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Abstract The quality of food can be assessed from different points of
view. In this paper, we deal with those aspects that can be appreciated
through sensory impressions. When we are aiming to induce a function
that maps object descriptions into ratings, we must consider that con-
sumers’ ratings are just a way to express their preferences about the
products presented in the same testing session. Therefore, we postu-
late to learn from consumers’ preference judgments instead of using an
approach based on regression. This requires the use of special purpose
kernels and feature subset selection methods. We illustrate the benefits
of our approach in two families of real-world data bases.

1 Introduction

The quality of food can be assessed from different points of view. In this paper
we are concerned with sensory quality from the perspective of consumers. This
is a very important issue for food industries since they are aiming to adapt their
production processes to improve the acceptability of their specialties. Thus, they
need to discover the relationship between product descriptions and consumers’
sensory degree of satisfaction. An excellent survey of the use of sensory data anal-
ysis in the food industry can be found in [1]; for a Machine Learning perspective,
see [2,3].

From a conceptual point of view, sensory data can include the assessment of
food products provided by two different kinds of groups of people usually called
panels. The first one is made up of a small selected group of expert, trained
judges; they will rate different aspects of products related to their taste, odor,
color, etc. . . The most essential property of expert panelists, in addition to their
discriminatory capacity, is their own coherence, not the uniformity of the group.
We must assume that a given rating means the same for a given expert in every
product; though not necessarily for every expert. Experts’ panel will play the
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role of a bundle of sophisticated sensors; their ratings are used to describe each
product, probably in addition to some chemical or physical devices.

The second kind of panel is made up of a group of untrained consumers (C);
they are asked to rate their degree of acceptance or satisfaction about the tested
products on a scale. Usually, this panel is organized in a set of testing sessions,
where a group of potential consumers assess some instances from a sample E
of the tested product. In general, each consumer only participates in a small
number (sometimes only one) of testing sessions, usually in the same day.

In this paper we propose to tackle sensory data analysis by learning con-
sumers’ preferences, see [4,5,6] where training examples will be represented
by preference judgments: pairs of vectors (v,u) where someone expresses that
prefers the object represented by v to the object represented by u. We will show
that this approach can induce more useful knowledge than other approaches, like
regression based methods. The main reason is due to the fact that preference
judgments sets can represent more relevant information to discover consumers’
preferences.

At the end of the paper we show experimental results of preference learning
in two real-world data bases taken from sensory data analysis of beef meat
and traditional Asturian cider. In both cases, non-linear preference functions
can explain consumers’ preferences better than other methods. Additionally, as
happens with any other machine learning application, feature subset selection
(FSS) plays a very important role. In fact, sometimes FSS marks the difference
between useful tools and merely academic developments [3]. In this paper we
show how it is possible to adapt to preference learning some state of the art
FSS methods designed for SVM (Support Vector Machines) [7] with non-linear
kernels.

2 Why using preference learning?

Initially, sensory data can be viewed as in regression problems: the sensory de-
scriptions (human and mechanical) of each object x ∈ E are endowed with a
rating r(x) that represents the degree of satisfaction for each consumer or the
average value for a group of them. So, a straightforward approach to handle sen-
sory data can be based on regression. However, this is not a faithful capturing of
people’s preferences [8,9]. The main reason is due to the fact that sensory data,
expressed as a regression problem, do not represent all available knowledge. In
particular, we would like to remark that consumers’ ratings are just a way for
expressing a relative ordering. There is a kind of batch effect that often biases
the ratings so that a product will obtain a higher/lower rating when it is assessed
together with other products that are clearly worse/better. Therefore, we must
consider as a very important issue the information about the batches tested by
consumers in each rating session.

Traditionally the process given to these data sets includes testing some statis-
tical hypothesis [10,1]. On the other hand, the approach followed in [2] is based
on the use of Bayesian belief networks. In both cases, these approaches demand
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Figure 1. Each ellipse in (A) represents the assessments for a given session, where the
assessment function is clearly different than the one obtained in (B) by a regression
method applied to the whole set of assessments without information about sessions

that all available food products (the objects x) must be rated by all consumers;
in practice, this is an impossible assumption most of the times. In general, each
consumer will only assess a small number of products. Thus, we will have sets of
ratings (ri(x) : x ∈ Ei) for each consumer or group of consumers i ∈ C, where
∪(Ei : i ∈ C) = E. In addition to this fact, let us emphasize some important
peculiarities of the whole data collected in a sensory study that we have to take
into account: i) we have different scales in the ratings, given that the assessments
come from different sets of consumers; additionally, ii) these ratings suffer the
batch effect alluded to previously.

The importance of these factors is graphically depicted in Figure 1. Here
there is a collection of consumers’ assessments (represented in the vertical axis)
about some products whose descriptions are given by a single number x repre-
sented in the horizontal axis. If we observe Figure 1A, where the assessments of
the same session are drawn inside ellipses, we can say that in each session the
message of the consumers is the same: the more x the better. However, there are
discrepancies about how this knowledge is expressed in different sessions. Prob-
ably because there are different consumers in each session; or perhaps because
the same consumer forgets the exact number used to assess a given degree of
satisfaction; or the sensory reactions were forgotten from one session to another.

If we do not consider sessions, the data collected become the cloud of points
represented in Figure 1B. Then, it will be difficult for a regression method to
discover the unanimous opinion of consumers. In fact, in this case, regression
methods will conclude that the more x the worse, since that seems to be the
general orientation of those points in the space. Therefore, the information about
the sessions must be integrated in the data to be processed with the rest of
sensory opinions and descriptions of the products tested by consumers. In the
next section we will present our approach to deal with sessions explicitly. The
overall idea is to avoid trying to predict the exact value of consumer ratings;
instead we will look for a function that returns higher values to those products
with higher ratings.



3 Learning preferences: an SVM approach

Although there are other approaches to learn preferences, following [4,5,6] we will
try to induce a real preference or ranking function f from the space of objects
considered, say Rd, in such a way that it maximizes the probability of having
f(v) > f(u) whenever v is preferable to u. This functional approach can start
from a set of objects endowed with a (usually ordinal) rating, as in regression,
but essentially, we need a collection of preference judgments

PJ = {vj > uj : j = 1, . . . , n} (1)

When we have a family of ratings (ri(x) : x ∈ Ei) for i ∈ C, we transform
them into a preference judgments set PJ considering all pairs (v,u) such that
objects v and u were presented in the same session to a given consumer i, and
ri(v) > ri(u). Hence, without any lost of generality, we can assume a set PJ as
in formula (1).

In order to induce the ranking function, we can use the approach presented
by Herbrich et al. in [4]. So, we look for a function F : Rd × Rd → R such that

∀x,y ∈ Rd, F (x,y) > 0 ⇔ F (x,0) > F (y,0) (2)

Then, the ranking function f : Rd → R can be simply defined by

∀x ∈ Rd, f(x) = F (x, 0) (3)

Given the set of preference judgments PJ (1), we can specify F by means of
the constraints

F (vj ,uj) > 0 and F (uj ,vj) < 0, ∀j = 1, . . . , n (4)

Therefore, we have a binary classification problem that can be solved using
SVM. If we represent preference judgments pairs (v,u) in a higher dimensional
feature space by means of (φ(v), φ(u)), we will obtain a function of the form:

F (x,y) =
n∑

i=1

αiziK(x(1)
i ,x

(2)
i ,x,y) = 〈w, (φ(x), φ(y))〉 (5)

where the pairs x
(1)
i ,x

(2)
i are the support vectors; w is the vector of weights in

the higher dimensional feature space; and K is the kernel used by SVM. The key
idea of this approach is the definition of the kernel K as follows

K(x1,x2,x3,x4) = k(x1,x3)− k(x1,x4)− k(x2,x3) + k(x2,x4) (6)

where k is a kernel function defined as the inner product of two objects rep-
resented in the feature space, that is, k(x,y) = 〈φ(x), φ(y)〉. In this case, it
is easy to proof that F fulfills the conditions expressed in equation (2). In the
experiments reported in Section 5, we will employ a polynomial kernel, defining



k(x,y) = (〈x,y〉+ c)g, with c = 1 and g = 2. Notice that, in general, according
to the previous definitions,

f(x) =
n∑

i=1

αizi(k(x(1)
i ,x)− k(x(2)

i ,x)) (7)

Hence, for the polynomial kernel we will obtain a non-linear function that
assesses the ranking for each object x.

4 FSS in non-linear preference learning

A major issue when dealing with real-world problems involving sensory data is
to find out those features which have more influence on the tastes of consumers;
thus, the production process can focus on them to improve the acceptability
of the final product. Additionally, reducing the number of features describing
objects decreases the cost of data acquisition, which in many cases can make
these machine learning techniques applicable in industrial processes [3].

In recent years several methods related to feature selection when using SVM
have been developed. One of the most remarkable is RFE (Recursive Feature
Elimination) [11]. Given a data set with objects described by a set of d features,
Fd, the method considers that i is the less useful feature if |wi| is the smallest
weight (see eq. 5). Then this feature is removed, giving rise to a subset Fd−1

with d− 1 features. The process is successively repeated until no more features
are left. Notice that in this way, we obtain a ranking of the original d features,
and a sequence of models, each one obtained using the corresponding subset of
i features, Fi. A chunk of features can also be removed instead of only one at
each iteration, as suggested in [11].

However, RFE’s criterion is not directly applicable for non-linear kernels, so
we have used two state of the art methods to achieve ordered lists of features
in non-linear scenarios. Moreover, we must take into account an important pe-
culiarity of preference learning data sets. In this case, the examples are formed
by pairs of objects (v,u), and both objects are described by the same set of d
features. Therefore, somehow we must consider twice the merits of each feature
to be removed and, in each iteration, we have to get rid of the two copies of the
selected feature.

4.1 Feature ranking methods for non-linear preference kernels

Method 1.- The first method that we have applied to obtain a ranking of fea-
tures with non-linear kernels was proposed by Rakotomamonjy [12]; its ranking
criterion orders the list of features according to their influence in the variations
of feature’s weight; in fact, it is an extension of RFE to the non-linear case.
In symbols, the method removes in each iteration the feature with the lowest



ranking value:

R1(i) = |∇i‖w‖2| =

∣∣∣∣∣∣
∑
k,j

αkαjzkzj
∂K(s · xk, s · xj)

∂si

∣∣∣∣∣∣ , i = 1, . . . , d (8)

where s is a scaling factor used to simplify the computation of partial derivatives.
Given that we are facing a preference learning problem, where every example
is a preference judgment like in (1), then we must modify the use of s: we
need 4 copies, one for each object involved in the definition of the kernel. Thus,
according to (6), we compute

∂K(s · x1, s · x2, s · x3, s · x4)
∂si

=
∂k(s · x1, s · x3)

∂si
−

−∂k(s · x1, s · x4)
∂si

− ∂k(s · x2, s · x3)
∂si

+
∂k(s · x2, s · x4)

∂si
(9)

In this formula, for a polynomial kernel k(x,y) = (〈x,y〉+ c)g and a vector
s such that ∀i, si = 1 we have that

∂k(s · x, s · y)
∂si

= 2g(xiyi)(c + 〈x,y〉)g−1 (10)

Method 2.- The second method was developed by Degroeve et al. [13] for splice
site prediction of DNA sequences. This method uses a ranking criterion such that
features are ordered with respect to the loss in predictive performance when they
are removed. In [13] the authors approximate the generalization performance
when removing the i-th feature by the accuracy on the training set while setting
the value of that feature, in every instance, to its mean value. When using
this method for preference learning with the kernel of equation (6) the ranking
criterion can be expressed as

R2(i) =

∑
k

zk ·
∑

j

αjzjK(x(1),i
j ,x

(2),i
j ,x

(1),i
k ,x

(2),i
k

 (11)

where xi denotes a vector describing an object where the value for the i-th
feature was replaced by its mean value. Notice that a higher value of R2(i), that
is, a higher accuracy on the training set when removing feature i-th, means a
lower relevance of that feature. Therefore, we will remove the feature yielding the
highest ranking value, as opposite to the ranking method described previously.

4.2 Model selection

Once obtained the ranked list of feature subsets, the next step shall be to select
one of them. In general, we will be interested in a subset Fi which lets the
learner yield the best performance, in terms of accuracy; so we need to estimate
the performance for every feature subset.



Following the same approach as in [6], we will not use cross-validation for this
purpose; its main disadvantages are its computational cost as well as its high
variance, so we will use an alternative model selection: ADJ, a metric-based
method [14] devised to choose the appropriate level of complexity required to fit
to data. In our case, given the nested sequence of feature sets provided by any
of the ranking methods described previously, F1 ⊂ F2 ⊂ . . . ⊂ Fd, ADJ would
provide a procedure to select one of the models fi induced by SVM from the
corresponding Fi.

The key idea is the definition of a metric on the space of hypothesis. Thus,
given two different hypothesis f and g, their distance is calculated as the ex-
pected disagreement in their predictions

d(f, g) def= ϕ

(∫
err(f(x), g(x))dPX

)
(12)

where err(f(x), g(x)) is the measure of disagreement on a generic point x in
the input space X. Given that these distances can only be approximated, ADJ
establishes a method to compute d̂(g, t), an ADJusted distance estimate between
any hypothesis f and the true target classification function t. Therefore, the
selected hypothesis is

fk = arg min
fl

d̂(fl, t) (13)

The estimation of distance, d̂, is computed by means of the expected dis-
agreement in the predictions in a couple of sets: the training set T , and a set
U of unlabeled examples, that is, a set of cases sampled from PX but for which
the pretended correct output is not given. The ADJ estimation is given by

ADJ(fl, t)
def= dT (fl, t) ·max

k<l

dU (fk, fl)
dT (fk, fl)

(14)

where, for a given subset of examples S, dS(f, g) is the expected disagreement
of hypothesis f and g in S. To avoid the impossibility of using the previous
equation when there are zero disagreements in T for two hypotheses we propose
to use the Laplace correction to the probability estimation; thus,

dS(f, g) def=
1

|S|+ 2

(
1 +

∑
x∈S

1f(x) 6=g(x)

)
(15)

In general, it is not straightforward to obtain a set of unlabeled examples,
so [15] proposed a sampling method over the available training set. However,
for learning preferences, we can easily build the set of unlabeled examples: new
preference judgment pairs can be formed by arranging real objects randomly
selected from the original data.

4.3 Dealing with redundant features

As we have previously pointed out, sensory data include ratings of experts for dif-
ferent characteristics of the assessed products; it is not rare that several experts



have similar opinions about a given characteristic. Some physical and chemical
features can also present this kind of similarities. Therefore, these data sets may
frequently present a certain degree of redundancy to describe an object more
precisely. Trying to take advantage of these redundancies, we have developed a
simple but quite effective filtering process, RF, to be applied to sensory data sets
before any other feature subset selection process. On the other hand, this filter
provides an additional benefit for feature selection algorithms, since the number
of features to deal with is reduced.

RF is an iterative process where in each step the two most similar features
are replaced by a new one whose values are computed as the average of them.
Considering two features represented by ai and aj as (column) vectors whose
dimension is the number of examples in the data set, the similarity can be
estimated by means of their cosine; that is,

similarity(ai,aj) =
〈ai,aj〉

‖ai‖ · ‖aj‖
(16)

Applying this method, we obtain a sequence of different descriptions of the
original data set, each one with one feature less than the previous. To select an
adequate description in terms of prediction accuracy, we use again ADJ. The
selected description can be considered a summarized version of the original data
set to be processed by the feature subset selection methods previously described.

5 Experimental results

To illustrate the benefits of our approach, we have conducted some experiments
with a couple of sensory data bases. The first one comes from a study carried
out to determine the features that entail consumer acceptance of beef meat from
seven Spanish breeds [16]. Each piece of meat was described by: weight of the
animal, aging time, breed, 6 physical features describing its texture and 12 sen-
sory characteristics rated by 11 different experts (132 ratings). Given that breed
was represented by 7 boolean features, the whole description of each piece of
meat uses 147 features. In each testing session, 4 or 5 pieces of meat were tested
and a group of consumers were asked to rate only three different qualities: ten-
derness, flavor and acceptance. These three data sets have over 2420 preference
judgments.

The second data base deals with sensory data about traditional Asturian
cider [17]. In this case, the description of each cider was given just by 64 chemical
and physical features, without any expert rating. In fact, the consumers here
were a set of 14 candidates to become experts, and the rating sessions (of 3, 4
or 5 ciders) were taken during the training and selection stage. These potential
experts were asked to rate a high number of qualities of ciders: bouquet, color,
acidity, bitterness, 4 additional visual aspects and 3 more flavor related aspects.
Thus, we have 12 qualities of cider, that is, 12 different data sets of over 225
preference judgments.



5.1 Preference learning vs. regression

First, we performed a comparison between the scores achieved by preference
approaches and those obtained by regression methods. As was explained in Sec-
tion 2, the core point of preference learning approach is the concept of testing
session. Thus, for each session, to summarize the opinions of consumers, we com-
puted the mean of the ratings obtained by each food product, which was endowed
to the objects’ descriptions to conform the regression training sets. These sets
can be used to induce a function that predicts numerical ratings of consumers.
We have experimented with a simple linear regression and with a well reputed
regression algorithm: Cubist, a commercial product from RuleQuest Research.

To interpret regression results we used the relative mean absolute deviation
(rmad), which is computed from the mean absolute distance or deviation, mad,
of the function f learned by the regression method:

rmad(f) = 100 · mad(f)
mad(mean)

(17)

where mean is the constant predictor that returns the mean value in all cases.
On the other hand, we can obtain some preference judgments from the ratings

of the sessions comparing the rating of each product with the rest, one by one,
and constructing the corresponding pair. To learn from preference judgment
data sets, we used SVMlight [18] with linear and polynomial kernels. In this case,
the errors have a straightforward meaning as misclassifications; so in order to
allow a fair comparison between regression and preference learning approaches,
we also tested regression models on preference judgments test sets, calculating
their misclassifications.

Table 1 reports the 10-fold cross validation scores achieved with the real-world
data sets described, both with regression and preference learning methods. The
scores show that regression methods are unable to learn any useful knowledge:
their relative mean absolute deviation (rmad) is above 100% in almost all cases,
that is, usually the mean predictor performs better. Even when these regression
models are tested on preference judgment sets, the percentage of misclassifica-
tions is over 40%, clearly higher than those obtained when using the preference
learning approach. SVM-based methods can reduce these errors up to an aver-
age near 30% with a linear kernel (SVMl with k(x,y) = 〈x,y〉), and near 20%
if the kernel is a polynomial of degree 2 (SVMp with k(x,y) = (〈x,y〉 + 1)2).
The rationale behind the improvement, when using non-linear kernels, can be
explained taking into account that the positive appreciation of food products
usually requires an equilibrium of its components, and the increase or decrease
of any value from that point is frequently rejected.

5.2 FSS in non-linear preference learning

In order to find out those features which have more influence on the tastes of
consumers, we have applied the feature subset selection methods described in
Section 4. For the sake of simplicity, in what follows FSS1 and FSS2 will denote
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the selectors that use ranking Method 1 and Method 2 respectively. Additionally,
we used RF in two senses: as a feature subset selector, and as a filter to be applied
before FSS1 and FSS2. In all cases we used ADJ to choose among the subsets
of features. The learner used was SVMp, given that it was the most accurate in
our tests. On the beef meat data sets it is almost impractical to use FSS1 and
FSS2 due to its computational cost, unless a previous reduction in the number of
features can be achieved; therefore we only have results for this data sets when
RF is used as a previous filter. Moreover, features were processed in chunks of
five for the meat data sets, while they were removed one by one for the cider
data sets.

We can see (Table 1) that FSS1, FSS2, and RF considerably reduce the num-
ber of features without (in general) loss of accuracy. In the cider data sets, all
methods obtain similar accuracy scores (non-significant differences), but FSS2 is
significantly better than FSS1 reducing the number of features, while RF achieves
the poorest scores in this task. For the cider data sets, accuracy scores obtained
by FSS1 and FSS2 are slightly improved when RF is previously used. However,
for the meat data sets, accuracy decreases slightly when we use the RF filter
with respect to the accuracy obtained on the original data set by SVMp; it also
decreases when using FSS1 and FSS2 after RF. We think that this behavior is due
to the the fact that we are removing chunks of five features in each iteration.

6 Conclusions

The analysis of sensory data is a very useful tool for food industries because it
provides the knowledge to satisfy the tastes of consumers. These data sets present
some peculiarities that make difficult the use of regression based algorithms:
each consumer does not rate all available products; and they give numerical
assessments only as a way to express a relative preference in a rating or testing
session (batch effect).

Preference learning does not try to learn the exact rating; however, it finds
out models able to explain consumer preferences. We have observed that the
accuracy increases significantly with non-linear functional models in the two
real-world data bases analyzed. In general, the usefulness of these models can
be improved with the use of specially fitted FSS methods.

Another interesting peculiarity of sensory data sets is that, frequently, there
are blocks of features describing the same aspect. To take advantage of these
redundancies we have developed a filtering process that can be applied to improve
the performance of the learner.
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