for all j, the functional G; :
L*®(Z) = R is of class C*. Moreover, for all v, h € L®(X)

og
G}(v)h:fgcpj,,%(s,t, Y, v)d s dt,

where y, is the solution of equation (3.2.1), wjy, € L™ (W'¥') 4+ L2(H") is the unique
solution of the problem

_%% + A% — %;ﬂ (@t =  —div( ( /n 9i(z, ¢, Vz»y.,)dx) %(s,t,vzyu(z,t))
in Q,

[ 2 -Bhsump = avg ([ et Vi) B, Vanie, ) -5
onx,

oT) = S @) in Q.

(4.1.10)

Proof. Consider the function of class C!, Fj : L"(W'?(Q)) — R defined by

Fi(y) = /0 ’ G ( /9 9j(z,t, V,,y)dm) dt.
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So we have that Gj = F; o ®, and due to the chain rule, G; is of class C*.
Now, taking into account Theorem 3.2.2, we can assure that y, € L™(W'?(Q2)), and
due to P7, we have that

C.; (.[n Qj(m,t, vzyu)dm) aa—f?j(s’ t, Vat(z, 1)) € LT'(LP')N'

Therefore, we can use Proposition 2.2.10 to deduce that ¢, is well defined and belongs
to L™ (W#'(Q))+L?(H"). Derivating Fj;, using the chain rule and making an integration
by parts, we obtain the expression for the second derivative of G;(v). O

Example 4.1.2 Let us resume Erample 4.1.1, with g4 = 0 to simplify the writing. In

this case . a
R(y) /0 (/ IszI"dx)’dt—J
[¢]

T L1
F(y)z= fo ( /n lv,ylf’dac)’ / Iszl”‘zvzszzdz‘ dt.
[1]

To prove that the constraints are of class C2?, we make the following assumption.

and

P8 - ¢;(s) is C? and g;(z,t,7n) is of class C? in 7 and there exist a constant C' > 0 and
a function ¥ € L™/("=2) (L?/(#-2)) such that

GEN<Clal? amd 3% (ztn)l<CIn|"2+¢($ 1

for a.e. (z,t) € Q.
Now we can state the following result.

Theorem 4.1.8 Suppose that P1, P2, P3, P7 and P8 hold. For all j, the functional
Gj : L*(Z) = R is of class C2. Moreover, for all v, hy, hy € L*®(X)

G" h1h2 [ ( g] .’B t ngu)dx)/‘ 6'37V;- 1d$/ agJV,'zZ2 d-T] dt+

/oT [C’ (/ %@t V’y")dx) / VTzl_(“’ t, Vai) zdex] dt+
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2

03 2 d
+L ©jv (#(8, t Yo, 0)212:2 + 373% (8, t, Yv, v)(Z1h2 + 22h1) + B;%(S, t, Yu v)h1h2) ds dt,

where y, is the solution of the equation (3.2.1), p;, € L™ (W) + L?(H") is the solution
of (4.1.10) and 2; is the solution of (3.2.3) respectively for h;, i € {1,2}

Proof. The function F; : L™(W1?(Q2)) — R defined by

Fy(y) = /T ( / g,(ztv,y)dx) at

is of class C?. Derivating and using the chain rule, we obtain the expression for the
second derivative of Gj(v). The assumptions made assure us that the integral is well
defined. O

Example 4.1.3 Resume ezamples 4.1.1 and 4.1.2. We have that

di+

z—2
Fi(y)nizs = / [( / |vzy|"dz) / Vay P2y Vezids / IV ay|P-2V oy Vozads

1
/ [(/ lvzy]pdz) /VTZQ (lvzylp 4vzyv y+ Ivzylp 2IN) szldx] dt,

where Iy is the identity matriz N x N.

4.2 Sensitivity of the functionals with respect to dif-
fuse perturbations

4.2.1 Elliptic case

Take again Q of class C?; I' its boundary; A an elliptic operator of continuous coeffi-
cients of the form (2.1.1) (page 23);p > N;ag € LP2(Q); f: QO xR2 — R; g: T - R,
geEI(I); L:OxRxR—Randgj: QxRY 5 Rfor1<j<ni+n,.

To establish Pontryagin’s principle for Problem (P.) of page 16, we must establish
another kind of Taylor expansions, based on diffuse perturbations of the control. Now we
need not suppose differentiability of the involved functions with respect to the control.

Theorem 4.2.1 Suppose that the assumptions on f E0 (page 66), E3 (page 74) and on
gi E6(page 89) hold. Suppose alsothat L: QA x (RxR) >R isa
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E8 - Carathéodory function, of class C' in the second variable and for all M > 0 there

erists Ypr € L1(Q) such that |L(z, 0, u(z))| < Yum(z) for all u € Upg and a.e. € Q
and o
a(zv Y u(.'l:))

if lyl < M for allu € Uy and ae. z € 9.

< ¥Ym(z)

For every p € (0,1) and every u1, u; € U,q let us take E,, u,, y, and z as in Theorema
3.9.2.

Then for every p € (0,1) and every u;, u; € U,q we have that

J(up) = J(u1) + pAJ + o(p)

and
Gj(up) = Gj(w1) + pAG; +o(p) for 1 £ j < ns + ng,
where
AJ = / —(z,y1, )2 d:L‘+/ (L(z, y1, u2) — L(z, 3, u1)) dz
and

AGj = / (:r Vy)Vzdz

for1<j < ny+ny.

Remark 4.2.1 Notice that AG; # G;(u1)u, because z # G'(u1)u,.

Proof. Using the definitions of E,, u,, y, y z given in Theorem 3.3.2 we have that

J(up) — Z J(w1) —AJ = / (/ 3y - (T, Y1+ 0(y, — y1), u,)db — ?’)f;(z’ yhul)) zdz—

- [ (1 2o e - s

and due to Lemma 3.3.1 this quantity converges to 0.

Gj(up) — Gj(w1)

Also

1 .
6 _ngy = [ ([ Le,90+ 60— Vet - (s, V) Vs

and due to the growing properties imposed on g;(7) in E6 and (3.3.2), this quantity
converges to 0. The proof is complete. O
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4.2.2 Parabolic case

Set O, I', T, Q, £ and A, p, T, ki, ki, o1, &1 as in Section 2.2, with the boundary I
of class C'*™¢ and the coefficients of the operator A of class C([0,T]; C%(£2)), for some
0<é<1. Setf, g yofunctions, f: @QXR — R, g: EXRXR — R, F:@xR — R,
G:ExR—Randy: QR — R, yo € L®(Q) NW(Q). Set ky, ka, 02, 52 and v as
in Section 2.2.

Consider problem (Pp) of page 16.

Theorem 4.2.2 Suppose that assumptions P1 and P4 hold. For all p € (0,1) and all
V1, V2 € Vyq let us take E,, v, y, and z as in Theorema 9.9.4.
Then, for all p € (0,1), and all v;,v; € Vg we have that

J(v,) = J(v1) + pAJ + o(p), (4.2.1)
where
AJ = AF;(',yl)Zdz dt+/8G;(-,y1,v1)zds dt+/nL;(-,y1(-,T))z(-,T) dz
+/ (G(s, t, Y1, v3) — G(8,t,y1,v1)) ds dt.

z

Proof. Using the definitions of E,, u,, y, and 2 given in Theorem 3.3.4 we have that

- 1
J(v,) . J(v1) AT =/Q (/0 Fy(z,t,3 + 0(y, — ¥1))dd — F(z, ¢, y1)) z dzdt+

1
+/ (/ Gy(s,t, 1+ 6(y, — 1), v,)db — Gy(s: t, y, v1)) zdsdt+
z \Jo
1
+‘/‘.l ('/0‘ L;(z, %+ 60(y, — y1))do — L;(z‘, yl)) zdz—

/L‘ (1 - %) XE, (G(st, Y1, u2) — G(S, t(yl, U1)) dsdt.

Due to Lemma 3.3.3 we can take limits and verify (4.2.1). D






Chapter 5
Pontryagin’s principle

The main result of this chapter is a Pontryagin for problems (P,) (page 16) and (Py)
(page 16). In the last years there has been a growing interest in Pontryagin principles
for control problems governed by partial differential equations wit pointwise or integral
state constraints. Among others, we can cite Casas [22], Fattorini [52, 54], Bei Hu and
Yong [60], Li and Yong [65), Raymond and Zidani [78), Casas, Raymond and Zidani [35].

The proofs of Theorems 5.1.1 and 5.2.1 are based in Ekeland’s variational princi-
ple. To obtain an approximate Pontryagin principle corresponding to the optimality
conditions deduced from Ekeland’s variational principle, we use the method of diffuse
perturbations, as in the articles of Raymond and Zidani [78] or Casas, Raymond and
Zidani [35).

5.1 Elliptic case

Consider problem (Pe) of page 16. Let us take again Q of class C*; I its boundary;
A an elliptic operator of continuous coefficients of the form (2.1.1) (page 23); p > N;
a € P?Q);, f: QxR — R, g: T2 R, ge P !(T); L: 2xRxR — R and
9; :AxRVY 5 Rforl <j<n;+n,.

Define the Hamiltonian H : O x R* — R as

H(z,y,u, p,v) = vL(z,y,u) + of(z,y, u).

Pontryagin’s principle holds

101
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Theorem 5.1.1 Let & be a solution of (Pe). Suppose that the assumptions on f EO
(page 66) and ES (page 74), on g; E6 (page 89) and on L E8 (page 98) hold. Then
there exist real numbers v, Xj, j =1,...,n4+n; not all zero and functions §j € WH?(Q),
@ € WW¥(Q) such that

%20 mri<ism+ng % [ @ Ve@)ds=0,  (511)
1]
Aj+af = f(z,§(z),d(z)) inQ (5.1.2)
Onsi = 0 onT,
r i of ,0L midn .
A'o+ap = =(z,9,8)p+ 6_ (z,9,4) — Z Adiv Vy)] imQ
dy <

Onpwp = 0 on T,

(5.1.3)

and for a.e. T €,

H(, (=), 8(z), ¢(=),7) =, min_ H(@,g(a),k, p(2)7).

Proof. We define Ekeland’s distance on the set Uy as
de(u,u2) = [{z € Q: ui(z) # ua(2)}.

We have that (U, dg) is a complete metric space and that convergence in (Ugq4, dg)
implies pointwise convergence in 2.
Let us define the penalized functional

1 +12 n nitng . :
J,.,('u.) = { l:(J(‘U) = J(‘!_L) + HE) ] =+ ZGJ('U)z 4 Z (G_,(u)"‘) } .
J=1 j=n;+1

where for all a € R

+ a ifa>0,
a’ =
0 ifa<O.

Consider the problem
(Po ){ Inin Ju(u).
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The solution of our original problem # is a J;-solution of (P,). J, is continuous for
Ekeland’s distance, so, due to Ekeland’s variational principle [50], there exists un € Upq
such that

dg(un, %) <

Sl

and
In(tn) < Ju(u) + %dg(u, uy,) for all u € Usq. (5.1.4)

Take any u € Uzg. Due to Theorems 3.3.2 and 4.2.1, for all p € (0, 1) there exists a
measurable set E, C (2 such that

. .1
Yo =Un + pzp + Tpy with })I_I'I‘I) ;“rp“WL-P(n) =0,

J(up) = J(uy) + pAT™ + o(p) (5.1.5)
and
G,-(up) = Gj(un) sk pAG’;' + 0(p) for 1 Sj < n; + ng,
where
uy inQ\E,
v in E,,
Yo = Yu,
of .
Azp + apzq = a—y'(x:ymun)zn = f(m! ymu) _ f(ﬂ:, Yn, un) in ©
Ong2n = 0 on T,
oL
AT = [ Sz, un,ua)zn o+ [ (505t 8) = L(@, 0, 0) d
o Oy n
and

dg;
AGY = | Z(z,Vyn)V2z, dz
P a 37]( yn) Zn

for1 < j<ni+na.
Due to (5.1.4)
1
Jn(un) S Jn(ulp) + 'T_l"dE(Up, u").

But
de(up, un) = |E,| = p|Q],
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and thus
Tnun) = Jn(s) _ 1
<2jql.
p n
We are going to take limits when p tends to zero this expression to obtain an integral

approximate Pontryagin principle.

Jn(un) = Jn(up) _  Ja(un) = Ja(up) _
P (Jn('un) + Jn(up))

() - J(uw*:)]—[ ) = I@ +4)]

ng ni+ng

S (Giwn) - Giw)?) Y ((Gilua)h)? - (Gilup)t)?)
+ =1 g J=ni+l -
P(Jn(“n) + Jn('“'p)) P(Jn ('“'n) el Jﬂ(“p))

Let us see what happens when p — 0 term by term.

() - 9@ + 3)*] - [(Tw) - 7@ + )]

A= P(Jn(un) + Jn(u,)) = A4
where + +
po— (Tlun) = @) + )" = () — J@) + 55)
P) ’
and
4o — (J(un) = J(@) + )"+ (V) - J@) + &)°
A Jn(un) + Jn(up)

Due to the continuity of J we have that

(I (ua) = I@) + &)

Jn (n)
We will call this quantity v™. To take the limit in A we have to take into account the
sign of J(un) — J(@) + 3. If J(un) — J(@) + 35 > 0, then for all p small enough we have
that J(u,) — J(&) + 2 > 0 and hence

lim Af =
p—0

A‘l’ — J('U,n) — J(up);
p
due to (5.1.5), this quantity converges to —AJ™. If J(us) — J(&) + 27 < 0 then v™ =0.
Moreover, for all p we have that |A{| is uniformly bounded: We know that for any pair
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of real numbers ¢; and ¢, we have that |tj —t| < |¢; — t;|. Therefore, and using (5.1.5)

we have that
lAt;! < IJ(un) ; J(up)l < |AJ"| + Io(:)'

b}

and therefore |A¢| is bounded independently of p. So in any case we can write

lim A? = -v"AJ"
p—0

Secondly, for 1 < j < n;, we have that

Gj(un)? — Gi(u,)* _ Gi(un) — Gj(ue) Gj(un) +Gj(u,)
P(Jn(un) + Jn(up)) p In(tn) + Jn (u,)

and this quantity converges to —A7AG?7, where

n_ G'(uﬂ)
< J:(un)

In a similar way, if n; + 1 < j < n; + ny we can assure that

(Gj(uﬂ)%)z = (G.-(u,,)"')z - —z\;‘AG;’,

- M R 3 )

being in this case

AP = G.f(u'ﬂ)+
: Jn(un)
So we have that
ni-+ng
gy T2ltn) = ) _ _upm ™ ama,
wetl p i=1
and hence
ni+ng 1
—" AT = 3 AAGT < ~9).
j=1
If we write the first term explicitly we have that
ni+ng
AP S NAGE = - /‘; V"%ji(a:,ymun)zn i fn o (i, e 8 — i g )]
j=1

ni+ng

0g; 1
- A?_lx,anznde—Q-
IR -CAS Lo
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Let us take @, the approximate adjoint state, which satisfies the equation

[ 0
A'pn + oo, = %(1‘" Yns Un)Pnt
8L n+ng (ag'
‘ UV ——(Z, Yn, Un) — Atdiv| =L(z, Vy, ) in
6'1“. ‘Pﬂ = 0 on F

Integrating by parts and using the definition of 2,, we obtain

~ [ 0 (12, ) = 1@,y ) d = [ 47 (L&, ) — Lot o)) < 10

And therefore, we have an approximate Pontryagin principle in integral form:
i
[ 0L, Yns ) + 00122 s ) < [ "L, ) + 00 @, ) d + 10
n

for all u € Uy,

Now, since
ni+ng

Vi DN =1,
j=1

we can take subsequences that converge to real numbers 7 and Aj, 1 < j < ni + ng,
obviously not all zero. These satisfy (5.1.1). We also have that u, — @ pointwise, and
therefore, due to Theorem 3.1.1 y, — 7 in W?(Q2), and therefore uniformly, so @, = @
in W1#(Q), and we can take the limit to obtain Pontryagin’s principle in integral form:

/ (5L(%,7,8) + 0f(z,§,8)) dz < / (#L(z, 9, ) + ¢f (@, 5 u)) do
[} (1]

for all u € U,q.
The pointwise form of Pontryagin’s principle is deduced now as in (78, page 1875] O
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Some extensions

In the same way we can prove Pontryagin’s principle for boundary control. Consider
the problem

| Minimize J (v) = / £(s, Yy, v)ds,
r
vEVy={v:T=R: v(s) € Kr(s) a.e. s€T},
[ 9@ n@)d=0,1<5<m,

gj(l', Vyu(x)) dz<0,ni+1<j<n + ng4,
n

(Py)

where

Ayot+agy = f in Q
aﬂAyﬂ = g(ssym'v) on P)

and Kr is a measurable multimapping with non empty and closed values in P(R).
Let us define the boundary Hamiltonian H : T x R* = R, as

H(s,y,v,0,v) = vi(s,y,v) + ©g(3,9,v).

Theorem 5.1.2 Let ¥ be a solution of (P.). Suppose that f € L*2(Q); g : TxRxR = R
i3 a measurable function on T, of class C' in the second variable, continuous in the
third variable and for all M > 0 there exist Yp € LP"1(T') and Car > 0 such that
[g(s,O,v(s))I < ¥um(s),

—Cu < %(s, t,0(s)) <0

forall|t| S M,v€V,ganda.e s€T;£:T xR xR — R is a measurable function on
T', of class C" in the second variable, continuous in the third variable and for all M > 0

there exists var € L*(T') such that |£(s,0,v(s))| < ¥am(3),
5 (5 60(5)] < o)

forall |t| < M, v € V,q and a.e. 8 € T'. Suppose also that E6 (page 89) holds.
Then there exist real numbers v, Aj, j = 1,...,nq + n; not all zero and functions
g € W»(Q), g € W' (Q) such that

Ai20 m+1<j<ni+ng ?\,-fgj(z,Vz?(z))dz=0,
0
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Aj+af = f in {1
anAg = g(s,y,,,v) onT,
ni+ng _ ag.
A*o+app = — Z Ajdiv (—’(m, Vﬁ)) in Q
i=1 on
_ 09, _ _ _0¢

£

%

€
I

= (8,Y,V)Pp + V=—(8,9,V onl,
and for a.e. €T,

H(s, §(s), 5(6), (s),7) = min H(s,5(9), k. (5), ).

5.2 Parabolic case

Set O, I, T, Q, T and A, p, 7, ky, k1, 01, 61 as in Section 2.2, with the boundary T
of class C'*¢ and the coefficients of the operator A of class C([0, T]; C%4(f2)), for some
0<é<1. Set f, g, yo functions, f : QxR — R, g : EXxRXxR — R, F: QxR — R,
G:ExR—Rand yo: Q2 — R, yo € L®(Q) NWP(Q). Set ky, ks, 02, &2 and v as
in Section 2.2.

Consider problem (Pp) in page 16. For the parabolic problem we are not going to
consider only, the case with a finite number of gradient state constraints, but we will deal
with the more general constraint

Vzy € C,

where C is a closed, convex with non empty interior subset of (L™ (0, T; L*(Q2)))V
-Let us define the boundary Hamiltonian as

Hy(s,t,y,v,0,V) =vG(3,t,y,v) + ©g(s, t, y, v)

for all (s,t,y,v,,v) € T x [0,T) x R.
In the following theorem, we establish Pontryagin’s principle.

Theorem 5.2.1 Suppose that P1 and P4 hold. If ¥ is a solution of the control problem
(Pp) in page 16, then there ezist @ € L™ (W'¥')+ L2(H'), v € R, and f € (L™ (L*))",
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such that
(f,2) # (0,0),
/q(z—sz?)f < 0 foralzeC,
' _¥+A*¢—?—a;(z,t,z7)¢ = D%(w,t,g)+ﬁvf in Q,
5 9,000 = 528,055 -F-1
1 6nA- ay(s,t’y’v)¢ - Vay(s’t,y,‘v) f.n on 2,
o(,T) = ﬁ%(z,'g(T)) in Q,
and

Hx(s,t,§(s,t),0(s,t), §(s,t),7) = uelfl(l,i;(l.: o Hy(s,t,5(s,t),v,6(s,t),?)

for a.e. (s,t) in Z.

Proof. Let us define Ekeland’s distance in V,4:

dE('UliUZ) = I{(s'i t) : '!)1(8, t) 71'- v2(3=t)}|'

109

(5.2.1)
(5.2.2)

(5.2.3)

(5.2.4)

The space (Va4,dg) is a complete metric space, and convergence in (V,q4,dg) implies

convergence in L*(X) for any a < oo. Consider the penalized functional

Tl = { [(J(U) _J@)+ %) +]

where d¢(-) is the distance in (L7(L?))" to the set C, defined by

2

1/2
S d(:'(v.'ﬁly'u')2 } ’

de(2) = "}gg. | |z — ‘P”(Lf(u))N-

The functional d¢(-) is Lipschitz, convex and Gateaux differentiable for all z ¢ C, and

in those points
|IVdG(z)||(Lr'(Lpf))N =Hi"
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Consider the problem
(Pn) : min Ju(v).

vE ad

With such an election, 7 is a gls-solution of (P,). Theorem 3.2.1 and assumption P4
imply that J,,(v) is continuous for Ekeland’s distance. So, due to Ekeland’s variational
principle, there exists v, € Va4 such that

and Ju(vn) < Ju(v) + %dE (v,uy) forallve V. (5.2.5)

S|=

dE ('Un, ﬁ) S

Take v € V4. Due to Theorems 3.3.4 and 4.2.2, for all p € (0,1), there exists a
measurable set E, C L such that

|E,| = plZ, (5.2.6)
e s L
Yo = Yn + p2n + 1, With ;1_135 ;ll-r,,llmwx.p) =0, (5.2.7)
and
J(v,) = J(vs) + pAJTY + 0(p), (5.2.8)
where
v, InX\E
'Up(sat)= { . . \ 3 v Yo = Yu,»
v inkE,
?;—: + Az, — %(m,t, Yn)2n = 0 in Q,
0z, Og B
Bna ay (si t, Yn, vﬂ)zﬂ = 9(37 tyUn, U) 9(3, i, Yn, 'Un) on X,
Zn(-, 0) =0 in Q,
and

v [OF, oG, oL, . .
AJN = j‘;ay(,yn)zndmdt+/,;ay(,:Umvn)zndsdt+‘/‘;ay(,yn(,T))zn(,T) d

+ L (G Yr ) — G s Yy ) s e

Relations (5.2.5) and (5.2.6) imply that

Jﬂf(zﬂ)—_‘]"@ﬁ) < l|2| (5-2-9)

P n
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WeBme s on) = Jaluy) _ (o) — ()
p p (Jn(”n) + Jn(vp))
W -0+ 2] - [ - 50+ )]
e FIEACAEACH) o7
dC'(Vyn)2 - dC(Vyp)2
0 (Jn(ta) + Jn(vy))

From (5.2.8) it follows that

[(J(v,,) - J(@) + ,‘—1,)’“]2 - [(J(v,,) - J(7) + ;1;)"]2

-_ N
pl-irtl) p (Ju(vn) + Ju(v,)) = -, AJ7, (5.2.10)

with N
v = (J(vn)_'](ﬁ)+;17)
" Jn(vn) '
With (5.2.7), and the properties of the distance function d¢(-), we may write

do(Vyn)® — de(Vy,)® _ . do(Vim) — do(VY,) do(Vya) +do(Vy,) _

lim

50 p(Ja(vn) + Ja(vy)) ~ #-0 p (Ja(vn) + Jn(vp))
= /Q o+ Vaadz dt, (5.2.11)
where dc(Vyn)Vd . ‘
I e arm il yn) if Vyn € C,
0 if not no.

To deduce an approximate Pontryagin principle, we introduce the approximate ad-
joint equation. Due to the assumptions made on the derivatives of the functions that are
involved in the problem and to the regularity result of Proposition 2.2.10, there exists a
unique @, € L™ (W*') + L%(H") satisfying

6(pﬂ * af ey aF s = .
_W + A%pn a_y(m’tsyn)‘)on = Un By (.'L',t, Un) +div fp in @,
0pn B dg B % P oa

Bres ay(s’t’y"’ Un)Pn = vp By (8,%,Yn,Vn) — fa-" on I,

on(T) = vn%(-,yn(z*)) in 0.
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With Green’s formula (2.2.32) of Proposition 2.2.10 we have that

Vna—F(Z,t,yn)zndxdt—ff-Vz,,dzdt+ vn%(s, t, Yn, Vn) ds di+
@ 0Oy Q z Oy

[ @ (D) dz =
- /Q on (%’i + Aza — %(z,t,yn)zn) dz di+

o) 0
+L ©n (-6%: — 51%(3’ t, y,.,v,,)z,.) ds dt
= L ©n (9(8,t, Yny v) — 9(8, &, Yn, vn)) ds dt.

Taking the limit when p tends to zero in (5.2.9), with (5.2.10), (5.2.11) and the previous
Green formula, we obtain the approximate Pontryagin principle:

/ (VnG(sat:ym 'Un) + (Png(sat:ym'un)) ds dt <
bH

1
f (UnG(8,t, Yn, ¥) + ©ng(8, t, Yn,v)) ds dt+a|)3[ for all v € V,q. (5.2.12)
T

Notice that 23 + ||f_,‘;||fL,
n, such that (V). converges to v, and (f,). converges weakly to f in (L™ (I¥))N. If
v > 0 then (5.2.1) holds. Otherwise, using that lim, ||f;.||?L,,(LP,))N = 1, and that

the interior of C is non empty, we can show that f # 0 in a standard way (see [78],
for instance). We know that there exists a ball By s (Z,p) C C, with p > 0. Take
Zy € Br-(1o)n (0, p) such that

LAY = 1. Thus there exists subsequences, still indexed by

- 1 -
Lfﬂ . f"dIE dt = §p - “.fn”Lf(LP)N'

Since Z+ 2z, € C, from the definition of f;. and the definition of subdifferential in the
sense of convex analysis (see for instance [45]), we have that

/ﬁ,-(z+z,,- Vyn)dz dt < 0.
Q

Taking the limit we obtain that

3o+ [ F-@-Ym) <o,
Q
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which proves f #0.

Condition (5.2.2) holds due to the definition of subdifferential of the convex functional
de(-).

With (5.2.5), we can show that (y,), converges to 7 in Cy(Q \ @ x {0}). With
the assumptions made and with Proposition 2.2.10, we prove that (), converges in
L™ (WY¥') + L?(H") to the solution @ of (5.2.3).

Taking into account the convergence results for (¥n)n; (Un)n, (¢n)n, (¥n)n, We can
pass to the limit in (5.2.12) when n tends to infinity, and obtain an integral form of
Pontryagin’s principle.

/ (#G(s, t,5,7) + §g(s,¢,9,7)) dsdt< / (#G(s,t,§,v) + §g(s, t,§,v)) ds dt.

for all v € Vq4.
Pointwise Pontryagin’s principle can be now deduced as in [78, page 1875). The proof
is complete. O

Some extensions

In this section we have only treated of bounded boundary controls. The treatment of
unbounded controls can also be done as in [78], but this implies some technical difficulties.
We refer to [78] for such extensions. All the results could be performed for distributed
controls, with no important changes in the proofs.

To illustrate these remarks, consider the control problem corresponding to:

¢ the state equation:

oy
ot

+Ay+f(z,t,y,u) = 0 ingQ,
ﬁ+g(s,t,y,v) =0 Oh 21 (5213)
Ong

y(-,O) = Y% inQ:

with u € Upg C LU(Q), v € Vog C L?(Z), ¢ > N/2+1 and 0 > N + 1. The control
sets Upq and V4 are defined as follows.

Upa = {u € LU(Z) : u(z,t) € Kg(z,t) for almost all (z,t) € Q},

Vaa={veL(Z): vu(st) € Kn(s,t) for almost all (s,t) € T},
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where Kg and K5 are measurable multimapping with nonempty compact values
in P(R).

e the cost functional:

J (Yup, 4, V) =/T/‘]F(z,t,yu.,,u) dz dt+/T/G(s,t, Yuw, v) d8 dit
+ nL(z,yw(z,T)) dz,

(5.2.14)

¢ the state constraint:

T T/p
/ (/ |Vzy — gdlpdz) dt < 6, (5.2.15)
0 \Jan

where g4 is a given function in (L7(L?))V.
We define the distributed and the boundary Hamiltonian function by
HQ(za t,9, 4,9, ”) = VF(.'B,t, Y, u) - <pf($1 iy, u)

for every (z,t,y,u,p,v) € Q% [0,T] x R4,

HE(ss t,Y,v,9, V) = VG(S, L, Y, U) - ‘pg(sa LY, ‘U)

for every (s,t,y,v,¢,v) €T x [0,T] x R*. With some modifications on the assumptions
P1 and P4 on f, g, F and G (we should suppose that f y F depend on the control u
and give the adquate growing conditions on u), we can prove the following result.

Theorem 5.2.2 If (§,1,7) is a solution to the control problem, then there erists ¢ €
L™ (W'*), v € R, i € Rt such that

(#,8) # (0,0), (5.2.16)
T
g (fo (V=9 — ga[?dz)™ dt — 5) =0, (5.2.17)
_%% +Ap + f,(z,t,§,8)p = vF,(,t,9,4) + gdiv f ingQ,
2+ gi(st,5,0)p = 9Gis,t,5,0)—af-i on3, (5.2.18)
Ona

@(,T) = BL;(z’g(T)) in
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where _

F=([1ve-gdaz)” (et - 975 50).
Hg(z,t,3(z,t), 4(z, ), p(z,t),7) = min Hg(z,t,§(z,t),u, ¢(z,t), ?)
uEK g(z,t)
fora.e. (z,t) enQ, y
Hy(s,t,9(s, t), 9(s, t), §(s,1),7) = ue?ziﬁ,c) Hy(s,t, §(s, t), v, @(s, t), 7)

fora.e. (s,t) en .
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Chapter 6

First and second order conditions

In this chapter we state first and second order conditions for the studied
control problems. Similar theorems for problems with a finite number of
pointwise or integral constraints on the state have been studied for instance
in [37]. The same theorems can not be directly applied for problems with
an infinite number of state constraints (for instance. |y(z)| < 6 in Q). In [10]
first order conditions for this kind of problems can be found.

6.1 Conditions for abstract optimization problems

In this section we introduce some results about optimality conditions for abstract
optimization problems that have been obtained by Casas and Troltzsch [36).
Let us take (X, B, 4) a measure space. Consider the following optimization problem

Minimize J(u)

u € Upg = {u € L®(X) : ug(z) < u(z) < uy(z) for ae. z€ X},
Gj(u) =0, 1<j<m,

Gi(u) <0, i +1<j<m+mny

Q)

where ug, uy € L*(X) and J,G; : L°(X) — R are given functions, 1 < j < n; + ng.
Moreover, for u € L*®(X) and A = ();)™1"™ € RP*"d let us define the Lagrangian of

J
the problem as
ni+ng

L, X)=J@)+ Y \Gj(u)

i=1

117



118 6. First and second order conditions

First order necessary conditions

Suppose that % is a local solution of (Q), i.e., there exists a real number p > 0 such
that for all admissible point of (Q), with ||u — &||ze(x) < p, we have that J(&) < J(u).

Under this assumption, we can deduce first order necessary optimality conditions
satisfied by @. For a proof see, for instance, Clarke [44]).

Theorem 6.1.1 Suppose that J and {G ,-};-‘;_."1'"‘ are of class C* in a neighborhood of .
Then there ezist real numbers Ay, {A;}35™ not all zero such that

Ai>0, m+1<j<m+ng A =0iGya) <0 (6.1.1)
ni+ng

(MoJ' (B) + Z AiG5(@),u— @) >0  for all ug < u < . (6.1.2)
j=1

Obviously, if A\g = 0, equation (6.1.2) does not give us much information. In this
case, it is said that the optimality conditions are in non qualified form. Under extra
assumptions, we can assure that Ay # 0 (and therefore, rescaling, that Ay = 1). In finite
dimension it is typical to impose the condition of independence of the gradients of the
active constraints. This condition must be a bit stronger in problems with an infinite
number of constraints (the bound conditions on u). We will establish the following
regularity assumptions that grants the qualification of the optimality conditions. Take

Ip = {j < n; +nq4|Gj;(@) = 0}
the set of indexes corresponding to the active constraints. We will also denote the set of
non active constraints with

L = {j < ni+nyg| Gy(@) < 0}.
For all € > 0, we denote

X, = {z € X : ug(z) + € < i(z) < up(z) — ¢}

We make the following regularity assumption

(6.1.3)

Jeq > 0 and {h;}jer, C L°(X), with supph; C X,,, such that
Gi(@)h; = b, i,j € Iy,

We have that



6.1. Conditions for abstract optimization problems 119

Theorem 6.1.2 Suppose that (6.1.3) and the assumptions of Theorem 6.1.1 hold. Then
the conclusions of that theorem remain valid with Ay = 1.

Proof. Suppose A\g = 0. Take p > 0 small enough in such a way that up = @ —
P D i>nsici, hi belongs to Ugg. Using the regularity assumption (6.1.3)

0 ifj<n
—p ifj>n;and j€ h.

(G;(@), (wo —8)) = {

Moreover, we know that if j > n; then A; > 0, and that if j € I_, then A; = 0. Therefore,
using (6.1.2) and these considerations, we have that

ni+nyg
0< ) MG@w—-8)= Y NG@m—-8)=- ), 6 Wp<0,
i=1 i>ni, g€l >nii€l

Thus, if j > n, then A; =0.
Suppose now that j < n;, and take a p > 0 small enough in such a way that
uj— = @& — ph; and u;j; = % + ph; belong to U,q. We have that for i < n;

Gi(@)(u;— — B) = —pdi;

and
Gi(u)(ujy ~ 1) = plis
Hence
ni+nd _
0< Y AGj(@) (- — 8) = —p;
=1
and
ng+ng _ _
0< Y AGi(@)(ujy — ) = p,
=1

and we have that A; = 0.
We have shown that ) j =0 for 1 < j <n;+ng This contradicts that fact that not

all the multipliers are zero, so A # 0, and rescaling we can take A\g =1. O

Notice that we can write (6.1.2) as

%(a,i\)(u — @) > 0 for all ug < u < up. 6.1.4
ou
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Second order necessary conditions

We summarize in this section the main results for optimization problems of [36].

Since we want to give second order optimality conditions useful for the study of the
control problems (P,.) of page 16 and (Pp) of page 16, we need to take into account
the two-norm discrepancy; for this topic see Ioffe [61] and Maurer [69]. We will have to

impose additional conditions on the functionals J and G;.

(A1) There exist functions ¢, v; € L?(X), 1 < j < n;+ng, such that for all h € L®(X)

(6.1.6)

(6.1.7)

J(@)h = / $(z)h(z)dz and G)(@)h = / bi()h(z)ds, 1< <m+na (6.15)
(A2) If {hg}i2, € L™(X) is bounded, h € L*(X) and hi(z) = h(z) for a.e. in X,
then
nitng ni+ng
'@+ Y NGi@)]h - [J"(@) + Z %G (@)]h2.
i=1 j=
If we define
ni+nd _
d(z) = ¢(z) + Y Ajahi(),
—
then
8L ni+ngd

au(

From (6.1.4) we deduce that

F

0 for a.e. z € X such that u,(z) < %(z) < uy(z),
d(z)=1 >0 fora.e. z € X such that %(z) = us(z),
<0 for ae. z € X such that () = uy(z).

Associated with d we define
X°={z € X :|d(z)| > 0}.

Given {};}7-" by Theorem 6.1.2 we define

= {h € L*®(X) satisfying (6.1.12) and h(z) =0 ae. z € X°},

LMh=1® + Y, LG = L d(@)h(z)dz Yh € L2(X).

(6.1.8)

(6.1.9)

(6.1.10)

(6.1.11)
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with
| G(@)h =0if (j < m) or (j > ny, G4() =0and X; > 0);

Gi@h <0 if j >, G;(B) =0and X;=0; (6.1.12)

h(z) = { > 0 if 34(z) = ue(z);

<0 if 4(z) = uy(z).
In the following theorem we state second order necessary optimality conditions.

Theorem 6.1.3 Suppose that (6.1.3), (A1) and (A2) hold, {};}75i™ are the Lagrange
multipliers satisfying (6.1.1) and (6.1.2), with Xo =1, and J and {G;}}{™ are of class
C? in a neighborhood of . Then the following inequality holds:
L 3yi2 0
Eﬁ(u’ Mh* >0 VheC,. (6.1.13)
With a slightly stronger assumption than (A2) we can prove a slightly stronger
necessary condition than that in Theorem 6.1.3. To do this, let us first introduce the set

Ce.axy=1{h € L*(X) satisfying (6.1.12) and h(z)=0 ae. z€ X°}, (6.1.14)
We have the following property
Lemma 6.1.4 Suppose that (A1) and the regularity assumption (6.1.3) hold. Then
Cg,L’(X) = C_g,
where C denotes the closure of C? in L*(X).

Proof. That C C Cg 1ax) is straight. Moreover, Cg 1, is closed, which leads us
to conclude that C§ C CF 1)

To see that Cg, ) © C? let us take h € Cg’ L3(X)" We are going to build a sequence
{hi}2, C C? that converges to h in L?(X). Set

k if h(z)>k
he(z)= 4 W(z) if —-k<h(z)<k
—k if h(z) < -k
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Obviously
S S
'}Lrsohk = h in L*(X).
For j € I, take
Qi = G; (ﬁ)ﬁk = G;(ﬁ)h
We have that for all j
Jm ;=0
Due to the regularity assumption, we know that there exist eg > 0 and {h;}jer, C
L*(X), with supphj C X, such that Gi(@)h; = &;, 14, 3j € L.
Take
hk = hk - Z a,,,-ﬁ,-.
jE€Io
Obviously, for the considerations about the limits of fzk and a;; we have that
lim hy = h in L3(X).

k—ro0

Let us see that hy € CJ.

First, notice that h(z) = 0 a.e. in X°. Given z € X, for j € Iy, if hj(z) # 0, then
T € X.;. Therefore u,(z) < 4(z) < uy(z), and due to (6.1.9), d(z) =0. Then z & X°
So in X9, h j = 0. Due to the definition of ks, we have then that hi(z) =0 a.e. in XO.

Secondly, for i € I,

Gi(@)h = Gi(B)hx — Y _ 0i;Gi()hj = Gi(B) by — i = Gi(B)h.
J€lo
Using now that h satisfies the relations G}(@)h = 0if j < n;or j > n;, Gi(8) =0, A; > 0
and Gi(@)h < 0 if j > n;, Gi(B) = 0, X; = 0 from (6.2.8), we deduce from the equality
Gi(@)hy = Gj(@)h that h; also satisfies them.

Finally we have to check the sign condition. Since supp h; C X,,, then h;(z) = 0
whenever () = uq(z) or @(z) = u(z). Consequently, the sign of &y (z) is the same as
the sign of hg(z) if 4(z) = ue(z) or 4(z) = uy(z). Finally it is enough to notice that
the sign of Ax(z) is equal to the sign of h(z) for every z € X and that h € C‘S,L,( x) to
conclude that hy satisfies the sign condition. So ki € Cj and the proof is complete. O

Let us introduce now the following assumption, slightly stronger than (A2).

(A2) %(ﬁ, }) is bilinear and continuous in L2(X).
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Then we can prove

Theorem 6.1.5 Suppose that (6.1.3), (A1) and (A2’ hold, {A;}}:i™ are the Lagrange
multipliers satisfying (6.1.1) and (6.1.2) with X =1, and J and {G;}}<™ are of class
C? in a neighborhood of . Then the following inequality is satisfied

oL

5;('&, N2 >0 VheChrax) (6.1.15)

Proof. Take h € Cg,m(xy Due to Lemma 6.1.4 we can find a sequence {h;}, C C?
such that hx — A in L?(X). Noting that (A2’) implies (A2) and using Theorem 6.1.3

we have that 2
B2 Ahi >0

for all k. Due to assumption (A2’), we can take the limit and obtain

The proof is complete. O
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Second order sufficient conditions

Now % is a given admissible element for problem (Q) that satisfies the first order
necessary conditions. Motivated again by the considerations about the two norm dis-
crepancy, we must make some assumptions that involve the norms in L*(X) and L?(X).

(A3) There exists a positive number p > 0 such that J and {G,-};-‘;_."{”‘ are of class C? in
the ball of L*(X), Bre(x)(%, p) and for all § > 0 there exists € € (0, p) such that
for all u € BLuo(x)(’l-l,p), ||‘U - 'ﬁ' IL°°(X) <§g, h,hl, hz € L°°(X) and 1 < ] <ni+ng
we have that

r |62, - FL, -
[w(v, A) — w(ﬁ, /\)] h?

< 8{1All3agx);

|J'(u)h| < Moal|hllzaxy, |Gi(w)h| < Mjalihllagx),

. (6.1.16)
| 7" (whaha| < Mogllha|lzagxy [l hellzacx),
|G (u)h1ha| < Mja|lhal| L2yl Lacx),
Analogously to (6.1.10) and (6.1.11) we define for all 7 > 0
X"={zeX:|dz)| >} (6.1.17)

and
C; = {h € L*°(X) that satisfy (6.1.12) and h(z) =0 ae. z€ X"}. (6.1.18)
The following theorem gives us second order sufficient conditions for (Q).

Theorem 6.1.6 Let % be an admissible for problem (Q) that satisfies first order nec-
essary conditions, and let us suppose that assumptions (6.1.3); (A1) and (A3) hold.
Suppose also that

L i 2 T
W(u, A)h 2 5||h“Lz(X) VYh € Cﬂ (6.1.19)
for given 6 > 0 and 7 > 0. Then there exist € > 0 and o > 0 such that J(@) + a|lu —
ﬁ||%z(x) < J(u) for every admissible point u for(Q), with ||u — @||ex) < €.
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Remark 6.1.1 If (Al) and the regularity assumption (6.1.3) hold, we can prove, just

like in Lemma 6.1.4, that
CE,L’(X) = C¥,

where
Crryx) = {h € L*(X) satisfying (6.1.12) and h(z) =0 ae. z€ X"}

and C§ denotes the closure of Cf in L?(X).

Notice also that assumption (A3) implies (A2’). Therefore, if the assumptions
(6.1.3), (A1), (A83) and (6.1.19)hold for given § > 0 and T > 0, then condition (6.1.19)
holds not only for the functions of Cg, but for all the functions of Cg pacxy:

PL, - .
g(u, A)hz > 6”’1"%2(){) Vh € Cﬁ,L’(X)’

which is a condition that, a priori, seems stronger.

6.2 Elliptic case

Take again  of class C?; T' its boundary; A an elliptic operator of continuous coeffi-
cients of the form (2.1.1) (page 23); p > N; ao € LP2(Q); f: QxR? — R; g: T 9 R,
gEL T L:NxRxR—Randgi: QxRY 5 Rfor1<j<n;+ne.

Moreover, we will suppose that the set of admissible controls is of the form

Uat = {4 € L™(Q) : u4(z) < u(z) < up(z) for a.e. z € Q},

where ug, up € L®(Q). With the notation of Chapter 1 we have Kq(z) = [ua(z), us(Z)).
We will use the same notation as in Section 6.1. In this case X = Q. Now J(u) is defined
as in (4.1.1) and G;(u) is defined as in (4.1.5).

J(w) = fn L(2, yo, u)d,

Gi(u) = f 95(2, Vyu(z))dz.

The Lagrangian of the problem is given in this case by

ni+n4

L(u, ) =/‘2L(x,yu,u)da:+ Z A_,-]‘;g,-(:c, Vyu(z))dz.

i=1
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It is interesting to introduce again
Fi(y) = /n 9i(z, Vy(z))dz.
Observe that 5
. 09
Fi(y) = —div B (z, Vy)

and G; = Fj o G, where G(u) = yu.
We are going to formulate a regularity assumption analogous to (6.1.3). For € > 0,

set
Qe = {z € N : us(z) + £ < 8(z) < w(z) — €}

Lemma 6.2.1 Given 4 an element of Uyq, the following two conditions are equivalent:
(1) there exists eg > 0 and functions {h;}jer, C L*(Q) with supp h; C Q.. such that
G:(ﬁ)hj = 5,'_,' for i,J € Ip;
(2) there exists eg > 0 such that
) . . S
the family {wiaa (z, §, B) }ser, 18 linearly independent in L'(Qy,), (6.2.1)
where § = G(@) and @; = @iq is the solution of (4.1.7) for u = &.

Proof. Let us remain the expresion for G;(%)h, given in (4.1.6),

) af

U — = v - =

Gh= [ o5lepanas.
Let us prove first that (1) implies (2). Suppose that G}(@)h; = &; and {#:3 (2,5, 8) }ieso

are not linearly independent. Then there exist numbres {o;}icr,, not all zero, such that

> ier, P2 (z, §,@) = 0 for a.e. T € Q. Suppose that a; # 0. On one hand
f Z a.-cp,-i‘f—(z, ¥, ﬂ) h;dz = f Oh;dz =0
2 icloy Ou f

and on the other hand

/‘; (Z o "i%{'(x, ¥ ﬁ)) hjdz = Za,-GQ(ﬁ)hjdx = ;.

icly
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Both identities imply that a; = 0, which is a contradiction with our assumption a; = 0.
Therefore {@:3L (2, 5,%) },. 1, &re linearly independent.

. Let us see now that (2) implies (1). From the linear independence of {cp,-guf(z, 7, @) }iet,

it follows that the functional T : L®(R,,) — R! that maps every A to
of
Th= ( Gin- (2,7, ﬁ)hdz)
Q ‘au iclp
is surjective. Indeed, if T were not surjective, then there exists a € Rol, o # 0 such
that
a - Th = 0 para todo h € L®(f2,,),

which implies that

_0 _
> ¢pj5£(z, 3, @) = 0 para c.t.p. z € Q,,
Jj€lo

which contradicts (2). So for every j, there exists a h; € L®(§2,,) such that Th, is the
vector whose j-th component is 1 and the others are zeroes. The proof is complete. O

First order necessary conditions

First order necessary conditions satisfied by a local solution of (P.) can be deduced
from Theorem 6.1.2 with the aid of Theorems 4.1.1 and 4.1.3.

Theorem 6.2.2 Suppose that @ is a local solution for problem (P,). Suppose that the
assumptions on f, L and g; established in E1 (page 69), E4 (page 87) and E6 (page 89)
hold. Suppose also that (6.2.1) holds. Then there ezist real numbers X;, j =1,...,n4+m4
and functions §j € W?(Q2), @ € W¥(Q) such that

;20 ni+1<j<ni+nq /_\j/ gi(z, Vy(z)) dz =0, (6.2.2)
Q
Aj+aig = f(z,§(z)i(z)) inQ (62.3)
Onad = 0 onT,
. of oL, _ . "5 .. (g .
A0+ aop = (2,5, 8)p+ —(z, 5, 1) — A;div (—J(z, Vﬁ)) in Q
By By 2 v (G
6,,”(,5 = 0 onT,

(6.2.4)
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and

oL & Nu—a) = f (21-2(3:, 7, @) +¢a—f(z, 7, ﬂ)) (u—G)dz >0 forallu € Uy.
o \Ou Ou
(6.2.5)
Moreover, if ¢y = Pog and @; = pjg for 1 < j < n; + nq are the solutions of (4.1.3)
and (4.1.7) respectively, for u = @ , then
ni+ng

G=@o+ Y Ai®j. (6.2.6)
i=1

Proof. The assumptions made, Theorems 4.1.1 and 4.1.3 and Lemma 6.2.1 allow us

to figure out the expression

%(a, N - 1) = /n (%ﬁ(z, ,8) + o5 (2,7, ﬁ)) (u — @)dz.

Now we can apply directly Theorem 6.1.2 to deduce conditions(6.2.2)-(6.2.5). O
Let us see now an example of a sufficient condition to check the regularity condition

(6.2.1)

Lemma 6.2.3 Let us suppose that there exist eg > 0 and an open, nonempty set A, C
Q.. such that

E(za g(z)’ ﬁ(z)) # Oen Aé'a

and {F!(§)}jer, ore linearly indepenedent in (W (Ae,)). Then the regularity condition
(6.2.1) holds.

Proof. What we want to prove is the oinear independence of {¢,~%(z, v, ﬁ)}‘.e e
Suppose that { cﬁ,-%(z, §,4)} i1, 7€ not linearly independent in L'(§2,). Then there
exist real numbers {a;}se1, not all zero such that

Zai‘f_’i(m)gu;(x: §8) =0

i€l

for a.e. T € Q. Since |A;| > 0 and Z(z, §,%) # 0 in A,,, then for ae. T € A,

Z a;9i(z) = 0.

s€lg
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Taking into account that ¢p; is the solution of

0 ] 09; ;
Kpitan = Loyue-av (E"(w,w)) in 0
aﬂA*‘iol‘ . 0 onr

the expression

FI(§) = —div %(z, v9),

and that A,, is open, we obtain that

Y aF{(F) =0in A,

i€lo

with not all the {a}ier, zero. This contradicts the assumptions.The proof is complete.
1|

Second order necessary conditions

Taking into account Theorems 4.1.2 and 4.1.4 we can show that the assumptions for
Theorem 6.1.3 hold for problem (P,). Moreover, in this case, given @ € U,q, we can
identify

d7) = 9(@,0(2), 5(2)) + P(2) 3 (2, 8(2), 5(2)),

where 7 is given by (6.2.3) and ¢ is given by (6.2.4). We introduce

Q= {z € Q:|d(z) > 0}. (6.2.7)

C2={h € L™(Q) satisfying (6.2.8) and h(z) =0 a.e. z € Q°},
and

Caraq) = {h € L*(Q) satisfying (6.2.8) and h(z) =0 ae. z€Q°},
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where

[ /n@%(z, §,u)hdz = 0if (j < n;) or (j > n,-,‘/‘;g,-(:z:, V#4)dz =0 and A; > 0)
/ q‘:,-%(w,ﬂ,ﬁ)hdz <0ifni+1<j<mnqg+mn; and /g,-(:c, V§)dz =0and A; =0
R Q

h(z) > 0 if 4(z) = u,(z)

| h(z) < 0if 4(z) = (). 628)
6.2.8

The second derivative of the Lagrangian is given in this case by the expression

azz( A= f(ng(‘“ 7. )+¢ay2($,y,u)) 23 de+

2/ (aagaL (2,98 )+<P§3u(z,y, )) hay dz-+

f (g:g(:c, g, 4) +g032]; (z, y,u)) h? dz+

n¢+n.
f VTz;. w, V§Vz,ds
=1
Now it is necessary some more regularity for some of the second derivatives of f and
L. We are going to suppose that f and L are of class C? with respect to the second and
third variables and there exists £ > 0 such that for all M > 0 there exist ¥}, € L1*¢(Q)
and ¥3, € L*/*+4(Q), € = p%c /(4 — 2(p — 2)¢) such that

8’L

2 (e + | S F @) < Yl (6.29)
and
aazg (2:1,8)| + ZZ(M 8)| < ¥i(2) (6.2.10)

if |y|, |u| £ M for a.e. z € Q. So we obtain the following theorem.
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Theorem 6.2.4 Suppose that @ is a local solution of problem (P) and that the assump-
tions on f, L and g; established in E1 (page 69), E2 (page 70), E{ (page 87), E5 (page
89), E6 (page 89), E7 (page 90), (6.2.9) and (6.2.10) hold. Suppose also that (6.2.1)
holds. Then

%;E(ﬁ,;\)hz =/n (g—yii(z, g,8) + cﬁ%(z, ﬁ,ﬁ)) 24 dz-+
2
2 fn (%(w,g, )+ ga-a%(x, 7, a)) e
. P (6.2.11)
j‘; (%‘(x,g,ﬁ) + 953—;;(-’0,27, ﬁ)) h? dz+

ng-+ni _ agg
Z )\jf VTzh—,:(:c, Vg)Vz,. de >0
i=1 Q a"

for all h € C2, where 2y, is given by

17 _ .
{ Azy +aozn = %(za ¥ ﬁ)zh + 55(1"1 U, u)h in Q

au,qzh =0 onT.

Proof. Notice that we can apply Theorem 6.2.2 to deduce the existence of the La-
grange multipliers. Now, due to Theorem 6.1.3, we only have to verify that (A1) and
(A2) hold. In our case, assumption (A1) (see page 120), holds with

¢ = %ué(z,ﬁ, t'_‘) + @0%(1::37’17)

and

7]
wj = @jg{;(m!g: ﬁ)'

From the expression for the second derivatives of J and G; and the properties imposed to
the derivatives of f, L and g;, it follows that (A 2) holds. In fact, take {hx}2, C L*(Q),
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bounded in L*®(2) and pointwise convergent to h. We want to check that

e~ [ (Ren0+65hw00) 4 o+

&L P
2L (_ayau (.’L', v, 'E) + (ﬁayéfu (.'l-', 7, ﬁ)) hkzh;, dz+

6’L 2

nd +ﬂ|

fVTzh:. a 2 :I: Vy)Vzhk dz

converges to

62 2

5@ = [ (G20 +05 15,9 Adt
&L 2f

Zf (ayau( :_1 )+(Pa au(miyi )) hZhdﬂ)"l‘

/ﬂ(gg’(z g, @ )+<pgu3(z 7, )) h? dz+

n.d+n. ;
[ VTz,u. (z, V§) V2, dz,
i=1

where

7, _ 0 .
Azp, + aozn, = a—i(z, g, 4)zp, + %f(m,y, @hy in Q
Oy2n, = 0 onT.

We can do this term by term. First, let us remark that hy — A in L¢(Q2) for all ¢ < oo,
which implies that zx, — 2z, in WhP(Q).
So, using Holder’s inequality and the assumptions on the second derivatives, we have
that
0L, _ . _& e
‘/‘_; ‘_ﬁ'(ms 7,8) + ‘Pg'yé(xs 7, @) |zik - zgl dz <
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oL, _ . 0, _ _
< llgy;(-'v, g,%) + ‘PW(:L" ¥, 8)||L1(a) || 25, + 2nllLoo(@)l|Zhe — 2nllLoo ().

The first two factors are bounded and the last converges to zero.

J
/{; 0 (x) v, '&) +¢aayzéfu($,'y,ﬁ) lhkzh;. _hzhldzs

2 2
llf—,yf(x, ,8) + ¢%(z, 7, 8)|| 2yl Al oocay 1z, — 2allz=@y+

02
|| o ( j,8) + @ ay’:(z, 7, G)||Lr+e(e) || 28 | oo () 1he — hllLa+ereq).

In each term, the first two factors are bounded and the last one converges to zero. Here
we see the need for the new regularity assumption for some second derivatives of f and
L, because we do not have uniform convergence for the h;.

W=

o2
Bu2 (z, 7, u) + ‘paui(z', v, ) |h1¢ - hzld:z: <
L, _ .. _8f, __
< o2 (z, 9, u) + ‘PBFf (=, u)"Ll“"(ﬂ)“hk + h"L“(ﬂ)"hk - hHL(H»-)lc(n)-

The first two factors are bounded and the last one converges to zero. Finally

B2g;
V zhk o (a:, Vy)Vz;.kVTz;. (:c V§)Vz| dz =
T 5291' -
= | |V (2n, +2) = (2, VF)V(2h, — zn)| dz <
Q on?

< IV (zn, + zh)llu(n)ll % (2, V) | srio- ey 1V (2, — 20)l| 0.
Bn®

Again the first two factors are bounded and the last one converges to zero. Therefore,
assumption (A2) holds. O

To prove an analogous result to Theorem 6.1.5 we have to give conditions for the deriva-
tives of f, L and g; for the second derivative of the Lagrangian to be bilinear and
continuous on L?(f2). Like before, we want to check that

Bl o PAES o
—517(“, ’\)hk — —a;('u., /\)h y
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but now we only have that Ay — h in L2(f2). Looking at the proof of the previous result,
one of the first things we see is that to prove the convergence of

fn (g:zl;(”’ y""'“%Z(z 7,8 )) K2 dz

./‘(gzuﬁ( ,y,u)+<pau2($ y,u)) h?dz

to

it is necessary that

L, _ . _0*f, _ _ o

a_u?(“' 7,@) + wa?(z,y,u) € L*=(£2).
Notice that we will need the adjoint state to be bounded, and therefore it is be necessary
to impose also conditions on the first derivatives of f, L and g;.

Another question that comes up is that of the regularity of 2, and its gradient. We
have that L?() ¢ (W9 (Q))' forall ¢ < coif N =2 and for all¢ < 2N/(N—2)if N > 3.
Therefore, the maximal regularity we can expect for 2, is 2z, € W9(2), depending on
the regularity of the first derivatives of f (cf. page 69 for the equation of z, and page 27
for the regularity result). Moreover, for N = 3, we have that ¢ = 2N/(N —2) = 6, which
is greater than N, and hence z, € L*(f), but if N > 4 then 2z, does not have to be a
bounded function. Considering all these things, we are going to introduce the following
assumptions on the functions that intervene in the problem, taking into account that
they could be slightly weakened for the cases N =2 and N = 3.

E8

e f is of class C? with respect to the second and third variables,
of
oy

and for all M > 0 there exists a constant Cix > 0 such that

0
@)+ | TLen| + | D)+

(z,t,8) <0

ts 3) < CM

g§<z,t,s>;+

f
Bu
if [¢],|s| < M for ae. € Q.

¢ L:QxRxR — R is of Carathéodory, of class C? in the second and third
variables, |L(z,0,0)| € LP/3(R), and for all M > 0 there exist a constant Cp > 0
and functions v, € LP/2(Q) and ¥}, € L™*{/22}(Q})) such that

< ¢M($),

%(w‘, Y, u)
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< Yy (z)

oL
"3?(3’ Y, u)
and

<Cum

2L
+ 'ﬁ(zl Y, u)

52
+ ‘ay_aLu(xs v, u)

&L
W(zs Y, u)
if |y], |u| < M for ae. z € Q,

e foralll1 <j <mng+n; gj: 2 xRY = R is measurable in z, of class C? in the
variable 5 and there exist exponents r € [1,00) and s > N a constant C > 0, a
function 9, € L*(2) such that

Bits, n)] < Olnf" +%:(a)

and
2

i, nﬂ < O+ P,

Under this assumptions we can write the following necessary condition.
Theorem 6.2.5 Suppose that @ is a local solution of problem (P,) and that the assump-

tions on f, L and g; established in E8 hold. Suppose also that the regularity assumption
(6.2.1) holds. Then

2
rs @ = [ (S0 + o5l @an) Adst

2 fn (-3%2%(5, 7,8) + cp—a-i(m, 7 ﬂ)) hzy, dz+

Oyou
6.2.12
/‘(GQL I o SR Y ( )
a B—u?(z’y’ )+‘P'a;ﬁ(x)y’u)) h*dz+
ng+nq

- 2 :
Z f\_,f VTzhgi;(:v,Vﬁ)Vzhdx >0
LM fo " Py

for all h € CJ 2 q)-
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Proof. Assumption E8 implies that 62—f(ﬁ,/—\) is bilinear and continuous in L?(12).
So we can apply Theorem 6.1.5 and deduce that the inequality (6.2.12) is true for all
h € Og’Lg(n). D

Second order sufficient conditions

Clearly, we are going to apply here Theorem 6.1.6. Let us see that our problem
satisfies the assumptions of this Theorem. The main difficulty appears when we prove
that (A3) holds. To do that it is necessary to prove enough regularity for the adjoint
state. We need that it is in L®(Q2). To achieve this regularity we need to suppose more
regularity for the derivatives of f, L and g;. Again we are going to suppose that (E8)
holds. Analogously to what we did in the abstract case, given 4 an admissible control,

we introduce
QO ={zeN:|dz)| >}

Theorem 6.2.6 Let i be an admissible control for problem (Pg) satisfying the regularity
assumption (6.2.1), (E8) and such that there exist real numbers Aj, j = 1,...,n4 + 1y
and function § € WH?(Q), o € W (Q) satisfying (6.2.2), (6.2.3), (6.2.4) and (6.2.5).
Suppose also that

7L @ = / (%(z,ﬁ,ﬁH@%@ﬁ,ﬁ)) Ads

2
+2 /n (%(%ﬂ,ﬁ)+¢a§2gﬂ(z, g,,—,)) haydz

2
+ [ (Grea0+055a0) s

na+ni _ 2
> % [ V'S5, V) Vads > 8l (6:213)
j=1 1 an

for all h € L*(Q) satisfying (6.2.8) and h(z) =0 for a.e. z € Q7 and given § > 0 and
7 > 0. Then there ezist € > 0 and o > 0 such that J() + a||lu — ﬁ“%z(m < J(u) for all
admissible control u with |lu — @l|Lee(q) < €.

Proof. Notice first that the new conditions introduces on the first derivatives of f, L
and g; imply that the adjoint state belongs to W'?() for all p > N and therefore the
adjoint state belongs to L=(12).



6.2. Elliptic case 137

We are going to prove that (A3) holds. Let & an admissible control satisfying first
order necessary conditions (6.2.2)—(6.2.5). Given v € L*°(2), we will denote ¢, =

ni+ng

Yov + Z Aj®ju, Where @gy and j, are the solutions of (4.1.3) and (4.1.7) for u = v,
j=1

respectively. Take h € L*°(f2) and § > 0.
Let us verify the first inequality in (6.1.16). In fact, we will establish that

(G0 - G| ] <

&L o f L, _
Bu? (ﬁ: y'"i,u)-'_‘pﬂa 2(2: Yo, v ) W(miy’u) -

h? dz+

Sl

/

2
‘—;uf’;(m,ﬂ,ﬂ)

0f PL &
(aa;aL( LYy, )‘l‘(Pvayau(m:yw'U)) Zh_(ayau( z,§,8)+ @ ayéfu(x 7,4 )) Zn| ||
2 2 27,
+[|(Gr e +e.Shwmn) 2 - (SrEno +o5ienn) 4] ar

m+m

|A

zh (2, V) V2 — VTzh a2 (-’B, Vi)V,

j=1

supposing that v — @||z(n) < € With € small enough, where

{A2h+aofh = X gam+Leson an

dy (6.2.15)
a,u_zh =0 onl
af of :
Az +apzy, = =—(z,Yp, V)2 + =— (T, Y, v}h  in
h T 002 By( Yos V)2 Bu( Yos V) (6.2.16)
aﬂ_,q,zh = 0 onl.

We can work with each term in a separate way. Let us remark the fact that the main
tools to prove (6.2.14) are the continuity of the functional G, the C? regularity of f and
gi =0,1,...,n; + ng and the assumptions on the regularity of the derivatives of f, L
and gj.

Given & > 0, for the first term in the left of (6.2.14) we can establish that
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2
“%:%(Z) Yvy v) + ‘Pvg—:g"ff(z’ ymv) . ga_ugl"(z;g: ﬁ) - -g;gf(z’ ﬂ, ﬁ)

L>=(Q)

supposing that ||v—1|| L (q) is small enough: this is a direct consequence of the continuous
dependence of ¢, with respect to v in the norm of L*(f2), that can be obtained from

Proposition 2.1.3.
For the second term of (6.2.14), Holder’s inequality leads us to

i #L, . _&f,
/ .(ay_au(z Yo, ¥ +‘pva af (z,y,,,v)) 2p — (_'_ala(zayl u) +‘Payféf?';(z)ya ‘U,)> Zh Ihl
&L &L
< oL _ oL
= "h"L’(ﬂ) (Hayau(z1 ymv) ayau(za Y, ’U.) - "zh”Lz(ﬂ)
A Zren|  fm-a
3y0u ) ¥ . » — Zn|lL3(n)
o’ f _8*f
+ || Pv (2, 90, ¥) — (2, 5, T 12l zaca)
"’aa(y)“’agau( )me)
o f _
+ v, U Zh — %
Poou &Y i) - [EN h||L=(n))
The argument is completed taking into account the estimates
“zh”Lz(g) - "‘Eh“L’(ﬂ) < Cl”h”Lz(n) and (6.2.17)
12 — Zallz2() < 811l aga), (6.2.18)
when ||lv — |z (q) is small.
Following the same sketch we have
&L & AL _8?
[(Grewn+agi@mn)i- (5en+o7len0) 5| d<

62L e
“ ayz (1"5 Yu, U ayz (.'1.7, Y ‘M) - "zh”%’(ﬂ)
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|lzn — Znllz2(yll2n + 21| L3(a)
Le=(0)

2
%(z, 7,6)

+ l|zn ||"t:=(n)

*f,
25 2(z,yu,v) o =3 (.5, @) o)

llzn — Zallzaayllzn + Znll (),
Le=(2)

W
+ |‘p_a_y—g(m) Y, u)

which, together with (6.2.17)-(6.2.18) allows us to deal with the third term of (6.2.14).
Let us study the last term decomposing it as follows and using again Hoélder’s in-

equality.
vT Zh (:l: Viu)Vzs — vTz, 2“"(x V§Vz,| dz <
0 on ’

<
!

< “VZh”%p(n)N

dz

0.
VT2, (6 I; (z, Vi) — ‘q;(z, ng)) Vz,

(VT2 - VTE),)%"'%(V@)(VZA + Vz)| dz <

2. 2
20, V) - 552, 99)

Le(Q)N?

9, vg)

HIVzn = Varllap [Van + Vol oy |73

Le(A)N?

with p=2N/(N—2) (if N >2),p=3 (if N=1or 2) and q = pp'/(p — p') (q is in this
case the conjugate exponent of p/2).

Exponent p has been chosen in such a way that L*(Q) c (W*¥(Q))'. Thus, using
Proposition 2.1.3, we have that

[Vanlze(ey + [[VZhllzey < Callhllza)- (6.2.19)

when ||v — || = (q) i8 bounded. Moreover, in this case subtracting the equations (6.2.15)
and (6.2.16) and using Theorem 2.1.3 again, we can deduce that

IV 24 — Vil o < Blll|z20)-
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Finally, we can deduce that

632: (=, Vo) — (371 V) <4

Le(a)¥?

for ||v — i||zee(q) small enough, uniformly with respect to v. Let us show this in detail:
due to the continuity of the functional G and using the regularity L”(f2) of the gradient
of the state and the assumption made on the second derivatives of g;, fixed § > g, there
exists a positive constant Cj3 such that for any admissible control v

2

a i
ng(m, Vy'u)

_<_ 033

|3295 (5, V5)

IVysllzrany + | VT req) +

Li(n)N’ Li(a)n?

being r the exponent:introduced in the assumptions of the theorem. Given M > 0, let
us introduce the following sets EM = {z € Q : ||[Vy(z)|| > M} and EM = {z € Q:
|V#(z)|| = M}. Clearly EM and E} depend on v and 4, respectively, but we will not
remark this. here it is important to remark the trivial inequality

m(E¥) < 5 [ IVn(@)lds < 5+
The same reasoning is valid for EX.
Due to the regularity of g;, the second order derivatives are uniformly continuous in
the ball of RM centered in the origin and with radius M. Hence, there exists €; > 0 such
that for ||n — fjl|lgvy < €1 with [llz~, [I7|lry < M, we have that

S /g
RNV? = 4m(ﬂ)

Using again the continuity of the functional G, there exists e > 0 such that when
llv — @llz=(q) < €3, then

5 g,
”’( z,m) — ,f;(x,ﬁ)

[ 190(a) - V(2 < e 5

Let us introduce now another set EM = {z € Q : ||Vyy(z) — V§(z)|| > €1}. Arguing
as before, we may deduce that

em(E) < f V30 (z) — V(2)|lda.
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©. Combining the previous

Particularly, the last two relations imply that m(E'M)

estimates and using Hélder’s inequality with s = /g, we obtain that
629_., (z,V )( dz+

Py R 5

[ [5%ce: 91 - dng%.a;( I
q

/ a7 ")— a /.;u ?;}79;( w) = 5p @ VO)| dot

“/‘;\(Ef‘UE;“UEg‘) 6n2( %V ")_ anz (-’C,Vy) dr <
J ° § 1/s
g+(Zm(EJM)1/s') (/'g‘;lg;( Vo) azg,( i) dx)
<3ea(§)" mcr

This term on the right can be taken less that 4, if M is large enough
For all these considerations, we can assure that the first condition on the continuity

of the second derivative of the Lagrangian in (6.1.16) holds. The rest of the conditions
follows easily from the properties of the functions f, L and g;, j =0,1,...,n;+nq. O

Some extensions
Analogous results can be proved for the boundary control problem (P,)’ described in

page 107. Let us take now
Kr(z) = [va(z), vs(z)],

where v,,vp € L®(T'). The Lagrangian associated to this problem is

ni-+ng
L(v, )—ff(z,y,,,v)dx+ }: Aj fg,—(x, Viu(z))dz.

j=1

Remember that
F) = [ 0@, Vu(a))ds.

We establish now a regularity assumption analogous to (6.2.1). Given @ € V4, fore >0

set
Fe={zx €T :v,(z) + £ < 9(z) < vy(z) — €}
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Given a control ¥, we will say that it satisfies the regularity condition if there exists
€p > 0 such that

the family {cp,-g%(s,ﬂ, 7) }ic1, i8 linearly independent in L*(T,), (6.2.20)

where 7 is the associated state to ¥ and ¢; is the unique solution of

A*G+ apP —div (%(m, Vﬁ)) in Q
_ 9g

Ony@ = a(s,ﬂ,ﬁ):ﬁ onT.

Suppose that

¢ g : ' x R x R is measurable on I" and of class C! with respect to the second
and third variables, g(-,0,0) € LP~I(T"), for all M > 0 there exist Cj > 0 and
Yu € LP7Y(T') such that

0g

%(z,y,v) S CM and S ¢M(-"7)

.

for all (y,v) € R? and a.e. z € I and

d9
— <0.

e £:T x R x R is measurable on T and of class C! with respect to the second and
third variables for all M > 0 there exists ¥ps € L*(T") such that

ot

a—y'(z:yav) < 'I)M(z)

+ l %(w, Y,v)

and the differentiability conditions on the g; established in E6 (page 89) hold.

Theorem 6.2.7 Suppose that ¥ is a local solution of (P.)'. Suppose also that (6.2.20)
holds. Then there ezist real numbers Aj, j = 1,...,nq4+ n; and functions § € W1?(Q),
@ € W (Q) such that

320 mH+1<j<m+ng, f 01(z, Vii(z)) dz = 0, (6.2.21)
11

— — - J Q
{ APFal = J " (6.2.22)

On,i = 9(8,y,v) onT,
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ni+ng
s 8g;
A'gtap = — A;div (—i(w, Vﬁ)) in {1
! z—; ’ on (6.2.23)
On, @ = -a—g(sﬁﬁ)tﬁ+r72g-(sgﬁ) onT
LY L ay sy ay LN ]
and
oc, - _ ol, _ _ af
o A —_ — —_— H— TR — X
5y (0 A)v —7) L(av(s,v,“)+¢av(8,y,8)) (v—0)ds>0 forallv€E Vo
(6.2.24)
Set
e, _ .. _Of, _ _
d(s) 6‘0(3,y’ u) + !P%(S, Y, 3)
and

I ={seT:|d(s) > 0}.

The second derivative of the Lagrangian is given in this case by

2
g«uf( AR = f(a,yz(s y,v)+wgy2( )) 2ds+
‘92
2fr (%(3! ¥ 'f_)) + ‘;az—gv(s,ﬁ, ﬁ)) hz, ds+
/1: (%(S:ga '!7) + @%(3, 17,‘!_))) A2 da+

ﬂd+ﬂi
f sz,, (3, V§) V2 de,

where h € L*(I") and z, is the solution of

0 in Q

Az + ag2n
0 0
On2n = %(s, ﬁ,ﬁ)zh+£(s, %,9)h onT.
Suppose that the C* differentiability conditions on g and £ previously established

and on g; established in E6 hold. Also suppose that condition E7 about the second
derivatives of g; holds and that g and £ are of class C? with respect to the second and
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third variables and that for all M > 0 there exist €, £ > 0 and functions ¢}, € L!(T),
a (T) € L*(T), %3, € L"1(T) and %35 (T") € L»~*(T) such that

2

|ay2 8,¥,v —‘011\4(8)’ Iayav 8,Y, ) + ﬁ(s’y:v) S'/’:l\i(s)a
2

Fo )| <o) and | 2L o)+ | TSl < v

if |y|, |[v| < M for a.e. s € I'. Then we can state second order necessary conditions.

Theorem 6.2.8 Suppose that 7 is a local solution of (P,)’. Suppose also that (6.2.20)
holds. Then
0L

o2 (0
for all h € L*(T') such that h(s) =0 for a.e. s €I and

5,A)h2 >0

[ [ o156 0.0)hds =0 (G S m) or (5> m, [ g5(2,98) =0 and 3, > 0)
r N
[e/enomds<oin+1<i<nitm, [o6@n=0 3 =0
T 1]

h(8) 2 0 if 5(s) = va(s)

h(s) < 0 if 5(s) = vy(s).
(6.2.25)

To establish sufficient conditions we have to introduce
I'"={sel:|d(s)| >7}.

Again the assumptions made on the functions that intervene in the problem are stronger,
in order to make the trace of the adjoint a bounded function.

e g is of class C? with respect to the second and third variables,

dg
—= <
3y (s,9,v) <0
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and for all M > 0 there exists a constant Cjs > 0 such that

dg d%g 0%g
+ a(saysv) + ﬁ(sayav) + a—vg(s,y,v) SCM

d%g
+ ‘bﬁv_(s’ Y, )

%@mw

if |y, |v| < M for a.e. s €T.

e/ :QxRxR — R is of Carathéodory, of class C? in the second and third
variables, |£(s,0,0)| € LP~}(T') and for all M > 0 there exist a constant Cpr > 0
and a function ¥ € LP~(T) such that

o¢ ok
‘a—y (8, Y, 'U) + 5(8, Y, 'l)) S- ¢M(s)
and 2
L 0% 0%¢
5375(3’ Y, 'U) + 'M(S) Y, ‘U) + W(sayav) < CM

if [yl, || < M for a.e. s,

e foralll <j < mng+mny g;: 2 xRY 5 R is measurable in z, of class C? in the
variable 5 and there exist exponents r € [1,00) and 8 > N, a constant C > 0, a
function v¥; € L*(f) such that

99;
an

(z, n)' < Clnl" + ()

‘%(z, n)' < CQ+ ).

Then

Theorem 6.2.9 Let & be an admissible control for problem (Pe)' that satisfies the regu-
larity assumption (6.2.20) and such that there exist real numbers Aj, j = 1,...,n4+ n;
and functions § € W(Q), @ € W¥(Q) satisfying (6.2.21), (6.2.22), (6.2.23) and
(6.2.24). Suppose also that .
) 2 8[hlfo

Jor all h € L*®(T") satisfying (6.2.25) and h(s) = 0 for a.e. 3 € I'" and given § > 0 and
T > 0. Then there erist € > 0 and a > 0 such that J () + al|v - 'l-)lliz(r) < J(v) for all
admissible control v with ||v — 9| z(r) < €.
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6.3 Parabolic case

Set @, T, T, Q, T and A, p, 7, k1, k1, 01, 61 as in Section 2.2, with the boundary
I of class C" and the coefficients of the operator A of class C([0, T}; C()). Set f, g, %o
functions, f: QX R— R g: EXRXxR— R F:@xR—R, G:ExR—R
and g : 2 — R, yo € L®(Q) "\W*(Q). Take ks, k2, 02, 52 and v as in Section 2.2.

Consider the problem (P,) of page 16. Suppose that the set of admissible controls
is of the form

Vaa = {v € L*(Z) : v4(s,t) < v(s,t) < vy(s,t) a.e. (s,t) € T},
where v,, vy, € L*(X). This election corresponds to the case of taking
Ks(s,t) = [vs(s, 1), up(s, t)].

Just like in Section 4.1.2, we will consider

Cz{feLr(I}’)N:/OTCJ- (/ng,-(z,t,f-)dm)dt=0if15jSni,

T
/ G (/g,.(z,t,f“)dz) dthifn.-+15jSﬂs+na},
0 Y]

where {; : R = Rand g; : @ xRN — R are functions. We are going to adapt for problem
(Py) the abstract Theorems given in the beginning of the chapter. In this case

J(v) =/0T/nF(:c,t,yu) dz dt+/oT/rG(s,t,y.,,v) ds dt+/nL(a:,yu(z‘,T)) dz

and T
G;i(v) =/(; G (/ﬂ 9i(z, t, sz,,)dz) dt.
The Lagrangian of this problem is given by

L(v,)) = /OT/QF(:E, t,yy) dT dt + /OT/I:G(& t, Y, ¥) ds dt"’/nL(z,yu(fb‘,T)) do+
"§d /DT G ( fn 95( t, sz.,)dx) dt.

=1
Fi(y) = foT G (L 9i(z, 1, Vsy)dz) dt,

Remember also that
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and that its derivative is given by
') = —div | 9g;
Fi(y) = —=div (; A gi(z,t,Vzy)dz B (8,t, Vzy).

We are going to establish a regularity assumption analogous to (6.1.3). For € > 0,

set
Y. = {(s,t) € T : v,(8,t) + & < 0(s,t) < vy(s,t) — €}

Lemma 6.3.1 Given @ an element of Vg, the followong two conditions are equivalent:

1. there ezists €5 > 0 and functions {hj}er, C L®(Q) with supp h; C I, such that
G:(T))h_? = 51’1’ fOT ’aJ € Ip;

2. there exists €5 > 0 such that
the family {(ﬁ;%(s, t,,0)}ier, is linearly independente in L'(Z,,),  (6.3.1)
where § = G(@) and @; = ;¢ 18 the solution of (4.1.10) for v = 9.

Proof. The proof is completely anlogous to that of Lemma 6.2.1. 0

First order necessary conditions
First order necessary conditions satisfied by ¢ can be deduced from the abstract

Theorem 6.1.2 with the aid of Theorems 4.1.5 and 4.1.7.

Theorem 6.3.2 Suppose that f and g satisfy assumptions P1 and P2, that F', G and L
satisfy P4 and P5 and that the (; and the g; satisfy P7. Suppose also that (6.3.1) holds.
Then there ezist real numbers Xj, j = 1,...,nq4+ n; and functions § € L™ (W'#(Q)) and
@ € L™ (W (Q)) + L*(H*) such that

T
A >0 ni+1<j<ni+ng, Ajfocf(/yj(z,t,vzﬁ)dx)dt=o, (6.3.2)
[1]

J Diai = f@tg) nQ
ﬂ = 9(31 ts ¥, '_)) on X, (633)
l 7(-,0) = w in Q,
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P 8 ) ng+n4 o
af + A*p %(z,t,ﬂ)cﬁ D Z Azdiv C;; (ng(wst’ Vzg)dz) as;; (s t, Vo) +
aF(a: t, %) in Q,
8 8 iy Oy .
1 —an:- = 5,%(3,17,37, 7)p = Z e (f 9i(%,1, Vaf)dz ) Eili(s’t’ Va§) - i+
i (s,t,5,7) on X,
oL, _ .
‘ o(,T) = -afy(z, #(T)) in Q,
ac oG (034
30 BN -10)= A (%(s,t,y, 7) +¢g§(s, t, ﬁ)) (v—7)dsdt >0V vy < v < vy
(6.3.5)
Moreover,
ni+n4
@ = oo + Z A6
Jj=1

where pog and p;; for 1 < j < ni+ny are the solutions of (4.1.9) and (4.1.10) for v = 7.

Proof. We apply Theorems 4.1.5 and 4.1.7 to calculate the expression of the derivative
of the Lagrangian, and deduce expression (6.3.5) as a direct application of Theorem 6.1.2
and Lemma 6.3.1. O

Again we can give a sufficient condition to check the regularity condition (6.3.1).

Lemma 6.3.3 Suppose that there exist ¢ > 0 and an open nonempty set (relative to
the topology of *) A, C X, such that

gu—g(s, t5(s,t),5(s,t)) # 0 in 4,

and {F)(7)}jer, are linearly independent in L™ (W'¥(A.,))'). Then condition (6.3.1)
holds.

Proof. The proof is analogous to that of the elliptic case. O
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Second order necessary conditions

Taking into account Theorems 4.1.5 and 4.1.7, we can prove that the assumptions of
Theorem 6.1.3 are satisﬁed by problem (Pp). In this case we can identify

d(5,t) = (5,1, 5(s, ), 0(8,)) + 85, 1) 5,1, 7(5, ), 88, ),
where § is given by (6.3.3) and @ is given by (6.3.4). Let us introduce
£0 = {(s,8) € T+ |d(s, )] > 0}.

Again it is necessary some more regularity for the second derivatives of g and G. So,
besides P3 and P6, we will suppose that there exist £; > 0, €2 > 0, & > 0, %3, € L€ (X)
and 3, € L7+ (L72+43(T)), such that

2

C ot + oot )| < vhela) (6356)
and 5

oa (8,8, ,0)[ + |55 (s,t,3,0)| < W (s, ) (63.7)

if |y|, lv| < M for ae. (s,t) € X.
So we obtain

Theorem 6.3.4 Suppose that © is a local solution for problem (Pp) and that P1-PS,
(6.3.6) and (6.3.7) hold. Suppose also that the reqularity assumption (6.3.1) holds. Then

2 2 2
0L 5, 3h? / (%?G(s,t,ﬂ,ﬁ)+¢g7‘,q(8,t,ﬂ,?7))2ﬁd8dt+

oo?
f (aya,u(s 1,9, )+§aa?:av(3 t,y’u)) hz), ds dt+

=2

G
/E ('5,0?(3’ L, 9, ﬁ) + ¢%(8$ t, 9, 1—))) h? ds dt+

ng+ni

Z A {f [ 4 (f gi(z, 1, me)dz:)f o (z,2, sz)szhdzf (a:,t sz)szhda;] dt+

T P
f [C; ([ 9i(z,1, ng)dm) f szha—ggl(x, 3 Va:g)vzzhda"} dt} >0
0 h a on

(6.3.8)
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for all h € L*(X) such that h(s,t) =0 for a.e. (3,t) € £° and
T -
/tp,av ¥)hdsdt =0 if (§ < n;) or (j>m,/ ¢ (/ gj(z,t,f)dx) dt=0 and )\; > 0)
0 n
_ Og s . : o -
wj%(s,t,y,v)hdsdtso ifn;+1<j<ng+n, f ¢ [g,-(m,t,f‘)dm dt=0, ;=0
3] 0 o

h(s,t) > 0 if 1(s,t) = v,(s,t)

h(s,t) <0 if 9(s,t) = vy(s, t),

(6.3.9)

where z;, i3 given by

% + Az, = gi(z, t,9)z in Q,
ot 7) gy 0
2 08y e 209 o g
B, = 6y(s’ t,9,0)2 + B (s,t,9,9)h onZX,
Z};(',O) = 0 in §2.

Proof. Notice first that we can apply Theorem 6.3.2 to deduce the existence of the
Lagrange multipliers. Now, due to Theorem 6.1.3, we only have to verify that (A1) and
(A2) hold. In our case, the assumption (A1) (see page 120), is satisfied with

_oG, . _ . 09, . _ _
¢= ja;(s,t, 7,7) +¢o§(8,t,y,v)

and
_Og o
¢3‘ . ‘Pj%(s,t;ys'u)'

From the expression for the second derivatives of J and G; and from the properties
imposed to the derivatives of g, G and g;, it follows that (A2) holds:. Take {h;}%, C
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L*(X), bounded in L*°(X) and pointwise convergent to h. We want to to check that

62 2 5
/(3 2(sty,'u)+<pay2(sty, ))zhhdsdt+
2f (;;g( B “,‘)+tpazzav(s ty,'u)) hx2p, ds di+

PG pe
=2 (8,t,9,0) + P2 (3,4,7,9) ) hi ds dt+
s \ Ov ov?

ng-+ng

3 ¥ N = 0g; = dg; —
Z Aj {/(; [CJ (_/ngj(xats sz)dm) ‘/‘;"a%(x’h me)vzzhkdm.[l"a%(mst; sz)vmzh;.dm dt+

J=1

/0‘ i [C; ( L gilz. b Vmﬁ)da:) _/‘; szh,, o (a: t, sz)V.ez;.,‘da:] dt}

where z,, is given by

+ Az, = g‘; (z,t,9) 2, in O,
gﬂL’:' = %(3, t! ga 'l_))zh;, + g% (8, t, 37, 'l-))hk on 2’

zhk(',O) = 0 in Q,

i az,.,,
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converges to

L (?5; (8,t,9,0) + 6yz(s t, y,v)) 2 dsdt+
2/ (By@v(a’t ﬂ,v)+§06yav(s AR )) hz, ds di+

: 2
_/,; (?9_5'(8, t,9,0) +¢g-—v%(s,t’g, 5)) h2 ds di+

nd+n;

2% { f [J ( ]‘; 9i(@t, Vmﬂ)dw) fn %(w,t,vzﬂ)vzzhdz fn %%(z,t, Vo) Vazs dz| dt+

j=1

/OT [ y (/ng,-(:r,t, Vz9) ) /VTz,, g, (z,t, V2 )V,zhdz] dt}

We can do this term by term. First, let us remark that hy — h in LX) for all g < oo,
which implies that zy, — 2, in L™(W?(52)).

The “lines” 1, 2, 3 and 5 can be treated just like in the elliptic case. Let us check
that

' [ " (/n gi(z1, V,ﬂ)d:z:) /‘;%(-’E, t, V) Ve2, dz 617 % (z, ¢, Ve§)Vazn, dx] dt —

0
/ [J (/ gj(zata Vzﬂ)dm)/._J(zltl Vzﬁ)vzz;;dx/ _J(x,t’vzg)vzzhdz] dtl
° @ a On a 09

converges to zero. To simplify the writing, we will suppose without loss of generality
that in P?7 we have that

0g;

7‘3—1;_(3’ t,n)| < Cl"?lp_l'

So, supposing that g(z,t,0) = 0, we will have that

\9;(z,t,m)| < ClnfP.

I will not write now the dependence of (z, ¢, V.§) in g; and its derivative because of lack
of space in the line and because this cannot lead to confusion. We have, applying P8
and Holder’s inequality,

/OT (( ( / g,da:) / 371 Vezn, + Vizp)dz / = (Vpzp, — zzh)dx) dt’ <
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=2 Bq.
”%"L'(n)”vzzhk + Vazh| o) | V22, — Vz2all L,(n)) dt <

[ (o |

T t-T’z ' i
/0 (( /n |v,g|f'dz) ( /n Vog|®~1P dx)’ V22, +v,z;,||mmllvxz;..—vzzhllmm) dt <

[ (([are) ™ ([ars) ™)

IVz2n, + Vaznl|Lrze@)l|Va2n, — Vazn||LrLea)) <

T . 5
f ( / IVzﬁI”dz) dt - ||Vzzn, + Vazul|rr(ze@))|| Va2, — VeznllLrze(a)
0 1]

The regularity of §, 2, and z», together with the convergence of z,, previously indicated,
assure us that the first two factors are bounded and the last one converges to zero.

Thus we have that assumption (A2) holds and the result is therefore a direct conse-
quence of Theorem 6.1.3. O

Remark 6.3.1 Now we cannot, as in the elliptic case, give sufficient conditions for
the second derivative of the Lagrangian to be bilinear and continuous in L%2(X). This is
because we can not achieve regularity enough for the adjoint state. See the remarks given
now for sufficient conditions.

Sufficient conditions

To prove an analogous result for the parabolic case is still an open problem. The main
difficulty is the regularity of the adjoint state. In this case of the trace of the adjoint
state. It is compulsory to show that it belongs to L*°(X) and it depends continuously
on the data. This problem is pointed by Raymond and Tréltzsch in [76]. They show
that if the adjoint state is given by an equation with a second member —the part that
corresponds to the multiplier- is a Lebesgue, then it is possible to prove in some case
that the adjoint state is bounded. Nevertheless if the multiplier is a measure, this is
not possible (cf. Theorem 4.3 and section 7.3 of [76] ). In our case the multipliers is an
element of L™ ((W'®)'). It is not in a Lebesgue space and it is a measure. We cannot
prove that its trace is bounded.






Chapter 7

Second order conditions involving
the Hamiltonian

7.1 Introduction

We will consider in this chapter problems (Pe) and (Pp), taking a convex set of
admissible controls. In these two problems, under adequate assumptions, we have seen
that a Pontryagin principle holds. The aim of this chapter is to give second order
conditions that involve the Hamiltonian of the problem. Necessary conditions appear
in a natural way, and they are nothing but corollaries of the analogous result for real
valued real functions. The difficulty appears when we deduct sufficient conditions. With
the aid of a condition on the Hamiltonian, we can deduce analogous conditions to the
ones in finite dimension.

Second order conditions imposed in Theorem 6.2.6 differ in an important detail from
the second order conditions given for problems with a finite number of control constraints.
For these problems of finite type, it is sufficient that the Lagrangian is positive definite
for all h € C2. There exist examples (see for instance Dunn [49] or Casas and Tréltzsch
[36]) that prove that this condition generally is not sufficient for problems with an infinite
number of constraints.

Bonnans and Zidani in [12] prove that this condition is sufficient if the second deriva-
tive of the Lagrangian is a Legendre form. Letus remind what this means. We say that
a quadratic form @ on a Hilbert space X, is of Legendre if it is weakly lower semicon-
tinuous, and for every sequence {zx} C X that converges weakly z;, — z and such that

155
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Q(zx) - Q(z), we have that z, — z strongly. In this case, we can follow the same
sketch of the proof as in finite dimension.

7.2 Elliptic case

Consider problem (P,), where we take
Ka(z) = [ug(z), wp()).

We take again Q of class C'; T' its boundary; A an elliptic operator of continuous

coefficients of the form (2.1.1) (page 23); p > N; ag € I?2(Q); f: QxR — R;

g:T=>R gelP(I);L:QxRxR—>Randg;: xRV 5 Rfor1<j<n+ne.
Remember that the Hamiltonian of the problem is given by

H(zi vy (p) = L(.’E, y) u) + (Pf(x, Y U)

In this chapter we are going to give sufficient conditions for the multiplier » that goes
with L to be 1, and therefore we are not going to write it explicitly in the Hamiltonian.

It is interesting to write some of the derivatives of H and observe its relation with
the derivatives of the Lagrangian.

Hy(z,y,u,9) = %f*(z, Y, u) + w% (z,y,u),

0?
Hyu(z,y,u,0) = g%(z, y,u)+ <p-ara3£($, Y, u),

2 2
Hoo(3,1,,0) = e (3,0,0) + i (5,01)

and

Hyy(z,y,u,9) = %(z,y,U) + sog-;i(z, Y, u).

Given @ € Ugg, Aj, j = 1,...,ma+n; and functions § € W?(Q), ¢ € W¥ () satisfying
(6.2.2), (6.2.3) and (6.2.4), if we denote

H,(z) = Hy(z, ¥(z), 8(z), §(z)),

Huu(z) = Huu('z; g'/(:c), ﬁ(x)’ @(z)),
Hyu(z) = Hyu(z, %(2), 5(2), $(2))
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and
w(z) Hyy(z, (), i(z), (),
then or
o (@ Mh = fn Hu(2)h(z) dz
and
g:f (G, A\)h? = / Hyu(z)h?(z) dz + 2 / Hyy (z)h(z)2n(z) dz + / Hyy (z)23(z) dz+
_.1_";2::'-4/\ / VTzh%’—na"—Vzh dz.

where 2, is given by (3.1.3) and £(u,)) is the Lagrangian of the problem, defined in
Section 6.2, page 125.

First order necessary conditions

The first thing we are going to do is writing first order conditions in qualified form.
Theorem 7.2.1 Let @ a local solution of (Pe) and suppose that the assumptions on f, L
and g E1 (page 69), E{ (page 87) and E6 (page 89) and the regularity assumption (6.2.1)
hold. Then there ezist real numbers A;, j = 1,...,n4+ n; and functions §j € WhP(Q),
@ € W (Q) such that (6.2.2), (6.2.3), (6.2.4) are satisfied and

Hy(z, §(z), a(z), p(z))(k — ©(z)) 20

for all ug(z) < k < up(z) and a.e. z € Q.

Proof. Set
Hu(za Y, u, (P) = VL(-T, Y, u) + (Pf(z, Y, u)

Notice first that the conditions of Theorem 5.1.1 are satisfied, and therefore Pontryagin’s
principle holds.
Hou(z, §(z), 4(z), §(z)) = pin Hy(z,§(z), k, (2)) para ct.p. z €.

Due to the differentiability conditions on L and f we have that

9%':( 7(z), #(z), ®(z))(k — @(z)) > 0 para todo u,(z) < k < up(z) y c.t.p. z € Q.
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Let us denote
ni+ng

L,(u,)) =vJ(u) +Z)\G(u

We have that

aaf:’ 4,A)(u—a) = / E',LI-(a: (z),9(z),p(z))(u — @(z))dz > 0 para todo u € Usq.

But, as we saw in Theorem 6.1.2, the regularity assumption implies that # must be
different from zero, because if not we would get a contradiction. Rescaling, we can take
v = 1. The proof is complete just observing that H(z,y, u,) = Hy(z,y, u, ). O

Second order necessary conditions

To establish second order necessary conditions, we need not establish now extra
assumptions on the regularity of some of the derivatives of f and L, as we did in (6.2.9)
and (6.2.10),

Remember that Q°, defined as is the previous chapter (page 129), is

Q= {z € Q: |d(z)| > 0},

where

d(z) = 22 (2, 5(2),5(=) + (o) o2 (7, (=), 8(a).
Notice that d(z) = H,(z).

Theorem 7.2.2 Let @ be again a local solution for problem (P.) (page 16). Suppose
that the assumptions on f, L and g; established in E1 (page 69), E2 (page 70), E4 (page
87), E5 (page 89), E6 (page 89) and E7 (page 90) and the regularity assumption (6.2.1)
hold. Then

Hyu(z,5(2), #(z), (z)) > 0 for a.e. z€Q\ Q. (7.2.1)

Proof. Again Pontryagin’s minimum principle holds, and since H is C? with respect
to u, the second order necessary condition for one variable problems is written in this
case

Huu(z, §(z), 6(z), p(z)) > 0 for a.e. z € Q\ Q°.
This is, where Hy(z, §(z), %(z), (z)) = 0, the second derivative is greater or equal than
0. Condition (7.2.1) is complementary information to (6.2.11). O
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An analogous result to this one for control problems governed by ordinary differential
equations can be found in Warga [91].

Second order sufficient conditions

In the following Theorem we give an additional condition on the Hamiltonian for the
positivity condition of the Lagrangian analogous to the condition in finite dimension to
be sufficient. Remember that

Coram =1{h € L*(Q) satisfying (6.2.8) and h(z) =0 ae. z€Q°}

and
Q" ={zeq:|d(z)| >}

To establish the following result, we must also suppose that the assumptions on the
derivatives of f, L and g, established in page 134, assumption ES8, hold.

Theorem 7.2.3 Let @ be an admissible control for problem (Pe) that satisfies the reg-
ularity assumption (6.2.1)and such that there exist real numbers Aj, j = 1,...,nq+ ni
and functions §j € Wh?(Q), @ € W% (Q) satisfying (6.2.2), (6.2.3), (6.2.4) and (6.2.5).
Suppose also that there exist w > 0, 7 > 0 such that

| H,u(z, §(2), 6(z), (z)) > w forae. z€Q\Q
< (7.2.2)
8L

| 5oz (@ A)A? >0 for all h € Cy 1aqy

Then there eziste > 0 and o > 0 such that J(@i) +allu~|Zaq) < J(u) for all admissible
control u with ||u — || L= (qy < €.

Proof. Let us suppose that the result is false. Then there exists a sequence {u;} of
admissible controls with u; — u in L*(Q) such that

| _
J(g) + E”uh - “”%3(9) > J(ug). (7.2.3)
Since u; is admissible, we have that

Gi(u) =0if 1< j < ny
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and
Gj(ug) <0if ng+1 < j < ni + na.

Since A; > 0 if n; + 1 < j < n; + ng4, we have that
XjGj(ug) <0forl <j<ni+ng
On the other hand A;G (1) = 0. Hence
£(8,%) + 7 lux — lltzny > Ll 3. (7.2.4)

Set 8 = ||jux — 'E”Lz(g) and B
hk — U — U

Ox
The norm ||hg||Laq) = 1, so there exists a subsequence of {h«}, which will be denoted in
the same way, and h € L2(§2) such that hx — h weakly in L?(§2). Moreover, h satisfies
the sign condition in (6.2.8), because the h; satisfy it, and the set of functions that
satisfy the sign condition in (6.2.8) is convex and closed, and thus weakly closed. Also

i i} or. -
‘C(uln’\) = ﬁ(ﬁ,,\) - 6k%(vk’A)hki

where v, is an intermediate point between u and u;. Since ;x > 0 and using (7.2.4), we

have that
ar & 1 _
%(”'“ A)hx < E”u" — | ).

This expression explicitly is

oL d ik
fn (E(x’ Yk, Vi) + 90::55(% Yk 'Uk)) hi < 2llus — | 22y, (7.2.5)

where y; and ¢, are respectively the state and adjoint state associated to vx. The
regularity Theorems, the conditions imposed on g; and the uniform convergence vy —
# implies the uniform convergence y; — § and the convergence in L%(f2), @y — .
Moreover, the conditions imposed on L implies the convergence in L?(R) of its derivative
with respect to u. Therefore, the weak convergence hy — h in L%(Q) is enough to take

the limit in (7.2.5) and obtain
%s(ﬁ, Ak < 0. (7.2.6)

But since we have supposed that # satisfies (6.2.5), and hy = (ux — @)/, with 6 > 0

(” 'i)“k >— C'
au ’
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Taking the limit we obtain
ac

(@ A)h 20. (7.2.7)
So, from (7.2.6) and (7.2.7) we have that
%ﬁ (@, A\)h = 0. (7.2.8)

Since h satisfies the sign condition, this is only possible if A € Cg,Lz(n)- let us see this in
detail. Let us check that

J<n
G;(@)h=0if { or
j>ng, Gj@) =0, /_\_-,' > 0,
and
G;(@h<0if j > n;, Gj(@) =0, A;=0.
If j < ni, then Gj(ux) = Gj(& + Sxhx) = 0 and G (@) = 0. Therefore

0= G (6 + Oxhe) - G,(u)
O ’

and taking the limit we obtain
G;(@)h =0.
If j > n; and Gj(a) = 0, we have that Gj(ux) = G (@ + 6xhe) < 0. So
0> Gj(ﬁ + 5}:?;,) - Gj(ﬁ),
k

and taking the limit we obtain
G;(@)h < 0.

It only remains to see what happens when X j > 0. Taking into account (7.2.3) and that

O = |fux — @llLaq), we get
5_], S J (ux) - J(@)
k — Ok ’
Since dx — 0, taking the limit we obtain

0> J'(@)h.
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Using now (7.2.8) and the expression for the derivative of the Lagrangian, we have that
ni+ng _
0=J(@h+ Y NGj(@h
j=1
Taking into account that if j < n; we have just proved that G(@)h = 0, and that if
G;(a@) < 0, then A; = 0, if we denote

I ={j:ni<j<n+ng Gj@)=0; X; >0},

we have that
0=J@)h+ ) XG)(@h.
jeh
So
0< —J'(@h=) X\Gj@h<0.
jen

Thus, if j € I, necessarily G(@i)h = 0. To finish checking that h € C7 12y We must
prove that h(z) = 0 in a.e. 0. Since h satisfies the sign condition, in a.e. in Q° we have
that d(z)h(z) > 0. If there existed a set A C 0, with |A| > 0, such that |h(z)| > 0 in

A, then
/ d(z)h(z) dz > 0,

oL, -

but
[] d(@)h(a) do = 5= (5, 3)h = 0.

Therefore h(z) = 0 in a.e. Q° and h € C} 2. So, due to the assumption of the
Theorem, we have that

L
A2 2.
ia( Yh* >0 h#0. (7.2.9)
On the other hand
620°L Tyia
L‘.(u;,,)\) L(a, A) +5k (u ,\)h,, + = 2 B — (wg, A)hg, (7.2.10)

where w; is an intermediate point between u; and .
Now, taking into account the considerations made before about the relations between
the derivatives of the Lagrangian and of the Hamiltonian, we may write

oL L

éka_u(u Ay + (u A)h? —6,,/ Hy(z)hi(z) dz + —f Huu(z)R2 (7) dz+
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82 _ _ ntng 339.
+'2£ Hy,(z)7}, (z) dz + 2/ Hyu(2) () 20, (2) dz + Z )‘j/ Van, ?:Vzh,, dz| .
) ] o n 7

Taking into account that H,(z) = 0en Q \ Q°

A=§ /;; H,(z)hi(z) dz + %’E /f; H,, (z)hi(z) dz = & nn\n'r H,(z)hi(z) dz+

2 _ _
+6; | Hy(z)he(z) dz + % H,(z)B(z) dz + % / H,,(z)h}(z) dz

ar 2 Jar 2 Jaar
Using now that Hy(z)hg(z) > 0 for ae. z €, that in Q7 we have that H,(z) > 7,

2 2
A> Gt f Ihe(z)| do + 2 / Huu(2)h () dz + % / Hou(2)h2 (<) dz.
ar 2 Jar 2 Jaar

Since |khk (| Loo(a) = lluk — GllLeo) <€, then for ae. z € Q, & |hk(z)| < . Therefore

212
(s.kh_:(m) < 6klhk($)’-

Hence

A> "; f ,. (27 + H,,.,(zc)) 1 (z) dz + % [ Hon(2)h2(z) de.

Now, from (7.2.4), (7.2.10) and taking into account the previous considerations, we have
that

o2 oL 62 8°L - oL 2oL, -
'-E->5ka (u,A)hk+2au2( k,/\)h§=5ka (@, )hk+2au2( ,/\)h%"'
L YL,
+3 k [6 2 ('UJ,\;, ) %— Eu_g(ul A)hi} ?

&% [ ( +H,.,,.(x)) Wi(e) do + [ o @i (a)des

ni+ng

+§§f_ Unffw(z)zrzu(z)dz+2fHﬂ"(z)h"(z)z"*(m ) dz + Z Aj fVTZh;. B2 VZh,,,d.’B

il L
BT, - T A)h’] (7:2.11)
Let us divide now by 67/2. Taking into account the assumptions made on the second
derivatives of the functions, there exists a constant Cy > 0 such that H,,(z) > —Cx
for a.e. z € Q. So, taking € small enough, we have that

2—"-+H,,.,( )>2——CH>0ae z €.
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So
lim inf (?51 + I?w(:c)) Kl f (2T + Hls )) Hdz.
0r

k—o0 Qr

Moreover, in Q \ Q7, H,u(z) > w > 0, and then
lim inf H,.(z)hidz > f H,,(z)h%dz.
a\ar

k—o0 n\n-r

Taking into account that (A3) holds, we can take the lower limit in (7.2.11) and obtain

0> j (2"' +Hw(a:)) W@ o+ [ Ha(o)hds+

a\ar
_ ni+ng4
+ / H,,(2)22(z) dz +2 / B (@)@ de+ 3 Ay / szh Vz,,dz
7] Q j=1
Therefore .
0> 6—['( , A)h?

and from (7.2.9) and this, we obtain that A = 0.
So in the expression where we take lower limit, we can actually take the limit. Since
all the terms converge to zero, but at most

./r;r (27' +Huu(:1':)) h2(z) dg:+/ Bou(2)h2(z)dz,

we have that this also converges to zero. But
E 2T 2 2T | &
0 L

Therefore,
’}er’lo ||| z2¢y = 0.

But ||Ay||z3) = 1. So we have achieved a contradiction. So the theorem is true. 0
Remark 7.2.1 If we impose the condition (7.2.2) for a.e. = € Q, we will obtain during

the proof that the second derivative of the Lagrangian is a quadratic Legendre form for
the sequence {hy}
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7.3 Parabolic case

Set Q, I, T, Q, £ and A, p, 7, ki, k1, o1, 61 as in Section 2.2, with the boundary
T of class C* and the coefficients of the operator A of class C([0, T}; C(R)). Set £, g, ¥o
functions, f: QX R — R g: EXRXxR—R F:@QxR—R G:ExR—R
and yo: Q — R, yo € L®(Q) N W#(Q). Take ko, ko, 02, 5, and v as in Section 2.2.

Consider problem (Py) of page 16. We will suppose that theset of admissible controls
is of the form

Vad = {v € L®(Z) : va(8,t) < v(s,t) < vy(s,t) ae. (s,t) € T},
where v,, v € L®(X). This election corresponds to the case of taking
Ksx(3,t) = [va(s, 1), s(3, 2)).

Just like in Section 4.1.2, we will consider

T
6‘={J"EIJ*(L‘°)"=f0 ¢ (/nyj(x,t,ﬂdx)dt=0iflstn.-,

[ a([otan ) atsosntisi<ming.

where ¢; : R = R and g; : @ x R¥ — R are functions.
The Hamiltonian of the problem is given by

H(ss i,y (P) = G(ss iy, U) + ‘P!](s: t,y, ‘U)-

We write it it in this way and not like in page 108 because we are going to give sufficient
conditions for # = 1. Now

Hy(s,t,y,v,9) = %(s,t,y,v) + <pg'—‘?(s,t, Ys ).
Given v € Vg, real numbers };, j = 1,...,n4 + n; and functions § € L™(W2?(R2)) and
@ € L™ (W*¥(Q)) satisfying (6.3.2)—(6.3.4), then

Z—f(ﬁ, Mh = [3 Hy(s,t,%(s,t), 9(s,t), B(s,t))h(s, t) ds dt,

where £(v, A) is the Lagrangian of the problem defined in Section 6.3, page 146.
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First order necessary conditions

The first thing we are going to do is writing first order conditions in qualified form.
Theorem 7.3.1 Suppose that f and g satisfy assumptions P1 and P9, that F, G and
L satisfy P4 and P5 and that {; and g; satisfy P7. Suppose also that (6.3.1) holds.

Then there ezist real numbers Xj, j =1,...,nq +n; and functions §j € L"(W**(Q)) and
@ € L” (W' (Q)) + L2(H") such that (6.3.2)—(6.3.4) hold and

H,(s,t,§(s,1), 8(s,t),(s,t))(k — v(s,t)) =0

for all v,(z) < k < vp(z) and a.e. (3,t) € X.

Proof. The proof is completely analogous to that of the elliptic case. If we define
HE(S’ 1, Y,v,9, V) = VG(S, t,y, 'U) + ‘pg(sa LY, ‘U),
due to Pontryagin’s principle, proved in Theorem 5.2.1,

Hs(s,t,3(s,t), 9(s, 1), (s, 1), 7) = vérgéa ) Hy(s,t,5(s,t),v,5(s,t),9)

Due to the differentiability conditions imposed now, we have that
Hyy(s,t,§(s,t), 6(3,t), §(5, ), 7) (k — 9(s,¢)) 2 0

for all v,(z) < k < vy(z) and ae. (s,t) € I. If we denote

ni+nd

L(v,\v) =vJ(v +ZAG

then

oL

el
for all v € V,y. But, as it was seen in Theorem 6.1.2, the regularity assumption
implies that 7 must be different from zero, because if not, we would get a contra-
diction. Rescaling we can taker # = 1. The proof is completed just noticing that
H(s,t,y,v,p) = Hg(s,t,y,v,9,1). O

0, ,0)(v=0) = [ Hr(s,8,5(0,),a(s, 1), @(e, 1), )0 — 9(s,)) 2 0
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Second order necessary conditions

To establish second order necessary conditions, it is not necessary to state extra
assumptions on the second derivatives of G and g as we did in (6.3.6) and (6.3.7).
Remember that |
3 = {(s,t) € £ : |d(s,t)| > 0},

where
d(s,t) = %(s, t,¥(s,t), 9(s,t)) + @(s, t)gv—g(s, t, (s, t),9(s,t)),

Notice that d(s,t) = Hy(s,t, §(s, 1), (s, t), @(8,1)).

Theorem 7.3.2 Suppose that ¥ is a local solution for problem (Py) and that P1-P8
hold. Then

Hyy (8,1, §(s, 1), 5(s, t), @(s,)) >0 for ae. (s,8) € =\ 0.

Proof. Again Pontryagin’s principle is satisfied, and since H is C? with respect to v,
the second order necessary conditions for one variable problems is written in this case as

Hyy (8,1, (s, t), 8(s, t), §(8, 1)) > O for ae. (s,t) € T\ Z°

This is, where the first derivative is zero, the second derivative is greater or equal than
zero. O

Sufficient conditions

We have the same problem as in page 153. We cannot grant that the adjoint state
has a bounded trace.
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The last part of this thesis is devoted to the numerical analysis of a control problem.
Chapter 8 is dedicated to the study of the uniform convergence of the finite element
method applied to the study of semilinear equations. In Chapter 9 we study a problem
with pointwise state constraints. This problem is different from the problem studied in
Chapter 4 because now we have an infinite number of state constraints.






Chapter 8

Uniform convergence of the F.E.M.

for semilinear equations

This chapter is dedicated to the study of the approximation of the solution of a
semilinear equation with the finite element method. Concretely, we study the uniform
convergence of the discrete approximations to the solution of the equation. A similar
study is carried out in Ciarlet [43] for linear equations. Ciarlet studies a Dirichlet problem
and uses triangulations of non negative type. We will also study Neumann’s problem
and, in some case, we do not use triangulations of non negative type.

The first section describes the common elements to both Dirichlet and Neumann
problems, and the discretization. In the second section we give results for Dirichlet’s
problem and in the third one for Neumann’s problem.

8.1 Discretization

Let Q be a convex subset of RN, N =2 or N = 3, I' its boundary and A an operator
of the form

N
Ay =— Z azj [a‘i.iazi y] )

iyy=1

where a;; € C%(Q) and such that there exist m, M > 0 such that

N
mlél® < D ay(2)e; < M|E)IP VEERY y vz e Q.

=1

173
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Let f : 2 x R =& R be Carathéodory function, monotone decreasing in the second
variable, with f(-,0) € L*/?(Q) and satisfying the following local Lipschitz condition For
all M > 0 there exists ¢ar € L?(Q) such that

1f (2, 31) — f(@,42)| < |oae(z)lly1 — gof for ae. z €0 (8.1.1)

if |y, lya| < M.

To make a numeric approximation, we take a family of triangulations on Q, {7 },50-
To each element T' € T let us associate two parameters: p(T') and o(T), where p(T')
denotes the diameter of the set T and o(T') is the diameter of the greatest ball included
in T. We will suppose that h = maxrer, p(T') converges to zero. We will make the
following assumptions on the triangulation:

¢ Regularity assumption: there exists o > 0 such that.ﬁ% <o VI'eT,and h> 0.
e Inverse assumption: there exists p > 0 such that ;&5 <p VI'eTyand h>0.

e Set Q) = Urer T, §, its interior and T, its boundary. Then we will suppose that
the vertexes of 7 placed on the boundary of Iy, are points of I'.

Consider the spaces
Vi={va € CO)NH}Q) : yupp € A(T) VT €Ty 95 =0in Q\ D}

and
Wh . {yh € C(Qh) ¢ Ynlr € PI(T) i€ 7;1} ’

where P;(T) is the space of polynomies of degree 1 on T. Vj is a vector subspace of
W, *(Q) and W, is a subspace of W12(Q).
We will use Lagrange interpolation operator

Hh: C(Q) —_— Wh

being II,z the unique element in W, such that I12(z;) = 2(z;) for all z; node of the
triangulation.
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8.2 Dirichlet case

We will also introduce f, € W~1#(Q). We want to to study the uniform approxima-
tion by the finite element method of the solution of the equation

{Ay = f(by)+fz inQ (8.2.1)

y =0 onT.

For every h, let us define y, € V) as the unique element that satisfies

N
> ./n 03§ () Oz, yn(2)0z, 2 (z)dz = /n £ (@, yn(z))2ndz+{f2, 2n) w10 () xwie) Y2n € Vi
5,j=1

Y (8.2.2)

Lemma 8.2.1 Egquation (8.2.2) has a unique solution.

Proof. Let Ny, be the dimension of V;,. To prove the lemma, we will write the equation
of the form
Awy=F(y)+b
where A, is an N x N, positive definite matrix, F : RM™ — RM is locally Lipschitz, of
constant, say, L, and satisfies that

(F(y1) — F(32), 31 — ya2) < 0 for all yy, y, € R™

and b is a vector of R¥. Without loss of generality, we will suppose that F(0) = 0. We
truncate F' by

F(y) if|[F(yllsM

F =
u(w) M“%“ if [|[F(y)l| = M.

We have that the mapping that to every z € RV+ associates y, such that A,(y,) =
Fy(2) + b satisfies that ||y || < (M + ||bll)/c, where @ is the smallest eigenvalue of Aj.
So, applying Brauer’s fixed point Theorem, we have that there exists y)s that solves
Anym = Fu(ym) + b. Moreover

allym® < yirAnyse = (Far(yae), um) + (b, yae) < 110 llyael],

and hence I
< —
HIJM" =7,
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Therefore s is bounded independently of M. Since F is Lipschitz on the ball B(0, ”;2”),

F(ym) < % forall M >0

and if we take M > L||b]|/a, F(ym) = Fm(ym), and we will have found a solution to
our equation. Uniqueness follows from the monotonicity of F. O

Our purpose is to show that y, —+ y in L®(2). We will start studying the linear case,
supposing a regular enough solution. Next we will apply these results to the study of
a semilinear equation, also with regular solution. Finally, we will study the interesting
case, in which the maximal regularity for the state is Wp*().

Linear case. y € H?(Q)

* Suppose that f(-,y) = 0 and that f, = g € L?(R2). There exists a unique function
y € H3(Q) N H}(R) (cf. Grisvard [59]) that satisfies

Ay = gin
A (8.2.3)
y = OonT.

We also have that there exists a constant C > 0 such that
lyll &3y < Clig|la)- (8.2.4)

We can formulate problem (8.2.3) variationally as

Find y € H}() such that
ind y € (%) (8.2.5)
a(y, 2) = (9,2) Vz € Hy(2).
The approximate problem can be formulated as
(8.2.6)

Find y, € V,, such that
a(Yn, 2n) = (9, 28) Vza € Vp.

The following lemma is known as Aubin-Nitsche Lemma; see for instance Ciarlet [43,
Theorem 19.1] or Raviart-Thomas [74, Theorem 5.2-1).

Lemma 8.2.2 Let y and y, be the solutions of problems (8.2.5) and (8.2.6) respectively.
Then there exists a constant C > 0 independent of h such that

lly — ynllz2ey < CH?|gllza)-
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Proof. Let us see that there exists a constant C > 0 independent of A such that
V¥ € L?(Q) we have:

/n.,p(y — yn)dz < CH?||9|| L3yl gll zany-

Take 9 € L?() and let zy € H(Q) N Hj(N) be the unique element that satisfies

A* = i
» = 4inh (8.2.7)
2y = OonT,

where A* is the adjoint operator of A.
Just like before, we know that there exists a constant C' > 0 independent of h such

that
lzgl| a3y < Cllt||L2ca)- (8.2.8)

The variational formulation of (8.2.7) is written:

Find z,, € H}(Q) such that 8.2.9)
a(z, 29) = (¢, 2) ¥z € HY(SQ). a
and it can be approximated by
(8-2.10)

Find 2y 5 € V, such that
a(zh, 2y,n) = (s 2n) Vzn € Vi

So, using (8.2.9), (8.2.5) and (8.2.6), the continuity of the bilinear form a on H}(Q2),
the usual estimates for finite elements (see for instance Raviart-Thomas [74, Theorem
5.2-1, equation (5.2-20)]), and the estimates (8.2.4) and (8.2.8), we obtain:

a(y — Yn, zy)

a(y — Un, 26 — Zp,p)

Clly — ynllz @) 12y — 2y,nll 71
Chlyl| g3y ll2o |l 2
Ch2\\gl| L2 l1¥|| Laca)-

(¢’ Y- yh)

IA A DA
IN IN A

Therefore
lv —wnllzay =  sup (3,4 — yn) < Ch?||g|lLogm),

FATGIRS
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and the proof is complete. O

Now we are going to give an error estimate in the norm of L*(R2). Due to the

assumptions made y € C({2), and therefore y — y, € C(Q).
We will use the following lemma. (see Ciarlet [43, Theorem 16.1]), which gives us the

interpolation error:
Lemma 8.2.3 Setm >0, k >0, andp,q € [1,00). If we have the embeddings

WHL2(T) — C°(T)
Wh+1e(T) 4 W™9(T)

then there exists a constant C.> 0 independent of h such that

1_1 -
ly — Tryllwmeery < CRVG3)IHE+m gl e,

where Il1y is the restriction to the element T of I1,y.

The following inequality, whose proof can be found in Ciarlet [43, Theorem 17.2],
which gives us the equivalence constant between two Sobolev norms in a finite dimen-

sional space:

1 .
lynllwmaay) < Chm‘;{“o'l_f— Nivnllwio,) Yon € Va, 1<m,  (8211)
'p —

being C > 0 independent of A.
We have now the main result of this section (Ciarlet [43, Theorem 19.3)):

Theorem 8.2.4 Lety andyy, be the solutions of problems (8.2.5) and (8.2.6) respectively.
Then there ezists a constant C > 0 independent of h such that

lly = wnllzgay) < CH*%||y|lmn)-
Proof. We have that
1y — ynllzeoan) < 1y — Maylzeo(ns) + |Tay — ynllzooqay)- (8.2.12)
Due to Lemma 8.2.3, taking m =0, ¢ = oo, k = 1 and p = 2, we have that

ly = Dagllzeony) < CH*~ % |lyl| ). (8.2.13)
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Applying (8.2.11) we have that
ITay — ylleea,) < Ch=¥ | Mhy = g llza,)- (8.2.14)
Again due to Lemma 8.2.3, taking m =0, ¢=2, k = 1 and p = 2, we gets
IThy — ¥llz2a,) < CRAlylleage), (8.2.15)
and due to Lemma 8.2.2
ly — wnllza@n) < ly — yallzaey < CR?|lyllaaay. (8.2.16)
From (8.2.15) and (8.2.16) it follows that
IMhy — ynllza,) < May — yllzsa,) + Iy = yallzam,), < CR?lyllaag)-
This, together with (8.2.14) implies that
ITay = yhllzeqn,) < Ch2F |yl zr2¢)

which together with (8.2.13) and with (8.2.12) complete the proof of the theorem. O

Semilinear case. y € H%(Q)

Suppose now that fa = 0. We will also suppose that there exists a function ¢ € L?(Q)
such that

(@, 1) — fz,8)] < [$(2)| [t — 2] Vi, 22 €R, ae. z€Q. (8.2.17)

This restrictive condition of global type will be relaxed later to one of local type. We
are going to suppose that f(-,0) € L2(Q2). So

[f(z,0)| < |£(2,2) — f(=,0) + |f(z, 0)| < |o(=)| || + | £ (z,0)|

and this way we have that for any real number M > 0 there exists a function ¢ (z) =
¢(z) M + f(z,0) € L?(Q) such that if [t| < M then |f(z,t)| < |@m(z)]. Combinig
the technique of Theorem 3.1.1 with regularity results in Grisvard [59], under this two
conditions we can deduce now that the equation

{Ay = flay)nQ _—
y = 0onT,
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has a unique solution in H2(Q2) N H(Q).

Let us see now the error estimates of the finite element method in the norms of
HY(Q), L*(R) y L=(9).
Equation (8.2.18) can be formulated variationally as

Find y € H}(Q) such that (8.2.19)
a(y, 2) = (f(z,¥), 2) Vz € Hy (),
and it can be approximated by
(8.2.20)

Find yi € V;, such that
a(ylh zh) = (f(xa yh)! zh) Vzh € WI

The following result is a generalization for semilinear equations of the known Céa’s
Lemma (cf Céa (39, Proposition 3.1])

Lemma 8.2.5 Lety andy, be solutions of the variational problems (8.2.19) and (8.2.20)
respectively. Then there exists a constant C > 0 independent of h such that

ly = ynllmr@) < Clly — syl @)-

Proof. The result is a consequence of the Hj(Q)-ellipticity of a, the monotonicity
of f in the second variable, the Lipschitz condition imposed on f and the continuous

embedding from H!(Q) in L*(Q):

"y - ?lh"%rl(n) < Ca(y —UnY — yh) <

<Ca(y—ymy—u)— (F(.4) = FC o)y —un) =
=Ca(y—uyny—2z)— (F(¥) = F(om), ¥ — 2n) <

< C{lly - mllm@ylly — zallar @y + gl 2y lly — valle@lly — 2z llze@} <
<C {||3/ = ullm@ylly — 2all gy + lldllzay lly — vnlla@lly — zh”Hl(n)} <
< Clly — wallmaylly — zllmsay for all 2 € V4.

Dividing by ||y — Y| a1(n) and taking 2, = I,y we achieve to the desired result. O

Now we have the following lemma.
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Lemma 8.2.6 Let y and y, be solutions of the variational problems (8.2.19) and (8.2.20)
respectively. Then there exists a constant C > 0 independent of h such that

lly — ynllzr@) < Chllyll e ).
Proof. Using Lemma 8.2.5, the inequality

Iyl 2 @\ny < Chllyllz2@)

(cf. Raviart-Thomas [74, Lemma 5.2-3]) and Lemma 8.2.3 withm =1,¢=2,k =1 and
p = 2, we have that

ly = wallz @ < Cliy ~ Myl < C (Iyllm@an + Iy — wllzxen) < Chllyllae),
and the proof is complete. O
To obtain the error estimate in L?(f2) let us introduce the function
z,yn(z)) — f(z,y(z)) .
f(z, ya( ) — f(z y( ) if y(z‘) 4 yh(-'l")

o(z) = 4(z) - (z)
0 in other case.

(8.2.21)

Notice that a(z) > 0.
We have again that for all 9 € L?(Q2) there exists a unique z, € H2(Q) N H}(Q)

satisfying
{ Az +a(z)zy. = v inQ

29 = 0 onl.

Since {|allz3a) < ||ollz2 (), there exists a constant C > 0 independent of o such that

|lzgl|m20) < Cll%lL3(n)-
This problem can be formulated variationally as

a(2,z) + (azy, 2) = (¥, 2) Vz € Hy(Q), (8.2.22)
and it can be approximated by
a(2hy 2p,n) + (@2 n, 28) = (¥, 2) V2p € V. (8.2.23)

We are going to apply a very similar technique to that of the linear case to find an error
estimate y — y,, in L?(Q).
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Lemma 8.2.7 Lety andyy be solutions of the variational problems (8.2.19) and (8.2.20)
respectively. Then there exists a constant C > 0 independent of h such that

ly — yallza@) < CH?|ly||gam)-

Proof. Take any ¢ € L?(?). Using (8.2.22), the definition of c(z), (8.2.19) and
(8.2.20), the continuity of a, Lipschitz’s condition (8.2.17), and Sobolev’s and Hélder’s
inequalities as in the previous proof, we have

(b, y —yn) = a(y — yn, 29) + (@2, ¥ —Un) =

=a(y — un, 2 — 2y,n) + (Y — Yn» 29,) + (Q2Zy, y — 1) =

= a(y — Yn, 2y — Zyn) + / (f(z,y) — f(z,yn))zpndz+

+/ f(z,yn) — f(=,y)
a Y=

= a(y—th,2y = 2va) + [ (/0,10) — £(&,0)) e = avr)do <

zy(y — yn) dz =

< Clly — yullma)llzy — 2y ullmr ) +/n |6(2)| ly — yal |29 — zgnldz <
< C{ly —wmlm@llzy — 2nllm@) + 18]l z2e) |y — yallmr @)l 2o — 2enllm@} <
< Clly = mllavayllz — 2pnllmr@) < Chllyllaa@ybllzy||aaq) <
< CR?|lyl| oy l|®llLaca)
where the last estimates follow from Lemma 8.2.6 and the usual estimates for finite

elements. Thus

ly — vnllezmy = sup  (%,4 — ) < CR?||y|| m2y,

lz2¢ny<t

and the proof is complete. 0O

Finally, we have only to repeat the proof of Theorem 8.2.4 to obtain an identical
result for the semilinear case:

Theorem 8.2.8 Let y and y, be solutions of the variational problems (8.2.19) and
(8.2.20) respectively. Then there exists a constant C > 0, independent of h such that

N
ly — yallzeo(ay,) < Ch*~7 ||y|| g3gq)-

Let us see now how we can obtain the same results with less restrictive conditions on
the growing of f in the second variable.
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Theorem 8.2.9 Suppose that (8.1.1) holds and that f(z,0) € L?(?). Then the conclu-
sions of Lemmas 8.2.6 and 8.2.7 and of Theorem 8.2.8 remain valid.

Proof. Notice first that this condition also implies that for all M > 0 there exists
em(z) = dm(z) M + f(x,0) € L?(Q) such that |f(z,t)| < ¢um(z) for every || < M, and
thus we are in the same conditions as before with respect to the existence, uniqueness
and regularity of the solution. We have that y € C(Q). Set M = ||y||z=(q) + 1 and

fl@,~M) ift<-M
fuz,t) =4 f(z,1) if |t <M
f(z,M) ift>M.
We have that for all z € Q, fu(z,¥(z)) = f(z,y(z)). And therefore we have that

Ay = fm(z,y)in Q
y = O0onT.

Take y the solution of the discrete variational problem

Find y¥ € V, such that
a(yM, z) = (fm(z, ¥M), ) V2 € Vi

From Theorem 8.2.8 we have that
_N
ly — va’llz=(any < Ch* 7 ||yl ey,

therefore for all h less than a certain hg we have that ||y — ¥aTllz=(a,)) < 1, and then
lyAllzeoty) < llyllze(m) +1 = M, which implies that fm(z, y}) = f(z,y?) and conse-
cuentemente y¢ is the solution of the problem (8.2.20) and the desired estimates hold.
O

Case y € W;*(Q),p> N

Suppose now that we are in the extreme case: f(-,0) € L?/%(Q), foa € W~1?(Q) and
the local Lipschitz condition (8.1.1) holds. As before, we will start supposing that the
global condition (8.2.17) holds. In this case, with Stampacchia’s truncature method and
using the regularity results (2.1.1) for a C! boundary and (2.1.2) in the general case
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(remember that a convex domain is always Lipschitz), we can assure that y € W,;?(Q)
for p > N, p close to N, supposing the coefficients a;; € C ().

Using the convergence of the finite element method in the norm of H(f2) we can
prove the uniform convergence for N = 2. To achieve the same result for N = 3 we must
use triangulations of non negative type, as it is done in Ciarlet y Raviart [42] for the
linear case. In the last case, it is only necessary that the coefficients a;; are in L>®(Q)
(supposing we know the WP(Q)-regularity of the solution, because, as we have seen,
this assumption is not enough to prove this regularity for y). Let us state first four
lemmas.

Lemma 8.2.10 For ally € W'?(Q), p> N
i -1I 2 = 0.
lim ||y Y llwreca)

Proof. Due to Lemma 8.2.3, II}, is continuous on W'?(Q) with norm bounded inde-
pendently of h: Indeed let us take y € W1P(Q). Then,

ly — Mayllwraga) < Cllyllwre@y

and therefore
ITayllwre) = Mayllwreg,) < (14 C)llyllwism)-
Take y € W2?(R2). Also directly from Lemma 8.2.3 we have that

ly — Mayllwre@,) < Chllyllwasg).- (8.2.24)

The result follows by a demsity argument: Take y € W?(Q), N < p < oo. From the
density of W2P(Q2) in W'P(Q) we have that, given a £ > 0, there exists y. € W2?(Q)
such that ||y — ye|lwrean) < 1y — Yellwrn@ < ﬂii(?)a < €. Due to the continuity of IT,
shown above, we also have that |[TI,y — IIx¥e|lwie(n,) < 3€. From (8.2.24) we deduce
the existence ho > 0, depending on ¢, such that for all A < hq, ||y — Iayellwre(a,) < 3e-
And the result follows from the triangular inequality:

ly — ayllwre,) < 1y = Yellwrm@,) + 1ve — Tndellwrs,) + IITTaY — age|lwisg,) <
1 1 1
< e+ -+ -e=¢€.

-3 3 3
And therefore the limit is zero. To complete the proof, we just have to observe that,

since |Q \ 4| = 0,

ly — Dayllwreavay) = ¥llwre@in,y — 0.
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The proof is complete. O

Lemma 8.2.11 Lety and y, be respectively the solution of equations (8.2.1) and (8.2.2).
Then

lim [ly — yaf|m1 ) = 0.

Proof. Due to Cea’s Lemma 8.2.5, the previous result and the embedding W #(Q2)
H'(Q), we have that

lim |ly - yall () < lim Clly — Tay|l () = 0.

Remark 8.2.1 For the previous result it is only needed continuous coefficients, or even
only bounded, supposing we know the regularity WP(Q) of the solution.

A convergence result in L2(2) can also be proved.

Lemma 8.2.12 Suppose that the coefficients a; ; € C*'(Q), and lety andy respectively
the solutions of equations (8.2.1) and (8.2.2). Then

lim ly — wallza@) _ o
h—0 h

Proof. Take ¢ € L%(02). Following exactly the proof of Lemma 8.2.7 we obtain
W,y — n) < Clly — mnllmr@yllze — 2zgnll ) < Chlly — vnll @yl 2

So
1
ally = ynllea@) < Clly - ynllm ()

and applying Lemma 8.2.11 we obtain the desired limit. O

Lemma 8.2.13 Let y € W#(Q) withp > N. Then

lim ly — DayllLoia,) _0.
h—0 h
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Proof. For the proof we take advantage of II,y € W?(£2,), we use the interpolation
lemma 8.2.3 and obtain that

lly — Mayllzocan) = lly — Day — Taly — Hay)|lzeen) < Chlly — Dayllwre(a,)
and the result follows dividing by h and applying Lemma 8.2.10. O
Now we can prove uniform convergence, at least in dimension 2.

Theorem 8.2.14 Suppose N = 2 and the coefficients a;; € C%'(Q). Let y and yn be
respectively the solution of equations (8.2.1) and (8.2.2). Then

lim |ly = yn[| ooy = 0.

Proof. If we apply the triangular inequality, Lemma 8.2.3, the inequality (8.2.11) of
equivalence between two Sobolev norms in a finite dimensional space, and that N = 2
we obtain that

ly = ynllzeo@n) <y — Tayllzeoean) + ITay = vallzeo(an) <

IA

N N
< C [hl ® llyliwsoa) + b % [Ty — yh||L=<n».)]

Way — yll L3, N 1y — ynll 3oy ]
h h

X
< C [h1 ?||yllwuog) +

Since p > N, Lemma 8.2.12 and the continuous embedding L?(Q2) € H?(f) this quantity

converges to zero.
Notice that since y € C(Q), ||yl zo(\n,) tends to zero when h decreases, so the proof

is complete. O

To give a result in dimension 3 or simply for continuous coefficients, we must make
two extra assumptions:

(H1) Function ¢ given in (8.2.17) belongs to an space L*(2) with r > 2

(H2) The triangulation is of non negative type:

Denote b;, 1 <i<ny b, n <i<n-+m the vertexes of 7, that belong to 2 and
to I" respectively, and set w;, 1 < ¢ < n + m the functions of W), satisfying

wi(bj) = Jl'_fs 1<4,j<n+m,
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i.e., the functions w;, 1 < ¢ < norw; 1 <i < n+m, form a basis of V}, or Wj,. Set
Gij = a(wj,w;), 1 <i<n,1<j<n+m. We will say that the discrete problem
(8.2.20) is of non negative type (or that the triangulation 7, is of non negative
type) if the matrix A = (d;;) is irreducibly diagonally dominant and the relations

d; <0 fori#j,1<i<n, 1<j<n+m,
n+m
Z&ijZO 1<i<n
j=1

hold.

Following Ciarlet [43, Theorem 21.4], we have that for p > N, taking a;; € L*®(Q), if ya
is the solution of the discrete problem

a(Yn, zn) = (g,2,) for all z4 € V,
with g € W~1#(8Q,), then the discrete maximum principle holds:
lallz=(as) < Cllgllw-12(s) (8.2.25)

for discretizations of non negative type.
Using this principle we have:

Theorem 8.2.15 Suppose that the coefficients a;; € L*(Y), and let y be yn respectively
the solution of the equations (8.2.1) and (8.2.2). Then, if the triangulation is of non
negative type,

Iy = ynllzee(y) < Chllyllwes@) if y € W*P(Q), p> 2N (8.2.26)
and
Lim ly — yallze@) =0 if y € W#(Q), p> N. (8.2.27)

Proof. Notice first that in order to have the solution in W'?(Q) it is sufficient that
the coefficients a;; € C(Q) and in W?P(Q) it is sufficient that the coefficients are in
C*'(Q) and that f(-,y) and f, are in L?(Q). Let y € W,*(§2) and y, € V4 be solutions
of the problems (8.2.19) and (8.2.20) respectively (variational formulation for (8.2.1) and
a short writing for (8.2.2) respectively). We have that y, — II,y is the unique element of
V5 that satisfies

a{yn — Iny, 2s) = aly — Uy, 21) + (f (=, 98) — F(Z,¥), %) Y2 € Vi (8.2.28)
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Let us study the norm of the operator
T : Wl () — R

that relates every z € W&*”' () to Tz = a(y — My, 2) + (f(z,¥n) — f(=,9),2).
Due to Holder’s inequality, we know that

a(y ~ Iy, 2) < Clly = Mayllwracan ll2ll 10 q,) Y2 € We® (),

where p’ is the conjugate exponent of p. We have that W1?(Q,) — H'(%) — L8(Q).
If we also have that p < 3 + ¢, with £ small enough, then W% (Q,) < L*(Q), with
8 < 3, as close to 3 as we precise. So s can be chosen in such a way that

1 1
l+_+—==1.
r 6 s

So, using Holder’s inequality and Cea’s generalized lemma (Lemma 8.2.5),

[ @m - f@meas| < [ @iy uizias <
A h
< |18llze)lly — wnllzs@nllzllzo@s) <
< Clly = yallmranllzllwie ) <
< C”U"Hh!l”ffl(nh)||z||w1-n’(n,.) <
< Clly — Ipyllwreamllzllwre (-

Therefore
”T”W“l-"(ﬂ») <Cly- thllwl-P(n;.)

But, applying maximum principle (8.2.25) if 3 < p < 3 + ¢ to equation (8.2.28) we have
that there exists a constant C' > 0 independent of A such that

Nyn — eyl Loan) < CITHw-12¢0,) < Clly — Iayllwrzay),

and using that W?(Q,) <= L®(Q), we get to:

ly = ynll eo(a) ly — Taylizeo(y) + llyn = Mayllzeon) < (8.2.29)

<
< Clly — My llwrrqy)-
If y € W2*(Q), applying Lemma 8.2.3 we have that

ly — Mayllwrega,) < Chllyllwze(), (8.2.30)
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and we can deduce (8.2.26). If p > 3 + ¢ the result follows from the continuous inclusion
W2r(Q) — W23t(Q),
The limit
i — - =0i Lp
lim [|y yullze(ay) =0 if y € WHP(Q)

follows from (8.2.29) and Lemma 8.2.10 if p < oo. If y € W1*°(Q) we just have to notice
that it is also in WP(Q) for all p < oo.

To proof (8.2.27) we just make the same than at the end of the previous proof: since
y € L=(Q), ||yll(a\q,) tends to zero when h decreases. 0O

8.3 Neumann case

We will suppose for Neumann'’s problem that I" is polygonal or polyhedrical. In this
case 2, = ). Consider now ag € Lﬁvfi(ﬂ), ap >0,a0#F0in Q, f € (W‘*"(Q))' and
v € L*(T'). We want to study the uniform approximation by the finite element method
of the solution of the equation

A = f(hy)+fe nQ
Yy +aoy f(y)+f in 83.1)
avuy = v onI.
For each h, let us define y, € W), as the unique element that satisfies
N f
Z / @i,j(%)0z,yn (%) 0z ;2n(z) dz + / ao(z)yn(z)2n(T)dz =
ig=1"1 o (8.3.2)

Af(z: yh(z))zhdx + (jz’zh)(Wl"'(ﬂ))'xWI.P'(n) <+ LU(S)Z};(S)dS VZ}. € Wh.

Lemma 8.3.1 Eguation (8.3.2) has a unique solution.
Proof. The proof is identical to the one made for equation (8.2.2). O

Our objective is to show that y, — y in L*(2). We will get advantage of these results
in next chapter to study a control problem, where v will stand for the control. Generally
vg H %(I‘) and therefore it is nonsense to study the regular case. With Stampacchia’s
truncature method [84] and a regularity Theorem due to Dauge [47], we can prove, as
in Theorem 3.1.1 that y € W1P(Q).

We will start with the well known convergence result for the finite elements method
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Lemma 8.3.2 Let y and Yy, be respectively the solutions of the equations (8.3.1) and
(8.3.2). Then
lira [ly — ynl () = 0.

We also have a result in L?(£2).

Lemma 8.3.3 Suppose that the coefficients a;; € C*1($2), and let y and y, respectively
the solutions of equations (8.3.1) and (8.3.2). Then

lim ly — wall 22y _ 0.
h—0 h

Proof. For every ¢ € L?(f) there exists a unique 2, € H?(Q) satisfying

A*zy +ag2p +0(T)2y = ¢ inQ (8.3.3)
Onyn2g = 0 onT,

with a(z) defined as in (8.2.21). Since ||@||L2() < ||@||L2(q), there exists a constant C > 0
that does not depend neither on A nor on a such that ||2y||g2(a) < C||¥||L2(q)-
Now we can continue as in the proof of Lemma 8.2.12, and apply the previous lemma.

O

Now we can proof, exactly in the same way than in Theorem 8.2.14 the uniform conver-
gence, at least in dimension 2.

Theorem 8.3.4 Suppose that N = 2 and the coefficients a;; € C*'(Q?). Let y and yj
be respectively the solutions of the equations (8.3.1) and (8.3.2). Then

'1.1_1’1(1) lly = ynllzeo(a) = 0.

To prove a result about uniform convergence for N = 3 or simply for continuous
coeficients, we must suppose again that ¢ € L"(Q2), r > 2 and that the triangulation is
of non negative type. For Neumann’s problem, we define a triangulation of non negative
type as follows. Denote b;, 1 < i < n + m the vertexes of 7; that belong to Q and set
w;, 1 <1 < n+ m the functions of W), satisfying

w;(b,-) =6, 1<i,j<n+m,

i.e., the functions w;, 1 < i < n + m, form a basis of W,,. Set &i; = a(wj,w;), 1 <i <
n+m, 1< j<n+m. We will say that the discrete problem (8.3.2) is of non negative
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type (or that the triangulation 7; is of non negative type) if the matrix A = (&) is
irreducibly diagonally dominant and the relations

@; <0 fori#j, 1<i<n+m,1<j<n+m,
n+m
Y @20 1<i<n+m
j=1

hold. In this case, the discrete maximum principles is satisfied. If y, € W), is the solution
of the discrete problem

a(yn, 2n) = (g, 2n) (W' @) xwe' @) + (v,'yzh)w_% 2w (1) for all z, € Wi,
with g € (W“‘"(Q))' then the discrete maximum principle holds:

lynllzeo@ < C (||9||(w1.p'm))' + ””“w-%-"(r)) : (8.3.4)

Theorem 8.3.5 Suppose that the coefficients a;; € L®(), and let y and y, be respec-
tively the solutions of the equations (8.3.1) and (8.3.2). Then, if the triangulation is of
non negative type,

ly — nllze=ian) < Chillyllwasy if y € W(Q), p > 2N (8.3.5)
and
lim [ly — yal| o) =0 if y € WHP(Q), p> N. (8.3.6)

Proof. The proof is identical to that of Dirichlet’s case. O
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Chapter 9

Convergence of the F.E.M. for
control problems

This chapter is dedicated to the study of the discretizations of a control problem. In
the first section we study a distributed problem governed by a semilinear equation with
Dirichlet boundary conditions and in the second section a boundary control governed by
an equation with Neumann boundary conditions.

9.1 Dirichlet case

Consider the sets, operators and spaces described in Section 8.1.

Let K a convex, weakly-* closed, bounded and non empty subset of L*(Q); p >
N;f(-,y) = fi(,y) + f2(-), where f; : Q x R — R is Carathéodory function, monotone
decreasing in the second variable, with f;(-,0) € L*/3(Q2) and satisfying the local Lips-
chitz condition (8.1.1) and f; € W-1?(Q); L : @ x R2 —s R a Carathéodory function,
convex in the third variable and that satisfies that for all M > 0 there exists 9 € L*(1)
such that |L(z,y,u)| < ¥u(z) for ae. z € Q, for all |y|, |u| < M. Set g: A xR — R
a continuous function. Let us formulate the optimal control problem

min J () = / L (z, yu(2), u(2)) dz
ueEK g(z,p(z)<é Yz e,

(Ps) (9.1.1)

193
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where

{Ayu = f(zy)+u nQ (9.1.2)

Yu = 0 on I,

Aplying the same techniques than in Theorem 3.1.1 we have the following results.

Theorem 9.1.1 For everyu € K there exists a unique y, € W,*(Q) solution of (9.1.2).
Moreover, there exists a constant Cx, which only depends on a bound for K, such that
Iyullwis) < Ck for all u € K. Finally, if u; — u weakly-* in L*(R) then y,, — y,
strongly in W(Q).

Theorem 9.1.2 If f(-,0) € L?(Q) and f, = 0, then for every u € K there ezists a
unique y, € H%(Q) N H}(Q) solution of (9.1.2). Moreover, there exists a constant Ck,
which only depends on a bound for K, such that ||Yullm3@) < Ck for every u € K.
Finally, if uj — u weakly-* in L*(Q) then yu, — yu strongly in H(Q).

The following result appears in Casas [18].

Theorem 9.1.3 There erists a number &y € R such that problem (P;) has at least one
solution for every § > &, and (P;) has no admissible controls for 6 < .

Proof. From the regularity results and taking into account that K is bounded in
L>($2) we deduce that there exists a constant C such that ||yy||lL=@) < C for every
u € K. Let M and m be the respectively the supremum and the infimum of g in
Q2 x [-C,C). Then it is obvious that (P;) does not have admissible contols for § < m
and all the elements of K are admissible controls for § > M. Let 4y be the infimum of
the values d for which (P;) has admissible controls. Then m < §p < M and (P;) has
not admissible controls for § < dy. Let us prove that there exists at least and admissible
control for (Ps,). Let {d;} be a decreasing sequence converging to d; and {u;} C K a
sequence of controls such that every {u;} is admissible for (P;;). Since K is bounded,
we can take subsequence, which will dented in the same way, weakly-* convergent in
L*() to an element up € K. Due to the continuity result, we have that the states
{vu;} converge uniformly to yu, and hence

9(z, yuo(z)) = J-ll,,rf,lo g(z, 3, (2)) < J-llf& 0; =dg for all z € Q.

Therefor ug is an admissible control for (Pj,).
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To conclude the proof, we must establish the existence of an optimal control for every
0 > . Let {ux} C K be a minimizing sequence for (P;), this is J(ux) — inf(P;). We
can take a subsequence, denoted again in the same way, which converges weakly-* in
L*(Q) to an element 7 € K. Using an reasoning similar to the one in the previous
paragraph, we can check that g(z,ya(z)) < é for every z € Q. So @ is an admissible
control for problem (P;). Let us check that J(&) = inf(P;). To do that we use Mazur’s
Theorem (see, for instance, Ekeland and Temam [51]): given 1 < p < oo there exists a
sequence of convex combinations {Vj}sen,

n(k) n(k)
vg = E)\k,,-u,-, con Z)"‘J =1y A 20,

such that vy — @ strongly in LP(Q2). Then, using the convexity of L with respect tothe
third variable, the dominated convergence theorem and that L is dominated by a function
of L(), we get

n(k)
J(a)=li L(z,ya(z), dz < lim Mg | L(z,ya(z), uj(z))dz <
(@)= i 2o, su(e) v(e)de < limenp S b [ L (o) (o)
n(k) n(k)
limsupz Aegd (us) + li;r_l’s:p‘/’;E/\MIL(z,yuj(a:),uj(z)) — L(z,yg(), uj())|dz =

k—o0 =k j=k
n(k)

inf(F;) + lim sup fn Y Mgl L(2; vy (), 45(2)) ~ L(z, Ya(2), uj(2))|dz,

k—oo j=k

where we have used the convergence J(uy) — inf(P;). Tocheck that the second summand
of the previous expression tends to zero, we just have to notice that for every fixed z,
the function L(z, -, ) is uniformly continuous on bounded sets of R?, that the sequences
{yu;(z)} and {uj(z)} are uniformly bounded an that yy;(z) — ya(z) when j — oo.
Therefore

nlk)

klir{.loz:)\k,ﬂL(x, Yu; (2), uj(x)) — L(z, ya(z), ui(z))| = 0 for a.e. z € Q.

j=k

Using again the dominated convergence theorem we deduce that

n(k)
limsup /ﬂ S MslL@, 1y (2), 45(2)) — L(3, ya(2), us(x)) ldz = 0,

k—o0 =k
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and the rpoof is complete. D

In this section our aim is to study the convergence of the discretizations of this problem.
For the study of the convergence of the control problem, it is necessary to study the
state equation. In this case, since we have pointwise constraints, we must establish the
uniform convergence of the approximations of the state.

Let us consider the space

Un = {up € L®(R) : upy € R(T) VT € Th}.

For all u;, € U, we will denote by yn(us) the unique element in Vj that satisfies

Z Amd(z)aziyh(x)az, zp(z)dz = /;)(f(-’% Yu(Z)) + up)zndz  Vzp € V, (9.1.3)

ij=1

where we understand that / fazy dz denotes (fa, zh)w—l.p(n)xwg"(n)-

Q
For every h > 0 we take K}, a convex, closed, bounded and non empty subset of U}, in
such a way that {K}} constitutes an internal approximation of K in the following sense

1. For all u € K there exists u, € K with u;, — u in L(Q).
2. If up € Kj, and up — u weakly-* in L*(Q2), then u € K.
3. The { K} are uniformly bounded in L*(Q2).

Let us formulate the following finite dimensional problem.

min J; (up) = /‘; L (z, yn(un)(z), un(z)) dz
un € Kn (25, yn(un)(z;)) <6 Vi€ I,

(Psn (9.1.4)

where {z; };.‘g;’ is the set of vertexes of 7, I, is the set of indexes corresponding to the
interior vertexes.

It is the purpose of this chapter to show that the solutions of the discrete problems
converge to the solution of the continuous problem. To do that, it is necessary to prove
the fact that if up — u weakly-* in L*°(Q), then y,(us) = Y. uniformly in Q.

Observe that we are not exactly in the case of the previous chapter, because what
we proved there is that y, = yn(u) converges to yy.
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The technique to prove this is different depending on whether we have a regular state
or not, or if the triangulation is of non negative type or not. We are going to state
different theorems, in which we can see that, under different assumptions each time, we
can achieve the desired conclusion.

Theorem 9.1.4 Suppose now that a;; € C*(Q) and that f = 0. Moreover, we will
suppose that for all M > 0 there ezists a function ¢y € L?(RQ) in such a way that the
local Lipschitz condition (8.1.1) holds. Suppose also that fi(-,0) € L?(Q). For all h > 0
set u, € Ky, so that up, — u weakly-* in L*(Q2). Then

lim [lyn(un) — Yullzeo = 0. (9.1.5)

Proof. The assumptions made assure us that the state is regular enough. Observe
that, since the K are unformly bounded in L*(£2) (assumption 3 on the K}, page 196),
there exists a constant C such that

|9y ller2y < C for all uy, € Kj, and for all & > 0. (9.1.6)

This is the classical case. We have error estimates. Let us write

llya(un) = yullzeo@) < {lyn(ea) — Yupllzoo@) + Vs — Yullz=()-

From Theorem 9.1.1 it follows that the second summand converges to zero.

For the first one, if we fix h, due to Theorem 8.2.8, we have that ||ys(un) —Yu, || z(a) <
Chz‘%lly,,,.ll Ha(n). Due to this and to (9.1.6) we have that the first summand tends to
zer, and the proof is complete. O

To prove analogous results in the case where the states are not regular enough, we
are going to introduce the following result.

Lemma 9.1.5 For allh > 0, all u € K and all u € K}, there exists C > 0 independent
of h such that
llyn(us) — yh(‘u)llx‘g(n) <Cllu- 'Uh.“H-l(n)-

Proof. From the monotonicity of f and the H}(Q) ellipticity of a(-, ), we hace that
m||yn(un) — yn(u)|frza) < a(Un(un) — yn(u), yn(us) — ya(u)) =

(f (2, yn(un)) — F(z, yn(u)), yn(un) — ya(u)) + (@ — un, ya(ua) — ya(u)) <
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< (u — tny Yn(un) — Yn() < [lu — unllz-1@)llya(un) — va () m3()-

Therefore J
lyn(us) — yn ()| m3e) < —llu = unllz-1(q)-

Theorem 9.1.8 Suppose that the coefficients ai; € C(Q), fi(,0) € LP?(QY), fa €
W-12(€2) and for all M > 0 there ezists a function ¢pr € L(Q), r > 2 in such a way
that the local Lipschitz condition (8.1.1). Let us also suppose that triangulation i3 of non
negative type. For all h > 0 set uy € K}, such that up, — u weakly-* in L*(2). Then

lim {|ya(un) — Yullz=(a) = 0. 9.1.7)

Proof. Now the adjoint state belongs to W'?(§2) and we do not have error estimates,
just a convergence result.
In this case, we may write

llyn(un) — Yullzo(@y < llyn(un) — ya(w)llzeo(ay + [|ya() = Yull o @)-

The second summand converges to zero as a consequence of Theorem 8.2.15.
We know that yy(us) — yn(u) solves the discrete problem

a(yn(un) — yn(u), 2) = (F(z, yn(un)) + un — f(2,yn(u)) — v, 25) Yz € V.
In this case we can apply the discrete maximum principle (8.2.25), and we get
lyn (un) — yn(w)||e(q) < Ol f (2, yn(u)) +u — f(z, ya(un)) — unllw-100) <

< C (IIf (z, yn(w)) — £ (@, yn(un))llw-1o() + llu = unll w-re@y) -

In the second summand, the weak-* convergence in L®(f2) of the u, implies the

strong convergence in W=1#((2).
On the other side

| f (2, yn(w)) — F(z, yn(un)llw-120) < lI8llze ) llyn(w) — ya(un) | g2()-
Due to Lemma 9.1.5

1
lym(un) = yn(w)lmyey < —llu — unllz-(0)-
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The weak-* convergence of the u, implies the strong convergence in H~*(2). Therefore
the states converge uniformly. O

We are going to state now four lemmas anlogous to Lemmas 8.2.10-8.2.13
Lemma 9.1.7 For allh > 0 let uy € K}, such that up = u weakly-* in L*°(Q). Then
}11—11»1(1} ”y“h . thﬂh“W‘"(ﬂh) =0.
Proof. We can bound ||y,, — Inyun llwre,) as

”yu;, — thu;. “Wl-!’(ﬂp.) < ”yuh —Yu ||W1-r(n,.) -+ “yu —IIay "leﬂ(ﬂ,.) + ”thu _thuh ”Wl-P(ﬂh) .

The first summand converges to zero due to Theorem 9.1.1. The second one due to
Lemma 8.2.10. The third one, due to the continuity of IT, (proved at the beginning of the
proof of Lemma 8.2.10), can be bounded by a constant that multiplies ||yu, — yullwir(ay),
which agains converges to zero. O

Lemma 9.1.8 For all h > 0 let u, € Ky, be such that up, — u weakly-* in L*°(2). Then
N [|yn(un) — Yoy [l 30) = 0.
Proof. We can bound |y, ~ yn(tn)||a2(n) as

9, — wn(ua)llz@) < Wun — )l ey + 19w — va(W) ey + llya(e) — yu(us)|| 2 n)-

The first summand converges to zero due to Theorem 9.1.1. The second one due to
Lemma 8.2.11 and the third one, due to Lema 9.1.5, can be bounded by ||lu — ua||g-1(q).
Weak-* convergence of the u, implies strong convergence in H~1(2). O

Lemma 9.1.9 Suppose N = 2, the coefficients a;; € C*'(Q), f(-,0) € L*/%(Q), f, €
W-(Q) and for all M > 0 there ezists a function ¢p € L*(Q) in such a way that the
local Lipschitz condition (8.1.1) holds. For all h > 0 set un € Kj, such that up = u
weakly-* in L*°(Q). Then

ti 192 088) — Yusllzae _
h—0 h ’
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Proof. Since yx(u,) and y,, are the continuos and discrete states associated to the
same control, following exactly the proof of Lemma 8.2.7 we obtain that for every ¢ €
7(?)

¥, Yun—Yn(un)) < Chllyu, —yn(un)| [z @)l 29— 2 nlla1@) < Chllyu, —yn(ua)ll mr@)llvllLan),

where let us remember that zy is the solution of problem (8.2.7) introduced in page 177
and 2y is the solution of (8.2.10). So

1
E”yw. — yn(us)llz2) < Cllyuy — yn(un)llz(a)

and we can apply the previous lemma. The proof is complete. 0O

Lemma 9.1.10 For every h > 0 let up, € Kpbe such that up — u weakly-* in L=(S2).
Then

lim Iun — Thtun llz2(0) =0
h—0 h '

Proof. For the proof we use that IT,y,, € W1?(£), we use the interpolation lemma
8.2.3 and we obtain that

”yuh - thuh”Ll’(ﬂn) = “yun _thup. - Hh(ym. - thuh)”LP(n,.) < Ch”yuh - thm.“Wl-v(n,,)
and the result is obtained dividing by A and applying Lemma 9.1.7. O

Theorem 9.1.11 Suppose N = 2, the coefficients a;; € C**(Q), f(-,0) € LP/*(A),
fa € W=LP(Q) and for all M > 0 there ezists a function ¢pr € L2(Q) in such a way that

the local Lipschitz condition (8.1.1) holds. For all h > 0 set up € K}, such that up — u
weakly-* in L*(2). Then

lim ([ya(un) — yullz=(a) = 0. (9.1.8)
Proof. We have

llyn(ua) — Yullzooen) < Nyn(wn) — Yus llzo(an) + |%us — Yullzo@s)-

The second summand converges to zero due to Theorem 9.1.1. The first one can again
be bounded by the triangular inequality with

lyn(un) = Yupllzoo@n) < llyn(un) — Tnguy [|zos(nn) + 1TaYu, — Yoy llzoo(an)-
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Due to Lemma (8.2.3), we can estimate the second summand:
IThyun = vunllz=(@) < CAY% Iy, lwrsca)-

Since the {uy{ is uniformly bounded, due to Theorem 9.1.1 {yu,} is also in bounded in
WP(Q). So this second summand converges to zero. To estimate ||yn(ua) —IIayus llo=(a,);
let us take into account (8.2.11), which gives us the equivalence between two Sobolev
norms in finite dimensional spaces and we obtain, taking into account that N = 2 and
applying again the triangular inequality

C
|lyn (un) — Tayupllzoogan) < x"yh(uh) = Mayullzaay) <

C (”y’l(uh) - yuh"L’(ﬂ) + ”yuh - thu,."L’(n;.)\
h h ),

Now we can apply Lemmas 9.1.9 and 9.1.10 and deduce that this quantity converges to
zero. So we have proved that

,lj_% llyn (%) — YullLoan) = O

Notice that since y, € C(2) N H3(R), |lyullz=(a\n,) tends to zero when h decreases.
The proof is complete. O

We are now ready to prove that the discrete optimal controls converge to the so-
lution of the problem. One of the key assumptions to prove the convergence of the
discretizations is the weak stability on the left.

Definition 9.1.1 We will say that control problem (P;) is weakly stable on the left at 6

if
61'1% inf(Py) = inf(Fs).

Notice that weak stability on the right
}’1{% inf(Py) = inf(F5) (9.1.9)

is always true: Take us a solution of (P;). Since K is bounded, we can deduce the
existence of a sequence {d;} such that 6; \,  when j — oo and lim;_,o us; = @ weakly-*
in L*>(R2) for some @ € K, being us; a solution of (Fy,). If y; and § are the associated
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states to us; and @ respectively, we have that y; — § uniformly in ). Therefore @ is an
admissible control for (P5). Now, using the convexity in the third variable of L and the
admissibility of us for each (Py), with &’ > 6, we obtain

inf(Fy) < J(8) < liminf J(us,) = lim inf(Py) < J(ug) = inf(F),

which proves (9.1.9).

Therefore, weak stability on the left assures us that inf(F;) is a continuous function
in 4.

There are problems not weakly stable on the left. Let us see two examples of problems
not weakly stable on the left. The first one is in finite dimension and will help us to

illustrate geometrically that the lack of weak stability on the left implies that the problem
is ill posed numerically.

Example 9.1.1 Consider the problem

- Minimize 22 + (y — 1)2
-5<z<5
0<y<1
3+ 32—y +2 <6

(&) ¢

Problem (Q;) i8 not weakly stable on the left for § = 1. In fact, inf(P,) = 0, reaching
the solution at the point (0,1). If we take &' < 1, then 1>y > (1/5)z3 + (3/5)z2 + 1=
z2((1/5)x +3/5) + 1, and therefore we have that z+ 3 < 0, or what is the same z < —3.
From here we deduce that

61'1}1111 1nf(P5') 29> 1nf(P1)

Observe that the problem id that for § = 1 the admissible region has an isolated point,
and it is the point where the minimum is attained.
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Next we introduce a control problem not weakly stable on the left.

Example 9.1.2 Take Q = B(0,1) in R* andT its boundary. Givenu € L*(Q) consider
the partial differential equation

Y« = 0 onT

Set
z(z) =2 (1 - ||z]?).

it 18 clear that z satisfies the partial differential equation

-Az = 4n QN
z =0 onl,

and 2(0) = 2.
Set
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Let us state the following control problem

min J(u) = / (u — 4n)* dz
u € L*(R) g(ys) < 6 in .

(Fs)

Let us see that our ezample is not weakly stable on the left for § = 1.

The solution to (P;) is attained by taking u; = 4n;then yy, = 2, and we have that
9(Wu) <1< 6 and J(u) =0.

Taked' < 1. Letug andys = y., be such that they solve (Py). Necessarilyys(0) < 1
and therefore 1 < ||ys — 2||p=q) since both yy(Z) and 2(z) are continuous functions.
Moreover yy — z solves the problem

-—A(y.;r—z) = uy—4n in
yg — 2z = 0 Onr,

and we obtain the inequality
1 < |lys — 2]|neo(y < Cllyy = 2|3y < Clluw — 4n|ray = Cv/ I (ug).
where C is a constant that does not depend on &'. Therefore, for all §’ < 1

inf(Py) > % >0

and it 18 impossible to have weak stability on the left.

Nevertheless, almost all the problems are weakly stable on the left.

Theorem 9.1.12 Take §y as in Theorem 9.1.3. Then, for all 6§ > &y but at most a
numerable set, problem (P;) is weakly stable on the left.

Proof. Let 8p be the number obtained in Theorem 9.1.3. If we define ¢ : [d, +00) = R
with ¢(d) = inf(P;), then ¢ is a monotone decreasing function, and therefore it is
continuous at every point of [§y, +00) but at most is a countable number of them. But,
as we have already seen, weak stability on the left is equivalent to the continuity of ¢ in
4, and that proves the Theorem. O

For weakly stable on the left problems, we have the following result. Casas [17] gives a
proof for this result in the case of a regular state. The key is to prove that the states
converge uniformly.
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Deflnition 9.1.2 Given a family of elements {up}n>0, withuy € Ky for every h > 0, we
will say that u is an accumulation point of {up}r>o if there exists a subsequence {uy, }32,,
with hy — 0 such that uy, — u weakly-* in L®(9).

Obviously, form the definition of the K}, for every non empty family different there exist
accumulation points, and these ones belong to K. Due to the convexity of L with respect
to the third variable, we have the follwong result.

Lemma 9.1.13 Let {uy,}32, be sequence with hy — 0, up, — u weakly-* in L*™(Q).
Then
J(u) < lmint Jy, (u,).

Proof. We know that there exists a sequence vy, of finite convexe combinations of
up, thet converges strongly to u in LP(Q) for some p € (1, 00):

n(k)
Un, = Z )\k,,-u;.,,
j=k
n(k)
con Ag,; > 0, Z)"‘J =1, l}irgovhb = u in L*(Q).
j=k

So we can write
J(u) = / L(z, Yy, u)dz = lim / L(z, yuy vn, )dz <
Q k—o00 nhh

n(k)
< llﬂglfgk Ak /5;.\,, L(xsyu:uhj)dm 5

n(k)
< limsup Z Ak,j f (L($, Yu, uhvj) - L(.’L‘, Yhy (uhj)’ uh,))dz-'-
k—o0 j=k nhh
n(k)
+liminf > s [ L ny (n) un )
i=k Ay

The second summand is lign inf Jy, (un,). Just like at the end of the proof of Theorem
—00
9.1.3 we get that

lim | (2, Yus un,) — L(, Yn, (U, ); un, ) |dz = 0.

k—ro0 ﬂh,,
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From here it follows that

n(k)
’}LIEOZ Ak,] ./f;hh IL(:B: Yoy uhj) - L(x: Yn; (uhj)! uhj)ldx =0.

i=k

The proof is complete. O

Theorem 9.1.14 Let ¢ be as in Theorem 9.1.8 and § > 6. If (P;) is weakly stable on
the left, then there exists hg > 0 such that (Ps,) has at least a solution up, for h < he.
Moreover, each accumulation point u of {uh}hsho is solution of (P;). Finally

’1‘15(1) Jn(up) = inf(F;). (9.1.10)

Proof. Since every K), is compact and J, is continuous, the existence of a solution
of (Ps,) will be established if we prove that the set of admissible controls for (Pjy) is
not empty. To do that take ug € K an admissible control for problem (P;,) and take
uon € K in such a way that uon — ug a.e. z € Q. Since ug, — u in every LP(Q),
1 < p < o0, then, due to the previous theorems, y,(ugn) — Yuo uniformly in Q. Since
9(z, Yuo (z)) < o for every z € Q, we can deduce from the uniform convergence and the
relation § > &, the existence of a hg > 0 such that g(z, ¥x(uon)) < 0 for all z € Q and
each h < hy. So we conclude that (Pj,) has a solution for every h < hy.

Now let us, be a solution of (Pj), h < hg, whose associated state will be denoted
¥s,- Since {usn}acn, C K and K is bounded, we can extract a subsequence {ugs,} such
that hy — 0 and us,, — % weakly-* in L*°(R2) for some @ € K. Let us prove that @ is a
solution of (P;). Let § be the associate state to @. Since ys5, — § uniformly in  and
9(z;, Ysn, (z3)) < 6 for each node of the triangulation, we deduce that g(z,§(z)) < 6 for
every z € Q, and therefore @ is admissible control for (Ps).

Let us take §' € (80,d) and let ugp be a solution of (P5). For every h < ho let us take
ugn € K such that ugs — uy ae. in Q. From the uniform convergence ys(ugn) —* Yu,
and the relation g(z, yy(z)) < &' < 6 for every = € Q, we deduce the existence of Ay > 0
such that g(z,ya(usn)(z)) < 0 forall z € Q and all h < hy, this is, ug, is an admissible
control for (Pss) always that h < hy. From here we obtain that Ju, (uss,) < Ja, (usn,)
for each k big enough. Using now Lemma 9.1.13 it follows that

J(@) < liﬁilolf.]hh (ugn,) < ]iﬂioglf I, (Ugn,) = J(ug) = inf(Py).



9.1. Dirichlet case 207

Finally the stability on the left condition allow us to conclude
inf(F3) < J(@) < lim (inf (Fp)) = inf (Fs),
which, together with the admissibility of @ for (P;) proves that % is a solution of (F).

The rest of the theorem is immediate. O

Remark 9.1.1 If the solution of the problem is unique, we have that all the sequence
converges weakly-* to the solution of the problem.

Theorem 9.1.15 Let us suppose that the assumptions of the previous theorem apply
and that L is of class C? in the third variable and that there ezists a > 0 such that

gz—uz-L(x,y,u)Za>0fora.e. z€Nandally,ueR

For every h < ho let up be a solution of (Psy) and let @ be an accumulation point point
of {un} with up, — @ weakly-* in L°(Q). Then

klg{.lo 1% — un, |l zage) = 0.

Proof. On one hand
/(L(za Yny (uny), un,) — L(2, ¥, B))dz = (Jn, (un,) — J (B)) +/ L(z, yn, (uny), un, )dz.
1] O\,

The first summand converges to zero due to the previous theorem and the second one
because {L(Z, yn,,un,)} is dominated by a function 9 € L*(Q2). So

lim /(L(x’yhh(uhh)iuhi) — L(z,§, @))dz = 0. (9.1.11)
n

k—o0

On the other hando
[](L(z: Yna (uhh)’ u’lh) - L(z’ ¥, ﬁ))d‘z = /‘;(L(z, Yny, (uh;,); uhn) - L(‘”: Y, uhh))d$+

+ ‘/n(L(zx g: uhh) - L(l‘, !—I, ﬁ))d.'ﬂ
(9.1.12)
As in the proof of Theorem 9.1.3

}LIEO/(L(:Z:, Yny, (Uny), un,) — L(z, J,un,))dz = 0. (9.1.13)
0
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As a consequence of (9.1.11)—(9.1.13) we have that

lim [ (L(z,9,un,) — L(z,7,%))dz = 0. (9.1.14)

k—oco (7]

Making now a Taylor expansion of order two we obtain that
L &L
/(L(z, 7,un,)—L(z,9,3))dz = / i (z, y,ﬁ)(uh,,—ﬁ)dz+l/ — (2, 7, vi) (un, —8)?dz,
Q- 0 Ju 2 0 Oou?

where vy, is an intermediate point between up, and #. Since u,, converges weakly-* to
i, the first summand converges to zero:

lirn %(z, ¥, %) (un, — 8)dz =0. (9.1.15)
n Ou

k—o00
Finally we have that

1 aZL _ (07 -
2 o) ﬁ(z, 7, vx) (un, — u)zdz 2 E”u B Uht.”%’(ﬂ)‘

Therefore we can write
a _ _ oL, _ _ _
Ellﬁ - uhh”%’(ﬂ) < /(L(z: Y, uhh) - L(ml Y, u))d:z: - / E(zv Y, u) (uhl. - u)dz
n n

which converges to zero due to (9.1.14) and (9.1.15). So ||&—us,||L2(n) converges to zero
and the proof is complete. O

9.2 Neumann case

Consider the sets, operators, and spaces described in Sections 8.1 and 8.3. We will
denote I' the boundary of 2, and we will suppose that it is polygonal o polyhedric
Consider also ag € L% (Q),a0>0,80%0inQ, p> N.

Let K a convex, weakly-* closed, bounded and non empty subset of L*(T), £ :
2 x R2 — R a Carathéodory function, convex in the third variable and that satisfies
that for all M > 0 there exists 5 € L'(T') such that |£(s,y,v)| < ¥am(8) for ae. s €T,
for all |y|, [v] < M. Let g : @ x R — R be a continuous function. Let us formulate the
optimal control problem

min J (u) = [ £(5, (), u(8)) ds
vueEK g(z,y(7) <8 VzeQ,

(PNy) (9.2.1)
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where

{ Ay+ay = f(y)+fr inQ (9.2.2)

On,y = U onI.

Aplying the same techniques than in Theorem 3.1.1 and using the regularity results in
Dauge [47] we have the following result.

Theorem 9.2.1 Para cada u € K eziste una dnica y, € WHP(Q) solucidén de (9.2.2).
Ademds eriste una constante Cx, que sélo depende una cota para K, tal que ||yy|lwrr@a) <
Ck para todo u € K. Finalmente si u; — u *débilmente en L™(T") entonces Yu; — Yu
fuertemente en W12(Q).

Andlogamente al caso Dirichlet, se tiene el siguiente resultado sobre existencia de solucién.

Theorem 9.2.2 Eriste un nimero & € R de forma que que el problema (PNj;) posee al
menos una solucién para cada 6 > &y, mientras que (PNjs) no posee controles admisibles
para & < 6y.

Consider now the space Uy, of elements u of L*®(T") in such a way that every side (face
if N = 3) of an element T of 7 that is on I', u is constant.
For every un € Uh, let us define y,(up) € Wh as the unique element that satisfies

> / 04 (%) Oa,yn(101) (2) e, () + / a0()9n (un)(3)2n()ds =

i,j=1

Af(xiyh(uh) (z))zndz + {fa, zh)(wl-r'(n))'xwlm’(n) + /I:uh(s)yh(uh)(s)ds Vzp € Wh,
(9.2.3)
Lemma 9.2.3 Equation (9.2.3) has a unique solution.
The discrete control problem is formulated then as
min Jj(u, =[£3, uy)(8), up(s)) ds
(PNsn) h(un) ; (8, yn(un)(s), un(s)) (9.2.4)

ur € Ky g(zj,yn(un)(z;)) <6 Vi€ L,

where {z,};‘g;)

interior vertexes.
We are going to state now the convergence result for our problem. The proofs are

very similar to those of Dirichlet’s case.

is the set of vertexes of 7, I is the set of indexes corresponding to the
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Lemma 9.2.4 Para todo h > 0, todo u € K y todo u, € K}, existe C > 0 independiente
de h tal que
yn(un) — ya(w)l|me) < Cllu — unll - giry-
Proof. De la monotonia de f, la H'(f2) elipticidad de a(,-) y la continuidad de la

traza en hu tenemos que

m||yn(un) — yh(“)”%ﬂ(ﬂ) < a(yn(un) - yn(u), ya(un) — yn(u)) =
(f (> yn(un)) — f(z, yn(w)), yn(un) — yalu)) + fr ( — un) (n(un) — yn(u))ds <

< /r(“ —up)(yn(un) — yn(u))ds < |lu — u}a||H_§(r)|1yh(uh) — yu(u) ||l ;1)

Por lo tanto 4
llyn(un) — yn(u)ll @) < ,‘n‘"‘"' - "'h”H—}(r)-

Theorem 9.2.5 Suppose that there erists a function ¢y € L™(Q), r > 2 in such a way
that the local Lipschitz condition (8.1.1) holds. Suppose also that the triangulation is of
non negative type. For all h > 0 set up € Ky, such that uy, — u weakly-* in L>°(T).
Then

lim [lyn(un) = yullzee(a) = 0. (9.2.5)

Proof. The state belongs to W?(2) and we have not error estimates, just a conver-
gence result.
In this case we write

Nyn(un) — Yullzee@) < (lyn(un) — yn(w)llzo(@) + ||yn() — yullzeo(a)-

The second summand converges to zero as a consequence of Theorem 8.3.5.
We know that yx(us) — ya(u) solves the discrete problem

a(yn(un) — yn(u), zn) = (F(z,yn(un)) — f(z,yn(u)), zs) + /r (ua — u)znds Vzp € Wy,

where

a)=3 /n 045(2)Py ()3, 2(2)d + /n ao(2)y(2)2(z)da.

t,j=1



9.2. Neumann case 21}

In this case we can apply the discrete maximum principle (8.3.4), and hence

llyn(un) — yu(u)llzeo@) < ClIf (2, yn(w)) — f(=, y’l(uh))”(wl.p'(n))' + [Jus - “Ilw—g.p(r)~

On one hand, the weak-* convergence of the u, implies the strong convergence in
_%"’(I‘).
On the other hand

| f(z, yn(2)) — f(=, yh(uh)”(wl.p'(n))' < ||l z-(y lyn(w) — yn(un)llz:@)-

Due to Lemma 9.2.4
1
lyn(un) ~ wn(@)ll gy < Nl = vll g- 3y

Weak-* convergence of the u;, implies strong convergence in H ‘%(I‘). Therefore, the
states converge uniformly. O

Vamos a dar ahora cuatro lemas andlogos a los Lemas 8.2.10-8.2.13 y a los Lemas 9.1.7-
9.1.10.

Lemma 9.2.8 Para todo h > 0 sea uy, € K}, tales que up, — u *-débilmente en L™ (T).
Entonces

}il_lf{l) ”yup, = thuh”WH’(ﬂ) =0.

Proof. Podemos acotar |[yu, — ITnyu, [[w1.sq) como

(|%un ~ thu;.uwl-l’(n) < lyus — yu“W*-’(ﬂ) + llyu — thu“WLP(ﬂ) + Mays — thuhllwm(m-

El primer sumando converge hacia cero por continuidad. El segundo en virtud del Lema
8.2.10. El tercero, gracias a la continuidad de II;, (demostrada al principio de la prueba
del Lema 8.2.10), lo podemos acotar por una constante que multiplica a ||y, —yu”w:.p(n),
que converge hacia cero por continuidad. O

Lemma 9.2.7 Para todo h > 0 sea uy, € K}, tales que up, — u *-débilmente en L>®(T).
Entonces

,1‘1_’116 llyn(un) = Yuyll @) = 0.



212 9. Convergence of the F.E.M. for control problems

Proof. Podemos acotar ||y, — ya(un)||g:(a) como

o — wn(un)llmriey < Ny — u)llzn@) + llve — un(w)llzr@) + lyn(u) — ya(un)ll o)

El primer sumando converge hacia cero por continuidad. El segundo en virtud del lema
8.2.11 y el tercero, gracias al Lema 9.2.4, lo podemos acotar por ||z — u,]| g-3- La
convergencia *-débil de los u, implica la convergencia fuerte en H-3(), DO

Lemma 9.2.8 Supongamos N = 2 y que los coeficientes a; j € C*'(Q2). Para todo h > 0
sea up € Ky, tales que up, — u *-débilmente en L*®(I'). Entonces

i 19 (48) = Bunllzzy _
h—0 h '

Proof. Como yx(us) ¥ Y, son los estados discreto y continuo asociados al mismo
control, siguiendo exactamente la demostracién del lema 8.3.3 se obtiene que para todo

¥ € L*(Q)
(¥, Yun~yn(tn)) < Chllyu, —yn{un) ||l m @)l ze—2p,nll 1) < Chl|yu, —yn(un) || s 191 2(0)s

donde recordemos que 2y es la solucién del problema (8.3.3) introducido en la pégina
190. Asi

1
Z"yur. - yh(uh)”L’(n) < C"?Ju,. - yh('uh)”m(n)

y podemos aplicar le lema anterior. La prueba estd completa. O

Lemma 9.2.9 Para todo h > 0 sea up € K}, tales que up — u *-débilmente en L>(T).

Entonces
lim l1n — Taun 220y _ 0
h—0 h ’

Proof. Para la demostracién aprovechamos que IT,y,, € W'*(Q2) usamos el lema de
interpolacién 8.2.3 y se tiene que

lYun — Dattus lz2e@) = [1Yus — Tatun = Ma(uy — Tabiuy )il zo@) < Chl|Yuy, — Mty [lwrme)

y el resultado se obtiene dividiendo por A y aplicando el Lema 9.2.6. O



9.2. Neumann case i 213

Theorem 9.2.10 Suppose N = 2 and the coefficients a;; € C%*(Q). For all h > 0 set
un € Ky, such that up, — u weakly-* in L*(I"). Then

Jim {|ys (un) — yu/lz=(a) = 0. (9.2.6)
Proof. Due to the triangular inequality, we have
llya(un) — Yullzoomy < llyn(un) — yullzeo(@) + [¥un — Vullz=().

The second summand converges to zero due to the continuity. The first one can again
be bounded by the triangular inequality with

llyn(un) — Yupllzoo(m) < llyn(un) — Magasllzeo(e) + |1 Tagun — Yunllz=()-
Due to Lemma (8.2.3), we can bound the second summand:

_N
I Tatu, — Yun zoo() < CRY7 || 9y lwtoge)-

Since the uj, converge, they are uniformly bounded, and therefore y,, is also in bounded in
W?(Q). So this second summand converges to zero. To estimate ||yn(un) —IInYu, || Loo(a)s
let us take into account (8.2.11), which gives us the equivalence between two Sobolev
norms in finite dimensional spaces and we obtain, taking into account that N = 2 and
applying again the triangular inequality

C
lya(un) — Mayu,||zeo) < gllyn(uu) —~ IaYun | L3@) <

C / ”yh(“h) = yuh”L’(ﬂ) 4 ”yu,. = thu,.”m(n)\
\ h h '

Ahora podemos aplicar los Lemas 9.2.8 y 9.2.9 y deducir que esta cantidad converge
hacia cero. The proof is complete. O

Finally, using again the concept of weak stability on the left, we can prove that the
solutions of the discrete problems converge to the solutions of the continuous problem.

Definition 9.2.1 Diremos que el problema de control (PNj;) es débilmente estable por

la izquierda en 0 si
61’1% inf (PNy) = inf(PNs).
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Definition 9.2.2 Given a family of elements {up}n>0, with u, € K}, for every h > 0, we
will say that u is an accumulation point of {un}n>o if there erists a subsequence {un, }5,,
with hy — 0 such that un, — u weakly-* in L>(T).

Theorem 9.2.11 If (PNj) is weakly stable on the left, then there exists hy > 0 such
that (P Ng) has at least a solution uy, for h < ho. Moreover, each accumulation point u
of {un}n<h, is solution of (P N;). Finally

;I;I_I,I(l) Jn(un) = inf (P Nj).

Proof. Since every Kj is compact and Jj is continuous, the existence of a solution
of (PNj,) will be established if we prove that the set of admissible controls for (P Njp)
is not empty. To do that take uy € K an admissible control for problem (PNjg,) and
take ug, € K}, in such a way that ug, — ug a.e. £ € I. Since uon — u in every LP(T),
1 £ p < oo, then, due to the previous theorems, y,(uon) — Yu, uniformly in Q. Since
9(Z, Yuo (z)) < & for every z € Q, we can deduce from the uniform convergence and the
relation & > g the existence of a ko > 0 such that g(z, yn(uor)) < ¢ for all z € 2 and
each h < hy. So we conclude that (P Nj;) has a solution for every h < hq.

Now let us, be a solution of (PNj), h < ho, whose associated state will be denoted
¥s,- Since {usn}ncn, C K and K is bounded, we can extract a subsequence {usn, } such
that hr — 0 and ug,, — @ weakly-* in L°°(T") for some % € K. Let us prove that @ is a
solution of (PNj). Let § be the associate state to @. Since ysu, — 7 uniformly in Q and
9(zj, ysn, (z;)) < 4 for each node of the triangulation, we deduce that g(z, §(z)) < d for
every z € 0, and therefore 4 is admissible control for (P Nj).

Let us take ' € (dp, 6) and let uy be a solution of (PNj). For every h < hg let us take
ugn € K, such that ugp — uy a.e. in I'. From the uniform convergence yn(ugn) = Yu,
and the relation g(z,ys(z)) < 4§’ < 4 for every z € Q, we deduce the existence of hy > 0
such that g(z, yh(uﬁ,,)(z)) < forall z € Q and all h < hy, this is, ugy is an admissible
control for (PNp,) always that h < hy. From here we obtain that Ju, (usm,) < Ju, (usn,)
for each k big enough. Using now the convexity of L with respect to the third component
it follows that

J(ﬁ) < llﬂgf Jh.;. Qu.gh,.) < llﬂlol;lf th (u;:h,‘) = J('U.Ji) = lIlf(PN;).

Finally, the admissibility of @ for (P N;) and the stability on the left condition allow us

to conclude
inf(PNy) < J() < Jim (1nf (PNy)) = inf (PNg),
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what proves that @ is a solution of (PNj). The rest of the theorem is immediate. O

Anélogamente al caso distribuido, podemos enunciar el siguiente resultado.

Theorem 9.2.12 Supongamos que se cumplen las hipdiesis del teorema anterior y que
ademds £ es de clase C? en la tercera variable y eZiste a > 0 tal que

g%(s, y,u) > a >0 para ci.p. s €T ytodoy,u €R

Para cada h < hy sea up una solucion de (PN}) y sea i un punto de acumulacidén de
{un} con up, — & *débilmente en L°(T'). Entonces

I:I—I{E:; ”ﬁ — uhh“Lz(m =0.
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