
Progress in Artificial Intelligence manuscript No.
(will be inserted by the editor)

Binary Relevance Efficacy for Multilabel Classification

Oscar Luaces · Jorge Dı́ez · José Barranquero · Juan José del Coz ·
Antonio Bahamonde

Received: date / Accepted: date

Abstract The goal of multilabel (ML) classification is

to induce models able to tag objects with the labels that

better describe them. The main baseline for ML classi-

fication is Binary Relevance (BR), which is commonly

criticized in the literature because of its label inde-

pendence assumption. Despite this fact, this paper dis-

cusses some interesting properties of BR, mainly that it

produces optimal models for several ML loss functions.

Additionally, we present an analytical study about ML

benchmarks datasets, pointing out some shortcomings.

As a result, this paper proposes the use of synthetic

datasets to better analyze the behavior of ML meth-

ods in domains with different characteristics. To sup-

port this claim, we perform some experiments using

synthetic data proving the competitive performance of

BR with respect to a more complex method in difficult
problems with many labels, a conclusion which was not

stated by previous studies.

Keywords Multilabel Classification · Binary Rele-

vance · Synthetic datasets · Label dependency

1 Introduction

Multilabel (ML) classification aims at obtaining models

that provide a set of labels to each object, unlike multi-

class classification that involves predicting just a single

class. This learning task arises in many practical do-

mains; for instance, media documents (texts, songs and

videos) are usually tagged with several labels to briefly

inform users about their actual content. Another well-

known examples include assigning keywords to a paper,

Artificial Intelligence Center. University of Oviedo at Gijón.
Campus de Viesques, 33204, Gijón (Asturias) Spain
www.aic.uniovi.es

illness to patients, objects to images or emotional ex-

pressions to human faces.

ML classification has received many contributions

from different points of view. In Schapire and Singer

(2000) and Elisseeff and Weston (2001) the approach

was an extension of multiclass classification. Other meth-

ods follow different learning frameworks: this is the case

of nearest neighbors (Zhang and Zhou, 2007), decision

trees (Tsoumakas et al, 2010b), Bayesian learners (Za-

ragoza et al, 2011; Bielza et al, 2011) and the combina-

tion of logistic regression and instance based learning

(Cheng and Hüllermeier, 2009).

An interesting group of learners is based on the

chain rule, using both inputs and labels in the learn-

ing process. In this group are Read et al (2009b), Dem-

bczyński et al (2010), and Montañés et al (2011). An-

other successful approach consists in learning a ranking

of labels for each instance and then, if necessary, pro-

duce a bipartition with a threshold that can be a fixed

value or a variable learned from the learning task, see

Elisseeff and Weston (2001) and Quevedo et al (2012).

Finally, there are other approaches that aim to explic-

itly optimize a given loss function, for instance Dem-

bczyński et al (2010), Dembczyński et al (2011), Pet-

terson and Caetano (2010) and Quevedo et al (2012).

ML learning presents two main challenging prob-

lems. The first one bears on the computational com-

plexity of the algorithms. If the number of labels is

large, then a very complex approach is not applicable

in practice, so the scalability is a key issue in this field.

The second problem is related with the own nature of

ML data. Not only the number of classes is higher than

in multiclass classification, but also each example be-

longs to an indeterminate number of labels, and more

important, labels present some relationships between

them. From a learning perspective, the hottest topic

2 Oscar Luaces et al.

in ML community is probably to design new methods

able to detect and exploit dependencies among labels.

Actually, several methods have being proposed in that

direction, for instance those based on the chain rule

cited before.

Typically, all these new approaches are experimen-

tally compared with Binary Relevance (BR) (Godbole

and Sarawagi, 2004; Tsoumakas and Katakis, 2007), the

main baseline for ML classification. BR is a decomposi-

tion method based on the learning assumption that la-

bels are independent. Therefore, each label is classified

as relevant or irrelevant by a binary classifier learned

for that label independently from the rest of labels. De-

spite in those experimental studies BR is outperformed

by new approaches, it should not be consider just as a

mere baseline. This paper proves that BR is not only

computationally efficient, which is important in many

practical situations, but is also effective, in the sense

that it produces good ML classifiers according to sev-

eral metrics. In fact, BR is able to induce optimal mod-

els when the target loss function is a macro-averaged

measure. Moreover, this paper also supports the hy-

pothesis that BR is competitive with respect to more

complex approaches when the ML classification tasks

are difficult, for instance, in domains with many labels

and a high label dependency.

On the other hand, the experimental studies in ML

classification have to deal with some issues. The most

important one is the lack of rich collections of bench-

mark datasets. Although ML is a very active area of re-

search, there are only a few publicly available datasets.

This fact conditions the experimental assessments of

new proposals in such a way that some sophisticated

algorithms seem to perform better than simpler learn-

ers, like BR, only because of the experimental sampling.

Having in mind this context, our proposal is to com-

bine benchmark and synthetic datasets in order to ob-

tain empirical evidences about the actual performance

of ML methods in different learning situations. Usually,

synthetic data have been employed to illustrate a par-

ticular strength or weakness of a given algorithm, so in

those cases the data generation process is algorithm-

specific. In contrast, we propose to build tools that can

produce synthetic datasets useful to study the behavior

of any new ML classification method.

In this paper we employed a general-purpose gen-

erator of synthetic datasets for creating a collection of

ML problems that reproduce a wide variety of situa-

tions. This generator1 produces synthetic ML data al-

lowing the user to select the desired values for some

important characteristics, like the number of labels or

the level of label dependency. Using a collection of syn-

1 It is available online at www.aic.uniovi.es/ml generator.

thetic datasets, we performed a exhaustive experiment

comparing BR with an state-of-the-art method, ECC

(Ensemble of Classifier Chains) (Read et al, 2011b).

The results of these experiments show some interest-

ing evidences that BR is very competitive in hard ML

problems.

The main contributions of this paper are threefold:

i) to formally discuss the properties of BR to obtain

good models for macro-average loss functions; ii) to

propose the use of synthetic datasets to remedy the

shortcomings of benchmark datasets, and iii) to exper-

imentally prove the competitive performance of BR in

ML domains in which the number of labels and the label

dependency are high.

The rest of the paper is organized as follows. The

next section gives a formal presentation of ML learn-

ing tasks and hypotheses. Section 3 reviews the main

loss functions for ML classification. Then, we discuss

the advantages of BR strategy, specially those related

with its efficacy for optimizing macro-average loss func-

tions. In Section 5 we present an analytical study about

the properties of ML benchmark datasets. Next section

describes a genetic algorithm to build ML synthetic

datasets. Finally, Section 7 reports some experiments

that support our claims and Section 8 draws some con-

clusions.

2 Multilabel Classification

Let L be a finite and non-empty set of labels {l1, . . . , lL},
let X be an input space, and let Y be the output space

defined as the set of subsets of labels L .

Definition 1 A ML classification task is given by a

dataset

D = {(x1,y1), . . . , (xn,yn)} ⊂ X × Y (1)

of pairs of inputs xi ∈ X and subsets of labels yi ∈ Y
as outputs.

The labels assigned to each input are usually referred

to as the relevant labels for the input entry.

Sometimes, when the input space is an Euclidean

space of p dimensions, we will refer to the learning task

by a couple of matrices

D ≡ (X,Y), (2)

in which X = (x1, . . . ,xn) and Y = (y1, . . . ,yn). In

order to make the notation clearer, each element of Y,

yij , is 1 when label j is relevant for example i, and 0

otherwise.

The goal of a ML classification task D is to induce

a hypothesis defined as follows.

http://www.aic.uniovi.es/ml_generator

Binary Relevance Efficacy for Multilabel Classification 3

Definition 2 A ML hypothesis is a function h from the

input space to the output space, the power set of labels

P(L); in symbols,

h : X −→ Y = P(L) = {0, 1}L. (3)

Hence, h(x) is the set of relevant labels predicted by

h for the object x. Sometimes, we use h(X) = Y to

mean that the predictions of h applied to an input set

represented by a matrix X are a set of labels codified

by a matrix Y.

3 Loss Functions for Multilabel Classification

ML classifiers can be evaluated from different points of

view. The predictions can be considered either as a bi-

partition or as a ranking of the set of labels. This paper

only studies ML classification tasks. Consequently, the

performance of ML classifiers will be evaluated as a bi-

partition and the loss functions used must compare the

subsets of relevant and predicted labels.

Usually this kind of measures can be divided in two

main groups (Tsoumakas et al, 2010a). The example-

based loss functions compute the average differences of

the actual and the predicted sets of labels over all ex-

amples. The label-based measures decompose the eval-

uation with respect to each label. There are two op-

tions here, averaging the measure label-wise (usually

called macro-average), or concatenating all label pre-

dictions and computing a single value over all of them,

the micro-average version of a measure. Macro-average

measures give equal weight to each label, and are often

dominated by the performance on rare labels. In con-

trast, micro-average metrics gives more weight to fre-

quent labels. These two ways of measuring performance

are complementary one each other, and both are infor-

mative.

For further reference, let us recall the formal defini-

tions of these loss functions, given a ML hypothesis h

(3). For a prediction h(x) and a subset of truly relevant

labels y ⊂ L , for each label l ∈ L we can compute the

contingency matrix in Table 1.

Table 1 Contingency matrix for each label l ∈ L given the
actual relevant, y, and the predicted, h(x), labels

y[l] = 1 y[l] = 0
h(x)[l] = 1 a(x, l) b(x, l)
h(x)[l] = 0 c(x, l) d(x, l)

Each entry (a, b, c, d) in this matrix has a value of

1 when the predicates of the corresponding row and

column are both true, otherwise the value is 0. Notice

for instance, that a(x, l) is 1 only when the prediction

of h includes the truly relevant label l. Furthermore,

only one of the entries of the matrix is 1, the rest are 0.

Throughout the definitions of the loss functions be-

low, we will consider a set of n examples in a ML task

with L labels. Additionally, we use the following aggre-

gations of contingency matrices:

Axi
=
∑L
j=1 a(xi, lj) Bxi

=
∑L
j=1 b(xi, lj)

Cxi =
∑L
j=1 c(xi, lj) Dxi =

∑L
j=1 d(xi, lj)

Alj =
∑n
i=1 a(xi, lj) Blj =

∑n
i=1 b(xi, lj)

Clj =
∑n
i=1 c(xi, lj) Dlj =

∑n
i=1 d(xi, lj)

A =
∑n
i=1

∑L
j=1 a(xi, lj) B =

∑n
i=1

∑L
j=1 b(xi, lj)

C =
∑n
i=1

∑L
j=1 c(xi, lj) D =

∑n
i=1

∑L
j=1 d(xi, lj)

Definition 3 The Recall is defined as the proportion

of truly relevant labels that are included in predictions.

The example-based, macro and micro average versions

are computed as follows:

Rex =
1

n

n∑
i=1

Axi

Axi + Cxi

,

Rma =
1

L

L∑
j=1

Alj
Alj + Clj

,

Rmi =
A

A+ C
.

Definition 4 The Precision is defined as the propor-

tion of predicted labels that are truly relevant. Example-

based, macro and micro versions are defined by

P ex =
1

n

n∑
i=1

Axi

Axi +Bxi

,

Pma =
1

L

L∑
j=1

Alj
Alj +Blj

,

Pmi =
A

A+B
.

The trade-off between Precision and Recall is for-

malized by their harmonic mean, called F-measure. Fβ
(β ≥ 0) is computed by

Fβ =
(1 + β2)P ·R
β2P +R

Definition 5 Example-based, macro and micro Fβ (β ≥
0) are defined by

F exβ =
1

n

n∑
i=1

(1 + β2)Axi

(1 + β2)Axi
+Bxi

+ β2Cxi

,

Fmaβ =
1

L

L∑
j=1

(1 + β2)Alj
(1 + β2)Alj +Blj + β2Clj

,

Fmiβ =
(1 + β2)A

(1 + β2)A+B + β2C
. (4)

4 Oscar Luaces et al.

F1 is the most frequently used F-measure.

Other performance measures for ML classifiers can

also be defined using contingency matrices (Table 1).

This is the case of the Accuracy and Hamming loss.

Definition 6 The Accuracy (Tsoumakas and Katakis,

2007), or the Jaccard index, is a slight modification of

the F1 measure defined as

Acex =
1

n

n∑
i=1

Axi

Axi +Bxi + Cxi

,

Acma =
1

L

L∑
j=1

Alj
Alj +Blj + Clj

,

Acmi =
A

A+B + C
.

Definition 7 The Hamming loss is the proportion of

misclassifications. The macro-average is given by

Hlma =
1

L

L∑
j=1

Blj + Clj
Alj +Blj + Clj +Dlj

. (5)

Taking into account that the sum of the components

of contingency matrices (see Table 1) is 1, the macro

Hamming loss can be written as

Hlma =
1

L

L∑
j=1

Blj + Clj
n

=
B + C

L · n

= Hlmi.

Moreover,

Hlma = Hlmi

=
1

n

n∑
i=1

Bxi
+ Cxi

L

= Hlex.

That is to say, the Hamming loss is a measure that has

the same value in their macro, micro and example-based

versions.

Finally, another important ML example-based met-

ric is the Subset zero-one loss.

Definition 8 The Subset zero-one loss looks if pre-

dicted and relevant label subsets are equal or not:

S0/1 =
1

n

n∑
i=1

[[yi 6= h(xi)]]. (6)

in which the expression [[p]] evaluates to 1 if the pred-

icate p is true, and to 0 otherwise. This metric is an

extension of the classical zero-one loss in multiclass clas-

sification, to the ML case.

4 Binary Relevance: a not so simple baseline

BR is a straightforward approach to handle a ML clas-

sification task. In fact, BR is usually employed as the

baseline method to be compared with new ML meth-

ods. It is the simplest strategy, but is more effective

than it may seem at first sight.

BR decomposes the learning of h into a set of bi-

nary classification tasks, one per label, where each sin-

gle model hj is learned independently, using only the

information of that particular label and ignoring the

information all other labels. In symbols,

hj : X −→ {0, 1}.

The main drawback of BR is that it does not take into

account any label dependency and may fail to predict

some label combinations if such dependence is present.

However, BR presents several obvious advantages: i)

any binary learning method can be taken as base learner;

ii) it has linear complexity with respect to the number

of labels; and iii) it can be easily parallelized. But the

most important advantage of BR is that it is able to

optimize several loss functions.

Given a ML classification task D (1), let M be a

performance measure defined for a pair of lists of sub-

sets of labels:

M
(
(y1, . . . ,yn), (ŷ1, . . . , ŷn)

)
= M(Y, Ŷ),

where Y and Ŷ represent the lists of subsets of actual

and predicted labels, respectively. If higher values of M

are preferable to lower, then the optimal predictions for

the list of inputs X are given by a hypothesis

h∗M (X) = argmax
Ŷ

∑
Y

Pr(Y|X) ·M(Y, Ŷ). (7)

It is straightforward to see that the optimization of

macro-averaged measures is equivalent to the optimiza-

tion of those measures in the subordinate BR classifiers.

When M is a macro-averaged measure, the optimiza-

tion of (7) can be decomposed through the set of labels.

Thus,

h∗M (X) = argmax
Ŷ

∑
Y

Pr(Y|X)
1

L

(L∑
j=1

M(Y[j], Ŷ[j])

)

= argmax
Ŷ

∑
Y

L∑
j=1

Pr(Y|X)M(Y[j], Ŷ[j]), (8)

in which, Y[j] is the jth column of matrix Y that repre-

sents the corresponding label, lj . Notice that this equa-

tion holds for all macro-average measures defined in

Section 3, including Hamming loss in any of its versions

since they all are equal.

Binary Relevance Efficacy for Multilabel Classification 5

The consequence of (8) is that optimal predictions

can be built from optimal outputs for each label for

classification tasks drawn from the same distribution of

the original ML task. That is, optimal BR classifiers

will yield the optimal predictions.

Proposition 1 (Macro-average optimization). The op-

timization of a macro-averaged measure M for a ML

task can be accomplished by the optimization of the sub-

ordinate BR classifiers for the binary version of M .

One consequence of this result affects the optimiza-

tion of the Hamming loss, since it can be seen as the

macro-average of the binary error rates of the labels

(5).

Corollary 1 (Hamming loss optimization). The opti-

mization of Hamming loss for a ML task can be ac-

complished by the optimization of the subordinate BR

classifiers for the binary error rate.

The same corollary can be stated for all other macro-

average loss functions. To optimize such measures, the

binary classifiers that compose a BR model must opti-

mize the corresponding binary measure. For instance,

the optimization of macro F1 requires that the binary

classifiers optimize F1, using algorithms like the one

proposed by Joachims (2005).

This section proves that BR is not just a baseline

classifier, but it provides optimal models for several

loss functions. For this reason, when new proposed ML

learners are compared with BR using macro-averaged

measures, the comparison must be done carefully, oth-

erwise the derived conclusions may be biased. Another

consequence is that future research in the field of ML

classification should be focused on obtaining new the-

oretically sound methods able to optimize other kind

of loss functions, like example-based or micro-average

measures.

5 Multilabel Benchmark Datasets

Despite the misuse of BR in comparative studies, there

is another important issue when ML methods are an-

alyzed empirically. The key problem is that there are

just a few publicly available ML datasets. The most

popular repository is maintained in MULAN website.

MULAN (Tsoumakas et al, 2010a) is a WEKA exten-

sion for ML. Table 2 reports the main properties of

MULAN’s datasets.

In addition to the scarcity of datasets, it is surpris-

ing that most of them are almost multiclass learning

tasks. This can be measured using the cardinality; that

Table 2 Description of MULAN datasets. For each dataset,
the table shows the number of examples, the number of at-
tributes, the number of labels, and the values for the cardinal-
ity (9), unconditional label dependency (11) and density (10).
There are 10 different versions of Corel16k dataset in MULAN
repository. We have only included one of them in this study
because they have similar properties. The same happens with
rcv1 datasets, with 5 distinct subsets. Tmc2007 dataset has
another version with only 500 attributes, but again the rest
of properties are practically the same

dataset ex. att. lab. card. dep. den.

bookmarks 87856 2150 208 2.03 0.10 0.98%
CAL500 502 68 174 26.04 0.14 14.97%
bibtex 7395 1836 159 2.40 0.15 1.51%
bow 43907 100 101 4.38 0.22 4.33%
mpeg 43907 320 101 4.38 0.22 4.33%
Corel5k 5000 499 374 3.52 0.15 0.94%
Corel16k 13766 500 153 2.86 0.14 1.87%
delicious 16105 500 983 19.02 0.11 1.93%
emotions 593 72 6 1.87 0.38 31.14%
enron 1702 1001 53 3.38 0.12 6.37%
eurlex-dc 19348 5000 412 1.29 0.21 0.31%
eurlex-ev 19348 1208 3993 5.31 0.11 0.13%
eurlex-sm 19348 8792 201 2.21 0.19 1.10%
genbase 662 1186 27 1.25 0.54 4.64%
mediamill 43907 120 101 4.38 0.22 4.33%
medical 978 1449 45 1.25 0.18 2.77%
rcv1 6000 47236 101 2.88 0.21 2.85%
scene 2407 294 6 1.08 0.11 17.90%
tmc2007 28596 49060 22 2.16 0.10 9.81%
yeast 2417 103 14 4.24 0.25 30.26%

Median 10580 500 101 2.87 0.17 3.59%

is, the average number of labels per example. In sym-

bols, the cardinality of a dataset is given by

cardinality(X,Y) =

∑n
i=1

∑L
j=1 yi,j

n
. (9)

In the datasets of MULAN repository, the cardinality

is very low; the median is just 2.87. Moreover, only 3

datasets out of 20 have a cardinality greater than 5,

and 11 datasets have a cardinality lower than 3.

One important consequence of this fact is that the

proportion of ones in the matrix Y of labels is also

very low. This proportion is called the density of the

dataset and it is defined as the cardinality divided by

the number of possible labels,

density(X,Y) =
cardinality(X,Y)

L
. (10)

The median of the density in MULAN’s datasets,

is only 3.59% (expressed as a percentage). Therefore,

in some datasets a hypothesis predicting no labels for

any input, will have a very low percentage of misclas-

sifications. This is a good reason to carefully consider

if the Hamming loss is as an appropriate performance

measure for a given domain.

Nevertheless, the key ingredient that makes ML an

interesting research problem is that the labels show

6 Oscar Luaces et al.

some kind of dependency between them. Otherwise, if

the label independence assumption was fulfilled, BR

would be the perfect approach. Thus, we need datasets

with different levels of label dependency in order to

evaluate the behavior of ML methods. Unfortunately,

it is not trivial how to measure label dependency.

From a Bayesian point of view, there are two possi-

ble kinds of dependency: the conditional and the uncon-

ditional dependency (Dembczyński et al, 2010; Bielza

et al, 2011; Zaragoza et al, 2011; Lastra et al, 2011).

There are conditional dependency between labels when-

ever

Pr(l1, . . . , lL|X) 6=
L∏
j=1

Pr(lj |X).

This means that there are disjoint subsets of labels such

that

Pr((lj : j ∈ J)|X) 6= Pr((lj : j ∈ J)|X, (li : i ∈ I)).

On the other hand, the dependency between labels,

if there is any, is unconditional when the reference to

input variables of the above equations can be skipped.

In this paper we measure this kind of dependency as

the average of the correlation of labels weighted by the

number of common examples. In symbols,

dependency(Y) =

∑
i<j ρ(li, lj)|li ∩ lj |∑

i<j |li ∩ lj |
, (11)

in which ρ(li, lj) represents the absolute value of the

correlation coefficient between labels li and lj .

Looking at the values of unconditional label depen-

dency in Table 2, we see that half of the datasets have

a label dependency in the range [0.1..0.15]. Only two

datasets have a value greater than 0.25. It is quite evi-

dent that the distribution of label dependency in MU-

LAN’s datasets is not very diverse. Viewing these num-

bers, how can one argue that a particular method is

able to exploit label dependency if the experiments were

performed using these datasets?

This brief analysis shows that the current collection

of benchmark datasets presents important limitations.

Specially, because ML problems are much more com-

plex than those of other learning tasks, due to their own

characteristics. For instance, in comparison with binary

or multiclass classification, ML classification has addi-

tional factors that are crucial, mainly the cardinality

and the label dependency. This fact suggests that to

study ML approaches experimentally we should need

more datasets than for the same kind of experiment in

the context of multiclass classification.

Our statement is that benchmark datasets do not

provide enough support for the experimental study of

ML methods. For this reason, we propose to use them in

combination with collections of synthetic datasets spe-

cially devised to offer a wider range of characteristics.

In the next subsection we describe one method that can

be used to generate these collections.

6 A Generator of Synthetic Datasets

Strictly speaking, there are no generators of synthetic

ML learning tasks published. The approach presented

in Read et al (2009a, 2011a) is mainly concerned with

streaming data and can hardly be used to obtain ML

datasets with a realistic combination of the properties

described in previous section.

To generate a ML dataset is not a trivial task. If one

tries to concatenate several binary classification tasks

with the same input instances, the result is that the

labels will have no relationship at all. But, as we stated

before, it is mandatory to obtain some kind of depen-

dency among labels.

In this paper we used a genetic algorithm2 to search

for ML datasets with a set of target characteristics se-

lected by the user. The goal is to obtain, for each desired

combination of properties, three datasets: train, valida-

tion and test, with approximately the same properties

values. They will be represented by matrices as in (2).

6.1 Data Generation

In all cases, the input space will be a hypercube

X = [0, 1]p ⊂ Rp. (12)

The requisites of the search set by the user include:

number of labels, number of examples for test, training

and validation sets, cardinality and dependency.

All parameters but cardinality and dependency are

somehow structural and can be easily fulfilled. Thus,

the generator starts with a set of inputs drawn from a

uniform distribution in X ; let X be the matrix of input

instances for the training set. The core idea of the gen-

erator presented here is that it searches for a hypothesis

to classify the inputs in X and obtain a ML task with

cardinality and dependency as close as possible to those

specified by the user.

Once the hypothesis is found, the validation and

test datasets are built; their input instances are inde-

pendently drawn with uniform distribution again, from

the input space X . This guarantees that training, vali-

dation and testing examples come from the same distri-

bution and the properties of these sets are more or less

2 Website: www.aic.uniovi.es/ml generator.

http://www.aic.uniovi.es/ml_generator

Binary Relevance Efficacy for Multilabel Classification 7

the same. Or stated differently, these sets will have ap-

proximately the same values for features like cardinality

and label dependency.

Thus, the focus of the generator are the hypotheses

for ML classification. These hypotheses are formed by

a group of hyperplanes that split the input space in a

positive and a negative region. In fact a set of hyper-

planes may define a linear classifier or a nonlinear one.

We build nonlinear tasks in this work.

For this purpose, we assign relevant labels to regions

of the input space defined by the intersection of several

hyperplanes that share a common point. In other words,

the relevant labels are geometrically defined at the in-

terior of pyramids with a certain number of faces. In all

cases,

X = [0, 1]p.

Then, for a given label lj , we define a hypothesis hj as

follows:

hj(x) = 1 ⇐⇒ 〈wk
j ,x− x0

j 〉 ≥ 0, ∀k = 1, . . . , faces.

where

x0
j ∈ X ,wk

j ∈ [−1, 1]p, k = 1, . . . , faces.

However, if the list of vectors wk
j is completely ran-

dom, the interior of the pyramid may be empty or too

small. To avoid these possibilities we force the list of wk
j

to form angles within a given range, using the following

procedure. First, a set of vectors (wk
j : k = 1, . . . , faces)

is randomly drawn in [−1, 1]p. Then, using the Gram-

Schmidt procedure, we obtain an orthonormal basis of

the linear span of vectors wk
j . Let

(vkj : k = 1, . . . , faces)←
Gram-Schmidt(wk

j : k = 1, . . . , faces)

If the rank of vectors wk
j is not equal to faces, a new

set is drawn. The next step redefines the vectors of the

nonlinear hypothesis as follows:

w1
j ← v1

j

wk
j ← λv1

j + vkj , k = 2, ...faces

Notice that

cos(w1
j ,w

k
j) =

〈v1
j , λv

1
j + vkj 〉√

1 + λ2
=

λ√
1 + λ2

Therefore,

cos2(w1
j ,w

k
j)

1− cos2(w1
j ,w

k
j)

=
1

tan2(w1
j ,w

k
j)

= λ2

and hence it is straightforward to fix a range for λ values

if we want that, for instance,

angle(w1
j ,w

k
j) ∈ [50o, 80o],∀k = 2, . . . , faces.

Notice that the interior angle of pyramid faces with the

first one will range in [100o, 130o]. In the experiments

reported at the end of the paper, the number of faces

will be set to 5.

6.2 Conditional Dependency

To obtain a dataset with a certain degree of conditional

dependency, we can use the following method of two

steps. If L is the number of labels required, first we use

the procedure described above to search for a dataset

with L/2 labels. Let

D1 = (X,YL/2)

be such a dataset. Thus, to obtain the rest of labels,

we use the whole dataset D1 as the input instances and

search for a new collection of L/2 labels. In this way we

have

D2 =
(
(X,YL/2),Y′L/2

)
.

At the end, we obtain

D =
(
X,
[
YL/2 Y′L/2

])
,

a dataset with L labels and some degree of conditional

dependency.

To ensure a cardinality similar to a given amount

set by the user, we divide the cardinality in two equal

parts: one part for the matrix YL/2 searching for D1,

and the rest for the second half for the matrix, Y′L/2,

searching for D2.

On the other hand, the unconditional dependency

can not be guaranteed. Thus, we ask for the same amount
in both searches in order to reach a similar value at the

end of the process.

7 Experiments

Several experimental studies in the literature based on

benchmark datasets, see for instance Read et al (2011b)

and Montañés et al (2011), report a better performance

of new ML methods with respect to BR in terms of some

loss functions, including macro-average measures. Most

of these new approaches are aimed at exploiting label

dependency. The conclusion of these studies is that the

improvement is due to overcoming the main drawback

of BR, the label independence assumption.

However, as we previously discussed on Section 5,

benchmark datasets are somehow limited in several as-

pects. The main idea of our experiments is to make

a broader comparison between BR and a recent ML

method. The aim is to prove if the better performance

8 Oscar Luaces et al.

of this new ML learner on benchmark datasets still re-

mains in other domains, in which we can control some

important properties for ML classification, such as the

number of labels, the cardinality and, more importantly,

the label dependency.

We compared the scores achieved by BR with those

obtained by ECC (Ensembles of Classifier Chains). This

is a recent ML learner based on Classifier Chains (CC)

(Read et al, 2011b) that performs particularly well in

several studies. CC, designed to take advantage of label

dependencies, learns L binary classifiers linked along a

chain, where each classifier deals with the binary rele-

vance problem associated with one label. In the training

phase, the feature space of each classifier is extended

with the actual label information of all previous labels

in the chain. For instance, if the chain follows the order

l1 → l2 → . . . → lL, then the classifier hj responsible

for predicting the relevance of lj is of the form

hj : X × {0, 1}j−1 −→ {0, 1},

and the training data for this classifier consists of in-

stances (xi, yi,1, . . . , yi,j−1) labeled with yi,j , that is,

original training instances xi supplemented by the rele-

vance of the labels l1, . . . , lj−1 preceding lj in the chain.

At prediction time, when a new instance x needs

to be labeled, label predictions are produced by succes-

sively querying each classifier hj . Note, however, that

the inputs of these classifiers are not well-defined, since

the supplementary attributes (yi,1, . . . , yi,j−1) are not

available. These missing values are therefore replaced

by their respective predictions made by previous clas-

sifiers along the chain.

The main drawback of CC is that depends on the

ordering of the labels in the chain. This problem can

be solved using an ECC because each CC model in the

ensemble uses a different label order. The final posterior

probability for a label is given by the average of the

posterior probabilities produced by each CC model for

that label.

7.1 Experimental setting

We employed a total of 84 synthetic datasets for this ex-

periment, each dataset was formed by a training, a val-

idation and a test set. First, we generated 42 noise-free

datasets with conditional dependency using the gener-

ator described in Section 6. Then, another 42 datasets

were obtained from them by adding artificial noise us-

ing a Bernoulli distribution, that is, the labels of both

training and validation sets swapped their values with

a probability 0.01. The properties of the datasets gener-

ated are: the cardinality ranges in [4..9], the number of

Table 3 Average Fmi
1 scores in test sets for datasets gener-

ated explicitly with conditional dependency, see Section 6.2

#labels BR ECC*

Noise free 10 83.88% 84.46%
25 81.12% 81.76%
50 76.34% 77.46%
75 72.29% 72.38%

100 69.43% 69.68%
150 63.31% 62.77%
200 58.43% 56.87%

Noise added 10 83.60% 84.11%
25 80.59% 81.08%
50 75.06% 76.68%
75 70.68% 71.05%

100 67.00% 67.37%
150 61.55% 60.20%
200 54.53% 54.96%

Table 4 Significant differences for several number of labels
using a Wilcoxon two-sided signed rank test. The p-values in
significant differences (� or �) were always below 0.01. For
those cases in which the difference was not significant (∼=),
the obtained p-value was greater than 0.60

Noise Range of Labels Significant

Free {10, 25, 50} ECC* � BR
{75, 100} ECC* ∼= BR
{150, 200} ECC* � BR

Added {10, 25, 50, 75} ECC* � BR
{100, 150, 200} ECC* ∼= BR

labels belongs to {10, 25, 50, 75, 100, 150, 200}, and the

label dependence is in [0.1..0.35], measured using (11).

The base learner for both methods was SVM (Chang

and Lin, 2011) with a Gaussian kernel (RBF). The pa-

rameters C and γ (for the Gaussian kernel) were ad-

justed with a grid search using the validation dataset

generated. The parameters could vary in C ∈ {10i :

i = −1, . . . , 3}, γ ∈ {10−3, 10−2, 10−1, 0.3, 0.5, 1}. For

ECC we used the implementation by Dembczyński et al

(2010), denoted as ECC*. This means that, unlike Read

et al (2011b), we did not apply any threshold selection

method for deciding the relevance of a label. Of course

the same policy was applied for BR. The number of CC

models in a ECC* classifier was set to 10.

To compare the performance of BR and ECC* on

this collection, we used the micro-average F1 scores (4).

We selected Fmi1 for several reasons. On the one hand,

we did not employ Hamming loss or macro-average mea-

sures because BR optimizes such measures when a proper

base learner is used. On the other hand, ECC* does

not optimize any particular measure, mainly because

it is an ensemble method. Thus, we selected a inter-

mediate measure in which ECC* seems to outperform

Binary Relevance Efficacy for Multilabel Classification 9

Figure 1 Dataset Cardinality. In the X-axis is the cardinal-
ity, while in Y-axis the difference in terms of Fmi

1 between
ECC* and BR. Each point represents the results for a dataset
and when it is above 0 indicates that ECC* outperforms BR

BR, according to previous studies cited at the beginning

of this section, with, basically, the same experimental

setup. Also, ECC* is among the best methods in terms

of Fmi1 in the results reported by Madjarov et al (2012),

performing better than BR.

7.2 Experimental results

Table 3 shows the average scores achieved by BR and

ECC*. Additionally, Table 4 summarizes the significant

differences between both learners using a Wilcoxon two-

sided signed rank test.

The first evidence is that ECC* is significantly bet-

ter than BR with a low number of labels, both for

noise free and noisy datasets. These results are quite

coherent with those reported by Read et al (2011b). In

that paper, the experimental results were made with 15

datasets; only two of them have more than 103 labels.

Nevertheless, the differences between the two meth-

ods become smaller when the number of labels increases;

even BR significantly outperforms ECC* for noise free

datasets and more than 100 labels. Maybe the reason

is the accumulation of errors forced by the Classifier

Chains algorithm of ECC*, which is more likely to hap-

pen when the number of labels is large. This result could

not be obtained using only benchmark datasets, simply

because there are not enough datasets to statistically

support this conclusion.

Our experiments, based on synthetic datasets, al-

low us to analyze more aspects. For instance, Figure 1

depicts the performance of both methods with respect

to the cardinality. Each point shows the results for a

dataset in which X-axis represents the cardinality and

Figure 2 Dataset Label Dependency. In the X-axis is the
label dependence, while in Y-axis is the difference in terms
of Fmi

1 between ECC* and BR. Each point represents the
results for a dataset and when its above 0 indicates that ECC*
outperforms BR

Y-axis the difference in terms of Fmi1 between ECC*

and BR. Thus, a point above 0 in the Y-axis indi-

cates that ECC* outperforms BR in that dataset. The

graphic demonstrates that for those datasets with lower

cardinality ECC* is much better, but when the cardi-

nality is higher the result is just the opposite, BR ame-

liorates the scores of ECC*.

But the most interesting analysis is perhaps that

which studies the performance in function of label de-

pendency, see Figure 2. This graphic is equivalent to

the previous one: Y-axis represents again the difference

in terms of Fmi1 between ECC* and BR, but now the

X-axis stands for the label dependency of the datasets

measured applying (11). Despite the results seem quite

mixed, the tendency line shows again that the scores

of ECC* tend to be worse in comparison with those of

BR when the label dependency increases. With a low

label dependency, ECC* is clearly better, but for larger

values BR is able to be at least competitive, and some-

times superior.

Finally, the scores of each of the 84 datasets are also

reported graphically in Figure 3. The goal is to repre-

sent somehow the complexity of the datasets, measured

in terms of Fmi1 : the greater the Fmi1 value the easier the

learning task. In this case, the meaning of the axises is

different. Each point represents the results for a dataset,

but now X-axis is the Fmi1 score for BR, and Y-axis the

Fmi1 result for ECC*. Therefore, those points above the

diagonal correspond to datasets in which ECC* outper-

forms BR, and the other way around. When the tasks

are easier, with higher Fmi1 results, ECC* is better, but

when the Fmi1 scores decrease, then BR usually achieves

the best results.

10 Oscar Luaces et al.

Figure 3 Dataset Complexity. Each point is a pair of Fmi
1

scores achieved in the same dataset by BR and ECC*. Points
above the diagonal represent datasets where ECC* outper-
forms BR

Actually, all these analyses reflect the same conclu-

sion: when the learning task is easier (less cardinality

or less label dependency or a fewer number of labels),

ECC* performs better. But when the domain is more

complex, with more labels or a greater cardinality or

label dependency, then BR is at least competitive and

sometimes superior.

The purpose of these experiments is not just to an-

alyze BR and ECC* from another perspectives. The

goal was also to point out that it is difficult to ex-

tract useful conclusions, statistically supported, using

only benchmark datasets; there are too few domains

given the complexity of ML classification. Being this

the case, synthetic datasets may allow us to gain more

insight about the behavior of ML methods, analyzed

them with respect to different factors as we have shown

with this study.

8 Conclusions

In this article we tried to demystify some clichés about

ML classification and its main baseline method, Binary

Relevance. For instance, one interesting point is to ac-

knowledge the properties of BR, not only its compu-

tational complexity, but also that it is well-tailored to

produce good ML classifiers for several ML loss func-

tions. Hamming loss and macro-averages are clearly ori-

ented to the use of learners that consider each label

separately. A correct implementation of BR, using the

appropriate base learner for the target loss function,

should be enough if one wants to achieve good scores.

Thus the main efforts of ML community should be fo-

cused on devised methods for optimizing other kind of

measures.

New proposals can obviously improve the perfor-

mance of BR for other performance metrics. However,

the experimental studies are limited due to the lack of

benchmark domains. There are just a few publicly avail-

able domains and they cover a small and biased pro-

portion of the huge possibilities of ML datasets. Under

these circumstances, our proposal is to combine bench-

mark with synthetic datasets to perform more complete

experimental studies. In this paper we have used a ML

dataset generator that produces synthetic domains in

which the user can select properties like the number of

labels, the cardinality and the label dependency.

We have compared the efficacy of BR and an Ensem-

ble of Classifier Chains using a collection of synthetic

problems. The main conclusion is that the performance

of ECC* dramatically drops when the complexity of

the dataset increases —a larger number of labels or a

greater cardinality or a higher label dependency— while

BR is quite competitive under these circumstances. This

is only an example of a situation that current experi-

mental settings based on the benchmark datasets avail-

able are not able to detect.

Acknowledgements The research reported here is supported
in part under grant TIN2011-23558 from the Ministerio de
Economı́a y Competitividad, Spain. We would also like to ac-
knowledge all those people who generously shared the datasets
and software used in this paper.

References

Bielza C, Li G, Larrañaga P (2011) Multi-dimensional

classification with bayesian networks. International

Journal of Approximate Reasoning 52(6):705–727

Chang CC, Lin CJ (2011) LIBSVM: A library for sup-

port vector machines. ACM Transactions on Intel-

ligent Systems and Technology 2:27:1–27:27, soft-

ware available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm

Cheng W, Hüllermeier E (2009) Combining Instance-

Based Learning and Logistic Regression for Multil-

abel Classification. Machine Learning 76(2):211–225

Dembczyński K, Cheng W, Hüllermeier E (2010)

Bayes optimal multilabel classification via probabilis-

tic classifier chains. Proceedings of the 27th Interna-

tional Conference on Machine Learning (ICML) pp

279—286

Dembczyński K, Waegeman W, Cheng W, Hüllermeier

E (2011) An exact algorithm for f-measure maximiza-

tion. In: Proceedings of the Neural Information Pro-

cessing Systems (NIPS), pp 1404–1412

Elisseeff A, Weston J (2001) A kernel method for multi-

labelled classification. In: In Advances in Neural In-

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Binary Relevance Efficacy for Multilabel Classification 11

formation Processing Systems 14, MIT Press, pp

681–687

Godbole S, Sarawagi S (2004) Discriminative methods

for multi-labeled classification. In: Lecture Notes in

Artificial Intelligence (Subseries of Lecture Notes in

Computer Science), vol 3056, pp 22–30

Joachims T (2005) A support vector method for multi-

variate performance measures. In: Proceedings of the

ICML ’05, pp 377–384

Lastra G, Luaces O, Quevedo J, Bahamonde A (2011)

Graphical feature selection for multilabel classifica-

tion tasks. In: Gama J, Bradley E, Hollmén J (eds)

Proceedings of Advances in Intelligent Data Analysis

X (IDA 2011), Springer, Lecture Notes in Computer

Science, vol 7014, pp 246–257

Madjarov G, Kocev D, Gjorgjevikj D, Deroski S (2012)

An extensive experimental comparison of meth-

ods for multi-label learning. Pattern Recognition

45(9):3084–3104

Montañés E, Quevedo J, del Coz J (2011) Aggregating

independent and dependent models to learn multi-

label classifiers. Proceedings of the European Confer-

ence on Machine Learning and Knowledge Discovery

in Databases (ECLM-PKDD) pp 484–500

Petterson J, Caetano T (2010) Reverse multi-label

learning. Advances in Neural Information Processing

Systems 23:1912—1920

Quevedo JR, Luaces O, Bahamonde A (2012) Multil-

abel classifiers with a probabilistic thresholding strat-

egy. Pattern Recognition 45(2):876–883

Read J, Pfahringer B, Holmes G (2009a) Gen-

erating Synthetic Multi-label Data Streams. In:

ECML/PKKD 2009 Workshop on Learning from

Multi-label Data (MLD’09), pp 69–84

Read J, Pfahringer B, Holmes G, Frank E (2009b) Clas-

sifier Chains for Multi-label Classification. In: Pro-

ceedings of European Conference on Machine Learn-

ing and Knowledge Discovery in Databases (ECML-

PKDD), pp 254–269

Read J, Bifet A, Holmes G, Pfahringer B (2011a)

Streaming multi-label classification. JMLR Work-

shop and Conference Proceedings (Second Workshop

on Applications of Pattern Analysis) 17:19–25

Read J, Pfahringer B, Holmes G, Frank E (2011b) Clas-

sifier chains for multi-label classification. Machine

Learning 85(3):333–359

Schapire R, Singer Y (2000) Boostexter: A boosting-

based system for text categorization. Machine learn-

ing 39(2):135–168

Tsoumakas G, Katakis I (2007) Multi Label Classifi-

cation: An Overview. International Journal of Data

Warehousing and Mining 3(3):1–13

Tsoumakas G, Katakis I, Vlahavas I (2010a) Mining

Multilabel Data. Data Mining and Knowledge Dis-

covery Handbook pp 667–685

Tsoumakas G, Katakis I, Vlahavas I (2010b) Random k-

Labelsets for Multi-Label Classification. IEEE Trans-

actions on Knowledge Discovery and Data Engineer-

ing 23(7):1079–1089

Zaragoza J, Sucar L, Bielza C, Larrañaga P (2011)

Bayesian chain classifiers for multidimensional classi-

fication. In: Twenty-Second International Joint Con-

ference on Artificial Intelligence (IJCAI), pp 2192–

2197

Zhang ML, Zhou Z (2007) ML-KNN: A Lazy Learning

Approach to Multi-label Learning. Pattern Recogni-

tion 40(7):2038–2048

	Introduction
	Multilabel Classification
	Loss Functions for Multilabel Classification
	Binary Relevance: a not so simple baseline
	Multilabel Benchmark Datasets
	A Generator of Synthetic Datasets
	Experiments
	Conclusions

