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Abstract

This paper presents a new approach for solving binary quantification problems

based on nearest neighbor (NN) algorithms. Our main objective is to study the

behavior of these methods in the context of prevalence estimation. We seek for

NN-based quantifiers able to provide competitive performance while balancing

simplicity and effectiveness. We propose two simple weighting strategies, PWK

and PWKα, which stand out among state-of-the-art quantifiers. These proposed

methods are the only ones that offer statistical differences with respect to less

robust algorithms, like CC or AC. The second contribution of the paper is to in-

troduce a new experiment methodology for quantification.
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1. Introduction

There is growing interest within the machine learning community regarding

the accurate estimation of the distribution of classes from a sample. This rela-

tively new task, termed quantification, deals with the prediction of the prevalence

of the positive class over a specific dataset. In practical terms, the key objective
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is to estimate the class distribution of a test set, provided that we have a training

set in which this distribution may be noticeably different. Intuitively, this task

is directly related to tracking of trends over time, such as early detection of epi-

demics, endangered species, market and ecosystem evolution, and other kinds of

distribution changes in general.

However, quantification has been an unattractive problem that has barely been

addressed in machine learning research due to the mistaken belief that it is some-

what trivial. Nevertheless, this is not necessarily true, because different distri-

butions of training and test data can have a huge impact on the performance of

traditional machine learning algorithms, which usually assume that both samples

are obtained from identical populations.

In this paper we present an extensive study, analyzing the experimental results

from alternative perspectives. The aim is to explore the applicability of nearest

neighbor (NN) algorithms for binary quantification, using standard benchmark

datasets from different domains [? ]. Similar NN approaches have been success-

fully applied in a wide range of learning tasks, providing simple and competitive

algorithms for classification [? ], regression [? ], ordinal regression [? ], cluster-

ing [? ], preference learning [? ] and multi-label [? ] problems, among others.

The motivational intuition beyond this work is that the inherent behavior of

NN algorithms should yield appropriate quantification results based on the as-

sumption that they may be able to remember details of the topology of the data,

independently of the presence of distribution changes between training and test.

Moreover, bearing in mind that once the distance matrix has been constructed we

are able to compute many different estimations in a straightforward way, we shall

explain why we consider that these methods offer a cost-effective alternative for
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this problem. At the very least, they reveal themselves to be competitive baseline

approaches, providing performance results that challenge more complex methods

proposed in previous papers.

In summary, we seek for a quantification approach with competitive perfor-

mance that could offer simplicity and robustness. Earlier proposals are mostly

based on SVM classifiers [? ? ], which are one of the most effective state-of-the-

art learners. These previous quantification methods showed promising empirical

results due to theoretical developments aimed at correcting the aggregation of in-

dividual classifier outputs. Thus, our main hypothesis is whether we could apply

the aforementioned theoretical foundations with simpler classifiers, such as NN-

based algorithms, in order to stress the relevance of corrections of this kind over

the use of any specific family of classifiers as base learners for quantification. The

second objective of the paper is to develop a new experiment methodology for the

task of quantification based on the widespread 10-fold cross-validation (CV) pro-

cedure and the two step Friedman-Nemenyi statistical test. This methodology is

adapted to the inherent requirements of quantification, which demand evaluating

performance over whole sets rather than by means of individual classification out-

puts. Moreover, quantification assessment also requires evaluating performance

over a broad spectrum of test distributions in order for it to be representative.

Quantification is introduced in Section ?? and the NN algorithms used in this

paper are presented in Section ??. We describe our experiment setup and the

empirical results in Section ??, analyzing these in detail. Finally, we discuss the

main conclusions and future research paths in Section ??.
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2. Binary quantification

From a statistical point of view, this task is aimed at estimating the prevalence

of an event or feature within a sample. During learning stage, we have a training

set with examples labeled as positive or negative, showing a specific distribution

that can be summarized with the proportion of positives or prevalence (p). The

learning objective is to obtain a model being able to predict the prevalence of

other samples that may show a remarkably different distribution of classes. Thus,

the input data is equivalent to that of traditional classification problems, but the

focus is stressed over the estimated prevalence of the sample (p′), rather than the

predicted class of each example.

It is worth noting that quantification methods are currently based on classifi-

cation algorithms. After a surface exploration of the problem, the first intuition

tends to emerge as a straightforward solution based on counting the predictions of

each class. This method is identified as Classify & Count (CC) by George Forman

[? ]. Provided that we use a classifier offering state-of-the-art performance, we

could be tempted to consider this method to be both effective and competitive.

However, this is not the case unless we have access to a perfect classifier, pro-

viding zero misclassified outputs. Unfortunately, the fact is that this scenario is

unrealistic for real-world problems.

For instance, given a binary quantification task in which the learned classifier

tends to misclassify some examples mostly from the positive class, then the de-

rived quantifier will certainly underestimate the proportion of that class. Further-

more, when the prevalence of the positive class increases uniformly in a test set,

then the number of misclassified positive instances also increases and the quanti-

fier will yield a greater negative bias in the estimation of the proportion of positive
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class. This effect becomes even more troublesome in a changing environment, in

which the test distribution is usually substantially different from that of the train-

ing set. Appropriately addressing this issue is crucial for solving quantification

problems. Forman pointed out and studied this behavior for binary quantification,

proposing several methods to undertake this classification bias [? ].

The notation that we shall employ throughout the paper is as follows: given

a test sample, S represents its size, P the count of actual positives and N the

count of actual negatives. Once trained a classifier, we have that P ′ is the count

of individuals of that sample predicted as positives, N ′ the count of predicted

negatives, while TP , FN , TN and FP represent the count of true positives, false

negatives, true negatives and false positives of that model, respectively.

There are two main issues to note about the equations behind the actual preva-

lence and the predicted prevalence:

p =
P

S
=
TP + FN

S
, and p′ =

P ′

S
=
TP + FP

S
. (1)

On the one hand, they only differ with respect to one term, being FN and FP

respectively. This means that both FN and FP values may play an important

role during performance evaluation, as we shall cover in Section ??. On the other

hand, p′ comprises both TP and FP , closely related to the true positive rate and

the false positive rate, defined as

tpr =
TP

P
and fpr =

FP

N
. (2)

These two rates are crucial in understanding quantification methods as pro-

posed by Forman; because they are designed under the assumption that the a priori

class distribution, P (y), changes, but the within-class densities, P (x|y), do not.

This implies in turn that tpr and fpr are independent of shifts in class distribution.
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These assumptions are fulfilled, for instance, when the changes in class priors are

obtained by means of stratified sampling [? ? ].

2.1. Quantification via adjusted classification

From (??), we know that p′ depends exclusively on TP and FP . Thus, due

to (??), only the tpr fraction of any change in P will be perceived by the clas-

sifier. Moreover, the fpr fraction of N will be misclassified by CC as positives.

According to these observations, Forman [? ] states the following theorem and

proof:

Theorem 1 (Forman’s Theorem). For an imperfect classifier, the CC method will

underestimate the true proportion of positives p in a test set for p > p∗, and

overestimate for p < p∗, where p∗ is the particular proportion at which the CC

method estimates correctly; i.e., the CC method estimates exactly p∗ for a test set

having p∗ positives.

Proof. The expected prevalence p′ of classifier outputs over the test set, written as

a function of the actual positive prevalence p, is

p′(p) = tpr · p + fpr · (1− p) (3)

Given that p′(p∗) = p∗, then for a strictly different prevalence p∗ + ∆, where

∆ 6= 0, CC does not produce the correct prevalence

p′(p∗ + ∆) = tpr · (p∗ + ∆) + fpr · (1− (p∗ + ∆)) = p∗ + (tpr − fpr) ·∆.

Moreover, since Forman’s theorem assumes an imperfect classifier, then we have

that (tpr − fpr) < 1, and thus

p′(p∗ + ∆)

 < p∗ + ∆ if ∆ > 0

> p∗ + ∆ if ∆ < 0.
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Therefore, the CC method underestimates when the prevalence increases, and

overestimates when it decreases. With the aim of correcting this bias, Forman

proposed [? ] a new method termed Adjusted Count (AC). The process con-

sists in training a classifier and estimating its tpr and fpr characteristics through

cross-validation over the training set. The next step is then to count the positive

predictions of the classifier over the test examples (as in the CC method), but ad-

justing this estimation by means of the following formula derived from Equation

(??)

p =
p′(p)− fpr

tpr − fpr
, (4)

Since tpr and fpr are estimated through cross-validation, we obtain an approx-

imation of the actual proportion. Hence, the accuracy of this adjusted estimation

is strongly influenced by the accuracy in the estimation of these rates. In some

cases, this leads to infeasible estimates of p, requiring a final step in order to clip

the estimation into the range [0, 1].

2.2. Threshold selection policies

A key problem related to the AC method is that its performance depends

mostly on the degree of imbalance of the training set, degrading when the pos-

itive class is scarce [? ]. This happens because its natural threshold usually tries

to minimize the false positive errors by keeping a very low tpr , resulting in a

small denominator in Equation (??). This fact produces a high vulnerability to

variations in the estimation of tpr or fpr .

Therefore, Forman also proposed alternative imbalance-tolerant methods based

on the selection of classifier thresholds. The main intuition is that selecting a

threshold that allows more true positives, at the cost of many more false positives,
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could provide better corrections and hence more accurate quantification. The ob-

jective is to choose those thresholds where the estimates of tpr and fpr present

less variance or where the denominator in Equation (??) is big enough to be more

robust with respect to estimation errors. In this study we assess the same thresh-

old selection policies as in Forman’s experiment [? ]. The first one is Max, which

chooses the threshold where the denominator (tpr − fpr ) is maximized. The sec-

ond one is the X policy, which takes the threshold where fpr equals 1 − tpr ,

avoiding the tails of both curves. Finally, T50 eludes the tails of the tpr curve by

selecting the threshold where 50% of positives are correctly estimated.

However, there is a drawback underlying all these threshold selection policies

related to the fact that the estimation of tpr and fpr may differ significantly from

the actual values. Hence, with the aim of enhancing the robustness of these ap-

proaches, Forman proposed the Median Sweep (MS) method. In this case, rather

than selecting a specific threshold, the tpr and fpr information from all thresholds

is exploited. During testing, this ensemble model is used to estimate the corrected

prevalence with all available thresholds, using their median as the final output.

2.3. Learning methodology

The learning procedure established by Forman does not involve the calibration

of the underlying SVM parameters. He states [? ] that the focus is no longer

on the accuracy of individual outputs, but on the correctness of the aggregated

estimations. Thus, in some sense, the goodness of the original classifier is not

relevant, as long as its predictions are correctly adjusted.

However, the estimations of tpr and fpr obtained from calibrated SVM mod-

els, previously adjusting the regularization parameter C, are more robust and

provide better quantification results in practice. Moreover, this improvement is
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also noticed for the CC method, which does not involve any kind of correction.

Therefore, our proposed learning process starts by selecting the best value for the

regularization parameter through a grid-search procedure (see Section ??). Once

this optimized model has been obtained, its default threshold is varied over the

spectrum of raw training outputs, and the tpr and fpr values for each of these

thresholds are estimated through cross-validation. After collecting all this infor-

mation, several threshold selection policies can be applied in order to prepare the

classifier for the following step, as already set out in Section ??. Each of these

strategies provides a derived model which is ready to be used and compared.

3. Nearest neighbor quantification

The goal of the paper is to study the behavior of nearest neighbor (NN) algo-

rithms for prevalence estimation in binary problems. It is well-known that each

learning paradigm presents a specific learning bias, which is best suited for some

particular domains. As it happens in other machine learning tasks, we expect that

NN approaches should outperform other methods in some quantification domains.

Our first intuition is that the inherent behavior of NN algorithms should yield ap-

propriate quantification results based on the assumption that they may be able to

remember details of the topology of the data.

Furthermore, NN approaches present significative advantages in order to build

an AC-based quantifier. In fact, they allow to implement more efficient methods

for estimating tpr and fpr , which are required to compute the quantification cor-

rection defined in Equation (??). The standard procedure for the computations of

these rates is cross-validation [? ]. When working with SVM as base-learner for

AC, we have to re-train a model for each partition, while NN approaches allow
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us to compute the distance matrix once and use it for all partitions. Thus, we can

estimate tpr and fpr at a small computational cost, even applying a leave-one-out

(LOO) procedure, which may provide a better estimation for some domains.

3.1. k-nearest neighbor algorithm

One of the best known NN-based methods is the k-nearest neighbor (KNN)

algorithm. Despite its simplicity, it has been demonstrated to yield very competi-

tive results in many real world situations. In fact, Cover and Hart [? ] pointed out

that the probability of error of the NN rule is upper bounded by twice the Bayes

probability of error.

Given a binary problem, represented by a collection of labels Y = (y1, ..., yn)

and their corresponding predictor features X = (x1, ...,xn), with yi ∈ {+1,−1},

then, for a test example xj , the resulting output ŷj for KNN is computed as

ŷj = sign

(
k∑

i ∼ j

yi

)
; (5)

where i ∼ j denotes the k-nearest neighbors of the test example xj .

Regarding the selection of k, Hand and Vinciotti [? ] pointed out that, as the

number of neighbors determines the bias versus variance tradeoff of the model, the

value assigned to k should be smaller than the smallest class. This is especially

relevant with unbalanced datasets, which is the common case in many domains.

Another widely cited study, by Enas and Choi [? ], proposes n2/8 or n3/8 as heuris-

tic values, arguing that the optimal k is a function of the dimension of the sample

space, the size of the space, the covariance structure and the sample proportions.

In practice, however, this optimal value is usually determined empirically through

a standard cross-validation procedure. Moreover, the selection of an appropriate
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metric or distance is also decisive and complex, in which the Euclidean norm is

usually the default option (known as vanilla KNN). For our study we decided to

simplify all these decisions where possible, limiting our search to selecting the k

value that leads to better empirical performance through a grid-search procedure

(see Section ??), and using the Euclidean distance.

3.2. Weight-based k-nearest neighbor

Although KNN has provided competitive quantification results in our exper-

iments, Forman states that quantification models should be ready to learn from

highly imbalanced datasets, like in one-vs-all multiclass scenarios or in narrowly

defined categories. This gave us the idea of complementing it with weighting poli-

cies, mainly those depending on class proportions, in order to counteract the bias

towards the majority class.

The main drawback when addressing the definition of a suitable strategy for

any weight-based method is the broad range of weighting alternatives depending

on the focus of each problem or application. Two major directions for assigning

weights in NN-based approaches are identified by Kang and Cho [? ]. On the one

hand, we can assign weights to features or attributes before distance calculation,

usually through specific kernel functions or flexible metrics [? ]. On the other

hand, we can assign weights to each neighbor after distance calculation. We have

focused our efforts on the latter approach.

This problem has already been studied by Tan [? ], as the core of neighbor-

weighted k-nearest neighbor (NWKNN) algorithm, mostly aimed at unbalanced

text problems. Tan’s method is based on assigning two complementary weights

for each test document: one based on neighbour distributions and another based on

similarities between documents. The former assigns higher relevance to smaller
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classes and the latter adjusts the contribution of each neighbor by means of its

relative distance to the test document. Similarly as in (??), for a binary problem

and given a test example xj , the estimated output can be obtained as

ŷj = sign

(
k∑

i ∼ j

sim(xi,xj) yi wyi

)
. (6)

We discarded similarity score for our study,

ŷj = sign

(
k∑

i ∼ j

yi wyi

)
, (7)

simplifying the notation and the guidelines for computing the class weights de-

scribed by Tan. In summary, he proposes class weights that balance the rele-

vance between classes, compensating the natural influence bias of bigger classes

in multi-class scenarios. He also includes an additional parameter, which can

be interpreted as a shrink factor: when this parameter grows, the penalization of

bigger classes is softened progressively. In this paper, we use α to identify this

parameter. We compute each class weight during training as the adjusted quotient

between the cardinalities of that class (Nc) and the minority class (M )

w(α)
c =

(
Nc

M

)−1/α
,with α ≥ 1 (8)

Therefore, the bigger the class size observed during training, the smaller its

weight. To illustrate this fact, Table ?? shows the weights assigned to one of the

classes, varying its prevalence from 1% to 99% for different values of α. Note that

when we compute the weight of the minority class, or when the problem is bal-

anced (50%), we always get a weight of 1; i.e., there is no penalization. However,

when we compute the weight for the majority class, we get a penalizing weight
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Table 1: PWKα weights w.r.t. different training prevalences (binary problem)

α 1% · · · 50% 60% 70% 80% 90% 99%

1 1 · · · 1 0.67 0.43 0.25 0.11 0.01
2 1 · · · 1 0.82 0.65 0.50 0.33 0.10
3 1 · · · 1 0.87 0.75 0.63 0.48 0.22
4 1 · · · 1 0.90 0.81 0.71 0.58 0.32
5 1 · · · 1 0.92 0.84 0.76 0.64 0.40

ranging from 0 to less than 1. The simplified algorithm defined by (??) and (??)

is renamed as the proportion-weighted k-nearest neighbor (PWKα) algorithm.

As an alternative to Equation (??), we propose the following class weight

wc = 1− Nc

S
, (9)

which produces equivalent weights for α = 1. This expression makes it easier to

see that each weight wc is inversely proportional to the size of the class c, with

respect to the total size of the sample, denoted by S.

Theorem 2. For any binary problem, the prediction rule in Equation (??) pro-

duces the same results regardless of whether class weights are calculated using

Equation (??) or Equation (??), fixing α = 1.

Proof. Let c1 be the minority class and c2 the majority class, then the idea is to

prove that weights w(1)
c1 and w(1)

c2 , computed by means of (??), are equal to their

respective wc1 and wc2 , computed by means of (??), when they are divided by a

unique constant, which happens to be equal to wc1 . For the majority class:

w(1)
c2

=
Nc1

Nc2

=
Nc1/S

Nc2/S
=

1−Nc2/S

1−Nc1/S
=
wc2
wc1

.

Given that by definition w(1)
c1 = 1, we can rewrite it as w(1)

c1 = wc1 / wc1 . Thus,

if we fix α = 1 in (??) and divide all the weights obtained from (??) by the mi-
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nority class weight, wc1 , the weights obtained from both equations are equivalent

and prediction results are found to be equal.

The combination of (??) and (??) is identified as PWK in our experiments. We

initially considered this simplified PWK method as a naı̈ve baseline for weighted

NN approaches. However, despite their simplicity, the resulting models have

shown competitive results in our experiments.

The key benefit of PWKα over PWK is that the former provides additional

flexibility to further adapt the model to each dataset through its α parameter, usu-

ally increasing precision when α grows, but decreasing recall. Conversely, PWKα

requires a more expensive training procedure due to the calibration of this free pa-

rameter. Our experiments in Section ?? suggest no statistical difference between

both, so the final decision for a real-world application should be taken in terms

of the specific needs of the problem, the constraints of the environment, or the

complexity of the data, among others.

It is worth noting that for binary problems when α tends to infinity Equa-

tion (??) produces a weight of 1 for both classes, and given that PWKα is equiv-

alent to PWK when α = 1, then KNN and PWK can be interpreted as particular

cases of PWKα. The parameter α can be thus reinterpreted as a tradeoff between

traditional KNN and PWK.

The exhaustive analysis of alternative weighting approaches for KNN is be-

yond the scope of our study. A succinct review of weight-based KNN proposals is

given in [? ], including attractive approaches for quantification like weighting ex-

amples in terms of their classification history [? ], or accumulating the distances to

k neighbors from each of the classes in order to assign the class with the smallest

sum of distances [? ]. Tan has also proposed further evolutions of his NWKNN,
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such as the DragPushing strategy [? ], in which the weights are iteratively refined

taking into account the classification accuracy of previous iterations.

4. Empirical assessment

The required experiment methodology for quantification is relatively uncom-

mon and has yet to be properly standardized. It differs significantly from tradi-

tional classification methodology because we have to evaluate performance over

whole sets, rather than by means of individual classification outputs. Moreover,

quantification assessment requires evaluating performance over a broad spectrum

of test sets with different class distributions, instead of using a single test set. In

this regard, we follow the global guidelines already established by Forman [? ].

4.1. Experiment methodology

For performance measurement and comparison purposes we selected standard

datasets with known positive prevalence for our experiments. We also adapted the

stratified 10-fold cross-validation procedure, taking into account specific require-

ments for quantification, while preserving the original prevalence in all training

iterations. In summary, once a model is trained with nine of the folds, the remain-

ing one is used to generate 11 different random test sets with specific positive

proportions ranging from 0% to 100%, in steps of 10%. Notice that this approach

guarantees that all the examples are tested at least once, because when we test for

0% and 100% positive proportions, we are using all the negative and positive test

examples of that fold, respectively. This setup also guarantees that the within-

class distributions P (x|y) are maintained between training and test, as stated in

Section ??, due to the fact that resampling processes are uniformly randomized

and stratified [? ? ].
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We presume that this variation in the testing conditions may be rather unnat-

ural, requiring more appropriate collections of data. Changes in training and test

conditions should be extracted directly from different snapshots of the same popu-

lation, showing natural shifts in their distribution. However, for the time being we

have not been able to find suitable collections of datasets offering these features.

4.1.1. Datasets

The main objective is to evaluate state-of-the-art quantification techniques,

comparing them with simpler quantification models based on classical NN rules

over different training distributions. In order to compare these models fairly, we

selected a collection of datasets from the UCI Machine Learning Repository [? ],

taking problems with ordinal or continuous features with at the most three classes,

and ranges from 100 to 2,500 examples. The summary of the 24 datasets meeting

these criteria is presented in Table ??.

Notice that the percentage of positive examples goes from 8% to 78%. This

fact offers the possibility of evaluating the methods over significantly different

training conditions. For datasets that originally have more than two classes, we

followed a one-vs-all decomposition approach. We also extracted two different

datasets from acute, which provides two alternative binary labels.

For datasets with positive class over 50%, ctg.1 in this experiment, an alter-

native approach when using T50 method is to reverse the labels between both

classes. We have tried both setups, but we have found no significant differences.

Therefore, we decided to preserve the actual labeling, because we consider that it

is crucial to perform the comparisons between systems under the same conditions.
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Table 2: Summary of datasets

Dataset Identifier Size Attrs. Pos. Neg. %pos.

Acute Inflammations (urinary bladder) acute.a 120 6 59 61 49%
Acute Inflammations (renal pelvis) acute.b 120 6 50 70 42%
Balance Scale Weight & Distance Database (left) balance.1 625 4 288 337 46%
Balance Scale Weight & Distance Database (balanced) balance.2 625 4 49 576 8%
Balance Scale Weight & Distance Database (right) balance.3 625 4 288 337 46%
Contraceptive Method Choice (no use) cmc.1 1473 9 629 844 43%
Contraceptive Method Choice (long term) cmc.2 1473 9 333 1140 23%
Contraceptive Method Choice (short term) cmc.3 1473 9 511 962 35%
Cardiotocography Data Set (normal) ctg.1 2126 22 1655 471 78%
Cardiotocography Data Set (suspect) ctg.2 2126 22 295 1831 14%
Cardiotocography Data Set (pathologic) ctg.3 2126 22 176 1950 8%
Haberman’s Survival Data haberman 306 3 81 225 26%
Johns Hopkins University Ionosphere Database ionosphere 351 34 126 225 36%
Iris Plants Database (setosa) iris.1 150 4 50 100 33%
Iris Plants Database (versicolour) iris.2 150 4 50 100 33%
Iris Plants Database (virginica) iris.3 150 4 50 100 33%
Sonar, Mines vs. Rocks sonar 208 60 97 111 47%
SPECTF Heart Data spectf 267 44 55 212 21%
Tic-Tac-Toe Endgame Database tictactoe 958 9 332 626 35%
Blood Transfusion Service Center Data Set transfusion 748 4 178 570 24%
Wisconsin Diagnostic Breast Cancer wdbc 569 30 212 357 37%
Wine Recognition Data (1) wine.1 178 13 59 119 33%
Wine Recognition Data (2) wine.2 178 13 71 107 40%
Wine Recognition Data (3) wine.3 178 13 48 130 27%

4.1.2. Evaluation of quantification performance

Forman proposed the Absolute Error (AE) between actual and predicted pos-

itive prevalence as default loss function for quantification [? ], which is simple,

interpretable and directly applicable:

AE = |p′ − p| = |P
′ − P |
S

=
|FP − FN |

S
. (10)

Moreover, as Esuli and Sebastiani [? ] suggest, a function must simply deteriorate

with |FP − FN | in order to be considered an appropriate quantification metric,

which is fulfilled by AE.

Kullback-Leibler Divergence (KLD) or normalized cross-entropy is also used

for evaluating quantifiers in some contexts [? ? ]. This metric determines the error
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made in estimating the predicted distribution (P ′/S,N ′/S) with respect to the true

distribution (P/S, N/S):

KLD =
P

S
· log

(
P

P ′

)
+
N

S
· log

(
N

N ′

)
. (11)

However, KLD is recommended when used to average across different test

distributions, which is not the focus of our current experiments. This is because,

predicting 7% for a test set with 10% positives is not equivalent to predicting 42%

for a test set with 45% positives, although both cases yield 3% for AE. Averaging

AE values in those cases is discouraged.

On the other hand, a clear advantage of using AE is that it has a real meaning

for the practitioner. Moreover, KLD is not properly bounded, obtaining unde-

sirable results, like infinity or indeterminate values, when the actual or estimated

proportions are near 0% or 100%, needing further corrections to be applicable [?

].

4.1.3. Algorithms and parameters

As one of the experiment baselines, we selected a dummy method that always

predicts the distribution observed in training data, irrespective of the test distribu-

tion, which is denoted by BL. This allows us to verify the degree of improvement

provided by other methods, that is, the point upon which they learn something

significant. Although this baseline can be considered a non-method, it is able to

highlight deficiencies in some algorithms. As we shall discuss later in Section ??,

there are no significant differences between BL and other methods.

We chose CC, AC, Max, X, T50 and MS as state-of-the-art quantifiers from

Forman’s proposals, considering CC as primary baseline. The underlying clas-

sifier for all these algorithms is a linear SVM from the LibSVM library [? ].
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The process of learning and threshold characterization, discussed in Section ??,

is common to all these models, reducing the total experiment time and guarantee-

ing an equivalent base SVM for them all. As regards the MS method, we found

cases in which there exists no threshold providing a denominator greater than 1/4.

Since Forman does not make any recommendation to overcome this problem, we

decided to fix these missing values with the Max method, which provides the

threshold with the greatest value for that difference.

The group of NN-based algorithms consists of KNN, PWK and PWKα. For

the sake of simplicity, we always use the standard Euclidean distance and perform

a grid-search procedure to select the best k value, as discussed in Section ??. It is

worth noting that we apply Forman’s correction defined in (??) for all these NN

algorithms. The main objective is to verify whether we can obtain competitive

results with instance-based methods, while taking into account the formalisms

already introduced by Forman. In contrast with threshold quantifiers, those based

on NN rules do not calibrate any threshold after learning the classification model.

We use a grid-search procedure for parameter configuration, consisting of a

2×5 cross-validation [? ? ]. The loss function applied for discriminating the best

values is the geometric mean (GM ) of tpr and tnr (true negative rate, defined as

TN/N ), i.e., sensitivity and specificity. This measure is particularly useful when

dealing with unbalanced problems in order to alleviate the bias towards the major-

ity class during learning [? ]. For those algorithms that use SVM as base learner,

the search space for the regularizer parameterC is {0.01, 0.1, 1, 10, 100}. For NN-

based quantifiers, the range for k parameter is {1, 3, 5, 7, 11, 15, 25, 35, 45}. In the

case of PWKα, we also adjust parameter α over the integer range from 1 to 5. The

grid-search for NN models is easily optimizable, because once the distance matrix
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has been constructed and sorted, the computations with different values of k can

be obtained almost straightforwardly.

The estimations of tpr and fpr for quantification corrections are obtained

through a standard 10-fold cross-validation in all cases. Other alternatives like

50-fold CV or LOO are discarded because they are much more computation-

ally expensive for SVM-based models. In the case of NN-based algorithms, the

straightforward method for estimating these rates is by means of the distance ma-

trix, applying a LOO procedure. However, we finally decided to use only one

common estimation method for all competing algorithms for fairer comparisons.

4.2. Experimental results

In summary, we collected results from 24 datasets, applying a stratified 10-

fold cross-validation for them all, preserving their original class distribution. After

each training, we always assess the performance of the resulting model with 11

test sets generated from the remaining fold, varying the positive prevalence as

described in Section ??. We therefore performed 240 training processes and 2,640

tests for every system we evaluated. All quantification outputs are adjusted by

means of Equation (??), except for BL and CC. This setup generates 264 cross-

validated results for each algorithm, that is, 24 datasets × 11 test distributions.

We obtained equivalent results with AE and KLD (see supplementary material).

For the sake of readability this section only analyzes AE scores.

One of the key drawbacks that we encountered during the analysis of these

experiments is the broad range of standpoints that can be adopted, in addition to

the information overload with respect to traditional classification methodologies.

Therefore, we consider that coherent and meaningful summaries of this informa-

tion are crucial to understand, analyze and discuss the results properly.
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α

(a) Boxplots of all AE results

α

(b) Nemenyi at 5% (CD = 2.7654)

Figure 1: Statistical comparisons among all systems under study

4.2.1. Overview analysis

The first approach that we followed is to represent the AE results for all 11

test conditions in all 24 datasets by means of a box-plot of each system under

study. Thus, in Figure ?? we can observe the range of errors for every system.

Each box represents the first and third quartile by means of the lower and upper

side respectively and the median or second quartile by means of the inner red line.

The whiskers extend to the most extreme results that are not considered outliers,

while the outliers are plotted individually with crosses. In this case, we consider

as outliers any point greater than the third quartile plus 1.5 times the inter-quartile

range. Note that we are not discarding the outliers for any computation, we are

simply plotting them individually.

We distinguish four main groups in Figure ?? according to the learning pro-

cedure followed. The first one comprises only BL, covering a wide range of the

spectrum of possible errors. This is probably due to the varying training conditions
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of each dataset, given that this system always predicts the proportion observed

during training. The second group, including CC and AC, shows strong discrep-

ancies between actual and estimated prevalences of up to 100% in some outlier

cases. These systems appear to be quite unstable under specific circumstances,

which we shall analyze later. The third group includes T50, MS, X and Max, all

of which are based on threshold selection policies (see Section ??). However, as

we shall also discuss later, the T50 method stands out as the worst approach in

this group due to the evident upward shift of its box. The final group comprises

NN-based algorithms: KNN, PWK and PWKα. The weighted versions of this last

group offer the most stable results, with the third quartile below 15% in all cases.

The weight-based versions present maximum outlier values below 45%.

Figure ?? provides other helpful insights regarding the algorithms under study.

Taking into account the main elements of each box, we can observe that PWK

and PWKα stand out as the most compact systems in terms of the inter-quartile

range. Both of them have their third quartile, their median and their first quartile

around 10%, 5% and 2.5%, respectively. Note also that most of the models have

a median AE of around 5%, meaning that 50% of the tests over those systems

appear to yield competitive quantification predictions. Once again, however, the

major difference is highlighted by the upper tails of the boxes, including the third

quartile, the upper whisker and the outliers. From the shape and position of the

boxes, KNN, Max, X and MS also appear to be noteworthy.

4.2.2. Friedman-Nemenyi statistical test

Following Demšar’s proposal [? ], a two-step statistical test procedure was

carried out. The first step consists of a Friedman test of the null hypothesis that all

approaches perform equally. When this hypothesis is rejected, a Nemenyi post-
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hoc test is then conducted to compare the methods in a pairwise way. Both tests

are based on the average of the ranks. The comparison includes 10 algorithms over

24 datasets or domains, tested over 11 different prevalences, resulting in 264 test

cases per algorithm. As Demšar notes, there are variations of the Friedman test

which can consider multiple repetitions per dataset, provided that the observations

are independent. However, since each collection of 11 test sets is sampled from

the same fold, we cannot guarantee the assumption of independence among them.

In order to take into account the differences between algorithms over several

test prevalences from the same dataset, we first obtain their ranks for each test

prevalence and then compute an average rank per dataset, which is used to rank

algorithms on that domain. As an alternative, averaging the AE results over the

11 prevalences that are tested for each dataset suffers the problem of how to han-

dle large outliers and the inconsistency of averaging AE values from different test

prevalences (see Section ??), so we do not average AE results. Therefore, we

only consider the original number of datasets to calculate the critical difference

(CD), rather than using all test cases, resulting in a more conservative value. The

reason for this is not only that the assumption of independence is not fulfilled,

but also that the number of test cases is not bound. Otherwise, simply taking a

wider range of prevalences to test would imply a lower CD value, which appears

to be unjustified from a statistical point of view and can be prone to distorted con-

clusions. Thus, we consider that the algorithms are compared over 24 domains,

regardless of the number of prevalences that are tested for each of them.

Friedman’s null hypothesis is rejected at the 5% significance level and the CD

for the Nemenyi test with 24 datasets and 10 algorithms is 2.7654. The overall

results of the Nemenyi test are shown in Figure ??, in which each system is rep-
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resented by a thin line, linked to its name on one side and to its average rank on

the other. The thick horizontal segments connect models that are not significantly

different at a confidence level of 5%. Therefore, this plot suggests that PWKα

and PWK are the models that perform best in this experiment in terms of AE loss

comparison for Nemenyi’s test. In this setting, we have no statistical evidence of

differences between the two approaches. Neither do they show clear differences

with KNN, Max or X. We can only appreciate that PWKα and PWK are signifi-

cantly better than CC, AC, MS, T50 and BL; Max is still connected with CC and

MS, while X and KNN are also connected with AC. It is worth noting that nei-

ther AC nor T50 show clear differences with respect to BL, suggesting a lack of

consistency in the results provided by the former systems.

4.2.3. Pair-wise comparisons with PWKα

Since PWKα appears to be the algorithm that yields the lowest values for AE

in general, obtaining the best average rank in the Nemenyi test, from now on we

shall use it as a pivot model so as to compare it to all the other systems under study.

Thus, in Figure ?? we present pair-wise comparisons of each system with respect

to PWKα. Each point represents the cross-validated AE values of the compared

system on the y-axis and of PWKα on the x-axis, for the same dataset and test

prevalence. The red diagonal depicts the boundary where both systems perform

equally. Therefore, when the points are located above the diagonal, PWKα yields

a lower AE value, and vice-versa. It should be noted that as we are using PWKα

as a pivot model for all comparisons, there is always the same number of points

at each value of the x-axis. Thus, the movement of these points along the y-axis,

among all the comparisons, provides visual evidence of which systems are more

competitive with respect to PWKα.
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Figure 2: Pair-wise comparisons of each algorithm with respect to PWKα, in terms

of AE. The results over all test prevalences are aggregated into a single plot,

where each one represents 264 cross-validated results. The inner triplet shows

the number of wins, losses and ties of PWKα versus the compared system. The

numbers below each plot reveal the difference between wins and losses (DWL),

and within parentheses the mean of the differences betweenAE values (MDAE).

We also include several metrics within each plot. The numbers below each plot

reveal the difference between wins and losses (DWL), and within parentheses

the mean of the differences between AE values of both algorithms (MDAE).

Positive values of DWL and MDAE indicate better results for PWKα, though

they are only conceived for clarification purposes during visual interpretation. The

aim of the DWL metric is to show the degree of competitiveness between two

systems, values close to zero indicating that they are less differentiable, in terms

of wins and losses, than systems with higher values. Moreover, MDAE can also

be used as a measure of the symmetry of both models. Note that being symmetric

in this context does not refer to similarity of results, but to compensation of errors.

This means that systems with anMDAE value close to zero are less differentiable
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in terms of differences of errors.

From the shape drawn by the plots in Figure ??, we can observe some inter-

esting interactions between models, always with respect to PWKα. As expected,

the comparison with PWK, for example, shows a clear connection between both

systems; all points present a strong trend towards the diagonal. Moreover, DWL

indicates that PWK is the most competitive approach, while MDAE shows that

the average difference of errors is only 0.26, being highly symmetric.

The points in KNN’s plot are not so close to the diagonal, being mainly situ-

ated slightly upwards. This behavior suggests that KNN is less competitive (78)

and less symmetric (2.28) than PWK. Nevertheless, in general, NN-based algo-

rithms present the best performance.

Although Max, X, MS and T50 are all based on threshold selection policies,

the DWL and MDAE values differ noticeably among them. As already ob-

served in Figure ??, Max seems to outperform the others, both in competitiveness

(29) and symmetry (2.09), while T50 stands out as the less competitive approach

among these quantification models.

The distribution of errors in Figure ?? for BL, CC and AC is once again ev-

idenced in Figure ??. The presence of outliers in CC and AC is emphasized

through high values of MDAE, combined with intermediate values of DWL.

As regards BL, this algorithm shows the worst values in Figure ?? for competi-

tiveness (200) and symmetry (23.97). This poor behavior can be also observed in

Figure ??.

4.2.4. Analysis of results by test prevalence

Although Figures ??, ?? and ?? provide interesting evidence, they fail to show

other important issues. For instance, we cannot properly analyze the performance
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Figure 3: Pair-wise comparisons of each algorithm with PWKα, in terms of

AE. The results over different test prevalences are plotted individually (by rows),

where each plot represents the cross-validated results over 24 datasets. See cap-

tion of Figure ?? for further details about the metrics placed below each graph.
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of each system with respect to specific prevalences. Furthermore, they only offer

a general overview of the limits and distribution ofAE values, without taking into

account the magnitude of the error with respect to the actual test proportions.

Figure ?? follows the same guidelines as those introduced for Figure ??; how-

ever, in this case we split each plot into eleven subplots, placed by rows. Each

of these subplots represents the comparative results of a particular system with

respect to PWKα for a specific test prevalence. This decision is again supported

by the fact that PWKα appears to be the system that performs best in terms of AE

metric. Moreover, despite the overload of information available, this summariza-

tion allows us to represent the values of all systems with fewer plots, to simplify

the comparison of every system with respect to the best of our proposed models,

and to visualize the degree of improvement among systems, all at the same time.

The axes of those comparisons where DWL has negatives values are highlighted

in red, while ties in DWL values are visualized by means of a gray axis. Notice

that there are also cases where values of DWL and MDAE have a different sign.

The average training prevalence among all datasets is 34.22%; hence, test

prevalences at 30% and 40% are the closest to the original training distribution

for the average case. This can be observed in Figure ?? through the BL results,

which always predict the proportion observed during training. As expected, when

the test distribution resembles that of the training, it yields competitive results,

although the performance is significantly degraded to the worst case when the test

proportions are different from those observed during training. Taking the plots of

BL as reference, we observe that the behavior of PWKα seems to be heading in

the right direction in terms of both DWL and MDAE. Notice that the MDAE

values in this column rise and fall in keeping with changes in test prevalence.
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The CC method performs well over low prevalence conditions, obtaining the

best DWL results for 10% and 20%. However, it apparently tends to increasingly

underestimate for higher proportions of positives, as evidenced by the MDAE

values. This supports the conclusions regarding uncalibrated quantifiers drawn by

Forman [? ]. On the other hand, we expected a more decisive improvement of

AC over CC results in general. Actually, when the positive class becomes the ma-

jority class, for test prevalences greater than 50%, the AC correction produces an

observable improvement in terms of DWL, and especially for MDAE. From a

general point of view, however, the results that we have obtained with this exper-

iment show that simply adjusting SVM outputs may not be sufficient, providing

even worse results than traditional uncalibrated classifiers, mainly when testing

low prevalence scenarios. This fact is mostly highlighted by the MDAE results

of CC and AC over prevalences below 50%.

The most promising results among state-of-the-art quantifiers are obtained by

Max and X, although the former provides more competitive results for the aver-

age case. The greatest differences between MDAE results are observed for test

prevalences below 50%, where Max yields lower values. These differences are

softened in favor of X for higher prevalences. We suspect that these threshold

selection policies could entail an intrinsic compensation of the underlying classi-

fication bias shown by CC, which tends to overestimate the majority class. This

intuition is supported by the observation that they still perform worse than CC for

low test prevalences, as they may tend to overestimate the minority class.

Additionally, both provide better DWL and MDAE results than CC or AC

for prevalences higher than 40%. T50 presents the worst results of this family of

algorithms, showing surprisingly good performance in test prevalence at 0%. Con-
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versely, MS shows an intermediate behavior, performing appealingly in MDAE

but discouragingly in DWL, obtaining competitive results when the test preva-

lence is 100%. This good performance for extreme test prevalences could be due

to the fact that corrected values are clipped into the feasible range after apply-

ing Equation (??), as described in Section ??. Therefore, this kind of behavior

is not representative, unless it is reinforced with more stable results in near test

prevalences. Moreover, Figures ??, ?? and ?? highlight cases where Max and MS

share some results. As described in Section ??, this is due to missing values in

the latter method, which happens to be linked with outlier cases in Max. This

suggests a possible connection between the complexity of these cases and their

lack of thresholds where the denominator in (??) is big enough, being less robust

with respect to estimation errors in tpr and fpr .

At first glance, KNN yields interesting results. Excluding CC, it improves

DWL below 30% with respect to SVM-based models. Actually, both CC and

KNN are the most competitive models over lowest prevalences, probably because

they tend to misclassify the minority class, so that they are biased to overestimate

the majority class. Thus, when the minority class shrinks, the quantification error

also decreases. Notwithstanding, KNN behaves more consistently, providing sta-

ble MDAE results over higher prevalences. Comparing KNN with AC, we also

observe that, in general, KNN also appears to be more robust in terms ofMDAE.

This suggests that KNN producesAE results with lower variance and less outliers

than CC and AC, as previously observed in Figures ?? and ??.

As already mentioned, the red (black) color in Figure ?? represent cases where

the compared system yields better (worse) DWL than PWKα, while ties are de-

picted in gray. Hence, these plots reinforce the conclusion that PWKα is usu-
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ally the algorithm that performs best, with a noticeable dominance in terms of

MDAE. Apparently, adding relatively simple weights offers an appreciable im-

provement, which is clearly observable when compared with traditional KNN.

With the exception of PWK, there exists only one case where both DWL and

MDAE produce negative values in Figure ??, corresponding to CC at a test

prevalence of 10%. This is probably caused by the fact that CC is supposed to

yield exact results over a specific prevalence, identified as p∗ in Forman’s theorem.

Therefore, this result is not relevant in terms of global behavior. Furthermore,

except for PWK over prevalences higher than 50%, the values for the MDAE

metric are positive in all cases. This implies that AE values provided by PWKα

and PWK are generally lower and have less variance than those of all the other

systems.

The resemblance between PWKα and PWK is once again emphasized through

low values of MDAE over all test prevalences. However, previous figures failed

to shed light on a very important issue. Observing the last column in Figure ??,

it appears that PWKα is more conservative and robust over lower prevalences,

while PWK is more competitive over higher ones. These differences are soft-

ened towards intermediate prevalences. This behavior is supported by the fact

that, although PWKα and PWK use weights based on equivalent formulations,

the parameter α in PWKα tends to weaken the influence of these weights when

it increases. Moreover, as already stated in Section ??, since these weights are

designed to compensate the bias towards the majority class, when the parameter

α grows, the recall decreases, and vice-versa.
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5. Conclusions

This paper establishes a new approach for dealing with prevalence estimation

in binary problems. The main objective is to study the behavior of NN methods

in the context of quantification. We seek for an instance-based approach able

to provide competitive performance while balancing simplicity and effectiveness.

Although other potential alternatives exist, we have limited our experiments to

those settings conforming to this scope.

After a brief discussion of the general background related to quantification, as

established by Forman in [? ], we describe our main proposals based on traditional

NN rules. These NN-based algorithms include the well-known KNN and two

simple weighting strategies, identified as PWK and PWKα.

We have found that, in general, weighted NN-based algorithms offer the best

performance. The conclusions drawn from the Nemenyi test summary presented

in Figure ?? suggest that PWK and PWKα stand out as the best approaches, with-

out statistical differences between the two, but offering clear statistical differences

with respect to less robust models. Thus, these experiments do not provide any

discriminative indicator regarding which of these two algorithms is more recom-

mendable for real-world applications. The final decision should be taken in terms

of the specific needs of the problem, the constraints of the environment, or the

complexity of the data, among other factors. Notwithstanding, taking into account

the observations discussed in Section ??, it appears that PWK could be more ap-

propriate when the minority class is much more relevant, while PWKα seems to

behave more conservatively with respect to the majority class. Furthermore, PWK

is simpler, its weights are more easily interpretable and it only requires calibrating

the number of neighbors.

32



Possible future directions for NN-based quantification could involve the se-

lection of parameters through grid-search procedures, optimizing metrics with re-

spect to equivalent rules as those applied for Max, X or T50, or even using these

rules to calibrate the weights of each class during learning. Finally, appropriate

collections of data, extracted directly from different snapshots of the same pop-

ulations and showing natural shifts in their distributions, are required in order to

further analyze the quantification problem from a real-world perspective.
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