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Abstract. In this paper we present an algorithm for learning afunction able to
asessobjeds. We asaume that our teaders can provide a olledion d pair-
wise comparisons but encourter certain difficultiesin asggninganumber tothe
qualiti es of the objeds considered. Thisisatypicd situationwhen dedingwith
food poduwts, where it is very interesting to have repeaable, reliable
mechanisms that are & objedive & posdble to evaluate quality in order to
provide markets with products of a uniform quality. The same problem arises
when we aetryingto learn user preferencesin aninformationretrieval system
or in configuring a complex device The dgorithm is implemented using a
growing variant of Kohoren's Self-Organizing Maps (growing reura gas), and
is tested with a variety of data sets to demonstrate the caabiliti es of our
approach.

1. Introduction

Generally spe&king, quality asesament isa complex matter: what we usually need to
evaluate ae the desirable traits of an oljed by means of a single number. Frequently
though this number does nat strictly refled an absolute value, but rather the relative
quality of the objea with resped to athers. This is espedally true for objeds of a
biologicd origin; their quality is dependent on a not always well defined group d
multisensorial properties resulting from their chemicad composition, the natural
structure of the food elements, their interadion and the way in which they are
perceved by human senses[13]. This stuation becomes even more cmplex when we
consider quality grading d food poductsfrom the viewpaint of expertsor consumers.
Sinceno cktail ed grading spedficaions exist, experts may adopt aquality profil e that
considerably exceals that expeded by the wnsumer [2]. The requirements of

1 The reseach reported in this paper has been suppated in part uncer MCyT and Feder grant
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consumers are usually based on single dtributes that charaderize primary senses.
Consequently, the literature refleds disagreament between quality assesanents
obtained throughconsumer or expert panels[2, 9].

However, the foodindustry needs to supdy markets with uriform quality products
to satisfy consumer demands for normalized quality. Furthermore, if posdble, food
produwcers would like to know what the objedive (chemicd and physicd) basis of the
asessd quality isfrom the austomer viewpaint so as to improve the accetability of
their products.

The straightforward way to buld computable procedures to assessobjeds is to
colled aset of representative asessment events and then to apply a madiine leaning
algorithm that employs regresson like Cusist [6], M5’ [16, 20], SAFE (System to
Acquire Functions from Examples) [15 or BETS (Best Examples in Training Sets)
[7]. However, our experience with biologicd objeds [9, 10] tells us that the
complexity of the as®esanent task means that the repeaability of human evaluations
tendsto be low. Hence, the reliability of the training material ispoar, despite experts
having been trained exhaustively and having acaumulated a large, valuable body d
knowledge used for assessng [12].

Experts or consumers are perfedly ableto prefer one objed to anather, but usually
fail when they are asked to label products with a number. There is akind d batch
effect that often hiases the assesament; human asesrstry to number the diff erences
in arelative sense, comparing products with the other partnersin the batch. Thus, a
product surrounded byworse thingswill probably obtain a higher assesament than if it
were presented with better products. However, althoughwe may find uraccetable
individual variability in the asolute number obtained to assessthe quality of agiven
prodict, the relative position oldained in a batch is quite cnstant.

In this paper we present a new approacd to learning functions capable of assessng
objeds garting from reliable training material. Our training sets are formed by pairs
of objed descriptions, given by continuots attributes, where the first one has been
considered worse than the seocond The goal is then a function able to quantify the
quality of objeds as coherently as possble with the pair-wise ordering supgi ed asthe
training set.

The coreideaisto consider ead training instance & an indicaion d adiredion
where we can find an increase in quality. Thus, the vedorial difference of compared
produwcts is interpreted as a kind d coding d the locd behavior of the asesanent
function. In this way, the leaning algorithm is a dustering that uses a growing
verson [8] of Kohoren's Self-Organizing Maps (SOM) [11], where eat cdl
encapsulates aregressonrule.

After presenting the geometricad motivations of the dgorithm followed by the
implementation cetails, we dose the paper with a sedion devoted to presenting the
experimental results obtained with ou assesanent leaner.

2. Geometrical motivation of the algorithm

Let u andv bevedorsdescribingthe feaures of two oljedsthat our experts compare,
resulting in u being worse than v; in symbals, u <v. Then, we see&k afunctionf such
that f(u) < f(v). If we asaume that f behaves linealy, at least in the surroundngs of
our vedors, we have to find a vedor w such that



fw(u) =u- w<v- w="fu(v) (D]

where, for vedors z andt, we represent their inner product by z-t.

From a geometricd point of view, function f, represents the distance to the
hyperplane u-w = 0; i.e. the hyperplane of vedors perpendicular tow. If we seach for
w considering orly narmalized vedors (i.e. ||w|| = 1), the largest difference between
f(u) andf,(v) values is reatied when w is the normalized veaor in the diredion d
(v-u). Infad,

f,(v—u) = (v—u)-w< [[v-ul]- ||w] = ||v-ul| = (v-u)-(v=u)/||v-ul| =f e v-u) (2
W
u v
asessment J
hyperplane

Fig. 1. Giventwo oljedsrepresented by vedorsu andyv, if u isworsethan v, thenormal vedor
in the diredion d the difference, w = (v-u)/ || v-u||, defines a hyperplane, the distance from
which is a suitable locd assessnent function.

In the general case we start from a family of comparisons

{u<v:i=1..,n} (3)

and wish to induce afunction f, with locd linea behavior, and which hopefully is
cgpable of distinguishing as often as possble that u, is worse than v,, because f(u,) <
f(v,). The dgorithm propased in this paper uses the geometricd intuitionintroduced in
this edion as the basic building Hock of such afunction f. Hence, the main task of
the dgorithm will be to combine the locd guidelines siggested by ead comparison
suppied in the training set.

3. Thealgorithm: clustering partial functions

In line with the discussons presented in the previous sdion, the comparison
examples of (3) giverise to aset of 2n pairs of vedors as foll ows:

{(v,-u)[v,-ul,uw:i=1 om OLv -uw) /v -ufl, v.):i=1,...,n}. (4



If (w, u) is such a pair, we understand it to be asuggestion d aregressonrule
indicating that the asesanent of avedor z is

f(2) if zisinthe neighbahoad of u. (5)

Given that f, (z2) = z-w, we will usualy identify w with the linea function f,.
Likewise, we will refer to u asthe conditions of the rule. For short, we writew — u

In general, we ae pursuing an assesament function f defined by parts of the whale
attribute space In ather words, our assesament function will be given by a list of
regressonrules

W, « u); (W, « u); ...; (W, < u,) (6)

that must be evaluated by means of a minimal distance aiterion. In symbadls, the
functionf that isfinally induced will work as foll ows for an arbitrary vedor z.

f(z)=w, z if |z-u]l <||z-u|.0j=1,...,m (7

A firgt attempt to define the list of regressonrules (6) isto consider the whole set
of pairs (w, u) defined in (4), but these rule set must be improved: it is too kg and
may contain a lot of noise. Therefore, the idea of our leaning algorithm (see
Algorithm 1) is to cluster similar condtions u, and then to attach a function w
acording to the functions of the pairs of the same duster (seeFigure 2). To thisend,
we use agrowing version d Kohoren's Self-Organizing Maps (SOM) [11]: growing
neural gas (GNG) of Fritzke [8]. Thisapproad hasthe advantage that we do nd need
to define apriori configuration parameters like SOM layout dimensions or the radius

used throughou the adaptation.
Fig. 2. The dustersof partial functionsrepresents, in ead node, an environment in the dtribute
spaceof the objeds to be ssessd, drawn in gray in the picture, and a vedor pointingin the

diredion to measure the assesanents. In ather words, the map represents a set of regresgon
rulesto be gplied by means of a neaest-distance aiterion.

The GNG graph starts with two nodes u,, u, representing two pdntsin the domain
of the assesament function, in ead iteration step a new nock is added trying to fit
better this pace The number of steps (N) followed by GNG condtions the
granularity of the regresson rules. By default, N is the number of comparisons
divided by 10

Oncewe have anumber of clustersrepresented byu,, u,,...,u,, we mnsider the set
of comparisons (t, < t,) where ead t, is closer to the same u, than to any ather u,.



These comparisons will be used to compute alocd linea approximation d the
asesgnent function in the surroundngs of u,.

The procedure foll owed to find alinea functionwith coefficientsw = (a,, ..., @) is
taken from OCL1 [14] only dightly modified for this purpose. In fad, what we ae
looking for is a vedor w such that w- (t,-t,) > 0 as many times as possble. We can
start with w being the average of the normalized dfferences

w=(a, ..., a) =Average{(t,t,)/||t,-t,]|: t>t, & t,,t, O cluster(u)}. (8)

Now we try to improve the mefficients g, one & atime. The key observation is
that for eath namalized dfference (t,-t,)/|t,-t,| =(X,, ..., X,) we have that

w- (t-t) =2(g *x;:i=1.d)>0, 9
when x, > 0, isequivalent to
a,> '(a1X1 TaxX,t. ..+ a3 Xy T A Xt auxd) / Xy = U (10)

or the oppasite when x_ < 0. When x_ = 0, the value of the wefficient a, does not
matter. So, for fixed values of al other coefficients, ead equation (10) represents a
constraint onthe values of a,. Therefore, we sort all U valuesand consider aspaossble
setting for g, the midpants between eadt pair of conseautive U's. We seled the a,
that satisfies the greaer number of constraints. Foll owing the procedure of OC1, we
iterate this gep in order to adjust al the mefficients until nofurther optimisationcan
be adieved.

If the number of clustersishigh, for instancewhenever we use the default value for
N, the number of training examples divided by 1Q then the previous approach
inspired in OC1 can be skipped (the results are quite similar). We car smply updhte
the function w attached to a duster u as the average of the functions w' of pairs
(wW’,u’) whose winner noceis u.

In any case, the regresson rules 9 found reed a final improvement process The
ideaisthat w — u may corredly resolve assanents of objedsnea u. That is, when
t,>t,, and bdh t, and t, are nea u, w was devised for obtainingw- (t,-t,) > 0. Butw
may fail when ore of the objedsisgoingto be essssd byanother rulew’ — u’. To
solve these situations we ae going to look for adequate slope modifiers a and
independent terms b such that the function d the regresson rule will now be

aw-J)+b < u. (11

The procedure foll owed to find a and bfor eat regresson ruleisamost the same
that we have just described for adjusting the wefficients a, of eat w. The only
differenceisthat now we consider comparisons where only ore of the objedsisnea
the ndtion d the rule to be improved.



Functi on LEARN TO ASSESS COMPRISONS FROM EXAMPLES(L ACE)

(comparisons set { u,<v;:i=1,...,n}, number of steps N) {
E={( V=Y ,u) i=1,...,n} O {( YiZU ,v,): i=1,...,n}
Ivi -ui Ivi -ui
/I To have comparable values in [0,1]
Normalize each component of conditions u, and v, inE pairs;

/I Now, we cluster the conditions of E examples
Gndceonditions(E), steps = N); //by default N = |E|/(2*10)
Let( w,u,),( w,u,,..( w,u,)be the nodes of the graph
where w |, are the average values of the training
instances having node i as the nearest one
/lthe next loop can be safety skipped when N is high
for eachnode( w, u,)ingraph do {
/Inotice th at the function w . Is an arbitrary value
wo= oel{t -t , <t )& uit yf<fut ] ss Juit Gl<fwit ] 5 o# i)

improve relative slopes and independent terms of regression rules;
return regression rules;

}
Algorithm 1. The dgorithm that learns to assessfrom pair-wise cwmparison examples (LACE).

4. Experimental results

In order to test the validity of our approach we mndicted a number of experiments.
The ideais to ded with assesanent problems where we know a priori the kind o
results that we would like to oktain.

Toill ustrate the way that our algorithm works, we start with asimple problem. Let
us consider objeds describable by orly one cntinuots attribute x with valuesin [0,
1], and having as true assesanent function the parabda ta(x)= -x(x-1), seeFigure (3,
a). To buld atraining set of comparisons E, we generated 3000 pirs (x1,x2) with
values in [0,1], and we alded to E the pair (x1,x2) if ta(x1) > ta(x2), and we alded
(x2,x1) otherwise. Our algorithm learned from E the functionf drawn in Figure (3, b).
Notice that while the adual values of f(x) and ta(x) are quite different, the relative
values are dmost the same. In fad, building atest set of comparisons using the same
procedure foll owed for E, we only foundthat the 0.03% of the pairswere eroneously
ordered byf.

A seoond mdage of experiments (see Table 1) was caried ou with objeds
describable by two continuots attributes: x and y. Once an assessmnent function hed
been fixed, the objedswere randanly generated as 2-dimensional pointsin the stated
redangles, once we have generated two such oljeds, they are written in the
comparison set, the worse one (acwrding to the mrrespondng gal assessment
function) first. We alditionally generated another test set of comparisons, changing
the randam seal. Both sets had 3000 @irs. The arors reported are the percentage of
test pairs that were misplaced by the assesanent function learned by ou agorithm.
These data sets $roud be eay problemsfor our leaner, andin fad were so, ascan be
sea in the scores reported in Table (1): However, we car appredate significantly
better scores when the regions with dff erent assesament behavior are separated.
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Fig. 3. The objeds to be asssd are described by x O [0, 1]. (8) The true asssnent is
ta(x) = -x(x-1). (b) The function leaned by ou agorithm f. Only 1 o the 3000test pairs is
erroneously ordered byf.

Table 1. Experiments carried ou with gaal functions defined by two linea subfunctions with
separate domains. The original objedsto be aseessed were vedorsin the redang es [0, 999] x
[0,999] in thefirst two rows, and for the other two [200,299] % [0,999], and[700,799] x [0,999].
Both training and test sets have 3000elements. We used orly 3 steps to adapt the underlying
GNG graph.

Goal functions Error
[x +10y x <500

foey) = %0)( +y x>500 4.83%
_[x+y x<500
=070 o 5.46%

x+10y x0[200,299]

(=00, 4y xnfro0.799] | 0-23%
_x+y x0[200,299]
(N=0 ) ofroozee] | 0-20%

Finally, we used some pulicly avail able regresson datasets in an attempt to ded
with amost real-world data. We built training and test sets providing comparisons
between the dassvalues of pairs of examplesinsteal o training ontheir classlabels
as in the onwventional setting; for ead example we randamly seleded ather 10
examples, 8 of them were placed in the training set and the other 2 went to the test set.
In order to compare the adievements of LACE, we used two well-known regresson
leaners: M5’ [16, 20], and Cubist [6]. We trained M5 and Cubist with the whde
dataset, that is considering nd only the description d the objeds, but the numeric
classtoo. To test what they leaned, we compared the values provided for eath
comporent of the comparison. The scores o foundare reported in Table (2).

Let us remark that the comparative reported in Table (2) is not fair for our LACE.
The reasonisthat regresson learners have accesto the true numericd classesfor all
test examples, while LACE can orly seepairswhere there ae differences, but without
knowing the anourt of those differences. As was pointed ou in the introduction, in
real-world cases we will not have the numeric dasses and so we will not able to use
M5’ or Cubist.



Table 2. Error scores of our leaner in publicly avail able regresson datasets in additionto the
parabola dataset described above. The CPU, Body fat were dowloaded from Cubist URL [6],
whil e Boston housing, and Liver disorders can be foundat UCI Repositoty [1]. The number of
steps foll owed by GNG was the default value, i.e., the number of training comparisons divided
by 1Q Noticethat LAce readed only 0.03% errors when N was 3 in the parabola dataset.

dataset Cubist| M5' | LAcE
CPU 13.16%|11.00%] 11.48%
Boston Housing | 8.99%| 9.19%| 7.01%
Body fat 17.26%|15.48%]| 11.10%
Liver disorders |31.59%|31.30%)| 14.63%
Parabola 0.86%| 9.13%| 3.93%
Average 14.37%)|15.22%| 9.63%

5. Related work

Tesauro tackled asimilar problem in[17] for findingafunctionableto seled the most
preferable dternative in hisfamous badkgammon dayer. His proposal wasto enforce
asymmetric neural network architedure consisting o two separate subretworks, one
for eath oljed in the comparison. In addition, he enforced that both subnetworks
have the same weights (only multiplied by -1 in the output layer). However, this
restrictionin the training mechanism only worked properly with perceptron retworks,
at least in hisapplicaionfield. Other perceptron approaches are described in [18,19].

In information retrieval, user preferences were modelled by means of preference
predicates leaned from a set of comparisons [3, 4, 5]. This is a quite different
approach sinceour aim isto oktain afunction able to asessgrader preferenceswith a
number; for our purposes it is not enoughto knowv which oljed is preferable.
Additionally, onceyou have apreference predicate, to order a set of objedsisaNP-
hard problem [5] sincethe trangitivity of the leaned predicae isnot guaranteed at all.

6. Conclusions

In this paper, we have presented a new approach to oltaining sound assessment
functions of objeds. Our approach allows us to make use of a kind d knowledge
cgoable of satisfadorily ranking a set of objeds from the best to the worst, but that
fals in asesdng the ‘goodress of a single objed with an absolute number.
Assessnents carried ou in an absolute way are strondy aff eded by a batch effed in
the sense that they tend to number the quality of an ohjed with resped to the other
objeds in a batch, but nat in an absolute sense, as we hope for when we asdgn a
number to quality. This stuationis charaderistic of biologicd objeds, andespedally
in the foodindustry, in which the rules for dedading the degreeof quality of a product



are not usualy well defined, but the ranking d products is quite constant and well
accepted onthe part of consumers and market operators.

From a computational point of view, we have to oltain a float function from
training sets withou categorica or continuows classes. The problem has been tadkled
with a growing modificaion d Kohoren's SOM based ona geometricd intuition d
the transformations that shoud be gplied to the training data. The dgorithm thus
built was tested with bah artificial and red-world data in order to show the abiliti es
of the method popacsed. The results refled avery high degreeof acarracy.

The limitations of our approach, which shoud be overcome in afuture work, have
to dowith the granularity of the underlying GNG graph that clusters training data.
Additionally, we hope that an improvement in the placement of condtions (u) in
regresson rules (w — u) would provide abetter performance of solutions with a
lower number of steps, seeTables1 and 2
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