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The main objective of this paper is to present 
a model based on advanced intelligent techniques 
to determine the roll force preset to be applied 
on the temper mill of a galvanizing line. 
This model will pre-set both the roll force needed
for the required material and the necessary 
tension preset. The new method also makes it
possible to predict the roughness of the strip.

■ INTRODUCTION

To obtain the desired final mechanical and roughness charac-
teristics for galvanized steel sheets, ACERALIA uses a skin-
pass + tension leveller configuration, placed at the exit section
of the galvanizing line. The control of this equipment is done
by the operators who, taking into consideration the strip pro-
perties requirements, manually calculate the strip tension and
the forces to be applied. Indeed, these parameters determine
the roughness of the finished material.

In view of the various problems caused by the manual control
of the equipment, an automation system is required to obtain
as much strip length as possible in the prescribed range of
quality.

This paper presents a description of a system based on intel-
ligent techniques that, using the available variables, allows a
good roll force adjustment, while providing continuous and
accurate estimation of the final roughness.

■ FACILITY DESCRIPTION

The skin-pass that is considered here, is part of a galvanizing
line belonging to ACERALIA in Avilés (Spain). This line has
the possibility to work with a wet 4-high skin pass alone or
joined to a tension leveller.

The material processed on this line is galvanising material
with a maximum yield stress of 500 MPa, with a thickness in
the range of 0,4 to 2 mm and a maximum width of 1,600 mm.
The maximum line speed is 150 m/min.

Before implementation of the model, presetting was carried
out only by manual operation. Initial work was made in order
to present the operator with a tension preset, based on its own
tables but extrapolated by means of a spline approach.

Automation of facility has a database Oracle and another
dedicated to operator type MS-ACCESS. A model was deve-
loped, based on data stored in both databases. Initial data
taken from databases included around 650 variables.

■ METHODOLOGY

Based on the information contained in the process database, a
KDD (Knowledge Discovery and Data Mining) methodology
is applied (fig. 1).
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L’objectif principal de cet article est de présenter un
modèle fondé sur les techniques d'intelligence artifi-
cielle en vue d'optimiser le pré-réglage du skin-pass
d’une ligne de galvanisation. Il s'agit de déterminer
automatiquement, pour chaque nuance d'acier, les
efforts et les tensions à appliquer en respectant les impo-
sitions en termes de rugosité.

Le process et le développement du modèle

Le modèle est développé pour la ligne de galvanisation
d'Aceralia à Avilès, équipée d'un skin-pass quarto et
d'une planeuse en traction. Le skin-pass était, avant le
modèle, pré-réglé manuellement  par les opérateurs.

Une première étape du développement du modèle
consiste en une analyse critique des bases de données
existantes en vue de leur utilisation optimale. Le modèle
est structuré en quatre variantes, correspondant à qua-
tre groupes de nuances. Il utilise l'algorithme de projec-
tion de Sammon, les réseaux de neurones et le paramètre
de Mahalanobis pour éliminer les points aberrants.

Les principaux paramètres du modèle sont :

• les propriétés mécaniques et la géométrie de la bande
ainsi que les conditions de laminage et la rugosité visée,

• la largeur de la bande,

• la longueur laminée cumulée.

Le modèle en déduit la tension et l'effort différentiel à
appliquer à la bande en vue d'obtenir la rugosité recher-
chée.

Les résultats

Le modèle d'intelligence artificielle permet d'obtenir :

– des valeurs de rugosité correspondant aux impositions
pour 98 % de la production ;

– une plus grande souplesse d'adaptation du process
aux différentes nuances ;

– une stabilité accrue du process, indépendante de l'ha-
bileté des différents opérateurs ;

– une augmentation de la durée de vie des cylindres et
une réduction de la consommation d'énergie ;

– une réduction de la charge de travail des opérateurs.

Compte tenu de ces résultats très positifs, le modèle a été
intégré au process.

Basically, the method relies on an initial pre-selection of
variables from those existing in the database. To discard
initial variables, statistical methods and experience from the
technical staff are taken into account.

Then, a pre-processing of the data is carried out. Variables
are deeply studied and treated in order to obtain a reliable
data set. Further work is performed to get the feature extrac-
tion, looking for relations among variables and discarding
those giving the same information to the model. Finally, the
model is developed and contrasted. Arrows in figure 1 indi-
cate the iterating process : If the contrasts taken are not good
enough, the previous step must be repeated.

■ PRELIMINARY ANALYSIS

Tools, used for preliminary analysis, are basically two:
XDPM (owned by the University of Oviedo) and R (freew-
are downloadable at http:/www.r-project.org/). Among
other analysis, data are studied through box-plots conside-
ring different types of materials, as shown in figure 2.

This preliminary analysis proves to be very useful when
detecting anomalous phenomena or situations.

As an example, it can be appreciated in figure 2 that mul-
tiple samples fall outside the 1.5 times the interquartile
range, which can be accounted for by any of the following
assumptions :

Fig. 1 – Knowledge discovery and data mining (KDD)
methodology.

Fig. 1 – Méthode d'apprentissage et d'exploitation de données.
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• Points outside the space delimited by the whiskers are
considered out-liers, and are identified and isolated for a
specific detailed analysis of their nature. The analysis of
the rest of the points pertaining to the general pattern
continues on a separate basis.

• The existence of a high number of samples that lie far
from the central zone can be considered as an indication
of the existence of multiple sub-populations that are still
to be identified and examined individually.

Very likely, the underlying reason is a combination of both
options.

After the preliminary data analysis and the elimination of
those registers that, a priori, could be considered as erro-
neous, the following steps consist in the analysis of varia-
ble histograms, correlation between variables and the
different types of fit (linear or non-linear) required by pair-
wise combination of variables.

Figure 3presents a box matrix where the function histogram
of the variable density (representing the range and frequency
of occurrence) is represented in the main diagonal, while the
rest of the boxes include the correlation coefficient, if any, and
other types of linear or non-linear fits that occur between
variable pairs.

It can be seen, from histograms, that the data do not follow 
a normal distribution and that the behaviour of data is not
always continuous with particular variables.

After initial study, a detailed study of variables correlation is
made. Figures 4 and 5indicate the correlation matrix and

Fig. 2 – Box-plot representation of the basic statistical
parameters for grade B100 data.

Fig. 2 – Représentation graphique des paramètres statistiques
élémentaires pour la nuance B 100.

Fig. 3 – Combined graphic for grade B100.

Fig. 3 – Graphique matriciel pour la nuance B100.

Fig. 4 – Lineal correlation among process variables.

Fig. 4 – Corrélation linéaire entre les variables de process.

Fig. 5 – Non lineal correlation among process variables.

Fig. 5 – Corrélation non-linéaires entre les variables de process.
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SOM used for that purpose. Establishing which variables are
lineal combinations, some of them can be discarded because
information given was the same.

■ PRE-PROCESSING

Considering these preliminary results, the model strategy selec-
ted is to create separated models depending on the kind of
material to be rolled. Thus, four groups of materials are consi-
dered : three for grades B100F55, B011F97 and B102G55
respectively and one for the rest of the working set grades.

Several projection methods are taken into account. For 
pre-processing purposes, the most efficient method is the
Sammon projection. Such a method is of a great help for data
structure pre-visualization. It allows visualizing high dimen-
sional structures in the plane (2-D) thus, it identifies different
varieties and patterns contained in it. More specifically, it
constitutes a very helpful tool for cluster structure detection
and out-lier identification.

Sammon’s algorithm projects our n-dimensional universe
(where n is the number of variables contemplated) to a two-
dimensional plane by taking into account the Euclidean dis-
tances between variables.

The results from this filtering process are presented in the fol-
lowing graphics (fig. 6 - 10)accompanied by a short descrip-
tion of the main conclusions that can be obtained from them.

Figure 6 shows the Sammon representation of the whole 
data without considering any separation by type of materials.
Different zones can be visualized. This projection was elabo-
rated in parallel with neural network models, facilitating the
out-liers rejection.

For interpretation, the line marks the so-called “normal”
behaviour zone :

• Group 1: It appears to be a separate zone ; thus its behaviour
should not be the desired one. Nevertheless, the group pre-
sents a normal behaviour and its removal does not imply an
improvement in training results. This lack of continuity bet-
ween the data from group 1 and the “normal” zone seems to
be accounted for by the particular final roughness specifica-
tions rather than by any anomalous behaviour.

• Groups 2 and 3: Even though they are located at a certain
distance from the main data group, these zones present a
reasonable behaviour and do not lead to errors during trai-
ning. Thus this can be considered as similar to the previous
situation.

• Groups 4 and 5: These quite distant zones show an unusual
behaviour and represent an error source for training pur-
poses. Their removal allows a slight improvement in the
results obtained.

Fig. 7 – Graphic plot of the results returned by Sammon’s
algorithm applied to steel grade B100F55.

Fig. 7 – Résultats obtenus avec l’algorithme de Sammon 
pour la nuance B100F55.

Fig. 8 – Graphic plot of the results returned by Sammon’s
algorithm applied to steel grade B011F97.

Fig. 8 – Résultats obtenus avec l’algorithme de Sammon 
pour la nuance B011F97.

Fig. 6 – Graphic plot of the results returned by Sammon’s
algorithm applied to the available data.

Fig. 6 – Présentation graphique par l'algorithme de Sammon 
des données du process.
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• Groups 6 and 7: Although their locations are not too distant
from the so-called “normal behaviour” zone, it is considered
that they fall outside the possible specifications and beha-
viours. Results improve substantially after their removal

After this initial global study, it is decided to evaluate a
Sammon projection considering only data pertaining to speci-
fic types of materials. Thus, four new projections are studied.

Grade B100F55

Six different zones can be distinguished in figure 7. Although
slightly separated from the rest, zones 1, 2 and 5 present a
“normal” behaviour and correspond to extreme roughness
values. Thus, the corresponding data sets can be incorporated

to the subsequent neural training process. Zones 3 and 4 show
an anomalous or abnormal behaviour. This is confirmed by
assessing the variable sets to which they refer and detecting
some contradictions or impossible situations. On the basis of
these results, these zones are excluded for network training.

Grade B011F97

The number of data, available for this grade, is more reduced
(fig. 8) and the identification of the items to be eliminated
becomes a critical issue since correct network training requi-
res a large number of data. Therefore, only zones 3 and 6 are
eliminated, and zones 1, 2, 4 and 5, although distant from other
points, are taken into consideration. No anomalous behaviour
is identified after a detailed analysis and the discontinuity of
the points can be put down to lower data density.

Grade B102G55

Again, the evaluation of the results of the Sammon’s algorithm
allows to identify three minor zones (i.e., zones 2, 3 and 4) with
some degree of anomalous behaviour. These are removed,
whereas the remaining data are fully integrated to the training
process (fig. 9).

Other grades

This group encompasses all the other steel grades that do not
fall into any of the previously discussed categories (fig.10).
There is no data excess. In spite of being a separate zone, zone
1 would not introduce any error. Zones 2 and 3 are removed.

■ ALGORITHM BASED ON
MAHALANOBIS DISTANCE

The presence of multiple outliers can be easily seen on the
Sammon plots. In a second stage, identification of outliers
could be improved by using an algorithm based on the
Mahalanobis distance. Given a sample X, the statistical func-
tion :

with D Mahalanobis distance and Sstandard deviation,

represents the Mahalanobis distance of the sample points to
its centre.

This statistic method follows a chi-square distribution with
degrees of freedom equal to the number of dimensions of
the samples. This property was used to detect and isolate
the outliers.

Figure 11shows the values obtained with this statistical algo-
rithm. The plot contains the Mahalanobis distance against
each considered coil. The line shows the confidence border.
Above this line data are considered as outliers.

Figure 12shows a specific zone of the Sammon’s projection
applied to steel grade B100. The points that by the multiva-

Fig. 9 – Graphic plot of the results returned by Sammon’s
algorithm applied to steel grade B102G55.

Fig. 9 – Résultats obtenus avec l’algorithme de Sammon 
pour la nuance B102G55.

Fig. 10 – Graphic plot of the results returned by Sammon’s
algorithm applied to the other steel grade families.

Fig. 10 – Résultats obtenus avec l’algorithme de Sammon 
pour les autres nuances.
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riable Mahalanobis algorithm can be considered as outliers,
are shown as rounded points. It appears that a more selective
trimming of outliers can be done with this method than with
the Sammon projection.

■ NEURAL NETWORK MODEL

As a consequence of these treatments of data, the most suita-
ble variables, for the different steel grades, appeared to be :

– hardness, steel grade, target roughness, thickness, elonga-
tion, speed, roll bending and type of emulsion ;

– cycle : This variable is related to the hardness and the steel
grade ; it will be used as a criterion for classifying the dif-
ferent steel grades ;

– width : This value is directly related to the total roll force
value applied ;

– cumulative rolled length : This variable, together with elon-
gation, is a measurement of the wearing of the rolls. The
greater the length rolled, the greater the wear of the rolls.

– strip tension : The strip tension is calculated as a function
of the width and thickness of the strip to be rolled ;

– differential roll force : This variable is calculated as the dif-
ference in force between the drive and operator side.

In spite of not being a numerical data, the annealing cycle is
used by as a numerical input to the networks. For this pur-
pose, a number is assigned to each annealing cycle included
in the available data (as example cycle A1 is referred to as 1,
A2 as 2, B1 as 3, K1 as 10 and so on).

After performing several tests with neural networks, based on
the conclusions reached after applying these algorithms, the
final configuration of the four networks that finally constitute
the model is as follows :

B100F55 NETWORKS and B102G55 NETWORK
(Topology 10-21-1)

The cycles used are 3, 4, 5, 6.
Inputs:
[0] = Annealing cycle
[1] = Minimum target roughness
[2] = Strip width
[3] = Strip thickness
[4] = Accrued length rolled by the rolls
[5] = Strip tension at the skin pass mill
[6] = Line speed
[7] = Elongation
[8] = Type of emulsion used in the skin pass mill
[9] = Differential roll force
[10] = Roll-bending.

B011F97 NETWORK (Topology 8-17-1)
Inputs:
[0] = Strip width
[1] = Strip thickness
[2] = Accrued length rolled by the rolls
[3] = Strip tension at the skin pass mill
[4] = Line speed
[5] = Elongation
[6] = Type of emulsion used in the skin pass mill
[7] = Differential roll force
[8] = Roll-bending.

“OTHERS” NETWORK (Topology 12-24-1)
It encompasses all the other steel grades processed in the line.

The cycles used are 1,3,4,5,8,10.

Fig. 11 – Mahalanobis distance.

Fig. 11 – Distance de Mahalanobis.

Fig. 12 – Graphic plot showing the outliers in a limited zone
of Sammon’s plot for steel grade B100.

Fig. 12 – Zone partielle d’une projection de Sammon, 
avec les points anormaux, nuance B100.
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There are 2 additional variables : hardness and main grade.
Inputs:
[0] = Hardness
[1] = Main grade
[2] = Annealing cycle
[3] = Minimum target roughness
[4] = Strip width
[5] = Strip thickness
[6] = Accrued length rolled by the rolls
[7] = Strip tension at the skin pass mill
[8] = Line speed
[9] = Elongation
[10] =Type of emulsion used in the skin pass mill
[11] = Differential Roll Force
[12] = Roll-bending.

For all networks, Roll Force preset is the output. In order to
monitor roughness, an additional neural network with topo-
logy 8:18:3 is added, supervising each group. The outputs are
top and bottom roughness. The inputs are :

[0] = Roll Force estimated by model as pre-set
[1] = Line speed
[2] = Minimum target roughness
[3] = Roll-bending
[4] = Strip width
[5] = Strip thickness
[6] = Accrued length rolled by the rolls
[7] = Strip tension at the skin pass mill.

A representation of the final model can be seen in figure 13.
The variables used in the model are connected to neural net-
works across a commutation based on steel type. This com-
mutation permits to introduce, in each neural network, the
only variables that have been previously defined. The initial
roll force together with the other input variables is introduced
into the neural network. The final roll force and top and bot-
tom roughness are obtained through this validation network.

Tables I to IV show the results obtained after training.
Tolerance is defined as the percentage of target (roll force)
considered satisfactory for the model. Each table refers to a
different neural network, used for a different steel grade or
steel grades set.

The first outstanding result is that a 5 % tolerance can be
applied in the model, this accuracy being good enough for the
skin-pass mill. Improved accuracy would be extremely diffi-
cult to obtain and, in view of the above, would not provide
noticeable improvements in the process.

Fig. 13 – Representation of neural network mode.

Fig. 13 – Diagramme du réseau de neurones.

TABLE I : Results obtained with the grade 
B100F55 network.

TABLEAU I : Résultats obtenus avec le réseau 
de la nuance B100F55.

Tolerance : 20 % Hits : 100 % Misses : 0 %

Tolerance : 15 % Hits : 100 % Misses : 0 %

Tolerance : 10 % Hits : 96.5 % Misses : 3.5 %

Tolerance : 5 % Hits : 83.6 % Misses : 16.4 %

Tolerance : 1 % Hits : 34.4 % Misses : 65.6 %

Tolerance : 20 % Hits : 100 % Misses : 0 %

Tolerance : 15 % Hits : 99.13 % Misses : 0.87 %

Tolerance : 10 % Hits : 94.21 % Misses : 5.79 %

Tolerance : 5 % Hits : 80.20 % Misses: 19.89 %

Tolerance : 1 % Hits : 29.30 % Misses : 70.79 %

TABLE II : Results obtained with the grade 
B102G55 network.

TABLEAU II : Résultats obtenus avec le réseau 
de la nuance B102G55.

Tolerance : 20 % Hits : 100 % Misses : 0 %

Tolerance : 15 % Hits : 98.1 % Misses : 1.9 %

Tolerance : 10 % Hits : 93.4 % Misses : 6.6 %

Tolerance : 5 % Hits : 81.6 % Misses : 18.4 %

Tolerance : 1 % Hits : 29 % Misses : 71 %

TABLE III : Results obtained with the grade 
B011F97 network.

TABLEAU III : Résultats obtenus avec le réseau 
de la nuance B011F97.

Tolerance : 20 % Hits : 100 % Misses : 0 %

Tolerance : 15 % Hits : 99.2 % Misses : 0.8 % 

Tolerance: 10 % Hits : 88.2 % Misses : 12.8 %

Tolerance : 5 % Hits : 74.7 % Misses : 25.3 %

Tolerance : 1% Hits : 16.1% Misses : 81.9 %

TABLE IV : Results obtained with the grade 
B102G55 network.

TABLEAU IV : Résultats obtenus avec le réseau 
de la nuance B102G55.
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The second relevant result is the progress achieved
by this neural network, compared with previous
neural network trials, by using the current elonga-
tion as an additional discrimination parameter. A
significant further improvement may be obtained
when the new variable “cumulative length rolled
by the rolls” can be used as an input variable. The
introduction of new variables, such as the diffe-
rential roll force and roll-bending values, lead to a
more sturdy model and to a significant improve-
ment of the hit rate achieved by the networks.

Another important benefit is in the robustness and
reliability of the implemented model, resulting
from the careful data validation process and the
subsequent revision of the set of variables to be
considered in the various components of the model.

Thus, the model has been implemented in the faci-
lity process computer in order to initiate a final
stage of start up and on line validation.

Some time was dedicated to look for operator activities and to
fix any difficulty that may arise when applying the model for
special operations. In such circumstances, the model is run-
ning in stand by and supervized by the operators. After some
period of adjustment, the model is able to run by itself without
any supervision.

■ DISCUSSION OF RESULTS

The data obtained from the model of roughness and roll force,
when compared with current data manually introduced by the
operators, establish that the following progress have been
achieved by Aceralia :

• The neural model is stable (fig. 14). Rude peaks due to
roughness preset changes or dimension changes are absor-
bed more progressively than they can be by the operator.
This avoids the transient period that the operator needs to
adjust the process, a step that is foreseen by the model for
presetting.

In figure 14, there are three peaks that correspond to adjust-
ments to compensate for inadequate preset by the operator.
Indeed, when drastic changes in incoming coils occur the
operator cannot react quickly enough. Eventually, after seve-
ral trials the preset of the operator matches the one predicted
by the model.

Also, the model may react faster than the operator to varia-
tions of the process variables, for instance in the zone marked
with a circle in figure 14. It corresponds to a moment when
the obtained roughness meets the requested target. After few
coils, the operator changes the preset for the one that is indi-
cated by the model.

• The model tries to get a more uniform response, minimising
drastic variations of roughness. It must be reminded that a
high roughness is usually the consequence of process para-
meters that are adopted to meet other quality requirements.
A comparison of model and operator preset evolutions
against the targeted roughness can be drawn (fig. 15 and 16).

With the manual preset, the actual strip roughness may be
inferior to the one requested by the customer (zones marked
by an ellipse in figures 15 -16). With the developed model,
this cannot happen, as it always tries to obtain a strip rough-
ness equal or higher than target.

This phenomenon occurs when variations in the input condi-
tions make the operator to decrease or increase the roll force,
thus yielding a strip roughness lower than requested. It can be
seen in figures 15 and 16that the developed model reacts in a
similar way, increasing or decreasing roll force as necessary
to control strip roughness, but never allowing it to go below
the requested level.

Automating pre-sets of forces and tension with the new deve-
loped model makes it possible to keep a uniform production
of similar strips. Without the model it is not possible to
achieve a uniform strip roughness.

Fig. 14 – Comparison of previous and new force model.

Fig. 14 – Comparaison de l’ancien et du nouveau 
modèle de force.

Fig. 15 – Comparison of previous and new roughness models 
at the topside.

Fig. 15 – Comparaison  de la rugosité avec et sans le modèle, 
en face supérieure.
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Further qualitative improvements can be obtained, such as :

– avoiding the frequent manual roughness measurements by
quality supervisors, as the actual roughness is usually close
to the one predicted by the model ;

– increasing rolls life, not only because of a reduction of rol-
ling forces, but also because of less variation of the rolling
force, thus avoiding high stresses in transient conditions ;

– training the model with new materials that will be proces-
sed in the future.

■ CONCLUSIONS

The neural-network model obtained offers the following
advantages :

• It facilitates the operator’s work, who is not longer in charge
of calculating the rolling forces and tensions and who can
concentrate on other necessary operations.

• Roll life is improved and energy consumption is reduced, as
a more uniform force is applied, while, at the same time,
maintaining the minimum roughness value.

• As force calculation is not operator-dependant, the process
quality is not affected by the skills of the operator working
in each shift.

• To a large extent, better results are obtained from the diffe-
rentiated treatment given to the various coating and mecha-
nical properties of the strip as compared to the previous
generalized treatment. Such an improvement is also reflec-
ted in the increased system reliability.

• The connectionist model predicts the values for
the force to be applied with a hit rate of 96 % (for
a 5 % tolerance). As for the roughness model, the
hit rates are nearly 98 %, with an error margin of
0.2 µm

With these results, the manual operation mode was
substituted for the new model. The new configura-
tion yields a significant improvement in process
uniformity, better roll performance and lower
energy consumption rates.
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Fig. 16 – Comparison of previous and new roughness models 
at the bottom side.

Fig. 16 – Comparaison de la rugosité avec et sans le modèle, 
en face inférieure.


