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ABSTRACT: A convenient process for the direct 

functionalization of ferrocene that exploits the high electrophilic 

character of gold-vinyl carbenoids catalytically generated from 

vinyldiazo compounds and gold complexes is reported. This 

process takes place with complete regioselectivity (vinilogous 

reactivity). The synthesis of the corresponding ruthenocene 

analogues has also been achieved. Preliminary studies on the 

reactivity of these new organometallic compounds seems to 

suggest that the presence of the adjacent ferrocenyl group confers 

a specific reactivity on the functionalized carbon chain manifested 

in the easy dry state aerobic allylic oxidation. 

More than sixty years after the discovery of ferrocene,1 the 

chemistry of this organometallic compound continues to captivate 

chemists. This interest is based, mainly, on the huge number of 

applications of functionalized ferrocenes in several relevant areas 

including catalysis, material science and medicine.2 Accordingly, 

the development of new and efficient methods for the synthesis of 

functionalized ferrocenes is highly desirable.  

In contrast to the situation found in other metallocenes, direct 

functionalization of the ferrocene is viable since its robust nature 

makes it compatible with the reaction conditions required for most 

common organic transformations. However, despite recent ad-

vances,3 the number of currently available methodologies for the 

direct attachment of carbon chains bearing functional groups to 

the ferrocene remain very limited and can be classified into two 

general categories: a) initial Friedel-Crafts acylation followed by 

subsequent transformations of the resulting acylferrocene,4 and b) 

initial formation of ferrocenyl lithium by treatment with 

alkyllithium reagents followed by coupling with a suitable 

carboelectrophile.5 These classical methodologies have been 

successfully applied to the synthesis of many functionalized 

ferrocenes; however, these approaches also entail some limita-

tions. Thus, in general, a multistep sequence is often required to 

install specific functionalities in remote positions. Moreover, 

these methodologies display a low functional group compatibility 

(particularly the second one, due to the high reactivity of 

ferrocenyl lithium). 

As expected, in general, Friedel-Crafts alkylation reactions of 

ferrocene do not represent a convenient synthetic method because 

mixtures of several alkylation products are formed.6 

On the other hand, the generation of electrophilic carbene spe-

cies via transition-metal-catalyzed decomposition of -diazo 

carbonyl derivatives and their subsequent reactivity in addition 

and insertion reactions has become a powerful methodology in 

organic synthesis.7 Surprisingly, in spite of the tremendous impact 

of gold catalysis in synthetic organic chemistry,8 the use of gold 

complexes for the catalytic decomposition of -diazo carbonyl 

derivatives has been unexplored until recently. Indeed,  in 2005 

Nolan, Díaz-Requejo, Pérez et al reported the first gold-catalyzed 

decomposition of ethyl diazoacetate and the subsequent reactivity 

of the resulting carbenic species in addition and insertion reac-

tions.9 After this seminal contribution, this field has evolved very 

rapidly with more and more gold-catalyzed transformations of 

simple diazo compounds.10 In sharp contrast, the gold-catalyzed 

transformations involving vinyldiazo derivatives remain less 

studied.11 In this regard, we recently reported the gold-catalyzed 

coupling of vinyldiazo derivatives and unsaturated substrates.12 

The reaction is believed to proceed by means of a gold-vinyl 

carbenoid intermediate with a high electrophilic character at the 

terminal position.13,14 Particularly, we found that a number of 

activated arenes were able to react with vinyldiazo compounds 

affording the corresponding C-arylation products (Eq. 1).12a 

 

 

On the basis of these findings, we questioned whether the use 

of ferrocene would lead to an analogous coupling, providing 

functionalized ferrocene derivatives. Herein, we disclose the 

successful realization of this purpose and report a simple gold-

catalyzed protocol for the preparation of ferrocene (and 

ruthenocene) derivatives bearing a functionalized allyl group. 

This method represents an unusual example of functionalization 

of metallocenes involving carbenes as reaction partners.15 Prelim-

inary studies on the reactivity of the new functionalized ferrocene 

derivatives prepared are also reported.  

In accordance with our previous research, 

[Au(IPr)(CH3CN)]SbF6 in dichloromethane was initially selected 

as the catalytic system. Thus, stirring a solution of 

vinyldiazoacetate 1a (R1 = R2 = H), ferrocene (2a, 4 equiv), and 

[Au(IPr)(CH3CN)]SbF6 (5 mol%) in dichloromethane at room 

temperature for 4 h resulted in the isolation of ethyl (E)-4-

ferrocenylbut-2-enoate (3a) as a yellowish oil in 75% after chro-

matographic purification (Scheme 1).16 

This gold-catalyzed reaction entails some significant features: 

1) It takes place with complete regioselectivity being only the 

vinilogous position of the vinyldiazoacetate involved,14 2) exclu-

sive formation of the E-isomer was observed, and 3) although 

allylsubstituted ferrocenes are known,17 compound 3a bearing a 

ethoxycarbonyl group bound to the allyl moiety is a new and 

densely functionalized ferrocene derivative of potential interest. 



 

Further studies performed to determine the scope of this gold-

catalyzed process are provided in Scheme 1. First, we observed 

that the nature of the ester group does not affect notably the 

course of the reaction. Indeed, tert-butyl- (1b; R1 = H, R2 = H, 

EWG = COOtBu), and benzylsubstituted (1c; R1 = H, R2 = H, 

EWG = COOBn) vinyldiazo compounds undergo the coupling 

process affording the functionalized ferrocene derivatives 3b and 

3c in moderate yields as single E estereoisomers. The reaction 

scope was then extended to vinyldiazo compounds substituted at 

the vinyl moiety. In this regard, we observed that an alkyl group 

at the C atom (diazoacetate 1d; R1 = Me, R2 = H, EWG = 

COOEt) could be utilized to produce the ferrocene derivative 3d. 

In contrast to the previous examples involving unsubstituted 

diazocompounds 1a-c, in this case the product was obtained as a 

mixture of E (42%) and Z (21%) isomers, each easily separable by 

flash chromatography. In agreement with previous observations, 

we found that substitution at the C position has a detrimental 

effect on the coupling reaction. In fact, -substituted diazoacetate 

1e (R1 = H, R2 = Et, EWG = COOEt) afforded the corresponding 

ferrocene derivative 3e in low yield (12%) after heating in DCE at 

50ºC for 10 h. Interestingly, compound 3e was isolated as a single 

E isomer. Pleasingly, we found that diazo derivatives bearing 

other stabilizing groups can also participate in this coupling. For 

instance, vinyldiazo compound 1f (R1 = Me, R2 = H, EWG = 

COMe) featuring an acetyl group gave ferrocene derivative 3f in 

50% yield and predominantly as the E isomer (E/Z 14:1 according 

to the 1H-NMR of the crude reaction). 

 

Scheme 1. Gold-catalyzed reaction of alkenyl diazo deriva-

tives 1 and ferrocene (2a).
a
 

 

aReaction conditions: 1 (0.5 mmol), 2a (2.0 mmol), 

[Au(IPr)(CH3CN)]SbF6 (5 mol%), CH2Cl2 (0.1 M), rt. Values 

within parentheses represent yields of the isolated products after 

column chromatography. bA separable mixture of E (42%) and Z 

(21%) isomers was obtained. cReaction conducted in 1,2-

dichloroethane. dReaction conducted in 1,2-dichloroethane at 50 

ºC. eA 14:1 mixture of E/Z isomers was obtained. 

 

The regio- and stereochemistry of compounds 3a-f were ascer-

tained by NMR experiments. Moreover, an X-ray analysis was 

performed on compound (E)-3f (Figure 1). 

Next, we conducted some experiments aimed at obtaining in-

formation about the mechanism of this transformation. First, the 

reaction of vinyldiazo compound 1a with deuterated ferrocene 

under the standard conditions resulted in the formation of the 

corresponding ferrocene derivative with incorporation of deuteri-

um at the -position (Eq. 2). The effect of the electronic proper-

ties of the ferrocene component on the rate of the coupling reac-

tion was also investigated. Indeed, a competition experiment 

between ferrocene (2a) and acetylferrocene (2b) resulted in the 

exclusive formation of compound 3a (Eq. 3). Finally, in good 

agreement with the above-mentioned competition experiment, we 

observed that the reaction of vinyldiazo compound 1a and 

acetylferrocene (2b) resulted extremely sluggish. In this regard, 

we found that prolonged heating (> 24 h) a solution of 1a, 2b and 

the gold catalyst (5 mol%) in 1,2-dichloroethane at 50 ºC afforded 

disubstituted ferrocene derivative 3g (Eq. 4). Interestingly, alt-

hough compound 3g is formed in very low yield, the incorpora-

tion of the functionalized allylic moiety took place exclusively at 

the unsubstituted cyclopentadienyl ligand. 

 

 

These experimental mechanistic data are consistent with an 

electrophilic aromatic substitution pathway (Scheme 2).18 Thus, in 

accordance with previous work,11,12 the process would be initiated  

with the formation of a gold alkenyl carbenoid intermediate I, 

which would act as the electrophillic partner in an electrophilic 

aromatic substitution to give, after reaction with ferrocene, the -

complex intermediate II. Subsequent deprotonation and 

protodemetalation would account for the formation of the final 

functionalized ferrocene derivatives 3. 

 

Scheme 2. Proposed mechanism for the Au(I)-catalyzed 

synthesis of functionalized ferrocene derivatives 3. 

 

 

Next, we decided to extend this gold-catalyzed reaction to 

ruthenocene. In this regard, we found that the reaction required 

more vigorous conditions than those needed for the preparation of 

the ferrocene analogues. This fact is fully consistent with our 

mechanistic proposal because the lower reactivity of ruthenocene 

toward electrophilic aromatic substitution reactions is well-

documented.19 Thus, heating for 12 h a solution of vinyldiazo 

compound 1a, an slight excess of ruthenocene (4) and 



 

[Au(IPr)(CH3CN)]SbF6 (5 mol%) in 1,2-dichloroethane at 50 ºC 

afforded the corresponding functionalized ruthenocene derivative 

5a in 25% yield after chromatographic purification (Eq. 5).20 In a 

similar way, vinyldiazo compound 1b reacted with ruthenocene 

giving rise to the metallocene 5b in moderate yield. As in the case 

of the ferrocene analogues, the formation of compounds 5a,b took 

place with total regio- and (E)-stereoselectivity. The structure of 

5b has been determined by an X-ray crystal analysis after crystal-

lization from pentane (Figure 1).  

 

 

 

Figure 1. X-ray structures of (E)-3f (left) and (E)-5b (right). 

Thermal ellipsoids are drawn at the 30% probability level. 

When investigating the scope of the gold-catalyzed reaction of 

vinyldiazo compounds 1 and ferrocene (2), we observed that in 

some cases along with the corresponding ferrocene derivative 3 

small amounts of a side product were also isolated after the chro-

matographic purification. For example, a violet fraction corre-

sponding to a more polar compound was collected in the chroma-

tographic purification of ferrocene derivative 3a. This side prod-

uct was identified as ethyl (E)-4-ferrocenyl-4-oxoprop-2-enoate 

(6a) demonstrating that an oxidation of the methylene group 

bound to the ferrocenyl moiety took place.21 Given that the 1H-

NMR of the reaction crude did not reveal the presence of this 

compound we wondered about its formation. In this regard, we 

observed an immediate change in colour (from orange to violet) 

when samples of pure ferrocene 3a adsorbed on silica gel in vacu-

um were exposed to air. Compound 6a was obtained in this way 

in moderate yield (25-30%). Further studies demonstrated that the 

oxidation process of compound 3a was more efficient when 1 atm 

of oxygen was used instead of air; in this way reproducible yields 

about 50% could be obtained (Eq. 6). Control experiments 

showed that both oxygen and silica gel are required for the oxida-

tion. In particular, the adsorption on silica gel seems to play a 

decisive role in this aerobic oxidation process.22 Similarly, 

ferrocene derivatives 3b,c were converted in the corresponding 

oxo-substituted derivatives 6b,c (Eq. 6). In spite of the modest 

yields, the transformation of ferrocene derivatives 3a-c into com-

pounds 6a-c represents an unusual oxidation of an allylic position 

under aerobic conditions.23,24 

 

 

Finally, owing to our interest in the chemistry of vinyldiazo 

compounds we explored the feasibility of transforming com-

pounds 3 into new vinyldiazo compounds bearing a ferrocenyl 

group. For our exploratory study, we investigated the reaction of 

ferrocene derivative 3a and 4-acetamidobenzenosulfonyl azide (p-

ABSA) as the diazo transfer reagent in acetonitrile at 0 ºC (Eq. 7). 

After conventional work-up and chromatographic purification we 

were able to isolate 2-diazo-4-ferrocenylbut-3-enoate (7a) as a 

orange oil in a synthetically useful yield (62%). Taking into ac-

count the rich chemistry that has been reported in the last years 

for vinyldiazo derivatives, compound 7a can be envisioned as a 

realistic starting reagent for the synthesis of a wide range of new 

functionalized ferrocene derivatives by means of well-established 

experimental protocols.25 

 

 

In conclusion, we have developed a formal gold-catalyzed C-H 

functionalization of ferrocene and ruthenocene through a 

electrophillic substitution reaction. The reported process repre-

sents a new application of vinyldiazo compounds in gold cataly-

sis, a young yet promising research topic. This process enables the 

preparation of metallocene derivatives with an otherwise difficult-

to-access substitution pattern. Apparently, the presence of the 

adjacent ferrocenyl group confers a specific reactivity on the 

functionalized carbon chain manifested in the easy aerobic oxida-

tion reaction in the dry state when adsorbed on silica gel, which 

deserves further attention. The extension of this methodology to 

other relevant metallocenes as well as follow-up research on the 

synthetic utility of the reported funtionalized metallocene deriva-

tives are currently under way in our group. 
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