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Preface

“The difficulty in life is the choice.”

George Moore, Bending of the Bough.

Decisions, at the very end, are the essence of any intelligent being. No

atom, no tree, no stone makes choices. They are exclusive domain of think-

ing creatures. And our lives are shaped by our decisions. For these reasons,

choice is of great interest in different areas of knowledge, such as economics,

psychology, sociology, philosophy, mathematics and statistics. Those disci-

plines are concerned with different aspects related to choice: how to regulate

it, predict it, judge it, etc. In this work we are not interested in suggesting

the best decision to a specific problem, nor in predicting the choices of an

individual under certain circumstances. We are mainly interested in the

ways in which choices can be modelled, no matter if they are correct, ethic,

good, sane or fair, but just in how they can be described.

The concept of preference is closely related to that of choice. This rela-

tion is the basis of mathematical choice theory, which postulates that choices

are the expression of preferences and, on the other hand, that preferences

can be revealed by observing choices. In a situation where an individual has

a preference of an alternative x over y, we expect that his choice between

the two alternatives will be x. On the other hand, if an observer who does

not know the preferences of an individual witnesses that x is chosen when
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y is also available, then he can infer that the individual has a preference

for x over y. In such a situation we can say that the individual acted ra-

tionally. In this framework, rationality is different from the colloquial and

most philosophical use of the word. We say that an individual is rational

when he has a set of preferences (or order) and chooses accordingly. In this

context, there is nothing rational or irrational in preferring fish to meat, but

there is something irrational in preferring fish to meat, and then ordering

meat.

Choice and preference are modelled in mathematics using respectively

a choice function and a preference relation. If the universe of alternatives is

denoted with X , then a choice function is simply a function C that assigns

to any subset S of X of available alternatives a non-empty subset C(S) ⊆ S

containing the alternatives that are chosen from S. A preference relation Q

instead, is a function defined on the Cartesian product X ×X that for any

pair of alternatives x and y can take values 0 or 1. If Q(x, y) = 1, then x is

considered at least as good as y, while if Q(x, y) = 0 then x is not preferred

to y.

Since choice follows from a set of preferences, in order to observe a ra-

tional behaviour the preference has to be transitive. This means that if the

alternative x is preferred to y and the alternative y is preferred to z, then x

has to be preferred to z. It is relatively simple to establish those conditions

that define a rational preference relation (e.g. transitivity), while it turned

to be much harder to define rationality for choice functions. Several pro-

posals have been made in the literature and all of them were supposed to

be the ultimate definition of rationality. This until the so-called Arrow-Sen

Theorem was proved. It establishes the equivalence of most of the pro-

posals of the literature. All these definitions of rationality are equivalent

to the fact that the choice function is coherent with the preference and
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that the preference is transitive. Among these equivalent conditions, the

most appealing are the ones that refer to the choice function solely (called

contraction/expansion conditions) and are defined independently from the

preference relation revealed from the choice function. Another interesting

property is the Weak Axiom of Revealed Preference (WARP), which estab-

lishes that if an individual reveals his preference for an alternative x over

y, then he can not reveal also a preference for y over x.

One drawback of classical choice theory is that it does not account for

those situations where choices or preferences are imprecise. For example,

experiments with repeated choice situations showed that an individual can

chose differently when faced with the same set of available alternatives. In

theory, it is a violation of rationality, but we know that such situation is

quite common. One possible cause for this “irrational” behaviour can be

found in the preference that rules the choice: in fact an individual can feel

different degrees of preference for different pairs of alternatives. Such a sit-

uation cannot be modelled by classical preference relations, where, for any

pair of alternatives, either one is strictly preferred to the other or they are

indifferent (we intentionally exclude those alternatives that are incompara-

ble). Fuzzy preference relations turn out to be the natural solution to this

problem. A fuzzy preference relation Q expresses the relation of preference

between pairs of alternatives in such a way that Q(x, y) can take any value

in the unit interval: the closer the value to one, the stronger the degree of

preference of the first alternative over the second.

Combining classical choice functions with fuzzy preference relations is

only the first step towards a generalized fuzzy choice theory. Other authors,

like Banerjee [9] and Georgescu [64] went even further and defined the con-

cept of fuzzy choice function, i.e. a choice function that to any alternative

x in a set S assigns a degree of choice C(S)(x) that takes a value in the
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entire unit interval. The most general case has been proposed by Georgescu

in [64]: she defined a fuzzy choice function on a family of fuzzy subsets of

X and she studied the fuzzy preference relation that can be revealed from

it. She also proposed a fuzzy version of most of the rationality conditions

known in classical choice theory and studied the relationship between them

in order to obtain a result similar to the classical Arrow-Sen Theorem.

Another way of extending classical choice theory is to assume that

choice and preference have a stochastic nature. The literature on this field

dates back to the seminal works of Luce [81,82] and Fishburn [47,48]. In this

literature, given two alternatives x and y, the individual’s choice is described

with a probability distribution that assigns probability p(x, y) to x and

probability p(y, x) = 1−p(x, y) to y, where p(x, y) indicates the probability

that x will be chosen from {x, y}. Relations of this kind are usually called

probabilistic relations. The same concept, extended to sets with more than

two alternatives, is the key for defining probabilistic choice functions, i.e. a

function that for every pair of sets S ⊆ T assigns a probability p(S, T ) that

indicates the probability that the choice from T will lie in S. The advantage

of the stochastic approach is that probabilistic choice functions can be easily

observed, specially in those situations where the decision makers are faced

repeatedly with the same set of alternatives. Luce [82], Bandyopadhyay [5]

and other authors have also proposed a stochastic version of rationality

conditions known in classical choice theory.

This work is organized as follows. In Chapter 1 some basic notions are

introduced. Firstly, classical choice theory and its salient results are pre-

sented in detail. The basic definitions of a choice function, a revealed pref-

erence relation and rationalization of a choice function w.r.t. a preference

relation are introduced. Special attention is paid to rationality conditions

and their connections. An extended version of original Arrow-Sen Theorem
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closes Section 1.1. In Section 1.2 fuzzy set theory is presented. The defi-

nition of a fuzzy set is introduced and fuzzy logic operators, like triangular

norms and implication operators, are defined. Fuzzy preference relations

and their properties close the chapter.

Chapter 2 contains our results on fuzzy choice theory. After presenting

the historical background of fuzzy choice theory in Section 2.1, we present

our results in Sections 2.2 and 2.3. In particular, Section 2.2 is devoted to

the problem of finding sufficient and necessary conditions on a fuzzy pref-

erence relation such that it can rationalize a fuzzy choice function. In our

study we tried to recover two classical results on the rationalization of choice

functions: the first establishes that completeness and acyclicity of a pref-

erence relation are equivalent to its G-rationality, while the second asserts

that if a preference relation is acyclic, then it can M-rationalize a choice

function. Our results mimic almost perfectly those classical propositions.

The case that has not been recovered has been justified with an example

that shows that in the fuzzy set framework the missing implication does

not hold in general. The main results of this section have been published

in [89]. Section 2.3 is dedicated to the fuzzy version of Arrow-Sen Theorem.

We started from some preliminary results found in the literature [64]: we

proved that some of those results hold for wider families of triangular norms

and also completely new results are presented. Unfortunately, in the fuzzy

set framework, it is not possible to recover entirely the classical Arrow-

Sen Theorem. Nevertheless, the obtained results improve considerably our

understanding of the relationship between rationality conditions in fuzzy

choice theory. This section contains a refined version of some preliminary

results that we already presented in [92, 94].

Finally, Chapter 3 is dedicated to the study of the relationships between

the probabilistic and the fuzzy approach to choice theory. After introducing
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the definition of probabilistic choice function and probabilistic relation, we

propose a novel construction that allows to compute a fuzzy choice func-

tion from a given probabilistic choice function. This construction makes

use of triangular norms and implication operators, as we already proposed

in [90,93]. A new set of rationality conditions for probabilistic choice func-

tions is presented and we can prove that they guarantee that the fuzzy

choice function obtained from the probabilistic choice function is rational.

In Section 3.3 the connections between probabilistic and fuzzy preference

relations are studied. In particular, we investigate how different definitions

of transitivity propagate from the formalism of probabilistic relations to

the one of fuzzy preference relations. The results contained in this section

improve considerably our previous results published in [95]. We conclude

the chapter presenting the results of a study where the techniques proposed

in the thesis are applied to the problem of measuring the rationality of a

group of real consumers.



Summary

The main subject of the thesis is the mathematical modelling of individual

choice. In particular, we focus on two generalizations of the classical choice

theory that allow to model those choice situations in which imprecision is

involved. Classical choice theory is based on the idea that an individual

chooses according to an inner set of preferences (a weak order between the

alternatives) and that preferences can be revealed from the observation of

his decisions. Choice is modelled using a choice function that to any set

of alternatives associates a subset containing the chosen alternatives, while

preferences are modelled using binary preference relations. When the choice

is coherent with the inner preferences of the individual we say that it is ra-

tional. On the other hand, from the point of view of the analyst, only the

choices of an individual can be directly observed, while preferences are most

of the time unobservable. Nevertheless, preferences can be revealed from the

observed decisions. If the preference relation revealed from a choice function

also rationalizes it, then we speak of a normal choice function. Normality

expresses the fact that choice and preference are carrying the same informa-

tion, even if expressed with different formalisms. Under this condition, one

can also study how interesting properties, such as transitivity, propagates

from the formalism of preference relations to the one of choice functions and

vice versa. This is the spirit of Arrow-Sen Theorem, a milestone in classical

XI
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choice theory that studies the relationships between different definitions of

rationality proposed in the literature and proves that, under certain con-

ditions, they are all equivalent. One drawback of classical choice theory is

that it does not allow to model those situations where imprecision is in-

volved. Several studies proved that human behaviour is seldom rational,

hence a more general tool for describing choice is needed. In this sense we

considered two possible generalizations:

(i) Fuzzy choice theory, in Chapter 2;

(ii) Stochastic choice theory, in Chapter 3.

The former proposal is based on the idea that choices and preferences can

be modelled using fuzzy concepts. The second chapter of the thesis con-

tains our contributions in this field: in Section 2.2 we present sufficient and

necessary conditions that a fuzzy preference relation has to satisfy in or-

der to ensure that the associated fuzzy choice function is rational. As for

the classical case, it turns out that the property of acyclicty of the fuzzy

preference relation is fundamental to prove these results. In Section 2.3 we

study how Arrow-Sen Theorem can be generalized to the fuzzy set frame-

work. We extend and correct previous results found in the literature and we

try to reproduce the equivalences proved by Arrow and Sen in the classical

case. Stochastic choice theory is another approach that allows to model

choice behaviour when uncertainty is involved. It entails that assumption

that both choice and preference are stochastic in nature. Concepts like

preference relation and choice function have their corresponding counter-

part in this theory, namely probabilistic choice function and reciprocal re-

lation. Despite the extended literature on stochastic choice theory, it lacks

a study that relates the stochastic and the fuzzy approach to choice mod-

elling: Chapter 3 tries to fill this gap. In fact in Section 3.2 we present
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a novel construction, based on t-norms and an implication operators, that

allows to define a fuzzy choice function from a given probabilistic choice

function. The resulting fuzzy choice function is proved to be normal and

its fuzzy revealed preference relation to be transitive, provided the prob-

abilistic choice function satisfies a set of new conditions that we defined

starting from past proposals found in the literature. Furthermore, in Sec-

tion 3.3 we study the connections between reciprocal and fuzzy preference

relations: a novel construction is proposed and under certain conditions on

the t-norm it can be proved that fuzzy and probabilistic preference relations

are equivalent. For these equivalent relations we study how the property

of transitivity propagates from one formalism to the other and we obtain

a new parametric family of upper-bound functions for cycle-transitivity of

the reciprocal relation that depends on the chosen t-norm. We close the

chapter with the results of an experiment with real market data, where the

techniques proposed in the previous sections are used to measure the degree

of rationality of a group of consumers.





Resumen

El argumento principal de esta tesis es el modelado de la elección individual.

En particular, nos centramos en dos generalizaciones de la teoŕıa de elección

clásica que permiten tratar aquellas situaciones donde los datos pueden ser

imprecisos. La teoŕıa de elección clásica se fundamenta en la idea de que

los individuos eligen según un conjunto de preferencias personales (un or-

den débil entre las alternativas) y dichas preferencias se pueden deducir

mediante la observación de las decisiones. La elección se modela a través

de una función de elección que a cada conjunto de alternativas disponibles

asocia el subconjunto de las alternativas elegidas, mientras que la preferen-

cia se modela a través de una relación de preferencia binaria. Cuando la

elección es coherente con las preferencias internas, entonces el individuo es

racional. Por otro lado, desde el punto de vista de un observador externo,

solo las elecciones pueden ser observadas directamente, mientras que las

preferencias están habitualmente ocultas. No obstante, las preferencias se

pueden deducir observando las elecciones realizadas. Si la relación de prefe-

rencia revelada desde la función de elección racionaliza esa última, entonces

hablaremos de una función de elección normal. La normalidad implica que

elección y preferencia son matemáticamente equivalentes, a pesar de expre-

sarse con distintos formalismos. Bajo esta condición, se puede estudiar cómo

algunas interesantes propiedades, tales como por ejemplo la transitividad o

XV
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la completitud, se propagan desde las funciones de elección a las relaciones

de preferencia y viceversa. Es este el esṕıritu del teorema de Arrow-Sen,

un hito en la teoŕıa de elección clásica, que estudia las relaciones entre dife-

rentes definiciones de racionalidad propuestas en la literatura y demuestra

finalmente su equivalencia bajo ciertas condiciones. Un inconveniente de la

teoŕıa clásica de la elección es que no permite tratar aquellas situaciones

donde los datos son imprecisos. Diferentes estudios han probado que el

comportamiento humano es a menudo irracional, de aqúı la necesidad de

un modelo más general. Por estas razones se consideran dos posibles gen-

eralizaciones:

(i) Teoŕıa de elección borrosa, en el Caṕıtulo 2;

(ii) Teoŕıa de elección probabiĺıstica, en el Caṕıtulo 3.

La primera propuesta se basa en la idea de que tanto las elecciones como

las preferencias se puedes modelar con conceptos borrosos (fuzzy). El se-

gundo caṕıtulo de la tesis contiene nuestras aportaciones en este campo: en

la Sección 2.2 se estudian aquellas condiciones que una relación de prefe-

rencia borrosa tiene que satisfacer para poder asegurar que de ella se puede

racionalizar una función de elección borrosa. Como para el caso clásico,

la propiedad de aciclicidad resulta ser fundamental. En la Sección 2.3 se

ha intentado generalizar al caso borroso el Teorema de Arrow-Sen: hemos

conseguido extender y mejorar resultados precedentes encontrados en la

literatura, a la vez que proponer resultados del todo nuevos y originales.

La teoŕıa de elección probabiĺıstica es otra posible generalización de la

teoŕıa clásica que permite modelar el comportamiento humano cuando los

datos están afectados por cierta incertidumbre. Se basa en la suposición

de que tanto las elecciones como las preferencias tienen una naturaleza

probabiĺıstica. Por eso, conceptos como el de función de elección o el de
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relación de preferencia binaria se pueden redefinir en clave probabiĺıstica.

Más concretamente hablaremos de funciones de elección probabiĺıstica y de

relaciones rećıprocas. A pesar de la amplia literatura en teoŕıa de elección

probabiĺıstica, todav́ıa falta un estudio que relacione el enfoque borroso con

el enfoque probabiĺıstico: el tercer caṕıtulo de la tesis se propone llenar esa

laguna. En la Sección 3.2 se presenta una construcción que, a través del uso

de normas triangulares y operadores de implicación, permite expresar una

función de elección borrosa como una función de elección probabiĺıstica. Si

la función de elección probabiĺıstica inicial satisface ciertas condiciones, que

también hemos definido a partir de las propuestas de la literatura, entonces

la función de elección borrosa que se deriva es normal y la relación de pre-

ferencia que se revela de ella es transitiva. Además, en la Sección 3.3 se

estudian las conexiones entre relaciones binarias borrosas y relaciones rećı-

procas: se propone una novedosa construcción y, bajo ciertas condiciones,

se puede demostrar que la misma genera relaciones borrosas y relaciones re-

ćıprocas equivalentes. Para esas familias de relaciones equivalentes se ha es-

tudiado como se propagan algunas importantes propiedades. En particular,

se puede demostrar que la transitividad de la relación borrosa es equivalente

a la transitividad de la relación rećıproca con respeto a una nueva familia de

funciones de ĺımite superior, t́ıpica de las relaciones ciclo-transitivas. Cierra

este caṕıtulo un conjunto de resultados que se han obtenido con un experi-

mento sobre datos reales, pensado para medir la racionalidad de un grupo

de consumidores y que hace uso de las técnicas expuestas en las secciones

anteriores.
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Chapter 1

Basic notions

In this chapter some preliminary notions of choice theory, revealed prefer-

ence and fuzzy logic are introduced.

1.1 Classical theory of choice and revealed

preference

1.1.1 Historical background

Individual choice theory dates back to the end of the eighteenth century.

The effort of both economists and psychologists was to model individual

behaviour based on the observation of individuals’ decisions and further

generalization of the observed actions. The kind of decisions with which

this theory deals are as follows: given two states, A and B, an individual

chooses A in preference to B or vice versa. The economic theory of decision

making, that goes under the name of consumer’s choice theory, is about how

to predict those decisions and since the very beginning it has been based

on the concept of utility. In a few words, the assumption is that decision

1



2 Chapter 1. Basic notions

makers assign in some way a numerical value (called utility) to any of the

states and then choose trying to maximize their utility.

The main criticism to the use of utility came from Samuelson [108,

109], who claimed that utility did not correspond to any directly observable

phenomena. The old theory was criticized mainly from a methodological

point of view, in which non-observable concepts were used. He proposed

a revealed preference approach, where preferences between states can be

inferred by observing actual choices of the individuals, in order “to develop

the theory of consumer’s behaviour freed from any vestigial traces of the

utility concept” [108].

If a state B could have been chosen by a certain individual when he

in fact was observed to choose another state A, it is to be presumed that

he has revealed a preference for A over B. In other words, by observing

that this person chooses A when B is also available, we conclude that he

prefers A to B. From the point of view of the decision maker, the process

runs from his preference to his choice, i.e. he chooses the alternatives that

are most preferred according to his ordering, but from the point of view of

the observer the process runs in the opposite direction: choices are observed

first and preferences are then presumed from these observations.

Samuelson postulated that an individual should behave like a “rational

homo economicus” [108]. This means basically two things: he can order

(weakly) all the states to which he is faced and he makes his choices ac-

cording to some maximization criterion. To sort all available states in a

weak order, the economic man is supposed to be able to compare all pairs

of states A and B (either he prefers A to B, B to A or he is indifferent)

and these preferences must be transitive. Once the states are ordered, the

rational economic man must make his choice in such a way as to maximize

something. For example, in a travel-mode choice, and faced with the states
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{A,B,C} = {airplane, bus, car} an individual can choose his most pre-

ferred alternative trying to maximize (or minimize) different aspects, such

as travel-time, cost, comfort or also a combination of them. With respect to

previous theories of choice that were resting on a vague concept of utility, he

assumed that maximization of utility only becomes specific, and therefore

possibly right or wrong, when it specifies what is being maximized.

Another fundamental contribution introduced by Samuelson, which has

come to be known as the Weak Axiom of Revealed Preference (WARP),

establishes that if an individual reveals his preference for a state A over

B, then he cannot reveal also a preference for B over A. This axiom was

first presented in [108] under a different name and further developed by the

same author in [110, 111] and by other authors, such as Arrow, Georgescu-

Roegen, Herzberger, Hicks, Houthakker, Little, Sen and Uzawa in [1,61,69,

71, 72, 80, 115, 116, 126]. The axiom has been used both in its first version

and in the consecutive extended formulations to prove the rationality of the

decision maker.

One drawback of the approach of Samuelson, despite its great gener-

ality, is that it is confined to market choices only. In fact, in its formal-

ization, the states faced by the decision maker are always considered to be

a combination of prices and goods, subject to a budget restriction, i.e. the

individual, having a fixed available budget b, has to choose a configuration

of goods x = (x1, . . . , xn) of which the prices are contained in the vector

p = (p1, . . . , pn) in such a way that b = p·x =
∑n

i=1 xipi. Nevertheless, other

non-market situations should be taken into account, such as governmental

resolutions, voting decisions, etc. A more general approach to choice theory

was needed.
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1.1.2 Classical choice theory

The first generalization of Samuelson’s revealed preference theory was pre-

sented by Uzawa [126]. In his seminal paper he proposed a definition of

choice function freed from any economical interpretation. In fact, he con-

sidered the choice space as a finite space of alternatives, regardless of the

real nature of the alternatives, settling the foundations of what will be later

called choice theory. We want to stress the fact that in this work the uni-

verse set X will be always considered as finite. Even in the literature, very

little interest has been paid to the case of an infinite universe set X .

Definition 1.1 Let X be a finite set of alternatives and B ⊆ P(X) a family

of non-empty subsets of X. The subsets of X contained in B are called

available sets. The function C : B → P(X) \ {∅} is called choice function.

For any S ∈ B it defines a subset C(S) ⊆ S containing the alternatives

chosen from S under the condition that C(S) 6= ∅.

Example 1.2 A typical situation that can be modelled using choice func-

tions is travel mode choice: suppose to observe an individual that has three

possible ways to go and come back from its working place:

(i) by walking (A);

(ii) by bus (B);

(iii) by car (C).

The set X = {A,B,C} is finite and contains three alternatives. The family

B may be composed, for example, by the following three sets:

(i) S1 = X: normal day;

(ii) S2 = {B,C}: rainy day;
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(iii) S3 = {A,C}: bus strike day.

The choice function C(S) indicates which are the chosen alternatives from

any set S, i.e. which travel mode has been chosen for a specific day. The

observed individual can show the following behaviour:

(i) C(S1) = {A,B}: on a normal day, he goes to work by bus and he

comes back by walking;

(ii) C(S2) = {B}: on a rainy day, he goes and comes back by bus;

(iii) C(S3) = {A}: on a day with bus strike, he goes and comes back by

walking.

Observe that the choice function C satisfies the conditions of Definition 1.1,

that the choice set C(S) is not forced to contain only one element and that

the family B does not contains all possible subsets of X.

It is convenient to anticipate here a digression about the nature of the

family B of non-empty subsets of X , even if in the literature it appeared only

in a second moment. Should the family B contain all non-empty subsets of

X or not? If it contains all subsets of X , then we are supposing that the

choice function C is known on sets that sometimes have not been observed.

On the other hand, if we assume that C is defined only for those sets

that can be directly observed, then we reduce its descriptive power. Sen

tackled the problem in Chapter 6 of [115] by choosing for his work the first

option. He argued that if a property of C needs to be tested, it will fail

or succeed only on the subsets of X that can be observed, thus there is no

reason for assuming that the property will fail on the subsets that are not

observable. Of the same opinion were also other authors, like Arrow [1, 2]

and Uzawa [126]. On the other hand, other researchers preferred to include



6 Chapter 1. Basic notions

in B only those non-empty subsets of X on which the choice function C can

be observed directly (Richter [106], Hansson [67], Suzumura [119–122]). In

the rest of this chapter we will refer to conditions H and WH according to

the following definition.

Definition 1.3 Condition H is satisfied when B contains all non-empty

subsets of X and condition WH is satisfied when B contains at least all the

pairs and triplets of alternatives contained in X.

The condition WH was proposed by Sen in [115]. Obviously, condition H

implies condition WH, but not vice versa.

Preference Relations

Choice theory is based on the notion of revealed preference, i.e. a binary

preference relation revealed from a choice function. Before presenting the

details of revealed preference relations, let us recall some basic definitions

and properties of binary relations.

Definition 1.4 Let Q : X × X → {0, 1} be a binary relation on X.

Q(x, y) = 1 expresses the fact that element x is connected to element y

by Q, while Q(x, y) = 0 indicates the lack of such connection.

Reflexive binary relations are usually used for representing preference

relations, because they fit the following interpretation: Q(x, y) = 1 means

that the first alternative x is at least as good as the second alternative y.

Obviously, a relation of this kind needs to be reflexive (any x is at least

as good as itself). From now one, preference relations will always refer to

reflexive binary relations.

From any preference relation Q two other binary relations can be gen-

erated:
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(i) strict preference: PQ(x, y) = 1 if and only if Q(x, y) = 1 and Q(y, x) =

0,

(ii) indifference: IQ(x, y) = 1 if and only if Q(x, y) = 1 and Q(y, x) = 1.

The strict preference relation PQ(x, y) takes value one when the alternative

x is strictly preferred to y, i.e. x is at least as good as y and the opposite

does not hold. The indifference relation IQ between alternatives x and y

expresses the fact that x is at least as good as y and vice versa, y is at least

as good as x.

A binary relation Q on X is:

(i) reflexive, if Q(x, x) = 1, for any x ∈ X ;

(ii) complete, if Q(x, y) = 1 or Q(y, x) = 1, for any x, y ∈ X ;

(iii) transitive, if Q(x, y) = 1 and Q(y, z) = 1 imply that Q(x, z) = 1, for

any x, y, x ∈ X ;

(iv) regular, a shorthand for the simultaneous fulfillment of completeness

(implying reflexivity) and transitivity;

(v) acyclic if, for any n ≥ 2 and x1, . . . , xn ∈ X such that PQ(x1, x2) =

1, . . . , PQ(xn−1, xn) = 1 then PQ(xn, x1) = 0.

A preference relation is called a weak order on X if it is complete and

transitive.

Definition 1.5 A preference relation Q is called quasi-transitive if the as-

sociated strict preference relation PQ is transitive.

Definition 1.6 Let Q be a binary relation on X. The transitive closure of

Q is the relation Q̂ satisfying
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(i) Q̂ is transitive;

(ii) Q ⊆ Q̂;

(iii) if there exists another transitive relation Q′ such that Q ⊆ Q′, then

Q̂ ⊆ Q′.

We can say that the transitive closure Q̂ of a relation Q is the smallest

transitive relation such that Q ⊆ Q̂. Furthermore, it has been proved that

it always exists [4]. Obviously, if Q is transitive, then it coincides with its

transitive closure.

Revealed Preference Relations

Revealed preference relations are preference relations that are constructed

from a given choice function C on X and that express the information about

choice in the form of a pairwise comparison.

Definition 1.7 ([115]) Let C be a choice function on X. For any x, y ∈
X, the relations RC , P̃C and R̄C can be defined as:

(i) revealed preference: RC(x, y) = 1 if x ∈ C(S), for some S containing

both x and y;

(ii) strong revealed preference: P̃C(x, y) = 1 if x ∈ C(S) and y /∈ C(S),

for some S containing both x and y;

(iii) base revealed preference [69]: R̄C(x, y) = 1 if x ∈ C({x, y}), provided

condition WH is satisfied;
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The intuition behind these definitions is consistent with the proposal

of revealed preference given by Samuelson [110]: they describe the relations

of preference between pairs of alternatives by observing the choice made by

the individual in those sets containing the alternatives. For the revealed

preference relation RC , alternative x is preferred to y if the first is chosen

when the second is also available. For the strong revealed preference relation

P̃C(x, y), alternative x is preferred to y if the first is chosen when the second

is available and not chosen. Finally, for the base revealed preference relation

R̄C , alternative x is preferred to y if the first is chosen from the set {x, y}.

Example 1.8 Considering the choice function contained in Example 1.2

on the universe set X={A,B,C}, we can reveal the following preference

relations, according to Definition 1.7:

RC =




1 1 1

1 1 1

0 0 1


 , P̃C =




0 0 1

0 0 1

0 0 0


 ,

while the base revealed preference relation R̄C cannot be computed, since

condition WH is not satisfied (the choice function is not defined for the set

{A,B}).

Rationalization and Normalization

A preference relation Q on X represents the pairwise preferences of an

individual on the alternatives of X . These preferences can result in an act of

choice in at least two different ways: given Q and a set S ⊆ X of alternatives

we can construct the subset GQ(S) of S containing the alternatives of S that

are the greatest w.r.t. Q (i.e. the alternatives in S that are at least as good

as all the other alternatives of S, according to Q) and the subset MQ(S)
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that contains those alternatives that are maximal in S w.r.t. Q (i.e. the

alternatives in S such that no other alternative in the set dominates them,

according to Q).

Definition 1.9 ([119]) Let Q be a preference relation on X. The set of

the greatest elements of S ∈ B with respect to Q can be constructed by using

GQ(S) = {x ∈ S | (∀y ∈ S)(Q(x, y) = 1)}, for any S ∈ B . (1.1)

Similarly, the set of maximal elements of S ∈ B with respect to Q can be

constructed by using

MQ(S) = {x ∈ S | (∀y ∈ S)(Q(x, y) ≥ Q(y, x))} , (1.2)

or, equivalently,

MQ(S) = {x ∈ S | (∀y ∈ S)(PQ(y, x) = 0)} . (1.3)

If C is a choice function on X, then it is called G-rational (resp. M-rational)

if there exists a preference relation Q on X such that C = GQ (resp. C =

MQ). In that case, C is said to be G-rationalizable (resp. M-rationalizable)

by Q and Q is called the G-rationalization (M-rationalization) of C.

Some remarks on these last definitions. First of all, for a given Q, it

always holds that GQ(S) ⊆ MQ(S), for any S ∈ B. Furthermore, if Q is a

complete relation, then MQ = GQ. Finally, given a preference relation Q

on X , it is not always ensured that Eqs. (1.1) and (1.2) lead automatically

to a choice function. In fact, Definition 1.1 of choice function requires that

C(S) 6= ∅, for any S ∈ B, while there can be preference relations Q that

do not generate a choice function through Eqs. (1.1) or (1.2). More condi-

tions need to be imposed on Q in order to generate a choice function using
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G-rationalization or M-rationalization. The first attempt was to impose

transitivity, as obvious, but later Sen [114] and Walker [129] proved that a

weaker condition, i.e. acyclicity, was enough. We will recall and generalize

those results in Section 2.2.

Obviously, rationalization and revealing preference are strongly related

operations: in fact, the former allows to deduce choices when we know the

preference preference relation, while the second converts the information

observed through choices into a comparison between pairs of alternatives.

When these two operations are reversible, we say that the choice function

is normal.

Definition 1.10 ([119]) A choice function C is called G-normal (resp. M-

normal) if it is G-rationalizable (resp. M-rationalizable) by its own revealed

preference relation RC.

Some results on the connections between G-rationality, G-normality,

M-rationality and M-normality can be found in [119]:

Proposition 1.11 ([119]) Let C be a choice function on X and RC its

revealed preference relation. The following statements hold, for any S ∈ B:

(i) if C is M-rational, then it is also G-rational;

(ii) C(S) ⊆ GRC
(S) ⊆ MRC

(S);

(iii) C is G-rational iff C is G-normal;

(iv) if C is M-normal then it is also G-rational from a complete preference

relation Q.
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Rationality conditions

The definition of normality is crucial because it entails the equivalence of the

two philosophies: the preference relation and the choice function approach.

It has been massively used for constructing a definition of rationality for

choice functions. In fact, while for preference relations it is relatively easy

to speak of rationality, by demanding for example regularity (i.e. complete-

ness and transitivity), it is less easy to define a similar property for choice

functions. Hence, the normality of a choice function combined with the

regularity of its revealed preference relation can be used as a criterion for

establishing the rationality of a choice function. For several years there have

been multiple attempts to establish conditions that are equivalent to the

normality of a choice function and the regularity of its revealed preference

relation. Many authors have proposed different definitions, conditions or

axioms that were supposed to be the ultimate definition of rationality. The

first of this conditions (Weak Axiom of Revealed Preference, a.k.a. WARP)

already appeared in the work of Samuelson [108]. Houthakker [72] modified

it by using the transitive closure R̂C of RC . However, Sen [116] proved that

the two conditions are equivalent provided condition H is satisfied. Other

rationality conditions were proposed by Sen [115] and Richter [106], called

Weak Congruence Axiom (a.k.a. WCA) and Strong Congruence Axiom

(a.k.a. SCA) respectively.

Definition 1.12 Let C be a choice function on X and let RC be its revealed

preference relation, P̃C its strong revealed preference relation and R̂C and
̂̃PC their respective transitive closures. For any x, y in S and any S ∈ B,

the choice function C can satisfy:

(i) Weak Axiom of Revealed Preference (WARP): if P̃C(x, y) = 1, then

RC(y, x) = 0;
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(ii) Strong Axiom of Revealed Preference (SARP): if ̂̃PC(x, y) = 1, then

RC(y, x) = 0;

(iii) Weak Congruence Axiom (WCA): if x ∈ S, y ∈ C(S) and RC(x, y) =

1, then x ∈ C(S);

(iv) Strong Congruence Axiom (SCA): if x ∈ S, y ∈ C(S) and R̂C(x, y) =

1, then x ∈ C(S).

The interpretation of these conditions is simple. WARP establishes

that if an individual reveals his strict preference of x over y, then he must

not reveal preference of y over x. The strong version of this axiom, SARP,

substitutes the revealed strict preference relation for its transitive closure.

The Weak Congruence Axiom (WCA) establishes that if an individual has

chosen one alternative x from a set T where y is also contained (RC(x, y) =

1), then for any other set S where both x and y are contained, if y is chosen,

then x has to be chosen too. The same reasoning applies for SCA, where

the revealed preference RC is substituted by its transitive closure R̂C .

Aside rationality conditions, Sen [115] saw the necessity of establishing

other kinds of conditions, called consistency conditions, that control the be-

haviour of the choice function w.r.t. contraction and expansion of the choice

set. Compared to previous axioms of revealed preference and congruence,

consistency conditions make no use of the preference relations revealed from

C.

Definition 1.13 Let C be a choice function on X. For any S, T in B such

that S ⊆ T and any x, y in S, the choice function C can satisfy:

(i) Condition α: if x ∈ C(T ), then x ∈ C(S);

(ii) Condition β: if x, y ∈ C(S), then x ∈ C(T ) if and only if y ∈ C(T );
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(iii) Condition γ: let M ⊆ B be a family of subsets of B and U the union

of the elements of M (i.e. U =
⋃

M∈M M). If x ∈ C(M), for all

M ∈ M, then x ∈ C(U);

(iv) Condition δ: if x, y ∈ C(S), then C(T ) 6= {x} and C(T ) 6= {y}.

The first condition is a contraction condition, while the last three are

expansion conditions. Condition α establishes that if an alternative x is

chosen from a set T and other alternatives are removed from T to obtain

a smaller set S, then x still remain chosen in S. Condition β establishes

that if alternatives x and y are both chosen in S, a proper subset of T , then

either both x and y are chosen in T or no one of them is chosen. Condition

γ establishes that if an alternative x is chosen from any set M of a family

M of subsets of X , then it should remain chosen also from their union

U =
⋃

M∈M M . Finally, condition δ establishes that if x and y are both

chosen in S, a proper subset of T , then none of them can be uniquely chosen

from T .

One of the most interesting results in choice theory is the so-called

Arrow-Sen Theorem, which states the equivalence of some of the previous

conditions (and other that will be listed later). It constitutes a milestone

in classical choice theory, because any other attempt to define rationality

after the theorem was proved needed to be compared with the definitions

contained in it.

For the sake of brevity, we report here a modified version of the original

Arrow-Sen Theorem, including also those equivalent conditions that were

not considered by Sen in [115], but have been added later by other authors.

Theorem 1.14 Let C be a choice function and RC its revealed preference.

If condition H is satisfied, then the joint regularity of RC and G-normality



1.2. Introduction to approximate reasoning 15

of C is equivalent to any of the following conditions:

(i) WCA;

(ii) SCA;

(iii) WARP;

(iv) SARP;

(v) RC = R̃C ;

(vi) Conditions α and β.

Another result contained in [115] shows that if C is G-normal, then

quasi-transitivity of the revealed preference relation R and condition δ are

equivalent.

The main drawback of Arrow-Sen Theorem is that it requires condi-

tion H to be satisfied. Other authors (Richter [106], Hansson [67] and

Suzumura [119]) tried to simulate a similar result dropping that condition.

What they obtained can be summarized with the following:

Theorem 1.15 Let C be a choice function on X, then

(i) C is G-rationalizable by a regular preference relation if and only if

condition SCA is satisfied;

(ii) Conditions WARP and WCA are equivalent.

The first point of Theorem 1.15 is also known as the Richter Theorem.

1.2 Introduction to approximate reasoning

In the following section we introduce the basic notions on fuzzy sets, fuzzy

preference relations and the fuzzy logical operators that are typically used

in the fuzzy set framework.
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1.2.1 Fuzzy sets

We are used to think of mathematics, and specially of logic, as a rigid

structure where sentences can only be true or false and where a body of

rules rigorously establishes the conditions of how truth spreads through

the sentences of the discourse. No surprise if mathematics is sometimes

called exact science. To some extent, this is true. In classical logic, an

element x belongs or does not belong to a specified set A. A sentence

can only be true or false. This bivalent logic works perfectly for those

situations were no imprecision is involved. Nevertheless, there exist other

situations where imprecision is inevitable. Daily language gives a perfect

example: expressions like “today is really hot outside”, “his friend is around

40 years old”, “I will arrive around 5” refer to some measurable attribute,

like temperature, age or hour of the day, in a way that is far from being

exact, but that still everyone can understand. For example, with “very hot”

we understand a temperature that is surely higher than 10◦C, presumably

over 20◦C and likely close to 30◦C. Although these sentences are imprecise,

we can still rule our course of actions based on them: “if it is hot, I will

go to the beach” does not mean that I will check the exact temperature

before deciding either to go to the beach or to stay at home. Then, also

logical propagation of truth can work under an imprecise setting. Less

mundane situations are likely to be affected by imprecision: there are plenty

of circumstances where experts need to take decisions in a context where the

lack of time or resources forces them to operate without exact data. Think

on a bus driver that has to stop the vehicle in time to avoid a collision

with a car riding ahead: he has no time and no way to measure exactly

the distance from his bus and the car, his relative speed with respect to

the obstacle, the friction of the pavement, the slope of the street, etc. Even
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so, he is able to operate on the breaks with the needed pressure in order

to avoid the crash, thank to an internal set of rules that he learned from

experience, in which the estimated and imprecise attributes of the problem

(distance, relative speed, friction, slope, etc.) contribute to the (imprecise

but hopefully effective) solution of the problem (pressure on the breaks).

The scientist who first formulate the idea of a vague logic was Zadeh,

who in [134] introduced the concept of fuzzy set.

Definition 1.16 Let X be a non-empty set. A fuzzy set A on X is a

function A : X → [0, 1]. For any x ∈ X, the value of A(x) is called the

degree of membership of x to A.

In analogy with the classical (or crisp) definition of set, where the member-

ship degree of an element to a set can only be 0 or 1, he proposed to use

the entire interval [0, 1], instead of just its extreme points. In this way, an

element with null membership to A is actually out of the set, if it has mem-

bership 1, it is fully in the set, while other values of A(x) ∈ ]0, 1[ represent

intermediate degrees of membership to A. The support of a fuzzy set A is

defined as supp(A) = {x ∈ X | A(x) > 0}. In Figure 1.1 is depicted an

example for the membership function of different sets: the left one is the

crisp set A = {x is a teenager}, while the right one represents the fuzzy set

B = {x is around 40 years old}. On the horizontal axis is represented the

age of a person (in years) and on the vertical axis the degree of membership

(between 0 and 1). Also the notion of subset of a set can be extended to

the fuzzy set framework: we say that B is a fuzzy subset of A if it holds

that B(x) ≤ A(x), for any x ∈ X .
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Figure 1.1: Example of a crisp and a fuzzy set

1.2.2 Fuzzy logic operators

Aside the definition of fuzzy set, the usual operators for intersection, union

and negation were needed. Zadeh’s first proposal was to use the minimum

for intersection ((A ∩ B)(x) = min(A(x), B(x)) = A(x) ∧ B(x)), the max-

imum for the union ((A ∪ B)(x) = max(A(x), B(x)) = A(x) ∨ B(x)) and

as a negation the following operator ¬A(x) = 1 − A(x). In this work we

adopt the notations a ∧ b and a ∨ b for referring, respectively, to minimum

and maximum between two elements. Soon, more operators were proposed:

triangular norms, triangular conorms and negation operators. Triangular

norms (t-norms) were originally introduced in order to generalize the trian-

gle inequality towards probabilistic metric spaces [112]. Nowadays, they are

widely used in fuzzy set theory, specially for modelling intersection of fuzzy

sets and conjunction of fuzzy statements. A standard book on triangular

norms is [78]. Aware of the existence of multiple and equally valid notations

for these families of operators, we decide to adopt in this work the notation

proposed by Georgescu in [64].
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Definition 1.17 A triangular norm (t-norm for short) is a binary opera-

tor ∗ on [0, 1] that is increasing, commutative, associative and has neutral

element 1.

The three most important t-norms are the minimum, a∗M b = a∧b, the

product, a ∗P b = a · b, and the  Lukasiewicz t-norm, a ∗L b = (a+ b− 1)∨ 0.

Given a t-norm ∗ and an automorphism φ of the unit interval, the operator

∗φ, defined by a ∗φ b = φ−1(φ(a) ∗ φ(b)), is also a t-norm and it is called the

φ-transform of ∗. A t-norm ∗ is said to have zero divisors if there exists at

least one pair of values (a, b) ∈ ]0, 1[2, such that a ∗ b = 0. The two values

a and b are called zero divisors of ∗.

Definition 1.18 A negation operator is a unary operator ¬ on [0, 1] that

is decreasing and satisfies ¬0 = 1 and ¬1 = 0. A negation operator is called

involutive if it holds that ¬¬a = a for any a ∈ [0, 1].

A t-norm is continuous if and only if all partial mappings are contin-

uous. A t-norm is called left continuous if all partial mappings are left

continuous. Obviously, any continuous t-norm is also left continuous. Left-

continuity is crucial, since it allows to define the implication as the residuum

of the conjunction. Given an implication operator, also a negation operator

can be constructed.

Definition 1.19 Let ∗ be a left-continuous t-norm. Then, for any a, b in

[0, 1] we define

(i) the (residual) implication operator associated to ∗ is the binary oper-

ator on [0, 1] defined by a →∗ b =
∨{c ∈ [0, 1] | a ∗ c ≤ b};

(ii) the biresiduum of ∗ is the binary operator on [0, 1] defined by

a ↔∗ b = (a →∗ b) ∧ (b →∗ a) ;
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(iii) the negation operator associated to ∗ is the unary operator on [0, 1]

defined by ¬∗a = a →∗ 0;

Negation operators defined in the above way are sometimes called residual

negations, natural negations or induced negation operators [76, 85, 86].

Good reviews of the literature on implication operators can be found

in [3,40,74]. The implication, biresiduum and negation operators associated

to the three t-norms ∗M, ∗P and ∗L are contained in Tables 1.1, 1.2 and

1.3.

Implication

a →M b =





1 , if a ≤ b

b , else

a →P b =





1 , if a ≤ b

b/a , else

a →L b =





1 , if a ≤ b

1 − a + b , else

Table 1.1: Implication operators associated to minimum, product and

 Lukasiewicz t-norms.

In this work we suppose that the t-norm is chosen first and then im-

plication, biresiduum and negation operators are induced by the t-norm

according to Definition 1.19. In no case we will work with one t-norm and

an implication, biresiduum or negation operator induced from another tri-

angular norm. For this reason we can avoid the notation of implication,

biresiduum and negation operators (→∗, ↔∗ and ¬∗) where the dependence
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Biresiduum

a ↔M b =





1 , if a = b

a ∧ b , else

a ↔P b = a∧b
a∨b

a ↔L b = 1− | a− b |

Table 1.2: Biresiduum operators associated to minimum, product and

 Lukasiewicz t-norms.

Negation

¬Ma =





1 , if a = 0

0 , else

¬Pa =





1 , if a = 0

0 , else

¬La = 1 − a

Table 1.3: Negations associated to minimum, product and  Lukasiewicz t-

norms.
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on the t-norm has to be made explicit, preferring the shorter notations →,

↔ and ¬.

We recall a list of properties of a t-norm ∗ and its associated operators.

Proposition 1.20 Let ∗ be a left-continuous t-norm and let → be its as-

sociated implication operator. Then the following properties hold, for any

a, b, c ∈ [0, 1]:

Property 1: a ∗ b ≤ c ⇔ a ≤ b → c;

Property 2: a ∗ (a → b) ≤ a ∧ b;

Property 3: if ∗ is continuous, then a ∗ (a → b) = a ∧ b;

Property 4: a ≤ b ⇒ a → b = 1;

Property 5: if ∗ is continuous, then a ≤ b ⇔ a → b = 1;

Property 6: b ≤ a → b;

Property 7: 1 → a = a;

Property 8: a ≤ b ⇒ a → c ≥ b → c;

Property 9: a ≤ b ⇒ c → a ≤ c → b;

Property 10: (a → b = 0) ⇒ (b = 0);

Property 11: if ∗ has no zero divisors, then a → 0 = 0;

Property 12: (a → b) ∗ (b → c) ≤ a → c.

Remark 1.21 Observe that only left-continuous t-norms guarantee the in-

equality a ∗ (a → b) ≤ b and therefore for these t-norms we can assure that

a ∗ ¬a = 0.
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A negation operator is called strong if it is strictly decreasing and in-

volutive, i.e. if ¬¬a = a holds for any a ∈ [0, 1]. The relevance of left-

continuous t-norms with strong induced negations has already been stressed

in the literature [75,76], specially when applied to mathematical models for

fuzzy preference structures [127]. In those works the importance of the ro-

tation invariant property of the t-norm w.r.t. the negation is highlighted:

a ∗ b ≤ c ⇔ b ∗ ¬c ≤ ¬a, for any a, b, c ∈ [0, 1]. The relevance of the

t-norms that satisfy the rotation invariance property is due to the fact that

the induced negation is always a strong negation.

Lemma 1.22 ([75]) Let ∗ be a left-continuous t-norm and let ¬ be a strong

negation operator. The following statements are equivalent:

(i) the t-norm ∗ is rotation invariant w.r.t. ¬, i.e. a∗b ≤ c ⇔ b∗¬c ≤ ¬a,

for any a, b, c ∈ [0, 1],

(ii) the negation operator induced by ∗ equals ¬.

Remark 1.23 For any left-continuous t-norm ∗ whose associated negation

operator ¬ is involutive (i.e. a = ¬¬a), it holds that b > a ⇔ b ∗ ¬a > 0,

for any a, b ∈ [0, 1].

Remark 1.24 For any rotation invariant t-norm ∗ it holds that b > a if

and only if b ∗ ¬a > 0, for any a, b ∈ [0, 1].

1.2.3 Fuzzy preference relations

Zadeh [134] proposed to extend the classical concept of relation between

pairs of alternatives to the framework of approximate reasoning. As for
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the case of fuzzy sets used for describing imprecise properties of the ele-

ment of an universe, also binary relations can be adapted for represent-

ing intermediate degrees of relation between alternatives. This proposal

was very successful, as testifies the vast literature on fuzzy preference rela-

tions [8, 12–16, 18, 20, 21, 44, 73, 77, 79, 99, 103, 107, 117, 118]. In particular,

properties like transitivity have been investigated in detail by researchers

who tried to reproduce classical results on preference for the fuzzy set frame-

work. It is impossible to refer here to all the works and authors that worked

on this subject, but the interested reader can enjoy this basic literature:

[22, 27, 34–36, 41–43, 51, 53, 55, 56, 100, 102, 105, 130].

A fuzzy relation Q on X is a mapping from X ×X → [0, 1] such that

for any two alternatives x, y in X , the value of Q(x, y) stands for the degree

to which x is connected to y by Q. The fuzzy relation Q can be represented

as a matrix Q = (qij)i,j∈{1,...,N}, where qij = Q(xi, xj) and N = |X|. In

this work we are interested in fuzzy preference relations, i.e. reflexive fuzzy

relations (for all x ∈ X , Q(x, x) = 1), where the value of Q(x, y) can be

interpreted as the degree to which x is considered to be at least as good

as y. Given a fuzzy preference relation Q, its asymmetric part PQ, which

represents the degree of strict preference, and its symmetric part IQ, which

represents the degree of indifference, are computed as

PQ(x, y) = Q(x, y) ∗ ¬Q(y, x) , (1.4)

IQ(x, y) = Q(x, y) ∗Q(y, x) . (1.5)

Other possible constructions for PQ and IQ have been proposed, as shown

in [29,34,50,52,54,100–102,128], but in this work we will only consider this

one, as in [64].

Other properties of fuzzy preference relations that will be mentioned

in this work are the following: for any x, y and z in X , a fuzzy preference
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relation Q can satisfy

(i) weak completeness: if Q(x, y) ∨Q(y, x) > 0;

(ii) moderate completeness: if Q(x, y) + Q(y, x) ≥ 1;

(iii) strong completeness: if Q(x, y) ∨Q(y, x) = 1;

(iv) ∗-transitivity: if Q(x, y) ∗Q(y, z) ≤ Q(x, z);

(v) ∗-quasi-transitivity: if PQ(x, y) ∗ PQ(y, z) ≤ PQ(x, z);

(vi) ∗-regularity: a shorthand for the simultaneous fulfillment of strong

completeness and ∗-transitivity;

(vii) acyclicity [64]: if for any n ≥ 2 and x1, x2, . . . , xn ∈ X :

if





Q(x1, x2) > Q(x2, x1) ,

Q(x2, x3) > Q(x3, x2) ,

. . .

Q(xn−1, xn) > Q(xn, xn−1) ,

then Q(x1, xn) ≥ Q(xn, x1);

(viii) ∗-acyclicity [65]: if, for any n ≥ 2 and x1, x2, . . . , xn ∈ X , it holds

that

PQ(x1, x2) ∗ PQ(x2, x3) ∗ . . . ∗ PQ(xn−1, xn) ∗Q(xn, x1) ≤ Q(x1, xn) .

Obviously, strong completeness implies moderate completeness which

in turn implies weak completeness. We will also prove in Proposition 2.6

that acyclicity implies ∗-acyclicity.

Given a fuzzy preference relation Q and a left-continuous t-norm ∗, we

will denote its ∗-transitive closure by Q̂∗, i.e. Q̂∗ is the smallest ∗-transitive

fuzzy relation such that Q̂∗(x, y) ≥ Q(x, y), for any x, y ∈ X . If a fuzzy
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preference relation Q is ∗-transitive, then Q̂∗ = Q. Several results on the

∗-transitive closure of a fuzzy preference relation can be found in [29]. In

particular, the existence of such a closure is guaranteed for any fuzzy prefer-

ence relation. Furthermore, if the t-norm is the minimum and the universe

X has finite cardinality N , then the ∗M-transitive closure of a fuzzy prefer-

ence relation Q can be computed as

Q̂∗M =

N⋃

k=1

Q(k)∗M ,

where Q(k)∗
M = (Q(k−1)∗

M ◦∗M Q) and (Q◦∗M Q′)(x, z) = supy∈X(Q(x, y)∗M
Q′(y, z)).



Chapter 2

Fuzzy Choice Theory

2.1 The evolution of fuzzy choice modelling

In Section 1.1 the classical theory of individual choice has been presented,

focusing on the concepts of choice function, revealed preference relation and

rationality. All the definitions given there only allowed for crisp (or exact)

interpretations: an alternative x is either chosen or not from a set S, x

can only be preferred or not preferred to y. We then introduced in Sec-

tion 1.2 a new formalism that allows to handle situations where vagueness

is involved. We will use the adjective crisp (or exact) to refer to the classi-

cal bivalent framework, in contrast with the adjective fuzzy, which will be

used to address to the multivalent situation. According to this dichotomy,

we can distinguish between different proposals in the literature on choice

modelling:

(i) exact preference and exact choice on crisp sets of alternatives;

(ii) fuzzy preference and exact choice on crisp sets of alternatives;

(iii) fuzzy preference and fuzzy choice on crisp sets of alternatives;

27
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(iv) fuzzy preference and fuzzy choice on fuzzy sets of alternatives.

The first situation corresponds to the theory of choice already presented in

Section 1.1.

The second case represents a first attempt to introduce vagueness in the

context of choice modelling. It first appeared in a work of Orlovsky [99] and

has been followed by many other authors [8, 12–16, 18, 20, 21, 44, 73, 77, 79,

103,107,117,118]. The purpose is to construct a crisp choice function from a

fuzzy preference relation Q defined over a finite non-empty set of alternatives

X . Again, B will represent a family of non-empty subsets of X . The method

proposed by Orlovsky involves the use of a score function associated to a

fuzzy preference relation Q, i.e. a function that to any alternative in a set

S ∈ B assigns a score UQ according to the information contained in Q:

UQ : X × B → R

(x, S) 7→ UQ(x, S) .

The choice function CQ(S) is then constructed from the score function

UQ by choosing those alternatives in S that have the best score:

CQ(S) = {x ∈ S | UQ(x, S) <UQ
UQ(y, S), ∀y ∈ S} .

We say that x has better or equal score than y (x <UQ
y) if the score of

x is better that the score of y (we don’t use ≥ because there are score

functions for which higher scores correspond to worse alternatives). The

choice function CQ is then called preference-based choice function. Different

score functions have been proposed by Orlovsky [99] and Barret et al. [14].

Another way of defining a choice function from a given fuzzy preference

relation Q is inspired by the construction of G-rational choice functions in

the classical case:

GQ(S) = {x ∈ S | Q(x, y) ≥ Q(y, x), ∀y ∈ S} .
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It is exactly the same equation used in Definition 1.9, but this time a fuzzy

preference relation is used instead of a crisp one. This definition suffers from

the same weakness as its crisp counterpart: there could be cases in which

the generated function GQ is not a choice function, since it assigns an empty

choice set to some S ∈ B (GQ(S) = ∅, for some S ∈ B). The solution, as for

the classical case, comes by imposing some conditions on Q, in particular

completeness and acyclicity. Important results on the rationality of choice

functions generated from a fuzzy preference relation are contained in [18,21].

The third case listed earlier (fuzzy preference and fuzzy choice between

exact alternatives) has been proposed first by Banerjee [10] and further cor-

rected and extended by Wang [131]. They develop a theory of choice where

both preferences and choice functions are allowed to be fuzzy. Banerjee jus-

tifies his approach by saying that: “if preferences are permitted to be fuzzy,

it seems natural to permit the choice function to be fuzzy as well. This

also tallies with experience. For instance, a decision-maker, faced with the

problem of deciding whether or not to choose an alternative x from a set of

alternatives A, may feel that he/she is inclined to the extent 0.8 (on, say,

a scale from 0 to 1) toward choosing it. Moreover, this fuzziness of choice

is, at least potentially, observable. For instance, the decision-maker in the

example will be able to tell an interviewer the degree of his/her inclinations,

or demonstrate these inclinations to an observer by the degree of eagerness

or enthusiasm which he/she displays. Hence, while there may be problems

of estimation, fuzzy choice functions are, in theory, observable”. Formally,

a fuzzy choice function in the sense of Banerjee is a function C : B → F ,

where F is a family of non-empty fuzzy subsets of X . For any S ∈ B, C(S)

is a fuzzy set with non-empty support, where C(S)(x) represents the ex-

tent to which alternative x belongs to the set of chosen alternatives from S.

The fuzzy set C(S) should always be included into the available set S, i.e.
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supp(C(S)) ⊆ S and there should always exist an element x for any S ∈ B,

such that C(S)(x) > 0. In [10] rationality conditions like WARP and SARP

and other basic definitions such as normality and fuzzy revealed preference

are adapted to the new, more general framework. The main result of this

approach to fuzzy choice theory is a theorem on the same style as Arrow-

Sen Theorem, which states equivalent conditions to the joint rationality of

the fuzzy choice function and transitivity of the revealed fuzzy preference

relation.

The most general definition of fuzzy choice function known in the lit-

erature is the one proposed by Georgescu [64]. In fact, she considered the

case where both choices and preferences are fuzzy and are moreover defined

over a family of fuzzy subsets of X . It corresponds to the fourth case listed

earlier. The family B of sets on which the choices are performed can also

contain fuzzy subsets of X . As in the crisp case, a set S in B is called

available set.

Definition 2.1 ([64]) Let X be a finite set of alternatives, B a family of

non-empty fuzzy subsets of X and F the family of non-empty fuzzy subsets

of X. The pair (X,B) is called fuzzy choice space. A fuzzy choice function in

the sense of Georgescu (a fuzzy choice function for the rest of this chapter)

is a function C : B → F that assigns to each available fuzzy set S a fuzzy

set C(S) (called chosen set) in such a way that:

(i) there is at least one alternative x ∈ X such that C(S)(x) > 0;

(ii) C(S)(x) ≤ S(x), for any x ∈ X.

The former condition establishes that for any available fuzzy set, at least one

alternative has to be chosen to some strictly positive degree. It corresponds
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to the condition of non-empty choice of the crisp case. The latter condition

states that no element can be more eligible than available and corresponds

to the crisp condition C(S) ⊆ S.

In this chapter, we will adhere to Definition 2.1 since it is the most

general one and so the results obtained for it are trivially valid for the other

cases as well, namely classical choice functions, Orlovsky choice functions

or Banerjee’s one. For this reason, we have to introduce the definitions of

revealed preference relation and G- and M- rationalization/normalization

adapted to the new framework. The following definitions involve the use of

t-norms. Recall that we assume that the t-norm is chosen first and then the

related operators are derived from it according to Definition 1.19.

Definition 2.2 ([64]) Let C be a fuzzy choice function on X and ∗ a left-

continuous t-norm. The fuzzy revealed preference relation RC associated to

C is defined for any x, y ∈ X as:

RC(x, y) =
∨

S∈B

(C(S)(x) ∗ S(y)) .

The value of RC(x, y) expresses the maximum degree to which x is chosen

in case y is also available over all the available sets S ∈ B. The associated

fuzzy strict preference relation PC and fuzzy indifference relation IC can be

computed as in Eqs. (1.4) and (1.5):

PC(x, y) = RC(x, y) ∗ ¬RC(y, x) ,

IC(x, y) = RC(x, y) ∗RC(y, x) .

Georgescu [64] also generalized the definitions of base and strong re-

vealed preference relations given in Definition 1.7 for the crisp case.
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(i) R̄C(x, y) = C({x, y})(x), where {x, y} is the crisp set containing x

and y;

(ii) P̃C(x, y) =
∨

S∈B (C(S)(x) ∗ S(y) ∗ ¬C(S)(y)).

Observe that in order to assure that R̄C is well defined, the family B
has to contain all subsets of X with exactly two elements.

Georgescu [64] proposed two ways of rationalizing a fuzzy choice func-

tion given a fuzzy preference relation Q that generalize to the fuzzy set

framework the approach based on the concept of greatest elements and the

approach based on the concept of maximal elements.

Definition 2.3 ([64]) Let ∗ be a left-continuous t-norm and Q a fuzzy pref-

erence relation on X. We define the following functions:

GQ : B → F(X)

S 7→ GQ(S)

where, for any x ∈ X and any S ∈ B,

GQ(S)(x) = S(x) ∗
∧

y∈X

(S(y) → Q(x, y)) (2.1)

and

MQ : B → F(X)

S 7→ MQ(S)

where, for any x ∈ X and any S ∈ B,

MQ(S)(x) = S(x) ∗
∧

y∈X

(S(y) → (Q(y, x) → Q(x, y))) . (2.2)
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The value of GQ(S)(x) (resp. MQ(S)(x)) represents the degree to which

alternative x satisfies the property of being the greatest (resp. maximal)

element in S w.r.t. the information contained in Q. Given a fuzzy preference

relation Q, the functions GQ and MQ are not fuzzy choice functions in

general. In fact, for some S ∈ B, it may happen that GQ(S)(x) = 0 or

MQ(S)(x) = 0, for any x ∈ X . The second condition of fuzzy choice

functions, i.e. C(S)(x) ≤ S(x), is trivially satisfied by both GQ and MQ,

for any S ∈ B and x ∈ X .

Definition 2.4 ([64]) Let ∗ be a left-continuous t-norm and C a fuzzy

choice function on X.

(i) C is called G-rational if there exists a fuzzy preference relation Q

such that C(S)(x) = GQ(S)(x), for any S ∈ B and x ∈ X. It is

called M-rational if there exists a fuzzy preference relation Q such

that C(S)(x) = MQ(S)(x), for any S ∈ B and x ∈ X. We say that

Q is the G-rationalization of C (resp. M-rationalization), if C is G-

rational (resp. M-rational) from the fuzzy preference relation Q. We

can also say that C is G-rationalizable (resp. M-rationalizable) by Q.

(ii) C is called totally G-rational if there exists a fuzzy relation Q on X

that is reflexive, ∗-transitive, weakly complete and such that C(S)(x) =

GQ(S)(x), for any S ∈ B and x ∈ X.

(iii) C is called G-normal (resp. M-normal) if it is G-rationalizable (resp.

M-rationalizable) by its own fuzzy revealed preference relation RC.

Notice that a fuzzy choice function is not always G-rationalizable, as

well as a fuzzy preference relation not always G-rationalizes a fuzzy choice

function. Clearly, a G-normal fuzzy choice function C is always G-rational,
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while the converse implication is not true in general. However, for the

minimum operator, both definitions are equivalent, as proved in [64].

Proposition 2.5 (Proposition 5.40 of [64]) Let ∗ be the minimum. For

any fuzzy choice function C on X, the following statements are equivalent:

(i) C is G-rational;

(ii) C is G-normal.

2.2 Rationalization and normalization of a

fuzzy choice function

The aim of this section is to unveil under which conditions a fuzzy preference

relation Q rationalizes a fuzzy choice function C, i.e. which conditions on Q

ensure that C is G-rational or M-rational. Among these conditions we find

properties such as reflexivity, different types of completeness and two types

of acyclicity. Special attention will be paid to the choice of the t-norm.

In fact, older results on this subject have been proved only for particular

t-norms, while we generalize them for a wider family of t-norms.

The inspiration of this section is to be found in classical choice theory,

hence it is worthwhile to compare our results with those known from the

classical theory (recalled here in Propositions 2.13 and 2.14 on page 41).

For the case of G-rational choice functions, we have been able to recover

only one implication of the original result by Sen [114], while for the case

of M-rationality, the result of Walker [129] has been fully extended.

The obtained results will be used for extending the Richter Theorem to

the fuzzy set framework. The Richter Theorem (here Theorem 1.15) is an
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important classical result establishing the equivalence between rationality

and congruence of crisp choice functions. Georgescu [64] already attempted

its extension to the fuzzy set framework, but she only proved one implication

of the original theorem, leaving the other implication as an open problem. In

this work we provide a counterexample showing that the missing implication

does not hold in general in the fuzzy set framework.

The contents of this section have already been accepted for publication

in [89].

2.2.1 On the acyclicity property of fuzzy preference

relations

Before presenting the main results of this section we prove some interesting

properties of acyclic and ∗-acyclic fuzzy preference relations.

First of all, we prove that acyclicity is a stronger condition than ∗-

acyclicity.

Proposition 2.6 Let ∗ be a left-continuous t-norm or a t-norm without

zero divisors. If the fuzzy preference relation Q is acyclic, then it is also

∗-acyclic.

Proof. Let {x1, . . . , xn} be an arbitrary subset of X .

If the inequality

Q(xi, xi+1) > Q(xi+1, xi)

is satisfied for any i ∈ {1, . . . , n− 1}, then the acyclicity of Q implies that

Q(x1, xn) ≥ Q(xn, x1). It follows immediately that Q(x1, xn) ≥ Q(xn, x1) ∗
PQ(x1, x2) ∗ . . . ∗ PQ(xn−1, xn).

On the other hand, if there exists at least one j ∈ {1, . . . , n − 1} such
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that Q(xj , xj+1) ≤ Q(xj+1, xj), then

PQ(xj , xj+1) = Q(xj , xj+1) ∗ ¬Q(xj+1, xj)

= Q(xj , xj+1) ∗ (Q(xj+1, xj) → 0)

≤ Q(xj , xj+1) ∗ (Q(xj , xj+1) → 0).

Now,

(i) If ∗ does not have zero divisors, then, due to Property 11 of implication

operators (Proposition 1.20), it holds that Q(xj , xj+1) → 0 = 0 and,

hence, PQ(xj , xj+1) = 0.

(ii) If ∗ is left continuous, by Property 2 of Proposition 1.20, then

Q(xj , xj+1) ∗ (Q(xj , xj+1) → 0) ≤ Q(xj , xj+1) ∧ 0 = 0 ,

and again PQ(xj , xj+1) = 0.

Hence, in any case PQ(xj , xj+1) = 0 and Q(x1, xn) ≥ Q(xn, x1)∗PQ(x1, x2)∗
. . . ∗ PQ(xn−1, xn) is trivially satisfied. �

The converse implication does not hold in general, regardless of the

t-norm considered.

Propositions 2.7 and 2.9 shown next will play a key role in the proof of

Theorems 2.15 and 2.19, the main results of this section.

Proposition 2.7 If a fuzzy preference relation Q on X satisfies at least

one of the following sets of hypotheses:

Hypo. 1 Q is weakly complete and ∗-acyclic, with ∗ a t-norm without zero

divisors;

Hypo. 2 Q is moderately complete and ∗-acyclic with ∗ any t-norm,
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then ∨

x∈X

∧

y∈X

Q(x, y) > 0 . (2.3)

Proof. Since the proofs for both sets of hypotheses are similar, we merged

them into a single proof. Those steps in the proof that differ for the two sets

of hypotheses will be treated separately and labelled Hypo. 1 and Hypo. 2.

Suppose, by absurdum, that
∨

x∈X

∧
y∈X Q(x, y) = 0, then for any x ∈ X ,

it holds that
∧

y∈X Q(x, y) = 0. This means that for any x ∈ X , there

exists at least one x1 ∈ X such that Q(x, x1) = 0. Since Q is reflexive, it

holds that x1 6= x. Consider such an element x1 ∈ X . By the preceding

reasoning, there exists x2 6= x1 ∈ X such that Q(x1, x2) = 0. Since Q is at

least weakly complete, it holds that Q(x2, x1) > 0. Thus,

Q(x1, x2) = 0 , (2.4)

Q(x2, x1) > 0 . (2.5)

Similarly, there exists an element x3 6= x2 such that Q(x2, x3) = 0 and

Q(x3, x2) > 0. Thus,

Q(x2, x3) = 0 , (2.6)

Q(x3, x2) > 0 . (2.7)

and x3 6= x1, since otherwise Q(x1, x2) = Q(x3, x2)>0 contradicts Eq. (2.4).

By induction, suppose that we have a set {x1, . . . , xn} ⊆ X such that:

(i) Q(xi+1, xi) > Q(xi, xi+1) = 0 for i ∈ {1, . . . , n− 1};

(ii) xi 6= xj for i 6= j.

Since Q(xi, xi+1) = 0, it holds that ¬Q(xi, xi+1) = 1 and so

PQ(xi+1, xi) = Q(xi+1, xi) ∗ ¬Q(xi, xi+1) = Q(xi+1, xi) .
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Also, if Q is moderately complete, then Q(xi, xi+1) = 0 implies Q(xi+1, xi) =

1. Then we can add two conditions that follow from the hypothesis of

induction:

(iii) PQ(xi+1, xi) = Q(xi+1, xi) for i ∈ {1, . . . , n− 1},

(iv) Q(xi+1, xi) = 1, for i ∈ {1, . . . , n− 1}; but only if using Hypo. 2.

Consider xn. Since
∨

x∈X

∧
y∈X Q(x, y) = 0, there exists an element xn+1 6=

xn such that Q(xn, xn+1) = 0 and Q(xn+1, xn) > 0. Thus

Q(xn, xn+1) = 0 , (2.8)

Q(xn+1, xn) > 0 . (2.9)

The element xn+1 cannot be equal to xn−1, otherwise Eq. (2.9) contradicts

point (i) of the induction. Moreover, also xn+1 6= xj for j ≤ n−2. To prove

this, observe that due to ∗-acyclicity, for any j ≤ n− 2,

PQ(xn, xn−1) ∗ PQ(xn−1, xn−2) ∗ · · · ∗ PQ(xj+1, xj) ∗Q(xj , xn) ≤ Q(xn, xj) ,

or, equivalently,

Q(xn, xn−1) ∗Q(xn−1, xn−2) ∗ · · · ∗Q(xj+1, xj) ∗Q(xj , xn) ≤ Q(xn, xj) .

Now, if we suppose that xn+1 = xj , then we have

0 = Q(xn, xn+1) = Q(xn, xj) ≥
Q(xn, xn−1) ∗Q(xn−1, xn−2) ∗ · · · ∗Q(xj+1, xj) ∗Q(xj , xn) ,

but this will lead to a contradiction.

Hypo. 1 The contradiction follows from the fact that ∗ has no zero divisors

and according to what stated in (i), all the elements in the right-hand

side of the inequality are strictly positive.
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Hypo. 2 According to what stated in (iv), the above inequality becomes

Q(xj , xn) ≤ Q(xn, xj) .

However, if xn+1 = xj , this contradicts Eqs. (2.8) and (2.9).

Hence, we have shown that xn+1 6= xi, for any i ∈ {1, 2, . . . , n}, and this

holds for any n. Since X is finite, this leads to a contradiction. �

In the previous proposition, both sets of hypotheses act as sufficient

conditions. The first set contains the weakest completeness condition; its

drawback is that a restriction on the t-norm has to be imposed. On the

other hand, the second set of hypotheses does not contain restriction on the

t-norm, forcing the completeness condition to be strengthened. As a direct

consequence of Propositions 2.6 and 2.7, a new sufficient condition can be

obtained.

Corollary 2.8 If a fuzzy preference relation Q on a finite set X is weakly

complete and acyclic, then Eq. (2.3) holds.

The second set of results in this section is based on another property,

similar to Eq. (2.3), presented in the following proposition. It will be essen-

tial in the proof of Theorem 2.19 of Subsection 2.2.2.

Proposition 2.9 Let ∗ be a left-continuous t-norm. If a fuzzy preference

relation Q on X is ∗-acyclic, then

∨

x∈X

∧

y∈X

(Q(y, x) → Q(x, y)) > 0 . (2.10)

Proof. The proof of this proposition follows the same steps as the

proof of Proposition 2.7, mutatis mutandis, and is not reported here. The

interested reader can easily work it out by himself, by following the next

steps:
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1. By absurdum, suppose that Eq. (2.10) is not satisfied.

2. Consider an alternative x1 ∈ X for which Eq. (2.10) does not hold.

3. Using Properties 4 and 10 of Proposition 1.20, find another alternative

x2 6= x1 such that

(i) Q(x2, x1) → Q(x1, x2) = 0;

(ii) Q(x2, x1) > Q(x1, x2) = 0.

4. Repeat step 3 for alternative x2, in order to find a new alternative

x3 6= x2 6= x1 6= x3.

5. The basis of the induction: construct a set of alternatives {x1, . . . , xn}
contained in X such that

(i) Q(xi+1, xi) → Q(xi, xi+1) = 0, for any i ∈ {1, 2, . . . , n− 1};

(ii) Q(xi+1, xi) > Q(xi, xi+1) = 0, for any i ∈ {1, 2, . . . , n− 1};

(iii) xi 6= xj , for any i 6= j;

(iv) PQ(xi, xi+1) = Q(xi, xi+1), for any i ∈ {1, 2, . . . , n− 1}.

6. The inductive step: consider the last element xn and prove that under

the hypothesis of the induction, there exists a new alternative xn+1

such that xn+1 6= xi, for any i ∈ {1, 2, . . . , n}. (Hint: use ∗-acyclicity

of Q)

7. The absurdum: the induction leads to an infinite sequence of different

alternatives that do not satisfy Eq. (2.10). However, X is finite, hence

the contradiction. �

We conclude this subsection recalling a useful result of Wang [130] and

two properties of t-norms with zero divisors.
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Proposition 2.10 ([130]) If a fuzzy preference relation Q is acyclic on X,

then it is acyclic on any S ⊆ X.

The same result can be shown easily for ∗-acyclic relations.

Lemma 2.11 Let ∗ be a t-norm. If a fuzzy preference relation Q is ∗-

acyclic on X, then it is ∗-acyclic on any S ⊆ X.

Lemma 2.12 For any pair (a, b) of zero divisors of a t-norm ∗ (i.e. a∗ b =

0), it holds that

(i) a → 0 ≥ b and b → 0 ≥ a;

(ii) a → c ≥ b for any c ∈ [0, 1].

Proof. The first point follows from the definition of implication opera-

tor, while the second one follows from Property 9 of implication operators

(Proposition 1.20) and the previous point. �

2.2.2 Sufficient conditions for the G-rationality and

the M-rationality of a fuzzy choice function

In this subsection we present sufficient conditions on a fuzzy preference

relation Q to ensure that GQ and MQ are fuzzy choice functions. They are

inspired by the two classical results of Sen [114] and Walker [129].

Proposition 2.13 ([114]) Let Q be a crisp complete preference relation

on X. Then Q is acyclic if and only if the set of greatest elements GQ(S) =

{x ∈ S | Q(x, y) = 1, ∀y ∈ S} is not empty for any crisp subset S of X.



42 Chapter 2. Fuzzy Choice Theory

Proposition 2.14 ([129]) Let Q be a crisp acyclic preference relation on

X, then the set of maximal elements MQ(S) = {x ∈ S | PQ(y, x) = 0, ∀y ∈
S} is non empty for any crisp subset S of X.

G-rationality. Sufficient conditions to ensure that a fuzzy preference re-

lation G-rationalizes a fuzzy choice function were already presented in [64].

However, those results are proved only for the t-norm of the minimum and

did not involve any completeness condition. Moreover, we showed that they

are incorrect [91]. The following theorem is a twofold improvement: on the

one hand it uses ∗-acyclicity instead of the more demanding ∗-transitivity

and on the other hand it is proved for a general continuous t-norm ∗ instead

of only for the minimum.

Theorem 2.15 Let ∗ be a continuous t-norm. If a fuzzy preference relation

Q on X satisfies at least one of the following sets of hypotheses:

Hypo. 1 Q is weakly complete and ∗-acyclic and the t-norm ∗ has no zero

divisors;

Hypo. 2 Q is moderately complete and ∗-acyclic;

then GQ is a fuzzy choice function.

Proof. To prove that GQ is a fuzzy choice function, we need to show that:

(i) GQ(S)(x) ≤ S(x), for any S ∈ B and x ∈ X ;

(ii) there exists at least one x ∈ X such that GQ(S)(x) > 0, for any

S ∈ B.

The first point follows from the definition of G and the monotonicity of

the t-norm. The second one is less trivial. To prove it, consider a generic
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available fuzzy set S ∈ B and let N denote the cardinality of X . Recall the

expression of the function G:

GQ(S)(x) = S(x) ∗
∧

y∈X

(S(y) → Q(x, y)) .

This equation can be expanded in the following way:

GQ(S)(x) = [S(x) ∗ (S(x1) → Q(x, x1))]

∧[S(x) ∗ (S(x2) → Q(x, x2))]

∧ . . . ∧ [S(x) ∗ (S(xN) → Q(x, xN ))] .

For a better understanding of the proof, we propose a more graphical rep-

resentation of the problem. Consider the following matrix:




S(x1) ∗ (S(x1) → Q(x1, x1)) . . . S(x1) ∗ (S(xN) → Q(x1, xN ))

S(x2) ∗ (S(x1) → Q(x2, x1)) . . . S(x2) ∗ (S(xN) → Q(x2, xN ))
...

...

S(xN) ∗ (S(x1) → Q(xN , x1)) . . . S(xN) ∗ (S(xN) → Q(xN , xN ))




.

(2.11)

The value of GQ(S)(xi) is the minimum of the values taken by the ele-

ments in the i-th row of Matrix (2.11). There exists an alternative x such

that GQ(S)(x) > 0 if and only if there exists a row in which all elements

are strictly positive. To further simplify the graphical representation, we

propose the following notations:

+ if the corresponding value in the matrix is strictly positive;

? if the corresponding value in the matrix has not been identified yet;

0 if the corresponding value in the matrix is zero.
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As said before, we are looking for a row without zeros, so, as soon as an

element is detected to be zero, the corresponding row becomes irrelevant and

for simplicity will be filled with zeros. For the moment, since no assumption

has been made yet, the N ×N matrix is filled with ?.

Let us take the first step forward. Denote by Σ0 = {x ∈ X | S(x) > 0}
the support of the fuzzy set S. It is obvious that if an alternative x does

not belong to Σ0, then

S(x) ∗ (S(y) → Q(x, y)) = 0 ∗ (S(y) → Q(x, y)) = 0 ,

for any y ∈ X . Therefore, those rows in the matrix corresponding to alter-

natives in X \ Σ0 are filled with zeros. For any x ∈ Σ0 and y /∈ Σ0, it holds

that

S(x) ∗ (S(y) → Q(x, y)) = S(x) ∗ (0 → Q(x, y)) = S(x) > 0 .

These first results are graphically described in Matrix (2.12), where we have

reordered the elements of X (and the corresponding rows and columns of

the matrix) in such a way that the elements not belonging to Σ0 come first.

Such kind of reordering does not affect the correctness of the proof and will

be done several times along the proof.

X \ Σ0




Σ0







0 . . . 0 0 . . . 0
...

...
...

...

0 . . . 0 0 . . . 0

+ . . . + ? . . . ?
...

...
...

...

+ . . . + ? . . . ?




X \ Σ0 Σ0

(2.12)

We can now focus only on the sub-matrix corresponding to Σ0 × Σ0. The

proof will conclude if we find an element in Σ0 such that S(x) ∗ (S(y) →
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Q(x, y)) > 0 for any y ∈ Σ0. It follows from Lemma 2.11 that if Q is

∗-acyclic on X , so it is on any subset of X . Also properties like weak

completeness, moderate completeness and reflexivity are preserved when a

subset of X is considered, so if Q satisfies Hypo. 1 in X then it satisfies it in

any subset, in particular in Σ0. The same can be said if it satisfies Hypo. 2.

Hence, using Proposition 2.7, we know that
∨

x∈Σ0

∧

y∈Σ0

Q(x, y) > 0 .

Therefore, there exists an element x0 ∈ Σ0 such that
∧

y∈Σ0

Q(x0, y) =
∨

x∈Σ0

∧

y∈Σ0

Q(x, y) > 0 .

In other words, the observed x0 is such that Q(x0, y) > 0 for any y ∈ Σ0. Let

y0 be an alternative in Σ0 in which the minimum of
∧

y∈Σ0

(S(y) → Q(x0, y))

is reached. If

S(x0) ∗ (S(y0) → Q(x0, y0)) > 0 ,

then the proof is complete, since in that case all the elements in the row of

x0 are strictly positive and GQ(S)(x0) > 0. We distinguish two cases:

Case 1 If S(y0) ≤ Q(x0, y0), then S(y0) → Q(x0, y0) = 1 and GQ(S)(x0) =

S(x0) > 0.

Case 2 Assume S(y0) > Q(x0, y0).

Case 2.a If S(y0) ≤ S(x0), then using Properties 3 and 8 of Propo-

sition 1.20 we obtain

S(x0) ∗ (S(y0) → Q(x0, y0)) ≥ S(x0) ∗ (S(x0) → Q(x0, y0))

= S(x0) ∧Q(x0, y0) > 0 ,

and therefore GQ(S)(x0) > 0.
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Case 2.b Assume that S(y0) > S(x0). Since Q(x0, y0) > 0, using

Property 6 of implication operators (Proposition 1.20), we obtain

S(y0) → Q(x0, y0) ≥ Q(x0, y0) > 0. Thus, S(x0) ∗ (S(y0) →
Q(x0, y0)) = 0 holds only if S(x0) and S(y0) → Q(x0, y0) are

zero divisors of the t-norm.

In Cases 1 and 2.a the theorem is proved, since we have been able to exhibit

one alternative x0 such that GQ(S)(x0) > 0. It only remains to investigate

what happens in Case 2.b, i.e. when

S(y0) > S(x0) > 0; (2.13)

S(y0) > Q(x0, y0) > 0; (2.14)

and

S(x0) and S(y0) → Q(x0, y0) are zero divisors of the t-norm . (2.15)

If Hypo. 1 is assumed the proof is finished since in that case ∗ has no zero

divisors. We will then focus only on Hypo. 2.

The first row of Matrix (2.16) contains the element S(x0) ∗ (S(y0) →
Q(x0, y0)), which according to Eq. (2.15) is zero and then the entire row

can be filled with zeros.

Σ0




x0 [




0 . . . . . . 0

? . . . . . . ?
...

...

? . . . . . . ?




Σ0

(2.16)

Then we have to look for another element in Σ0 such that GQ(S) is strictly

positive in it. Let us introduce the subset Σ1 of Σ0 containing the elements

z that satisfy one of the following conditions:
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(i) S(z) ≥ S(y0) or

(ii) S(z) and S(y0) → Q(x0, y0) are not zero divisors of the t-norm.

It holds that Σ1 6= ∅, since at least alternative y0 belongs to it, but x0 /∈
Σ1. We will prove that there exists an element x in Σ1 such that the

corresponding row of Matrix (2.11) is made up of strictly positive values

(and therefore GQ(S)(x) > 0). To prove this, we focus on the rows of

Matrix (2.16) corresponding to alternatives in Σ1 and we get the sub-matrix:

Σ1







? . . . ?
...

...

? . . . ?


 .

Σ0

(2.17)

First of all, let us prove that

S(x) ∗ (S(y) → Q(x, y)) > 0

for any x ∈ Σ1 and y ∈ Σ0\Σ1. To prove this, observe that since y ∈ Σ0\Σ1,

S(y) and S(y0) → Q(x0, y0) are zero divisors of the t-norm. Then, using

Lemma 2.12 (ii), we obtain

S(y) → Q(x, y) ≥ S(y0) → Q(x0, y0) .

Using this inequality, since x ∈ Σ1, we get that

(i) either S(x) ≥ S(y0) and thus, using Property 3 of implication opera-

tors (Proposition 1.20),

S(x) ∗ (S(y) → Q(x, y)) ≥ S(y0) ∗ (S(y0) → Q(x0, y0))

= S(y0) ∧Q(x0, y0) > 0 ,
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(ii) or S(x) and S(y0) → Q(x0, y0) are not zero divisors of the t-norm and

S(x) ∗ (S(y) → Q(x, y)) ≥ S(x) ∗ (S(y0) → Q(x0, y0)) > 0 .

In any case we have proven that S(x)∗(S(y) → Q(x, y)) > 0, for any x ∈ Σ1

and y ∈ Σ0 \ Σ1. Thus Matrix (2.17) becomes:

So we can focus on the sub-matrix corresponding to Σ1 × Σ1. If all the

elements of one row of this matrix are strictly positive, the proof is complete.

The relation Q restricted to Σ1 is still reflexive, weakly (or moderately)

complete and due to Lemma 2.11, ∗-acyclic. Hence, we can reproduce the

same reasoning that was followed for the set Σ0:

1. Choose one alternative x1 in Σ1 such that

∧

y∈Σ1

Q(x1, y) > 0 .

The existence of such x1 is guaranteed by Proposition 2.7. Let y1 be

an alternative such that

S(x1) ∗ (S(y1) → Q(x1, y1)) =
∧

y∈Σ1

S(x1) ∗ (S(y) → Q(x1, y)) .

2. The only case in which S(x1) ∗ (S(y1) → Q(x1, y1)) = 0 is when the

following three conditions hold:
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(i) S(y1) > S(x1);

(ii) S(y1) > Q(x1, y1) > 0;

(iii) S(x1) and S(y1) → Q(x1, y1) are zero divisors of the t-norm.

If one of these conditions is not satisfied, then we have found a row

(the one corresponding to x1) of which all the elements are strictly

positive and the theorem is proved.

3. If all of these conditions are satisfied simultaneously, define the subset

Σ2 as the subset of Σ1 containing the elements z such that one of the

following conditions is satisfied:

(i) S(z) ≥ S(y1) or

(ii) S(z) and S(y1) → Q(x1, y1) are not zero divisors of the t-norm.

4. The set Σ2 is not empty since y1 ∈ Σ2 and for any x ∈ Σ2 and

y ∈ Σ1 \ Σ2 it holds that

S(x) ∗ (S(y) → Q(x, y)) > 0 .

5. The relation Q restricted to Σ2 is still reflexive, weakly (or moderately)

complete and, due to Lemma 2.11, ∗-acyclic.

This process eventually comes to an end either when an alternative xi in

some subset Σi of X satisfies that all the elements in its row are positive,

or when the last set of type Σn contains only one alternative and the corre-

sponding matrix is made up by one element:

S(xn) ∗ (S(xn) → Q(xn, xn)) = S(xn) ∧Q(xn, xn) = S(xn) > 0 ,

where the first equality follows from Property 3 of implication operators

(Proposition 1.20) and the second one from the reflexivity of Q. �
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Let us analyze the above theorem. First of all, consider the two sets

of conditions Hypo. 1 and Hypo. 2. It is interesting to know whether these

hypotheses can be weakened. In that sense, Example 2.16 is a double coun-

terexample. On the one hand, it shows that if we remove the condition

regarding zero divisors in Hypo. 1, the theorem no longer holds. On the

other hand, it shows that if we relax the completeness condition in Hypo. 2,

the condition is no longer sufficient either. Example 2.17 shows that the

continuity condition of Theorem 2.15 cannot be relaxed to left continu-

ity. Finally, Example 2.18 shows that the classical result on G-rationality

(acyclicity ⇔ G-rationality, here recalled in Proposition 2.13), is no longer

valid in the fuzzy setting, since G-rationality does not imply acyclicity.

Example 2.16 Consider the fuzzy preference relation Q on the set X =

{x, y, z}:

Q =




1 0.1 0

0 1 0.9

0.1 0 1


 .

The fuzzy preference relation Q is weakly complete, but not moderately com-

plete. It is also ∗L-acyclic (w.r.t. the  Lukasiewicz t-norm, which has zero

divisors), but not ∗-acyclic w.r.t. to t-norms without zero divisors. So it al-

most satisfies Hypo. 1 and Hypo. 2, but it does not satisfy any of them. To

show that the associated function GQ is not a fuzzy choice function, consider

the available set S such that S(x) = S(y) = S(z) = 1. It is immediately

clear that GQ(S)(x) = GQ(S)(y) = GQ(S)(z) = 0. This example shows that

the sufficient conditions in Theorem 2.15 cannot easily be weakened.

We also want to stress the importance of the hypothesis of continuity

of the t-norm in Theorem 2.15. It would be interesting to weaken this

condition, but the following example shows that left continuity is not enough
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to ensure that the function GQ is a fuzzy choice function.

Example 2.17 Consider the following t-norm, which is a transform of the

nilpotent minimum t-norm, and its implication operator:

a ∗ϕnM b =

{
0 , if a2 + b2 ≤ 1

a ∧ b , otherwise.

a →ϕnM b =

{
1 , if a ≤ b
√

1 − a2 ∨ b , otherwise.

This is a left-continuous t-norm that is not continuous. It is immediately

seen that the fuzzy preference relation Q on the set X = {x, y, z}:

Q =




1 0.6 0.6

0.5 1 0.6

0.5 0.6 1




is moderately complete and ∗ϕnM -acyclic. For the available fuzzy set defined

by S(x) = 0.1 and S(y) = S(z) = 0.7, the value of GQ(S) is everywhere

equal to zero. Hence, this Q does not generate a fuzzy choice function,

proving that the continuity condition in Hypo. 2 cannot be weakened to left

continuity.

The classical result of Sen on crisp rationality states that acyclicity

and G-rationality are equivalent for a complete preference relation. Theo-

rem 2.15 shows that one implication is valid in the fuzzy setting, while the

following example shows that the converse does not hold in general.

Example 2.18 Consider the following fuzzy preference relation Q on the

set X = {x, y, z}:

Q =




1 0 0.8

0.9 1 0

0.7 0.8 1



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Let the t-norm ∗M be the minimum operator and → be the associated im-

plication operator. The fuzzy preference relation Q is weakly complete, but

neither acyclic nor ∗M-acyclic. Nevertheless, it generates a fuzzy choice

function through the function GQ. To prove this, consider an arbitrary

available set S such that S(x) = a, S(y) = b and S(z) = c for some

a, b, c ∈ [0, 1]. Then

GQ(S)(x) = a ∗M (b →M 0) ∗M (c →M 0.8)

GQ(S)(y) = b ∗M (a →M 0.9) ∗M (c →M 0)

GQ(S)(z) = c ∗M (a →M 0.7) ∗M (b →M 0.8) .

It is easy to see that the only combination of real numbers a, b, c in the unit

interval such that GQ(S)(x), GQ(S)(y) and GQ(S)(z) are simultaneously

equal to zero is a = b = c = 0. Recall that the family of available sets B
contains only fuzzy sets with non-empty support, hence the set just described

is not contained in B. Then GQ(S) always takes at least one strictly pos-

itive value, provided that S ∈ B. In this way we have proved that neither

acyclicity, nor ∗-acyclicity are necessary conditions on Q to generate a fuzzy

choice function.

M-rationality. The case of M-rationality remains to be analyzed. In

classical choice theory the result of Walker [129] (here recalled in Proposi-

tion 2.14) states the conditions for a crisp preference relation in order to

be M-rational. It only needs to be acyclic and, compared to the case of G-

rationality, it does not require any kind of completeness. Another difference

is that the result of Walker is not a characterization, in the sense that only

one implication is proved (acyclicity implies M-rationality), since acyclicity

is not a necessary condition. The following theorem extends that result to

the fuzzy set framework.
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Theorem 2.19 Let ∗ be a continuous t-norm. If a fuzzy preference relation

Q on X is ∗-acyclic, then MQ is a fuzzy choice function.

Proof. The proof of this theorem has the same structure as the proof

of Theorem 2.15. It is based on Proposition 2.9 instead of Proposition 2.7,

but essentially follows the same reasoning and the same steps. For this

reason we prefer not to report it here, leaving to the interested reader the

possibility to work it out for himself. �

Since acyclicity is a stronger condition than ∗-acyclicity, the following

corollary is immediate.

Corollary 2.20 If a fuzzy preference relation Q on X is acyclic, then MQ

is a fuzzy choice function.

2.2.3 On the existence of a fuzzy version of the Richter

Theorem

In this subsection we consider the extension to the fuzzy set framework of

Richter Theorem. Its classical form is the following:

Theorem 2.21 ([106]) A (crisp) choice function is G-rationalizable by a

regular (i.e. complete and transitive) preference relation if and only if it is

congruous, i.e. it satisfies Strong Congruence Axiom (SCA).

We are interested in establishing a fuzzy version of this classical theo-

rem. The definition of ∗-congruous fuzzy choice function is given next.

Definition 2.22 ([64]) Let ∗ be a left-continuous t-norm. A fuzzy choice

function is ∗-congruous if it satisfies the Strong Fuzzy Congruence Axiom



54 Chapter 2. Fuzzy Choice Theory

(SFCA), i.e. for any S ∈ B and x, y ∈ X, it holds that

R̂∗
C(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x) , (2.18)

where R̂∗
C is the ∗-transitive closure of the fuzzy revealed preference relation

RC from C.

This axiom expresses that the degree of choice of an alternative x from a

fuzzy set S (C(S)(x)) is controlled by the degree to which it belongs to S

(i.e. S(x)), by the degree of choice of any other element y (i.e. C(S)(y))

and by the relation that exists between x and this other element y (i.e.

R̂∗
C(x, y)). Intuitively, it expresses that if x is available, y is chosen and x

is at least as good as y, then x should be chosen too.

Georgescu proved in [63] and [64] that one implication of Theorem 2.21

can be recovered in the fuzzy set framework:

Proposition 2.23 ([63]) Let ∗ be a left-continuous t-norm. If a fuzzy

choice function is G-rationalizable by a complete and ∗-transitive fuzzy pref-

erence relation, then it is ∗-congruous.

The same author left as an open problem the study of the converse

implication, in order to completely emulate the result of Richter. This

subsection is dedicated to that problem: we provide an example to prove

that the converse implication does not hold in general. Indeed, we provide

a ∗-congruous fuzzy choice function that is G-rational, but that it is not

totally G-rational.

Example 2.24 Consider the following fuzzy preference relation Q on the

set X = {x, y, z}

Q =




1 0.1 0.1

1 1 0.1

0.4 0.9 1


 .
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Let the t-norm ∗ be the minimum operator. The fuzzy relation Q is weakly

complete and reflexive. Clearly, Q is not min-transitive, since

Q(z, y) ∧Q(y, x) = 0.9 ∧ 1 = 0.9 � 0.4 = Q(z, x) .

Thus if a fuzzy choice function C is derived from it, then it will be G-

rational, but not totally rational. On the other hand, it is easy to prove that

it is acyclic. Since Q is a weakly complete, reflexive and acyclic fuzzy pref-

erence relation and ∗ is the minimum t-norm, it follows from Theorem 2.15

that GQ is a fuzzy choice function. Let us call this fuzzy choice function C

for brevity. Furthermore, due to Proposition 2.5, we know that it is not only

G-rational, but also G-normal. Then, the fuzzy revealed preference relation

RC from C is given by RC = Q. Let us verify whether the fuzzy choice func-

tion C is ∗-congruous, i.e. satisfies axiom SFCA. For doing this, we first

compute the transitive closure R̂∗
C of RC , using the construction proposed

in [29]:

R̂∗
C =

3⋃

k=1

R
(k)
C =




1 0.1 0.1

1 1 0.1

0.9 0.9 1


 .

In order for SFCA to be satisfied, it should hold for any pair of alternatives

(a, b) in X2 and any S ∈ F(X) that

R̂∗
C(a, b) ∧ C(S)(b) ∧ S(a) ≤ C(S)(a) . (2.19)

Consider first the case a = b. Then SFCA becomes, for any a ∈ X,

R̂∗
C(a, a) ∧ C(S)(a) ∧ S(a) ≤ C(S)(a) ,

which is trivially satisfied for any S ∈ F(X), since, for any a ∈ {x, y, z}, it

holds that R̂∗
C(a, a) = 1 and C(S)(a) ≤ S(a). Next, consider the case a 6= b.
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In the table below, all possible combinations are considered; the third column

represents the value of the left-hand side of Eq. (2.19), while the last column

represents the value of the right-hand side of the same equation. As long as

the value in the third column is smaller than or equal to the corresponding

value in the fourth column, then condition SFCA is satisfied. It is easily

verified that this is indeed the case:

Case
R̂∗

C(a, b) ∧ C(S)(b) ∧ S(a) C(S)(a)
a b

x y 0.1 ∧ S(x) ∧ S(y) S(x) ∧ 0.1

x z 0.1 ∧ S(x) ∧ S(z) S(x) ∧ 0.1

y x S(x) ∧ S(y) ∧ (S(z) → 0.1) S(y) ∧ (S(z) → 0.1)

y z 0.1 ∧ S(z) ∧ S(y) S(y) ∧ (S(z) → 0.1)

z x 0.1 ∧ S(x) ∧ S(z) S(z) ∧ 0.4

z y 0.1 ∧ S(y) ∧ S(z) S(z) ∧ 0.4

Thus, we have shown that there exists a fuzzy choice function C that is G-

rational (but not totally rational) and satisfies SFCA, while being obtained

from an acyclic and complete fuzzy preference relation Q.

2.3 A fuzzy version of the Arrow-Sen Theo-

rem

In this section we continue the study of rationality conditions and their

relationship for the case of fuzzy choice functions. In particular, the aim

of this section is to prove an extended version of Arrow-Sen Theorem that

holds for the fuzzy set framework. An attempt in this sense has already

been done in [64] or in [133], but the results presented there were proved

under quite strong conditions. Here we propose a set of more general results
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regarding the connections between rationality conditions of a fuzzy choice

function.

A significant property for fuzzy choice functions is G- or M-normality,

which corresponds to the possibility of constructing the fuzzy choice func-

tion starting from a fuzzy preference relation and vice versa, revealing a

fuzzy preference relation from a fuzzy choice function: when these two pro-

cesses are reversible, we can speak of a normal choice function. The advan-

tage of having such a strong connection between fuzzy choice functions and

fuzzy preference relations is that we can pass interesting properties from

one definition to the other. For example, we know that the ∗-transitivity

of the fuzzy preference relation is a good property when we speak of the

rationality of a decision maker, but what can be considered a good property

for a choice function? Several answers to the previous question have been

proposed by different authors in different disciplines, at least in the classical

case (see [1,106,108,113,119]). All of them seem to be acceptable and reli-

able, but which one is the correct one? The answer is given by the so-called

Arrow-Sen Theorem (here Theorem 1.14), which states that under suitable

hypotheses, several of those proposals are equivalent. This section tries to

extend those equivalences to the class of fuzzy choice functions. In partic-

ular it generalizes the results contained in Chapters 5 and 6 of [64]. The

main results of this section have already been accepted for publication [94].

2.3.1 Rationality conditions for fuzzy choice functions

and domain properties

We already recalled in Section 1.1 that the classical version of Arrow-Sen

Theorem was proved under the hypothesis that the family B contains all

non-empty subsets of X (condition H). Similar conditions are proposed
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in [64] for the fuzzy choice framework:

(i) Condition H1: All S ∈ B and C(S) are normal fuzzy sets, i.e. for any

S ∈ B there exists x ∈ X such that C(S)(x) = 1;

(ii) Condition H2: B contains all crisp non-empty subsets of X .

However, these conditions are very restrictive and should be weakened. In

the classical theory, Sen already noticed that condition H can be weak-

ened to condition WH [115]. So, following Sen’s intuition, we propose the

following:

(i) Condition WH1: For any S ∈ B, there exists an alternative x ∈ X

such that S(x) > 0 and C(S)(x) = S(x);

(ii) Condition WH2: B contains the crisp sets {x}, {x, y} and {x, y, z} for

any x, y, z ∈ X .

Given a left-continuous t-norm ∗, the degree of inclusion between two

fuzzy sets is defined as follows (see [64]), for any S, T ∈ F(X):

I(S, T ) =
∧

x∈X

(S(x) → T (x)) .

The degree of inclusion is ∗-transitive, i.e. for any S, T, U in B it holds that:

I(S, T ) ∗ I(T, U) ≤ I(S, U) .

Definition 2.25 Let C : B → F(X) be a fuzzy choice function on B. It

can satisfy the following conditions, for any S, T ∈ B and any x, y ∈ X:

(i) Weak Fuzzy Congruence Axiom (WFCA): RC(x, y)∗S(x)∗C(S)(y) ≤
C(S)(x);
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(ii) Strong Fuzzy Congruence Axiom (SFCA): R̂∗
C(x, y)∗S(x)∗C(S)(y) ≤

C(S)(x);

(iii) Weak Axiom of Fuzzy Revealed Preference (WAFRP): P̃C(x, y) ≤
¬RC(y, x);

(iv) Strong Axiom of Fuzzy Revealed Preference (SAFRP): ̂̃P ∗
C(x, y) ≤

¬RC(y, x);

(v) Condition Fα: I(S, T ) ∗ S(x) ∗ C(T )(x) ≤ C(S)(x);

(vi) Condition Fβ: I(S, T ) ∗ C(S)(x) ∗ C(S)(y)≤C(T )(x) ↔ C(T )(y);

(vii) Condition Fδ: for any crisp sets S and T in B and x 6= y ∈ X, it

holds that:

I(S, T ) ∗ C(S)(x) ∗ C(S)(y) ≤ ¬
(
C(T )(x) ∗

∧

t6=x

(¬C(T )(t))

)
.

Let us state a direct lemma that will be helpful in the rest of this

section.

Lemma 2.26 Let ∗ be a t-norm. For any fuzzy relation R, the fuzzy re-

lation R′ defined by R′(x, y) = R(y, x) → R(x, y) is reflexive and strongly

complete.

Proof. It holds that R′(x, x) = R(x, x) → R(x, x) = 1 → 1 = 1. We now

prove that R′ is strongly complete. If R(x, y) ≥ R(y, x), then R′(x, y) =

R(y, x) → R(x, y) = 1. If R(x, y) < R(y, x), then R′(y, x) = R(x, y) →
R(y, x) = 1. Hence, R′(x, y)∨R′(y, x) = 1, i.e. R′ is strongly complete. �
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We recall some useful results from Chapter 5 of [64] about G-rationality,

M-rationality and fuzzy revealed preference relations. They have been

proved under the condition that the t-norm is continuous, while, to fit our

framework, they should stand also for left-continuous t-norms. We checked

the proofs and they can be extended to the case of left-continuous t-norms

without any modification, so we report them here without proof.

Lemma 2.27 ([64]) P̃C ⊆ RC .

Lemma 2.28 ([64]) If a fuzzy preference relation Q on X is strongly com-

plete, then GQ = MQ.

Lemma 2.29 (Lemma 5.36 of [64]) Any M-rational fuzzy choice func-

tion C is G-rational.

Remark 2.30 The proof of Lemma 2.29 is constructive. If the fuzzy choice

function C is M-rationalizable by the fuzzy preference relation Q, then C

is G-rationalizable by the fuzzy preference relation Q′(x, y) = Q(y, x) →
Q(x, y) and it holds that C(S)(x) = GQ′(S)(x) = MQ(S)(x), for any x ∈ X

and any S ∈ B.

Remark 2.31 Recall the result of Proposition 2.5: if the t-norm is the

minimum, then a fuzzy choice function C is G-rational if and only if it is

G-normal.

The following result is a generalization of Lemma 5.26 of [64], where

conditions H1 and H2 have been substituted by the more general conditions

WH1 and WH2.

Lemma 2.32 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If condition WH2 is satisfied, then it holds that:
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(i) R̄C ⊆ RC;

(ii) if also WH1 is satisfied, then R̄C and RC are reflexive and strongly

complete.

Proof. No proof is given since the one given in Lemma 5.26 of [64] is still

valid. �

2.3.2 G-rationality, M- rationality and normality

In this section we investigate the connections between the four rational-

ity conditions (G-rationality/normality and M-rationality/normality) for a

fuzzy choice function. First of all, we recall those implications that are triv-

ial or already proved: obviously, if the fuzzy choice function C is G-normal

(M-normal, resp.), then it is G-rational (M-rational, resp.). Furthermore, by

Lemma 2.29, if C is M-rational, then it is also G-rational and, by Proposi-

tion 2.5, if the t-norm is the minimum, then G-rationality and G-normality

are equivalent. Figure 2.1 depicts these connections in the case that the

t-norm is the minimum.

In this subsection we generalize the above results to left-continuous t-

norms. We also prove new implications previously unknown even in the

case of the minimum.

We start with an auxiliary result.

Lemma 2.33 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If C is G-rationalizable by a fuzzy preference relation Q and RC is

the fuzzy preference relation revealed from C, then RC(x, y) ≤ Q(x, y), for

any x, y ∈ X.
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C is M-normal

C is M-rational

C is G-normal C is G-rational

Figure 2.1: G-/M-rationality and normality. Implications known for the

minimum t-norm under conditions H1 and H2.

Proof. Recall that the fuzzy preference relation revealed from C is given

by

RC(x, y) =
∨

S∈B

(S(y) ∗ C(S)(x)) . (2.20)

Since C is G-rational, there exists a fuzzy preference relation Q such that

for any S ∈ B and x ∈ X , the fuzzy choice function C can be written as

C(S)(x) = GQ(S)(x) = S(x) ∗
∧

y∈X

(S(y) → Q(x, y)) . (2.21)

Substituting C(S)(x) in Eq. (2.20) with its expression in Eq. (2.21), we

obtain:

RC(x, y) =
∨

S∈B

(S(y) ∗ [S(x) ∗
∧

k∈X

(S(k) → Q(x, k))]) . (2.22)

Consider only the last part of Eq. (2.22) and recall Property 2 Proposi-

tion 1.20: for any S ∈ B, it holds that

S(y) ∗ S(x) ∗
∧

k∈X

(S(k) → Q(x, k)) ≤ S(x) ∗ S(y) ∗ (S(y) → Q(x, y))

≤ S(x) ∗ (S(y) ∧Q(x, y)) ≤ Q(x, y) .
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Hence, we have proved that RC(x, y) ≤ Q(x, y), for any x, y ∈ X . �

The following result proves that Proposition 2.5 can be generalized to

the case of left-continuous t-norms, provided condition WH2 is satisfied.

Lemma 2.34 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If condition WH2 is satisfied, then the following statements are

equivalent:

(i) C is G-rational;

(ii) C is G-normal.

Proof. We already know that G-normality implies G-rationality. In order

to prove that G-rationality implies G-normality, it should be shown that

the fuzzy preference relation Q that rationalizes C coincides with the fuzzy

preference relation RC revealed from C. We already know from Lemma 2.33

that RC(x, y) ≤ Q(x, y), for any x, y ∈ X . Let us prove the converse in-

equality. We start again from the definition of the fuzzy revealed preference

relation and consider in particular the crisp set {x, y} that belongs to B,

according to WH2:

RC(x, y) =
∨

S∈B

(C(S)(x) ∗ S(y))

≥ C({x, y})(x) ∗ {x, y}(y) = C({x, y})(x) ∗ 1

= {x, y}(x) ∗
∧

k∈X

({x, y}(k) → Q(x, k))

= 1 ∗ [({x, y}(x) → Q(x, x)) ∧ ({x, y}(y) → Q(x, y))]

= Q(x, x) ∧Q(x, y) = Q(x, y) .

The last equality follows from the reflexivity of Q. �



64 Chapter 2. Fuzzy Choice Theory

Lemma 2.35 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If condition WH2 is satisfied, then the following statements are

equivalent:

(i) C is M-rational;

(ii) C is M-normal.

Proof. We already know that M-normality implies M-rationality. In or-

der to prove the other implication, we know from Lemma 2.29 and Re-

mark 2.30 that if C is M-rationalizable by a fuzzy preference relation Q,

then C is also G-rationalizable by Q′(x, y) = Q(y, x) → Q(x, y). According

to Lemma 2.26, the relation Q′ is strongly complete. By Lemma 2.34 we

know that if C is G-rational, then it is also G-normal, which implies that the

fuzzy preference relation RC revealed from C is Q′, therefore it is strongly

complete. From Lemma 2.28 we know that if Q′ is strongly complete, then

GQ′ = MQ′. In short, we have that:

(i) MQ = GQ′ (Lemma 2.29);

(ii) Q′ = RC (Lemma 2.34);

(iii) GQ′ = MQ′ (Lemma 2.28);

and we can conclude that C = MRC
, i.e. C is M-normal. �

Proposition 2.36 Let ∗ be a left-continuous t-norm. If conditions WH1

and WH2 are satisfied, then any G-rational fuzzy choice function C is also

M-normal.
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Proof. It follows from Lemma 2.34 that G-rationality implies G-normality.

On the other hand, according to Lemma 2.32, the fuzzy preference re-

lation RC is strongly complete, and therefore GRC
= MRC

, as stated in

Lemma 2.28. Then the fuzzy choice function is M-rational. Lemma 2.35

ensures that it is also M-normal. �

We can finally state the main result of this subsection.

Theorem 2.37 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If conditions WH1 and WH2 are satisfied, then the following state-

ments are equivalent:

(i) C is M-rational;

(ii) C is G-rational;

(iii) C is M-normal;

(iv) C is G-normal.

Proof. The equivalence between G-rationality and G-normality and the

equivalence between M-rationality and M-normality are the results of Lem-

mas 2.34 and 2.35, respectively. Furthermore, if C is M-rational, Lemma 2.29

ensures that it is also G-rational. Finally, the converse implication follows

from Proposition 2.36. �

The results obtained in this subsection are summarized in Figure 2.2,

that, compared with Figure 2.1 shows the achieved improvement: now the

four conditions are proved to be equivalent, for all left-continuous t-norms

instead that for only the minimum and under conditions WH1 and WH2,

that are weaker than conditions H1 and H2.
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C is M-normal C is M-rational

C is G-normal C is G-rational

Figure 2.2: G-/M-rationality and normality. Implications proved for any

left-continuous t-norm under conditions WH1 and WH2.

2.3.3 Fuzzy revealed preference and fuzzy congruence

axioms

This section is dedicated to the four conditions WAFRP, SAFRP, WFCA

and SFCA. They are equivalent in the classical case, as we recalled in The-

orem 1.14. In [64] the equivalences are proved, but only for the  Lukasiewicz

t-norm and under conditions H1 and H2. Here we extend those results to a

wider family of t-norms and replacing conditions H1 and H2 by their weaker

versions WH1 and WH2. Let us start by recalling those implications that

are trivial or already proved:

Lemma 2.38 If the t-norm ∗ is left-continuous, then any fuzzy choice func-

tion C satisfying SAFRP also satisfies WAFRP and any fuzzy choice func-

tion C satisfying SFCA also satisfies WFCA.

The proof follows from the definition of ∗-transitive closure.

Lemma 2.39 ([64]) Let C be a fuzzy choice function. If the t-norm ∗ is

continuous and conditions H1 and H2 are satisfied, then

(i) it holds that
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(a) if C satisfies WFCA, then it also satisfies SFCA;

(b) if RC is ∗-regular and C is G-normal, then C satisfies WFCA.

(ii) If the t-norm is the minimum, then WFCA implies that RC is ∗-regular

and C is G-normal.

(iii) If the t-norm is the  Lukasiewicz t-norm, then the following statements

are equivalent:

(a) C satisfies WFCA;

(b) C satisfies WAFRP;

(c) C satisfies SAFRP.

Proof. (i) (a) See Proposition 6.1 in [64].

(i) (b) and (ii) See Proposition 6.7 (2) in [64].

(iii) See Theorem 6.7 (4) in [64]. �

Remark 2.40 We know that both implications in (i) hold also for the case

of left-continuous t-norms. Furthermore, the implication in (i) (a) holds if

we relax conditions H1 and H2 and just impose conditions WH1 and WH2.

We do not report the proofs of these generalized results since the ones given

in [64] still hold without changes.

The implication in (ii) of Lemma 2.39 does not hold if we replace con-

dition H1 by condition WH1 as the following counterexample shows.

Example 2.41 Let ∗ be the minimum t-norm and consider the set X =

{x, y, z}, B = 2X \ {∅} ∪ S, where S is a fuzzy set with membership degrees

given in the following table. Let C be the fuzzy choice function defined as

follows:
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S {x} {y} {z} {x, y} {x, z} {y, z} X

T (x) 0.9 1 0 0 1 1 0 1

C(T )(x) 0.8 1 0 0 1 1 0 1

T (y) 0.5 0 1 0 1 0 1 1

C(T )(y) 0.5 0 1 0 0.5 0 1 0.5

T (z) 0.5 0 0 1 0 1 1 1

C(T )(z) 0.5 0 0 1 0 0.5 0.5 0.5

The fuzzy revealed preference relation RC is given by

RC x y z

x 1 1 1

y 0.5 1 1

z 0.5 0.5 1

Then C satisfies conditions WH1, WH2 and WFCA, but it does not satisfy

H1 and it is not G-normal:

GRC
(S)(x) = S(x) ∧ ((S(y) → RC(x, y)) ∧ (S(z) → RC(x, z)))

= 0.9 ∧ 1 ∧ 1 = 0.9 ,

but C(S)(x) = 0.8.

This example shows that the implication proved by Georgescu and recalled

in Lemma 2.39 (ii) cannot be obtained under weaker conditions. If C(S) is

not a normal fuzzy set for all S ∈ B, WFCA is not enough to guarantee that

the fuzzy choice function C is G-normal. Therefore the connection between

G-normality and congruence axioms cannot be easily generalized.

We now present our results on the connections between the four axioms

WARFP, SAFRP, WFCA and SFCA. We can prove that conditions H1 and

H2 can be replaced by WH1 and WH2. Also we prove that the  Lukasiewicz



2.3. A fuzzy version of the Arrow-Sen Theorem 69

t-norm in case (iii) of Lemma 2.39 can be substituted by a left-continuous

t-norm that induces a strong negation operator.

Proposition 2.42 If the t-norm ∗ is left continuous, then any fuzzy choice

function C satisfying WFCA also satisfies WAFRP.

Proof. Suppose that WAFRP does not hold. Then there exist two alter-

natives x, y ∈ X such that:

P̃C(x, y) > ¬RC(y, x) . (2.23)

Recall the property of induced negation operators: a ≤ ¬b ⇔ a ∗ b = 0 and

so a > ¬b ⇔ a∗b > 0. This implies in Eq. (2.23) that P̃C(x, y)∗RC(y, x) > 0.

Using the definition of P̃C and the property a ∗ (
∨

i∈I ai) =
∨

i∈I(a ∗ ai), we

have:

0 < P̃C(x, y) ∗RC(y, x) = RC(y, x) ∗
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y))

=
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗RC(y, x)) . (2.24)

Equation (2.24) implies that there exists at least one available fuzzy set S0

in B such that

C(S0)(x) ∗ S0(y) ∗ ¬C(S0)(y) ∗RC(y, x) > 0 . (2.25)

Using the properties a ≤ ¬b ⇔ a ∗ b = 0 and a ≤ ¬¬a of induced negation

operators in Eq. (2.25), we finally have

C(S0)(x) ∗ S0(y) ∗RC(y, x) > ¬¬C(S0)(y) ≥ C(S0)(y) ,

which contradicts condition WFCA. �
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Proposition 2.43 Let ∗ be a left-continuous t-norm. If the t-norm induces

a strong negation, then any fuzzy choice function C satisfying WAFRP also

satisfies WFCA.

Proof. Suppose that WFCA does not hold. Then there exist an available

fuzzy set S0 ∈ B and x, y ∈ X such that

RC(y, x) ∗ C(S0)(x) ∗ S0(y) > C(S0)(y) . (2.26)

Since the t-norm ∗ satisfies a = ¬¬a, we know by Remark 1.23 that a > b

implies a ∗ ¬b > 0, hence Eq. (2.26) becomes

RC(y, x) ∗ C(S0)(x) ∗ S0(y) ∗ ¬C(S0)(y) > 0 . (2.27)

Consider now the following inequality:

P̃C(x, y)∗RC(y, x) =
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗RC(y, x))

≥ (C(S0)(x) ∗ S0(y) ∗ ¬C(S0)(y) ∗RC(y, x)).(2.28)

Combining Eqs. (2.27) and (2.28) we have that P̃C(x, y) ∗RC(y, x) > 0 and

then P̃C(x, y) > ¬RC(y, x), which contradicts WAFRP. �

Remark 2.44 Combining Propositions 2.42 and 2.43 we have that condi-

tions WAFRP and WFCA are equivalent, provided the t-norm is left con-

tinuous and induces a strong negation operator. The equivalence holds for

any rotation-invariant t-norm and in particular for any φ-transform of the

 Lukasiewicz t-norm.

In the following proposition, we study the connection between the con-

ditions WAFRP and SAFRP.
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Proposition 2.45 Let ∗ be a left-continuous t-norm. If conditions WH1

and WH2 are satisfied, then any fuzzy choice function C satisfying WAFRP

also satisfies SAFRP.

Proof. We will use two properties that we recall here for convenience:

(i) P̃C(x, y) ≤ RC(x, y), for any x, y ∈ X (Lemma 2.27);

(ii) ¬(a ∨ b) = ¬a ∧ ¬b.

To prove that WAFRP implies SAFRP, it suffices to show that the fuzzy

relation P̃C is ∗-transitive. Consider three alternatives x, y, z ∈ X and let

T be the crisp set {x, y, z}. Condition WH2 ensures that T belongs to B.

We want to prove that

P̃C(x, y) ∗ P̃C(y, z) ≤ P̃C(x, z) . (2.29)

Observe that

P̃C(x, y) ≤ ¬RC(y, x) = ¬(
∨

S∈B

(C(S)(y) ∗ S(x)))

=
∧

S∈B

¬(C(S)(y) ∗ S(x)) ≤ ¬(C(T )(y) ∗ T (x))

= ¬C(T )(y) , (2.30)

where the last equality follows from the fact that T is a crisp set and there-

fore T (x) = 1. Analogously, we can prove that P̃C(y, z) ≤ ¬C(T )(z). Now,

since WH1 holds and T is crisp, C(T ) is a normal fuzzy set and at least one

among C(T )(x), C(T )(y) and C(T )(z) has to be equal to one.

(i) If C(T )(y) = 1, then ¬C(T )(y) = 0 and P̃C(x, y) = 0.

(ii) Analogously, if C(T )(z) = 1, then ¬C(T )(z) = 0 and P̃C(y, z) = 0.
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In both cases it holds that, P̃C(x, y) ∗ P̃C(y, z) = 0 and Eq. (2.29) holds

trivially. Next, assume that C(T )(x) = 1. Consider the second part of

Eq. (2.29), P̃C(x, z). By definition of P̃C , we know that

P̃C(x, z) =
∨

S∈B

(C(S)(x) ∗ S(z) ∗ ¬C(S)(z))

≥ C(T )(x) ∗ T (z) ∗ ¬C(T )(z)

= C(T )(x) ∗ ¬C(T )(z) = ¬C(T )(z) .

Now consider Eq. (2.30),

P̃C(x, y) ∗ P̃C(y, z) ≤ ¬C(T )(y) ∗ ¬C(T )(z) ≤ ¬C(T )(z) ≤ P̃C(x, z) ,

and Eq. (2.29) holds. �

To conclude, let us summarize the connections proved between fuzzy

revealed preference axioms and congruence axioms.

Theorem 2.46 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If conditions WH1 and WH2 are satisfied, then

(i) C satisfies WAFRP if and only if it satisfies SAFRP.

(ii) C satisfies WFCA if and only if it satisfies SFCA.

(iii) If C satisfies WFCA, then it also satisfies WAFRP.

(iv) If the t-norm induces a strong negation operator and C satisfies WAFRP,

then it also satisfies WFCA. In this case the four conditions are equiv-

alent.

Proof. Combine Propositions 2.42, 2.43 and 2.45 with the implications

already proved in [64]. �
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Corollary 2.47 Let ∗ be a rotation-invariant t-norm and C be a fuzzy

choice function. If conditions WH1 and WH2 are satisfied, then the fol-

lowing statements are equivalent:

(i) C satisfies WFCA;

(ii) C satisfies WAFRP;

(iii) C satisfies SFCA;

(iv) C satisfies SAFRP.

The results obtained in this subsection are summarized in Figure 2.3,

where a solid line indicates that the implication holds for any left-continuous

t-norm, while a dashed line indicates that the implication holds only for left-

continuous t-norms that induce a strong negation operator.

WAFRP WFCA

SAFRP SFCA

Figure 2.3: Relationship between Axioms of fuzzy revealed preference and

Axioms of Fuzzy Congruence, under conditions WH1 and WH2.

2.3.4 Contraction/expansion conditions and rational-

ity

The Arrow-Sen Theorem also connects the axioms of revealed preference

and the axioms of congruence with expansion/contraction conditions. In
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particular, it proves that in the crisp case conditions α and β together are

equivalent to the joint normality of the choice function together with the

regularity of the revealed preference relation, which in turn is equivalent

to the congruence and revealed preferred axioms. In this subsection we

study the contraction/expansion conditions Fα and Fβ in relation with

the property of rationality of a fuzzy choice function. We first recall two

propositions proved in [64].

Proposition 2.48 ([64]) Let C be a fuzzy choice function and ∗ be a con-

tinuous t-norm. If conditions H1 and H2 are satisfied and C is G-normal,

then it satisfies condition Fα.

Proposition 2.49 ([64]) Let C be a fuzzy choice function and let ∗ be the

minimum. If conditions H1 and H2 are satisfied and C satisfies conditions

Fα and Fβ, then WFCA holds.

Remark 2.50 The two preceding results are proved imposing conditions

H1 and H2. Nevertheless we realized that these conditions can be weakened.

In particular, Proposition 2.48 still holds if they are removed, while for

Proposition 2.49 condition WH2 is sufficient. They also have been proved

assuming that the t-norm is continuous, although left continuity is sufficient.

We do not present here the proofs since the ones given in [64] are still valid.

The following result only holds if condition H1 is satisfied. Condition

WH1 is not sufficient, as we will illustrate later in Example 2.52.

Proposition 2.51 Let ∗ be a left-continuous t-norm. If condition H1 is

satisfied, then any fuzzy choice function C satisfying condition WFCA also

satisfies condition Fα.
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Proof. Suppose that Fα does not hold. Then there exist two available

fuzzy sets S, T ∈ B and an alternative x ∈ X such that:

I(S, T ) ∗ S(x) ∗ C(T )(x) > C(S)(x) . (2.31)

Equation (2.31) implies that:

(i) I(S, T ) > C(S)(x);

(ii) S(x) > C(S)(x).

Since

I(S, T ) =
∧

t∈X

(S(t) → T (t)) ≤ S(t) → T (t), for any t ∈ X ,

it follows from (i) that S(t) → T (t) > C(S)(x), for any t ∈ X . From

(ii), we can infer that 1 ≥ S(x) > C(S)(x) implies that C(S)(x) < 1. Since

condition H1 holds, there exists y ∈ X such that C(S)(y) = S(y) = 1. Using

the definition of RC , we know that RC(x, y) =
∨

M∈B

(C(M)(x)∗M(y)). Then

RC(x, y) ≥ C(M)(x) ∗M(y) for all M ∈ B. In particular,

RC(x, y) ≥ C(T )(x) ∗ T (y) .

Now consider the value of T (y):

(i) If T (y) = 1, then RC(x, y) ≥ C(T )(x) ∗ T (y) = C(T )(x) and hence

RC(x, y) ∗ C(S)(y) ∗ S(x) = RC(x, y) ∗ 1 ∗ S(x)

≥ C(T )(x) ∗ S(x)

≥ I(S, T ) ∗ C(T )(x) ∗ S(x) > C(S)(x) ,

by Eq. (2.31), but this contradicts WFCA.
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(ii) If T (y) < 1, then I(S, T ) ≤ S(y) → T (y) = 1 → T (y) = T (y) and

hence

RC(x, y) ∗ C(S)(y) ∗ S(x) = RC(x, y) ∗ 1 ∗ S(x)

≥ C(T )(x) ∗ T (y) ∗ S(x)

≥ I(S, T ) ∗ C(T )(x) ∗ S(x) > C(S)(x) ,

by Eq. (2.31), but also this contradicts WFCA. �

As previously pointed out, condition H1 is essential in Proposition 2.51.

If only condition WH1 is satisfied, the implication of Proposition 2.51 does

not hold as we illustrate next.

Example 2.52 It suffices to consider the same family B and the same fuzzy

choice function as in Example 2.41. It was proved there that C satisfies

WFCA and that condition H1 is not satisfied. Let X = {x, y, z} and S be the

non-normal fuzzy set as in Example 2.41. Since X ∈ B and it is crisp, the

membership degree of all the elements is 1 and therefore, S(t) → X(t) = 1

for all t ∈ X. Therefore,

I(S,X) =
∧

x∈X

(S(t) → X(t)) = 1 .

Now, if we consider the alternative x ∈ X and we verify condition Fα for

the fuzzy sets S and X in B, we have that

I(S,X) ∗ S(x) ∗ C(X)(x) = 1 ∗ 0.9 ∗ 1 = 0.9 > 0.8 = C(S)(x) .

Therefore, C does not satisfy condition Fα, although it satisfies WFCA.

Proposition 2.53 Let ∗ be a left-continuous t-norm. If conditions WH1

and WH2 are satisfied, then any fuzzy choice function C that is G-rational

and whose fuzzy revealed preference relation RC is ∗-transitive satisfies con-

dition Fβ.
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Proof. Recall that if WH1 and WH2 are satisfied, then, by Lemma 2.32

(ii), we have that RC is strongly complete and reflexive, while, thanks to

Lemma 2.34 we have that C is also G-normal. Since RC is also ∗-transitive,

RC is also ∗-regular. Now, since C is G-normal and RC is ∗-regular, by

Lemma 2.39 (i) (b), C satisfies WFCA. Consider arbitrary x, y ∈ X and

S, T ∈ B. If C(T )(x) = C(T )(y), then C(T )(x) ↔ C(T )(y) = 1 and there

is nothing to prove. So, suppose that they are different. Without loss of

generality, we can assume that C(T )(x) > C(T )(y). Consider the following

chain of inequalities:

(C(S)(x) ∗ C(S)(y) ∗ C(T )(x)) → C(T )(y)

= (C(S)(x) ∗ S(y) ∗
∧

k∈X

[S(k) → RC(y, k)] ∗ C(T )(x)) → C(T )(y)

≥ (S(x)∗
∧

k∈X

[S(k)→RC(x, k)]∗S(y)∗(S(x)→RC(y, x))∗C(T )(x))→C(T )(y)

≥ (S(y)∗(S(x)∧RC(y, x))∗
∧

k∈X

[S(k)→RC(x, k)]∗C(T )(x))→C(T )(y)

= S(y)→ (((S(x)∧RC(y, x))∗
∧

k∈X

[S(k)→RC(x, k)]∗C(T )(x))→C(T )(y))

≥ S(y) → ((RC(y, x) ∗ C(T )(x)) → C(T )(y)) .

(2.32)

Since WFCA is satisfied and using the properties of t-norms and implication

operators, it follows that

RC(y, x) ∗ C(T )(x) ∗ T (y) ≤ C(T )(y) ⇔ T (y)

≤ (RC(y, x) ∗ C(T )(x)) → C(T )(y) .

Returning to the previous chain of inequalites, we can write

(C(S)(x) ∗ C(S)(y) ∗ C(T )(x)) → C(T )(y)

≥ S(y) → ((RC(y, x) ∗ C(T )(x)) → C(T )(y))

≥ S(y) → T (y) ≥
∧

k∈X

(S(k) → T (k)) = I(S, T ) , (2.33)
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and therefore,

(C(S)(x) ∗ C(S)(y) ∗ C(T )(x)) → C(T )(y) ≥ I(S, T ) ,

or, equivalently,

I(S, T ) ∗C(S)(x) ∗C(S)(y) ≤ C(T )(x) → C(T )(y) = C(T )(x) ↔ C(T )(y) ,

when C(T )(x) > C(T )(y). Hence, condition Fβ holds. �

Proposition 2.54 Let the t-norm ∗ be the minimum. If condition WH2 is

satisfied, then any fuzzy choice function C satisfying WFCA also satisfies

condition Fβ.

Proof. Let us write condition Fβ, for arbitrary S, T ∈ B and x, y ∈ X :

I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ≤ C(T )(x) ↔ C(T )(y)

= [C(T )(x) → C(T )(y)] ∧ [C(T )(y) → C(T )(x)] .

If C(T )(x) = C(T )(y), then C(T )(x) ↔ C(T )(y) = 1 and Fβ is trivially

satisfied. Suppose for example that C(T )(x) > C(T )(y), then

C(T )(x) ↔ C(T )(y) = C(T )(x) → C(T )(y) .

Since WFCA is satisfied and using the properties of t-norms and implication

operators, it follows that

RC(y, x) ∧ T (y) ≤ C(T )(x) → C(T )(y) .

Since condition WH2 is satisfied, all crisp doubletons are contained in B.

Consider the value of I({x, y},M) for a generic available set M ∈ B and

two alternatives x, y ∈ X :

I({x, y},M) =
∧

z∈X

({x, y}(z) → M(z))

= [1 → M(x)] ∧ [1 → M(y)] = M(x) ∧M(y) .



2.3. A fuzzy version of the Arrow-Sen Theorem 79

By the ∗-transitivity of the degree of inclusion it follows that:

C(T )(x) → C(T )(y) ≥ RC(y, x) ∧ T (y)

≥ RC(y, x) ∧ T (y) ∧ T (x)

= RC(y, x) ∧ I({x, y}, T )

≥ I({x, y}, S) ∧ I(S, T ) ∧RC(y, x)

= I(S, T ) ∧ S(x) ∧ S(y) ∧ RC(y, x)

≥ I(S, T ) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧ S(x)

≥ I(S, T ) ∧ [S(x) ∧ C(S)(x)] ∧ [S(y) ∧ C(S)(y)]

= I(S, T ) ∧ C(S)(x) ∧ C(S)(y) .

Hence, condition Fβ holds. �

Before stating the main result of this subsection, let us prove a result

on the fuzzy revealed preference relations R̄C and RC .

Proposition 2.55 Let ∗ be a left-continuous t-norm. If conditions WH1

and WH2 are satisfied, then any fuzzy choice function C satisfying WFCA

also satisfies R̄C = RC.

Proof. Recall that, according to Lemma 2.32, R̄C(x, y) ≤ RC(x, y) for

any x, y ∈ X . Thus, it suffices to prove that R̄C(x, y) ≥ RC(x, y), for any

x, y ∈ X . Consider arbitrary alternatives x, y ∈ X and condition WFCA:

for the alternatives x, y and the crisp set {x, y}, which is contained in B by

condition WH2, we have that:

RC(x, y) ∗ C({x, y})(y) ∗ {x, y}(x) ≤ C({x, y})(x) . (2.34)

It follows from condition WH1 that either C({x, y})(x) or C({x, y})(y) is

equal to one.



80 Chapter 2. Fuzzy Choice Theory

(i) If C({x, y})(y) = 1, then Eq. (2.34) becomes RC(x, y) ≤ C({x, y})(x).

According to the definition of R̄C , we have that

RC(x, y) ≤ C({x, y})(x) = R̄C(x, y) .

(ii) If C({x, y})(x) = 1 = R̄C(x, y), then we immediately obtain that

RC(x, y) ≤ R̄C(x, y). �

Combining the propositions proved in Subsection 2.3.4, we can state

the following:

Theorem 2.56 Let C be a fuzzy choice function and ∗ be a left-continuous

t-norm. If conditions WH1 and WH2 are satisfied, then the following state-

ments hold:

(i) If C is G-rational, then condition Fα is satisfied;

(ii) If C is G-rational and RC is ∗-transitive, then condition Fβ is satis-

fied;

(iii) If C satisfies condition WFCA, then R̄C = RC ;

(iv) If also condition H1 is satisfied and C satisfies condition WFCA, then

condition Fα holds;

(v) If ∗ is the minimum and C satisfies condition WFCA, then C satisfies

condition Fβ;

(vi) If ∗ is the minimum and C satisfies conditions Fα and Fβ, then C

satisfies WFCA.

Moreover, we can exhibit two counterexamples that show that the con-

ditions on the t-norm in (v) and (vi) of Theorem 2.56 cannot be weakened.
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Example 2.57 The result proved in Proposition 2.54 (item (v) of Theo-

rem 2.56) for the minimum cannot be extended to any other t-norm. For

any t-norm different from the minimum there exist a, b ∈]0, 1[ such that

a∗ b < a∧ b. We can provide a fuzzy choice function that respects condition

WFCA, but not Fβ. Assume without loss of generality that a = a ∧ b and

consider the following example, with X = {x, y, z}:

S(x) C(S)(x) S(y) C(S)(y) S(z) C(S)(z)

{x} 1 1 0 0 0 0

{y} 0 0 1 1 0 0

{z} 0 0 0 0 1 1

{x, y} 1 1 1 a 0 0

{x, z} 1 1 0 0 1 1

{y, z} 0 0 1 a 1 1

{x, y, z} 1 1 1 a 1 1

T1 1 1 b a a ∗ b a ∗ b
T2 1 1 b a ∗ b a ∗ b a ∗ b

with fuzzy revealed preference relation RC given by

RC x y z

x 1 1 1

y a 1 a

z 1 1 1

For the sets T1 and T2 and alternatives x and y, condition Fβ does not hold:

I(T1, T2) ∗ C(T1)(x) ∗ C(T1)(y) = 1 ∗ 1 ∗ a
= a > a ∗ b = 1 ↔ (a ∗ b)
= C(T2)(x) ↔ C(T2)(y) .
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On the other hand, the fuzzy choice function C satisfies condition WFCA

(the computations are not reported here). So, we have found a case in which

condition Fβ does not hold, even if WFCA holds.

Example 2.58 We know that if the t-norm is the minimum and condi-

tions WH1 and WH2 are satisfied, then a fuzzy choice function satisfying

conditions Fα and Fβ also satisfies WFCA. We show next that a similar

result cannot be proved when the t-norm is different from the minimum. Let

a, b ∈ ]0, 1[ be such that a∗b < a∧b ≤ b. Consider the following fuzzy choice

function C:

{x} {y} {z} {x, y} {x, z} {y, z} {x, y, z}
S(x) 1 0 0 1 1 0 1

C(S)(x) 1 0 0 1 a ∗ b 0 a ∗ b
S(y) 0 1 0 1 0 1 1

C(S)(y) 0 1 0 a 0 a a

S(z) 0 0 1 0 1 1 1

C(S)(z) 0 0 1 0 1 1 1

Clearly C satisfies conditions WH1 and WH2 (in fact, it even satisfies H1

and H2), since B = 2X \ {∅}. Then, although we do not report all the

computations, conditions Fα and Fβ are satisfied by the fuzzy choice func-

tion C. Now, let us check condition WFCA. First of all, the fuzzy revealed

preference relation RC is given by:

RC x y z

x 1 1 a ∗ b
y a 1 a

z 1 1 1
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Consider now the set {x, y, z} and the alternatives x and y. Computing

RC(x, y) ∗ {x, y, z}(x) ∗C({x, y, z})(y) = 1 ∗ 1 ∗ a > a ∗ b = C({x, y, z})(x) ,

it follows that condition WFCA does not hold.

Some of the results obtained in this section are summarized in Fig-

ure 2.4, where a solid line indicates that the implication holds for any left-

continuous t-norm, while a dotted line indicates that the implication holds

only for the t-norm of the minimum. Recall that all these implications hold

under the additional conditions WH1 and WH2, while those implications

that needs the stronger condition H1 are labelled accordingly.

R̄C = RC

WFCA

RC ∗-regular

C G-normal

FβFα

WH2
H1

H1

H1

H1 H2

Figure 2.4: Relationship between contraction/expansion conditions.

2.3.5 ∗-quasi-transitivity and condition Fδ

Sen [115] has shown that in the crisp case, for a normal choice function,

condition δ is equivalent to the quasi-transitivity of RC , i.e. equivalent to

the transitivity of the associated strict preference relation PRC
. The aim of

this subsection is to investigate whether the result of Sen can be extended

to the fuzzy set framework. A first attempt can be found in [64], but there
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only the minimum is considered. We can prove that one implication holds

for any left-continuous t-norm, while the converse implication holds for any

t-norm without zero divisors.

Theorem 2.59 Let ∗ be a left-continuous t-norm. If conditions WH1 and

WH2 are satisfied, then for any G-rational fuzzy choice function C it holds

that:

(i) If C satisfies Fδ, then the fuzzy revealed preference relation RC is

∗-quasi-transitive.

(ii) If the t-norm has no zero divisors and RC is ∗-quasi-transitive, then

C satisfies Fδ.

Proof. Recall that, by Lemma 2.34, C is G-normal. We start by proving

the first part of the theorem. Consider three arbitrary alternatives x, y and

z in X . We want to prove that RC is ∗-quasi-transitive, i.e.

PC(x, y) ∗ PC(y, z) ≤ PC(x, z) = RC(x, z) ∗ ¬RC(z, x) . (2.35)

Since conditions WH1 and WH2 are satisfied, by Lemma 2.32, we know

that RC is reflexive and strongly complete. Since C is G-normal and all the

crisp triplets are contained in B, we have that:

C({x, y, z})(x) = {x, y, z}(x) ∗
∧

t∈X

({x, y, z}(t) → RC(x, t))

= 1 ∗ [(1 → RC(x, y)) ∧ (1 → RC(x, z))]

= RC(x, y) ∧RC(x, z) .

Similarly,

(i) C({x, y, z})(y) = RC(y, x) ∧ RC(y, z) and
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(ii) C({x, y, z})(z) = RC(z, x) ∧RC(z, y).

By condition WH1, we know that at least one among the aforementioned

C({x, y, z})(x), C({x, y, z})(y) and C({x, y, z})(z) has to be equal to one.

Let us consider the three cases:

(i) If C({x, y, z})(y) = 1, then RC(y, x) = RC(y, z) = 1. Hence

PC(x, y) = RC(x, y) ∗ ¬RC(y, x) = RC(x, y) ∗ ¬1 = 0 ,

and Eq. (2.35) is trivially satisfied.

(ii) If C({x, y, z})(z) = 1, then RC(z, x) = RC(z, y) = 1. Hence

PC(y, z) = RC(y, z) ∗ ¬RC(z, y) = RC(y, z) ∗ ¬1 = 0 ,

, and Eq. (2.35) is trivially satisfied.

(iii) If C({x, y, z})(x) = 1, then RC(x, y) =RC(x, z) = 1. Then Eq. (2.35)

becomes PC(x, y) ∗ PC(y, z) ≤ ¬RC(z, x), or, equivalently,

PC(x, y) ∗ PC(y, z) ∗RC(z, x) ≤ 0 . (2.36)

Since a ≤ ¬b ⇔ a ∗ b = 0, using again conditions WH1 and WH2 and

the fact that C is G-normal, we can conclude that C({x, z})(x) =

RC(x, z) = 1 and C({x, z})(z) = RC(z, x). Now, using condition Fδ

and some properties of negation operators, we have the following chain
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of inequalities

RC(z, x) = RC(x, z) ∗RC(z, x)

= C({x, z})(x) ∗ C([x, z])(z)

= I({x, z}, {x, y, z}) ∗ C({x, z})(x) ∗ C({x, z})(z)

≤ ¬
(
C({x, y, z})(x) ∗

∧

t6=x

¬C({x, y, z})(t)

)

= ¬
(∧

t6=x

¬C({x, y, z})(t)

)

= ¬(¬C({x, y, z})(y) ∧ ¬C({x, y, z})(z))

= ¬(¬(RC(y, x) ∧RC(y, z)) ∧ ¬(RC(z, x) ∧RC(z, y)))

≤ ¬(¬RC(y, x) ∧ ¬RC(z, y))

≤ ¬(¬RC(y, x) ∗ ¬RC(z, y)) .

So, it has been proved that RC(z, x) ≤ ¬(¬RC(y, x) ∗ ¬RC(z, y)).

Using this fact in Eq. (2.36), and the fact that PC(x, y) ≤ ¬RC(y, x)

and PC(y, z) ≤ ¬RC(z, y), we have:

PC(x, y) ∗ PC(y, z) ∗RC(z, x)

≤ (¬RC(y, x) ∗ ¬RC(z, y)) ∗ ¬(¬RC(y, x) ∗ ¬RC(z, y)) = 0 .

Hence we have proved that also Eq. (2.36) holds and this concludes

the first part of the proof.

Now we can prove the second part of the theorem and we need the

assumption that ∗ has no zero divisors. For such a t-norm, the induced

negation operator takes the form

¬a =

{
1 , if a = 0

0 , otherwise.
(2.37)
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Now suppose that condition Fδ does not hold for some S = {a1, . . . , an}
and T = {b1, . . . , bm}, x 6= y ∈ X , i.e.

I(S, T ) ∗ C(S)(x) ∗ C(S)(y) > ¬(C(T )(x) ∗
∧

t6=x

(¬C(T )(t))) . (2.38)

By Eq. (2.38) we have that

(i) I(S, T ) = 1, since S and T are crisp sets and I(S, T ) > 0;

(ii) x ∈ S = {a1, . . . , an}, since S(x) ≥ C(S)(x) > 0 and S is a crisp set;

(iii) y ∈ S = {a1, . . . , an}, since S(y) ≥ C(S)(y) > 0 and S is a crisp set;

(iv) x, y ∈ T , by the previous three points;

(v) RC(y, x) > 0, since RC(y, x) ≥ C(S)(y)∗S(x) ≥ C(S)(x)∗C(S)(y) >

0;

(vi) PC(x, y) = 0, since PC(x, y) = RC(x, y) ∗ ¬RC(y, x) and ¬RC(y, x) =

0;

(vii) C(T )(t) = 0, for any t 6= x, indeed

1 > ¬(C(T )(x) ∗
∧

t6=x

(¬C(T )(t)))

⇒ 0 < C(T )(x) ∗
∧

t6=x

(¬C(T )(t))

⇒ 0 <
∧

t6=x

(¬C(T )(t))

⇒ 0 < ¬C(T )(t)

⇒ 0 = C(T )(t) .
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Using the last point and the fact that C is G-normal, we can write the

following chain of equalities:

0 = C(T )(y) = T (y) ∗
∧

k∈X

(T (k) → RC(y, k))

= 1 ∗
∧

k∈T

(1 → RC(y, k))

=
∧

k∈T

RC(y, k) .

This means that there exists at least one alternative bi ∈ T such that

RC(y, bi) = 0. From the fifth point of the previous list, bi 6= x, since

RC(y, x) > 0. By Lemma 2.32, RC is reflexive and strongly complete, hence

bi 6= y and RC(bi, y) = 1. Hence, we can write:

PC(bi, y) = RC(bi, y) ∗ ¬RC(y, bi) = 1 ∗ ¬0 = 1 .

Following the same reasoning for the alternative bi as we have done for y, we

can find another bj ∈ T such that RC(bi, bj) = 0. We know from the previous

point that RC(bi, y) = 1, hence bj 6= y and bj 6= bi, because of the reflexivity

of RC . As before, we can prove that PC(bj , bi) = RC(bj , bi)∗¬RC(bi, bj) = 1.

Now we want to prove that bj 6= x: suppose bj = x and consider the ∗-quasi-

transitivity of RC :

PC(x, bi) ∗ PC(bi, y) = PC(bj, bi) ∗ PC(bi, y) = 1 ∗ 1 = 1 � PC(x, y) = 0 .

This contradicts the ∗-quasi-transitivity of RC , hence bj 6= x.

Applying induction, we can find an infinite family of different alternatives

{bi, bj , . . . , bm, . . .} ⊆ T , but this contradicts the finiteness of X . �

We now provide a counterexample that shows that the restriction to a

t-norm without zero divisors in Theorem 2.59 cannot be weakened. First

we need an auxiliary result.
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Lemma 2.60 If ∗ is a t-norm with zero divisors, then there exists a value

a ∈ ]0, 1[ such that a = ¬¬a.

Proof. Consider a zero divisor c of ∗. If c = ¬¬c, then take a = c.

Otherwise, since ∗ is a left-continuous t-norm, it holds that c ∗ ¬c = 0, and

c < ¬¬c. Now define b = ¬¬c, then b > c. It holds that b∗¬c = ¬¬c∗¬c =

0. So ¬c ≤ ¬b. On the other hand, 0 = ¬b ∗ b ≥ ¬b ∗ c and this implies

¬b ≤ ¬c. Therefore, ¬b = ¬c. Taking into account the definition of b, we

get ¬¬¬c = ¬c. Then we can take a = ¬c and thus a = ¬¬a. �

Example 2.61 We show that the second part of Theorem 2.59 does not

hold if the restriction on the t-norm is removed. Consider a t-norm ∗ with

zero divisors. Take a value a ∈ ]0, 1[ such that a = ¬¬a. Such a value exists

by Lemma 2.60. Consider the set of alternatives X = {x, y, z}, the set of

available sets B = 2X \ {∅} and the fuzzy choice function C : B → F(X)

defined as follows:

{x} {y} {z} {x, y} {x, z} {y, z} {x, y, z}
S(x) 1 0 0 1 1 0 1

C(S)(x) 1 0 0 1 1 0 1

S(y) 0 1 0 1 0 1 1

C(S)(y) 0 1 0 1 0 a a

S(z) 0 0 1 0 1 1 1

C(S)(z) 0 0 1 0 ¬a 1 ¬a
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with fuzzy revealed preference relation RC given by

RC x y z

x 1 1 1

y 1 1 a

z ¬a 1 1

PC x y z

x 0 0 a

y 0 0 0

z 0 ¬a 0

Then C is G-normal and WH1 and WH2 hold. Also the associated fuzzy

preference relation RC is ∗-quasi-transitive, but condition Fδ does not hold.

Consider the sets {x, y} and {x, y, z}. It follows that

I({x, y}, {x, y, z}) ∗ C({x, y})(x) ∗ C({x, y})(y)

= 1 ∗ 1 ∗ 1 = 1 > ¬a ∨ a = ¬(1 ∗ (¬a ∧ ¬¬a))

= ¬(C({x, y, z})(x) ∗
∧

t6=x

(¬C({x, y, z})(t))) .

Hence, Fδ does not hold.

The results obtained in this subsection are summarized in Figure 2.5,

where a solid line indicates that the implication holds for any left-continuous

t-norm, while a dashed line indicates that the implication holds only for t-

norms without zero divisors. Recall that all these implications hold under

the additional conditions WH1 and WH2 and assuming that C is G-normal.

if C G-rational

RC ∗-quasi-transitive Fδ

Figure 2.5: Relationship between ∗-quasi transitivity of RC and condition

Fδ when C is G-rational.



Chapter 3

Preference modelling under

uncertainty

The classical theory of consumer behaviour assumes either a determinis-

tic utility function or derives it from the prior assumption of a deter-

ministic preference ordering. We already recalled in Chapter 1 how this

economic theory gave way to a more general theory of individual choice

without the concept of utility, mainly thanks to the works of Arrow [1, 2],

Houthakker [72], Richter [106] and Sen [115]. However, that theory still

assumes that both choice and preference are deterministic. We then pre-

sented in Chapter 2 a new approach to choice theory where the notions

of choice and preference were allowed to be fuzzy. In the present chapter

we consider another generalization of classical choice theory which assumes

that individual choices and preferences are stochastic in nature.

After recalling the basic definitions of probabilistic choice functions

and probabilistic relations in Section 3.1, we study in Sections 3.2 and 3.3

the connections that can be proved between the stochastic and the fuzzy

formalisms of choice, focusing specially on the transitivity property. Sec-

91
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tion 3.4 concludes the chapter with an experiment set up to measure the

rationality of a group of consumers and which makes use of the theoretical

construction presented in Sections 3.2 and 3.3.

3.1 Probabilistic choice and preference

Experimental evidence suggests that the observed choices of individuals

are often stochastic in nature, in contrast with the assumptions of classical

choice theory. In response to this, a large literature has been developed, with

contributions coming from economists as well as psychologists, which deals

with decision makers with stochastic preference and/or stochastic choice

behaviour [5–7, 11, 19, 23, 25, 26, 28, 45–49, 59–62, 66, 70, 81–84, 96–98, 104].

The first proposals of Luce [81, 82] were meant to find a set of general

assumptions that would allow the development of a mathematical model

for interpreting and understanding choice behaviours in a stochastic setting.

He started with two basic assumptions of individual choice behaviour:

(i) it is probabilistic;

(ii) the probability of choosing an option from one set of alternatives is

related to the probability of choosing the same option from a larger

set of alternatives.

The first assumption sets the basis for a rich literature on stochastic choice

and preference. In this literature, given a set of alternatives {x, y}, the

individual’s choice may be described with a probability distribution that

assigns probability p(x, y) to x and probability p(y, x) = 1 − p(x, y) to y,

where p(x, y) indicates the probability that x will be chosen from {x, y}.

Obviously, 0 ≤ p(x, y) ≤ 1 and p(x, y) + p(y, x) = 1. Relations of this
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kind are usually called probabilistic relations. The same concept, extended

to sets with more than two alternatives, constitutes the key for defining a

probabilistic choice function.

3.1.1 Probabilistic relations

Probabilistic relations (also known as reciprocal or ipsodual relations) are

defined in the following way.

Definition 3.1 Given a finite set of alternatives X, a probabilistic relation

p is a mapping p : X × X → [0, 1] such that p(x, y) + p(y, x) = 1 for any

pair of alternatives x and y in X.

The interpretation of a probabilistic relation is the following:

(i) p(x, y) = 1 expresses that alternative x is totally preferred to y;

(ii) p(x, y) = 0 expresses that alternative y is totally preferred to x;

(iii) p(x, y) = 1
2

expresses that alternatives x and y are indifferent;

(iv) p(x, y) ∈ ]1
2
, 1[ expresses that alternative x is preferred to y to some

degree;

(v) p(x, y) ∈ ]0, 1
2
[ expresses that alternative y is preferred to x to some

degree;

Compared to the deterministic preference relations of classical choice

theory, probabilistic relations allow to express intermediate degrees of pref-

erence. Formally, they are similar to fuzzy preference relations defined in

Section 1.2, since both of them take values in the unit interval, but they

have a completely different interpretation. In fact, the probabilistic rela-

tion p(x, y) between two alternatives x and y carries a bipolar semantic,
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meaning that the left-half of the unit interval ([0, 1
2
[) represents preference

of y over x, the right-half of the unit interval (]1
2
, 1]) represents the prefer-

ence of x over y and the central value ({1
2
}) represents indifference. The

value of a fuzzy preference relation Q(x, y) between x and y only represents

the connection between the ordered pair (x, y), while for understanding the

complete relationship standing between the two alternatives, both Q(x, y)

and Q(y, x) need to be known.

There are several definitions of transitivity for probabilistic relations

(see among others [17,46,57,68,84,123–125]). Some of them are particular

types of g-stochastic transitivity.

Definition 3.2 Let g be a commutative increasing [1
2
, 1]2 → [1

2
, 1] mapping.

A probabilistic relation p defined on X is stochastic transitive with respect

to g (g-stochastic transitive, for short) if, for any x, y, z in X, it holds that

p(x, y) ≥ 1

2
and p(y, z) ≥ 1

2
imply p(x, z) ≥ g(p(x, y), p(y, z)) .

The most important types of g-stochastic transitivity are the following:

(i) strong stochastic transitivity, if g(a, b) = a ∨ b;

(ii) moderate stochastic transitivity, if g(a, b) = a ∧ b;

(iii) weak stochastic transitivity, if g(a, b) = 1
2
;

(iv) λ-stochastic transitivity, if g(a, b) = λ · (a∨ b) + (1 − λ) · (a∧ b), with

λ ∈ [0, 1].

Strong stochastic transitivity implies λ-transitivity, which implies moderate

stochastic transitivity, which in turn implies weak stochastic transitivity.
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Despite the fact that g-stochastic transitivity of probabilistic relations

and ∗-transitivity of fuzzy preference relations belong to different contexts,

there are several attempts in the literature to unify these two definitions (see

for example [17, 30, 123]). Both types of transitivity are particular cases of

cycle-transitivity, a concept introduced by De Schuymer et al. in [38].

Before recalling the definition of cycle-transitivity, let us fix some useful

notation. Let x, y, z be three alternatives in X and p be a probabilistic

relation defined on X . We denote

αxyz = min(p(x, y), p(y, z), p(z, x)) ,

βxyz = median(p(x, y), p(y, z), p(z, x)) ,

γxyz = max(p(x, y), p(y, z), p(z, x)) .

(3.1)

Let us remark that αxyz ≤ βxyz ≤ γxyz, αxyz = αyzx = αzxy = 1 − γyxz,

βxyz = βyzx = βzxy = 1 − βyxz and γxyz = γyzx = γzxy = 1 − αyxz. Finally,

we denote with ∆ the following subset of [0, 1]3: ∆ = {(a, b, c) ∈ [0, 1]3 |
a ≤ b ≤ c}.

Definition 3.3 ([33]) A function U : ∆ → R is called an upper bound

function if, for any α, β, γ ∈ ∆ it holds that

(i) U(0, 0, 1) ≥ 0;

(ii) U(0, 1, 1) ≥ 1;

(iii) U(α, β, γ) + U(1 − γ, 1 − β, 1 − α) ≥ 1.

To any upper bound function U we can associate another function

L : ∆ → R called lower bound function defined by

L(α, β, γ) = 1 − U(1 − γ, 1 − β, 1 − α) .
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The function L is called dual lower bound function of U . If L(α, β, γ) =

U(α, β, γ) for any (α, β, γ) in ∆, U is called a self-dual upper bound function.

Now we can define cycle-transitivity.

Definition 3.4 ([33]) Let p be a probabilistic relation defined on X. We

say that p is cycle-transitive with respect to the upper bound function U if,

for any x, y, z in X, it holds that

L(αxyz, βxyz, γxyz) ≤ αxyz + βxyz + γxyz − 1 ≤ U(αxyz , βxyz, γxyz) .

Recall that if Q is cycle-transitive with respect to U1 and U1(α, β, γ) ≤
U2(α, β, γ) for any (α, β, γ) in ∆, then Q is cycle-transitive with respect to

U2.

De Baets et al. [33] proved that, under certain conditions on g, the

g-stochastic transitivity of a probabilistic relation is a special case of cycle-

transitivity.

Proposition 3.5 ([33]) Let g : [1
2
, 1]2 → [1

2
, 1] be a commutative, increas-

ing function such that g(1
2
, x) ≤ x, for any x ∈ [1

2
, 1]. A probabilistic relation

p defined on X is g-stochastic transitive if and only if it is cycle-transitive

with respect to the upper bound function Ug defined as

Ug(α, β, γ) =





1
2

, if α ≥ 1
2
,

2 , if β < 1
2
,

β + γ − g(β, γ) , else.

Other interesting results on the properties of cycle-transitivity can be

found in [30–33, 37–39].
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3.1.2 Probabilistic choice functions

A probabilistic choice function (also called stochastic choice function) is an

extension of the concept of probabilistic relation to sets with cardinality

greater than two. It first appeared in [82] as a probabilistic version of a

classical choice function.

Definition 3.6 Let X be a finite set of alternatives and let B be the family

of all subsets of X. A probabilistic choice function p on B is a function that

for any S ∈ B specifies exactly one finitely additive probability measure over

the family of all subsets of S. Given a set S and S ⊆ T , we denote with

p(S, T ) the probability that the choice from the set of alternatives T will lie

in S.

Obviously, when the set T contains only two alternatives, i.e. T =

{x, y}, the probabilistic choice function p(x, {x, y}) coincides with the prob-

abilistic relation p(x, y), hence, for brevity, we will denote it p(x, y).

The probabilistic choice function p of a set S ⊆ T is completely deter-

mined by its values p(x, T ), in the sense that p(S, T ) =
∑

x∈S

p(x, T ).

3.1.3 Rationality conditions for probabilistic choice

functions

A large literature exists on rationality conditions for probabilistic choice

functions. The most known and intuitively most compelling of these con-

ditions is usually called regularity condition RC (RG in [28], NC in [26]),

which simply postulates that the probability of choosing S from a set of al-

ternatives T cannot increase if the set T is expanded to a larger set Z ⊃ T .

Definition 3.7 ([28]) A probabilistic choice function p on X satisfies the
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Regularity Condition (RC) if, for any S, T , Z in B such that S ⊆ T ⊆ Z,

it holds that p(S, T ) ≥ p(S, Z).

Regularity Condition can be interpreted as an adaptation to the sto-

chastic framework of Condition α proposed by Sen [115] and reported here

in Definition 1.13.

Another well-known rationality condition for probabilistic choice func-

tions has been proposed by Luce in [82] and is usually referred as Luce’s

Axiom of Choice. Formally, it is composed of two parts:

Definition 3.8 ([82]) Let p be a probabilistic choice function on X. It is

said that p satisfies Luce’s Axiom of Choice if the following conditions hold:

for any S ∈ B and x ∈ S:

Part 1 If p(x, y) 6= 0, for any y ∈ S, then

p(x,X) = p(x, S)p(S,X) . (3.2)

Part 2 If p(x, y) = 0, for some y in S, then

p(S,X) = p(S \ {x}, X \ {x}) . (3.3)

Part 2 is the least restrictive assumption: those alternatives x ∈ S that are

never chosen in pairwise comparisons with other alternatives in S can be

deleted from S without affecting the choice probabilities. Part 1 states that

the probability of selecting alternative x from the universe X is equal to

the probability of selecting x from a set S multiplied by the probability of

selecting S from X .

One consequence of Luce’s Choice Axiom is that the probabilistic choice

function p satisfies the so-called constant ratio rule: for any x, y in S, it holds
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that
p(x, S)

p(y, S)
=

p(x,X)

p(y,X)
.

This condition trivially implies that, for any S ∈ B,

p(x, y)

p(y, x)
=

p(x, S)

p(y, S)
.

Another condition for the rationality of the probabilistic choice function

has been proposed by Bandyopadhyay et al. in [5]. It is inspired by the

Weak Axiom of Revealed Preference (WARP, see Definition 1.12) of classical

choice theory.

Definition 3.9 A probabilistic choice function p on X satisfies the Weak

Axiom of Stochastic Revealed Preference (WASRP, for short) if, for any

S, T in B and any A such that A ⊆ S ∩ T , it holds that

p(A, T ) − p(A, S) ≤ p(S \ T, S) .

The intuition behind this condition is the following: at the beginning

S is the set of available alternatives and A ⊆ S. The probability that the

choice from S will lie in A is p(A, S). Then the set of available alternatives

changes from S to T and A is also contained in T . If the new choice prob-

ability p(A, T ) is greater than p(A, S), then it is reasonable to argue that

this increase occurs only because the move eliminates some alternatives that

were present in S and are no longer available in T . But then the increase

P (A, T ) − P (A, S) should not exceed the initial probability of choosing a

subset in S \T . Hence p(A, T )−p(A, S) cannot be greater than p(S \T, S).

The connection between conditions RC and WASRP has been studied

in [5–7, 28]. It is proved that WASRP necessarily implies RC, regardless
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of the domain of the probabilistic choice function. It has also been showed

that if the domain is not complete (B 6= 2X \{∅}), then there exist examples

of probabilistic choice functions that satisfy RC, but fail to satisfy WASRP.

However, the most interesting result is that, on a complete domain, WASRP

and RC are equivalent.

Finally, a definition of rationalizable probabilistic choice function is

needed for a comparison with the classical concept of G-rational choice

function.

Definition 3.10 ([28]) Let O be the set of all weak orders over X (i.e. the

set of all reflexive, complete and transitive binary relations on X). For any

non-empty subsets S and T of X, let g(S, T ) be the set of all J ∈ O, such

that J has a unique greatest element in S and this unique greatest element

in S belongs to T . A probabilistic choice function p on X is rationalizable

in terms of stochastic orderings if there exists a finitely additive probability

measure π defined over the class of all subsets of O such that, for any S ⊆ T

in B, p(S, T ) = π(g(T, S)).

It is known that a probabilistic choice function that is rationalizable in

terms of stochastic orderings necessarily satisfies RC and WASRP, though

neither WASRP nor RC necessarily implies rationalizability in terms of

stochastic orderings. In particular, Bandyopadhyay et al. [5] showed that

a probabilistic choice function that is rationalizable in terms of stochastic

orderings must satisfy WASRP and that the converse implication is not

necessarily true. Block and Marschak [19] showed that rationalizability of

a probabilistic choice function in terms of stochastic orderings implies RC

and that the converse is not necessarily true when the cardinality of X is

greater than or equal to four.
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3.2 A common framework for probabilistic

and fuzzy choice

According to Fishburn [48] there exist at least three ways of representing

choices in a mathematical way:

(i) binary preference relations;

(ii) choice functions;

(iii) probabilistic choice functions.

All of them are legitimate and prove to be appropriate in different circum-

stances. The relationships between them have been studied in the literature.

In particular, the connections between binary relations and choice functions

have been analyzed in the classical theory of choice, reported here in Sec-

tion 1.1 and the connections between binary preference relations and prob-

abilistic choice functions have been studied, among others, by Fishburn [47]

and Luce [84]. Fishburn already addressed in [48] the lack of results on

the connections between choice functions and probabilistic choice functions

and hence he proposed a set of conditions that should be satisfied by the

probabilistic choice function in order for the associated choice function to

be rational.

The same situation appears in the framework of fuzzy choice theory.

In the last years the results of classical choice theory have been extended to

the fuzzy framework, laying bare the connections between fuzzy preference

relations and fuzzy choice functions (see, amongst others, [10, 64, 88, 89, 91,

92, 131, 132]). Surprisingly, while the connection between fuzzy preference

relations and fuzzy choice functions has been studied in depth, there appears

to be no literature on the comparison between fuzzy choice functions and
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probabilistic choice functions. We recently approached this problem in [90,

93], where we proved some preliminary results.

The approach used by Fishburn in [48] was to construct a choice func-

tion from a given probabilistic choice function and then to find suitable

conditions on the latter in order to ensure that the derived choice function

is rational. One of the constructions proposed by Fishburn is the following:

Definition 3.11 ([48]) Given the probabilistic choice function p, a fuzzy

choice function Cp can be defined in the following way:

Cp(S)(x) =
p(x, S)

maxy∈S p(y, S)
. (3.4)

Remark 3.12 Observe that Eq. (3.4) can also be written using the impli-

cation operator derived from the product t-norm (a →P b = (b/a) ∧ 1),

i.e.

Cp(S)(x) =
p(x, S)

maxy∈S(p(y, S))
=
∧

y∈S

(p(y, S) →P p(x, S)) . (3.5)

Inspired by the observation in Remark 3.12, we propose a novel con-

struction of fuzzy choice functions (in the sense of Banerjee) from a given

probabilistic choice function:

Definition 3.13 ([90]) Let ∗ be a left-continuous t-norm and let p be a

probabilistic choice function on X. A fuzzy choice function Cp can be con-

structed using the following formula, for any S ∈ B and any x ∈ S:

Cp(S)(x) =
∧

y∈S

(p(y, S) → p(x, S)) . (3.6)
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Let us list some properties of the fuzzy choice function Cp derived from

p, which hold independently from the chosen t-norm:

(i) Cp is actually a fuzzy choice function, since, for any S ∈ B, there

exists at least one x in X , such that Cp(S)(x) > 0;

(ii) Cp satisfies condition H1: in fact, for any S ∈ B, there exists an

element x such that Cp(S)(x) = 1; in particular, the element x is the

one in S for which p(x, S) is the greatest;

(iii) if the choice probability is defined on B = 2X \ {∅}, then Cp is auto-

matically defined on the same family of sets, and hence condition H2

holds.

After introducing the construction of a fuzzy choice function Cp from

a given probabilistic relation p, we turn to the problem of finding suitable

conditions on p that can ensure the rationality of Cp. For this reason we turn

to the two known conditions presented in Definitions 3.8 and 3.9: Luce’s

Axiom of Choice and WASRP.

Let us start with Luce’s Axiom of Choice, in particular, its first part

expressed by Eq. (3.2): for any S ∈ B and x ∈ X , it holds that

p(x,X) = p(x, S)p(S,X) .

This implies immediately that, for any S ∈ B and x ∈ X , it holds that

p(x,X) ≥ p(x, S)p(S,X) . (3.7)

It is easy to prove that, for any S ⊆ T ⊆ Z ∈ B, Eq. (3.7) implies

p(S, Z) ≥ p(S, T )p(T, Z) . (3.8)
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We can rewrite Eq. (3.8) using the t-norm of the product ∗P:

p(S, Z) ≥ p(S, T ) ∗P p(T, Z) ,

or, equivalently, using Property 1 of implication operators (a ∗ b ≤ c ⇔ a ≤
b → c),

p(T, Z) →P p(S, Z) ≥ p(S, T ) . (3.9)

On the other hand, consider condition WASRP: for any T and Z in B
it holds

p(S, T ) − p(S, Z) ≤ p(Z \ T, Z), for any S ⊆ T ∩ Z . (3.10)

In particular, if we choose S such that S ⊆ T ⊆ Z, we can rewrite Eq. (3.10)

as

p(S, T ) − p(S, Z) ≤ p(Z \ T, Z) = 1 − p(T, Z) .

Rewriting this last equation as

p(S, T ) ≤ 1 + p(S, Z) − p(T, Z) ,

we notice that the same can be stated using the implication operator derived

from the  Lukasiewicz t-norm (a →L b = (1 − a + b) ∧ 1):

p(T, Z) →L p(S, Z) ≥ p(S, T ) . (3.11)

Now, comparing Eq. (3.9) and Eq. (3.11), a clear pattern is visible:

it seems that a rationality condition can be proposed using implication

operators in such a way that, for a given left-continuous t-norm ∗ and

associated implication operator → and for any S ⊆ T ⊆ Z in B, it holds

that

p(S, T ) ≤ p(T, Z) → p(S, Z) . (3.12)
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Equation (3.12) is hardly interpretable, so we look for an equivalent

statement with a more appealing formulation. Recall that Luce’s Axiom of

Choice is equivalent to the constant ratio rule, i.e.

p(x, S)

p(y, S)
=

p(x,X)

p(y,X)
. (3.13)

Equation (3.13) can be rewritten using the biresiduum operator of the prod-

uct t-norm (a ↔P b = a∧b
a∨b

):

p(x, S) ↔P p(y, S) = p(x,X) ↔P p(y,X) . (3.14)

From Eq. (3.14) we can derive the following more general condition, holding

for any left-continuous t-norm:

p(x, S) ↔ p(y, S) ≤ p(x,X) ↔ p(y,X) . (3.15)

In particular, since {x, y} is the smallest set in B containing both x

and y, Eq. (3.15) implies that, for any S ∈ B, it holds that

p(x, y) ↔ p(y, x) ≤ p(x, S) ↔ p(y, S) . (3.16)

The interpretation of Eq. (3.16) is quite simple: observe that the oper-

ator ↔ applied to a pair of values a and b expresses the degree to which a

and b can be considered to be equal. Obviously, if a = b, then a ↔ b = 1,

while a ↔ b = 0 if a = 0 and b = 1, or vice versa. Then, Eq. (3.16) can

be interpreted in the following way: the degree to which two alternatives x

and y are equally probable to be chosen is minimal when there are no more

alternatives that can be chosen. If more elements are added to the set of

possible choices, the probabilities of choosing x or y can only become more

similar.

We can now state two new sets of rationality conditions for a proba-

bilistic choice function based on Eq. (3.16).
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Definition 3.14 Let ∗ be a left-continuous t-norm. A probabilistic choice

function p on X satisfies the Weak Scalability Condition (WSC) if, for any

S, T in B such that S ⊆ T and x, y in S, it holds that

p(x, S) ↔ p(y, S) ≤ p(x, T ) ↔ p(y, T ) .

A probabilistic choice function p satisfies the Strong Scalability Condition

(SSC) if, for any S, T in B such that S ⊆ T and x, y in S, it holds that

p(x, S) ↔ p(y, S) = p(x, T ) ↔ p(y, T ) .

If regularity condition RC of Definition 3.7 can be interpreted as a

probabilistic version of Condition α of Sen [115], we can observe that the

scalability condition, either in its weak or in its strong version, can play the

role of Condition β of Sen in the probabilistic setting.

We propose two last rationality conditions inspired by the Weak Con-

gruence Axiom (WCA) of classical choice theory.

Definition 3.15 A probabilistic choice function p on X satisfies the Weak

Stochastic Congruence Axiom (WSCA) if for any S ∈ B and x, y ∈ S such

that p(x, S) > p(y, S), it holds that p(x, T ) ≥ p(y, T ) for any other set T

containing x and y.

It satisfies the Strong Stochastic Congruence Axiom (SSCA) if for any

S ∈ B and x, y ∈ S such that p(x, S) > p(y, S), it holds that either p(x, T ) >

p(y, T ) or p(x, T ) = p(y, T ) = 0, for any other set T containing x and y.

The interpretation of these two conditions is the following: for condi-

tion WSCA, if there is at least one set S where an alternative x is strictly

more probable to be chosen than another alternative y, then x has to be
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considered at least as good as y in all other sets that contain both alter-

natives. In other words, there cannot exist two sets S and T such that x

is strictly preferred to y in S and y is strictly preferred to x in the other

set T . Condition SSCA is stronger: it establishes that if there exists one

set S where an alternative x is strictly more probable to be chosen than

another alternative y, then x is always strictly preferred to y, for any T

that contains both x and y, unless both of them are unlikely to be chosen

(p(x, T ) = p(y, T ) = 0). In other words, it implies the same as WSCA,

i.e. that if x is strictly preferred to y in one set S, then there cannot ex-

ist another set T where y is strictly preferred to x. Furthermore, it adds

the restriction that if in one set T the two alternatives x and y happen to

be equally probable, this is due to the fact that the other alternatives in

T \ {x, y} are considered to be much better compared to x and y that they

extinguish the probability of choosing x or y.

Example 3.16 Consider the set X containing only three alternatives x, y

and z. If we know, for example, that p(x, y) = 0.7 and p(y, x) = 0.3, then

according to WSCA it can happen in X that p(x,X) = 0.2, p(y,X) = 0.2

and p(z,X) = 0.6. This means that adding alternative z to the initial set

{x, y} has decreased the probability of choosing x and y and furthermore

we have lost the strict preference of x over y. Nevertheless, x and y are

still likely to be chosen. This situation would contradict SSCA instead. In

fact, according to SSCA, if x and y have to be equally probable in T then

their probabilities have to vanish, so the only possibility would be p(x,X) =

p(y,X) = 0 and p(z,X) = 1.

Remark 3.17 It is immediate to prove that if p is a probabilistic choice

function satisfying SSCA, then it will also satisfy WSCA.
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3.2.1 On the rationality of a fuzzy choice function

constructed from a probabilistic choice function

We know that in classical choice theory Conditions α and β are equivalent

to the joint G-normality of the choice function and regularity of the revealed

preference relation, that in turn is equivalent to the Weak Congruence Ax-

iom (WCA). In Section 2.3 we studied the fuzzy version of those statements,

proving that conditions Fα and Fβ imply G-normality of a fuzzy choice func-

tion and ∗-regularity of the fuzzy revealed preference relation RC , provided

the t-norm ∗ is the minimum (Theorem 2.56 (vi) and Lemma 2.39 (ii)). We

also proved that condition WFCA implies the ∗-transitivity of the fuzzy

revealed preference relation, provided the t-norm is the minimum. Analo-

gously, we study the consequences of assuming regularity and scalability of

the probabilistic choice function for the constructed fuzzy choice function.

Let us prove first two auxiliary results.

Lemma 3.18 Let ∗ be a left-continuous t-norm. If the probabilistic choice

function p satisfies SSC and WSCA, then for any x, y in X and S ⊇ {x, y}
it holds that

p(x, y) → p(y, x) = p(x, S) → p(y, S) . (3.17)

Proof. Consider an arbitrary pair of alternatives x and y and S ∈ B such

that {x, y} ⊆ S. For p(x, y) and p(y, x), we only have three possibilities:

(i) If p(x, y) < p(y, x), by WSCA, we have that p(x, S) ≤ p(y, S) and

then trivially

p(x, y) → p(y, x) = 1 = p(x, S) → p(y, S) .
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(ii) If p(x, y) = p(y, x), then p(x, y) ↔ p(y, x) = 1 and by SSC we have

that

1 = p(x, y) ↔ p(y, x) = p(x, S) ↔ p(y, S) .

Hence p(x, S) = p(y, S) and Eq. (3.17) is trivially satisfied.

(iii) If p(x, y) > p(y, x), by WSCA, we know that p(x, S) ≥ p(y, S) and

furthermore, using SSC, we have that

1 > p(x, y) → p(y, x)

= p(x, y) ↔ p(y, x) = p(x, S) ↔ p(y, S) .

Hence p(x, S) 6= p(y, S), and in particular, by WSCA, p(x, S) >

p(y, S). Finally, using SSC, we have that

p(x, y) → p(y, x) = p(x, y) ↔ p(y, x)

= p(x, S) ↔ p(y, S) = p(x, S) → p(y, S) .

In all three cases we proved that Eq. (3.17) is satisfied. �

Lemma 3.19 Let ∗ be a left-continuous t-norm. If the probabilistic choice

function p satisfies WSC and SSCA, then for any x, y in X and S ⊇ {x, y}
it holds that

p(x, y) → p(y, x) ≤ p(x, S) → p(y, S) . (3.18)

Proof. Consider an arbitrary pair of alternatives x and y and S ∈ B such

that {x, y} ⊆ S. For p(x, y) and p(y, x) we only have three possibilities:

(i) If p(x, y) < p(y, x), by SSCA, we have that either p(x, S) < p(y, S)

or p(x, S) = p(y, S) = 0. In both cases p(x, S) → p(y, S) = 1 =

p(x, y) → p(y, x).
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(ii) If p(x, y) = p(y, x), then by WSC we have that

1 = p(x, y) ↔ p(y, x) ≤ p(x, S) ↔ p(y, S) .

Hence p(x, S) = p(y, S) and Eq. (3.18) is trivially satisfied.

(iii) If p(x, y) > p(y, x), by SSCA, we have that either p(x, S) > p(y, S) or

p(x, S) = p(y, S) = 0. In the second case p(x, S) → p(y, S) = 1 and

Eq. (3.18) is trivially satisfied. In the first case, using WSC, we have

that

p(x, y) → p(y, x) = p(x, y) ↔ p(y, x)

≤ p(x, S) ↔ p(y, S) = p(x, S) → p(y, S) .

In all three cases we proved that Eq. (3.18) is satisfied. �

The next result shows that the fuzzy preference relation revealed from

Cp can be written as a function of the probabilistic relation p, provided

certain conditions are satisfied.

Proposition 3.20 Let ∗ be a left-continuous t-norm and p a probabilistic

choice function on X. If one of the following sets of hypotheses hold

Hypo. A p satisfies conditions SSC and WSCA;

Hypo. B p satisfies conditions WSC, SSCA, RC and the t-norm ∗ is the

minimum,

then the fuzzy preference relation RCp
revealed from Cp can be written as:

RCp
(x, y) = p(y, x) → p(x, y) . (3.19)
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Proof. Consider an arbitrary pair of alternatives x and y such that x 6= y

and recall the formula for computing the fuzzy revealed preference relation

of a fuzzy choice function:

RCp
(x, y) =

∨

{S∈B|x,y∈S}

Cp(S)(x) . (3.20)

Applying Eq. (3.6) of Definition 3.13 to Eq. (3.20) we obtain:

RCp
(x, y) =

∨

{S∈B|x,y∈S}

(∧

k∈S

p(k, S) → p(x, S)

)
. (3.21)

The supremum in Eq. (3.21) is computed over the sets S in B such that

x, y ∈ S. This family of subsets of B can be split into {x, y} ∪ Sxy, where

Sxy = {S ∈ B | x, y ∈ S and |S| ≥ 3} and then Eq. (3.21) becomes:

RCp
(x, y) = (p(y, x) → p(x, y)) ∨

∨

S∈Sxy

(∧

k∈S

(p(k, S) → p(x, S))

)
. (3.22)

If p(x, y) ≥ p(y, x), then p(y, x) → p(x, y) = 1 and hence RCp
(x, y) = 1 =

p(y, x) → p(x, y). Consider then the case p(x, y) < p(y, x). Equation (3.22)

implies that RCp
(x, y) ≥ p(y, x) → p(x, y). We next prove the opposite

inequality, i.e. RCp
(x, y) ≤ p(y, x) → p(x, y), that, by Eq. (3.22), can also

be proved by showing that

∨

S∈Sxy

(∧

k∈S

(p(k, S) → p(x, S))

)
≤ p(y, x) → p(x, y)

If Hypo. A is satisfied, then using Lemma 3.18 we can write the right-



112 Chapter 3. Preference modelling under uncertainty

hand part of Eq. (3.22) as:

∨

S∈Sxy

(∧

k∈S

(p(k, S) → p(x, S))

)
≤

∨

S∈Sxy

(p(y, S) → p(x, S))

=
∨

S∈Sxy

(p(y, x) → p(x, y))

= p(y, x) → p(x, y) .

Hence RCp
(x, y) ≤ p(y, x) → p(y, x).

If Hypo. B is satisfied and p(y, x) > p(x, y), then the set Sxy can be

split into two subsets according to SSCA:

(i) S>
xy = {S ∈ Sxy | p(y, S) > p(x, S)};

(ii) S=
xy = {S ∈ Sxy | p(y, S) = p(x, S) = 0}.

We will prove that in both cases
∧

k∈S(p(k, S) → p(x, S)) ≤ p(y, x) →
p(x, y), for any S ∈ Sxy. Assume S ∈ S>

xy, then by Lemma 3.19 and the

fact that the t-norm is the minimum, we have that

p(x, y) = p(y, x) →M p(x, y) ≤ p(y, S) →M p(x, S) = p(x, S) .

Hence p(x, y) ≤ p(x, S), but by RC we know that p(x, y) ≥ p(x, S), so

p(x, y) = p(x, S) and the previous chain of inequalities implies p(y, x) →M

p(x, y) = p(y, S) →M p(x, S).

If S ∈ S=
xy, then there exists at least one alternative z ∈ S such that

p(z, S) > 0 and hence p(z, S) →M p(x, S) = 0. Hence, in Eq. (3.22) the

part
∧

k∈S=
xy

(p(k, S) → p(x, S)) becomes zero.

In both cases we proved that the right-hand part of Eq. (3.22) either is

equal to zero or is equal to p(y, x) → p(x, y), hence RCp
(x, y) = p(y, x) →

p(x, y). �



3.2. A common framework for probabilistic and fuzzy choice 113

Proposition 3.20 shows that the fuzzy preference relation RCp
revealed

from Cp can be written as a function of the reciprocal relation derived from

p. In this way, not only the choice functions are connected, but also their

respective preference relations.

Remark 3.21 Combining Proposition 3.20 and Lemma 3.18 we immedi-

ately, have that if p satisfies SSC and WSCA, then RCp
(x, y) = p(y, S) →

p(x, S), for any x, y ∈ S and any S ∈ B such that {x, y} ⊆ S.

We can now present the two main results of this section. They establish

under which conditions the fuzzy choice function Cp constructed from the

probabilistic choice function p is G-normal and the associated fuzzy revealed

preference relation is ∗-transitive.

Proposition 3.22 Let ∗ be a left-continuous t-norm and let p be a prob-

abilistic choice function on X. If one of the following sets of hypotheses

hold

Hypo. A p satisfies conditions SSC and WSCA;

Hypo. B p satisfies conditions WSC, SSCA, RC and the t-norm ∗ is the

minimum,

then the associated fuzzy choice function Cp is G-normal.

Proof. To prove that Cp is G-normal we need to show that it can be

G-rationalized by its own fuzzy preference relation RCP
, i.e. Cp(S)(x) =

GRCp
(S)(x), for any S ∈ B and any x ∈ S. Consider an arbitrary x ∈ X

and S ∈ B such that x ∈ S.
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If Hypo. A is satisfied, then, using Proposition 3.20 and Lemma 3.18,

we can prove that

GRCp
(S)(x) =

∧

y∈S

RCp
(x, y)

=
∧

y∈S

(p(y, x) → p(x, y))

=
∧

y∈S

(p(y, S) → p(x, S)) = Cp(S)(x) .

If Hypo. B is satisfied, we first prove that GRCp
(S)(x) ≥ Cp(S)(x).

By definition of the fuzzy revealed preference relation RCp
, we have that

RCp
(x, y) =

∨

{T∈B|x,y∈T}

Cp(T )(x) ≥ Cp(S)(x) . (3.23)

Also, by definition of GRCp
and Eq. (3.23), we have that

GRCp
(S)(x) =

∧

y∈S

RCp
(x, y) ≥

∧

y∈S

Cp(S)(x) = Cp(S)(x) ,

hence GRCp
(S)(x) ≥ Cp(S)(x).

Using Proposition 3.20 and Lemma 3.19, we can also prove the opposite

inequality:

GRCp
(S)(x) =

∧

y∈S

RCp
(x, y)

=
∧

y∈S

p(y, x) →M p(x, y)

≤
∧

y∈S

p(y, S) →M p(x, S) = Cp(S)(x) .

Combining Cp(S)(x) ≤ GRCp
(S)(x) and Cp(S)(x) ≥ GRCp

(S)(x), we then

proved that Cp(S)(x) = GRCp
(S)(x). �
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Proposition 3.23 Let ∗ be a left-continuous t-norm and p a probabilistic

choice function on X. If one of the following sets of hypotheses hold

Hypo. A p satisfies conditions SSC and WSCA;

Hypo. B p satisfies conditions WSC, SSCA, RC and the t-norm ∗ is the

minimum,

then the fuzzy revealed preference relation RCp
is ∗-transitive.

Proof. Let x, y, z be three arbitrary alternatives in X . We want to prove

that

RCp
(x, y) ∗RCp

(y, z) ≤ RCp
(x, z) . (3.24)

If Hypo. A is satisfied, using Proposition 3.20 and Remark 3.21, we

know that RCp
(x, z) = p(z, x) → p(x, z) = p(z, S) → p(x, S), RCp

(x, y) =

p(y, S) → p(x, S) and RCp
(y, z) = p(z, S) → p(y, S), for any S containing

x, y and z. Using Property 12 of implication operators ((a → b)∗ (b → c) ≤
a → c) we have that

RCp
(x, z) = p(z, S) → p(x, S)

≥ (p(z, S) → p(y, S)) ∗ (p(y, S) → p(x, S))

= RCp
(y, z) ∗RCp

(x, y) ,

i.e. is exactly Eq. (3.24).

If Hypo. B is satisfied, by Proposition 3.20, we know that RCp
(x, z) =

p(z, x) → p(x, z). Hence, if p(z, x) ≤ p(x, z), we immediately have that

RCp
(x, z) = 1 and then Eq. (3.24) is trivially satisfied. Let us consider the

case in which p(z, x) > p(x, z) and S = {x, y, z}. By SSCA, there are two

possibilities:

(i) p(x, S) = p(z, S) = 0 or
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(ii) p(z, S) > p(x, S).

In the first case we have that p(y, S) = 1. By Lemma 3.19 and Proposi-

tion 3.20, we have that

RCp
(x, y) = p(y, x) →M p(x, y) ≤ p(y, S) →M p(x, S) = 1 →M 0 = 0

and then Eq. (3.24) is trivially satisfied.

In the second case, when p(z, S) > p(x, S), suppose by absurdum that

Eq. (3.24) is not satisfied, i.e.

RCp
(x, z) < RCp

(x, y) ∗M RCp
(y, z) .

Using Proposition 3.20, Lemma 3.19 and Property 12 of implication opera-

tors we have that

p(z, x) →M p(x, z) = RCp
(x, z) < RCp

(x, y) ∗M RCp
(y, z)

= (p(y, x) →M p(x, y)) ∗M (p(z, y) →M p(y, z))

≤ (p(y, S) →M p(x, S)) ∗M (p(z, S) →M p(y, S))

≤ p(z, S) →M p(x, S) .

Since the t-norm is the minimum, we have that

p(x, z) = p(z, x) →M p(x, z) < p(z, S) →M p(x, S) = p(x, S) ,

but this contradicts RC, i.e. p(x, z) ≥ p(x, S). �

We can finally state the main result of this section.

Theorem 3.24 Let ∗ be a left-continuous t-norm and p a probabilistic

choice function on X. If one of the following sets of hypotheses hold

Hypo. A p satisfies conditions SSC and WSCA;
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Hypo. B p satisfies conditions WSC, SSCA, RC and the t-norm ∗ is the

minimum,

then the fuzzy choice function Cp is G-normal and its fuzzy revealed prefer-

ence relation RCp
is ∗-transitive.

Let us stress the importance of the results proved in this section. First

of all, the possibility of constructing a fuzzy choice function from a given

probabilistic choice function is fundamental, especially in a practical con-

text. In fact, while fuzzy choice functions have been widely studied, it is

still not clear how they can be observed in the real world. We agree with

Banerjee [10] when he says that “[...] there may be problems of estimation,

but fuzzy choice functions are, in theory, observable”. With the proposed

method we can rely on probabilistic choice functions, which are much eas-

ier to observe: they can be estimated by using the frequency of choice of

an element in a set of alternatives, in a data set of repeated observations

of choices on the same set of alternatives. Furthermore, if the observed

probabilistic choice function satisfies certain conditions, then Theorem 3.24

ensures that the associated fuzzy choice function is G-normal and that its

fuzzy revealed preference relation is ∗-transitive.

The estimation of probabilistic choice functions for big sets of alterna-

tives can be problematic. In fact, even for a set X with few alternatives,

the number of subsets for which the probabilistic choice function needs to

be known is 2|X| − 1. Sets with more than 10 alternatives are already criti-

cal. Furthermore, the number of subsets S of X for which the probabilistic

choice function p can be directly observed is usually reduced. Then condi-

tion H2 (p is known for any subset S of X) is hardly satisfied. Also weaker

conditions on the domain, like WH2 (p is known for any pair and triplet of

alternatives of X), are seldom satisfied. In fact, it is more likely to know
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p for big subsets of X instead of for small sets, as WH2 would require.

Thus, in the worst (and most probable) case, we can only observe p on a

reduced number of subsets of X and most of them contain more than 2

or 3 alternatives. In this situation, the conditions of rationality involved in

Theorem 3.24 can be used to reconstruct artificially the missing information

on the subsets of X that are not directly observed. In this way, we obtain a

double benefit: we can complete the information on the non-observed sets

and we are sure that the conditions needed for Theorem 3.24 are trivially

satisfied.

3.3 Probabilistic and fuzzy preference rela-

tions

This section investigates the connections between fuzzy preference relations

and probabilistic relations. In fact, both of them are used to formalize

the pairwise comparison of alternatives and both of them allow to express

certain degree of imprecision. We first propose a way to compute a fuzzy

preference relation as a function of a given probabilistic relation using an

expression similar to the one contained in Proposition 3.20, which makes

use of an implication operator derived from a t-norm. Provided the t-norm

satisfies certain conditions, we can prove that the process can be reversed,

i.e. the original probabilistic relation can be computed as a function of the

fuzzy preference relation. Once the interchangeability of the probabilistic

and the fuzzy preference relations is proved, we then study which properties

pass from one formalism to another. In particular, we focus on the tran-

sitivity property. The main result of this section is Theorem 3.34, which

links the ∗-transitivity of a fuzzy preference relation to the cycle-transitivity
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of the associated probabilistic relation, provided that the two relations are

equivalent w.r.t. our construction. Some of our preliminary results in this

field can be found in [95] and the results presented here extend the ones

contained in that paper to a more general framework. In particular, the

contents of [95] correspond to the special case of the results presented in

this section when the t-norm is the  Lukasiewicz t-norm.

3.3.1 Interchangeable probabilistic and fuzzy prefer-

ence relations

In Proposition 3.20 we proved that under certain conditions a fuzzy prefer-

ence relation RCp
can be expressed as a function of a probabilistic relation p:

let ∗ be a left-continuous t-norm and → its associated implication operator,

then, for any x, y ∈ X , it holds that

RCp
(x, y) = p(y, x) → p(x, y) .

The same formula, extrapolated from the context of Section 3.1, can be

used for generating a fuzzy preference relation Q∗
p from a given probabilistic

relation p on X .

Definition 3.25 Let ∗ be a left-continuous t-norm. Given a probabilistic

relation p on X, we define the fuzzy preference relation Q∗
p for any x, y ∈ X

as:

Q∗
p(x, y) = p(y, x) → p(x, y) . (3.25)

Remark 3.26 Since p(x, y) + p(y, x) = 1, for any x, y ∈ X, it holds that

Q∗
p(x, y) ∨ Q∗

p(y, x) = 1, i.e. Q∗
p is strongly complete. In particular, using
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Property 4 of implication operators (a ≤ b ⇔ a → b = 1), for any pair of

x, y ∈ X, it holds that

(i) p(y, x) ≤ p(x, y) if and only if Q∗
p(x, y) = 1;

(ii) p(x, y) = p(y, x) = 1
2

if and only if Q∗
p(x, y) = Q∗

p(y, x) = 1.

To reverse the construction presented in Definition 3.25, observe that

given the fuzzy preference relation Q∗
p, it holds that, for any x, y ∈ X :

Q∗
p(x, y) = p(y, x) → p(x, y) ,

Q∗
p(y, x) = p(x, y) → p(y, x) .

Hence, by taking the minimum of Q∗
p(x, y) and Q∗

p(y, x) and considering

Definition 1.19 of the biresiduum operator (a ↔ b = (a → b)∧ (b → a)), we

have that

Q∗
p(x, y) ∧Q∗

p(y, x) = (p(y, x) → p(x, y)) ∧ (p(x, y) → p(y, x))

= p(x, y) ↔ p(y, x) . (3.26)

Recalling that p(y, x) = 1 − p(x, y), Eq. (3.26) can be written as

Q∗
p(x, y) ∧Q∗

p(y, x) = p(x, y) ↔ (1 − p(x, y)) . (3.27)

For the case of the three t-norms ∗M, ∗P and ∗L, considering the cor-

responding expressions of the biresiduum operators contained in Table 1.1,

Eq. (3.26) takes the following form:

(i) If the t-norm is the minimum, then, either Q∗M
p (x, y) = Q∗M

p (y, x) = 1

and hence p(x, y) = p(y, x) = 1
2
, or

p(x, y) ∧ p(y, x) = Q∗M
p (x, y) ∧Q∗M

p (y, x) ,

p(x, y) ∨ p(y, x) = 1 − (Q∗M
p (x, y) ∧Q∗M

p (y, x)) .
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(ii) If the t-norm is the product, then

p(x, y) ∧ p(y, x) =
Q∗P

p (x, y) ∧Q∗P
p (y, x)

1 + (Q∗P
p (x, y) ∧Q∗P

p (y, x))
,

p(x, y) ∨ p(y, x) =
1

1 + (Q∗P
p (x, y) ∧Q∗P

p (y, x))
.

(iii) If the t-norm is the  Lukasiewicz t-norm (see [95]),

p(x, y) =
1 + Q∗L

p (x, y) −Q∗L
p (y, x)

2
,

p(y, x) =
1 + Q∗L

p (y, x) −Q∗L
p (x, y)

2
.

It would be interesting to prove for which t-norms Eq. (3.27) has a

solution and the solution is unique for a given pair of values Q∗
p(x, y) and

Q∗
p(y, x). Let us restate the problem in a more concise form: we want to

prove under which conditions there exists a unique solution to the following

problem:




a ∈ [0, 1] ,

c ∈ C = {s ∈ [0, 1] | ∃a ∈ [0, 1] such that s = a → (1 − a)} ,
c = a → (1 − a) .

Recall that the biresiduum operator is defined by a ↔ (1 − a) = (a →
(1 − a)) ∧ ((1 − a) → a). At least one of the two values (a → (1 − a)) and

((1−a) → a) has to be equal to one by Property 4 of implication operators.

Then, for convenience, we can further reformulate the problem as follows:

given c ∈ C, prove under which conditions is there a unique a ∈ [1
2
, 1]

such that the equation c = a → (1 − a) is satisfied. To solve this problem

we must find the conditions that ensure that the function f : [1
2
, 1] → C,

f(a) = a → (1 − a) is a bijection, i.e. it is strictly monotone, f(1
2
) = 1 and

f(1) = 0. One solution is obtained by demanding continuity of the t-norm.

Let us recall a result by Jenei [76] on continuous t-norms.
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Lemma 3.27 ([76]) Let ∗ be a continuous t-norm and → its associated

implication operator. If a → b = c < 1, then a ∗ c = b.

If ∗ is a continuous t-norm, we can prove that the function f is a

bijection.

Proposition 3.28 Let ∗ be a continuous t-norm and → its associated im-

plication operator. The function f : [1
2
, 1] → [0, 1] such that f(a) = a →

(1 − a) is strictly decreasing and f(1
2
) = 1 and f(1) = 0.

Proof. For any t-norm it holds that f(1
2
) = 1

2
→ 1

2
= 1 since 1

2
∗ 1 = 1

2
.

On the other hand, also f(1) = 0 holds for any t-norm since 1 ∗ 0 = 0 and

1 ∗ a = a for any a > 0. Then f(1) = 0. To prove monotonicity, consider

a ≤ b in [1
2
, 1]. Recall that the implication operator is decreasing in the first

component and increasing in the second (Properties 8 and 9 of implication

operators). We also have that a ≤ b implies 1 − b ≤ 1 − a, then

f(a) = a → (1 − a) ≥ b → (1 − a) ≥ b → (1 − b) = f(b) .

Hence, if a ≤ b it follows that f(a) ≥ f(b), proving that the function f is

decreasing.

To prove strictness of f , let us suppose by absurdum that there exist a < b

in [1
2
, 1] such that f(a) = f(b), or, equivalently, that

a → (1 − a) = b → (1 − b) = c .

By Lemma 3.27, we have that

a ∗ c = 1 − a , (3.28)

b ∗ c = 1 − b . (3.29)

By construction 1 − a > 1 − b and from Eqs. (3.28) and (3.29) it follows

that

b ∗ c = 1 − b < 1 − a = a ∗ c ,
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which implies b ∗ c < a ∗ c. But this contradicts the monotonicity of ∗, in

fact if a ≤ b then a ∗ c ≤ b ∗ c. �

We proved that if the t-norm ∗ is continuous, then f is invertible. This

solves our initial problem: knowing that p(x, y) and p(y, x) can be expressed

as a function of Q∗
p(x, y) and Q∗

p(y, x) using Eq. (3.27), we can ensure that

there exists a unique value p(x, y) ∈ [0, 1] that satisfies

Q∗
p(x, y) ∧Q∗

p(y, x) = p(x, y) ↔ p(y, x) .

As an open problem it remains to prove whether the condition of con-

tinuity of the t-norm can be weakened. For example, we know that left

continuity is not sufficient, as shown in the following example.

Example 3.29 In [78] it is proved that a function T : [0, 1]2 → [0, 1] defined

as

T (a, b) =




v(a, b) , if (a, b) ∈ A2

a ∧ b , else,

where A is a subinterval of the half-open unit interval [0, 1[ and v : A2 → A

is an operation such that, for any a, b, c ∈ [0, 1], it holds:

(i) v(a, b) = v(b, a);

(ii) v(a, v(b, c)) = v(v(a, b), c);

(iii) v(a, b) ≤ v(a, c), if b ≤ c;

(iv) v(a, b) ≤ a ∧ b,

then T is a t-norm.
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Consider the following construction: let A = [0, 0.8] and ∗A : [0, 1]2 →
[0, 1] such that

a ∗A b =





0 , if (a, b) ∈ A2

a ∧ b , else.

The function v(a, b) = 0, for any (a, b) ∈ A2 satisfies conditions (i)-(iv)

and hence ∗A is a t-norm. Furthermore, it is easy to prove that it is also

left-continuous, but not continuous. The function fA(a) = a →A (1 − a) is

defined as

fA(a) =





0.8 , if a ∈ [0.5, 0.8]

1 − a , else,

The function fA(a) is clearly not invertible.

3.3.2 Transitivity of interchangeable probabilistic and

fuzzy preference relations

In this subsection we study how the transitivity property propagates from

fuzzy preference relations to probabilistic relations and vice versa, when

the construction presented in Eq. (3.25) is used to connect the two relations

with a generic continuous t-norm. The main result is a new family of upper

bound functions for cycle-transitivity of the probabilistic relation p that are

connected to the ∗-transitivity of the associated fuzzy preference relation

Q∗
p. Some preliminary results that we obtained for the case of the t-norm

of  Lukasiewicz can be found in [95].

Recall that given a probabilistic relation p on X , for any triplet (x, y, z),
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we define αxyz ≤ βxyz ≤ γxyz as follows:

αxyz = min(p(x, y), p(y, z), p(z, x)) ,

βxyz = median(p(x, y), p(y, z), p(z, x)) ,

γxyz = max(p(x, y), p(y, z), p(z, x)) .

Whenever the dependence of αxyz, βxyz and γxyz from the triplet (x, y, z)

is obvious, we will switch to the lighter notation α, β and γ.

Let us start with a preliminary result.

Lemma 3.30 Let ∗1 be a left-continuous t-norm and let ∗2 be a t-norm.

Given a probabilistic relation p on X and its associated fuzzy preference

relation Q∗1
p , if Q∗1

p is ∗2-transitive, then there are only two possibilities, for

any x, y, z ∈ X:

(i) α = β = γ = 1
2
;

(ii) α < 1
2
< γ.

Proof. Recall that if Q∗1
p has been generated from p, then it is strongly

complete. Let x, y and z be three alternatives in X and consider the

corresponding α ≤ β ≤ γ. If α ≥ 1
2
, then γ ≥ β ≥ α ≥ 1

2
. This means that

p(x, y) = p(y, z) = p(z, x) ≥ 1
2
, which, by the construction of Q∗1

p , implies

Q∗1
p (x, y) = Q∗1

p (y, z) = Q∗1
p (z, x) = 1. Since Q∗1

p is ∗2-transitive, we have

Q∗1
p (x, z) ≥ Q∗1

p (x, y) ∗2 Q∗1
p (y, z) = 1 ∗2 1 = 1 ,

Q∗1
p (y, x) ≥ Q∗1

p (y, z) ∗2 Q∗1
p (z, x) = 1 ∗2 1 = 1 ,

Q∗1
p (z, y) ≥ Q∗1

p (z, x) ∗2 Q∗1
p (x, y) = 1 ∗2 1 = 1 .

Therefore, 1 = Q∗1
p (x, y) = Q∗1

p (y, x) = Q∗1
p (y, z) = Q∗1

p (z, y) = Q∗1
p (x, z) =

Q∗1
p (z, x) and hence p(x, y) = p(y, x) = p(y, z) = p(z, y) = p(x, z) =
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p(x, z) = 1
2
. This proves that if α ≥ 1

2
, then α = β = γ = 1

2
. If we

suppose that γ ≤ 1
2
, then 1

2
≥ γ ≥ β ≥ α. Equivalently, 1

2
≤ (1 − γ) ≤

(1 − β) ≤ (1 − α). Using a similar reasoning as before, we can prove that

p(x, y) = p(y, z) = p(z, x) = 1
2
. Summarizing, if one of the two conditions

α ≥ 1
2

or γ ≤ 1
2

is satisfied, then α = β = γ = 1
2
. The only remaining

possibility is that α < 1
2
< γ. �

We can now prove the connection between the ∗2-transitivity of the

fuzzy preference relation Q∗1
p and the cycle-transitivity of p.

Proposition 3.31 Let ∗1 be a left-continuous t-norm and ∗2 be a t-norm.

Given a probabilistic relation p on X and its associated fuzzy preference

relation Q∗1
p , if Q∗1

p is ∗2-transitive, then, for any x, y, z ∈ X, it holds that:

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∗2 ((1 − β) →1 β) . (3.30)

Proof. Consider arbitrary x, y, z ∈ X . By Lemma 3.30 and ∗2-transitivity

of Q∗1
p , there exist only two possibilities: either α = β = γ = 1

2
or α < 1

2
< γ.

In the former case, Eq. (3.30) is trivially satisfied, since

1

2
→1

(
1 − 1

2

)
= 1 ≥

((
1 − 1

2

)
→1

1

2

)
∗2
((

1 − 1

2

)
→1

1

2

)
= 1∗21 = 1 .

Next, consider the case α < 1
2
< γ. Suppose, w.l.o.g., that γ = p(x, y) > 1

2
.

Hence, by construction of Q∗1
p , we have that

Q∗1
p (x, y) = 1 ,

Q∗1
p (y, x) = γ →1 (1 − γ) .

For α and β there exist only two possibilities:
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Case A: α = p(z, x) and β = p(y, z);

Case B: α = p(y, z) and β = p(z, x).

In Case A we have that

Q∗1
p (y, z) = (1 − β) →1 β and Q∗1

p (z, y) = β →1 (1 − β) , (3.31)

Q∗1
p (z, x) = (1 − α) →1 α and Q∗1

p (x, z) = 1 , (3.32)

while in Case B we have

Q∗1
p (y, z) = (1 − α) →1 α and Q∗1

p (z, y) = 1 , (3.33)

Q∗1
p (z, x) = (1 − β) →1 β and Q∗1

p (x, z) = β →1 (1 − β) . (3.34)

Since Q∗1
p is ∗2-transitive, the following condition is satisfied:

Q∗1
p (y, x) ≥ Q∗1

p (y, z) ∗2 Q∗1
p (z, x) .

Now, using Eqs. (3.31) and (3.32), for Case A, we obtain:

γ →1 (1 − γ) ≥ ((1 − β) →1 β) ∗2 ((1 − α) →1 α) .

Analogously, using Eqs. (3.33) and (3.34) for Case B we have that

γ →1 (1 − γ) ≥ ((1 − β) →1 β) ∗2 ((1 − α) →1 α) .

This concludes the proof. �

The next step is to prove the converse implication of Proposition 3.31,

but first we need a result similar to Lemma 3.30.

Lemma 3.32 Let ∗1 be a left-continuous t-norm and ∗2 be a t-norm. Given

a probabilistic relation p on X and its associated fuzzy preference relation

Q∗1
p , if the condition

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∗2 ((1 − β) →1 β) (3.35)
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is satisfied for any x, y, z in X, then there are only two possibilities, for α,

β and γ:

(i) α = β = γ = 1
2
;

(ii) α < 1
2
< γ.

Proof. Let x, y and z be three alternatives in X and consider the corre-

sponding αxyz ≤ βxyz ≤ γxyz.

If αxyz ≥ 1
2
, then γxyz ≥ βxyz ≥ αxyz ≥ 1

2
and, consequently, 1

2
≥ 1 −αxyz ≥

1 − βxyz ≥ 1 − γxyz. Recall that if ∗1 is left continuous, then, for any

a, b ∈ [0, 1], a ≤ b is equivalent to a →1 b = 1. From Eq. (3.35) it follows

γxyz →1 (1−γxyz)≥((1 − αxyz) →1 αxyz)∗2 ((1 − βxyz) →1 βxyz)=1∗21=1 .

Hence γxyz →1 (1−γxyz) = 1 or, equivalently, γxyz ≤ (1−γxyz), i.e. γxyz ≤ 1
2
.

Combining this with γxyz ≥ βxyz ≥ αxyz ≥ 1
2
, we have that αxyz = βxyz =

γxyz = 1
2
.

If γxyz ≤ 1
2
, then αxyz ≤ βxyz ≤ γxyz ≤ 1

2
and, consequently, 1

2
≤ 1 − γxyz ≤

1 − βxyz ≤ 1 − αxyz. Since Eq. (3.35) holds for any x, y, z in X , then, for

αyxz, βyxz, γyxz, we have that

γyxz →1 (1 − γyxz) ≥ ((1 − αyxz) →1 αyxz) ∗2 ((1 − βyxz) →1 βyxz) . (3.36)

Recall that αxyz = 1−γyxz, βxyz = 1−βyxz and γxyz = 1−γyxz. Combining

this with αxyz ≤ βxyz ≤ γxyz ≤ 1
2
, we obtain

1 − αyxz ≤ 1 − βyxz ≤ 1 − γyxz ≤
1

2
,

which, applied to Eq. (3.36) gives

γyxz →1 (1 − γyxz) ≥ ((1 − αyxz) →1 αyxz) ∗2 ((1 − βyxz) →1 βyxz) = 1 ∗2 1 .
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This implies that γyxz →1 (1 − γyxz) = 1 and hence γyxz ≤ 1 − γyxz or,

equivalently, γyxz ≤ 1
2
. Since γyxz = 1−αxyz, we can conclude that 1−αxyz ≤

1
2

or, equivalently, αxyz ≥ 1
2
, that, combined with αxyz ≤ βxyz ≤ γxyz ≤ 1

2

gives us αxyz = βxyz = γxyz = 1
2
.

The only remaining possibility is that αxyz <
1
2
< γxyz. �

We can now prove the converse implication of Proposition 3.31.

Proposition 3.33 Let ∗1 be a continuous t-norm and ∗2 be a t-norm.

Given a probabilistic relation p on X and its associated fuzzy preference

relation Q∗1
p , if the condition

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∗2 ((1 − β) →1 β) (3.37)

is satisfied for any x, y, z in X, then Q∗1
p is ∗2-transitive.

Proof. Consider three alternatives x, y and z in X . We want to prove

that

Q∗1
p (x, y) ∗2 Q∗1

p (y, z) ≤ Q∗1
p (x, z) (3.38)

By Lemma 3.32, we know that there are only two possibilities for α, β and

γ:

(i) either α = β = γ = 1
2
,

(ii) or α < 1
2
< γ.

In the first case, the associated fuzzy preference relation Q∗1
p is everywhere

equal to one for the triplet x, y and z and hence Eq. (3.38) is trivially

satisfied. Next, suppose that x, y and z are such that α < 1
2
< γ. For

p(z, x) there are three possibilities:

Case A p(z, x) = γ;



130 Chapter 3. Preference modelling under uncertainty

Case B p(z, x) = β;

Case C p(z, x) = α.

We start with Case A: if p(z, x) = γ > 1
2
, then by Eq. (3.37) we have,

γ → (1 − γ) ≥ ((1 − α) →1 α) ∗2 ((1 − β) →1 β)

⇔ p(z, x) →1 p(x, z) ≥ (p(y, x) →1 p(x, y)) ∗2 (p(z, y) →1 p(y, z))

⇔ Q∗1
p (x, z) ≥ Q∗1

p (x, y) ∗2 Q∗1
p (y, z) ,

i.e., exactly Eq. (3.38).

Consider now Case C: if p(z, x) = α < 1
2
, then p(x, z) = 1 − α > 1

2
.

It follows that Q∗1
p (x, z) = p(z, x) →1 p(x, z) = 1 and hence Eq. (3.38) is

trivially satisfied.

Finally, let us study Case B. If p(z, x) = β and β ≤ 1
2
, then p(x, z) = 1−

β ≥ 1
2
. Hence Q∗1

p (x, z) = p(z, x) →1 p(x, z) = 1 and Eq. (3.38) is trivially

satisfied. If p(z, x) = β and β > 1
2
, then Q∗1

p (x, z) = β →1 (1 − β) < 1 and

(1 − β) →1 β = 1. This last condition implies that Eq. (3.37) becomes

γ →1 (1 − γ) ≥ (1 − α) →1 α .

Since f(a) = a →1 (1 − a) is a decreasing function, then γ ≤ (1 − α),

which, combined with γ ≥ β gives us 1 − α ≥ β. Hence, using again the

monotonicity of f , we have that

f(β) = β →1 (1 − β) ≥ (1 − α) →1 α = f(1 − α) . (3.39)
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If α = p(y, z), then Eq. (3.39) becomes

Q∗1
p (x, z) = p(z, x) →1 p(x, z)

= β →1 (1 − β)

≥ (1 − α) →1 α

= p(z, y) →q p(y, z) = Q∗1
p (y, z)

≥ Q∗1
p (x, y) ∗2 Q∗1

p (y, z) ,

i.e. , exactly Eq. (3.38).

If α = p(x, y), then Eq. (3.39) becomes

Q∗1
p (x, z) = p(z, x) →1 p(x, z)

= β →1 (1 − β)

≥ (1 − α) →1 α

= p(y, x) →q p(x, y) = Q∗1
p (x, y)

≥ Q∗1
p (x, y) ∗2 Q∗1

p (y, z) ,

i.e. , exactly Eq. (3.38). �

We can finally state the main result of this section.

Theorem 3.34 Let ∗1 be a continuous t-norm and ∗2 be a t-norm. Given

a probabilistic relation p on X and its associated fuzzy preference relation

Q∗1
p , Q∗1

p is ∗2-transitive if and only if the condition

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∗2 ((1 − β) →1 β) (3.40)

is satisfied for any x, y, z in X by p.

In the particular case in which ∗1 and ∗2 are the same continuous t-

norm, we can easily prove the following corollary.
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Corollary 3.35 Let ∗ be a continuous t-norm. Given a probabilistic re-

lation p on X and its associated fuzzy preference relation Q∗
p, then Q∗

p is

∗-transitive if and only if for p it holds that, for any x, y, z ∈ X:

γ → (1 − γ) ≥ ((1 − α) → α) ∗ ((1 − β) → β) .

The importance of the result contained in Theorem 3.34 is double: on

the one hand it proposes a new family of upper bound functions for cycle-

transitivity of probabilistic relations. In fact, according to Property 1 of

implication operators, Eq. (3.37) can also be written as:

α + β + γ − 1 ≤ α + β − γ ∗1 ((1 − α) →1 α) ∗2 ((1 − β) →1 β) .

The associated upper bound function is then:

U∗1
∗2

(α, β, γ) = α + β − γ ∗1 ((1 − α) →1 α) ∗2 ((1 − β) →1 β) ,

which depends on the chosen t-norms ∗1 and ∗2. On the other hand, al-

ready known types of cycle-transitivity can be rewritten using the expression

contained in Eq. (3.37) for the appropriate choice of ∗1 and ∗2. Those situ-

ations in which an upper bound function can be expressed using Eq. (3.37)

can be contextualized in our framework, where the probabilistic relation

p and the fuzzy preference relation Q∗1
p are connected by the construction

Q∗1
p (x, y) = p(y, x) →1 p(x, y) and Q∗1

p is ∗2-transitive.

We propose now the explicit expression of the upper bound functions

U∗1
∗2

for all combinations of the t-norms ∗1 and ∗2 in {∗M, ∗P, ∗L}. Before

that, let us prove an auxiliary result.

Lemma 3.36 Let ∗ be a continuous t-norm and → its associated implica-

tion operator. Given a ∈ [0, 1
2
] and b ∈ [1

2
, 1], it holds that 1 − b ≥ a is

equivalent to b → (1 − b) ≥ (1 − a) → a.
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Proof. The condition 1 − b ≥ a is equivalent to 1 − a ≥ b. Since the

function f(c) = c → (1 − c) is srtictly decreasing, the proof follows. �

From Lemma 3.36 it easily follows that in Eq. (3.37), if β ≥ 1
2
, then

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∗2 ((1 − β) →1 β)

⇔ γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∗2 1

⇔ γ →1 (1 − γ) ≥ ((1 − α) →1 α)

⇔ (1 − γ) ≥ α

⇔ α + β + γ − 1 ≤ β .

With this result we can present the upper bound functions U∗1
∗2 for all pos-

sible combinations of ∗1 and ∗2 in {∗M, ∗P, ∗L} in a more concise form:

U∗1
∗2 (α, β, γ) =




β , if β ≥ 1

2
,

g∗1∗2 (α, β, γ) , else,

where g∗1∗2 is given by the corresponding expression in the following table:

g∗1∗2
∗2

∗M ∗P ∗L

∗1
∗M β α + β − αβ α + β

∗P β α + β − αβγ

(1−α)(1−β)
α + β − γ

[(
α

1−α
+ β

1−β
− 1
)
∨ 0
]

∗L β α + β − 2αβ 1
2

The expressions of g∗1∗2 presented in the table have been computed using

Eq. (3.40) and the corresponding t-norms ∗1 and ∗2. We outline here the

steps that lead to those expressions. Recall that U∗1
∗2 = g∗1∗2 when β > 1

2
.

If ∗2 = ∗M, then the expression of g∗1∗M is always equal to β, in fact

Eq. (3.40) becomes

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ∧ ((1 − β) →1 β) . (3.41)
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Since f(a) = a → (1 − a) is a decreasing function and 1 − α ≥ 1 − β,

f(1 − β) ≥ f(1 − α). Hence Eq. (3.41) becomes

γ →1 (1 − γ) ≥ (1 − α) →1 α ,

that, again for the monotonicity of f , implies that

γ ≤ 1 − α

⇔ α + γ − 1 ≤ 0

⇔ α + β + γ − 1 ≤ β ,

which leads to the upper-bound function U∗1
∗M

.

If ∗2 = ∗P, then Eq. (3.40) takes the following form:

γ →1 (1 − γ) ≥ ((1 − α) →1 α) ((1 − β) →1 β) . (3.42)

(i) if ∗1 = ∗M, Eq. (3.42) becomes 1 − γ ≥ αβ and hence

U∗P
∗M

(α, β, γ) = α + β − αβ .

(ii) if ∗1 = ∗P, Eq. (3.42) becomes 1 − γ ≥ γ
(

α
1−α

β

1−β

)
and hence

U∗P
∗P

(α, β, γ) = α + β − αβγ

(1 − α)(1 − β)
.

(iii) if ∗1 = ∗L, Eq. (3.42) becomes 2(1 − γ) ≥ 4αβ and hence

U∗P
∗L

(α, β, γ) = α + β − 2αβ .

If ∗2 = ∗L, then Eq. (3.40) takes the following form:

γ →1 (1 − γ) ≥ [((1 − α) →1 α) + ((1 − β) →1 β) − 1] ∨ 0 . (3.43)
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(i) if ∗1 = ∗M, Eq. (3.43) becomes 1 − γ ≥ (α + β − 1) ∨ 0, i.e. 1 − γ ≥
0, but this condition is always satisfied, hence U∗L

∗M
(α, β, γ) is trivial

(U∗L
∗M

(α, β, γ) = α + β).

(ii) if ∗1 = ∗P, Eq. (3.43) becomes 1 − γ ≥ γ
[(

α
1−α

+ β

1−β
− 1
)
∨ 0
]

and

hence

U∗L
∗P

(α, β, γ) = α + β − γ

[(
α

1 − α
+

β

1 − β
− 1

)
∨ 0

]
.

(iii) if ∗1 = ∗L, Eq. (3.43) becomes 2(1− γ) ≥ (2α+ 2β− 1)∨ 0 and hence

U∗L
∗L

(α, β, γ) =
1

2
.

3.4 An experiment for measuring rationality

of consumers

In this section we propose an experiment with real data to test the theoret-

ical results proved in the previous sections of this chapter. In particular, we

will use the construction of fuzzy choice functions from a given probabilis-

tic choice function described in Definition 3.13. Also rationality conditions

of probabilistic choice functions will be used to reconstruct the missing

information on sets of alternatives where choices have not been observed

directly. This section is based on [87]. The dataset used in the experiment

contains the recorded purchases of several clients in a super market where

the products are divided into different classes. The aim of the experiment

is to measure the rationality of the consumers by observing their purchases

along a period of time.
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3.4.1 Measuring transitivity and rationality

Past works on fuzzy decision theory [24,64,65] proposed a new way of deal-

ing with the problem of rationality, namely assigning to a decision maker

a degree of rationality based on the degree to which he satisfies the transi-

tivity property. The possibility of assigning a degree of rationality is really

attractive since it allows to distinguish those decision-makers that are seri-

ously irrational from others that are mainly coherent in their behaviour. A

formal and detailed presentation on fuzzy rationality measures can be found

in [24], while we rely on the construction of transitivity degrees proposed in

Chapter 9 of [64].

Definition 3.37 The degree of ∗-transitivity of a fuzzy preference relation

Q w.r.t. a t-norm ∗ is given by:

T ∗(Q) =
∧

x,y,z∈X

((Q(x, y) ∗Q(y, z)) → Q(x, z)) . (3.44)

Remark 3.38 The degree of ∗-transitivity obeys the same natural order of

t-norms: given two t-norms such that x ∗1 y ≥ x ∗2 y, for any x, y ∈ [0, 1],

then it is immediate to prove that T ∗1(Q) ≤ T ∗2(Q), for the same reason

for which ∗1-transitivity implies ∗2-transitivity.

3.4.2 The data set

The data set used in our research is courtesy of Ta-Feng (aiia.iis.sinica.

edu.tw), a Chinese retailer warehouse that sells a wide range of merchan-

dise, from food and grocery to office supplies and furniture. The data set

contains shopping records collected in a time span of four months, from

November 2000 to February 2001. Each record consists of four attributes:
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Customer ID, Product ID, Class ID and amount of purchase (other at-

tributes like Date, Age, Price, etc. have been removed to reduce the data

set). There are a total of 817741 records, representing the purchases of

32266 different clients, who bought in a basket of 23812 possible different

products, divided into 2012 classes. All classes are pairwise disjoint and

contain from 1 to 275 different products each.

3.4.3 The experiment

Part I The first experiment focuses on the behaviour inside classes, inde-

pendently of the customers. We look at the data base as a unique choice

situation, in which the 23812 different products belonging to 2012 separated

classes are chosen. Then we study the rationality of the corresponding choice

function, where X is the set of products and B is the family of classes of

products. We followed these steps:

Step 1 Construct a probabilistic choice function for each one of the 2012

different classes. The probability of a product x of being chosen from

class A (p(x,A)) is estimated using the total amount of purchased

product x, divided by the total amount of purchased products in the

class A. The results are 2012 different probabilistic choice functions.

Step 2 For each class A ∈ B, three reciprocal relations (p∗MA , p∗PA , p∗LA )

are computed from the corresponding probabilistic choice function p,

using the strong scalability condition (SSC) of Definition 3.14:

(i) p∗MA , with minimum t-norm,

(ii) p∗PA , with product t-norm,

(iii) p∗LA , with  Lukasiewicz t-norm.
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Step 3 Transform all reciprocal relations into fuzzy revealed preference

relations using Eq. (3.19) and the corresponding t-norm. The results

are, for any A ∈ B, three fuzzy preference relations R∗M
A , R∗P

A and

R∗L
A .

Step 4 Compute the degree of ∗-transitivity of fuzzy preference relations

R∗M
A , R∗P

A and R∗L
A , for any class of products A ∈ B. For more insight,

we compute three degrees of ∗-transitivity for any fuzzy preference

relation, using T ∗M , T ∗P or T ∗L.

The output consists of nine vectors of the same size as B, containing the

rationality degree of each class, according to the t-norm used in its con-

struction and the t-norm used for measuring the degree of ∗-transitivity.

Part II The second experiment is oriented to the customers. We retrace

the steps of the previous experiment, but this time we apply that procedure

to the different customers of the store, instead of on the classes of products.

The rationality of each client is measured only in those classes of products

in which he purchased at least once, using again three constructions (using

the three t-norms) and each of them being measured with three rationality

measures (T ∗M, T ∗P or T ∗L). For any customer, we have different measure-

ments, one for each class he visited. The overall rationality of each customer

is aggregated from its rationality degree on the classes using two operators:

for simplicity we used only minimum and arithmetic mean.

Results and comments The transitivity degrees T ∗M, T ∗P and T ∗L of

the relations R∗M
A , R∗P

A and R∗L
A are denoted with the notation indicated in

the next table.
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Measure of ∗-transitivity

Minimum Product  Lukasiewicz

Construction of p

Minimum MM MP ML

Product PM PP PL

 Lukasiewicz LM LP LL

We already know from Proposition 3.23 that if RCp
is the fuzzy pref-

erence relation revealed from the fuzzy choice function Cp and Cp has been

constructed from the probabilistic choice function p using the t-norm ∗1,
then RCp

is ∗1-transitive. Furthermore, if the t-norms ∗1 and ∗2 are such

that a ∗1 b ≥ a ∗2 b, for any a, b ∈ [0, 1], then a fuzzy preference relation Q

that is ∗1-transitive it is also ∗2-transitive. For these reasons, we have that

the transitivity degrees MM, MP, ML, PP, PL and LL are always equal to

1.

Hence, in both experiments, we can focus just on:

PM the probabilistic choice function constructed with the product t-norm

and rationality measured with ∗M-transitivity;

LM the probabilistic choice function constructed with the  Lukasiewicz t-

norm and rationality measured with ∗M-transitivity;

LP the probabilistic choice function constructed with the  Lukasiewicz t-

norm and rationality measured with ∗P-transitivity.

Part I In the first part of the experiment, we obtained the following re-

sults: we started with 2012 classes, 601 of which contained less than 3 ele-

ments and have been immediately excluded from the study, since they are

trivially rational. Of the remaining 1411 classes of products, we observed

that in:
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53 of them the behaviour of the customers is completely rational, under

any construction and w.r.t. all transitivity measures (3.7%).

1358 of them an irrational behaviour is detected (96.3%). The rationality

measures associated to these classes are depicted in Figure 3.1.

It can be concluded that the choice of a specific t-norm in the construc-

tion of the probabilistic choice function strongly affects the resulting model.

If the construction is made with the minimum t-norm, we are automatically

imposing the strongest type of transitivity, when is known that the human

behaviour is seldom rational [58]. In contrast, the constructions with the

product and  Lukasiewicz t-norms allow to detect non-rational behaviour.

The classes of products with rationality measure less than 1 are more than

95% of the total number of classes. It may be important for the analyst to

recognize those classes where rationality is not satisfied.

Part II In the second part of the experiment, we obtained the following

results: we started with 32266 customers, 17832 of which has bought less

than 3 different products and have been immediately excluded from the

study, since they are trivially rational. Of the remaining 14434 customers,

we observed that:

11040 of them have a perfectly rational behaviour, under any construction

and w.r.t. all transitivity measures (76.5%).

3394 of them show an irrational behaviour (23.5%). The rationality mea-

sures associated to these customers are depicted in Figures 3.2 and

3.3.

From this part of the experiment it can be concluded that less than 25%

of the observed customers show an irrational behaviour. Again, the choice
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Figure 3.1: Transitivity degrees for Experiment 1
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of the t-norm in the construction of the probabilistic choice function affects

the resulting model. Using the minimum t-norm forces the description of

the behaviour of the customers to be strongly rational, while other t-norms

allow for a more realistic description. In Figure 3.2 we can appreciate that

smaller t-norms are associated to higher values of the degree of transitivity.

For example, if we consider the construction with  Lukasiewicz t-norm and

we compare the values of the degree of transitivity w.r.t. the minimum

and the product t-norm (LM and LP), we observe that the values of LP

are always greater than the values of LM. Also the t-norm used in the

costruction of p affects the degree of transitivity. If fact, if we consider

the degree of ∗M-transitivity for the construction with the product or the

 Lukasiewicz t-norm (PM and LM), we can appreciate the the value of PM

are always smaller than the values of LM. It seems that the weaker the

t-norm used in the construction, the more rational choice becomes.
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Figure 3.2: Transitivity degrees for Experiment 2. Aggregation with the

minimum.
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Figure 3.3: Transitivity degrees for Experiment 2. Aggregation with the

mean.
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Conclusions

Different approaches to choice theory have been studied. We tried to mimic

different well-known results of classical choice theory in a framework where

choice and preference are modelled using fuzzy set theory or probability

theory.

In Section 2.2, sufficient conditions for generating fuzzy choice func-

tions through GQ and MQ have been unveiled. Existing results have been

improved on several aspects. First of all, ∗-transitivity conditions have

been replaced by weaker conditions, such as acyclicity and ∗-acyclicity. In

the study of both crisp and fuzzy preference relations, acyclicity is one of

the weakest possible rationality conditions, in the sense that asking for a

weaker condition would mean losing any kind of coherence. This leads us to

consider that this hypothesis cannot be weakened further in the context of

sufficient conditions. On the other hand, since we are operating in the fuzzy

setting, t-norms are naturally involved. We have checked whether different

t-norms lead to different results. We have proved that left-continuity or the

absence of zero divisors play a crucial role. We have also discussed the con-

nection between the results known in the crisp case and the new conditions

145



146 Chapter 4. Conclusions

we have provided. We have checked that in the fuzzy setting we cannot

expect results that are fully analogous to those in the crisp case. This last

fact becomes clear when looking for a fuzzy version of the classical Richter

Theorem: the characterization of rationality of crisp choice functions seems

to be no longer valid in the fuzzy setting.

In Section 2.3 we studied the relationship between fuzzy rationality

conditions, trying to find the most accurate generalization of the Arrow-

Sen Theorem possible. To summarize the results obtained in this work,

we present the scheme of Figure 4.1 in which the rationality conditions are

presented in separated boxes. An arrow going from one box to another

indicates that the former condition implies the latter. Different line styles

of the arrows are used to indicate the t-norms for which the implication

holds:

(i) solid lines indicate that the t-norm is left continuous;

(ii) dashed lines with pattern indicate that the t-norm has no zero

divisors;

(iii) dashed lines with pattern indicate that the t-norm is rotation in-

variant;

(iv) dotted lines indicate that the t-norm is the minimum.

Additional conditions like H1, WH1 and WH2 are depicted along the arrows

when needed.

In Section 3.2 we proposed a new construction that links probabilistic

and fuzzy choice functions making use of t-norms and implication opera-

tors. We also observed that well-known rationality conditions in probabilis-

tic choice theory such as Luce’s Axiom of Choice or WASRP obey a common
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holds for any left-continuous t-norm

holds for rotation-invariant t-norms

holds for t-norms without zero divisors

holds for the minimum

1: condition WH1 is assumed

2: condition WH2 is assumed

H1: condition H1 is assumed

C G-normal
+ 12

C G-normal
+ 12

12

Figure 4.1: Summary of the results obtained.

pattern and we have generalized them to what we have called scalability con-

ditions. Those new conditions, together with a probabilistic version of the

Weak Congruence Axiom, helped us proving that the proposed construction

of fuzzy choice functions from probabilistic choice functions is consistent:

in fact, it holds that the generated fuzzy choice function is G-normal and

that the associated fuzzy revealed preference relation is ∗-transitive.

In Section 3.3 we studied the connections between probabilistic and

fuzzy preference relations. Any probabilistic relation can be associated

with a strongly complete fuzzy relation using the construction described in

Eq. (3.25). This construction depends on the implication operator derived

from a t-norm and, under suitable conditions (continuity of the t-norm), it
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can be reversed. In those cases, the fuzzy preference relation uniquely char-

acterizes the probabilistic relation from which it has been generated. This

strong connection between probabilistic and fuzzy choice functions can be

of great interest in the study of relations that use different scales: in fact,

probabilistic relations use a bipolar scale, while fuzzy preference relations

use a unipolar scale. In those cases in which the probabilistic and the fuzzy

preference relations are uniquely characterized, we studied how transitivity

propagates from one relation to the other. Even if transitivity is defined

differently for the two types of relations, we have been able to prove that

∗-transitivity of the fuzzy preference relation is equivalent to a new type of

cycle-transitivity of the probabilistic relation.

Finally, in Section 3.4, we applied the techniques presented in Chapter 3

to measure the rationality (in terms of degrees of ∗-transitivity) of a group

of consumers of a super-market. The study shows that the hypothesis of

rationality of the decision makers that is assumed in many economical and

statistical choice models is sometimes not satisfied. Furthermore, we ob-

served that the aggregated behaviour of the consumers is even less rational

than the behaviour of the single individuals.
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Conclusiones

En esta tesis se han estudiado distintos enfoques de la teoŕıa de la elección

individual. En particular se han intentado emular varios resultados de la

teoŕıa clásica en el marco de unas teoŕıas más generales, donde elección

y preferencia se modelan a través de conceptos probabiĺısticos o borrosos

(difusos). El Caṕıtulo 2 está dedicado a la teoŕıa de elección borrosa. En

particular, en la Sección 2.2 se han estudiado aquellas condiciones que una

relación de preferencia borrosa Q tiene que satisfacer para poder asegurar

que de ella se pueda racionalizar una función de elección borrosa a través

de las construcciones GQ y MQ presentadas en la Definición 2.3. En com-

paración con los resultados encontrados en la literatura correspondiente,

hemos logrado rebajar esas condiciones. En particular, la condición de ∗-

transitividad ha sido substituida por condiciones más débiles como la de

aciclicidad o la de ∗-aciclicidad. Tanto en los estudios clásicos como en el

caso difuso, la propiedad de aciclicidad es de las más débiles posibles, ya que

pedir una condición más débil conllevaŕıa una pérdida total de coherencia.

Por otro lado, como acostumbra a ocurrir en los estudios en entornos difusos,

es importante establecer para qué familias de t-normas se pueden probar
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los resultados. En este sentido hemos comprobado que propiedades como

la continuidad o la existencia de divisores de cero juegan un papel funda-

mental a la hora de probar la posibilidad de generar una función de elección

borrosa a partir de una relación de preferencia borrosa. Además, hemos

comparado los resultados obtenidos en el caso difuso con sus homólogos en

el caso clásico: para el caso de la función GQ solo una implicación del caso

clásico se ha podido recuperar, pero eso ha permitido demostrar que un

resultado análogo al teorema de Richter no es válido en general en el caso

borroso (Ejemplo 2.24). Para la función MQ, el resultado clásico de Walker

(Proposición 2.14) ha sido recuperado completamente en el entorno borroso.

En la Sección 2.3 hemos estudiado las relaciones entre distintas condiciones

de racionalidad que se han propuesto para el caso de funciones de elección

borrosa, en el intento de emular el famoso teorema de Arrow-Sen de la teoŕıa

clásica. Para resumir los resultados obtenidos en este apartado, presenta-

mos el esquema de la Figura 5.1, donde las condiciones de racionalidad se

presentan en caja separadas. Una flecha de una caja a otra indica que la

condición contenida en la primera caja implica la condición contenida en

la segunda. Se han usado diferentes estilos de ĺınea para marcar aquellas

implicaciones que valen bajo diferentes t-normas:

(i) una ĺınea continua indica que el resultado es válido para cualquier

t-norma continua por la izquierda;

(ii) una ĺınea discontinua con patrón indica que el resultado es válido

para cualquier t-norma sin divisores de cero;

(iii) una ĺınea discontinua con patrón indica que el resultado es válido

para cualquier t-norma que es invariante con respeto a rotación;

(iv) una ĺınea punteada indica que el resultado es válido para la t-norma
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del mı́nimo.

Ulteriores condiciones, tales como H1, WH1 y WH2 se representarán al lado

de las flechas para aquellos resultados que las necesiten.

WFCA
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C G-rational

C G-normal C M-normal

C M-rational
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12

12
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WAFRP

SAFRP

12 12

vale para toda t-norma continua por la izquierda

vale para toda t-norma invariante por rotación

vale para toda t-norma sin divisores de cero

vale para la t-norma del mı́nimo

1: se asume la condición WH1

2: se asume la condición WH2

H1: se asume la condición H1

C G-normal
+ 12
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+ 12

12

Figure 5.1: Resumen de los resultados obtenidos.

El Caṕıtulo 3 está dedicado a la teoŕıa de elección probabiĺıstica. En

particular, en la Sección 3.2 se presenta una construcción que, a través

del uso de t-normas y operadores de implicación, permite expresar una

función de elección probabiĺıstica como una función de elección borrosa. Si

la función de elección probabiĺıstica inicial satisface ciertas condiciones, que

también hemos definido a partir de las propuestas de la literatura, entonces

la función de elección borrosa que se deriva es normal y la relación de pre-
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ferencia que se revela de ella es transitiva. Estas condiciones se inspiran en

varias propuesta encontradas en la literatura, como por ejemplo el Axioma

de elección de Luce o la condición WASRP propuesta por Bandyopadhyay

et al. en [5]. Hemos comprobado que las dos condiciones se puede formalizar

de forma parecida, usando una expresión común que depende de la t-norma.

A partir de esta observación hemos definido dos nuevas condiciones (WSC

y SSC), que también dependen de la t-norma, y que generalizan las condi-

ciones propuestas en la literatura. Estas nuevas condiciones, junto con una

versión probabiĺıstica del Axioma de Congruencia Débil, permiten demos-

trar que la función de elección definida a partir de un función de elección

borrosa es G-normal y que, además, la relación de preferencia que se revela

de ella es ∗-transitiva. La Sección 3.3 está dedicada a comparar las relaciones

de preferencia borrosas con las relaciones de preferencia probabiĺıstica. Am-

bas relaciones permiten expresar la preferencia a través de una función mul-

tivaluada, pero responden a dos semánticas completamente diferentes: las

relaciones borrosas son univariadas, mientras las relaciones probabiĺısticas

son bivariadas. Esto implica que, a pesar de formalizarse de una forma

parecida, su significado es diferente y no pueden ser intercambiadas. Lo

que proponemos en este trabajo es una construcción que permite expre-

sar una relación en función de la otra y que además respecta las diferencias

semánticas entre ellas. Bajo ciertas condiciones (continuidad de la t-norma)

las relaciones construidas de esta manera son equivalentes. Gracias a esa

equivalencia se puede estudiar cómo ciertas propiedades, como por ejemplo

la transitividad, se propagan entre una definición y la otra. Hemos des-

cubierto aśı una nueva familia de funciones de ĺımite superior, t́ıpicamente

utilizadas para describir las relaciones probabiĺısticas ciclo-transitivas. Fi-

nalmente, en la Sección 3.4, se recoge un conjunto de resultados que se han

obtenido con un experimento sobre datos reales, pensado para poder medir
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la racionalidad de un grupo de consumidores y que hace uso de las técnicas

expuestas en las secciones anteriores.
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