
Learning to assess from pair -wise compar isons1 

J. Díez(* ), J.J. del Coz(** ), O. Luaces(** ), F. Goyache(* ), J. Alonso(** ), A. M. Peña(*** ), 
and A. Bahamonde(** ) 

(* ) SERIDA-CENSYRA-Somió, C/ Camino de los Claveles 604,  
E-33203 Gijón (Asturias), Spain. 

(** ) Centro de Inteligencia Artificial. Universidad de Oviedo at Gijón, Campus de Viesques,  
E-33271 Gijón (Asturias), Spain. 

(*** )Facultad de Ingeniería. Universidad Distrital Francisco José de Caldas, Bogotá, 
Colombia. 

 
jdiez@serida.org, {juanjo, oluaces}@aic .uniovi.es, 

fgoyache@serida.org,  
{jalonso, antonio}@aic.uniovi.es  

Abstract. In this paper we present an algorithm for learning a function able to 
assess objects. We assume that our teachers can provide a collection of pair-
wise comparisons but encounter certain diff iculties in assigning a number to the 
qualiti es of the objects considered. This is a typical situation when dealing with 
food products, where it is very interesting to have repeatable, reliable 
mechanisms that are as objective as possible to evaluate qualit y in order to 
provide markets with products of a uniform qualit y. The same problem arises 
when we are trying to learn user preferences in an information retrieval system 
or in configuring a complex device. The algorithm is implemented using a 
growing variant of Kohonen’s Self-Organizing Maps (growing neural gas), and 
is tested with a variety of data sets to demonstrate the capabiliti es of our 
approach. 

1. Introduction 

Generall y speaking, qualit y assessment is a complex matter: what we usually need to 
evaluate are the desirable traits of an object by means of a single number. Frequently 
though, this number does not strictly reflect an absolute value, but rather the relative 
qualit y of the object with respect to others. This is especiall y true for objects of a 
biological origin; their qualit y is dependent on a not always well defined group of 
multi sensorial properties resulting from their chemical composition, the natural 
structure of the food elements, their interaction and the way in which they are 
perceived by human senses [13]. This situation becomes even more complex when we 
consider qualit y grading of food products from the viewpoint of experts or consumers. 
Since no detailed grading specifications exist, experts may adopt a qualit y profile that 
considerably exceeds that expected by the consumer [2]. The requirements of 
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consumers are usually based on single attributes that characterize primary senses. 
Consequently, the literature reflects disagreement between qualit y assessments 
obtained through consumer or expert panels [2, 9]. 

However, the food industry needs to supply markets with uniform qualit y products 
to satisfy consumer demands for normalized qualit y. Furthermore, if possible, food 
producers would li ke to know what the objective (chemical and physical) basis of the 
assessed qualit y is from the customer viewpoint so as to improve the acceptabilit y of 
their products. 

The straightforward way to build computable procedures to assess objects is to 
collect a set of representative assessment events and then to apply a machine learning 
algorithm that employs regression li ke CUBIST [6], M5’ [ 16, 20], SAFE (System to 
Acquire Functions from Examples) [15] or BETS (Best Examples in Training Sets) 
[7]. However, our experience with biological objects [9, 10] tell s us that the 
complexity of the assessment task means that the repeatabilit y of human evaluations 
tends to be low. Hence, the reliabilit y of the training material is poor, despite experts 
having been trained exhaustively and having accumulated a large, valuable body of 
knowledge used for assessing [12]. 

Experts or consumers are perfectly able to prefer one object to another, but usually 
fail when they are asked to label products with a number. There is a kind of batch 
effect that often biases the assessment; human assessors try to number the differences 
in a relative sense, comparing products with the other partners in the batch. Thus, a 
product surrounded by worse things will probably obtain a higher assessment than if it 
were presented with better products. However, although we may find unacceptable 
individual variabilit y in the absolute number obtained to assess the qualit y of a given 
product, the relative position obtained in a batch is quite constant. 

In this paper we present a new approach to learning functions capable of assessing 
objects starting from reliable training material. Our training sets are formed by pairs 
of object descriptions, given by continuous attributes, where the first one has been 
considered worse than the second. The goal is then a function able to quantify the 
qualit y of objects as coherently as possible with the pair-wise ordering supplied as the 
training set. 

The core idea is to consider each training instance as an indication of a direction 
where we can find an increase in qualit y. Thus, the vectorial difference of compared 
products is interpreted as a kind of coding of the local behavior of the assessment 
function. In this way, the learning algorithm is a clustering that uses a growing 
version [8] of Kohonen’s Self-Organizing Maps (SOM) [11], where each cell 
encapsulates a regression rule. 

After presenting the geometrical motivations of the algorithm followed by the 
implementation detail s, we close the paper with a section devoted to presenting the 
experimental results obtained with our assessment learner. 

2. Geometr ical motivation of the algor ithm 

Let u and v be vectors describing the features of two objects that our experts compare, 
resulting in u being worse than v; in symbols, u < v. Then, we seek a function f such 
that f(u) < f(v). If we assume that f behaves linearly, at least in the surroundings of 
our vectors, we have to find a vector w such that 



fw(u) = u· w < v· w = fw(v) (1) 

where, for vectors z and t, we represent their inner product by z·t. 
From a geometrical point of view, function fw represents the distance to the 

hyperplane u·w = 0; i.e. the hyperplane of vectors perpendicular to w. If we search for 
w considering only normalized vectors (i.e. 

�
w

�
 = 1), the largest difference between 

fw(u) and fw(v) values is reached when w is the normalized vector in the direction of 
(v-u). In fact, 
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Fig. 1. Given two objects represented by vectors u and v, if u is worse than v, the normal vector 
in the direction of the difference, w = (v-u)/ � v-u � , defines a hyperplane, the distance from 
which is a suitable local assessment function. 

In the general case we start from a family of comparisons 

{ ui < vi: i = 1, …, n }  (3) 

and wish to induce a function f, with local li near behavior, and which hopefull y is 
capable of distinguishing as often as possible that ui is worse than vi, because f(ui) < 
f(vi). The algorithm proposed in this paper uses the geometrical intuition introduced in 
this section as the basic building block of such a function f. Hence, the main task of 
the algorithm will be to combine the local guidelines suggested by each comparison 
supplied in the training set. 

3. The algor ithm: clustering par tial functions 

In line with the discussions presented in the previous section, the comparison 
examples of (3) give rise to a set of 2n pairs of vectors as follows: 

{ ((vi - ui)/ � vi - ui � �  ui): i = 1, …, n} ∪  { ((vi - ui) / � vi - ui � , vi,): i = 1, …, n} . (4) 

 



If (w, u) is such a pair, we understand it to be a suggestion of a regression rule 
indicating that the assessment of a vector z is 

fw(z) if z is in the neighborhood of u. (5) 

Given that fw (z) = z·w, we will usually identify w with the linear function fw. 
Likewise, we will refer to u as the conditions of the rule. For short, we write w ← u 

In general, we are pursuing an assessment function f defined by parts of the whole 
attribute space. In other words, our assessment function will be given by a li st of 
regression rules  

(w1 ← u1); (w2 ← u2); …; (wm ← um) (6) 

that must be evaluated by means of a minimal distance criterion. In symbols, the 
function f that is finall y induced will work as follows for an arbitrary vector z. 

f(z) = wk· z  if � z - uk �  ≤ � z - uj � , ∀∀  j = 1, …, m (7) 

 
A first attempt to define the li st of regression rules (6) is to consider the whole set 

of pairs (w, u) defined in (4), but these rule set must be improved: it is too big and 
may contain a lot of noise. Therefore, the idea of our learning algorithm (see 
Algorithm 1) is to cluster similar conditions u, and then to attach a function w 
according to the functions of the pairs of the same cluster (see Figure 2). To this end, 
we use a growing version of Kohonen’s Self-Organizing Maps (SOM) [11]: growing 
neural gas (GNG) of Fritzke [8]. This approach has the advantage that we do not need 
to define a priori configuration parameters li ke SOM layout dimensions or the radius 
used throughout the adaptation. 

 

 
 

Fig. 2. The clusters of partial functions represents, in each node, an environment in the attribute 
space of the objects to be assessed, drawn in gray in the picture, and a vector pointing in the 
direction to measure the assessments. In other words, the map represents a set of regression 
rules to be applied by means of a nearest-distance criterion. 

The GNG graph starts with two nodes u1, u2 representing two points in the domain 
of the assessment function, in each iteration step a new node is added trying to fit 
better this space. The number of steps (N) followed by GNG conditions the 
granularity of the regression rules. By default, N is the number of comparisons 
divided by 10. 

Once we have a number of clusters represented by u1, u2,…,um, we consider the set 
of comparisons (t2 < t1) where each tk is closer to the same ui than to any other uj. 



These comparisons will be used to compute a local li near approximation of the 
assessment function in the surroundings of ui. 

The procedure followed to find a linear function with coeff icients w = (a1, …, ad) is 
taken from OC1 [14] only slightly modified for this purpose. In fact, what we are 
looking for is a vector w such that w· (t1-t2) > 0 as many times as possible. We can 
start with w being the average of the normalized differences 

w = (a1, …, ad)  = Average{(t1-t2)/ 	 t1-t2 	 
 t1>t2 & t1,t2 ∈  cluster(ui)} . (8) 

Now we try to improve the coeff icients am, one at a time. The key observation is 
that for each normalized difference (t1-t2)/ � t1-t2 � =(x1, …, xd) we have that 

w· (t1-t2) = ΣΣ(ai * x i: i = 1..d) > 0, (9) 

when xm > 0, is equivalent to  

am > -(a1x1 + a2x2 + . . . + am-1xm-1 + am+1xm+1+ ... + adxd) / xm = U (10) 

or the opposite when xm < 0. When xm = 0, the value of the coeff icient am does not 
matter. So, for fixed values of all other coeff icients, each equation (10) represents a 
constraint on the values of am. Therefore, we sort all U values and consider as possible 
setting for am the midpoints between each pair of consecutive U’s. We select the am 
that satisfies the greater number of constraints. Following the procedure of OC1, we 
iterate this step in order to adjust all the coeff icients until no further optimisation can 
be achieved. 

If the number of clusters is high, for instance whenever we use the default value for 
N, the number of training examples divided by 10, then the previous approach 
inspired in OC1 can be skipped (the results are quite similar). We can simply update 
the function w attached to a cluster u as the average of the functions w’ of pairs 
(w’ ,u’) whose winner node is u. 

 
In any case, the regression rules so found need a final improvement process. The 

idea is that w ← u may correctly resolve assessments of objects near u. That is, when 
t1>t2, and both t1 and t2 are near u, w was devised for obtaining w· (t1-t2) > 0. But w 
may fail when one of the objects is going to be assessed by another rule w’ ← u’ . To 
solve these situations we are going to look for adequate slope modifiers a and 
independent terms b such that the function of the regression rule will now be 

a(w·     ) + b ← u. (11) 

 
The procedure followed to find a and b for each regression rule is almost the same 

that we have just described for adjusting the coeff icients am of each w. The only 
difference is that now we consider comparisons where only one of the objects is near 
the condition of the rule to be improved. 

 



Function LEARN TO ASSESS COMPARISONS FROM EXAMPLES (L ACE)  
     (comparisons set { ui <vi : i=1,…,n}, number of steps N) {  

  E = {(
ii

ii

uv
uv

−
− ,ui ): i=1,…,n} ∪  {(

ii

ii

uv
uv

−
− , vi , ): i=1,…,n};  

  // To have comparable values in [0,1]  
  Normalize each component of conditions ui  and vi  in E pairs;  
  // Now, we cluster the conditions of E examples  
  GNG(conditions(E), steps = N); //by default N = |E|/(2*10)  
  Let ( w1, u1) , ( w2, u2),…,( wm, um) be the nodes of the graph  
     where w i  are the average values of the training  
     instances having node i as the nearest one  
  //the next loop can be safety skipped when N is high  
  for each node ( wi, ui) in graph do {  
   //notice th at the function w i  is an arbitrary value  
   wi = OC1{ t1-t2: (t 2 < t 1) && � u i ,t 1 � ≤ � 
 j ,t 1 � � � � u i ,t 2 � ≤ � � j ,t 2 � � ≠ i}  
  }  
  improve relative slopes and independent terms of regression rules;  
  return regression rules;  
}  

Algor ithm 1. The algorithm that learns to assess from pair-wise comparison examples (LACE). 

 

4. Experimental results 

In order to test the validity of our approach we conducted a number of experiments. 
The idea is to deal with assessment problems where we know a priori the kind of 
results that we would li ke to obtain. 

To ill ustrate the way that our algorithm works, we start with a simple problem. Let 
us consider objects describable by only one continuous attribute x with values in [0, 
1], and having as true assessment function the parabola ta(x)= -x(x-1), see Figure (3, 
a). To build a training set of comparisons E, we generated 3000 pairs (x1,x2) with 
values in [0,1], and we added to E the pair (x1,x2) if ta(x1) > ta(x2), and we added 
(x2,x1) otherwise. Our algorithm learned from E the function f drawn in Figure (3, b). 
Notice that while the actual values of f(x) and ta(x) are quite different, the relative 
values are almost the same. In fact, building a test set of comparisons using the same 
procedure followed for E, we only found that the 0.03% of the pairs were erroneously 
ordered by f. 

A second package of experiments (see Table 1) was carried out with objects 
describable by two continuous attributes: x and y. Once an assessment function had 
been fixed, the objects were randomly generated as 2-dimensional points in the stated 
rectangles; once we have generated two such objects, they are written in the 
comparison set, the worse one (according to the corresponding goal assessment 
function) first. We additionally generated another test set of comparisons, changing 
the random seed. Both sets had 3000 pairs. The errors reported are the percentage of 
test pairs that were misplaced by the assessment function learned by our algorithm. 
These data sets should be easy problems for our learner, and in fact were so, as can be 
seen in the scores reported in Table (1): However, we can appreciate significantly 
better scores when the regions with different assessment behavior are separated. 
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Fig. 3. The objects to be assessed are described by x ∈  [0, 1]. (a) The true assessment is  
ta(x) = -x(x-1). (b) The function learned by our algorithm f. Only 1 of the 3000 test pairs is 
erroneously ordered by f. 

 

Table 1. Experiments carried out with goal functions defined by two linear subfunctions with 
separate domains. The original objects to be assessed were vectors in the rectangles [0, 999] × 
[0,999] in the first two rows, and for the other two [200,299] × [0,999], and [700,799] × [0,999]. 
Both training and test sets have 3000 elements. We used only 3 steps to adapt the underlying 
GNG graph. 
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Finall y, we used some publicly available regression datasets in an attempt to deal 

with almost real-world data. We built training and test sets providing comparisons 
between the class values of pairs of examples instead of training on their class labels 
as in the conventional setting; for each example we randomly selected other 10 
examples, 8 of them were placed in the training set and the other 2 went to the test set. 
In order to compare the achievements of LACE, we used two well -known regression 
learners: M5’ [ 16, 20], and Cubist [6]. We trained M5’ and Cubist with the whole 
dataset, that is considering not only the description of the objects, but the numeric 
class too. To test what they learned, we compared the values provided for each 
component of the comparison. The scores so found are reported in Table (2). 

 
Let us remark that the comparative reported in Table (2) is not fair for our LACE. 

The reason is that regression learners have access to the true numerical classes for all 
test examples, while LACE can only see pairs where there are differences, but without 
knowing the amount of those differences. As was pointed out in the introduction, in 
real-world cases we will not have the numeric classes and so we will not able to use 
M5’ or Cubist. 



Table 2. Error scores of our learner in publicly available regression datasets in addition to the 
parabola dataset described above. The CPU, Body fat were dowloaded from Cubist URL [6], 
while Boston housing, and Liver disorders can be found at UCI Repositoty [1]. The number of 
steps followed by GNG was the default value, i.e., the number of training comparisons divided 
by 10. Notice that LACE reached only 0.03% errors when N was 3 in the parabola dataset. 

dataset Cubist M5' LACE 

CPU 13.16% 11.00% 11.48% 

Boston Housing 8.99% 9.19% 7.01% 

Body fat 17.26% 15.48% 11.10% 

Liver disorders 31.59% 31.30% 14.63% 

Parabola 0.86% 9.13% 3.93% 

Average 14.37% 15.22% 9.63% 

 

5. Related work 

Tesauro tackled a similar problem in [17] for finding a function able to select the most 
preferable alternative in his famous backgammon player. His proposal was to enforce 
a symmetric neural network architecture consisting of two separate subnetworks, one 
for each object in the comparison. In addition, he enforced that both subnetworks 
have the same weights (only multiplied by -1 in the output layer). However, this 
restriction in the training mechanism only worked properly with perceptron networks, 
at least in his application field. Other perceptron approaches are described in [18,19]. 

In information retrieval, user preferences were modelled by means of preference 
predicates learned from a set of comparisons [3, 4, 5]. This is a quite different 
approach since our aim is to obtain a function able to assess grader preferences with a 
number; for our purposes it is not enough to know which object is preferable. 
Additionally, once you have a preference predicate, to order a set of objects is a NP-
hard problem [5] since the transiti vity of the learned predicate is not guaranteed at all . 

 
 

6. Conclusions 

In this paper, we have presented a new approach to obtaining sound assessment 
functions of objects. Our approach allows us to make use of a kind of knowledge 
capable of satisfactoril y ranking a set of objects from the best to the worst, but that 
fail s in assessing the ‘goodness’ of a single object with an absolute number. 
Assessments carried out in an absolute way are strongly affected by a batch effect in 
the sense that they tend to number the qualit y of an object with respect to the other 
objects in a batch, but not in an absolute sense, as we hope for when we assign a 
number to qualit y. This situation is characteristic of biological objects, and especiall y 
in the food industry, in which the rules for deciding the degree of qualit y of a product 



are not usually well defined, but the ranking of products is quite constant and well 
accepted on the part of consumers and market operators. 

From a computational point of view, we have to obtain a float function from 
training sets without categorical or continuous classes. The problem has been tackled 
with a growing modification of Kohonen’s SOM based on a geometrical intuition of 
the transformations that should be applied to the training data. The algorithm thus 
built was tested with both artificial and real-world data in order to show the abiliti es 
of the method proposed. The results reflect a very high degree of accuracy. 

The limitations of our approach, which should be overcome in a future work, have 
to do with the granularity of the underlying GNG graph that clusters training data. 
Additionally, we hope that an improvement in the placement of conditions (u) in 
regression rules (w ← u) would provide a better performance of solutions with a 
lower number of steps, see Tables 1 and 2. 
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