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variable en el tiempo y que acopla tanto las condiciones biogeoquimicas como fisicas del
océano. Inicializando aleatoriamente un conjunto de especies caracterizadas segun distintos
grupos funcionales, somos capaces de reproducir dicho patrén y observamos que éste se debe
a no uno, sino a diversos factores como son: la exclusién competitiva entre especies
especialistas y oportunistas, la coexistencia de especies con similares requerimientos en zonas
de estabilidad ambiental, la dispersién oceanica, o la temperatura a través de un thermal miad-
domain effect (TMDE).

El capitulo 4 de esta tesis se centr6 en la recopilacion y estandarizacién de datos de
abundancia microplancténica, creando una base de datos Unica en estudios de diversidad de
fitoplancton marino. Dicha compilacion cubre un amplio rango de ecosistemas marinos y consta
de medidas de abundancia, biomasa y biovolumen para cada especie en cada estacién y
profundidad. Las identificaciones de las especies fueron realizados por el mismo taxénomo, lo
que proporciona una mayor consistencia a la coleccion y asegura que las estimaciones de la
diversidad de especies sean fidedignas. Ademas, para cada estacion se recoge informacién
ambiental mediante una compilacién de parametros oceanograficos, lo que aporta una
caracterizacion de la zona de estudio y por tanto la idoneidad de la base de datos para el
estudio de los controles medioambientales y biolégicos de la diversidad marina.

Por dltimo, en el capitulo 5 hacemos uso de la compilacion anterior para demostrar
empiricamente la existencia de un gradiente latitudinal de diversidad en el fitoplancton marino,
donde el maximo numero de especies aparece nuevamente en los tropicos. En este capitulo
tratamos de explicar la emergencia de dicho patréon a partir de la temperatura, cuyo efecto
parece ser clave segun predicen varias teorias. A partir de datos empiricos (capitulo 4),
modelamos las curvas de tolerancia térmica de las especies para entender la relacion entre
temperatura y diversidad y proponemos una nueva hipétesis denominada como thermal niche
effect (TNE). Esta resulta de la combinacion entre la superposicion que tiene lugar entre los
nichos fisiologicos de las especies, como predice el TMDE, y el aumento exponencial de la tasa
de crecimiento con la temperatura que predicen las teorias metabdlicas. Este parece verse
reflejado en los nichos realizados de las especies, donde se observa un incremento de la
maxima probabilidad de ocurrencia de las especies con la temperatura. El patron resultante de
dicha hipétesis es muy similar a la relaciéon entre diversidad y temperatura observada en datos
empiricos. Esto permite predecir con mayor certeza cual sera la distribucién futura de las
especies en el océano bajo las predicciones de calentamiento global.

RESUMEN (en Inglés)

Marine phytoplankton are the largest primary producers of the ocean, being responsible for
most of the exchange of CO2 with the atmosphere. These unicellular organisms are the base of
the marine food chain and control the biogeochemical functioning of the ecosystem. Under the
prediction of climate warming, models forecast from a decline in the overall biomass to changes
in their distribution. This has consequences for the rest of the food chain, affecting the total
production, biogeochemical cycles and the global carbon cycle. Understanding what factors and
how influence growth and distribution of marine phytoplankton is therefore essential to predict
with certainty the future of the ecosystem and supposes the main objective of this study .

Recent studies have found a unimodal relationship between mass-specific growth rate and cell
size of marine phytoplankton when the size range under study includes picophytoplanton. The
first part of this manuscript (Chapters 1 and 2), focuses on assessing the factors that influence
the emergence of such curvature. Using different compilations of growth rates and size data for
a large number of species, we evaluated the influence of both temperature and phylogeny,
which has been little considered explicitly in allometric studies of marine phytoplankton. Our
results reveal that the unimodal relationship is due to the lower growth rates of
picophytoplankton, being this the result of an evolutionary adaptation to warm oligotrophic



environments rather than a size effect. Also as consequence of this adaptation, we observed
that such curvature depends on the temperature at which the growth rates are measured. We
also found a strong correlation between cell size and temperature, which implies an additional
bias to the temperature correction on growth rate, and thus may lead to erroneous conclusions
in the size-scaling of marine phytoplankton growth rate.

In Chapter 3 we focus on assessing the factors that control the emergence of a latitudinal
gradient of diversity for marine phytoplankton (LDG). This pattern explains an increase in the
number of species from the poles to the equator, showing the highest diversity at the tropical
areas. Here we used a time-varying 3D ecosystem model where biogeochemical and physical
ocean conditions are coupled. Using a set of species randomly initialized and characterized
according to several functional groups, we were able to reproduce the LDG. We also found that
it emerges as result of not one but several factors including: competitive exclusion between
opportunists and gleaner species, the coexistence of species with similar fitness in areas of
environmental stability, dispersion by oceanic currents or temperature through a mid-domain
thermal effect (TMDE).

Chapter 4 has focused on the compilation and standardization of microplankton data
abundance, being an unique database for marine phytoplankton diversity studies. This
database covers a wide range of marine ecosystems and provides measures of abundance
(cells/ml), biovolume and biomass for each species at each station and depth. One of the major
strengths of this database is that species identification was performed by the same taxonomist,
what provides greater strength to the collection and ensures that estimates of species diversity
are reliable. Furthermore, environmental information is attached for each station through the
compilation of different oceanographic parameters. This allows the characterization of the study
area and therefore the suitability of the database for the study of environmental and biological
controls of marine diversity.

Finally, in Chapter 5 we used the previous compilation to show with empirical data that a
latitudinal gradient of diversity emerges for the whole community of marine phytoplankton,
where the maximum number of species is observed, as expected, at the tropics. In this chapter
we focus on the role of temperature as driver of the LDG, whose relevance has been suggested
by many theories. Using empirical data (Chapter 4), we fit the thermal tolerance curve of
species to study the relationship between temperature and diversity and propose a new
hypothesis to explain the emergence of LDG, the thermal niche effect (TNE). This results from
the combination of both the overlapping of the species physiological niches, as predicted by the
TMDE, and the exponential increase of growth rate with temperature predicted by metabolic
theories. The latter seems to be reflected in the realized niches of species, where an increase in
the maximum probability of occurrence of species with increasing temperature is observed. The
resulting pattern of this hypothesis is closer to the relationship between diversity and
temperature observed in empirical data. This allows to forecast with higher accuracy the future
distribution of species over the ocean under the predictions of global warming.
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General Introduction

The ocean covers more than 70% of the Earth’ surface and is the life support
system for our planet providing roughly half of its primary production (Field et al.,
1998). The main primary producers are phytoplankton, unicellular organisms that
form the base of the marine food chain and drive marine ecosystem function.
Phytoplankton are key participants in the biological pump (Figure 1). Through
the process of photosynthesis, they fix more than a hundred million tons of carbon
in the form of CO, (Behrenfeld et al., 2006). Therefore, even small changes in their
growth may affect atmospheric CO,, having potential implications for the global

ecosystem.

Functional traits and environmental limitations

Phytoplankton growth rate is limited by the availability of resources such as
light and nutrients and by temperature. Light is essential for the photosynthetic
processes and growth rate describes an unimodal response to irradiance levels.
Whereas at high irradiance levels photoinhibition occurs, low levels result in too
little energy to sustain growth. In the ocean, light decreases exponentially with
increasing depth. In contrast, the deep ocean is rich in nutrients while these are
usually depleted in surface waters, mostly due to uptake by phytoplankton during
the photosynthesis. Phytoplankton is generally limited by inorganic nutrients such
as nitrate, phosphate and silicate. Nutrient limitation can vary over time, by
location and by species and is usually described by a Monod equation (Monod,
1949).
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. Carbon dioxide Carbon dioxide

Figure 1: The Biological Pump. (Adapted from Herndl and Reinthaler (2013))

Metabolic rates are also linked to temperature. Phytoplankton growth rate
shows an unimodal response to temperature where each species has an optimum
temperature at which its growth is maximum (Eppley, 1972). Below this optimum,
growth rate increases at a rate defined by a specific value of Qjg. This value
depends on the species and is often parametrized by the Arrhenius function
(Arrhenius, 1915). Above the optimum temperature, growth decreases due to
different factors such as inactivation or denaturation of proteins (Ratkowsky
et al.,, 1983). This decline is sharper than the increase below the optimum and
hence, thermal tolerance curves are usually negative skewed. In addition, across
species, maximum growth rates increase exponentially with increasing temperature
(Eppley, 1972).

In addition to growth rate, phytoplankton cell size is an essential ecological trait.
It is also correlated to temperature and resource availability, influencing nutrient
acquisition (Kigrboe, 1993; Tilman, 1982) and metabolic rates (Brown et al., 2004;
Gillooly et al., 2001; Moisan et al., 2002). Cell size plays a key role in determining

the abundance and distribution of phytoplankton species. Indeed, size classes are
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not equally distributed over the ocean but its distribution is linked to contrasting
environmental regimes (Finkel et al., 2010; Li, 2002; Margalef, 1978; Reynolds,
1984). For instance, small picophytoplankton species dominate oligotrophic areas
whereas larger phytoplankton such as diatoms predominate in nutrient-rich waters
(Falkowski et al., 1998).

Growth rates, temperature, nutrients and cell size are all interrelated. Disentan-
gling this puzzle is essential to understand ecosystem functioning and thus to help
predict its future, but it is complicated when also considering biological interac-
tions or physical processes that occur in nature. The use of ecosystem models is
essential to be able to perform controlled simulation experiments and understand
the relative importance of the different functional traits and environmental limita-

tions.

Global patterns of species richness

The distribution of species over the ocean is heterogeneous. Some areas, such
as upwelling regions, are the most productive on the planet whereas others are
almost devoid of life. The latitudinal diversity gradient (LDG) is probably the most
striking pattern at a global scale. This pattern is common to terrestrial and marine
systems and for many different taxonomic groups. The LDG explains an increase
of diversity from the poles to the equator, where a peak on the number of species
is found at the tropical areas (Bates, 1862; Colwell and Hurtt, 1994; Humboldt and
Bonpland, 1807; Pianka, 1966; Rohde, 1992; Stevens, 1989; Wallace, 1854).

Many different hypotheses have been developed to explain the mechanisms
responsible for the LDG. Some relate the number of species in a region to resource
availability (Arrhenius, 1921; Currie, 1991; Gaston, 2000; Rosenzweig, 1995;
Wright, 1983), through effects on productivity (Gaston, 2000; Irigoien et al., 2004;
Mittelbach et al., 2001; Tilman, 1982) or to temperature through its influence
on metabolic rates (Allen et al., 2002; Rohde, 1992; Turner, 2004). In addition,
hypotheses based on null models have been developed to explain the emergence of
the LDG (Brayard et al., 2005; Colwell and Lees, 2000).
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Despite several patterns in the distribution of phytoplankton have been detected,
most refer to specific taxonomic groups (Cermefio and Falkowski, 2009; Fuhrman
et al., 2008; Passy, 2008; Rombouts et al., 2009; Wang et al., 2011). However few
studies have studied the LDG for entire communities (Irigoien et al., 2004; Ptacnik
et al., 2010).

Phytoplankton predictions under climate warming

The prediction of the response of Earth’s ecosystems to global climate change
is a major scientific challenge. Recent studies have shown that an increase in
temperature could reduce the global phytoplankton biomass (Boyce et al., 2010).
Current climate models also predict an expansion of oligotrophic regions during
the next century (Sarmiento et al., 2004) and a gradual shift toward smaller
primary producers reducing the energy flow to higher trophic levels (Mordn
et al., 2010). Warmer oceans could reduce up to 20% CO, uptake by pelagic
communities (Lopez-Urrutia et al., 2006). However, the effect of temperature is
often masked by other effects such as the availability of resources. This strong
interaction between resource availability and temperature has been evidenced by
direct measurements of carbon fluxes in terrestrial and aquatic ecosystems (Enquist
et al., 2003; Sobek et al., 2005). For the planktonic community unpredictable
changes in diversity can be expected (Gitay et al., Gitay2002; Hays et al., 2005).
Warming temperatures could also lead to changes on the geographical ranges of
marine species. As phytoplankton growth is directly related to temperature, if the
change in temperature is so abrupt as to not allow adaptation to warming, it will
bring a sharp decline in the diversity of phytoplankton in tropical waters and a

poleward shift in species’ thermal niches (Thomas et al., 2012).

Global models versus empirical data

Understanding the relative importance of diversity theories in natural systems is
hindered by the difficulty to perform experimental work at such broad scales
and by the fact that the driving variables (i.e. temperature, nutrients and PAR)

are correlated latitudinally. Although large datasets with sufficient gradients in
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the proposed explanatory variables exist for terrestrial plants (Gentry, 1988), for
marine phytoplankton data are either inconsistent or lack some key variables
(Buitenhuis et al., 2012; Leblanc et al., 2012). For this reason, computer models
provide one of the most useful tools in order to simulate the real ocean conditions
and experimentally understand its behaviour through in silico simulations. But,
ultimately, results retrieved from model simulations must be tested with empirical

observations or even satellite data in order to make predictions more credible.
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Objectives

The main objective of this thesis is to delimit the major factors driving the growth
and the latitudinal distribution of marine phytoplankton. Our aim is also to deal
with the controversy between the different diversity hypotheses, caused by the
scarcity of empirical diversity data of marine phytoplankton and the limitations
of previous models. Therefore, we will use a combination of both empirical
compilations and model simulations to achieve this goal. The specific objectives of

each chapter are:

Chapterl

* To assess the unimodal relationship between weight-specific growth rate and

cell size for marine phytoplankton in a compilation of field measurements.

* To test the validity of the temperature corrections on phytoplankton growth
rate measurements, such as that proposed by the Metabolic Theory of

Ecology (MTE), to evaluate the size scaling of marine phytoplankton.

Chapter 2

* To test the recently observed unimodal relationship between growth rate and

cell size using different compilations of lab measurements.

* To assess the influence of temperature and the shared evolutionary history of

species on the allometric scaling of growth rate.

* To show that the curvature is the result of the specialization of picophy-
toplankton across evolution to the warm conditions usually encountered in

oligotrophic environments.

Chapter 3

* To reproduce the latitudinal diversity gradient (LDG) of marine phytoplank-

ton using a time-varying 3D global ecosystem model where biogeochemical
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and physical ocean conditions are coupled. In addition, phytoplankton types
with stochastically assigned traits are randomly initialized and community

structure and diversity are emergent properties.

* To elucidate what are the main mechanisms that drive the distribution of
oceanic phytoplankton diversity. In particular, we will study the effects of

resource competition and temperature, either combined or individually.

* To evaluate the extent of the thermal mid-domain (TMDE) theory on the
LDG.

Chapter 4

* To compile a dataset of marine microplankton species abundance which
allows to provide a reliable measure of microplankton species diversity and
contribute to a better understanding of the processes of diversification in the

ocean. To this end, the dataset must meet the next requirements:
— A standardized taxonomic identification.

— To provide environmental data in order to characterize the study area.

— To cover a wide range of environmental ecosystems

Chapter 5

* To test the emergence of the LDG for the whole” community of marine

phytoplankton using the compilation in the Chapter 4.

* To evaluate the temperature-diversity relationship in order to test the theories
which suggest temperature as the main driver of the LDG for marine
phytoplankton: metabolic theory of ecology (MTE) and thermal mid-domain
effect (TMDE).

* To explore whether the different probability of survival of the species within
its thermal range, i.e. the shape of the physiological niche, may further
explain the observed LDG.
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* To analyse the relationship between the breadth of the niche and temperature.

¢ To evaluate the differences between the fundamental and realized niche of

the species and how this affects the resulting LDG.



CHAPTER

Temperature, nutrients, and the
size-scaling of phytoplankton
growth in the sea

Soffa Sal & Angel Lopez-Urrutia
Published in Limnology & Oceanography, Vol. 56(5), pp.1952-1955, (2011) as a
Comment to: Chen and Liu (2011)



1. Temperature, nutrients, and the size-scaling of phytoplankton growth in
the sea

1.1 Introduction

Chen and Liu (2010) investigated the effects of cell size on phytoplankton mass-
specific growth rate using a compilation of field measurements from surface waters
around the world. After correcting for the effects of temperature, their analysis
indicates that there is a modal size around 2.8-5.8 um where mass-specific growth

is maximal.

As Chen and Liu (2010) acknowledge, their analysis contrasts with allometric
scaling theories that predict a continuous decrease of mass-specific growth rate
with increasing size (Brown et al., 2004; Lépez-Urrutia et al., 2006). In contrast,
Chen and Liu’s (2010) analysis shows that bellow the modal size, that is in the
pico- to nano-phytoplankton size range, growth rate increases with cell size.

They argue that the unimodal pattern stems from picoplankton having evolved to
have inherently low growth rates, independently of nutrient availability. Here we
argue that the unimodal pattern they obtain might be due to an incorrect temperature
correction and to an internal inconsistency in their database because a large portion
of their picoplankton data contain a correction for photoacclimation effects, while

the rest of their data do not.

1.2 Methods, Results and Discussion

To carry out their study, Chen and Liu (2010) used two data sets, one from 14C
incorporation and a second from dilution experiments. In both data sets, a unimodal
pattern between mass-specific growth rate and cell size emerges. In these two
data sets, however, cell size is correlated with nutrient availability, so it could be
argued that, rather than a direct effect of cell size, the lower growth rates of smaller
phytoplankton could be due to these organisms living under resource limitation
(Raven, 1998), (see Fig.1C in Chen and Liu 2010). Chen and Liu (2010) tried to
resolve these confounding effects due to correlation between nutrient availability
and cell size by using a data set of phytoplankton growth rates measured under
nutrient enrichment. The unimodal pattern still apparent in this nutrient-saturated

dilution data set is probably the most striking result in their analysis. Chen and Liu
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1.2 Methods, Results and Discussion

(2010) concluded that the lower growth rates in the picoplankton size range are an

adaptive feature rather than a direct consequence of nutrient limitation.

We consider whether this pattern is due to a bias in the data compilation. In
an effort to get the best data available, Chen and Liu (2010) used phytoplankton
growth rates with a correction for photoacclimation for the two data sources that
had this information available, while the rest of their nutrient-enriched dilution
data are uncorrected. These corrected data happen to correspond to most of the
low values in the picoplankton size range (Figure 1.1A). If we take this nutrient-
enriched dilution data set and replace these photoacclimation-corrected data by the

uncorrected values comparable to the rest of the data set, the unimodal pattern is
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Figure 1.1: Relationship between temperature-corrected growth rate and average
cell size (M) for the nutrient-enriched dilution data set. (A) Chen and Liu (2010)
data. Grey filled symbols correspond to photoacclimation-corrected data. The
solid line correspond to a linear fit (logio(ty) = 0.11log;o(M) —0.01; ANOVA: 72
= 0.14, n = 261, p-value < 0.001). The dashed line correspond to a quadratic fit
(log1o(tn) = —0.05[log1o(M)]? —0.48logo(M) — 1.67; ANOVA: r* = 0.17, n = 261,
p-value < 0.001). (B) Same as (A) but with all data uncorrected for photoacclimation.
The solid line correspond to a linear fit (logjo(,) = 0.08log;o(M) —0.15; ANOVA:
r? =0.09, n = 258, p-value < 0.001). The dashed line correspond to a quadratic fit
(logio(tn) = —0.02[log1o(M)]? —0.18logo(M) —0.91; ANOVA: 7 = 0.10, n = 258,
p-value < 0.001). (C) Same as (B) but using the temperature correction based on MTE.
In this panel, just a linear fit is shown (logjo(y) = 0.02 logjo(M) + 5.54; ANOVA: 72
=0.01, n =258, p-value = 0.203).
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the sea

no longer evident (Figure 1.1B). The quadratic term in the unimodal fit is no longer
significant (z-test, t = -1.255, df = 255, p = 0.211). Although now a linear fit
is more appropriate, the linear relationship obtained is not what the metabolic
theory of ecology (MTE) predicts. MTE predicts that metabolic rates and organism
biovolume (BV) should scale as rate o BV3/4 (West et al. 1999; Lépez-Urrutia
et al., 2006). Hence, size-specific metabolic rates (rate x BV~1), such as individual
growth rate, should scale as BV3/4 x BV-1=BV~1/4, Chen and Liu (2010) defines
cell size as the carbon content. Lopez-Urrutia et al. (2006) have shown that,
when phytoplankton cell size is expressed in units of carbon instead of biovolume,
phytoplankton growth rate scales isometrically with cell size (rate o< carbon!),
so carbon-specific growth rate (rate x carbon!) should be independent of cell
carbon. This is due to phytoplankton carbon content and biovolume scaling as
BV o carbon*/3 (Strathmann, 1967), so rate oc BV3/4cc (carbon?/3)3/4oc carbon.

Hence, following MTE, a plot of carbon-specific growth rate should yield no
significant relationship with cell-carbon, whereas Figure 1.1B shows a positive
relationship. We think that this trend could be due to the temperature correction
used. Chen and Liu (2010) used a Q¢ of 1.88 (Eppley 1972; Bissinger et al. 2008)
so that log;,(1)-0.0275xT is the temperature-corrected phytoplankton specific
growth rate, where T is the temperature in Celsius. On the other hand, MTE uses
the Van’t Hoff - Arrhenius equation (Arrhenius, 1915) to describe the effects of

temperature on metabolic rates:

Rate oc ¢ E/KTa (1.1)

where k is Boltzmann’s constant (8.62 x 10-35eVK™1), T, is the absolute tempe-
rature (in Kelvin) and E is the average activation energy for the metabolic process
under study. For autotrophs the effective activation energy for photosynthetic
reactions should be close to 0.32 eV Allen et al. (2005). In the case of
photosynthesis, the Van’t Hoff-Arrhenius equation is just an approximation to a
more complex process (Farquhar et al., 1980). The activation energy of 0.32
predicted by MTE is based on data from the effects of temperature on several

photosynthetic processes (see appendix in Allen et al. 2005). Lopez-Urrutia et al.
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(2006) obtained effective activation energies for phytoplankton growth rates of 0.29
eV, not significantly different from the predicted value of 0.32 eV.

The Qo in turn is an approximation to Van’t Hoff - Arrhenius equation,
so both temperature coefficients, E and Qpg, are interrelated by equation
Qqo=e(~E/(KTo"))x10 \where T, is 273.15 K (see box 1 in Gillooly et al. 2002).
Hence, the Q¢ of 1.88 from Eppley (1972) is equivalent to an activation energy
of approximately 0.405 eV, which is slightly higher than the activation energy
predicted for autotrophs and the empirical value obtained by Lépez-Urrutia et al.
(2006). If growth rates from the nutrient-enriched dilution data set are plotted
against temperature, the resultant activation energy is 0.36 eV (Figure 1.2), which
is not significantly different from the value predicted by MTE (¢-test, t = 2.08, df =
256, p = 0.15) but significantly lower than the value used by Chen and Liu (2010)
(t-test, t = 12.522, df = 256, p < 0.001).

This subtle difference between the two temperature corrections might be
responsible for the pattern obtained in Figure 1.1B. If instead of the temperature
correction used by Chen and Liu (2010) based on Eppley’s (1972) Q¢ , we use the
temperature correction based on MTE and the theoretical activation energy of 0.32
eV (equivalent to a Qo of 1.64), we obtain no significant relationship between
carbon-specific growth rate and average cell carbon (Figure 1.1C), in agreement
with MTE. The Qo used by Chen and Liu (2010), is based on the studies of
Eppley (1972) and Bissinger et al. (2008) that analyze the temperature dependence
of phytoplankton maximal growth rates. It should be noted that the temperature
dependence of this maximally attainable mean growth rate might be different from
the temperature dependence of growth rate under optimal conditions. For example,
in Figure 1.2 we fit a line to the growth rates under nutrient- and light-saturated
conditions, while Eppley (1972) and Bissinger et al. (2008) fits would represent the
upper limit of the recorded growth rates. Our fit therefore attempts to predict the
average growth rate of a population of phytoplankton living at optimum nutrient
and light conditions, while Eppley (1972) and Bissinger et al. (2008) predict the
maximum growth rate of the same population. Maximal and average metabolisms

might have different temperature dependencies but it is the latter, as the one shown

13



1. Temperature, nutrients, and the size-scaling of phytoplankton growth in
the sea

Temperature (°C)

30 20 10 0
| | | |
2_
5
= 07
on
g
£ o2
£
2
2
S -4 o
o
-6 —
| | | | | |
38 39 40 41 42 43

Temperature (1/kTa,eV™")

Figure 1.2: Effect of the temperature function (1/kT,, lower axis) on log-transformed
nutrient-saturated growth rate (logjo (tn) = —0.36(1/kT,) + 14; ANOVA: * = 0.41, n
= 258). The corresponding temperatures in degrees Celsius are presented in the upper
axis for reference.

in Figure 1.2, that needs to be used to obtain growth rates corrected for the effects

of temperature.

When inferring the effect on metabolic processes of variables that might be
correlated with temperature, like body size or nutrients, it should be borne in
mind that the value used for the temperature correction might introduce some bias.
We believe that the value used for the temperature correction should be derived
theoretically, as the one used in Figure 1.1C, and not empirically, because solely
based on a field data set like the one under analysis, it is impossible to discern the
magnitude of the effects of temperature and of variables correlated with it. For
example, it could be argued that the temperature coefficient we obtain in Figure 1.2

is dependent on the assumption that weight-specific growth rate is independent of
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cell size, and that if we had corrected growth rate by the cell-size effects obtained in
Figure 1.1B, we would have obtained a temperature coefficient closer to Eppley’s
(1972). To avoid this caveat, the temperature coefficient used should be based on
some theory, like the one we used based on MTE, or corroborated by experimental

work where the effect of the other variables can be controlled.

Such a criticism can be applied also, for example, to the activation energy of 0.29
eV for cell-size corrected phytoplankton growth rate obtained by Loépez-Urrutia
et al. (2006). This value is to some extent dependent on the assumption that
growth rate scales with cell size to the 3/4 power. As cell size and temperature
are correlated, taking a theoretical value for the effects of cell size to evaluate the
effects of temperature, conditions in some way the activation energy obtained. A
similar criticism can be made of field studies of the effects of cell size that do not
take into account the effects of temperature or nutrient availability. For example,
the results of Marafién (2008), who obtains an almost isometric scaling between
phytoplankton production rates and cell volume, are dependent on the unlikely
assumption that rates measured for the smallest cells do not coincide with the

lowest nutrient levels.

Theory and experiments should have a major say in elucidating whether
phytoplankton growth rates scale according to models of resource distribution
networks as proposed by MTE or are constrained by surface diffusion. As
explained above, MTE predicts that rate o« BV3/4, while nutrient uptake area
considerations suggest that the scaling between primary production and BV should
be rate o« BV2/3 (Aksnes and Egge, 1991). In terms of surface area, assuming
S o« BV2/3, MTE predicts that rate oc $9/8 = S1-12_ while surface diffusion theories
predict that rate o< S!.

Paradoxically, a recent comprehensive study measuring metabolic rates of
protists (Johnson et al., 2009) obtained a size scaling exponent of S!-057  at the
midpoint between resource distribution and surface-area theories. Johnson et al.
(2009) incorrectly argued that, although they obtained a scaling between cell
volume and metabolic rate of 0.72 with a 95% confidence interval of 0.65-0.79

(see their fig. S2), cell volume is not the appropriate metric for metabolic scaling
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and cell carbon should be used instead. And because rate scales as carbon! they
argue that metabolic scaling theories can’t be applied to protists. This last argument
by Johnson et al. (2009) is not correct; metabolic scaling theories derive the 3/4
scaling exponent on biovolume (West et al., 1999). MTE theories then assume that
mass and biovolume scale isometrically (see assumption 6 in Banavar et al. 2010
and equation 8 in West et al. 1999) to derive the mass scaling exponent. Since
metabolic rates scales as BV3/4, the experimental data in Johnson et al. (2009) are
also agree with MTE. In summary, data to allow a clear decision on which theory
is correct are still lacking. In fact, the two theories might not be independent (Mei
et al., 2009). Maybe organisms have to deal with both constraints, limitations on
diffusion across surfaces and limitations on resource distribution networks, and that

is why the measured scaling exponent is at the midpoint (Banavar et al., 2010).
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2. Thermal adaptation, phylogeny and the unimodal size scaling of marine
phytoplankton growth

2.1 Introduction

Metabolism is the basis of the energetic exchange between organisms and the
environment. According to the metabolic theory of ecology (MTE) (Brown et al.,
2004), metabolic rates (M) scale with cell volume (BV) following a power-law
of the form M o aBVP, where a is a taxon-related constant and b is the size-
scaling exponent, which commonly takes a value of approximately 3/4 (Kleiber,
1947). Hence, mass-specific metabolic rates, such as individual growth rate, should
scale as -1/4 of the organism biovolume (Hemmingsen, 1960; Lépez-Urrutia et al.,
2006). In marine phytoplankton, some studies have supported this theoretical
scaling (Banse, 1976; Blasco et al., 1982; Edwards et al., 2012; Niklas and Enquist,
2001), albeit they are usually based on the study of one or two size classes (Banse,
1976; Blasco et al., 1982). Indeed, the inclusion of a wider range of phytoplankton
cell size, covering from picophytoplankton to large diatoms, leads to a weaker
(Banse, 1982; Chisholm, 1992; Sommer, 1989) or almost inexistent relationship
between mass-specific growth rate and cell volume (Huete-Ortega et al., 2012;
Litchman et al., 2007; Maran6n, 2008; Maranon et al., 2007). The controversy
around the allometric scaling value has increased recently with the report of an
unimodal (in a log-log scale) relationship between mass-specific growth rate and
size (Chen and Liu, 2011, 2010; Maranén et al., 2013).

According to Chen and Liu (2011), the unimodality in the phytoplankton
allometry can be mainly attributed to the lower growth rates by the smallest
phytoplankton, specially the unicellular Prochlorococcus and Synechococcus
(Chisholm, 1992). These lower growth rates have been related to an increase in
the proportion of essential, non-scalable cellular components (membranes, nucleic
acids) as cell and genome size is reduced, what leads to a reduction in the
fraction of cytoplasm available for other scalable, catalytic components involved
in growth rate (Raven, 1998; Raven et al., 2013). Reduction in genome and cell
size minimizes the resources necessary for live and seems to be the result of
picophytoplankton evolutionary adaptation to oligotrophic regions (Partensky and
Garczarek, 2010). Raven (1998) suggested that the unimodal relationship between

growth rate and cell size might be more a consequence of phylogenetic variations
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in the taxon-related constant @ in the allometric equation rather than to changes in
b.

The shared evolutionary history of related species establishes a correlation
between data in allometric scaling studies that, if not accounted for, can result in
biased scaling exponents (Capellini et al., 2010; Ehnes et al., 2011; Kolokotrones
et al.,, 2010). Phylogenetic approaches are commonly used to deal with intra-
and interspecific trait variability combining evolutionary relationships between
species and correlations between traits (Connolly et al., 2008; Felsenstein, 1985,
2008; Housworth, 2004; Ives et al., 2007). But the inclusion of such phylogenetic
approaches in studies of metabolic scaling has been controversial, with authors
questioning their validity or utility (Bjorklund, 1994; McNab, 2008; Ricklefs and
Starck, 1996) arguing that phylogenetic correction does not significantly change
the value of the estimated slope (reviewed in Glazier 2005) and others claiming
the necessity to provide these analyses (Blackburn and Gaston, 1998; Garland
et al., 1999). For terrestrial invertebrates, Ehnes et al. (2011) have shown that
the inclusion of phylogeny removes the curvatures in allometric scaling models.
In contrast, very few studies have applied phylogenetic approaches to the study
of phytoplankton allometry (Bruggeman, 2011; Bruggeman et al., 2009; Connolly
et al., 2008).

Failures to detect unimodal allometric scaling have also been attributed to the
lack of homogeneity in the data used. Marafién et al. (2013), in an effort to avoid the
uncertainties associated with the analysis of data measured under different growth
conditions, maintained a series of phytoplankton cultures at the same temperature
(18+0.5°C) and obtained a unimodal size scaling of phytoplankton growth rates.
But each phytoplankton species has an optimum temperature at which its growth is
maximum (Eppley, 1972; Thomas et al., 2012). The selection of the temperature
at which to perform the size scaling experiments might be non-trivial if optimum

temperature and phytoplankton cell size are correlated.

In this work we will assess whether a relationship between cell size and thermal
optimum exists for marine phytoplankton. We will test the influence of temperature

and the shared evolutionary history of species on the allometric scaling of growth
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rate. Our final aim is to show that the curvature is the result of the specialization of
picophytoplankton across evolution to the warm conditions usually encountered in

oligotrophic environments.

2.2 Material and Methods

We used an extensive dataset of phytoplankton growth responses to temperature
compiled by Thomas et al. (2012) for a total of 194 isolates/strains from
estuarine and marine waters. These traits were estimated from >5000 growth rate
measurements, synthesized from 81 studies between 1935 and 2011. This dataset
only includes experiments were resources, such as light or nutrients, were not
limited (details are provided in the supplementary information in Thomas et al.
(2012).

To explore the relationship between cell size, maximum growth rate and
temperature, we compiled cell volumes for each of the phytoplankton species in
Thomas et al. (2012) dataset. Cell volumes were collected from the literature (Table
S2.1). Cell sizes in the dataset ranged from 0.11 to 251184.82 um? (0.59 to 78.28

Equivalent Spherical Diameter).

A phylogenetic tree is needed to evaluate whether the shared evolutionary history
of species might influence the emergence of the unimodal pattern in the size scaling
of growth rate. Branch lengths in the tree are essential to estimate the similarity
between species. To build the phylogenetic tree, 18S and 16S (for cyanobacteria)
rRNA sequences were retrieved from the GenBank database. We restricted the
dataset to those phytoplankton species which have been sequenced, what resulted
in a total of 121 isolates/strains. When the compilation in Thomas et al. (2012)
included a species strain that was not sequenced we selected the sequence of
another strain of the same species, assuming that the branch length between strains
of a same species should be similar. When a species had several thermal growth
response curves recorded but the phylogenetic information was restricted to only

one strain we calculated an average thermal response for that species.
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In addition to Thomas et al. (2012), we used a dataset compiled by Lépez-
Urrutia et al. (2006) (and used by Chen and Liu (2011) to demonstrate the
existence of unimodal scaling). Here several measurements of growth rate at
different temperatures are provided for each species together with cell volume. The
difference between Thomas et al. (2012) and Lopez-Urrutia et al. (2006) is that the
latter only considers the exponential part of the growth response to temperature
and includes also the effects of irradiance. Following the same procedure as for
Thomas et al. (2012), we restricted the dataset to only those species that have been

sequenced so the dataset was reduced from 1063 to 49 data points.

2.2.1 Phylogenetic analyses

Alignment of RNA sequences to build the phylogenetic tree was done with
MUSCLE (using default settings) through the muscle package (Edgar, 2004) in
R (R Development Core Team, 2008). The ends of the alignment were manually
trimmed. The tree was calculated using maximum-likelihood (ML) analysis carried
out using PhyML v.3.1 (Guindon and Gascuel, 2003), with the GTR+gamma-+I
model selected as the best tree using the Akaike information criterion (AIC)
(Akaike, 1974). Package ape (Paradis et al., 2004) was used to call these external

applications from R, where all analyses were carried out.

To introduce the information provided by the phylogenetic tree into the allo-
metric scaling analysis, a Phylogenetic General Least Square (PGLS) regression
(Felsenstein, 1985) was applied. Unlike standard linear regression, this accounts
for the fact that data points might be correlated as result of shared evolutionary his-
tory. Following the methodology described in Kolokotrones et al. (2010), we used
Pagel’s covariance structure (Pagel, 1999) for the PGLS. This structure includes an
extra parameter, A, which assumes a Brownian motion to model the variance and
allows to test for phylogenetic signal in the data. This value is optimized during the
fitting process and takes values from O (phylogenetic independence between data)
to 1 (original diffusion model with untransformed branch lengths). The PGLS was
also applied using the ape package.
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2.2.2 Size-scaling of growth rate and species thermal tolerance

curves

Using the compilation of growth responses to temperature provided by Thomas
et al. (2012), the thermal tolerance curve of each species was fit. We followed
the same procedure as Thomas et al. (2012) and applied a maximum likelihood
estimation (MLE) using the bbmle package in R (R Development Core Team,
2008). Using the thermal tolerance curve of each species, the optimum temperature

was selected as the temperature at which growth rate is maximum.

These thermal tolerance curves provide estimates, for each species, of the growth
rate at different temperatures. We calculated the size scaling of growth rate at
1 degree intervals from 2 to 33°C using for each species the predicted growth
rate from the thermal tolerance curve. Linear and quadratic regressions were
then applied to the log-log relationship between growth rate and cell size at each

temperature, both with and without phylogenetic correction.

2.2.3 Temperature normalization

For each species in Lopez-Urrutia et al. (2006), growth rate was corrected for
the effects of photosynthetic active radiation using the parameters given in Table
1 of Lopez-Urrutia et al. (2006). As in Chen and Liu (2011), normalization
for temperature was applied using the Van’t Hoff-Arrhenius equation (Arrhenius,
1915) with the activation energy given by Lopez-Urrutia et al. (2006). Corrected
growth rates were averaged for each species to have one measurement for each

rRNA sequence.

For Thomas et al. (2012) data, we used the maximal growth rates and optimum
temperature of each species as obtained by the MLE fits. To correct the effect of
temperature, we used the slope (S) from the relationship between log of maximum
growth rate and optimum temperature , so that logjo(i) — ST is the temperature-

corrected growth rate (T;°C).

22



Optimum Temperature (°C)

2.3 Results

2.3 Results

The optimum temperature for growth and cell volume are correlated (r?=0.04,
p<0.05) Figure 2.1A). Species with a cell volume lower than 1 um?3 (e.
picophytoplankton species) show maximum growth rates at temperatures higher
than 22°C, while larger species have optimum temperatures for growth between
2 and 33°C. The small species in Thomas et al. (2012) dataset are adapted to
warm conditions whereas large phytoplankton species are more diverse regarding
their optimum temperatures for growth with species with optima along almost the
full ocean thermal range (Figure 2.1A). Regardless of cell-size, the maximum
growth rate of species which have a growth optimum in warm conditions is
higher than that of species with an optimum in colder environments. There
is an exponential relationship between maximum growth rate of each species
and optimum temperature (Figure 2.1B, logjo()max = 0.013xT-0.41, r2=0.07,
p<0.01).
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Figure 2.1: Relationship between species optimum temperature and (A) cell size and

(B) maximum growth rate.
When we correct the maximum growth rates obtained from the thermal curve fit

for the effects of temperature using the exponential coefficient in Figure 2.1B, there

is a unimodal relationship between growth rate and cell volume. The quadratic term
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in the relationship logio()max = logioBV+ logio(BV)?2 is significant (r2=0.07,
p<0.01, AIC= 48.57) and the quadratic model is a better predictor than the linear
model (r2=0.01, p=0.383, AIC= 54.08) (Figure 2.2A). This unimodal pattern is
mainly due to the picophytoplankton species having lower than average growth

rates.
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Figure 2.2: Size scaling of growth for: (A) Thomas et al. (2012) data. The black
solid line corresponds to a linear fit (logjo(pt) = —0.02log;o(BV) —0.36; ANOVA: r
= 0.01, n = 121, p-value = 0.38). The black dashed line corresponds to a quadratic
fit (logyo (1) =—0.02 [logio(BV)]?>+0.09 logio(BV) —0.42; ANOVA: r*> = 0.07, n
= 121, p-value < 0.01). The grey solid line corresponds to a linear PGLS fit (log;o
(1) =-0.04 log;p(BV)-0.43, AIC = 21.09, p-value = 0.12, A=0.96). The grey
dashed line corresponds to a quadratic PGLS fit (logjo (1) = 0.02 [log;o(BV)]*>-0.21
log1o(BV)-0.26, AIC = 27.25, p-value = 0.16, 1=0.96). (B) Loipez-Urrutia
et al. (2006) data. Same color coding as in (A), black solid line is the linear fit
(logio(1) = —0.03 log1o(BV) +5.10; ANOVA: 72 =0.04, n =49, p-value = 0.17), black
dashed line is quadratic fit (logjo (1) = —0.02 [logio(BV)]?+0.10 logio(BV) +4.97;
ANOVA: r? = 0.17, n = 49, p-value < 0.01), grey solid line is the linear PGLS
fit (logio(u) =-0.06 logio(BV)+4.96, AIC = -4.54, p-value < 0.01, 2=0.92) and
grey dashed line is the quadratic PGLS fit (logjo (1) =-0.02 [log;o(BV)]*>+0.06
logio(BV) +4.95, AIC = 1.39, p-value =0.06 ,A=0.91).
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A similar pattern is evident in the dataset given by Lopez-Urrutia et al. (2006)
as analysed by Chen and Liu (2011) (Figure 2.2B). Although Chen and Liu (2011)
used cell carbon as an estimate of cell size, the same pattern is obtained using
cell volume. After normalization for temperature and photosynthetically active
radiation, a quadratic model explains a higher amount of variance than a linear one
(Figure 2.2B. Quadratic model:r?=0.2, p<0.01, AIC=-9.65; linear model: r2=0.004,
p=0.173, AIC= -2.23). Again, the unimodal pattern is mainly determined by
the picophytoplankton growth rates, what suggests a phylogenetic origin for the

curvature.

We replicated these analyses applying a PGLS regression to both datasets. The
quadratic term is no longer significant in any of them (4=0.91, p=0.06, AIC=
1.39 for Lopez-Urrutia et al. (2006); A=0.96, p=0.157, AIC= 27.24 for Thomas
et al. (2012)). The phylogenetic analyses yielded the lowest AIC values for the
linear fits (A=0.92, p<0.05, AIC= -4.54 for Lépez-Urrutia et al. (2006); A=0.956,
p=0.123, AIC= 21.09 for Thomas et al. (2012)). Although for the Lépez-Urrutia
et al. (2006) dataset the PGLS linear fit was significant, the relationship between
temperature corrected growth rate and cell size was not significant for Thomas
et al. (2012) data. In addition, A values were close to 1 for all analyses revealing a
strong phylogenetic signal in the data. This implies that differences in the species
growth rate are correlated to the phylogenetic distance amongst species. These
results suggest that the observed curvature in the size scaling of growth rate is a

consequence of the shared evolutionary history.

Up to this point, we have evaluated the effect of phylogeny on the allometric
scaling on the basis of temperature-corrected growth rates. This is the common
practice when data are compiled for different species measured at different
temperatures. The alternative way to analyse the size scaling of growth is to
measure the growth rates of a set of species at the same temperature (i.e. Marafién
et al. 2013). With the growth vs temperature growth curves we can simulate
such experiments at different temperatures. For each temperature, we estimate
the growth rate of each species and use that data to analyse the size scaling. For
example, Figure 2.3A represents the growth estimates at 30°C. If we calculate

with the data for all species (grey circles) the size scaling, the quadratic term is
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not significant (Quadratic model: r2=0.03, p=0.18, AIC= 160.51; linear model:
r2=0.001, p=0.78, AIC= 160.36). Similarly, at 10°C we can plot the predicted
growth rates for each species (Figure 2.3B) but here the quadratic term is significant
and better predictor than the linear one (Quadratic model: r2=0.21, p<0.001, AIC=
142.40 ; linear model: r2=0.016, p=0.22, AIC= 161.94).

We can repeat this process at 1°C intervals from 2 to 33°C and calculate
the significance of the quadratic term (column "p-value’ in Figure 2.3C) for
each temperature. The unimodal growth rate scaling does not occur at the
extremes of the thermal range. At the highest temperatures, the growth
rates of picophytoplankton are not significantly lower than those of nano
and microphytoplankton. At the lowest temperatures, the growth rates of
picophytoplankton and nanophytoplankton are lower than those of the larger
phytoplankton, the quadratic term is not significant but there is a positive allometric
scaling. At temperatures from 5 to 25 °C the unimodal scaling of phytoplankton
growth rate is significant and contributes to explain a significant amount of the
variance (right panel in Figure 2.3C). When a PGLS is applied to the size scaling
of growth rate at each temperature, and hence the shared evolutionary history
of species is taken into account, the curvature is no longer significant at any
temperature, supporting the hypothesis of its evolutionary origin. The colour
matrix plot in Figure 2.3C summarizes these results. For each temperature degree,
we split the cell size range into 7 different classes and calculated the average growth
rate for each cell size bin (see Figures 2.3A & 2.3B for examples). We observe a
clear pattern where as we move toward higher temperatures the curvilinear scaling
disappears. This pattern is the result of picophytoplankton adaptation to high
temperatures. The unimodality on the relationship between cell size and growth
rate depends strongly on temperature and it is not significant from ~25°C upwards,

1.e., where picophytoplankton grows at their optimum temperatures.
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Figure 2.3: Effect of temperature on the size scaling of growth rate. Panels on the
left show the size scaling of growth (log10 transformed) for predicted growth rates at
(A) 10° and (B) 30°. Grey dots show all data points whereas colors dots show the
corresponding averaged growth rates for each size bin as used in the colour matrix plot
(C) . The black solid line corresponds to a linear fit. The black dashed line corresponds
to a quadratic fit. Linear fit in (A): logo(ut) = —0.07log1o(BV) —0.47; ANOVA: r* =
0.02, n = 143, p-value = 0.11. Linear fit in (B): logjo(¢t) = —0.02log;o(BV) —0.46;
ANOVA: 2 = 0.0006, n = 109, p-value = 0.8. Quadratic fits are shown in the panels.
(C) The colour matrix shows for each temperature from 2 to 33°C (y axis) the averaged
growth rate at each cell size bin (x axis). The p-value column shows the degree
of significance of the quadratic fit for the log10-log10 relationship between growth
rate and cell size using all data points (no data binning). When the quadratic term is
not significant, i.e. p-value>0.05 the box appears empty. (*) indicates p-value<0.05,
(**) indicates p-value<0.01 and (***) p-value<0.001. The right panel shows the ratio
between the r-squared of the quadratic term and the r-squared of the linear term for the
different fits at each temperature, i.e., the proportional increase in explained variance
of the quadratic fit in relation to the linear fit.
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2.4 Discussion

The role of the evolutionary history of species on the study of the allometric scaling
of marine phytoplankton has been hardly considered explicitly. We have evaluated
the causes of the unimodal relationship between mass-specific growth rate and
cell size (Chen and Liu, 2011; Maraifién et al., 2013) using two different datasets.
We have used Phylogenetic General Least Square (PGLS) regression (Felsenstein,
1985) to understand the evolutionary effects on the linear and quadratic fits. Our
results show that, in both datasets, the quadratic/unimodal relationship is not

significant after the phylogenetic correlation in the data is taken into account.

The curvature in the scaling relationship between mass-specific growth rate and
cell size is mainly due to prokaryotic picophytoplankton. When we compare
the growth rate of phytoplankton species at their thermal optimum (Figures 2.2A
& S2.1), picophytoplankton have lower growth rates than larger phytoplankton
but when phylogenetic correction is used, these lower growth rates are not
significant. Chen and Liu (2011) suggested that the unimodal pattern may be the
result of evolutionary adaptation of picophytoplankton to nutrient availability in
oligotrophic environments. This was pointed out originally by Raven (1998), who
suggested that the reduction in size in picophytoplankton increases the availability
of resources at low nutrient levels but at the cost of a reduction in the proportion of
scalable components devoted to cell growth. In addition, marine picocyanobacteria
such as Prochlorococcus or Synechococcus form a phylogenetic branch separated
not only from larger phytoplankton taxa but also from larger species within
the cyanobacteria group (Figures S2.2 & S2.3). Specially, Prochlorococcus has
suffered an extensive genome streamlining that has affected most lineages at
different proportions (Palenik, 1994; Penno et al., 2006; Rocap et al., 2002; Urbach
et al.,, 1998). Hence, the high variability of growth rates exhibited within the
Prochlorococcus group (Figure 2.1B) seems to correspond to different levels of
genome streamlining rather to be a consequence of its tiny cell size (Partensky
and Garczarek, 2010). Recent studies suggest that both genome and cell size
are mutually correlated (Ting et al., 2007) and therefore they have decreased

concurrently during evolution (Partensky and Garczarek, 2010).
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These conundrum between phylogeny, size and growth rate is evidenced by
the strong phylogenetic signal in our data (A > 0.9). The growth rate and size
estimates for the different species are not independent but closely related species
have growth rates and sizes more similar than species selected at random. The
independence of data is one of the assumptions of conventional methods for
data analysis and its violation might have various consequences, from biases in
the regression coefficients to severe underestimation of uncertainties related to
these values. Hence, if instead of using a phylogenetic correction as we do, all
observations were treated as independent (Finkel, 2001; Litchman et al., 2007;
Tang, 1995), a biased association may be observed between growth rate and
cell size. But phylogenetic regressions have also been criticized mainly for two
reasons: first because these methods attribute to ecology the remaining variation
in character after phylogenetic correction, given thus priority to the latter over
ecology when, actually, they are not mutually exclusive because of the phylogenetic
niche conservatism (Freckleton et al., 2002; Grime and Hodgson, 1987; Harvey and
Pagel, 1991; Westoby et al., 1995). And second, because they imply the validity of
a’Brownian motion” to explain the constant rate of variability through the different
branches of the phylogeny, which is not always appropriate. But when a strong
phylogenetic signal is apparent, as is the case here, we argue that accounting for
the shared evolutionary history of species is essential to avoid biased conclusions
due to the non-independence in the data (Bruggeman, 2011; Martins and Garland,
1991). In the literature cases where the curvature in metabolic scaling has been
found to be relevant (e.g. Kolokotrones et al. 2010), the quadratic term was found
significant after phylogenetic correction, what warrants an interpretation of the

curvature independent of the evolutionary history of species.

The relevance of the inclusion of picophytoplankton is evident in previous
studies which only considered larger species and reported linear exponents (Banse,
1982; Finkel, 2001; Litchman et al., 2007; Lopez-Urrutia et al., 2006; Sommer,
1989; Tang, 1995). It has been shown that the value of the linear exponent depends
on the size range considered (see Figure 2 in Chen and Liu 2011). For instance,
the difference in the slope obtained in Figure 2.1B of 0.03 and the -1/4 exponent
observed by Loépez-Urrutia et al. (2006) is that the latter study only considered
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data where both phytoplankton volume and growth rate were measured in the same
experiment. For Figure 2.1B we have also used volume estimates measured for the
same species in other studies, what extends the size range to picophytoplankton
and substantially reduces the size scaling slope. This low slope is apparent using
either cell volume (Figure 2.1B) or carbon biomass (see Figure 1B in Chen and Liu
(2011)). Therefore, the size-scaling of marine phytoplankton departs significantly
from the predicted -1/4 power rule (Marafion et al., 2007) and mass-specific growth
rate scales independent of body volume when a large range size is considered
Maranoén et al. (2013).

These conundrum between phylogeny, size and growth rate is further puzzled
when we also consider that temperature affects both growth rates and phytoplank-
ton cell size and complicated by the evolutionary adaptation of picophytoplankton
to warm environments. To correct for the effects of temperature on growth rate
when data are compiled for species growing at different temperatures, an exponen-
tial relationship between temperature and growth is used to standardize the growth
rates of all species to the same temperature. But because both cell volume (Figure
2.1A) and growth rate (Figure 2.1B) are correlated with temperature it is hard to
ascertain that the assumed exponent for the temperature correction is not biased
by the fact that picophytoplankton species (theoretically with lower growth rates)
are predominantly present at the highest temperatures. The estimated exponent for
the optimum growth rates (Figure 2.1B) is lower than the value reported by Eppley
(1972) (0.013 vs 0.0275). The choice of the thermal dependence exponent might
introduce some bias in the size scaling analysis (Sal and Lopez-Urrutia, 2011). A
priori, this caveat might be avoided measuring the growth rate of all species under
study at the same temperature. But, paradoxically, our results show that the size
scaling of phytoplankton growth rates is largely dependent on the temperature at
which growth rates are measured. For instance, the non-phylogenetically corrected
unimodal scaling of phytoplankton growth rate is significant from 5 to 25 °C, but
not at higher or colder temperatures. Hence, our results support the unimodality at
18°C reported by Maraiion et al. (2013) but we add the perspective that, if growth

rates were measured at different temperatures the size scaling might have differed.
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2.4 Discussion

This is the result of picophytoplankton adaptation to warm conditions while
larger species have a more diverse thermal preference and may have optimum tem-
peratures along the full ocean thermal range (Figure 2.1B). At warm temperatures,
the picophytoplankton species in Thomas et al. (2012) compilation are all at their
thermal optimum. But nano and micro-phytoplankton data consists of both species
that have their optimum at high temperatures and species that have their optimum
at temperate conditions but that nevertheless are able to growth at higher temper-
ature. The inclusion of data of species out of their thermal optimum results in a
different pattern in Figure 2.3A than in Figure S2.1 where only species that have
their thermal optimum at high temperatures are considered. The optimum tem-
perature of the species seems to be the result of evolutionary adaptation to the
environmental conditions they experience locally Thomas et al. (2012). As pico-
phytoplankton, specially Prochlorococcus strains, is usually most abundant in the
warm oligotrophic waters (Flombaum et al., 2013), it is expected to have optimum

growth at high temperatures.

Our temperature simulation experiment, combines the estimation of thermal
reaction norms to predict the growth rate of each species at different temperatures
and the analysis of size scaling at each temperature. Ideally, these results should
be confirmed experimentally by making a full experimental design where both
temperature responses and size-scaling experiments are performed in parallel.
But the number of treatments in such a factorial design would make the study
almost impractical. Community wide attempts (Boyd et al., 2013) might be the
solution to fully test our hypothesis. Although the collation of data in Thomas
et al. (2012) that we used to estimate the thermal reaction curves comes from a
wide range of experimental protocols, a recent comparison with the dataset from
such a community-wide study (Boyd et al., 2013) found slight differences on the
maximum growth rate of species, but optimum temperatures and thermal reaction

norms were similar across studies.

Although our results reveal that the unimodal scaling depends on temperature,
the role of phylogeny seems to be much more important. Even at low temperatures,
where picophytoplankton shows very low growth rates, a curvature appears to

be non-significant after phylogenetic correction. In summary, our results state
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that the allometric slope of phytoplankton growth rates are variable and do not
consistently support a specific theoretical value when a large range of cell sizes
are included. The strong phylogenetic signal exhibited in our data reveals that
phylogeny should be borne in mind in allometric studies, since variability on
the species growth rates seems to be consequence of a common evolutionary
history rather than uniquely an effect of their size. This supports Raven’s (1998)
hypothesis that picophytoplankton have lower growth rates in an effort to increase
the efficiency for the resources acquisition at low nutrient levels. Adaptations
such as the latter, have been a common feature along the evolutionary history of
organisms. In addition, this unimodal scaling of phytoplankton growth due to the
different growth rate scaling of prokaryotic picophytoplankton is in accordance
with the shift in metabolic scaling from prokaryotes to eukaryotes as a result
of the dramatic changes in structure and function experienced across this major

evolutionary transition (DeLong et al., 2010).
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Figure S2.1: Size scaling of growth rate for those species with optimum temperatures
between 23 and 28° in Thomas et al. (2012) data (big grey dots). The black solid
line corresponds to a linear fit (logjo (1) = —0.005 log;o(BV) —0.43; ANOVA: r? =
0.001, n = 43, p-value = 0.82). The black dashed line correspond to a quadratic fit
(logio (1) = —0.04 [logio(BV)]? +0.14 log;o(BV) - 0.40; ANOVA: r> = 0.22, n = 43,
p-value < 0.005). Small grey dots on the background show the whole dataset.
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Figure S2.2: Phylogenetic tree for Thomas et al. (2012) data. Grey edges show the

picophytoplankton branches.
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Figure S2.3: Phylogenetic tree for Lopez-Urrutia et al. (2006) data. Grey edges show

the picophytoplankton branches.
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Table S2.1. Cell size references for the species used in the study.

Species Name

Source

Akashiwo sanguinea
Alexandrium catenella
Alexandrium fundyense
Alexandrium minutum
Alexandrium monilatum
Alexandrium ostenfeldii
Alexandrium tamarense
Amphiprora sp.

Apedinella radians
Asterionellopsis glacialis
Calcidiscus leptoporus
Chaetoceros didymus
Chaetoceros lorenzianus Bermuda
Chaetoceros pseudocurvisetus
Chaetoceros sp.

Chattonella marina

Chattonella marina var. antiqua
Chlamydomonas

Chlorella sp.
Chrysochromulina polylepis

Coccolithus pelagicus ssp. Braarudii

Cochlodinium polykrikoides
Conticribra guillardii
Corethron pennatum
Cryptomonas sp.
Cylindrotheca closterium
Dactyliosolen fragilissimus
Detonula confervacea
Dunaliella tertiolecta
Emiliania huxleyi
Eucampia zodiacus
Eutreptiella gymnastica
Fibrocapsa japonica
Fragilariopsis cylindrus
Fragilariopsis kerguelensis

Olenina et al. (2006)
http://species-identification.org
http://species-identification.org
Maraiién et al. (2013)
http://species-identification.org
Olenina et al. (2006)

Maraiién et al. (2013)

Olenina et al. (2006)

Olenina et al. (2006)

Olenina et al. (2006)

Maraiién et al. (2013)

Olenina et al. (2006)

Olenina et al. (2006)

Leblanc et al. (2012)
http://www.eos.ubc.ca/research/phytoplankton
Band-Schmidt et al. (2012)
Band-Schmidt et al. (2012)
Olenina et al. (2006)
http://diatom.ansp.org/taxaservice/ShowList.aspx
Olenina et al. (2006)
http://nannotax.org
http://species-identification.org
Olenina et al. (2006)
Timmermans et al. (2004)
Olenina et al. (2006)

Olenina et al. (2006)

Olenina et al. (2006)

Olenina et al. (2006)
http://www.algaebase.org
Maraiién et al. (2013)

Olenina et al. (2006)

Olenina et al. (2006)
http://nordicmicroalgae.org
http://nordicmicroalgae.org
Timmermans (2010)
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Gephyrocapsa oceanica
Gephyrocapsa oceanica var. typica
Gymnodinium aureolum
Gymnodinium catenatum
Gymnodinium corollarium
Gymnodinium (probably G. simplex)
Helicotheca tamesis

Heterocapsa rotundata
Heteromastix pyriformis
Heterosigma akashiwo

Isochrysis galbana

Isochrysis sp.

Karenia brevis

Karenia mikimotoi

Karlodinium veneficum
Klebsormidium

Leptocylindrus danicus
Micromonas pusilla

Nannochloris (possibly Stichococcus) sp.
Neoceratium furca

Neoceratium fusus

Neoceratium lineatum
Neoceratium tripos

Nitzschia frigida

Nitzschia paleacea

Odontella mobiliensis
Olisthodiscus luteus

Peridinium sp.

Phaeocystis antarctica

Phaeocystis globosa

Phaeocystis pouchetii
Phaeodactylum tricornutum
Prochlorococcus marinus
Prorocentrum gracile
Prorocentrum micans
Prorocentrum minimum
Prymnesium parvum f. patelliferum
Prymnesium parvum
Pseudo-nitzschia multiseries
Pseudopedinella pyriformis
Pyramimonas disomata
Pyrodinium bahamense var. compressum

Rhizosolenia setigera

Maranén et al. (2013)
Maraiién et al. (2013)
http://nordicmicroalgae.org
http://species-identification.org
http://mordicmicroalgae.org
http://nordicmicroalgae.org
http://nordicmicroalgae.org
http://nordicmicroalgae.org
http://www.serc.si.edu/labs/phytoplankton/guide/index.aspx
Olenina et al. (2006)

Maranén et al. (2013)

Liu and Lin (2001)
http://www.sms.si.edu/irlspec
http://nordicmicroalgae.org
Galimany et al. (2007)
Skaloud (2006)
http://nordicmicroalgae.org
http://mordicmicroalgae.org
https://ncma.bigelow.org
http://nordicmicroalgae.org
http://nordicmicroalgae.org
http://nordicmicroalgae.org
http://nordicmicroalgae.org
Olenina et al. (2006)

Olenina et al. (2006)

Olenina et al. (2006)
Leadbeater (1969)
http://diatom.ansp.org/taxaservice/ShowList.aspx
Zingone (1999)

Olenina et al. (2006)

Olenina et al. (2006)

Maranén et al. (2013)
Maraiién et al. (2013)
Maraiién et al. (2013)

Olenina et al. (2006)

Olenina et al. (2006)

Green et al. (1982)

Green et al. (1982)
http://diatom.ansp.org/taxaservice/ShowList.aspx
http://www.smbhi.se
http://www.smbhi.se
http://species-identification.org
Olenina et al. (2006)
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Scrippsiella trochoidea

Skeletonema ardens

Skeletonema costatum

Skeletonema japonicum

Skeletonema marinoi dohrnii complex
Skeletonema menzelii

Skeletonema pseudocostatum
Skeletonema tropicum

Stellarima microtrias

Stephanopyxis palmeriana
Stichococcus (possibly S. cylindricus)
Synechococcus

Synedra sp.

Tetraselmis sp.

Thalassionema nitzschioides
Thalassiosira nordenskioeldii
Thalassiosira pseudonana
Thalassiosira rotula

Trichodesmium erythraeum

Olenina et al. (2006)

https://ncma.bigelow.org

Marafién et al. (2013)

https://ncma.bigelow.org/
https://ncma.bigelow.org
https://ncma.bigelow.org
https://ncma.bigelow.org
https://ncma.bigelow.org/

http://www.smbhi.se
http://www.serc.si.edu/labs/phytoplankton/guide/index.aspx
https://ncma.bigelow.org

Marafién et al. (2013)
http://diatom.ansp.org/taxaservice/ShowList.aspx
http://diatom.ansp.org/taxaservice/ShowList.aspx
http://nordicmicroalgae.org
http://nordicmicroalgae.org
http://nordicmicroalgae.org

Maraiion et al. (2013)

Gdérate-Lizarraga (2012)
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3. Multiple drivers of the latitudinal diversity gradient in marine
phytoplankton

3.1 Introduction

The increase in species richness towards the equator results in a latitudinal diversity
gradient (LDG) that has puzzled marine and terrestial ecologist for the last two
centuries (Bates, 1862; Colwell and Hurtt, 1994; Humboldt and Bonpland, 1807;
Pianka, 1966; Rohde, 1992; Stevens, 1989; Wallace, 1854). For marine taxa,
Tittensor et al. (2010) found that species richness peaked across broad mid-
latitudinal bands in an extensive compilation of oceanic data. Several modelling
studies have attempted to reproduce this pattern for marine phytoplankton and
have formulated different hypotheses to explain the LDG. Two major factors
have been suggested as the drivers for the LDG: resource competition and
temperature gradients. Although the effects of these drivers are not mutually
exclusive most studies claim that it is either one of these factors what controls
the LDG. For example, Barton et al. (2010a) used a global ocean circulation and
ecosystem model to suggest that the higher diversity at low latitudes is due to the
relatively steady environmental conditions in this area, which enable the prolonged
coexistence of species with similar fitness. They conjectured that there is a balance
between the removal of species through resources competition (Tilman, 1982)
and the replacement of some of them by oceanic currents. Amongst the models
that suggest that it is the temperature gradient what controls the LDG, Brayard
et al. (2005) were the first to find evidence of a potential role of a mid-domain
effect (MDE) that emerges as consequence of the combination between geometric
constraints and sea surface temperature. Beaugrand et al. (2013) used a bioclimatic
global model to suggest that the LDG is the result of a mid-domain effect (Colwell
and Lees, 2000) in the thermal niche space. In short, the thermal mid-domain effect
(TMDE) states that if each species is characterized by a thermal niche range and
these niches are distributed at random along a temperature gradient, there is an
increasing overlap of species ranges toward the centre of the temperature gradient
or domain. This TMDE hypothesis therefore predicts higher species richness at

mid-temperatures as an stochastic realization of a null model.

Although, at first glance, such a null model seems to be in stark contrast with

the resource competition hypothesis by Barton et al. (2010a), there is no reason
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3.2 Material and Methods

why these two mechanism could not operate simultaneously. In fact, although
Beaugrand et al.’s (2013) bioclimatic model does not allow for species coexistence,
Barton et al. (2010a) used a global ecosystem model where species distribution
are constrained, in addition to resource competition, grazing or mortality, by a
randomly selected thermal niche. Barton et al. (2010a) considered the possible
existence of a MDE in their model output but in the geographical domain instead
of in the thermal domain, as Beaugrand et al. (2013) suggested. They found that
species niche breadth do not decrease with latitude, and conclude that a MDE
can not explain the latitudinal pattern. Hence, our first aim is to evaluate the
extent of this thermal mid-domain theory as main driver of the LDG. We use
the same 3D global ecosystem model configuration in Barton et al. (2010a) but
modifying the parameterization of resource competition ability and temperature
sensitivity to study their effects either combined or individually. Our final goal is
to elucidate what are the main mechanisms that drive the patters of diversity of

oceanic phytoplankton.

3.2 Material and Methods

We use a marine ecosystem model that couples a lower trophic foodweb model
of planktonic organisms (phytoplankton and zooplankton) to a global ocean model
of physical processes (advection and diffusion) (Dutkiewicz et al., 2009; Follows
et al., 2007). The three dimensional (3D) global ocean model is based on a coarse
resolution (1° x 1° horizontally, 24 levels vertically) of the MIT general circulation
model (MITgcm) constrained to be consistent with large-scale hydrogeography
and altimetry (Wun