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RESUMEN (en espaiiol)

Esta tesis esta formada por tres ensayos que muestran un analisis integrado de la demanda de
agua residencial y las herramientas de gestién de la misma. Este es un tema de gran interés
debido a la creciente escasez de agua causada por la actividad econdmica, el crecimiento de la
poblacién y el cambio climatico. Los tres ensayos en esta tesis se centran en: el analisis de la
demanda de agua en presencia de preferencias heterogéneas para poder valorar la efectividad
de las politicas de gestion de la demanda, un estudio sobre la relacién entre la adopcion de
tecnologias eficientes de uso de agua y los habitos correspondientes a las mismas, y un
anadlisis semiparamétrico de la eficiencia en el consumo de agua que permite calcular los
ahorros de agua potenciales.

Esta tesis utiliza microdatos de panel relativos a la demanda residencial de agua y algunas
caracteristicas de los hogares. La base de datos ha sido obtenida al combinar informacién de
una encuesta a 1.465 usuarios domésticos en la ciudad de Granada con datos sobre consumo
bimensual y precios proporcionados por la empresa de abastecimiento de agua en esta ciudad
para el periodo 2009-2011.

En el primer capitulo “Respuestas al cambio en la estructura de tarifas de agua a nivel
residencial: un analisis de clases latentes a nivel hogar en Granada” se modelizan las
demandas heterogéneas de agua residencial utilizando modelos de clases latentes. Entre los
problemas metodoldgicos abordados en este ensayo, destaca el de la endogeneidad del precio
en un modelo no lineal, que se ha solucionado mediante el uso de un enfoque denominado
funcién de control. Se han identificado cuatro perfiles distintos de consumidores de agua
residencial en Granada para el periodo 2009-2011 en base a las similitudes de sus
preferencias inobservables, en lugar del unico perfil asumido por enfoques de una Unica
ecuacion. Ademas, esta estimacion nos permiti6 observar cuatro reacciones distintas a
cambios en los precios, implicando que algunos grupos de consumidores no son sensibles al
precio, por lo que otros instrumentos alternativos al precio deberian ser utilizados a fin de
promover la conservacion del agua. La probabilidad de pertenencia a cada clase es
parametrizada, permitiendo a los reguladores de agua caracterizar los distintos hogares para
poder hacer un disefio de politicas de gestion de demanda adaptado a consumidores
heterogéneos.

El capitulo de esta tesis titulado “Adopcién y uso de tecnologias eficientes a nivel residencial;
anadlisis desagregado en el sector del agua“ analiza los determinantes de la adopcién de
dispositivos eficientes en el uso de agua y los presencia de habitos responsables en el uso de
dichas tecnologias. En este sentido, se diferencia entre distintos tipos de tecnologias segun
necesiten energia eléctrica para su funcionamiento o no. Esta distincién se debe no solo a las
diferencias en las caracteristicas técnicas de los dispositivos analizados sino también a que
estos han sido objeto de distintas politicas publicas. Al analizar estas decisiones, se estudia
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también la relacion entre la adopcién de tecnologias eficientes de agua y habitos, ya que podria
existir un mal uso de estas tecnologias que condujera a pérdidas de eficiencia en agua. Para
llevar a cabo este analisis, se utiliza un probit recursivo semi-ordenado para modelizar
conjuntamente la eleccion de cada tecnologia y su habito correspondiente. Los resultados
muestran que existen diferencias en los determinantes de las decisiones estudiadas. Ademas,
la relacién entre tecnologias eficientes y habitos también es distinta segun el tipo de tecnologia,
existiendo una relacién negativa entre dispositivos eficientes no eléctricos y los habitos
asociados a dichas tecnologias, es decir, los hogares que disponen de este tipo de tecnologias
eficientes no estan haciendo un uso adecuado de las mismas.

Por ultimo, el ensayo titulado “El impacto del comportamiento medioambiental en la eficiencia
en el consumo residencial de agua”, mide el nivel de eficiencia en el consumo de agua y
analiza el efecto de distintos comportamientos medioambientales en el mismo. Para llevar a
cabo este analisis, se estima una funcién frontera de demanda de agua usando un modelo
semiparamétrico de frontera estocastica denominado smooth-coefficient stochastic frontier
model. Esta metodologia permite no solo analizar el efecto de estos factores medioambientales
en el término de ineficiencia, pero también incluir estas variables en la funcion principal, es
decir, los coeficientes estimados en la funcién principal también son funciones de los
comportamientos medioambientales. Los resultados nos permiten apreciar que, a pesar de los
elevados indices de eficiencia, los ahorros de agua pueden ser importantes si se aumenta el
numero de electrodomésticos eficientes en los hogares y mejoran los habitos de ahorro de
agua.

RESUMEN (en Inglés)

This thesis is formed by three essays that carry out an comprehensive analysis of residential
water demand and water demand management tools. It is a topic of critical importance as there
is a growing need to analyze water demand due to the increasing water stress caused by
economic activity, increasing population and climate change. The three essays of my thesis
elaborate on: 1) the analysis of water demand under heterogeneous preferences to better
understand the effectiveness of demand management policies; 2) a study of the relationship
between the adoption of efficient water-using technologies and user habits corresponding to
these technologies; and 3) a semiparametric study on efficiency in water consumption that
allows us to compute potential water savings.

The thesis exploits household-level panel data on residential water demand and consumers'
characteristics obtained by combining information from a survey of 1,465 domestic users in the
city of Granada and bimonthly price and consumption data supplied by this city's water supplier
from the period 2009-2011.

The essay entitled “Responses to changes in domestic water tariff structures: a Latent Class
Analysis on household-level data from Granada (Spain)” studies heterogeneous residential
water demand by implementing latent class models. Among the methodological issues
addressed in this essay, we have dealt with price endogeneity in a nonlinear model, which has
been treated using a Control Function approach. Four different residential water consumer
profiles in Granada for the period 2009-2011 are identified based on the similarity of their
unobservable preferences, rather than the common profile assumed by single equation
approaches. Moreover, this estimation allowed us to observe four distinct price responses,
implying that some groups of consumers are price insensitive so that non-pricing policies should
be implemented in order to foster water conservation. The probability of belonging to each class
is parameterized, allowing water regulators to characterize the households in each class in
order to tailor water demand management policy to heterogeneous users.
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The second essay in this thesis named “Adoption and use of efficient technologies at residential
level: a disaggregated analysis in the water sector” analyzes the determinants of the adoption of
water-efficient appliances and habits, disaggregating each type of behavior since households
may choose to purchase some of those efficient appliances or adopt habits because of the
resulting energy savings, with water savings being a secondary consideration due to the lower
price of water. When analyzing these decisions, the relationship between the adoption of water-
efficient equipment and habits is also examined, as there could be an inappropriate use of the
technologies that could lead to water efficiency losses. In order to do so, a recursive semi-
ordered probit model is proposed to jointly model choices about the adoption of different
technologies and water conservation habits. Our results show that there are differences in terms
of the determinants of each decision. Furthermore, the relationship between efficient water-
using technologies and habits differs depending on the type of technology. This relationship is
found to be negative in the case of non-electrical efficient devices and the corresponding habits,
implying that households with this type of technology are not making an appropriate use of it.

Finally, the essay entitled “The impact of environmental behavior on the efficiency in residential
water consumption” measures the level of efficiency in water demand and analyzes the effect of
different environmental behaviors on efficiency in residential water consumption. In order to do
so, a water demand frontier function is estimated using a semiparametric smooth-coefficient
stochastic frontier model. This methodology allows us not only to analyze the effect of the
environmental factors on the unobserved inefficiency term but also to include these variables
into the main regression function. In doing so, the intercept and the slope coefficients are
expressed as unknown functions of these environmental factors. This methodology allows us to
compute potential water savings associated with different environmental behaviors. Despite
obtaining high efficiency scores, there is still room for water savings, which may be enhanced
by promoting water efficient appliances and water conservation habits.
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Chapter 1
Introduction

Water is one of the most essential elements on Earth, and all forms of life depend
on it. Moreover, water has played a fundamental role in the development of
civilizations since the origin of humankind, as humans have usually settled close to
sources of water. For example, Mesopotamia (from Ancient Greek: MeoomoTapuia
“land between rivers”) is an area geographically located between the Tigris and
Euphrates rivers, Ancient Egypt emerged at the lower reaches of the Nile river,
and the Chinese civilization originated in the Yellow and Yangzi river basins. The
rise of these civilizations went hand in hand with an improvement in managerial
capabilities for waterworks in order to supply water to inhabited areas. This has
fostered sanitary systems and health conditions, and with increasing populations
and the development of agriculture, water needs increase, leading to shortages.
Thus, water shortages have been common throughout history. There has been a
long history of attempts at solving the problem. For example, in Ancient Egypt,
one of the tributaries of the Old Nile was dredged around 2100 B.C. after 40
years of falls in water levels. [Hassan, 2003]. However, such attempted solutions
to obtain water security did not achieve long-lasting results, leading to a gradual
increase in water demand [Hassan, 2003].

In more recent times, the Industrial Revolution generated greater demand
for water since it was not only used for agriculture and domestic uses, but also
as a source of energy and as an input for the industrial sector. Moreover, the
Industrial Revolution brought improvements in medicine and living standards,

resulting in a population explosion that reached 6.1 billion people at the start of



the 21st century.

Water availability issues have been aggravated by policy failures that allowed
countries to use more water than is sustainable according to the rate of replenish-
ment [Watkins, 2000], generating an important water-based ecological debt that
will be suffered by future generations. Moreover, climate change may transform
the hydrological cycles that determine water availability [Watkins, 2006]. Among
the potential impacts of this phenomenon are temperature rises and rainfall de-
clines, rapid glacial melt and rising sea levels resulting in reduction in freshwater.
Finally, behavioral changes related to climate change, such as increases in the
demand for heating and cooling, may also impact water availability [Olmstead,
2010].

When tackling the problem of water scarcity, water resource management has
been generally thought of as an engineering problem rather than an economic one
[Olmstead and Stavins, 2007]. Consequently, supply enhancement has been the
dominating approach towards responding to water scarcity. However, fresh water
sources are physically limited, so traditional forms of augmenting supply lead to
withholding water from future generations. Moreover, the rise in infrastructure
costs due to stricter environmental regulation would make supply enhancement
difficult to implement, especially in the current context of public funding con-
straints [Grafton, 2014]. An alternative supply-side option is desalination of sea
water. However, high energy costs may prevent poor countries from doing so
[Watkins, 2006].

As a consequence, there has been an increased focus on water demand poli-
cies. Water demand management is considered a “no-regrets” option to cope
with water scarcity [[PCC, 2008], where a “no regret” policy is defined as one
that would generate net social benefits even in the absence of climate change
impacts. There are two categories of demand management policy instruments:
price and non-price policies. Water price demand management policies need to
reflect the value of water. However, the development of competitive water mar-
kets is not desirable from an economic point of view due to the low sensitivity
of residential water demand to water prices and to the special characteristics of
water resources that make them difficult to manage through ordinary markets

[Olmstead and Stavins, 2007]. Instead, non-price demand management policies



are preferred. These include water rationing, subsidies for the adoption of effi-
cient technologies, or information and educational campaigns. It is important to
identify the determinants of water demand behaviors so that supply managers
and policy makers can understand the ways in which urban water consumption
can be reduced. Furthermore, it is also crucial to examine the level of efficiency
in residential water consumption and its determinants for a better understanding
of the potential water savings that could be achieved through price and non-price
policies.

Water demand is the focus of this thesis. In particular, the thesis centres
on various aspects of residential water demand where econometric techniques are
used to estimate empirical models whose purpose is to provide insights into water
consumption behavior. This in turn will allow interesting policy conclusions to
be drawn. The three chapters of the thesis focus on different but related aspects
of residential water demand. In particular, these chapters comprise an analysis of
residential water demand focusing on demand side management tools. As water
availability issues have been increasing, several policies aiming at reducing water
demand have been implemented. Therefore, it is of interest to understand the
effect of these policies on the behavior of residential consumers. Moreover, het-
erogeneity in consumers’ preferences may affect the effectiveness of these policies
depending on the composition of the targeted population, so taking into account
consumers’ heterogeneity may improve the design of water demand management
policies.

The essays in the thesis use data from the city of Granada, in the South of
Spain which is an area particularly affected by water scarcity. Concretely, the
empirical work exploits household-level panel data on residential water demand
and consumers’ characteristics obtained by combining information from a survey
of 1,465 domestic users in the city of Granada and bimonthly price and consump-
tion data supplied by this city’s water supplier from the period 2009-2011. This
database is further explained in the next chapter. The three remaining chapters
of my thesis elaborate on the topics discussed above.

The chapter titled Responses to changes in domestic water tariff structures:
a Latent Class Analysis on household-level data from Granada (Spain) studies

heterogeneous residential water demand since we believe that a common demand



function is unlikely to represent the behavior of all users. We use a Latent Class
Model to classify consumer into different groups and estimate water demand
functions for each of the four groups identified. Among the methodological issues
addressed in this paper, we account for price endogeneity in a nonlinear model,
using a Control Function approach. Four different residential water consumer
profiles in Granada for the period 2009-2011 are identified based on the similar-
ity of their unobservable preferences, rather than the common profile assumed by
single equation approaches. Since this estimation allows us to observe four dis-
tinct price responses, these results should be of interest to regulators who would
like to tailor water demand management policy to heterogeneous users. Of par-
ticular interest is our finding that some groups of consumers are price-insensitive,
implying a more prominent role for non-pricing policies in order to foster water
conservation.

The chapter Adoption and use of efficient technologies at residential level: a
disaggregated analysis in the water sector, analyses the determinants of the adop-
tion of water-efficient appliances and corresponding water-conservation habits
disaggregating each type of behavior since households may choose to purchase
some of those efficient appliances or perform habits because of the resulting en-
ergy savings, with water savings, due to the lower price of water, being a sec-
ondary consideration. When analyzing the adoption of water-efficient equipment
and habits, the possibility that consumers’ habits adjust to the adoption of the
water efficient equipment is tested, as there could be a so-called “rebound effect”
of the type found in the energy conservation literature. In order to do so, a
recursive multivariate probit model is proposed to jointly model choices about
different technologies adoption and conservation habits. This is an original con-
tribution, since this is the first attempt in the literature to analyze this issue in
a disaggregated way and it yields interesting conclusions regarding the effective-
ness of public policies in the context of the Europe 2020 strategy proposed by the
European Commission to reach a resource-efficient and greener economy.’

Finally, the last chapter in this thesis, The impact of environmental behavior

on the efficiency in residential water consumption, measures the level of effi-

1See http://ec.curopa.cu/europe2020 /index.n.htm for more detailed information about the
Europe 2020 strategy.
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ciency in residential water consumption and analyzes the effect of different pro-
environmental behaviors (that are considered environmental factors) on efficiency.
In order to do so, a water demand frontier function is estimated using a semipara-
metric smooth-coefficient stochastic frontier model. This methodology allows us
not only to analyze the effect of the environmental factors on the unobserved in-
efficiency term but also to include these variables in the main regression function.
In doing so, the intercept and the slope coefficients are expressed as unknown
functions of these environmental factors. The latter can then shift the frontier
non-neutrally. The results show that households with efficient electrical appli-
ances are indeed more water-efficient. However, those households with efficient
non-electrical devices show increases on water consumption. This may be caused
by the lack of uniform labelling on non-electrical devices, that is, consumers are
not properly informed about their devices’ water saving potential, and the low
price of water as opposed to the price of energy that may affect the correct use
of efficient electrical appliances, as could be inferred from the previous chapter.
Despite obtaining relatively high efficiency scores, there is still room for substan-
tial water-savings. These savings may be enhanced by promoting water-efficient
electrical appliances and the design of educational campaigns that may affect wa-
ter conservation habits and provide more information about the appropriate use
of efficient devices. Furthermore, a simulation of scenarios shows the effects of
changes in the efficient technology and water conservation habits and the quantity
of water that could be saved by promoting these environmental behaviors.

In summary, this thesis comprises a systematic analysis of the effect of demand
side policies on consumers’ water behavior. The empirical estimations show that
pricing policies are not effective in reducing water consumption for all types of
consumers. Regarding non-pricing policies, our results indicate that the promo-
tion of the adoption of efficient technology has not led to a reduction in water
consumption for some type of devices. Therefore, further efforts must be made in
terms of information campaigns and educational programmes to raise awareness
of the increasing levels of water scarcity. Finally, some policy recommendations
are derived from the three essays included in this thesis.

The three main chapters in this thesis are adaptations of articles that have

been sent to academic journals or are being prepared for this purpose. It should



be noted that Chapter 3 is a version of a paper forthcoming in Environmental and
Resource Economics, coauthored with my co-director, Dr Maria Angeles Garcia
Valinas of the University of Oviedo, and Prof. Roberto Martinez-Espineira of the

Memorial University of Newfoundland.



Chapter 2

Context and data

2.1 Context

2.1.1 Brief overview

Spain is the most semi-arid country in the EU Lopez-Gunn et al. [2012], and
it is increasingly affected by water scarcity problems. These are expected to
worsen due to climate change. Estimated resource availability of water in Spain
is now 3000 m?/person/year, for a demand of 2000 m®/person/year. However, at
the end of the 21%¢ century, water availability is expected to be reduced to just
450 m3 /person/year, with demand expected to be slightly higher than at present
IPCC [2007].

In this context, international and national regulators are playing a crucial role
in the management of water resources. The European Union has been paying
more and more attention to the balance between water demand and availabil-
ity, and has legislated to address this issue and promote efficient technologies
and water conservation habits. The usual procedure is that the European Union
(EU) establishes some general requirements, sets out environmental regulations
which should be incorporated into national legislation by each EU member. The
Spanish Ministry of Environment is responsible for identifying strategic objec-
tives for certain environmental issues, defining specific objectives and setting
targets. The regional and local governments are responsible for implementing
the plans. EU legislation has established the Water Framework Directive (EU



Directive 2000/60/CE) as the overriding legislation concerning water resource
management. In turn, Spanish national law has stressed the importance of water
as a public good and of water management as a public service. The Revised
Water Law (Texto Refundido de la Ley de Aguas) lays down the basic national
principles about the public property of water, the river basins and the importance
of hydrological planning. The Local Regime Law (1985) specifies that water ser-
vices are public services under the control of the municipalities that provide these
services. However, water services management may involve not only the munic-
ipalities but also the regions (Autonomous Communities). Here, water services
include water supply, which comprises collection, treatment and distribution of
water resources; sewage, which includes the process to drive wastewater from the
start of the sewer line to the wastewater treatment plant; and wastewater treat-
ment, which comprises physical, chemical and biological processes to minimize
the level of water pollution so it can be discharged into another body of water or
reused. The regulation of water supply and sewage services can be local or re-
gional, depending on the municipality. However, wastewater treatment is mainly
regulated by the regions due to the high costs, and the synergies and economies
of scale of this service [Ruiz Canete and Dizy Menéndez, 2009].

Moreover, according to the Local Regime Regulation Law (1985) art. 25 and
26, water services are directly assigned to the municipalities. However, there
are different forms of water services as shown in Table 2.1. Indirect management,
including private companies, mixed companies and other types, is the most preva-
lent in Spain, accounting for more than 50% of the population served.

The EU Water Framework Directive indicates that water prices should be
based on the cost recovery principle in order to ensure sustainability in the use of
water resources. In Spain, the Autonomous Community may control water tariffs
through a Regional Committee. However, as seen in Table 2.2, not all Spanish
municipalities are subject to these Committees. In particular, in most munic-
ipalities with less than 20,000 inhabitants, the City Council can independently
establish water prices [Ruiz Canete and Dizy Menéndez, 2009].

This lack of homogeneity in the financial control of water tariffs in Spain
leads to different pricing schemes. However, the most common one is Increasing

Blocks with a fixed charge, as shown in Table 2.3. As discussed by Garrido et al.



Table 2.1: Water management regimes in Spain
(% of inhabitants)

Management modalities
% of inhabitants

Public Company 39 %
Town Council 8 %
Private Company 36 %
Mixed Company 13 %
Other 4%

Source: Spanish Association of Water Supply and Sewage (AEAS) 2012

Table 2.2: Water pricing regulation
(% of municipalities)

Wastewater
Water supply Sewage treatment
> 20,000 < 20,000
inhabitants inhabitants
Committee on Prices &
Full City Council 37 % 51 % 11 % 4%
Committee on Prices 25 % 1% 28 % 33 %
Full City Council 22 % 46 % 58 % 27 %
Other 16 % 2 % 3% 36 %

Source: Spanish Association of Water Supply and Sewage (AEAS) 2004



[2015], Increasing Block tariffs are preferred from an environmental perspective.
However, they may have undesirable consequences in terms of equity, such as large
families paying higher average prices. In order to address this, some municipalities
in Spain establish a discount on the first blocks of consumption for such families,

whereas other municipalities adapt the size of the blocks to the number of family

members.
Table 2.3: Water price schemes in Spain
(% of inhabitants)
Supply Sewerage Wastewater
treatment
Fixed charge + increasing blocks 90 % 76 % 79 %
Fixed charge + constant price 2% 8 % 8 %
Free allowance 4 % 5% 3%
Constant price 3% 9% 8 %
Flat fee 1% 2 % 2 %

Source: Spanish Association of water supply and sewage (AEAS) 2012

Figure 2.1 illustrates the geographical distribution of the average water price
in Spain. The light (dark) color represents the lowest (highest) quantile average
water price. As it might be expected, the provinces located on the North of Spain
have the lowest average price and the provinces in the South of the country reg-
ister higher water prices, reflecting the higher level of water scarcity. It is also
worth noting that the Canary and Balearic Islands, Murcia and some provinces
in Catalonia belong to the highest quantile, since they have implemented desalin-
ization techniques to increase the water supplied [Garrido et al., 2015] with the

consequence that the costs of water services are higher in these provinces.
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(AEAS) 2012

Figure 2.1: Residential average price for water in Spain

Non-pricing policies are also implemented in order to promote reductions in
water consumption. Policies promoting water-efficient behaviour differ depending
on whether they are focused on efficient electrical or non-electrical water-using
technologies. On the one hand, there are some efficient electrical appliances, such
as washing machines and dishwashers, which could generate significant water
savings at residential level. These appliances are identified by labelling schemes,
which form part of the policies aimed at providing information to help consumers
understand the potential savings of different devices. Furthermore, there is a sub-
sidy program (Plan Renove) to promote investment in efficient electrical appli-
ances. On the other hand, the installation of non-electrical water-using devices is
also promoted by subsidy programs providing incentives to renew housing equip-

ment.

Regarding policies promoting water conservation habits, information cam-
paigns to encourage water savings have been designed at European, national and
municipal levels. For example, an ambitious program named Generation Awake

was launched by the European Commission’s Directorate-General for the Envi-
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ronment in 2011 to reduce waste and the use of resources such as water, energy,
wood and metals. Non-pricing policies in Spain are further discussed in Chapter
4.

The greater intensity of water demand management policies that have been
implemented in Spain in the past years seems to have affected consumers’ aware-
ness of the problem, and as shown in Figure 2.2, residential water consumption

has been slowly but constantly decreasing in Spain.

Consumption (L/day/person)
150 155 160 165 170 175
L L L L L L

145
|

140
L

T T T T T T
2000 2002 2004 2006 2008 2010

Source: Author own elaboration from http://www.ine.es
Figure 2.2: Evolution of residential water consumption

In light of the above, it is clear that pricing and non-pricing policies aiming
at reducing water consumption are already in place. Provinces where water is
scarcer generally exhibit higher average water prices and make more intense use
of non-price mechanisms, and the analysis of water demand at the household level
in these provinces could give us a sense of the behavioral response of households

to these policies and of households’ awareness of the water scarcity problem.

12


http://www.ine.es

2.1.2 The case of Granada

The data for this study were collected from a survey carried out in the city of
Granada, which is part of the region of Andalusia, located in the South of Spain
and one of the most water-stressed regions in Europe.The city had a popula-
tion of more than two hundred thousand people in 2014 [INE, 2014]. Tts climate
is Mediterranean-Continental with cool winters and very hot and dry summers.
The city of Granada is located at the foot of Sierra Nevada mountains and water
availability has been historically regulated by the snowmelt from these moun-
tains. However, due to climate change and increasing pressure on water resources,

' Moreover, this situation is expected to

nowadays reservoirs are also necessary.
intensify over time as the Sierra Nevada Global Change Observatory predicts an
increase of over 4.8°C by at the end of the 21 century in Sierra Nevada [Pérez-
Luque et al., 2012]. Therefore, the predictions for Granada are more unfavorable
than predictions at global level that forecast a general increase between 1.5°C and
4.5°C [IPCC, 2007]. Moreover, rainfalls could suffer a slight decrease over time,
with heavy and torrential rainfalls alternating with long periods of droughts. It
is also worth noting that there is an increasingly negative trend in snow duration
that may worsen the freeze-thaw cycle [Pérez-Luque et al., 2012]. Aquifers are
another source used to ensure water supply in the city of Granada. However, a
decreasing trend in the aquifer replenishment is observed as a consequence of the
change in land use from crops to urban settlement, whereas discharges from the
aquifer have not decreased [Calvache et al.; 2013]. Therefore, the sustainability
of the aquifer is also at risk.

As water becomes increasingly scarce in the South of Spain, water supply man-
agers are already implementing pricing and non-pricing policies as water conser-
vation tools. In Granada, prices for water are set by EMASAGRA, the company
in charge of water supply and sewage collection in the city. This company’s
ownership is divided between the city municipality (51%) and private interests

(49%)”, and it supplies water services to 15 municipalities in the metropolitan

1See http://www.emasagra.es/ESP/152.asp for detailed information about the regulation
of the hydrologic cycle in Granada.

2 The private companies that own 49% of the company in charge of water supply and
sewage collection in Granada are Aquadom, Concesiones Ibéricas S.A., Agbar, Unicaja Banco
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area of Granada with a population of almost four hundred thousand people.’

The water pricing structure in the city of Granada is based on increasing
block prices (IBP): the tariff includes a fixed water service fee that must be paid
regardless of the level of use and a variable cost that depends on the amount
of water consumed and that increases as the latter becomes larger.” The fixed
component of the tariff includes a water supply fee, a sewage collection fee, a
treatment fee and, in 2009 and 2010, a drought surcharge. Additionally, starting
in 2011 a water tax collected on behalf of the Andalusian regional government
was incorporated into the tariff. Water bills are sent every two months, but prices
refer to monthly water consumption. The evolution of the prices in each block is
shown in Table 2.4 (in real terms calculated using the province-level Consumer
Price Index with base 2011).

Table 2.4: Evolution of prices in €(in US$) 2009-2011

Year P.Block1l P.Block2 P.Block3 P.Block4 P.Block5
2009 0.9798 1.9130 1.9310 2.4451 2.7356
2010 1.0318 1.9365 1.9545 2.5411 2.9137
2011 0.9731 1.3536 2.3534 3.4347 -

Table 2.5 shows the structure of water prices in Granada. This structure
remained unchanged between 2009 and 2010. However, it was altered in 2011 by
changing the size of blocks. The water tariff in Granada is reviewed annually.
Block prices were adjusted upwards from 2009 to 2010 but, as mentioned above,
the price structure remained unchanged. However, in 2011 the price schedule was

also changed. Table 2.5 shows the cubic meters per block in each price schedule.

and CajaGranada.

3See http://www.emasagra.es/ESP /86.asp for a description of the areas for a description
of the areas covered by the service.

4The tariff also includes discounts to those who are unemployed, retired, or have a certain
minimum number of dependents.
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Table 2.5: Evolution of the size of pricing blocks

Blocks 2009-2010 2011
Block 1 0-8 m? 0-2 m?
Block 2 810 m® 2-10m
Block 3 10-16 m® 10-18 m
Block 4  16-30 m? >18 m
Block 5 >30 m? -

w W w

Regarding non-pricing policies, apart from the strategies discussed above there
have been several initiatives to improve people’s awareness of the water scarcity
problem. At regional level, an information campaign to encourage all type of
consumers to reduce water consumption was set up. At provincial level, the
Municipality Network on Sustainability from Granada (Red GRAMAS) has de-
signed an educational campaign focused on water as an essential resource for life
and financed by the European Regional Development Fund (ERDF). Finally, at
local level the Fundaciéon Agua Granada (Water Granada Foundation) has initi-
ated a set of information campaigns and activities to raise awareness about water
conservation. Among the activities are educational visits to the wastewater treat-
ment plant or school-based educational programs to promote sustainable water

consumption.

2.2 Database

The dataset used in this thesis is an unbalanced panel of bimonthly observations
corresponding to 1,465 households in the city of Granada covering the period
2009 to 2011. The data come from two sources. The first source of information
consists of water consumption and water tariffs data on a random sample of
urban households in four different districts in the city of Granada, provided by
EMASAGRA, the company in charge of water supply and sewage collection in
Granada. The sample is representative of a population in the city center whose

water consumption is mainly indoors and who live in older houses, therefore,
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decisions on the adoption of efficient electrical appliances are generally made by
the household, as opposed to newer buildings that have efficient technology by
default. The second one is a 2011 survey of these households. A person in each of
the households was questioned about socioeconomic characteristics (occupation,
household size), housing characteristics (size, equipment), attitudes towards the
environment, and conservation habits.

Data on water consumption and water tariffs were merged with survey data.
Since the survey was carried out at the beginning of 2011°, we only have informa-
tion related to socioeconomic characteristics from that year. However, since the
variables considered in the survey can plausibly be considered time-invariant in
the short and medium term, we consider them applicable to the period 2009-2011.

Figure 2.3 shows the evolution of the average bimonthly household water
consumption and total bill for the period 2009-2011. There was a slight increase
in both average water consumption and the total bill in 2010. However, after
the change in the price structure in 2011, average water consumption decreased

whereas the average total bill increased.
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Figure 2.3: Residential average residential water prices and total bill in Granada (2009-2011)

Table 2.6 presents the definitions of the variables used in this thesis. Detailed

descriptive statistics are provided in the following chapters.

SInformation from a pretest that took place at the end of 2010 is also considered in the
database.
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Table 2.6: Definition of variables used in this thesis

Data on water consumption

%%
AvP
Std. Dewv

average bimonthly water consumption per year (m?)
average price (€/m?)
standard deviation in water consumption within a year

Data from the survey
Socioeconomic variables
Members

Highincome

Education

Age

Gender

Young16

Old65

Ouwner

Tariffinfo

Housing characteristics
Electappl

Bathrooms

Electeff

Noelecteff

Home-age

Remodel

New pipes

Attitudinal factors
Habits

FElect-habits
Noelect-habits
Enviro

Campaign

number of people in the household

= 1 if the household income is over 2700€per month, 0 otherwise

=1 if the head of the household has higher education, 0 otherwise

age of the head of the household

=1 if the head of the household is male, 0 otherwise

proportion of household members younger than 16

proportion of household members over 65

=1 if the house is owned by one of the household members, 0 otherwise

=1 if the household members have knowledge of tariff structure, 0 otherwise

number of electrical appliances in the household

number of bathrooms in the household

number of efficient electrical appliances

=1 if the household is equipped with water saving devices, 0 otherwise

Age of the house

=1 if there were renovation works in the house in the previous five years, 0 otherwise
=1 if 1 if there were renovation works in the water infrastructure in

the five years prior the survey, 0 otherwise

index of water conservation habits based on responses to survey questions

=1 if the household runs fully loaded dishwasher and washing machine, 0 otherwise
the sum of scores of water saving habits

index of environmental concern based on responses to survey questions

=1 if the person has knowledge of any water conservation campaign, 0 otherwise




The representative household in the sample has an average size of just under
three members, where the head of the household is around 50 years old and male.
Almost a quarter of the households in our sample are in the highest income
bracket, and around a third of the households have higher education. More than
half of the surveyed households are aware of some educational campaign and on
average the respondents are seriously concerned about environmental problems.
Most of the respondents declare that they are not aware of the price structure
or their level of water consumption. This is a common issue in Spain and it is
mainly due to the complexity of water tariffs in the country. Regarding housing
characteristics, around two thirds of the sample live in houses that are more than
15 years old, so it is unlikely that those households have efficient technologies
installed by the builder. The main tenancy regime is ownership, though the
average ownership rate is lower than in Spain because there is a high number of
university students in this city. Only a small proportion of the households carried
out some renovations.

In terms of pro-environmental behaviors, almost half of the households are
equipped with efficient water-using non-electrical devices, whereas the average
number of efficient electrical appliances is around one. The average number of
water-conservation habits is relatively high, with almost half of the households
indicating that they have more than six water-conservation habits. However,
it is important to note that the variables describing habits are self-reported, so

respondents could overstate the household environmental behavior.
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Chapter 3

Responses to changes in domestic
water tariff structures: a Latent
Class Analysis on household-level

data from (Granada, Spain

3.1 Introduction

Demand for water is expected to increase in future years as the world population
is also predicted to grow from 6.9 billion in 2009 to 8.3 billion in 2030 and 9.1
billion in 2050 [UNDESA, 2009]. This population growth and the increasing
trend towards urbanization will lead to a higher water demand and, at the same
time, compromise the ability of ecosystems to provide conventional and cleaner
supplies [The World Bank, 2012]. Although there are different types of strategies
to deal with imbalances between water supply and demand, the use of demand-
side policies has emerged as a preferred option during the last decades. Among
these, pricing policies have become a particularly attractive option since they may
result in lower levels of efficiency losses than other rationing alternatives [Roibds
et al., 2007]. In this sense, accurate estimates of price elasticity of water demand
are crucial for policy decision-making, since they make it possible for water policy

designers to understand how strongly water consumption will react to changes in
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price. However, due to the characteristics of the good, pricing policies are often
constrained by regulation [Olmstead and Stavins, 2007], so water suppliers also
use non-price conservation programs to induce water reductions.

In the past, the neoclassical approach assumed that “tastes neither change
capriciously nor differ importantly between people” and it was limited “to search-
ing for differences in prices and incomes to explain any differences or changes in
behavior” [Stigler and Becker, 1977, p.76]. However, there may be great hetero-
geneity in water consumption even amongst individuals who are similar in ob-
servable characteristics. Therefore, when analyzing the estimation of residential
water demand using microdata, addressing unobserved heterogeneity is a critical
issue since the demand functions are influenced by unobservable heterogeneous
preferences.

During the last few years, the problem of unobserved heterogeneity has re-
ceived special attention and has been addressed in two main ways. One approach
confines unobserved heterogeneity in an individual-specific effect, as in linear
panel data models such as fixed-effects and some random-effects models, while
assuming that the marginal response to the demand determinants is the same
across individuals. A more flexible approach based on the use of random co-
efficient models assumes instead that the regression parameters vary randomly
across individuals according to some distribution and identifies the mean and the
standard deviation for these parameters [Cameron and Trivedi, 2005, p. 9-10].
Another common strategy in the water demand literature has been to group in-
dividuals a prior: according to observable characteristics that are assumed to be
proxies for unobserved preferences and tastes.

The approach adopted here differs from the previous literature in that we
use a Latent Class Model (LCM) to control for heterogeneity in preferences. It
allows us to identify a finite number of consumer “classes” and hence different
water demand functions. This methodology consists of estimating a model of
two equations simultaneously. One involves estimating the main function, in this
case water demand, and the other estimates the probability that each consumer
belongs to a given class. By sorting individuals based on the similarity of their
unobserved component, the LCM accommodates unobserved heterogeneity, while

tractability and theoretical consistency are preserved in terms of the so-called
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Ockham’s razor. That is, water use would be perfectly explained with a model in
which each consumer had a different water demand function. However, that model
would be practically intractable and useless for predicting water consumption.
Instead, the LCM groups consumers into the minimum number of classes that is
consistent with common preferences.

The LCM has several advantages over the techniques discussed above. Com-
pared to the first approach (using linear panel data models, such as fixed-effects
and random-effects) it also accounts for slope heterogeneity across different groups
of consumers, instead of confining unobserved heterogeneity to an individual-
specific effect and constraining all consumers to have the same marginal effects.
The second approach (the random coefficient model) assumes that the coeffi-
cients are different for each consumer. On the other hand, the LCM identifies
consumer profiles that may be more easily managed when it comes to effecting
water conservation policies. The LCM does not require making an ad hoc selec-
tion regarding the membership, which could be highly sensitive to arbitrariness,
since it segments consumers endogenously into different groups. Moreover, the
LCM identifies classes and allows flexible modelling of the probability of belong-
ing to a certain group (within which unobservable preferences are similar) as a
function of a set of (potentially) observable covariates. Therefore, it provides in-
formation about the size of each group and a description of the type of consumer
belonging to them. This information can be very useful for the design of water
management policies, as long as information about the factors that affect class
membership can be obtained at a reasonable cost.

Our application exploits the panel dataset from Granada (Spain) that con-
tains information on water consumption and prices for the period 2009-2011, as
well as on socioeconomic variables and self-reported water conservation habits
from a household survey carried out in 2011, which can be useful to control for
individual heterogeneity. Recalling the discussion in the previous chapter, this
data set is of particular interest for two reasons. First, Spain is the most semi-arid
country in the European Union [Lopez-Gunn et al., 2012] and the South of Spain,
where the city of Granada is located, is regularly affected by droughts and other
water availability issues. Thus, it is important to understand residential water

demand in order to improve water management. Second, there was a change in
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the price structure in the city of Granada in 2011, which makes it possible for
us to consider not only changes in price levels but also changes in the size and
number of price blocks when analyzing consumer responses to the water tariff.
Our findings provide potentially useful information for regulators by identifying
four different residential water consumer profiles. We also derive some rather
informative conclusions from the analysis of the change in the price structure
effected in 2011. Additionally, a sensitivity analysis is carried out to compare the
results obtained using the LCM with those obtained using an alternative group-
ing technique. This analysis illustrates the superiority of LCMs for identifying
homogeneous groups of consumers.

The chapter has the following structure. In Section 3.2, we discuss different
methods that previous literature has applied to deal with heterogeneity issues.
Section 3.3 presents the econometric model. Section 3.4 describes the tariff struc-
ture in the city of Granada, paying special attention to the change in the structure
in 2011. Section 3.5 describes the data. Estimates from the LCM and sensitivity
o

analysis are presented in Section 3.6. Finally, Section 3.7 concludes summarizing

the main results.

3.2 Background

Understanding residential water demand is essential for the effective management
of water resources. Consequently, the literature on residential water demand
is vast, as revealed by the many studies that have surveyed the estimation of
water demand. For example, Arbués et al. [2003] focus on different modeling
approaches and data sets; Dalhuisen et al. [2003] include a meta-analysis of price
and income elasticities; Worthington and Hoffman [2008] provide a survey of
model specification and results; and Nauges and Whittington [2010] review the
literature analyzing household residential demand in developing countries.

As mentioned in Section 3.1, it is important to account for heterogeneity, par-
ticularly when analyzing the effect of a change in the price structure. Differences
in terms of price elasticities may be due to the underlying heterogeneity among
regions and even households. Thus, an increasing number of studies aim to con-

trol for the presence of unobserved individual heterogeneity in residential water
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demand. However, the common methods to address heterogeneity seem to per-
form relatively poorly under certain circumstances. We will discuss the problems
associated to each technique, providing additional arguments to support the use
of Latent Class Analysis.

A frequently adopted approach is to control for unobserved household het-
erogeneity through the inclusion of household fixed effects. For example, Pint
[1999] uses a fixed-effects model and an ordinary least squares (OLS) model to
estimate household responses to water price structure changes in California, find-
ing the fixed-effects model to be preferable to the OLS model. However, none
of these estimations considered instrumental variable (IV) specifications, result-
ing in upward-sloping water demand at high prices. Worthington et al. [2009]
analyze residential water demand in several councils in Queensland by estimat-
ing common-effects (whereby they assumed that water consumption was homo-
geneous across local councils), fixed-effects, and random-effects models. Their
results show that the fixed-effects model outperforms the others for that partic-
ular case. Coleman [2009] develops dynamic models of water demand in Salt
Lake City estimated using fixed-effects and compares them with static models
obtained using pooled, fixed-effects and random-effects models. Polebitski and
Palmer [2010] estimate pooled, fixed-effects and random-effects models to an-
alyze single-family residential water demand for over 100 census tracts for the
period 1991-2005, and the Hausman test indicates that the fixed-effects model
is preferred over the random-effects model. Nataraj and Hanemann [2011] in-
clude household and year fixed-effects into a regression discontinuity model to
account for heterogeneity across the treatment and control households in a natu-
ral experiment to determine whether consumers react to an increase in marginal
price.

As previously discussed, another way to handle heterogeneity is through the
estimation of Random-Coefficient Models (RCM). This methodology has not been
widely used in the water demand literature, likely due to its difficult interpreta-
tion as a tool to identify groups of individuals with relatively similar responses to
changes in dependent variables. This is because the RCM assumes a continuous
distribution of random individual-specific regression parameters and only iden-

tifies the mean and the standard deviation of each of these distributions. This
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limits its usefulness in a case like ours. As far as we are aware, Miyawaki et al.
[2010] is the only study that applies this methodology in this field. They conduct
an analysis of Japanese residential water demand estimating a random parame-
ters model and an autoregressive of order one error component model, obtaining
similar results from both estimations.

An alternative approach consists of including dummy variables in the de-
mand function to indicate socioeconomic and demographic characteristics that
can capture differences in individual’s preferences. Renwick and Green [2000]
incorporated irrigation dummy variables into the demand equation to account
for differences in outdoor water use. Krause [2003] investigated consumer het-
erogeneity in water demand using a set of experiments and a survey. First, they
included group dummy variables interacted with the parameters in the demand
function and then computed disaggregated demand functions for three consumer
types considered in the experiment and surveys: students participants, workforce
participants and retired participants. Therefore, the ability of this technique to
control for heterogeneity is clearly limited.

Some studies identify different groups of consumers according to observable
characteristics that may be related to the consumers’ unobserved preferences.
Renwick and Archibald [1998] analyze the effect of demand side policies by clus-
tering groups of consumers in terms of income. Ruijs et al. [2008] estimate a
linear demand function in the Metropolitan Region of Sao Paulo for the period
1997-2002 and evaluate welfare and distribution effects for five income groups.
Mansur and Olmstead [2012] divide the sample into four sub-groups based on
income and lot size in order to compare different price elasticities for indoor and
outdoor water demand. However, these techniques make an ad hoc selection to
the membership, which is highly sensitive to arbitrariness.

LCMs have attracted increased attention lately since, as we will see in the
following section, this technique presents significant advantages. Among these
advantages, we exploit the fact that it makes it possible to generate homogeneous
groups of consumers without setting any a priori criteria. A number of studies
use this methodology to analyze demand in other economic fields such as health
economics [Ayyagari et al., 2013; d” Uva, 2006; Deb and Trivedi, 2002; Hyppolite

and Trivedi, 2012], cultural economics [Boter et al., 2005; Fernandez-Blanco et al.,
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2009; Grisolia and Willis, 2012] or transport [Greene and Hensher, 2013; Hensher
and Greene, 2003; Hess et al., 2011; Shen, 2010; Shen et al., 2006].

There are several applications of the LCM in environmental economics. For
example, Scarpa et al. [2005] compare the use of the mixed logit random parame-
ter model with the use of Latent Class Analysis to model the choice of water utility
by the consumer. Patunru et al. [2007] implement this methodology to investi-
gate the willingness-to-pay for the clean-up of hazardous waste by homeowners
in Waukegan, Illinois. Scarpa et al. [2007] study different groups in the demand
for hiking in the eastern Italian Alps, arguing that it is fundamental to assess
heterogeneity when analyzing expected consumers surplus, predicted visitation,
and response to access fees. Campbell et al. [2011] identify heterogeneous groups
of respondents that were asked about the willingness-to-pay for improvements
in four rural landscapes in the Republic of Ireland. However, to our knowledge,
there have been no applications as yet to residential water demand functions.

Another typical concern identified in the residential water demand literature
is about price endogeneity, especially in the presence of nonlinear prices. As de-
tailed by Olmstead [2009], there are two types of estimation approaches that have
been used in the literature to control for this problem: reduced-form approaches,
such as IV, and structural approaches, such as discrete/continuous choice models
(DCC). The IV approach is often undertaken in water demand analysis along
with fully parametric or semiparametric methodologies as two-stage least squares
(2SLS) or Generalized Method of Moments (GMM)'

In DCC models, a consumer’s utility maximization problem is solved in two
steps. First, the consumer selects the block given the price of each block and then
decides the level of consumption that maximizes her utility. These models have
been used by relatively few papers in the literature. Hewitt and Hanemann [1995]
develop a DCC model of residential water demand using household level data from
Denton (Texas) for the period 1981-1985, obtaining price elasticities in the range
of -1.57 to -1.63, which are much higher than those obtained in the literature
based on IV techniques. Apart from the models described above, Pint [1999]
applies DCC models obtaining relatively low price elasticities. Olmstead [2009]

1See for instance, Agthe et al. [1986] in IV, Nieswiadomy and Molina [1988, 1989] in 2SLS
or Garcia-Valinas [2005] for GMM.
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compares [V and DCC estimates of water demand under increasing-block pricing
using a Monte Carlo experiment finding that both models exhibit significant bias
in the simulations. Strong and Smith [2010] criticize DCC models, as Bockstael
and McConnell [1983] stated that the Marshallian “prices as parameters” demand
function does not exist with a nonlinear budget constraint and, therefore, applied
welfare analysis is problematic in this case. Moreover, this model is based upon
marginal prices, which assumes that consumers are aware of the price structure.”
There is no general theory recommending how to control for endogeneity in LCMs.
Nevertheless, we use a two-stage control function approach (explained in the

Appendix A) because it performs better on nonlinear models.

3.3. Methodology

From a methodological viewpoint, LCMs are proposed to identify different groups
of consumers. This methodology may perform well in estimating residential water
demand for two main reasons. First, water demand functions are related to utility
functions, which are based on consumers’ unobservable preferences and tastes
that may differ across consumers. Therefore, LCMs allow us to identify groups
of consumers who have similar unobservable preferences about how to change
their water use in response to changes in a certain set of observable explanatory
variables, since it sorts individuals based on the similarity of their conditional
distributions. Second, from a statistical point of view, Figure 3.1 shows that
the distribution of residential water consumption is asymmetric in our sample.
Therefore, this distribution may be better approximated by a mixture of several
normal distributions rather than a single normal (and symmetric) distribution.
In LCMs, we assume that the sample of individuals is drawn from a population
that is a finite mixture of C distinct subpopulations [Cameron and Trivedi, 2005].
The density of the dependent variable (residential water consumption) g, for

observation ¢ conditionally on some parameters (4, 7) and on some explanatory

2However, this assumption does not hold for our sample, since only 34.62% of the households
know the price schedule they face.

26



Figure 3.1: Distribution of residential water demand in Granada 2009-2011 (m][3)

variables z can be written as:

c
fyilzs; B,m) = Zﬂjfj(ylmzﬁ]) i=1,...,n (3.1)

where 7, is the probability of choice j of individual i (ch:l
1,..,C).

If any potential sources of heterogeneity are observed, the probability that

szlandeZOj:

consumer ¢ belongs to class j can be parameterized as a function of covariates
assuming that the latent variable follows a multinomial probability that yields a
multinomial logit model:

exp(V.-z
m’:% =1, (3.2)

Zj:l (’Y}Zi)
where ~; is a vector of parameters to be estimated and z; is a vector of observable
characteristics and self-reported valuations that may be considered proxies for
the underlying utility preferences [Fernandez-Blanco et al.; 2009].
Therefore, if we consider a normal mixture, the log-likelihood is defined as

the sum of C log-likelihood normal distributions weighted by the probabilities of
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class membership:

1 ]
£(8,7) = ; P; ngewp(—f‘?(yi — ;%)) (3.3)
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One of the key issues in the application of the LCM is how to correctly deter-
mine the number of classes. Although LCMs with additional numbers of classes
are considered nested models, it is not possible to identify the correct model using
a likelihood ratio test (LRT), because regularity conditions are not met [Nylund
et al., 2007]. The usual way to proceed is to estimate models with increasing
numbers of classes in a stepwise fashion and compare the results using likelihood-
based information criteria such as the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC). However, since these criteria do not share
the same properties, they may yield contradictory verdicts. Nylund et al. [2007]
analyzed the performance of these information criteria using Monte Carlo simula-
tions and found that the Bayesian Information Criterion outperforms the others
in correctly identifying the optimal number of classes.

Once the model is estimated, we use the parameter estimates to compute the
posterior probabilities of belonging to each latent class:

c(Yili; 0.
Prly;ecla; yi; 0] = Tofo(wilz:; be) c=1,...C (3.4)

S5y i (il 05)

3.4. Residential Water Tariffs in Granada

As explained in Chapter 2, the water pricing structure in the city of Granada is
based on increasing block prices (IBP). The tariff includes a fixed water service fee
that must be paid regardless of the level of use and a set of increasing block prices.
The fixed component in the tariff includes a water supply fee, a sewage collection
fee, and a treatment fee and, in 2009 and 2010, a drought surcharge. Additionally,
in 2011 a water tax collected on behalf of the Andalusian regional government
was incorporated into the tariff. The tariff also includes some discounts in order
to solve issues in terms of equity. As shown in Chapter 2 (see Table 2.5), the

price structure in Granada remained unchanged between 2009 and 2010 but in
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2011 the size of the pricing blocks was altered.

As explained in Chapter 2, the tariffs in Granada were reviewed annually,
with the block prices slightly adjusted upwards from 2009 to 2010. In 2011 the
rate schedule was also changed. *

As water becomes increasingly scarce in the South of Spain, water supply
managers are using price as a water conservation tool. As stated above, Granada
experienced a change in the price structure that resulted in a decrease in average

water consumption but also an increase in the average total bill (Table 3.1).

Table 3.1: Evolution of the average total bill and the average quantity of water consumed

2009 2010 2011
Water consumed* (m®) 15.4939 16.0069 15.2579
Total bill (€) 44.3969 45.0625 49.1680

* Water consumed per household every two months

3.5. Data

The data used in this chapter is the unbalanced panel of bimonthly observations
corresponding to households in the city of Granada covering the period 2009 to
2011, as described in the previous chapter. However, several alterations were
performed since the average price is the only time-varying explanatory variable
in our specification. As explained in Section 3.4, the pricing structure is based
on IBP and, therefore, we must consider the price endogeneity generated by the
simultaneous determination of the price level and the level of consumption that
determines the price block. When addressing this issue, we face the problem
that both water consumption and average price change within a given year in

our dataset but we cannot observe a set of exogenous instruments that also vary

3To the best of our knowledge, there is only one previous work which deals with a change in
the price structure similar to the one exploited in this research. Martinez-Espineira and Nauges
[2004] study residential water demand in Seville (Spain) for the period 1991-1999, where the
block size changed slightly in 1996. Water demand is modeled using Stone-Geary utility function
that allows identifying a threshold of water that is insensitive to price, though the change in
the block is not directly analyzed.
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within each year. Therefore, in order to address the endogeneity problem, it was
necessary to aggregate water consumption by year, which made it possible to
use the set of marginal prices per block, which change yearly, as instruments.
Furthermore, after this transformation, we also excluded from the sample those
individuals who were not observed for the entire year 2011, because of the possible
bias introduced by seasonality in their water consumption.

Therefore, after the data aggregation, the dependent variable in our specifi-
cation is the average bimonthly household water consumption per year, in cubic
meters, which was calculated by dividing total consumption per year by the num-
ber of two-month billing periods. Regarding the price variable, there are two main
issues related to price when analyzing water demand facing a nonlinear pricing
scheme. First, one must face the choice between marginal and average price. In
this particular case, consumers indicated that they were not well informed about
the pricing scheme. Therefore, households may be more sensitive to changes in av-
erage price (AvP) than in marginal price. The second issue, as commented above,
relates to the price endogeneity generated by the simultaneous determination of
price and the block of consumption. In the absence of a general theory about how
to handle endogenous explanatory variables in LCMs, we used a two-stage con-
trol function (CF) estimation technique [Blundell and Powell, 2003; Howard and
Roe, 2013; Tmbens and Wooldridge, 2007] over two-stage least squares (2SLS),
because it is more appropriate for nonlinear models and, although our model is
linear in parameters (since we are estimating mixtures of normal distributions),
the nonlinearities arise when estimating the posterior probabilities at each maxi-
mization stage. The 2SLS approach would fail, because it implies approximating
the endogenous variable with a linear transformation thereof and then using the
estimated coefficients in the second stage would be used to compute the posterior
probabilities. Therefore the nonlinear step in the computations of the posterior
probabilities is not invariant to the use of 2SLS. A more detailed discussion of
this methodology and the instruments selected can be found in the Appendix A
and the results of the estimation.

In order to allow for the possibility that the price elasticity differs between
the period before and after the change in the price structure, we include an
interaction (labelled AvP2011) between the binary indicator for 2011( Year2011)
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and the average price (AvP). Following Gaudin [2006], we also incorporated an
indicator capturing how well-informed users are about their water tariff in the
demand equation through its effect on price elasticity. To do so, we interacted a
binary variable indicating awareness of the price structure with the average price
(resulting in variable Priceinfo).

Household income was recorded as an ordered categorical variable, with house-
holds belonging to one of the following intervals(in Euros/month): [0-1100]; [1101-
1800]; [1801-2700]; [2701-3500]; [3501- +o0]. It would not be appropriate to use
the interval categories as if they were values of a continuous variable. Usually,
one would construct a set of five binary indicators of income level and introduce
four in the model. However, because we did not seem to have enough sample vari-
ability to estimate all four corresponding parameters, we simplified our original
income variable into a binary indicator (Highincome) of relatively higher income.
In particular, we create a binary variable that identifies the richer households
(those falling in the two highest income categories). Additionally, and based
on previous literature, there were other variables included in the demand func-
tion. Household size (Members) was included, following most previous studies
of residential water demand. Water conservation habits (Habits) were included

* Several variables

using an aggregate index based on different daily behaviors.
representative of housing equipment are also considered, such as the number of
electrical appliances (Electappl) and the number of efficient water-using electri-
cal appliances (Electeff). Finally, an indicator of home ownership was included
since homeowners are expected to have more incentives than tenants to make
investments in water-saving devices as shown by Grafton et al. [2011].

As stated in Section 3.3, individuals are sorted by the LCM into groups based
on the similarity of their conditional distributions. However, the probability of
belonging to a certain group can be further modeled as a function of covariates
that can be considered proxies for the unobserved preferences related to water
demand. That is, these variables allow us to identify household characteristics

for the different water user profiles. In this sense, these variables belong in the

4As shown in Beaumais et al. [2010], a water habit index was constructed by calculating
the mean score on the answers related to the values of water use/conservation habits that were
elicited by the survey (possible answers were 1 = yes or 0 = no).
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class-selection function rather than in the water demand functions. This is to
say, they determine how the households’ quantity demanded reacts to demand
drivers, especially prices, but not the quantity demanded as such.

At this stage, water suppliers would benefit from the knowledge of the main
factors determining class membership, in particular the membership to classes
with some specific characteristic (for example, a particularly (in)elastic response
to price changes or a particularly sensitive response to moral suasion campaigns),
if combined with the availability of individual data about those variables. In
practice, these variables could end up being easily observable factors (e.g. house-
hold type, presence of children, living in an apartment or not, availability of an
individual meter, being a year-round versus a seasonal dweller, education lev-
els, tenancy status, etc.) or else variables whose values would be costly for the
water supplier to gather. The practical advantages provided by the application
of the LCM to estimate water demand would depend on these informational re-
quirements, apart from having the technical sophistication and computational
resources to periodically estimate the LCM itself.” In some cases, a more ad hoc
approach to identifying consumer groups might thus end up being more efficient,
particularly in those cases in which the differences among classes in terms of the
most relevant estimated parameters (such as price-elasticities) are minor.

Following Russell and Fielding [2010], we use Stern [2000] as a guide to cat-
egorize the determinants of different water demand behaviors into four types of
causal variables. Attitudinal factors are one of the causes of behaviors. Accord-
ing to the value-belief-norm theory (VBN), “the general predisposition to act
with proenvironmental intent can influence all behaviors an individual consid-
ers environmentally important” [Stern, 2000, p. 416]. Therefore, we include an
environmental concern index (Enviro) as the general attitude towards the envi-
ronment may influence preferences and, therefore, membership to a certain water
use profile.

The second type of causal variables that we should take into account is per-
sonal capabilities among which we included knowledge and skills that may affect

the drivers of residential water demand. In the estimation we considered a binary

SFortunately, since nowadays LCM routines are available through statistical packages such
as Stata, estimating them should be within the reach of most analysts.
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variable related to the knowledge of the existence of an environmental campaign
(Campaign). We also include the age (Age) of the head of the household, since it
has been commonly considered as a determinant of environmentalism and, more
specifically, water demand behavior. However, prior literature drew mixed con-
clusions about this effect. Kantola et al. [1983] and Scott and Willits [1994] found
a negative effect on environmental behavior, whereas Gilg and Barr [2006] and
Clark and Finley [2007] found that older consumers are more likely to report
water conservation intentions.

Automatic processes such as habits and routines may guide behaviors. There-
fore, examining the role of habits and routines is fundamental for the analysis of
water demand behaviors. As people of different ages may have different habits
and routines, we include variables reflecting the proportion of members over 65
years (Old65) and those under 16 years (Young16). We can expect households
with a higher proportion of younger members to have a lower response to changes
in the drivers of residential water demand due to the need for more frequent laun-
dering, more frequent showers and use of water-intensive outdoor activities. On
the other hand, retired people may also have a lower response since they are likely
to devote more time to activities that involve water use such as gardening and
spending more time at home. A water-conservation habits index (Habits) was
also included as a covariate.

The last category of determinants of different water demand behaviors in-
cludes contextual factors such as physical infrastructure and technical facilities
that are also closely related to human behavior. We used a categorical variable
that accounts for the number of water-efficient electrical appliances in a household
(Electeff ).

In order to control for different consumption patterns that may have been
masked by the aggregation, we included as a covariate the standard deviation in
water consumption (Std. Dev) within a year. This variable is not included in the
demand function, because it affects the water consumption profiles but not the
level of water consumption.

Table 3.2 shows some descriptive statistics and descriptions for the variables
included in the LCM.
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Table 3.2: Summary statistics

Variable Description Mean S. Min. Max.
d.

Dependent variable

Consumption Average bimonthly water 15.699 8.084 1.167 65
consumption per year (m?)

Water demand covariates

AvP Average price (€/m?) 1.699 0.495 0.663 8.076

AvP2011 AvPrice X dummy 2011 0.696 1.001 0 8.076
(€)

Pricelnfo AvPrice xdummy knowl- 0.565 0.84 0 8.076
edge of tariff structure (€)

Highincome = 1 if the household in- 0.213 041 0 1
come is over 2700€

Members household size 2.713 1.225 1 9

Ouwner =1 if house is owned by a 0.776 0.417 0 1
household member

Habits Index of water conserva- 0.618 0.159 0 1
tion habits

FElectappl Number of electrical appli- 2.007 0.603 1 4
ances in the house

Electeff Number of efficient water- 0.822 0.839 0 2
using electrical appliances
in the house

Class membership covariates™

Enviro Index of environmental 1.821 0.422 0 2
concern ranging from 0
(not concerned) to 2 (very
concerned)

Campaign =1 if respondent knows 0.552 0.497 0 1
of any water conservation
campaign

Young16 proportion of household 0.043 0.127 0 0.778
members younger than 16

Oldé6s proportion of household 0.332 0.424 0 1
members over 65

Age Age of household’s head 54.128 19.27418 94

Std. Dev Standard deviation in wa- 2.958 2.721 0.278 44.444

ter consumption within a
year

*FElecteff and Habits are also included as class membership covariates



3.6. Results

In order to select the model that best fits the data, we estimated several LCMs
changing the number of classes and compared likelihood-based model selection
criteria, such as the Akaike Information Criterion (AIC) and the Bayesian In-
formation Criterion (BIC), as explained in Section 3.3. The selection criteria,
reported in Table 3.3, lead to different conclusions. The BIC suggests that the
4-class model with variable probabilities fits the distribution better but the AIC
suggests that a 5-class model with variable probabilities is best. Therefore, fol-
lowing Nylund et al. [2007], we selected the model that minimizes the BIC, that
is, the 4-class model with variable probabilities, since it provides the best fit for
these data. The results confirm that the LCM outperforms the OLS model. That
is, household heterogeneity is significant and that there seem to be four distinct
residential water consumer profiles in Granada for the period 2009-2011, rather
than the single one assumed by the conventional OLS approach, which forces all

consumers to respond to the same pattern in terms of their water demand.

Table 3.3: Selection criteria for several models

N log Akaike information Bayesian information

-likelihood criterion criterion
1—class,. (.:onstant 3012 -10225.0 20472.0 20538.1
probability
2—Class,. (':onstant 3012 -9509.6 19069.1 19219.4
probability
3—class,. c.onstant 3012 -9935.9 18547.7 18776.1
probability
4—C1&SS,. c.onstant 3012 -9170.1 18442.3 18748.8
probability
5-class, Constant‘ . 3012 -9139.0 18405.9 18790.6
constant probability
4—class,. Yarlable 9845  -8072.1 16294.2 16740.7
probability
5—Class,'\'far1able 9845 -8116.8 16425.5 16996.9
probability

Moreover, as explained in Section 3.3, the distribution of residential water

consumption in the city of Granada is asymmetric and, as shown in Figure 3.2,
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the 4-class model fits the data better than both the OLS and the random-effects

models.

Figure 3.2: Distribution of residential water demand in Granada 2009-2011 (histogram).
Distribution of the predicted value using OLS model (dashed line), random-effects model (grey
line) and the 4-classes LCM with variable probabilities (black line)

Table 3.4 presents selected descriptive statistics for water consumption by
class. On average, the first and the second class are the ones with the lowest
and the highest average water consumption respectively. However, as explained
in Section 3.3, it should be stressed that consumers are not sorted based on the
values taken by the dependent variable (water consumption)® but instead accord-
ing to the similarity of their conditional distributions of the error component, as
shown by the minimum and maximum values. It is also worth noting that Class 2,
the smallest (representing just over 6% of the sample), has the highest estimated
standard deviation in the distribution of consumption. That is, their consump-
tion levels within this class are the most variable. Moreover, Table 3.5 shows that
most of the explanatory variables are not significant, so that it is not possible to
identify a pattern in residential water consumption. As explained by Cameron
and Trivedi (2005, p. 625), additional classes may be the result of the LCM
grouping outliers. Therefore, considering that this is the smallest class and that

we cannot identify the drivers of water demand, we may think that households

6The sample could be split into arbitrary intervals by modeling the inverse of the cumulative
distribution function (CDF) of the dependent variable using Quantile Regression.
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that belong to this class are in fact outliers whose consumption patterns cannot

easily be explained by the usual determinants of the quantity of water demanded.

Table 3.4: Water consumption statistics by class

Classification based on

Variable Mean  Std. Dev.  Min Max posterior probability (%)

Class 1 9.8910 24020  4.1667 16.3333 0.2619
Class 2 33.8012  9.8352 1.1667 65 0.0692
Class 3 13.2829  3.94914 3 22.3333 0.3367
Class 4 18.9621  6.6983 1.333  38.1667 0.3322

In Table 3.5, we present the results of the 4-class model with variable probabil-
ities. We also report the results of the OLS model, i.e., a single-class model, and
a random-effects model that will be used to assess the importance of household
heterogeneity.

First, the estimation of the single-class model and the random-effects model
suggests that the demand is price inelastic, with the price elasticity at the sample
means being -0.4368 and -0.3255 respectively as shown in Table 3.6. However,
turning to the 4-class model, we find that for Classes 1 and 2, which include
26.19% and 6.92% of the observations respectively, price has no significant im-
pact on residential water demand. Therefore, the effect of a change in price
would be overestimated for those consumers in Classes 1 and 2 when using the
other two models. In contrast, for the remaining classes, price is significant,
but price elasticities vary across classes, with the fourth class having the most
elastic water demand. This heterogeneity in terms of price elasticities is masked
when estimated through a single-class model and a random-effects model. As
explained in Section 3.5, in order to allow for the possibility that price elastic-
ity differs between 2009-2010 and 2011, that is, between the period before and
after the change in the price structure, we included the interaction involving a
dummy variable for 2011 and the lagged average price. Table 3.6 shows that
water demand becomes more inelastic in the single-equation and random-effects
estimation. The 4-class models suggests that it is only consumers in Class 3 that
have become more price inelastic after the 2011 change in the price structure.
That is, the single-class model and random-effects model identify a shift in the

demand function for all consumers, while the 4-class model identifies this shift for
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Table 3.5: Estimated water demand models

OLS RE LCM
Water demand Class 1 Class 2 Class 3 Class 4
AvP -4.048**  -3.015***  -1.420 18.08 -2.756**  -5.297**
(-2.32) (-4.26) (-0.82) (0.54) (-2.46) (-2.35)
AvP11 0.740*  0.605*** 0.354 -5.214 0.557** 0.704
(1.91) (4.13) (0.90) (-0.65) (2.29) (1.50)
Priceinfo 0.488* 0.430* -0.0475 2.105 0.0731 0.242
(1.85) (1.89) (-0.46) (1.17) (0.40) (0.84)
Highincome -0.942* -0.734 -0.255 -4.263  -0.762"*  -0.867
(-1.88) (-1.54) (-1.60) (-1.42) (-2.62) (-1.18)
Members 1.806***  1.907**  0.626™*  3.801**  1.090*** 1.828***
(9.08) (9.59) (7.07) (3.44) (10.09) (7.27)
Electappl 1.450*  1.403***  0.712*** 4.056* 0.854***  (0.958*
(3.53) (3.59) (4.13) (1.85) (3.79) (1.69)
Habits -2.322 -1.677 0.0481 -22.91 -0.385 -3.362
(-1.58) (-1.16) (0.06) (-1.43) (-0.24) (-1.63)
Electeff -0.467*  -0.572**  (0.285*** 2.290 0.372 1.114**
(-1.86) (-2.27) (2.61) (0.69) (1.59) (2.45)
Ouwner -0.391 -0.486 -0.0409 -3.766 0.0908 -0.720
(-0.69) (-0.91) (-0.21) (-1.14) (0.27) (-1.00)
ControlFunction  -2.323 -0.672  -11.11**  -17.75  -8578**  -2.297
(-1.38) (-1.00) (-6.18) (-0.74) (-6.32) (-1.12)
Constant 16.34***  14.23**  8.248*** 1.148 12.11%*  21.97**
(5.24) (7.83) (2.62) (0.02) (4.84) (4.44)
Latent Class Probability
Enviro -0.227 0.0550 0.312
(-0.86) (0.14) (1.21)
Campaign 0.0303 0.703* 0.0439
(0.13) (2.15) (0.22)
Electeff 0.405* -0.930* 0.127
(1.75) (-2.35) (0.92)
Habits -0.389 1.049 -1.508*
(-0.30) (0.65) (-1.70)
Young16 1.848** 0.456 1.418*
(2.02) (0.34) (1.96)
Old6s 0.976** -0.159 0.225
(2.19) (-0.27) (0.61)
Age -0.0234*  0.0201 -0.0114
(-2.44) (1.30) (-1.56)
Std. Dev -1.805%**  0.291**  -0.520***
(-11.34) (5.56) (-7.14)
Constant 4.599**  -4.429**  2.136"**
(4.40) (-3.15) (2.69)

t statistics in parentheses

p<.1,*p <05, p< .01



a specific group of consumers implying that the change in the price structure was
not similarly perceived by all consumers. Furthermore, knowledge of the price
structure has no significant impact on price elasticity in the 4-class model, but
it has a positive and significant effect at the 10% level both in the single-class
model and random-effects model. The lack of significance of this variable may
be due to the fact that knowledge of the price structure, that is, that consumers
know that the price structure is based on IBP, does not imply that consumers are

aware of the block where they consume and the set of marginal prices per block.

Table 3.6: Price elasticities of demand

Model Price Elasticities
2009-2010 2011 Effect
single-class model -0.4368**  0.0327*
random-effects model -0.3255%*F*  0.0268***
Class 1 -0.2357 0.0224
Class 2 0.9675 -0.1221
4-class model Class 3 -0.3419**  0.0300**

Class 4 -0.4951**  0.0264
*p < 0.1, * p < 0.05, ** p < 0.0

Under the single-class model, we find that the high-income indicator has a
negative and significant impact on the amount of water consumed. In the 4-class
model, this only applies for Class 3. This negative effect may be reflective of wa-
ter conservation measures resulting from the greater possibilities for investing in
water-saving devices by this class of consumers. The income variable coefficients
corresponding to the remaining classes are not significant. Therefore, a higher
level of income is not associated with a higher demand of water for all the users
in the sample.

The household size has a positive estimated effect on water consumption in
all the models. For comparison purposes across models, the values of average
elasticities of water demand with respect to household size from the models are
presented in Table 3.7. Overall, the elasticities with respect to family size are

quite heterogeneous among classes. However, the results show that, in every case,
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an increase in water use is less than proportional to an increase in the number
of persons per household. This is consistent with other studies that have found

economies of scale [Arbués and Villantia, 20006].

Table 3.7: Elasticity of water demand with respect to family size

Model Elasticities
single-class model 0.31217%**
random-effects model 0.3289%**

Class 1 0.1571%**

Class 2 0.3185%**
4-class model Class 3 0.2257***

Class 4 0.2731%**
*p < 0.1, ** p < 0.05, ** p < 0.01

Electappl has a positive and significant effect in both the OLS and the random-
effects models. That is, the higher the number of electrical- and water- appliances,
the higher the level of water consumption. These coefficients are significant for
the four classes in the LCM and differ across classes, which suggests that the
effect of a higher number of appliances on water demand is heterogeneous.

The variable Habits does not have a significant effect on water demand in any
of the models that we have estimated. Self-reported water-conservation habits
may not have a significant effect on water consumption after controlling for other
variables. However, the effect of this variable on water demand may also depend
on the habits index used and when those habits are measured, as in Trumbo
and O'Keefe [2005]. These authors measured self-reported behaviors related to
water conservation across a two-year time frame, finding that self-reported water-
conservation in 1998 had a significant effect on conservation intentions in 2000.
That is, future intentions may be affected by past water-conservation habits.

The number of efficient electrical appliances has a negative and significant ef-
fect at the 10% level in both the single-class model and the random-effects model.
However, when we estimate the 4-class model, this variable has no significant ef-
fect for Classes 2 and 3, although it does have a positive and significant effect

for Classes 1 and 4. The installation of water-efficient appliances should reduce
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water use, although several studies have also found the opposite effect [Campbell
et al., 2004; Fielding et al., 2012; Inman and Jeffrey, 2006]. Among the possible
causes of this positive effect on water demand is the possibility of a so-called
rebound effect, that is, smaller water savings than expected from the installation
of water-efficient equipment due to behavioral changes that partially offset tech-
nical efficiency gains and the fact that investments on water-efficient appliances
may be related to activities that imply higher water consumption [Fielding et al.,
2012]. However, given the unstable behavior and high potential for biasedness’
affecting the estimates associated with this variable and the habits index, we
make no strong claims about their validity and the resulting conclusions should
be viewed with caution.

The coefficient of the binary variable indicating home ownership is not sig-
nificant in any of the models estimated, indicating that owner occupiers do not
differ significantly in terms of their water demand depending on whether they
own their home or not. This result could be due to the high proportion of home
ownership in Granada (as in the rest of Spain), or the likelihood that many of
those who do not own their homes are actually students who might make sub-
stantial proportion of their water use (for laundry, etc.) at their family home
outside the city.

The lower portion of Table 3.5 presents the estimated coefficients of the co-
variates in the membership function, with Class 4 as the reference category. We
can see that most of the covariates do not have statistically significant coefficients.
That is, they seem to have very little predictive power about individuals’ prefer-
ences about water demand. Therefore, if we had divided the sample into explicitly
defined groups based on these observable characteristics and self-reported valu-

ations that a priori we expected to be proxies for unobserved preferences about

"The potential endogeneity of habits or efficient electrical appliances is not considered in the
empirical analysis, since we are not trying to make any type of causal inference about the impact
of habits on water consumption. In the terminology of [Angrist and Pischke, 2009, p. 68], these
variables can be referred to as proxy control variables, in the sense that they are included in
the regression in order to serve as a measure of the observed water behavior and in order to
avoid omitted variable bias. Including this variable would not generate a regression coefficient
of interest but it may be an improvement over the alternative of using no control. Moreover, we
test the robustness of the results by excluding these variables, finding that the other coefficient
estimates (not reported but available upon request) remain qualitatively unchanged.
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water consumption, we would have misclassified individuals. In this case, LCMs
seem to be appropriate when some sources of heterogeneity remain unobserved.

However, there are some covariates that provide some information for identi-
fying the different water demand profiles. Campaign, Electeff, Habits, Youngl16,
Old65, Age and Std. Dev are all statistically significant. The first class has a
positive and significant coefficient for Youngi6 and Old65. Therefore, the pro-
portion of children under 16 and adults over 65 is expected to be higher than in
Class 4. Class 1 is also characterized by younger household heads and a smaller
standard deviation of water consumption within the year. This class also has a
positive and significant coefficient for Electeff, suggesting that consumers in this
class have a higher number of efficient electrical appliances than those in Class 4.

Class 2 is characterized by consumers who are aware of the existence of cam-
paigns to promote water savings and who have fewer efficient appliances compared
to those in the fourth class. Moreover, consumers in Class 2 have a higher stan-
dard deviation in annual water consumption. As explained above, consumers
in this group lack a clear pattern of consumption that can be explained by the
standard drivers of water demand: consumers on this class have not the high-
est standard deviation of water consumption but also the highest within-year
variation of consumption.

We estimated that Class 3 was characterized by households with a signifi-
cantly lower score on the water habits index, a significantly higher proportion of
children under 15, and a significantly lower standard deviation in annual water
consumption relative to the fourth class.

Finally, Class 4, by implication, is defined by households with a lower pro-
portion of children (compared to Class 1 and 3) and adults over 65 (relative to
Classl). However, the head of the household is older than those in the first class.
Consumers in this class are less aware of the existence of water-saving campaigns
than those in the second class, have fewer water-conservation habits than con-
sumers in the third class, and have a lower number of efficient appliances than
consumers in the first class, but higher than consumers in the second class. Re-
garding the variability (as measured by its standard deviation) of annual water
consumption, households in this class have a larger dispersion than those in Class

1 and 3, but smaller than households in the second class.
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3.6.1. Sensitivity analysis

We compared the LCM to an alternative model in order to show that the LCM
can better capture heterogeneity in the sample. As noted in the introduction,
several studies have sorted consumers into different groups based on observable
characteristics such as income. In our own comparative exercise and in order
to make groups comparable to those estimated using the LCM, we divided the
sample into four sub-groups based on income and the standard deviation® and we
maintained the same demand specification. As a comparison, and although the
LCMs is a probabilistic model, we grouped consumers based upon their estimated
modal probability. The results are shown in Table 3.8.

In the spirit of Nguyen and Rayward-Smith [2008] and Eshghi et al. [2011], w
used two measures to evaluate the performance of the different grouping method-
ologies: the homogeneity of the observations within each group, and the hetero-
geneity between groups.

To measure the level of homogeneity within groups, we computed the standard
deviation of the residuals in each group and then we summed the indicator across

groups and divided by the number of groups.

\/Z €ZJ B 63) (35)

~ 5())
S = ; y (3.6)
To measure the level of heterogeneity between groups, we considered the ratio of
the difference between the observed realization of the value of the dependent and
the predicted value to the difference between the observed value and the value
that would be predicted for that observation if it were assigned to a different

group. This indicator was computed for each group, summed across groups, and

8These groups are defined based on their sample average of the standard deviation in water
consumption within a year and the two possible categories of the income variable.
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Table 3.8: Water demand, by Income/Std. Deviation groups

M OREENCORNC
AvP -5.866%**  -0.944 -4.796 -3.925
(-3.07)  (-0.16)  (-1.64)  (-0.66)
AvP2011 1.255%** -0.262 0.900 0.580
(2.99)  (-0.20)  (1.36)  (0.44)
Priceinfo -0.241 0.755 0.994** 0.913
(-0.97)  (1.31)  (241)  (1.19)
Members 0.989%**  1.762%** 1.684%** 1.902%**
(4.85)  (455)  (477)  (3.76)
Electappl 1.0047%** 1.137 0.998 2.424%*
(2.87)  (1.26)  (1.43)  (1.80)
Owner -0.343 0.0156 1.198 3.569**
(0.63)  (0.01)  (L13)  (1.99)
Habits -1.412 -1.204 0.961 -4.729
(-1.02)  (-0.38)  (0.34)  (-1.13)
Electeff -0.113 -0.574 -0.0759 -0.772
(0.43)  (-1.08)  (-0.18)  (-0.92)
ControlFuntion -1.991 -3.622 -1.193 -2.607
(-1.05)  (-0.66)  (-0.40)  (-0.50)
Constant 19.30%** 15.20 11.86* 13.43
(5.28) (1.56) (1.93) (1.15)
N 1491 872 424 225
Log-likelihood -4610.9 -3131.8 -1279.4 -763.2
AIC 9241.8 6283.6 2578.9 1546.4
BIC 9294.9 6331.3 2619.4 1580.5

t statistics in parentheses
*p < 0.1, ¥ p <0.05, *** p < 0.01
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then divided by the number of groups.

(3.7)

H= Z % (3.8)

Table 3.9 shows the measures of homogeneity and heterogeneity calculated
using the results from each methodology. These results support the conclusion
that our LCM estimation provides the most homogeneous groups while it succeeds

in differentiating among these groups.

Table 3.9: Measures of Homogeneity and Heterogeneity

Homogeneity Heterogeneity

5.0241 0.1091

Latent Class
model

Grouping based

Income/Std. Dev 6.5698 0.8548

3.7. Conclusions

This study provides strong evidence of unobserved heterogeneity in residential
water demand in the city of Granada for the period 2009-2011. We identified
four different residential water consumer profiles in Granada for the period 2009-
2011 using a LCM, rather than the common profile assumed by single equation
approaches, and this estimation allowed us to observe four distinct prices re-
sponses. Moreover, our sensitivity analysis shows that the LCM technique is an
appropriate method to group observations homogeneously.

Water demand is found to be perfectly inelastic for two of the classes we
identify. The proportion of consumers who belong to these classes, based on the
posterior probabilities, exceeds 33%. The effect of a change in price would be
overestimated for these two groups of consumers, which represent a substantial

proportion of the sample, if price elasticities were estimated using a single-class
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model. The implementation of pricing policies would likely be less effective in
reducing water consumption for these two groups of consumers in the future.
Particularly, one of the groups that is relatively insensitive to price changes (which
represents a quarter of the households) registers low average consumption levels.
This result seems to be in line with those obtained estimating residential water
demand functions based on a Stone-Geary utility function [Dharmaratna and
Harris, 2012; Garcia-Valinas et al., 2014; Gaudin et al., 2001; Martinez-Espineira
and Nauges, 2004], which suggest the existence of a nondiscretionay amount of
water that is not sensitive to price changes and an additional quantity devoted
to discretionary uses that does respond to price variations.

Identifying different price elasticities allows regulators to more accurately pre-
dict the effect of different water conservation policies. Our analysis suggests that
the focus of a water demand management policy could be tailored to the specific
demand function of a particular group of consumers. Indeed, in order to reduce
water consumption, pricing and non-pricing policies such as education programs,
water rationing, retrofit subsidies or public information campaigns can be jointly
applied to the most price-responsive groups of consumers. However, non-pricing
policies should be intensified in the case of the least price-responsive consumers,
especially for the class that has a low level of water consumption, likely to be
mainly nondiscretionary and, therefore, hard to adjust in the short-run. Promot-
ing water-saving habits and the installation of efficient appliances could be useful
to reduce both discretionary and non-discretionary residential water consump-
tion [Garcia-Valinas et al., 2014]. We illustrate how the analysis of membership
probabilities makes it possible to identify the characteristics of the users that
belong to a given class, which should make it easier to tailor water conservation
programs to best suit the response patterns of different user groups.

We have shown that the use of Latent Class Analysis shows a reasonable
degree of potential as a tool to improve our understanding of residential water
demand. This is, however, the first time that, to our knowledge, Latent Class
Analysis has been used in the estimation of water demand functions. It would,
therefore, be interesting to replicate this type of work using similar data from
other jurisdictions to find out whether and to which extent our results can be

generalized further.
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Chapter 4

Adoption and use of efficient
technologies at residential level:
a disaggregated analysis in the

water sector

4.1. Introduction

Water scarcity has emerged as a serious and growing environmental problem. The
[PCC has predicted that “freshwater resources are vulnerable and have the poten-
tial to be strongly impacted by climate change, with wide-ranging consequences
for human societies and ecosystems” [Bates et al., 2008, p. 3]. Consequently,
numerous measures to promote sustainable water consumption have been estab-
lished by governments. As we mentioned when describing the context of this
research, both pricing and non-pricing instruments have been used to match wa-
ter demand and supply at residential level.

The effect of price on residential water demand has been widely studied in
the literature, as was noted in the previous chapter (see Arbués et al. [2003] and
Worthington and Hoffman [2008] for comprehensive literature reviews). However,
water supply managers have been often hesitant to implement pricing policies to
promote reductions in water consumption due to the relatively low sensitivity of

residential water demand to water prices, using instead non-pricing policies that
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are also more politically acceptable than other more stringent policies such as
price increases or water restrictions. Among these non-pricing policies we can
distinguish those aimed at affecting water-use habits, such as public informa-
tion campaigns or moral suasion initiatives, and those intended to encourage the
investment on water-efficient appliances, such as subsidies.

Several studies have aimed at analyzing the effect of water-saving technolo-
gies and pro-environmental habits on water demand. For example, Renwick and
Archibald [1998] used data from Santa Barbara and Goleta in California to an-
alyze the effects of certain indoor water-efficient equipment in the household,
finding that the use of a low-flow toilet and showerhead decreases household wa-
ter use by 10% and 8% respectively. Renwick and Green [2000] studied residential
water demand using aggregate data from eight Californian water agencies for the
period 1989-1996 and their results showed that voluntary measures such as public
water-saving campaigns and retrofit subsidies reduced aggregate demand by 8%
and 9% respectively, being larger those reductions achieved by more stringent
mandatory policies. Kenney et al. [2008] use data from Colorado for the period
1997-2005 to analyze indoor water-efficient equipment and they find that water-
efficient washing machines and low-flow toilets reduce household water demand
by 10%.

However, the actual water savings arising from the installation of water-
efficient devices and appliances may not coincide with expected savings due to
behavioural changes which lead to so-called 'rebound’ effects. For example, the in-
stallation of dual toilets may lead to significant increases in the number of flushes
per day. Similarly, the presence of efficient washing machines or dishwashers
could result in an overuse of these appliances. Studies which have analyzed the
existence of a potential rebound effect in the water sector include [Bennear et al.,
2011; Campbell et al., 2004; Davis, 2008; Mayer et al., 1998].The rebound effect
has been classified into three types in the energy literature. There is a positive
rebound effect if the percentage reduction in consumption is smaller than the ex-
pected efficiency gain. A special case known as “backfire” occurs if the rebound
is higher than the expected improvement in efficiency, thereby leading to an in-
crease in consumption [Saunders, 1992]. A negative effect or “super-conservation”

[Saunders, 2008] is also possible if consumption decreases by a greater amount
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than the expected efficiency gain. Moreover, the European Commission (EC,
2012) alerts EU members to the water efficiency losses linked to the rebound ef-
fect in all the main water using sectors (industry, energy production, agriculture,
households). The European Commission propose the application of different poli-
cies, combining both pricing and non-pricing instruments, in order to avoid the
rebound effect. As a consequence, this issue has entered in the political agenda
of several European contries.

In this context, the interaction between habits and technologies is crucial, as
for some appliances and/or groups of people the potential rebound effect due to
behavioural changes may lead to lower than expected water efficiency gains from
the introduction of water-saving technologies (i.e., devices and appliances). The
detection of different profiles with higher probability to show some rebound effect
should be an additional feature to consider in the design of public policies. This
issue is specially sensitive in some sectors where pro-environmental behaviours
could be taken into account in the design of grant frameworks, creating incentives
to improve environmental efficiency.

The aim of this chapter is analyze the determinants of a set of decisions on the
adoption of water-efficient technology and the corresponding water conservation
habits. As an original contribution, we consider two groups of water-efficient
technologies, namely electrical and non-electrical appliances, identifying habits
corresponding to each type of technology. From a methodological point of view,
we use a recursive bivariate probit model for each pair of decisions to account for
the correlation between disturbances. Moreover, the recursive model allows us to
test the effect of efficient technologies on water-saving habits. Since we are using
cross-sectional data, it is not possible to observe the sign of the rebound effect,
but we can identify whether households with efficient technologies have a higher
or lower probability of manifesting a specific water-saving habit. This analysis
allows us to identify certain target groups on which public policy on residential
water demand could usefully be focused.

The outline of the chapter is as follows. First of all, a brief literature review
is presented, explaining the main contributions related to the rebound effect in
the water sector and the determinants of water conservation habits and tech-

nology adoption. Section 4.3 describes some public policies aimed at promoting
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environment friendly behaviours and efficient technology adoption in Spain. The
methodology is explained in Section 4.4, while Section 4.5 briefly describes the
dataset used in the empirical application. Section 4.4 shows the results from the
estimation of the bivariate probit model. The chapter includes with a summary

of the main contributions and some policy implications.

4.2. Literature review

The analysis of the determinants of water-efficient technology adoption and the
choice of water-conservation habits has received some attention in the literature.
Except in one particular case [Martinez-Espineira and Garcia-Valinas, 2013], the
majority of papers have analyzed these choices separately.

Water conservation activities (technology adoption and habits) are influenced
by socioeconomic characteristics and attitudinal and behavioral variables. One
of the socioeconomic variables that is usually considered is income and its effect
on water conservation activities is not clear in the literature. Millock and Nauges
[2010] study the impact of several variables on the adoption of water-efficient
technology using data on 10000 households from 10 OECD countries, finding a
positive and significant effect of income on the probability of installing indoor
water-efficient equipments but a negative effect on the probability of buying a
water tank. De Oliver [1999] analyzes the demographics of support for water
conservation using municipal water consumption data from San Antonio (Texas)
finding a negative correlation between high income and conservation. However,
Domene and Saurt [2006] find no significant effect of income on water conser-
vation behavior of households in 22 municipalities in the metropolitan region of
Barcelona.

Regarding the impact of education, the evidence is also ambiguous. De Oliver
[1999] finds a negative correlation between education and water conservation.
Gilg and Barr [2006] identify the characteristics of the water saver using data on
1600 households from Denver. The results show a positive impact of education
on water-saving behavior. Lam [2006] performs two studies to predict residents
in Taiwan’s intention to save water, finding a positive influence of income on the

adoption of a dual-flush controller in one of the studies but not in the other.
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Other socioeconomic variables such as age and gender are commonly considered
in the literature. The literature shows no significant effect of these factors on
pro-environmental behaviours [Lam, 2006; Millock and Nauges, 2010].

As mentioned above, the closest study to ours is Martinez-FEspineira and
Garcia-Valinas [2013], which analyzes the determinants of both the adoption of
water-efficient technologies and the adaptation of water-conservation habits us-
ing data from a survey of Spanish households. In order to do so, they construct
aggregated ordinal indexes for both decisions from a series of binary variables
that indicate self-reported choices about conservation habits and decisions on the
adoption of water-saving equipment. They then use a bivariate ordered probit
model for the analysis, thereby accounting for possible correlation between the
two decisions.

The relationship between the adoption of habits and technologies is at the core
of the literature related to the efficiency losses in the use of residential devices.
Indeed, there is a huge literature focused on the estimation and the causes of the
so-called rebound effect. In particular, there are some fields which have devoted
a lot of attention to this issue, such as energy [Freire-Gonzdlez, 2011; Ghosh and
Blackhurst, 2014; Sorrell et al.; 2009] or fuel consumption [Small and Dender,
2007; Smeets et al., 2014]. However, only a few studies have raised the possibility
of a rebound effect in the residential water sector. Mayer et al. [1998] analyze
the amount of water used by all possible appliances in single-family households
from different municipalities in the U.S. and Canada, and the results show that
households with low-flow showerheads increase shower time.

Campbell et al. [2004] estimated a reduction in water use of about 3.5% due to
a regulation imposing the installation of low-flow fixtures and devices in Arizona.
However, they found increases of about 3.8% to 4.6% in water use after the instal-
lation of free retrofit device kits. Another policy based on having similar devices
installed during personal in-house visits with person-to-person communication
led to water savings of between 2.4% and 6.4%. The authors suggest that the
result of these policies may depend on whether the equipment is distributed for
free or the resident actually makes investment to install it. Bennear et al. [2011],
using data from North Carolina, showed that water savings attributable to the

rebate program were less than one-half the expected savings associated with that
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installation. Davis [2008] uses data from a field trial in which randomly-selected
households received high-efficiency washing machines free of charge. Households
increased the use of washing machines by 5.6% on average after obtaining the
high-efficiency appliance, that is, part of the efficiency gains are offset by in-
creased usage.

These studies focused on the rebound effect in the residential water sector have
shown that efficiency savings from the use of environmentally-efficient technology
differ depending on the kind of device or appliance analyzed. Households may
invest in a particular efficient appliance or demonstrate a specific conservation
habit because of the resulting energy savings rather than the decrease in water
use, due to the lower relative price of water. Thus, aggregate indexes such as those
found in Martinez-Espineira and Garcia-Valinas [2013] may not fully capture the
relationship between efficient technologies and habits, and their respective deter-
minants. Our main contribution to the literature consists of using a disaggregated
index for different technologies and habits, based on the classification explained

in the next section.

4.3. Water-efficient technologies: public policies in Spain

Spain is the European country most severely affected by scarcity in the water sec-
tor. In particular, the Southeast region of the country exhibits the greatest levels
of water stress in the European Union [EEA, 2009]. In this context, several public
policies have been aimed at promoting the adoption of water-efficient technologies
among Spanish households. These policies are implemented by both central, sub-
central and supranational governments, who share environmental competences.
As discussed in Chapter 2, European Union (EU) usually sets some general re-
quirements regarding environmental regulation which is then adopted by each EU
member. In Spain, the Spanish Ministry of Environment is responsible for the
identification of the strategic objectives and the design of environmental protec-
tion plans. Then, the regional and local governments are in charge of implement-
ing the plans.

In this research, a classification of water-efficient technologies into two differ-

ent groups is proposed: electrical and non-electrical appliances. This classification
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is based on both the public policies related to those technologies and their spe-
cific features. A discussion of subsidies and public information programsin what
follows shows a broad variety of policies applied in this field.

On the one hand, there are some efficient electrical appliances, such as washing
machines and dishwashers, which could generate significant water saving at resi-
dential level. These appliances are identified by labelling schemes which specify
different levels of efficiency ratings and enable buyers to compare the efficiency of
different models. European Ecodesign Directive 2009/125/EC established some
requirements for energy-using appliances such as washing machines and dishwash-
ers. However, the European labelling framework is based on overlapping criteria
(energy and water consumption, noise emissions, etc), with greater emphasis on
certain dimensions. The European Commission has warned about the problems
of this kind of labelling: “As these labels are more focused on aspects such as
energy use and the environmental impacts associated with the overall life-cycle
of the product, the product’s water consumption could be seen as less important
by consumers if a separate labelling scheme was not established” [EC, 2009, p.
244].

In this respect, the most relevant program applied in Spain is the household
electrical appliance renewal program (Plan Renove of electrical appliances). This
subsidy program was launched in Spain as part of the 2005-2007 Energy Saving
and Efficiency Action Plan and it continues up to this day. Its main aim consists
of providing financial incentives to households to replace electrical appliances
(fridges, freezers, washing-machines and dishwashers, electric ovens, gas hobs and
induction hobs) by others with a class A to A++ label. The subsidy was aimed at
compensating for the price differential between the conventional appliance and the
energy-efficient one. The amount of the subsidy, which was determined by each
region (Autonomous Community, AC), varied from 85 to 125 euros depending on
the appliance’s efficiency rating [Martinez-Espineira et al.; 2014].

On the other hand, the installation of some non-electrical devices are the aim
of retrofit programs, such as efficient dual-flush toilets or low-flow showerheads
and taps. In Europe, those devices are not obliged to include a label showing
their water-consumption rating. However, there are a few private associations of

those devices’ manufacturers that have developed some water efficiency labelling
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schemes for the European fittings.'

In Spain, governments have introduced some regulations to promote the afore-
mentioned water-saving technologies. The most generally applicable regulation
is the Royal Decree 314/2006, which establishes some technical conditions to be
complied with in the construction of new buildings. Those must be equipped
with devices which lead to a sustainable water consumption and permit signifi-
cant water savings. At the same time, there are some subsidy programs provid-
ing incentives to renew household appliances. Thus, the Royal-Decree 2066/2008
established a National Housing Program for the period 2009-2012, aimed at im-
proving household energy and environmental efficiency. This National Program
was implemented by the Autonomous Communities, with slight variations across
the regions. Thus, the installation of mechanisms to obtain water savings and
the adoption of greywater recycling systems are some of the investments granted.
Subsidies range between 10% and 25% of the restoration total cost, with some lim-
its. Additionally, beneficiaries should not have higher yearly income levels than
6.5 times the Public Index of Income for Multiple Purposes (IPREM; in 2011,
the limit was set at 41,535.85 euros). Moreover, Personal Income Tax included
a tax credit of 10% of households’ investments in water system renewal carried
out between April 2010 and December 2012, with some limits. As with the Plan
Renove, beneficiaries should have lower yearly income levels than 53,007.20 euros.
There also exist specific programs oriented towards the adoption of these efficient

technologies, and basically promoted by water utilities and/or local governments.

4.4. Methodology

The probability of investing in an efficient appliance and that of manifesting
water-conservation habits are analyzed conjointly using recursive semi-ordered
bivariate probit models. A semi-ordered bivariate probit is used when one of
the dependent variables is a binary variable and the other variable is an ordered
categorical variable [Greene and Hensher, 2010, p.225]. Moreover, in a recursive

bivariate probit model, one of the dependent variables appears on the right-hand

!Some examples of water labelling can be found at the following webpages:
www.europeanwaterlabel.eu or www.well-online.eu.
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side of the other equation [Greene and Hensher, 2010, p.77].
As with univariate ordered probability models, semi-ordered bivariate probit
models are drawn from a latent variable model. Let us assume that the two latent

variables are determined by:

* /
Y1 = G171 + €

Y = D522 + Oy1i + €9

)=} € )

where x1; and x9; are vectors of the k; and ky explanatory variables, 5, and [, are
parameter vectors, and €y; and eo; are the error terms that are joint normal with
means zero, variances one, and correlation p. Then, the semi-ordered bivariate

probit model specifies the observed outcomes using threshold values:

0 if yj; <0
Yii = : . (42)
1 if yf; >0
Yo =J it 01 <y <05, J=0,...,0 (43)

The likelihood ratio and Wald test are commonly used for testing the hypoth-
esis that p equals 0 [Greene and Hensher, 2010, pp. 74-75]. The model would
collapse to a probit model and an ordered probit model estimated separately if
the error correlation p is equal to 0, but if the the hypothesis is rejected, then
the joint probability for yi; = k and yo; = j is:

Prob(yy; = k,yai = jlw1i, v2) = Plang — Bi1i, aaj — Poxa;i — Oy, pl
— Blarg—1 — Bi21i, oj — Poxa; — Oyuy, p (4.4)
- (I)[Oém - 51517% Qgj—1 — /651'22‘ — Oy, P]

+ q)[alk—l - 5{9511'7 Qo1 — 553321 — Oy1i, p]

where @ is the bivariate standard normal cumulative distribution function. The
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above probabilities enter the log-likelihood for a maximum likelihood estimation.

For reasons related to the identification of the model, at least one variable
needs to be included in z5 that does not enter in x;. We define this set of
variables as z_;. In order to test that our model specification is correct, that is,
x_1 should indeed not be included in z{, we regress the generalized residuals, as
defined by Gourieroux et al. [1987], from the second equation against z and x_1,
and we perform a J-test. The test is used to determine whether these variables
are correlated with the error term in the second equation and could therefore be

omitted (for a more detailed explanation see Appendix C).

4.5. Data

This chapter uses data from the 2011 survey of households in the city of Granada
(Spain). In what follows we investigate the determinants of the adoption of
electrical and non-electrical water-saving appliances and the choice of the cor-
responding water-conservation habits. To do so, a series of binary indicators of
self-reported water-conservation habits and water-saving appliances are used to

construct the following indexes for each household:

e Electeff: an ordinal index that accounts for the number of efficient water-
using electrical appliances in the household (possible efficient appliances are

dishwashers and washing machines).

e Elect-habits: a dummy variable that takes value 1 if households operate au-
tomatic dishwashers and washing machines only when they are fully loaded,

and 0 otherwise.

e Noelecteff: a binary indicator that takes value 1 if there are non-electrical
water-saving devices in the household (such as low-flow taps and shower-
heads and dual-flush toilets), and 0 otherwise.

e Noelect-habits: a habits index is built by summing the individual scores
of three self-described water-saving habits (household avoids letting water
run while brushing teeth; household takes shorter showers; household has a
paper bin in the bathroom to avoid using the toilet as a paper bin; household

fills the sink with water when washing dishes by hand).
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The decision to adopt efficient water-using electrical appliances (ordered vari-
able) and the choice of the corresponding water-saving habit (binary variable) is

formalized in Model 1:

FElecteff = f1(z1)

(4.5)
Elect-habits = fy(x2, Electeff)

where 1 and x5 are the set of explanatory variables that are defined below.
Model 2 specifies the decision of adopting non-electrical water-saving devices

(binary variable) and the water-saving habits (ordered) related to those devices:

Noelecteff = f1(z1)

(4.6)
Noelect-habits = fo(xq, Noelecteff)

with x; and x5 being a set of explanatory variables that are defined below. In
both models, subscripts 1 and 2 refer to the first and second equations, that is,
the equations explaining efficient technologies and habits respectively.

As determinants of the above decisions and based on previous literature, we
consider a set of explanatory variables that can be categorized into three groups:
socioeconomic characteristics, attitudinal and behavioral factors, and policy vari-
ables. Among the first group, we include the number of members living in the
house (Members), the age of the head of the household (Age), a binary indica-
tor that takes value 1 if the head of the household is a male, and 0 otherwise
(Gender), a dummy variable equal to 1 if the head of the household has higher
education (FEducation), and a binary variable that takes value 1 for the richer
households and 0 otherwise.” Additionally, we include an indicator of home own-

ership (Owner) since homeowners are expected to have more incentives than

2Household income was recorded as an ordered categorical variable, with households be-
longing to one of the following intervals (in Euros/month): [0-1100]; [1101-1800]; [1801-2700];
[2701-3500]; [3501- +oc]. It would not be appropriate to use the interval categories as if they
were values of a continuous variable. Usually, one would construct a set of five binary indica-
tors of income level and introduce four in the model. However, because we did not seem to
have enough sample variability to estimate all four corresponding parameters, we simplify our
original income variable into a binary indicator of relatively higher income. In particular, we
create a binary variable that identifies the richer households (those falling in the two highest
income categories)
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tenants to make investments in water-saving devices in the property, a categor-
ical variable that accounts for the age of the house (Home-age) *, and a binary
indicator that accounts for renovation works in the house in the previous five
years (Remodel). These variables are only included as determinants of efficient
technologies, since they are expected to be correlated with the efficient water-
using electrical appliances and water saving devices, but not to the water-saving
habits.

As attitudinal variables we consider an environmental concern index (Enviro)
that ranges from 0 (the respondent is not concerned about the environment at
all) to 2 (the respondent is very much concerned about the environment), and
a dummy variable that accounts for the knowledge of the existence of an envi-
ronmental campaign (Campaign). Finally, as a policy variable we include the
average price in 2010 since an increase in water price may motive households to

engage in water-saving habits and invest in efficient technologies.

3The indicator Home-age was recorded in 10-year intervals ranging from 0 to more than
50 years old. In this case, the variable is treated as a continuous variable assuming that the
ordering is linear.
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Table 4.1: Definition of variables

Type Variable Description Model Equation
Dependent variables
Investments Electeff number of efficient electrical 1 1
appliances
Noelecteff =1 if the household is equipped with water 2 2
saving devices, 0 otherwise
Habits Elect-habits =1 if the household runs fully loaded dishwasher 1 1
and washing machine, 0 otherwise
Noelect-habits  the sum of scores of water saving habits 2 2
Fxplanatory variables
Socioeconomic Highincome =1 if the household income is over 2700€, 1&2 1&2
characteristics 0 otherwise
Members number of people in the household 1&2 1&2
Education =1 if the head of the household has higher 1&2 1&2
education
Age age of the head of the household 1&2 1&2
Gender =1 if the head of the household is male 1&2 1&2
Owner =1 if the house is owned by one of the household 1 & 2 1
members, 0 otherwise
Home-age Age of the house 1&2 1
Remodel =1 if there renovation works in the house in the 1&2 1
five years prior the survey, 0 otherwise
Attitudinal Enviro Index of environmental concern 1&2 1&2
factors Campaign =1 if the person has knowledge of any water 1&2 1&2

conservation campaign, 0 otherwise




Table 4.2: Summary statistics

Variable Mean Std. Dev. Min. Max.

FElecteff 0.795 0.830 0 2
Noelecteff 0.484 0.5 0 1
Elect-habits  0.931 0.254 0 1
Elect-habits  2.575 0.841 0 4
Highincome  0.198 0.398 0 1
Members 2.751 1.197 1 9
Education 0.34 0.474 0 1
Age 52.693 19.37 18 94
Gender 0.555 0.497 0 1
Enviro 1.808 0.428 0 2
Campaign 0.564 0.496 0 1
Lagged AvP  1.695 0.461 1.011 8.281
Remodel 0.392 0.489 0 1
Home-age 3.893 0.85 1 6
Owner 0.747 0.435 0 1

As it is possible to observe in the Table 4.2, there are some differences in the
adoption of the two groups of technologies. Although the comparison is difficult,
in the sense that the scale of the dependent variable for each model is different, it
seems that non-electrical devices are slightly more spread out. Thus, almost 50%
of the households are equipped with non-electrical devices on taps, showers and
toilets, while the average number of electrical appliances installed is lower than 1.
Additionally, note that a high percentage of households declares having relatively
good water conservation habits, especially in the case of the use of electrical
appliances. Around 93% of surveyed households use electrical appliances only
when they are fully loaded, which implies that they are taking advantage of all
the efficiency gains generated by these kinds of appliances. The index related to
the use of non-electrical appliances also registers high values.

The representative household considered in the sample has an average size of
2.75 members, where the head of the household is a 53-year old male. Approx-
imately 19% of the households in our sample are in the highest income bracket,
and 34% have higher education. Some 55% of the surveyed households are aware
of some educational campaign and, on average, the respondents are seriously

concerned and worried about environmental problems.
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The housing stock in the sample is relatively old, as shown by the mean
value of the indicator of housing age (see footnote 4). However, only a small
percentage of them have carried out some remodelling. The sample is in line
with the property tenancy regime structure in Spain. In 2011, the 82% of Spanish
households were homeowners®. Our sample has an average ownership rate of 75%,
a little bit lower than the national average. This could be explained by the fact
that the rental market in this city is more developed and dynamic than in other

Spanish cities’.

4.0. Results

The results are presented in Table 4.3 for Model 1 and Table 4.4 for Model 2°.
The correlation between the two disturbances (p) in Model 1 is negative and
statistically significant, indicating that there are unobservable factors that are
negatively related to the adoption of efficient water-using electrical appliances
and positively related to the choice of the corresponding habit. The correlation
coefficient for the two error terms in Model 2 is positive and significant, that is,
unobservable factors influence both decisions in the same way. We performed
the likelihood ratio test of the null hypothesis that p equals zero, and the null
hypothesis was rejected for both models’.

Regarding the variables that have not been included in equation 2, we can see
that they are determinants of the decision of adopting efficient electrical and non-
electrical water-using appliances, and they are not correlated with the generalized
residual in the habits equations (see more details in Appendix C).

As shown in Table 4.1, we have considered the same set of explanatory vari-
ables in both models. However, the significance of the effects varies across them.

Beginning with the number of electrical appliances, there are several factors

4This and other data linked to the tenancy regime of Spanish households can be found at
the website of the Spanish National Statistic Office: www.ine.es.

5Among other key drivers of this dynamism, the city registers high levels of temporary
and seasonal visitors. For example, Granada receives more students through the Erasmus
Programme than any other European University.

6Results for the marginal effects are shown in Appendix D

"The likelihood ratio test of independence of equations is equal to 3.40 and 7.22 with p-
values 0.0653 and 0.0072 for Model 1 and Model 2 respectively, so the null hypothesis is rejected
for both models
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Table 4.3: Estimation results (efficient electrical appliances and habits)

Dependent variable
Electeff  Elect-habits

Electeff 0.607**
(3.12)
Remodel 0.448***
(5.84)
Home-age -0.133***
(-3.07)
Owner 0.567**
(5.54)
Highincome 0.370*** -0.0405
(3.88) (-0.21)
Members 0.104*** 0.0535
(3.05) (0.83)
FEducation 0.174** 0.146
(2.19) (1.03)
Age -0.00686*** 0.00211
(-2.68) (0.67)
Gender 0.156** -0.0711
(2.09) (-0.61)
Lagged AvP -0.0155 0.0657
(-0.19) (0.52)
Enviro 0.191** -0.0425
(2.18) (-0.32)
Campaign 0.303*** 0.239*
(4.08) (1.82)
Constant 0.546
(1.27)
cutl 0.609*
(1.76)
cut2 1.438"**
(4.14)
p -0.455**
(-1.99)
N 1126
11 -1305.9
aic 2659.8
bic 2780.5

t statistics in parentheses
p <., p <05, p < .01
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which influence the technology adoption decision. In this case, larger families
where the head of the household is a younger male with higher income and higher
education tend to invest in this kind of technology more intensively. Moreover,
houses owned by one of the household members, which are newer and which
have recently undergone renovation works, have a higher probability of adopting
these efficient electrical appliances. The variables capturing environmental atti-
tudes, Enviro and Campaign, have a strong impact on the adoption of this kind
of technology. However, water price is not significant, probably because water
expenditure is a small proportion of household income®.

Regarding water-conservation habits, we observe a positive and significant
relationship between habits and technologies. Thus, those households with a
higher number of efficient electrical appliances exhibit better habits related to the
use of those technologies. Additionally, educational campaigns have a significant
role in the formation of pro-conservation habits.

In the case of non-electrical appliances, there are several socio-economic fac-
tors that significantly explain the installation of those devices. Richer households
have a higher probability of installing these water-efficient technologies and own-
ers of the houses with renovated dwellings are more likely to adopt non-electrical
water efficient devices. In terms of attitudinal factors, the only variable that
significantly affects the adoption of non-electrical appliances is the awareness of
educational campaigns.

Concerning the factors affecting the performance of habits related to non-
electrical appliances, larger families are more careful with the use of those devices,
showing better habits. As in the case of electrical efficient technologies, those
households aware of educational campaigns and that report themselves as con-
cerned about the environment exhibit better water conservation habits. However,
we observe that there is a negative relationship between efficient non-electrical
technologies and their habits. Thus, it seems that households with efficient non-
electrical equipment exhibit worse pro-conservation habits. This finding lappears

to indicate that there are some efficiency losses in the use of those technologies.

8Energy prices would probably have a greater impact on the adoption of this kind of tech-
nology. Unfortunately, we do not have information on the price that households are paying for
electricity.
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Table 4.4: Estimation results (water saving devices and habits)

Dependent variable
Noelecteff  Noelect-habits

Noelecteff -0.423*
(-1.95)
Remodel 0.418***
(4.94)
Home-age -0.0261
(-0.56)
Owner 0.470**
(4.19)
Highincome 0.508*** 0.00854
(4.62) (0.09)
Member 0.0484 0.0913***
(1.26) (2.92)
Education 0.140 -0.0002
(1.57) (-0.00)
Age 0.00005 -0.00002
(0.02) (-0.01)
Gender 0.0424 -0.0959
(0.51) (-1.43)
Lagged AvP -0.151 -0.0707
(-1.47) (-0.99)
Enviro 0.0443 0.143*
(0.46) (1.89)
Campaign 0.473** 0.228***
(5.68) (3.03)
Constant -0.859**
(-2.17)
cutl -1.599***
(-6.17)
cut2 -1.060***
(-4.18)
cut3 0.000358
(0.00)
cut4 1.604***
(6.05)
P 0.404***
(2.58)
N 1124
11 -1967.2
aic 3986.3
bic 4117.0

t statistics in parentheses
p<.1, % p <05, T p< .01



Water savings could be higher if it went hand-in-hand with the right conservation
behavior.

There are different reasons which could explain these results. First of all, in
our model households need to control not only one behavior, but the combination
of different behaviours linked to those devices, which is a more complex task. That
makes it more difficult to take advantage of all potential efficiency gains generated
by low-flow technologies. Second, the labelling policy in this field emerges as
another significant issue. As we mentioned before, labels for low-flow technologies
are not as widespread as for electrical appliances. As a consequence, the quality
of information related to efficiency gains is lower, and households may find it
more difficult to identify these technologies as an important source of savings.
Additionally, the low levels of water pressure that is associated with this kind of
technology could lead to increase the intensity in their use. Finally, and compared
with electrical appliances, there is a higher probability that these kinds of devices
were installed by the builder and households did not participate in the decision
to adopt them. Moreover, the low price of water together with the adoption of
efficient technologies creates a perverse incentive not to perform pro-conservation
habits in the case non-electrical devices. However, water conservation habits
related to electrical appliances may be also affected by the price of energy, which
is much higher than the price of water, and therefore, encourages households to

perform water conservation habits.

4.7. Conclusions

Water efficient technologies have emerged as a significant source of water savings
at residential level [Kenney et al., 2008; Renwick and Archibald, 1998; Renwick
and Green, 2000]. However, an inappropriate use of these technologies could lead
to significant efficiency losses and lower savings levels. This research was aimed
at identifying problematic areas where these efficiency losses are more likely to
appear. Our main contribution consist of making a disaggregated analysis: two
main groups of technologies have been distinguished, namely efficient electrical
and non-electrical appliances. We have shown that public policies applied to the

two groups are different. The different character of each group of technologies
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was also highlighted.

Our findings prove that there are significant differences in terms of the re-
lationship between habits and technologies depending on the group of appli-
ances/devices considered. Thus, when it comes to electrical appliances, house-
holds which tend to invest in this kind of technology also exhibit better habits.
However, in the case on non-electrical appliances, the result is just the oppo-
site. These findings call for a reconsideration of public policies applied to this area.
Thus, the current policies should be reinforced by using information tools and ed-
ucational campaigns strongly oriented towards the adoption of pro-conservation
habits linked to these technologies. Additionally, pricing policies could also be
used to improve the efficiency in the use of low-flow devices devices. In this re-
spect, it may be that low water price levels make households less prone to react
and save water. Definitively, the results of this research can help to reorient cur-
rent public polices in order to reduce a potential rebound effect in the residential

water sector.
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Chapter 5

The impact of environmental
behavior on the efficiency in

residential water consumption

5.1. Introduction

About 52% of the world’s projected inhabitants are expected to live in “water-
stressed areas” by 2050, due to a combination of climate changes, an increase in
the world population and economic growth [Schlosser et al., 2014]. This change
is not only going to affect the developing economies, and has already highlighted
the need for an appropriate policy response in many developed regions in the
world.

In particular, Europe and the United States are facing more frequent and
severe droughts. In Europe, the number of people and areas affected by water
scarcity between 1976 and 2006 increased by almost 20%, generating a cost of
€100 billion for this period [EC, 2012]. In the US, 36 states suffered water
shortages and availability issues in 2013.’

In this context, the European Commission has launched a flagship initiative
under the so-called Europe 2020 strategy — the 10-year strategy proposed by the
European Commission for a “smart, sustainable, inclusive growth’ — to create a

resource-efficient Europe. In the US, the Energy Independence and Security Act

!Source: Environmental Protection Agency (EPA).
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of 2007 was enacted to tackle the efficiency of water use in Federal facilities, and
also residential consumption through improved and more efficient appliances.

Behavioral aspects may play an important role in more efficient water con-
sumption. Russell and Fielding [2010] link the concept of water demand man-
agement to water-conservation behavior indicating that the latter encompasses
actions to consume water more efficiently and also take into account that water
demand management itself entails behavioral aspects. In this sense, we can dis-
tinguish two types of behaviors that may affect efficiency in water consumption:
efficiency behaviors and curtailment behaviors [Stern and Gardner, 981a,b]. Effi-
ciency behaviors refer to one-time behaviors, such as buying an efficient electrical
appliance, and curtailment behaviors refer to individuals’ actions that reduce
water consumption involving inconvenient and sacrificial actions such as taking
shorter showers. Therefore, any study of the scope for more efficient household
water use should take such behavioral aspects into account.

The aim of this chapter is to measure the level of efficiency in residential
water demand in order to determine potential water savings. Moreover, the
effect of several efficiency and curtailment behaviors on water consumption is
analyzed with the aim of identifying behaviors that could be promoted in order
to enhance water savings. To compute potential water savings at the household
level, we adopt a household production theory approach where households may
differ in their ability to produce services in order to satisfy their preferences.
Water is therefore considered as an input in the production function for household
services and the demand for water is modelled as an input demand function. In
order to estimate an input demand frontier function which takes into account
both the efficiency and curtailment behaviors in a flexible manner, we use a
semiparametric Smooth-Coefficient stochastic frontier model, following Sun and
Kumbhakar [2013].

The analysis is carried out using the database of the city of Granada that
has been described in Chapter 2. These data are of special interest for two main
reasons. On the one hand, as discussed before, Spain is the most semi-arid country
in the European Union [Lopez-Gunn et al., 2012], and is the European country
most severely affected by water shortages. Moreover, droughts will worsen with

future climate change [Collins et al.; 2009]. The city of Granada is located in the

68



South of Spain, which is regularly affected by droughts and availability issues.
On the other hand, the average water consumption in the sample analyzed in
this chapter is around 95 liters per day per person. However, Gleick [2000] claims
that the basic water human need per day is 55 liters per person in moderate
climate conditions, including drinking water, water for sanitation services, water
for human hygiene and for preparing food in a modest household. This indicates
that there is still considerable room for water savings in this city.

As we will see, the results from our empirical application show that the ma-
jority of households in the sample were found to be highly efficient in water use.
However, a substantial proportion were relatively inefficient and there is consid-
erable potential for water savings. Moreover, efficiency behaviors are found to
have a significant impact on water efficiency, whereas curtailments behaviors are
not found to have a significant impact on the level of efficiency in water con-
sumption. These results should prove useful for policymakers when it comes to
designing policies aimed at promoting water efficiency.

The chapter is organized as follows. The next section provides a literature
review on the measurement of water efficiency. Section 5.3 discusses the rationale
for the input demand function. Section 5.4 describes the empirical methodology.
The data and the specification of the demand function are presented in Section
5.5, which is followed by Section 5.6 where estimation results are discussed and

Section 5.7 concludes.

5.2. Literature review

In the context of water scarcity, emphasis has been increasingly placed on water
demand management, that is, on any method that reduces the amount of water
used or enables it to be used more efficiently [Brooks, 2006]. However, a crucial
aspect is the awareness of the actual level of efficiency in water consumption
and the potential for water savings. The European Environment Agency uses a
resource intensity index as a proxy for the efficient use of a resource, such as energy
or water. This index is defined as the quantity of resources required per unit of
economic output [CEPS; 2012] and has been used in several studies concerning

water use efficiency. For instance, Gleick [2003] compares the trends in the ratio of
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GDP to water use for several countries, stressing the importance of and difficulties
involved in appropriately measuring water use. Alcamo et al. [2003] compute a
water intensity index for the domestic, industrial and agricultural sector in several
countries. Di Cosmo et al. [2014] calculate the water intensity of the 27 countries
in the EU for the year 2005 to analyze the patterns explaining water consumption.
However, this resource intensity index has been criticized since it may not reflect
all the behavioral and structural factors that would be necessary to measure
resource efficiency adequately [FIA, 1995; Filippini and Hunt, 2012].

With this in mind, Filippini and Hunt [2012] construct a more appropriate
measure of the level of efficiency for the US residential sector across 48 states in
the period 1995 to 2007 using a parametric stochastic frontier analysis (SFA). At
the European level, Filippini and Hunt [2013] estimate energy efficiency scores for
the EU-27 country-members for the period 1996 to 2009 using the SFA method-
ology, finding a high level of inefficiency. Also using data at European level,
Filippini et al. [2014] analyze the effect of the energy policy instruments pro-
moted in the EU member states on efficiency using SFA. The results show that
financial incentives and energy performance standards contribute to reduce en-
ergy inefficiency. However, information campaign measures were not found to
have a significant effect on the inefficiency level. Stern [2012] measures energy
efficiency in 85 countries using an energy distance function approach, in which
the global production frontier is defined by the country using the least energy
per unit output, given its mix of outputs and inputs. Thus, the level of effi-
ciency is computed from the distance to the frontier. The results show that
energy efficiency is higher in countries with smaller fossil fuel reserves, underval-
ued currencies, and higher total factor productivity. The aforementoned studies
use aggregate data from the energy sector. Efficiency in water demand has been
measured before using both parametric and nonparametric methodologies, but
studies have been limited to water use in the agricultural sector. SFA is used
in Kaneko et al. [2004] to analyze water efficiency in agricultural production in
China and in Dhehibi et al. [2007] to compute a measure of irrigation water effi-
ciency based on the concept of input-specific technical efficiency using data from
144 citrus farms in Tunisia. Regarding nonparametric techniques, several studies

use Data Envelopment Analysis (DEA) to compute water use efficiency. Gian-
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noccaro and Martin-Ortega [2010] and Veettil et al. [2013] analyze the effect of
pricing policies on the efficiency of irrigation water use using DEA for a sample
of farms in Southern Italy and in the agricultural production system in the Kr-
ishna river basin (India) respectively. Chemak [2011] also uses DEA to compute
water use efficiency and the dynamic productivity of irrigated areas in Tunisian
farms. However, as far as we are aware there has been no analysis carried out of
efficiency in residential water consumption. This is therefore the first attempt to
estimate the level of efficiency in household water consumption and the factors
which determines it.

Regarding the inclusion of determining factors or ’environmental variables’,
the effect of these variables can be modelled empirically in several ways. The
simplest approach would be to introduce these environmental factors into the
production function as conventional inputs. However, this modeling strategy
does not seem appropriate because these factors alone cannot produce any water
services. Hence, a more subtle empirical strategy is to introduce them into the
production function as facilitating inputs which affect conventional inputs’ pro-
ductivity [McCloud and Kumbhakar, 2008]. An alternative approach that has
received considerable attention is to model the environmental variables as deter-
minants of inefficiency [Alvarez et al.; 2006]. A more recent and flexible approach
is a combination of the last two which considers the effect of the environmen-
tal variables on the inefficiency while also including them as facilitating inputs,
thereby allowing the frontier to shift in a flexible manner [Sun and Kumbhakar,
2013).

5.5. Utility maximization and input demand function

In order to model household behavior, we follow the household production func-
tion approach proposed by Becker [1965] which integrates consumer theory with
production theory. Households obtain utility from underlying goods that are
non-marketed goods, which Becker called commodities, and are produced in the
household using the ‘means’ that households have at their disposal which are in-
puts of market goods, abilities, knowledge, technology and time. In this context,

water can be considered as an input in the household production function. Water
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demand is an input demand, that is, households purchase water for the services it
provides, not for the utility it provides by itself (except for drinking water, which
represents a small percentage).

One of the main advantages of the household production literature is that
it explicitly considers as restrictions part of what traditional consumer theory
considers as preferences. Michael and Becker [1973] argue that “they [consumers]
all derive that utility from the same ‘basic pleasures’ or preference function, and
differ only in their ability to produce these ‘pleasures’.” Stigler and Becker [1977]
also indicate that preferences may be considered identical across individuals and
constant over time and that differences in behavior can be caused by price and
other constraints. However, this idea has been questioned in several studies. For
instance, Hirschman [1984] criticizes the ‘parsimonious postulate’ in Economics
that consumers choose rationally and freely among different options after analyz-
ing the possible costs and benefits. Cowen [1989] highlights several issues with
the Stigler-Becker approach such as problems of addiction, weakness of will and
taste changes.

In this chapter, we attempt to account for the possible weaknesses of the
household production model by controlling for preferences using several deter-
mining factors or ‘environmental variables’. These variables are considered to be
potentially important in the production of water services, and may be thought of
as proxies of the ability to produce water services as well as reflecting household
preferences. As stated in the introduction, two types of environmental behaviors
are considered as environmental factors. Self-reported water-conservation habits
are included as an indicator of curtailment behavior, and the characteristics of
the technology represent the efficiency behaviors.

The household’s decision can be thought as an optimisation problem in which
the household minimizes the costs of producing the commodities, which in this
case are water services. In this context, the frontier analysis approach can be
used to estimate the level of cost efficiency. As explained by Schmidt and Lovell
[1979], it is possible to estimate the cost function by using a set of input demand
equations. However, for the estimation of a system of cost-minimizing input
demand functions, information on input prices is required. In this case, there

is a lack of data on prices of other inputs involved in the household production
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process, so only a water demand function is estimated. This follows Filippini and
Hunt [2013] who argue that despite the fact that this approach does not allow
some restrictions imposed by the household production theory to be taken into
account, it does permit us to identify the difference between the actual input
demand and the frontier input demand.

The production of water services can be also represented by a utility maxi-
mization problem in which the household’s objective is to maximize the utility
obtained from producing water services y and other commodity z. Water services
are produced by combining water w and other inputs k, given some environmen-
tal factors Z. The additional inputs k£ can be thought of as appliances, which
are capital inputs. The production function of the household is assumed to take
a Cobb-Douglas form, where both the unobservable factor productivity and the
input coefficient are function of Z. Income generated by household members is
spent on both commodities. The utility maximization problem can therefore be

expressed as:

max U = Uy, x)
st. y=A(Z)w' k2 (5.1)
I = pyw + ppk + pex

where p,,, pr and p, represent the prices of water, capital inputs and com-
modity x respectively. In the spirit of Aigner et al. [1977], the expression A(Z)

in the production function can be written as:
A(2) = ¢(z)e ") (5.2)

where ¢(Z) is a parameter that is constant for each possible combination
of Z and u(Z) is the level of technical inefficiency and which also depends on
the environmental factors. Those households for which u(Z) = 0 are the most
efficient. The difference between the utility-maximizing input and the observed
input demands represents technical inefficiency. Consequently, a household is said
to be technically inefficient if water consumption is higher than the minimum

possible level of consumption defined by its frontier.
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Deriving the first-order condition for the utility maximization problem in
equation (9), one can obtain the input demand for water. After taking logs,
the input demand equation can be written as follows:”

Inw = a(Z)+ f1(Z)In (];—w) + Bo(Z)Ink + u(Z), (5.3)
k

where u is a one-sided non-negative random disturbance representing inef-
ficiency in water demand and which may depend on environmental factors, Z.
The input frontier represents the minimum level of water consumption necessary
to produce a given amount of water services, controlling for the level of capital

equipment and the environmental factors.

5.4. Methodology

From equation (5.3), the log of water consumption can be written as a linear
function of the log of water price and capital inputs, where the coefficients are
functions of the environmental factors. Therefore, it seems appropriate to esti-
mate this model using the semiparametric Smooth-Coefficient Stochastic Frontier
model proposed by Sun and Kumbhakar [2013]. The reduced-form model can be

expressed as:

where [nw; is the log of water consumption, x; is a vector of explanatory
variables (including the log price and the capital inputs), Z; is a vector of discrete
environmental factors (z is defined as a particular realization of the Z; variable),
B(+) is a vector of unspecified smooth functions of Z; and «a(-) is the intercept, also
an unspecified function of Z;. Finally, u;(Z;) is the positive inefficiency term, and

v; is a noise term, which is assumed to follow a centered normal distribution with

2

2 > 0. Following Simar et al. [1994], the efficiency term is assumed

variance o
to be u; = 0,(Z;)n; , where n; ~ #WdN7T(0,1), Nt represents the half-normal

distribution, and 0,(Z;) = exp(dy + 6:'Z;) > 0. This assumption implies that

2Detailed derivations can be found in Appendix E.
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El(ui(Z:)|2] = \/2/70u(Z;) = \/2/mexp(dy + 61’ Z;). Thus, equation (5.4) can be

rewritten as:

nw; = a(Z) + 2:8(Z) + vi + (wi(Zi) = Elui(Z;)|2] + Elui(Z:)|z])

5.5
=0(Z;) + z:;8(Z;) + €, (5:5)

where 0(Z;) = a(Z;) + E[ui(Z;)|z] and €; = v; + wi(Z;) — Eui(Z;))z].

To estimate equation (5.5), and since the environmental factors considered
in this analysis are going to be discrete, the semiparametric Smooth-Coefficient
model with categorical covariates studied by Li et al. [2013] is used. Let lnw; =
Xip(Z;) + €;, where p(Z;) = [0(Z;), 5(Z;)] and X; = [1,2;]. A semiparametric

estimator of p(Z;) can then be constructed as follows:

) 1~ R

where n is the sample size and L(.) is a categorical nonparametric kernel

function defined in Aitchison and Aitken [1976] as:

r

L(Zi,z,)\) szw,zs, ) =) (5.7)

s=1

where z, denotes the s component of the vector z and ), is a smoothing pa-
rameter, which is bounded in the interval [0,1] for all s = 1,...;7. The closer
the A to 0, the greater the difference in the marginal effects of X on [nw for
distinct categories of Z,. By contrast, when Ay = 1 for some s, this implies that
the corresponding Z, does not have any impact on the marginal effects. Indeed,
it can be seen from equation (5.7) that when the smoothing parameter is equal
to 1, the weight assigned to each possible category of Z, is the same. In this case,
we use the terminology in Li et al. [2013] and define Z; as an irrelevant covariate.

In order to select the smoothing parameters, the following cross-validation
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(CV) criterion function is employed:

n

CV(N) = =Y [lnw; — X;p_i(Z:)], (5.8)

i=1

where p_i(Z:) = [ S XX (75, 2 )\)] - [1 S Xy Ly, 7, )\)] is the
leave-one-out kernel estimator of p;.

Among others, the advantage of cross-validation in this context is that it
can automatically identify and smooth out from the regression model irrelevant
covariates by selecting a bandwidth equal to 1 [see Hall et al., 2004].

However, in our case it is not possible to directly estimate equation (5.5)
because of a simultaneity issue arising from the structure of the tariff used to
price the quantity of water consumed. As the latter increases jointly with the
average price paid per cubic meter, a direct estimation would lead to a biased
coefficient for the log price.

Therefore, in order to account for this simultaneity issue the smooth coefficient
instrumental variable (IV) model proposed by Cai et al. [2006] is implemented
here. This model takes the following form:

Inw; =X;p(Z;) + €, (5.9)
X =9(X_1i, 1) + ¢, (5.10)
E(e| X 14, 7) =0, (5.11)

where X; now includes a constant term, an endogenous regressor X; and a vector
X_1 of exogenous covariates. The variable 7 comprises a vector Z of exogenous
environmental variables and a vector D of instruments, and ( is the error term.

The estimation of this model is conducted in two steps, as in the classical
linear IV model. First, one estimates the conditional expectation F(X;|7) from
equation (5.10), and obtains the predicted values, X1, These predicted values
are then used to replace the endogenous regressor Xi; in equation (5.9). Finally,
one proceeds to the estimation of the semiparametric smooth coefficient model
as in equation (5.5).

Cai et al. [2006] derive the properties of this estimator using local linear fit-
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ting techniques. However they state that other methods such as kernel regression
or polynomial series are also applicable. We therefore implement nonparametric
regression splines in the presence of continuous and categorical predictors as de-
scribed in Ma and Racine [2012] and Ma et al. [2012], since this methodology fits
the data best.” A more detailed discussion of this methodology can be found in
Appendix F.

Before proceeding to the analysis of efficiency determinants, it is necessary
to test whether equation (5.4) can be estimated as a standard stochastic frontier
model in which the coefficients and the technical inefficiency term do not vary
with Z;. As discussed by Sun and Kumbhakar [2013], in order to test for the
correct Smooth-Coefficient functional specification the test statistic proposed by

Li et al. [2013] is constructed:
1 R RVESE .
L= S "002) ~ 555 (5(2) - ), (512)

where p(Z;) is the Smooth-Coefficient estimator, p is the parametric estimator of
p, that is, a vector of constant parameters, and f]ﬁ is the estimated covariance
matrix from the null model. A residual-based wild bootstrap method is used to
approximate the null distribution of I, (simulating B = 99 bootstrap samples for
fn) and the nonparametric p-values are computed.

The null hypothesis of this test is Hy : p(Z;) = p. If the latter is rejected,
we conclude that the semiparametric estimator ought be preferred over a simpler
parametric frontier estimation. Moreover, it also implies that the environmental
factors are relevant components in the consumption decision of the household.

We now turn to the efficiency determinants. Recalling the assumption on the
efficiency term, obtain the residuals from equation (5.6) as € = lnw; — X;p(Z;).

Defining R; = €;, we can write:

R, =\/2/m0o,(Z;) + v; — ou(Zi)n;
=v/2/mexp(do + 01Z;) + v — exp(do + 81 Z;)n; (5.13)
=v/2/mexp(do + 81 Z;) + €,

3The R? is equal to 0.7212 using the nonparametric categorical regression splines, whereas it
is equal to 0.3516 using a Kernel regression and 0.3257 using Ordinary Least Squares regression.
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where € = v; — exp(dy + 61Z;). Following Sun and Kumbhakar [2013], in this
second stage a parametric stochastic frontier estimation technique is applied. The

log-likelihood function is written as:

1 * 1 *
InL = constant — 3 ; In(o?) + EZ: In® (2—21 /ﬁ) ~3 Z % (5.14)

1

Bl )

where 0? = 02 + 02(Z;) = 02 + exp[2(do + 01 Z;)] and v = 02%(z;)/0?. Here the
parameterization of Battese and Corra [1977] is used instead of the one by Aigner
et al. [1977], where the log-likelihood function may be written in terms of o2 and
A= Zu, This parameterization has the advantage that v € [0, 1], whereas A €
[0, 00]. Therefore, the parameterization by Battese and Corra [1977] is preferred
since using A simplifies the numerical maximization of the log-likelihood function
[Simar and Wilson, 2010]. By maximizing the log-likelihood function in equation
(5.14), 61 and + are estimated and then the rest of the unknown parameters can
be obtained by using the fact that o2 = (1 — v)exp(dy) and & = In(v) + d.

Finally, in order to obtain the efficiency in water consumption scores (W E),
the Battese and Coelli [1988] point estimator, which Sun and Kumbhakar [2013]
used, is adapted following [Kumbhakar and Lovell, 2000, p.142].

WE, = B(erp{—u} |e) = 1‘1‘11(;*@”’“/‘;"5;’*)] eap [—ﬂm%oz] (5.15)

where pi,; = €;02/0% and 02 = d202/0?.

5.5. Data

The data used in this chapter is the unbalanced panel consisting of household
level data in the city of Granada covering the period 2009 to 2011.

As explained in Chapter 2, the pricing structure is based on IBP and therefore
we must consider the price endogeneity generated by the simultaneous determi-
nation of the price level and the level of consumption that determines the price
block, as in Chapter 3. When dealing with this issue, we face the problem that
water consumption and water bills, which determine the average price that will

be used as explanatory variable, are the only variables in the data set that change
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within a given year in the data set. Therefore, in order to address the endogeneity
problem, it was necessary to aggregate water consumption by year, which made
it possible to use the set of marginal prices per block, which are reviewed annu-
ally, as instruments. Furthermore, after the data aggregation, it was necessary
to exclude from the sample those individuals who were not observed for the six
billing periods each year because of the possible bias introduced by seasonality
in their water consumption®.

After this transformation, the dependent variable is the log of the average
bimonthly household water consumption per year, in cubic meters, which was
calculated by dividing total consumption per year by the number of two-month
billing periods.

Regarding the price variable, there are two main issues when analyzing water
demand under a nonlinear pricing scheme that are worth discussing. The first
one is the choice between marginal and average price. In this sample, consumers
indicated that they were not properly informed about the pricing scheme. There-
fore, we use the log of the average price (log AvP) since households may be more
sensitive to changes in average price than in marginal price. The second issue,
as commented above, relates to the price endogeneity caused by the simultane-
ous determination of price and water demand under block pricing. In order to
deal with this, an instrumental variable approach is used as explained in Section
5.4. Following Hewitt and Hanemann [1995] and Olmstead [2009], the full set of
marginal prices (in logs) are considered as instruments, since they are correlated
with the average price and orthogonal to the error term.’

Household income was recorded as an ordered categorical variable, with house-
holds belonging to one of the following intervals (in Euros per month) [0-1100];
[1101-1800]; [1801-2700]; [2701-3500]; [3501- +o0]. It would not be appropriate
to use the interval categories as if they were values of a continuous variable. Usu-

ally, one would construct a set of five dummy variables indicating each household

4Due to the impossibility of finding a common seasonal pattern, water consumption and
price series were not detrended

SSince there is no available test for relevance and exogeneity of the instruments in the
semi/nonparametric setting, these have been tested using a linear IV model. Weak instruments
are tested using a F-statistic, which is equal to 255.01, indicating that all the instruments are
relevant. The Sargan test is equal to 5.124 with a x?(4) = 0.2748, so that the null hypothesis
that all the instruments are exogenous cannot be rejected.
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income level and introduce four into the model. However, there is not enough
sample variability to estimate all four corresponding parameters, so we include
a binary indicator of relatively higher income (Highincome), where high income
corresponds to the two highest income categories, that is, higher than 2700 euros
per month. As other inputs used to produce water services we include the number
of water appliances (Electappl) in the household including dishwashers, washing
machines and water heaters, and the number of bathrooms (Bathrooms) in the
household. Moreover, in order to control for the size of the household we use
the variable Members, defined as the number of members living in the household.
To control for unobserved water use due to the consumption of bottled water,
a dummy variable (Bottled) that takes value 1 if household members frequently
drink bottled water, and 0 otherwise, is included.

Turning to the environmental factors, a set of variables that are proxies of
efficiency and curtailment behaviors are considered. As curtailment behavior, a
water habit index (Habits) was constructed following the approach in Beaumais
et al. [2010] by calculating the mean score on the answers related to the values
of water use/conservation habits that were asked about in the survey (possible
answers were 1 = yes or 0 = no).” The variables considered proxies for efficiency
behaviors are the number of efficient water-using electrical appliances (Electeff), a
dummy variable that takes value 1 if there are non-electrical water-saving devices
(Noelecteff ) in the house (such as low-flow taps and shower heads and dual-flush
toilets), and 0 otherwise, and a variable accounting for the state of water infras-
tructure in the house (New pipes). This dummy variable takes value 1 if there
was a renovation of the building’s water and sewer pipelines in the previous five
years. However, we do not consider this variable as an environmental behavior,
as we believe that renovation in the water infrastructure is performed when it is
needed, that is, when there are leakeage problems.

The descriptive statistics in Table 5.1 show that the representative household
considered in this chapter consumes an average of 15.74 m? and pays on average
1.69 €every two months. The average household size is 2.69 members and 18.4%
of the households frequently drink bottled water. Additionally, note that only

6See Appendix B for details about the survey questions used to construct the habits con-
servation index.
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21.8% of the households have a monthly income higher than 2700 €per month.
In terms of household equipment, the average number of bathrooms in the rep-
resentative house is almost two, the average number of electrical appliances is
around two, with the washing machine being the most common one.

Regarding the efficiency behaviors, more than 68% of the households have at
least one efficient appliance in the house, and around 48% of them have at least
one non-electrical water- saving device on taps, showers or toilets. Moreover, 19%
of the sample had renovation works in the building’s water and sewer pipelines in
the previous five years. Concerning the curtailment behavior, the average score
in the water habits index is relatively high, with almost 44% of the households

declaring that they have more than six good water conservation habits.
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Table 5.1: Descriptive Statistics - Efficiency in water consumption

Variable Definition Mean Std. Dev. Min. Max.

In w the log of the average bimonthly 2.625 0.526 0.154 4.174
water consumption per year (m?)

Regressors

In AvP the log of the average 0.498 0.234 -0.411  2.089
price (€/m?)

Members number of people in the 2.693 1.222 1 9
household

Bottled =1 if members drink bottled 0.184 0.387 0 1
water, 0 otherwise

Highincome = 1 if the household income 0.218 0.413 0 1
is over 2700€, 0 otherwise

Electappl number of electrical appliances 1.999 0.605 1 4
in the house

Bathrooms number of bathrooms in 1.725 0.486 1 D
the house

Environmental factors

Habits index of water conservation habits 0.616 0.160 0 1

Electeff number of efficient water-using electrical 0.818 0.838 0 2
appliances in the house

Noelecteff = 1 if there are efficient water-using 0.480 0.500 0 1
non-electrical appliances in the house, 0 otherwise

New pipes =1 if 1 if there were renovation works in 0.190 0.392 0 1

the water infrastructure in the five years
prior the survey, 0 otherwise




5.0. Results

Table 5.2 reveals the bandwidths chosen for each covariate using the CV criterion
function defined in equation (5.8). None of the environmental factors considered
in the analysis are smoothed out since the smoothing parameters selected by the
CV do not hit their upper bound. Therefore, it can be concluded that all the Z’s
are relevant covariates in the Smooth Coefficient Model. However, the smoothing
parameters reveal that their impacts on water consumption differ. For instance,
the water consumption difference between those households that had or did not
have renovation works in the water pipes is bigger than that between households
with and without non-electrical water-saving devices as reflected in the fact that
the bandwidth associated with Noelecteff is much larger than the bandwidth

associated with New pipes.

Table 5.2: Smooth coefficient model bandwidth summary

Variable Bandwidth
Habits 0.0287
Electeff 0.0033
Noelecteff 0.1074
New pipes 0.0075
Multiple R-squared: 0.3915

Figure 5.1 plots the kernel density functions of the estimated regression coef-
ficient in the semiparametric model and its standard parametric counterpart’.
It can be seen that the marginal effects estimated using the semiparametric
model are very heterogeneous, whereas the parametric model yields estimates that
approximate the means of the regressors obtained from the Smooth-Coefficient
model, as would be expected (a similar result was found by Sun and Kumbhakar
[2013]). Therefore, the semiparametric model is more informative when analyzing
water consumption at household level since it provides different marginal effects
for each household depending on its environmental behaviors.

Moreover, in order to test for the relevance of the environmental factors, that

is, whether the semiparametric model is preferred over the standard parametric

"Estimated results obtained using a standard Stochastic Frontier model are presented in
Appendix G.
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Figure 5.1: Kernel density plots of estimated coefficients
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model, we perform a specification test of one model against the other. To do so,
the test statistic proposed in equation (5.12) is used. The result from the model
specification test rejects the null hypothesis that the model can be estimated as
a standard stochastic frontier model with a p-value less than 0.000.

Estimated coefficients and their 95% confidence intervals, which have been
computed using the wild bootstrap, are reported in Figure 5.2. For each coeffi-
cient, we plot the estimated coefficient against itself so that all the coefficients
are represented on the 45 degree line. Then, the upper and lower bound of the
confidence intervals are also plotted for each observation above and below the 45
degree line, respectively. The axis lines at the origin are used to illustrate the
significance of the estimated coefficients. The two axis lines divide the plot into
four quadrants, each of them defined by its position with respect to the origin
(North-Fast, North-West, South-East, South-West). For each value of the coef-
ficient, if both the upper and lower bound belong either to the North-Fast or
South-West quadrant, then that particular coefficient is said to be significant at
the 5% level. As can be seen in this figure, the coefficients that measure the effect
of the price (f;) and the number of members in the house (3;) on water consump-
tion are significant for the majority of the observations. However, the rest of the
coefficients are not significant for some of the observations, indicating that there
is a heterogeneous effect of these variables on residential water demand depend-
ing on the combination of environmental factors. This heterogeneity can be also
seen in Table 5.3, which shows the percentage of observations with significant

coeflicients.

Table 5.3: Coefficients’ significance

% of significant coefficients

Intercept 92.3761
In AvP 88.6496
Members 73.1966
Bottled 25.6410
Highincome 12.5128
Electappl 35.8632
Bathrooms 19.3162

In order to gain more insight into the effects of the environmental variables
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on the estimated smooth coefficients, some selective results are shown for dif-
ferent combinations of these variables. Given that all the environmental factors
are relevant covariates, we construct a baseline household type and four other
types of household, showing the variation in the marginal effects when specific
environmental factors differ from the values set for the baseline household type.

The different household types considered are the following:

e Baseline: This is the median household, in which all the environmental
factors are set at their median values, that is, the household has one efficient
appliance but does not have efficient devices, there have been no renovations

in the water infrastructure and its water habits index is equal to 0.6,

e Bad habits and no efficient technology: The habits index is equal to 0.3,
that is, to the first decile of the water habits index distribution, and there

are no efficient technologies in the household.

e Bad habits and efficient technology: This household type differs from the
previous in that the efficient electrical and non-electrical appliances are set

at their maximum possible values.

e Good habits, no efficient technology: This household type has a good score
on the water habits index (0.8), but the efficient electrical and non-electrical

appliances are set at their minimum possible value.

e Good habits and efficient technology: The habits index is set at its ninth
decile (index value of 0.8) and the efficient electrical and non-electrical

appliances are set at their maximum possible values.

The regressors and the standard errors computed using wild bootstrap for
these household types are reported in Table 5.4.

It is worth noting that, in general, water demand is quite inelastic to price,
with the household type with bad habits and no efficient technology being the
most elastic. This implies that households that are equipped with efficient tech-
nologies and/or whose family members exhibit good water conservation habits
are less sensitive to changes in price, since these households cannot easily ad-
just their consumption. Regarding the other explanatory variables, the esti-

mated coefficients have the expected signs for most of the household types, but
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Table 5.4: Smooth-Coefficient stochastic frontier model for selected values of the environmen-
tal variables Z

Baseline Bad Habits & Bad Habits & Good Habits &  Good Habits &
no eff technology eff technology no eff technology eff technology

Intercept 2.9597F**  3.7641%** 1.6630*** 2.7631*** 0.9952
In AvP -0.4190* -0.8028*** -0.6236*** -0.6081*** -0.5032
Members 0.2128***  _0.0003 0.1513%*%* 0.0743 0.1640
Bottled -0.0957F**  _0.3012*** -0.1868 -0.1042 -0.0224
Highincome  -0.2373 0.0328 0.2415 -0.0677*** -0.0606
FElectappl -0.0102 -0.0955 0.2607*** 0.1467*** 0.2665***
Bathrooms -0.1549* -0.1660* 0.1255%** -0.0237 0.4275%**

as commented above, their effects on water consumption differ. Among these
other marginal effects, it is worth commenting further on the differences in the
marginal effects for Electappl. For households with a low level of efficient technol-
ogy and bad habits, an extra electrical appliance decreases water consumption.
However, as the level of efficient technology and habits increase, the decrease in
water consumption becomes smaller, reaching a level after which the marginal
effect becomes positive. A similar effect is also observed in the marginal effect of
Bathrooms.

Besides estimating the level of efficiency in water consumption, another impor-
tant goal of this analysis is to explain the possible sources of this (in)efficiency.
As described in Section 5.4, the covariates included in the Smooth-Coefficient
model may also affect the inefficiency levels. Therefore, the next stage involves
the estimation of equation (5.13), where the dependent variable is the sum of
the noise term and the actual inefficiency term so that a negative coefficient of
a covariate implies that the corresponding variable would decrease inefficiency.
The results from this estimation are shown in Table 5.5.

Starting with the proxy for curtailment behaviors, the estimated coefficient
for the Habits indicator is negative as expected. Note, however, that it is not
significant at conventional levels, which is probably due to the fact that there is
not enough variability in the regressor.

Regarding the efficiency behaviors, the Electeff variable has a negative and

significant coefficient, indicating that the greater the number of efficient electrical
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Table 5.5: Determinants of efficiency

Estimate Std. Dev

Intercept  -1.7983***  (0.3126)
Habits ~ -0.1162 (0.0910)
Electeff  -0.0543*%*  (0.0191)
Noelecteff 0.0103 (0.0310)
New pipes -0.3033***  (0.0390)
Sigma  0.3649 (0.0001)

*** Significance at the 1% level

water-using appliances, the higher the level of efficiency in water consumption.
However, the coefficient for the indicator of efficient non-electrical water-saving
devices is not significant. The negative coefficient for the variable New pipes
indicates that those households that had a renovation of the building’s water and
sewer pipelines in the previous five years are more efficient. In other words, the
more efficient households have a higher quality of water infrastructure.

Finally, the point estimates of the efficiency in water consumption are obtained
using equation (5.15). Some summary statistics are presented in Table 5.6 and
a histogram illustrating the distribution of efficiency scores for each household is
presented in Figure 5.3. The average estimated efficiency in water consumption
is 0.8932, that is, households in Granada could reduce their water consumption
by an average of 10.68% while maintaining a constant level of water services. The
majority of the households in the sample have a high level of efficiency, with the
median being equal to 0.9054. Household efficiency does not vary widely, and
only 25% of the households in the sample have water efficiency scores less than

0.87, implying that they could reduce their water consumption by over 13%.

Table 5.6: Descriptive statistics of computed efficiency scores

Mean Std. Dev Min 1st Qt Median 3rd Qt Max

Water (0939 0.0583 0.5507 0.8691 0.9054 0.9328 1
efficiency

In order to measure the potential effects on water consumption of policies
to encourage the adoption of water saving habits or the investment in efficient

water-using technologies, such as those described in Chapter 2, we compute the
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Figure 5.3: Efficiency in water consumption scores

expected changes in water consumption under a series of scenarios in line with
those promoted by the Europe 2020 strategy to create a resource-efficient Europe.
To do so, we use the estimated coefficients and efficiency scores from the empirical
model.

Table 5.7 shows the potential per capita water savings generated by a shift in
the frontier (in column 1) and improvements in efficiency (column 2). The former
are computed by comparing the predicted water consumption when some of the
environmental factors are varied with the predicted water consumption at current
values of the Z variables. The latter are obtained by comparing the predicted
efficiency scores under changes in the environmental factors and the predicted
efficiency scores obtained in the estimation. We check what the expected water

savings would be under the following scenarios:

e Scenario 1: All households (except for those that originally have a water
habits index score greater than or equal to 0.8) improve their water con-
servation habits so that the habits index increases to the ninth decile (i.e.,
0.8).
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e Scenario 2: All households (except for households that currently have the
maximum number of efficient electrical appliances) increase the number of
efficient electrical appliances to its maximum level, that is, the variable
Electeff is set equal to 2.

e Scenario 3: Households in the sample invest in efficient non-electrical ap-

pliances, so the dummy variable Noelecteff is set to 1.

e Scenario 4: In this scenario we simultaneously improve only those envi-
ronmental factors that actually induce reductions in water consumption

according to the scenarios above.

Water savings from improvements in efficiency are not computed in Scenarios
1 and 3, since neither habits nor efficient non-electrical devices have a significant

effect on efficiency.

Table 5.7: Potential per capita water savings under a set of policy scenarios

Water savings Water savings Total water

in the frontier (m®) in the efficiency (m®) savings (m?)
il -
(Sze?srgeiteﬁ) 2.17 0.0004 2.17
(& in Nocleteft) 058 : 058
(Szergrtigl;l 2.11 0.0013 2.11

From Table 5.7 it can be seen that potential water savings are mainly gener-
ated by shifts in the demand frontier caused by a change in Z. By contrast, the
gains due to improvements in efficiency are very small.

Under Scenario 3, there is actually an increase in per capita water consump-
tion. This may reflect a possible rebound effect in the sense that the actual water
savings are different from the expected savings from the installation of efficient
non-electrical water-using devices. Improvements in efficient non-electrical de-
vices therefore have a perverse effect on water consumption: households may

perceive these technologies as very efficient and they may end up using them
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more often, leading to an increase in total water consumption. This is what is
generally referred to in the literature as backfire [Saunders, 1992]. This result is
consistent with evidence provided in the previous chapter.

Under Scenarios 1, 2 and 4, positive, though small, potential per capita wa-
ter savings are generated. However, when considering the entire population of
Granada, water savings can be substantial. We consider the population of the
city (237,818 inhabitants) in the year 2013, and we compute the potential total
water savings for this city under Scenario 4. This, of course, assumes that the
sample observed is sufficiently representative of the population in Granada. The

3 of water per year, which could cover

total savings amount to about 502,000 m
the basic water needs of around 25,000 people in a year. Considering the scarcity
problems that this city has had in previous years and the negative expectations

for the future, these potential water savings are quite substantial.

5.7. Conclusion

This research is the first attempt in the literature to estimate the level of efficiency
in household water consumption and analyze the effect of water conservation
behaviors on this efficiency. In order to do so, we use data from the city of
Granada (Spain) in the period 2009-2011.

A water (input) demand frontier is derived from the demand of household
water services and it is estimated using a semiparametric Smooth-Coefficient
Stochastic Frontier model. This recently-developed methodology allows us to
analyze the effect of some environmental factors (in particular, efficiency and
curtailment behaviours) on the inefficiency term and to include these variables
in the frontier part so that the intercept and the slope coefficients are expressed
as unknown functions of the environmental factors. Statistical analysis reveals
that this methodology is more appropriate than a standard parametric stochastic
frontier for our sample.

All the environmental factors considered in the analysis are found to be rele-
vant covariates, that is, the marginal effects are functions of these variables which
in turn allows the frontier to shift non-neutrally. The estimates for the efficiency

in water consumption are relatively high for the majority of households. Unfor-
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tunately, the fact that there are no previous studies of efficiency in residential
water consumption precludes a direct comparison of the results.

Regarding the efficiency determinants, the results indicate that households
with a greater number of efficient appliances and that have undergone a renova-
tion of the water and sewer pipelines in the previous five years have a higher level
of efficiency in water consumption. However, the efficient non-electrical devices
do not seem to have a significant effect on efficiency.

The results regarding the effects of water conservation habits on efficiency were
mixed, as the sign of the estimated coefficient indicated that they reduce water
consumption but this relationship was not found to be statistically significant at
conventional levels.

Moreover, the potential water savings generated by a shift in the demand
frontier and improvements in efficiency are calculated under different scenarios
for these environmental factors to exemplify the usefulness of the model. This
simulation of scenarios shows that there is a possible rebound effect related to the
efficient non-electrical devices and the renewed water pipelines in the data ana-
lyzed in this paper. However, when improving the other environmental factors,
that is, water habits and efficient electrical appliances, substantial water savings
can be achieved.

In this sense, policies promoting investment in efficient electrical appliances
may actually reduce water consumption and increase households’ efficiency in
water consumption. However, policies encouraging the adoption of efficient non-
electrical devices may not be successful in decreasing water consumption. There-
fore, information campaigns to raise awareness of the water scarcity problem
should be reinforced to complement the adoption of efficient technologies so that

these technologies can be used in a more competent manner.
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Chapter 6

Conclusions and extensions

Although residential water demand has been extensively investigated in recent
decades, there are still interesting topics to be analyzed from the point of view of
consumers’ preferences and behavior. On the one hand, in a context where water
resources are becoming increasingly scarce, it is crucial to understand the effect
of pricing and non-pricing policies on the behavior of residential consumers. On
the other hand, heterogeneity in preferences may make these policies more or less
effective depending on the composition of the targeted population.

The essays in this thesis shed some light on the heterogeneity of preferences
for residential water and study household behavior in a way that allows us to
better understand water conservation technologies and habits. The first essay
clearly demonstrates the presence of unobserved heterogeneity that affects the
estimation of water demand functions and the need for this to be taken into ac-
count in order to design water demand management policies. The second essay
analyzes the relationship between the adoption and use of water-efficient tech-
nologies disaggregating them into electrical efficient appliances and non-electrical
efficient devices. Having found some evidence of a negative relationship between
water conservation habits and non-electrical efficient technologies, the level of ef-
ficiency in residential water consumption and its determinants are studied in the
final essay, computing the potential water savings associated with the different
efficient technologies and water conservation habits.

The first essay, in Chapter 3, analyzes household heterogeneity in water de-

mand using a Latent Class Model, identifying four different residential water
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consumer profiles and therefore four different response patterns to changes in the
drivers of water use, including different price elasticities. In this sense, two of the
classes, which represent more than 33% of the sample, are found to be perfectly
inelastic to prices since price has no significant effect on residential water demand.
The effect of price on water demand is significant for the remaining classes but
price elasticities differ across classes. When comparing these price elasticities
with a single-class model and a random-effects model, we realized that the het-
erogeneity is being masked in these models. Regarding the effect of the change
in the price structure in 2011, our results show that water demand became more
inelastic for only one group of consumers (Class 3), indicating that the change
in the price structure was perceived differently by different groups of consumers.
The remaining coefficients have the expected signs, but, the magnitude of the
coefficients vary across classes, underlining the high level of heterogeneity in the
sample.

In order to provide a description of the type of consumer belonging to each
class, class membership probabilities are parameterized including attitudinal fac-
tors, personal capabilities, habits and routines, and contextual factors as determi-
nants of water demand behaviors [Russell and Fielding, 2010; Stern, 2000]. Some
of the covariates are found to be useful for classifying consumers into different
groups. For instance, Class 1, whose water demand is perfectly inelastic, has a
higher proportion of children under 15, adults over 65 and a greater number of ef-
ficient electrical appliances, as well as the lowest level of water consumption and
standard deviation of consumption within the year. In this case, school-based
educational campaigns and information campaigns targetting older people could
be useful to reduce water consumption within this group. On the contrary, Class
4 is the most responsive to price and exhibits a relatively high level of water
consumption, so both pricing and non-pricing policies could be applied to this
group of consumers. That is, pricing and non-pricing policies can be jointly used
to encourage reductions in water consumption for those consumers that are more
price-responsive in our sample. However, non-pricing policies should be reinforced
in the case of consumers that are not price-responsive and have the lowest level
of water consumption. In this sense, the results in this chapter suggests that the

design of water demand management policy could be tailored to the specific de-
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mand function of a group of consumers identified using information that could be
easily observed by water regulators such as the presence of children or household
income.

This work is already being extended in a study that is currently in progress
and that aims at designing a set of water tariffs using the price elasticities ob-
tained in this chapter. Being able to distinguish between groups of consumers
permits alternative block tariffs to be designed which can improve social welfare
compared to those which could be designed with the more limited information
from a single-class model. Another possible extension would be to replicate this
analysis using household level data from different municipalities in Spain, account-
ing for differences in the geographical position and hydrological characteristics of
the surroundings. This would allow us to identify specific demand functions for
different groups of consumers and test if they are linked to greater environmental
awareness in areas where water scarcity is more severe or water prices are higher.

The second essay studies the determinants of the adoption of different water-
efficient technologies and the corresponding water-saving habits, taking into ac-
count the potential relationship between both decisions, as inappropriate habits
related to those technologies could lead to significant efficiency losses and lower
saving levels. Two groups of efficient technologies are distinguished, namely elec-
trical efficient appliances and non-electrical efficient devices, since the public poli-
cies affecting each type of technology are different, as are their technical charac-
teritics.

In order to control for unobserved household-specific effects that may influence
the adoption of each type of efficient technology and the corresponding water-
saving habit, and the possible effect of the tecnology on the habit, a recursive
semi-ordered probit is estimated.

The results show that there are significant differences in terms of the determi-
nants affecting each set of decisions, indicating that each decision may be driven
by different factors. Moreover, one of the more interesting results is that house-
holds with a higher number of efficient electrical appliances exhibit better habits
related to the use of those technologies. However, in the case of non-electrical ef-
ficient appliances, there is a negative relationship between efficient non-electrical

technologies and their habits, indicating that these households have worse water-
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conservation habits, in a manner consistent with a potential rebound effect. These
results indicate that public policies that aim to reduce residential water consump-
tion should be reconsidered. In this sense, information and educational campaigns
targeting the adoption of good habits linked to non-electrical efficient devices may
be preferable in order to promote reductions in water consumption.

Among the avenues for future research, I would like to analyze the effect of
actual subsidies on the adoption of each type of efficient technology in order to
assess the extent to which the subsidy programs suffer from free-rider effects. Free
ridership occurs when households would have invested in efficient technologies
even in the absense of the subsidy. In this sense, the household’s willingness-
to-pay (WTP) for water savings that accrue through the investment in efficient
electrical appliances and efficient non-electrical devices could be estimated. If
the household’s WTP exceeds the observed cost, a free-rider effect would exist,
undermining the social benefits of that particular subsidy program.

Finally, the last chapter measures the level of efficiency in residential water
consumption and analyzes the effect of different environmental behaviors on it.
In order to do so, a water demand frontier consistent with household production
theory is estimated using a semiparametric Smooth-Coefficient Stochastic Fron-
tier model. This methodology allows us to investigate the effect of environmental
behaviors, and in particular efficiency and curtailment behaviors, on the ineffi-
ciency term and to include these variables into the main regression function so
that the intercept and the slope coefficients are expressed as unknown functions
of them.

The environmental behaviors considered in the analysis are efficiency behav-
iors, defined as one-time behaviors such as obtaining efficient electrical appliances
and efficient non-electrical appliances, and curtailment behaviors, defined as indi-
viduals’ actions that reduce water consumption and which involve inconvenience
and sacrifice. All the environmental factors included in the model are found to be
relevant covariates, indicating that the marginal effects are unknown functions of
these variables.

Regarding the efficiency in water consumption, it is relatively high for most of
the households, with efficiency scores higher than 0.87 for 75% of the sample. The

analysis of the efficiency determinants shows that those households with a higher
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number of efficient electrical appliances and that have performed a renovation of
the water and sewer pipelines in the previous five years show a higher level of
efficiency in water consumption. However, the efficient non-electrical appliances
do not have a significant effect on the level of efficiency. The effect of water
conservation habits on efficiency is not significant but the sign of the estimated
coefficient indicates that they improve the level of efficiency.

Moreover, the expected changes in water consumption under a set of scenarios
are calculated. These changes in water consumption are generated by a shift in
the frontier and improvements in efficiency, and the scenarios represent changes in
each of the environmental behaviors considered in the analysis. The results show
that improvements in water conservation habits and a higher number of efficient
electrical appliances would lead to reductions in water consumption. However,
and as inferred in Chapter 4, there is a perverse effect of efficient non-electrical
devices in the sense that an increase in their number would generate increases
in water consumption. As discussed above, information campaigns to affect con-
sumers’ water demand behaviors should be reinforced.

This research could be extended by assessing the level of water consumption
and efficiency before and after the adoption of efficient technologies. This would
allow us to examine the presence of a rebound effect and quantify it, providing a
better understanding of the households with efficient technologies.

In conclusion, this thesis allows us to better understand household water be-
havior and the extent to which water demand side policies are effective in reducing
water consumption. In Chapter 3, water demand is found to be perfectly inelas-
tic for two of the groups of consumers identified. Moreover, water price is not
a significant determinant of the adoption of water-saving technologies and pro-
environmental habits analyzed in Chapter 4. Therefore, pricing policies should
be complemented with non-pricing policies to effectively affect household water
behavior. Efficient water-using technologies do not always lead to reductions in
water consumption, as demonstrated in Chapter 5 for efficient non-electrical de-
vices. Efficiency labels for non-electrical devices are not very common, so there is
less information related to efficiency gains and as a consequence it is more difficult
for households to properly use these efficient devices. Therefore, it is crucial to im-

prove the knowledge about this technology through the use of standard labelling
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schemes. Moreover, since investment in efficient technologies has been heavily
subsidized, ex-post monitoring could be applied to affect consumers’ incentives
with respect to water conservation. Finally, information campaigns should be
reinforced, as they were a significant determinant of the four water-conservation
behaviors analyzed in Chapter 4. Our results are in line with the current policy
in the sense that international and national institutions are carrying out more
and more information campaigns and educational programs to raise awareness of

the issue of water scarcity.
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Chapter 7

Conclusiones y futuras
extensiones

A pesar de que la demanda residencial de agua ha sido ampliamente estudiada en
los tltimos anos, todavia existen temas a analizar desde el punto de vista de las
preferencias y comportamiento de los consumidores. Por un lado, en un contexto
en el que el agua es un recurso cada vez mas escaso, es de suma importancia
comprender el efecto de polticas precio y no-precio en el comportamiento de
los consumidores residenciales de agua. Por otro lado, la heterogeneidad en las
preferencias puede afectar a la efectividad de estas politicas segin la composicion
de la poblacién objetivo de las mismas.

Los ensayos en esta tesis arrojan luz sobre la heterogeneidad de las prefer-
encias en el consumo residencial de agua y en el estudio del comportamiento de
los hogares de forma que permiten comprender mejor la adopcién de hébitos y
tecnologias de conservacién de agua. En el primer ensayo se demuestra la pres-
encia de heterogeneidad inobservable que afecta a la estimacion de las funciones
de demanda de agua y la necesidad de controlar por ello en el diseo de politicas
de gestion de demanda de agua. En el segundo ensayo se analiza la relacion
entre la adopcion y el uso de tecnologias de agua eficientes, diferenciando en-
tre electrodomeésticos eficientes y dispositivos eficientes no eléctricos. Habiendo
encontrado evidencia de una relaciéon negativa entre habitos de conservacion de
agua y dispositivos eficientes no eléctricos, el nivel de eficiencia en el consumo res-
idencial de agua y sus determinantes son estudiados en el ensayo final, calculando

el ahorro potencial de agua asociado con las diferentes tecnologias y hébitos de
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conservacion de agua.

El primer ensayo, en el Capitulo 3, analiza la heterogeneidad en la demanda
de agua a nivel de hogar usando un Modelo de Clases Latentes, identificando cua-
tro perfiles distintos de consumidores residenciales de agua y, por lo tanto, cuatro
respuestas distintas a cambios en los determinantes del uso de agua, incluyendo
distintas elasticidades precio. En este sentido, dos de las clases, que representan
mads del 33% de la muestra, son perfectamente ineldsticas respecto al precio ya
que el precio no tiene un efecto significativo en la demanda residencial de agua. El
efecto del precio en la demanda de agua es significativo para las clases restantes,
pero las elasticidades son distintas a lo largo de las mismas. Respecto al efecto
en el consumo de agua del cambio en la estructura de precios en 2011, nuestros
resultados muestran que la demanda de agua tnicamente se volvié mas eldstica
para un grupo de consumidores (Clase 3), es decir, el cambio en la estructura de
precios fue percibido de distinta manera para distintos grupos de consumidores.
El resto de coeficientes tienen los signos esperados, pero la magnitud de los co-
eficientes varia entre las clases, resaltando el alto nivel de heterogeneidad en la
muestra.

A fin de describir el tipo de consumidor que pertenece a cada clase, las prob-
abilidades de pertenencia a cada clase son parametrizadas incluyendo factores de
actitud, capacidades personales, habitos y rutinas, y factores de contexto como
determinantes de comportamientos de demanda de agua [Russell and Fielding,
2010; Stern, 2000]. Algunas de las covariables permiten clasificar consumidores en
distintos grupos. Por ejemplo, la Clase 1, cuya demanda de agua es perfectamente
ineldstica, tiene una alta proporcion de menores de 15 anos, adultos de mas de 65
anos y un nimero mayor de electrodomésticos eficientes, asi como los niveles mas
bajos de consumo de agua y desviacién estandar del consumo a lo largo del ano.
En este caso, las campanas educativas escolares y campanas de informacién enfo-
cadas a mayores de 65 anos podrian ser tutiles para reducir el consumo de agua en
este grupo. Por el contrario, la Clase 4 es las mas sensible al precio y muestra un
consumo de agua relativamente elevado, por lo que politicas tanto precio como
no-precio pueden ser aplicadas a este grupo de consumidores. Es decir, pueden
combinarse politicas precio y no-precio para fomentar reducciones en el consumo

de agua para aquellos consumidores que son mas sensibles al precio en nuestra
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muestra. Sin embargo, las politicas no-precio deberian ser reforzadas en el caso
de los consumidores que no son sensibles al precio y tienen el nivel mas bajo de
consumo de agua. En este sentido, los resultados de este capitulo sugieren que el
diseno de politicas de gestién de demanda de agua podrian hacerse a la medida
de una funcion de demanda especifica de un grupo de consumidores identificados
utilizando informacién que puede ser facilmente observable por los reguladores
del sector del agua como la presencia de menores en el hogar o la renta familiar.

Este trabajo esta siendo extendido en un estudio actualmente en curso y que
tiene como objetivo el diseno de una serie de tarifas de agua usando las elastici-
dades precio obtenidas en este capitulo. La distincién entre grupos de consumi-
dores permite disenar tarifas por bloques alternativas que pueden mejorar el bien-
estar social en comparacion con aquellas que se disenan a partir de la informacion
mas limitada que proporciona un modelo con una tunica clase. Otra posible ex-
tension seria replicar este andlisis usando informacién a nivel hogar de distintos
municipios espanoles, controlando por las diferencias en posicién geografica y
caracteristicas hidrolégicas del entorno. Esto permitiria identificar funciones de
demanda especificas para distintos grupos de consumidores y comprobar si estas
estan relacionadas con una mayor preocupacion por el Medio Ambiente en areas
donde la escasez de agua es mas intensa o los precios del agua son mas altos.

El segundo ensayo analiza los determinantes de la adopcion de diferentes tec-
nologias eficientes y los correspondientes habitos de ahorro de agua, teniendo en
cuenta la relacion potencial entre ambas decisiones, ya que la falta de habitos de
conservacion relacionados a estas tecnologias podria causar pérdidas significativas
de eficiencia y niveles de ahorro de agua inferiores a los esperados. Se distinguen
dos grupos de tecnologias eficientes, que son electrodomésticos eficientes que usan
agua y dispositivos de agua eficientes no eléctricos. Esta distincion se realiza de-
bido a que las politicas publicas que afectan cada tipo de tecnologia son distintas,
asi como sus propias caracteristicas técnicas.

Para controlar por los efectos inobservables especificos de cada hogar que
puedan influir en la adopcién de cada tipo de tecnologia eficiente y el habito de
ahorro de agua correspondiente, y el posible efecto de la tecnologia en el habito,
se estima un probit recursivo semi-ordenado.

Los resultados muestran que hay diferencias significativas desde el punto de
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vista de los determinantes que afectan a cada set de decisiones, indicando que
cada decision puede estar motivada por distintos factores. Ademas, uno de los
resultados mas interesantes es que los hogares con un mayor nimero de elec-
trodomeésticos eficientes presentan mejores habitos en relacién al uso de estas
tecnologias. Sin embargo, en el caso de los dispositivos eficientes no eléctricos,
existe una relacién negativa entre este tipo de tecnologia y sus habitos, es decir,
estos hogares tienen peores habitos de ahorro de agua. Estos resultados indican
que las politicas publicas cuyo objetivo sea reducir el consumo residencial de agua
deberian ser replanteadas. En este sentido, serian preferibles campanas educa-
tivas y de informacion enfocadas a la adopcion de buenas habitos asociados a
dispositivos eficientes no-eléctricos para promover reducciones en el consumo de
agua.

Entre las futuras vias de investigacion destaca el analisis del efecto de sub-
venciones reales en la adopcién de cada tipo de tecnolog’ia eficiente para poder
evaluar en qué medida los programas de subvenciones experimentan compor-
tamientos oportunistas. Este problema ocurre cuando los hogares habrian inver-
tido en tecnologias eficientes incluso en ausencia de subvencion. En este sentido,
la disposicion a pagar de los hogares por ahorros de agua correspondiente a la in-
version en electrodomésticos eficientes y dispositivos eficientes no-eléctricos puede
estimarse. Si esa disposicién a pagar es mayor que el coste observado, existiria un
comportamiento oportunista que reduciria los beneficios sociales del programa de
subvenciones.

Por 1ltimo, en el ultimo capitulo se mide el nivel de eficiencia en el consumo
residencial de agua y se analiza el efecto de distintos comportamientos ambientales
sobre el mismo. Para ello, se estima una frontera demanda de agua segtn la teoria
de la produccién adaptada al consumidor, usando un modelo semiparamétrico
denominado “Smooth-Coefficient Stochastic Frontier model”. Esta metodologia
permite investigar el efecto de comportamientos ambientales, y concretamente
comportamientos de eficiencia y de reduccién, en el término de ineficiencia, y
ademads incluir estas variables en la funcién principal de forma que el términos
independiente y los coeficientes se expresan como funciones desconocidas de las
mismas.

Los comportamientos medioambientales considerados en el andlisis son com-
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portamientos de eficiencia, definidos como comportamientos puntuales como adquirir
electrodomésticos eficientes y dispositivos eficientes no-eléctricos, y comportamien-
tos de reduccién, definidos como acciones de los consumidores que reducen el con-
sumo de agua y que implican sacrificios y molestias. Todos los factores medioam-
bientales incluidos en el modelo resultaron covariables relevantes, indicando que
los efectos marginales son funciones desconocidas de estas variables.
En cuanto a la eficiencia en el consumo de agua, es relativamente alta para
la mayoria de los hogares, con indices de eficiencia superiores a 0.87 para el 75%
de la muestra. El analisis de los determinantes de eficiencia muestra que aquellos
hogares con mayor ntimero de electrodomésticos eficientes y que hayan llevado
a cabo obras de renovacién en las tuberias en los ultimos cinco anos tienen un
mayor nivel de eficiencia en el consumo de agua. Sin embargo, los dispositivos
eficientes no-eléctricos no tienen un efecto significaticos en el nivel de eficiencia.
El efecto de los habitos de conservacién de agua en la eficiencia no es significatico,
pero el signo del coeficiente estimado indica que mejoran el nivel de eficiencia.
Adem’as, se han calculado los cambios esperados en el consumo de agua bajo
una serie de escenarios. Estos cambios en el consumo de agua son generados por
un desplazamiento de la frontera y mejoras de eficiencia, y los escenarios represen-
tan cambios en cada comportamiento medioambiental considerado en el anélisis.
Los resultados muestran que mejoras en los hébitos de conservacion de agua y
aumentos en el numero de electrodomésticos eficientes conducirian a reducciones
en el consumo de agua. Sin embargo, y como ya se pudo observar en el Capitulo
4, hay un efecto perverso de los dispositivos eficientes no-eléctricos en cuanto a
que un aumento en su nimero generaria aumentos en el consumo de agua. Como
ya se ha discutido anteriormente, se deberian reforzar las campanas informativas
para incidir en el comportamiento de demanda de agua de los consumidores.
Esta investigacién podria ser extendida al evaluar el nivel de consumo de agua
y eficiencia antes y después de la adopcién de tecnologias eficientes. Esto nos
permitiria investigar la presencia de un efecto rebote y cuantificarlo para poder
comprender mejor el comportamiento de los hogares con tecnologias eficientes.
En resumen, esta tesis permite comprender mejor el comportamiento de de-
manda de agua de los hogares y en qué medida las politicas de de demanda de

agua son efectivas en reducir el consumo de agua. En el Capitulo 3, la demanda
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de agua es perfectamente inelastica para dos de los grupos de consumidores iden-
tificados. Ademas, el precio del agua no es un determinante significativo de la
adopcién de tecnologias y hébitos de ahorro de agua analizados en el Capitulo
4. Por lo tanto, las politicas precio deben ser complementadas con polticas no-
precio para afectar de forma efectiva el comportamiento de demanda de agua de
los consumidores. Las tecnologias eficientes de uso de agua no siempre conducen
a reducciones en el consumo de agua, como se demostro en el Capitulo 5 para los
dispositivos eficientes no-eléctricos. No existe un formato estandar de etiquetas
informativas relativas a la eficiencia de este tipo de tecnologias, por lo que hay
menos informacion en relacién a las ganancias de eficiencia y como consecuencia
es mas dificil para los hogares usar este tipo de dispositivos eficientes de forma
adecuada. Por lo tanto, es importante mejorar el conocimiento sobre esta tec-
nologia a trav’es del uso de planes de etiquetado estandar. Ademads, como la
inversién en tecnologias eficientes ha sido fuertemente subvencionada, se podrian
realizar controles ex-post para incidir en los incentivos de los consumidores para
la conservacion del agua. Por tltimo, las campanas informativas deberian re-
forzarse, ya que son un determinante significativo de los cuatro comportamiento
de conservacién de agua analizados en el Capitulo 4. Nuestros resultados estan
en consonancia con la politica actual, ya que varias instituciones a nivel interna-
cional y nacional estan llevando a cabo cada vez més campanas informativas y

programas educativos para aumentar la concienciacion sobre la escasez de agua.

105



Appendix A

As explained in Section 3.5, the estimation using LCMs is nonlinear, therefore,
two-stage least squares models are likely to be inconsistent [Howard and Roe,
2013]. Hence, we used a control function approach to correct for price endogeneity.

Consider the model:
W =90z + cAvP + wy (1)

where W is residential water demand, AvP the average price (i.e., the endogenous
explanatory variable) and z; a vector of exogenous explanatory variables.

This methodology uses the same first stage that would be used in 2SLS, that
is, the endogenous explanatory variable is regressed on the exogenous explanatory

variables and the set of instruments. Let z, denote a vector of instruments.

AvP = 121 + T9Zo + Uy (2)

E(zjus) =0  E(zhuz) =0

The average price would be endogenous if and only if u; is correlated with wus,
where v = E(uguy)/E(u3).
Uy = Yug + € (3)

Since u; and uy are uncorrelated with z and z, E(uge) = 0 and E(z¢) = 0.
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Substituting equation (3) into equation (1):

W =021 + 0 AvP + yus + € (4)

In this equation uy is included as an explanatory variable. As explained above, €
is uncorrelated with wus, z; and 2. Moreover, AvP is defined as a linear function
of the explanatory variables, the instruments and the residual uy, so AvP is un-
correlated with e. Therefore, 6 and « can be consistently estimated with equation
(l)

Results from the first stage estimation as defined in equation (2) are presented
in Table 1. Following Hewitt and Hanemann [1995] and Olmstead [2009], we used
the full set of marginal prices in each block as instruments. The Hansen test
indicated that all the instruments are exogenous. The residuals were obtained
from this estimation and the second stage estimation included the average price
and the control function as defined in equation (3), that is, the residuals from the

first stage and a standard normal random variable [Howard and Roe, 2013].
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Table 1: Control Function Estimation

AvP
Block1 -1.035
(-0.60)
Block2 20.948%***
(4.47)
Blocks -26.959%#*
(-4.06)
Block 18.15 1%
(4.12)
Block5 -12.443%**
(-4.07)
Highincome 0.038
(1.22)
Mempbers -0.039%***
(-4.40)
Electappl -0.078%**
(-3.76)
Habits -0.028
(-0.29)
Electeff -0.014
(-1.05)
Owner 0.049**
(2.04)
Year2011 -34.596%**
(-4.16)
Priceinfo -0.012
(-0.53)
Constant 20.368***
(3.99)
N 3012
Hansen test (overidentification 5.961
test of all instruments) X*(4) p-value = 0.2021
Endogeneity test of endogenous regressors: 17.670

x%(1) p-value = 0.0000

t statistics in parentheses
*p < 0.1, ** p <0.05, *** p <0.01
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Appendix B

Selected questions from the survey used to construct a water habits

index:

P.17. In general, do you have any of the following water conservation habits
in the household?
a) Do you recycle water, for example, making use of the water while you wait for
the shower to get hot?
b) Do you store drinking water in the refrigerator rather than letting the tap run
every time you want a cool glass of water?
¢) Do you defrost food in advance in order to avoid using running hot water to
thaw meat or other frozen foods?
d) Do you fill the sink with water when washing dishes by hand?
e) Do you operate automatic dishwashers and washing machines only when they
are fully loaded?
f) Do you slightly turn off the backflow valve to reduce the tap flow?
g) Do you use a rubbish bin in the toilet rather than flushing the toilet unneces-
sarily?
h) Do you avoid letting water run while brushing your teeth?
i) Do you take shorter showers?

j) Do you avoid washing the cars with drinking water?

109



Appendix C

As explained in Section 4.4, a J-test is used to assess the model specification. The
test statistic used has a x?(m — k) distribution under the null hypothesis that
the residuals and the excluded variables x_; are orthogonal [Angrist and Pischke,
2009]. However, since bivariate probit models are nonlinear, we compute the
generalized residuals, which have properties similar to those of the residuals in
the linear model, following Gourieroux et al. [1987].

In our two semi-ordered probit models, we need to test the exclusion of x_;
in the first model in the equation explaining a binary dependent variable, and
then in the second model in the equation that explains an ordered categorical
dependent variable. For the first model, the estimation and inference of probit
models is usually based on maximum likelihood estimation. The log likelihood

function is written:
n

L (BIX) =3 (5ln®(B'zs) + (1= yo)in(1 - ©(F'x:))) (5)

In order to calculate the generalized residuals, we need to take the first deriva-

tive of the log likelihood with respect to 5:

LX) [ oBw) o —e(Bw)
X [ Sy

_ - yip(B'w)z; _ Q(B'z:)(1 — yi)p(B'ziz;

- Z Lb(ﬁ’x-)(l —(Przi)  O(Fw)(1 - B(Fwi)) 1
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Regarding the second model, that is, the ordered probit model, the log likeli-
hood function is:

n J

InL(BIX) =) > myln[®(aj — f'z;) — ©(a; — ;)] (7)

i=1 7=0

where m;; = 1 if y; = j and 0 otherwise.

Therefore, the first derivative of the log likelihood with respect to [ is written:

5lnL 6|X & 1
121 JZO " [ (ajp — fli) — D(a; — /3’%))}
[_(¢(aj+1 — Blz) — ¢(j — B'w))wi] (8)

_ Z Z [ (phi(ojp1 — B'ai) — ooy — /3’%‘))} v =0

P (e = flai) — D(a; — flay)

Table 2 shows the regressions of the generalized residuals against z_; and
xy. The J-tests for each regression show that the null hypothesis cannot be

rejected, that is, the variables that were not included in the second equation are
not correlated with the generalized residuals.

111



Table 2: Regression for testing the exclusion

Generalized residual

Generalized residual

Model 1 Model 2

Remodel -0.0285 0.00540
(-0.86) (0.10)

Home age 0.0176 0.0560*
(0.96) (1.84)

Owner 0.0554 0.0564
(1.25) (0.77)

Highincome 0.0010 0.0126
(0.02) (0.18)

Members 0.0006 0.0017
(0.04) (0.07)

Enviro -0.0141 -0.0910
(-0.39) (-1.50)

Campaign -0.0039 0.0166
(-0.12) (0.32)

Age -0.0008 -0.0028
(-0.71) (-1.56)

Gender 0.0014 0.0186
(0.04) (0.35)

Education -0.0051 0.0005
(-0.15) (0.01)

Lagged AvP -0.0061 -0.0002
(-0.18) (-0.00)

Constant 0.0337 -0.0126
(0.23) (-0.05)
N 1076 1076
J-test 2.6615 3.8469
p-value 0.2643 0.1461

t statistics in parentheses
*p<.1,* p<.05 " p<.01
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Appendix D

Table 3: Marginal effects Model 1

Electeff

Category 1 Category 2 Category 3

Elect-habits

Remodel -0.155**
(-6.08)
Home age 0.0458*
(3.10)
Ouwner -0.196™*
(-5.73)
Hinghincome — -0.128***
(-3.93)
Members -0.0361**
(-3.08)
Enwviro -0.0661*
(-2.19)
Campaign -0.105***
(-4.15)
Age 0.0024*
(2.71)
Gender -0.0539*
(-2.10)
Education -0.0603*
(-2.20)
Lagged AvP 0.0054
(0.19)
Electeff 0

0.0277
(4.95)
-0.00819*
(-2.92)
0.0350"*
(4.96)
0.0229"*
(3.46)
0.00645"
(2.87)
0.0118"
(2.16)
0.0188"*
(3.78)
-0.0004**
(-2.62)
0.0096"
(2.05)
0.0108"
(2.13)
-0.0010
(-0.19)
0

0.127%*
(6.00)
-0.0377*
(-3.09)
0.161***
(5.60)
0.105*
(3.94)
0.0296**
(3.07)
0.0543*
(2.18)
0.08627**
(4.11)
-0.0019**
(-2.69)
0.0442"
(2.09)
0.0495*
(2.20)
-0.0044
(-0.19)
0

-0.00644
(-0.21)
0.00852
(0.87)
-0.00676
(-0.31)
0.0380"
(2.04)
0.0003
(0.69)
-0.0113
(-0.60)
0.0233
(1.08)
0.0105
(0.52)
0.0965"
(2.17)

113



Table 4: Marginal effects Model 2

Noelecteft Noelect-habits
Category 1 Category 2 Category 3 Category 4 Category 5
Remodel 0.146***
(5.12)
Home age -0.00911
(-0.56)
Owner 0.164**
(4.29)
Highincome 0.178** -0.0006 -0.0008 -0.0017 0.0018 0.0014
(4.77) (-0.08) (-0.09) (-0.09) (0.09) (0.08)
Members 0.0169 -0.0070* -0.0086** -0.0186** 0.0190** 0.0151*
(1.26) (-2.49) (-2.81) (-2.92) (2.91) (2.78)
Campaign 0.165* -0.0175* -0.0215*  -0.0465***  0.0476*** 0.0379*
(5.95) (-2.34) (-2.90) (-3.30) (3.30) (2.71)
Education 0.0490 0.00001 0.00001 0.00003 -0.00003 -0.00003
(1.57) (0.00) (0.00) (0.00) (-0.00) (-0.00)
Enwviro 0.0155 -0.0109 -0.0134 -0.0290 0.0297 0.0236
(0.46) (-1.76) (-1.86) (-1.89) (1.89) (1.85)
Age 0.00002 0.0000 0.0000 0.0000 -0.0000 -0.0000
(0.02) (0.01) (0.01) (0.01) (-0.01) (-0.01)
Gender 0.0148 0.00734 0.00903 0.0195 -0.0200 -0.0159
(0.51) (1.40) (1.41) (1.40) (-1.40) (-1.43)
Lagged AvP -0.0529 0.00541 0.0067 0.0144 -0.0147 -0.0117
(-1.47) (0.96) (0.98) (1.00) (-0.99) (-0.98)
Noelecteff 0 0.0324 0.0399 0.0861* -0.0883* -0.0702
(.) (1.52) (1.92) (2.29) (-2.28) (-1.73)

114



Appendix E

We start with the utility maximization problem as defined in Section 5.3, in which
a household seeks to maximize the utility obtained from a given level of water

services with a technology summarized by the production function:

mazx U = Uy, z)
st. y=AZ)w' D% (9)
I = pyw + prk + pyo

The first-order conditions are as follows:

oL = A(S—Ua(Z)w“(Z)_lA(Z)kb(Z) —Pw =20

ow oy 10
6L U (10
ox op PO

From equation (10), the input demand equation is obtained:

w= (pi) e (“’(y) a(Z)A(Z)) e (11)

Puw u'(x)
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And finally, taking logs we obtain:

Inw=— (%Q(ZQ In <1;—1:> +1E(—aZ()Z)Z” ket

L, L (v,
—1_a(2)z A(Z)+1_a(Z)l (u,(x) (Z))

(12)

In order to obtain the Stochastic Frontier model, A(z) is replaced by c(z)e™"),

as indicated in Section 5.4.

_;nc n UI(y)a/ ;u
nw=r—pn @ 17! (w(@ <Z)) TG

_(;> ln@+ﬂ Ink

1—a(2) pe 1—a(Z)
——
B1(z) Ba(z)

The terms in braces represent parameters that are constant for a given set of

environmental variables Z and ought to be estimated.
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Appendix F

This appendix is largely based on the work by Racine [2014], Ma and Racine
[2012] and Ma et al. [2012] and interested readers are referred to these articles
for a detailed explanation and for the properties of B-splines and categorical
regression splines.
In the present context, recall that we are interested in estimating the following
auxiliary model:
Xyi=9gX 15,1)+ G, fori=1,...,N

where (; is a (possibly heteroskedastic) error term and g(-, ) is a function of X_y;
and 7, = {Z;, D;}, with Z; denoting a vector of environmental factors and D; a
vector of instruments. For simplicity, we assume that X _;; and D; are purely
continuous variables; while Z; are the categorical components. The estimator
applies verbatim when X_1; contains some discrete regressors.

For each component of the continuous regressors, X_1; and D;, we construct

a matrix of B-spline basis functions, B, of order ¢, such that:

3(1’_1, d) = B(I_l) & B(d),
where ® denotes the tensor product (that is, the product column by column) of
two matrices of basis functions B(z_;) and B(d), evaluated at the points z_; and

d. For the discrete regressors Z;, we use the discrete kernel approach as described

in section (5.4), where L(Z;, z,\), denotes the kernel, evaluated at the point z,
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with bandwidth A. Therefore, for Z; = z, we can write:
9(X 15, Di, Z; = z) = B(X 14, Di)y(2),

where v(z) is a vector of coefficients that depends on the value taken by the
environmental factors, and it ought to be estimated using an appropriate method.
The coefficient v(z) is estimated by minimizing the following weighted least

squares criterion, for a sample of size N:
N
WLS(y) =Y { X1 — B(X_1s, D)Y(Z:)} L(Zi, 2, \).
i=1

Let, Lz = dlCLg {L(Zl, Z, )\), e ,L(ZN, zZ, )\)}, B= {‘B(X_H, Dl), ce ,B(X_1N7 DN)},
and X; = {Xj1,...,Xin} then we have that:

3(z) = (B'L,B) ' B'L.X;.

There are several advantages of this approach. First of all, the use of categorical
kernels allows one to improve the efficiency of the estimator. Other nonparametric
techniques have to resort to sample splitting instead, which implies a loss of
degrees of freedom. This is particularly relevant in cases such as ours where the
dimension of the environmental factor Z is very large.

Moreover, the approach is easy to implement and completely adaptive. On
the one hand, the estimation is carried by a simple minimization of a least square
criterion, which is more similar to a linear model. On the other hand, the order of
the B-spline basis for the continuous components is chosen using cross-validation,
and it is thus fully nonparametric.

The above estimation is fully implemented in R [R Core Team, 2014], using

the crs package [Racine and Nie, 2014].

118



Appendix G

Table 5: Standard Stochastic Frontier Model

Variable Coeflicient  Std. Error
Constant 2.568%*** (0.0573)
In AvP S1.055%%%  (0.0483)
Members 0.1132***  (0.0073)
Highincome — -0.03627*  (0.0212)
Bottled 20.04684%*  (0.0219)
FElectappl ~ 0.09197***  (0.0142)
Bathrooms — -0.02178 (0.0186)
Constant -12.43 (11.0702)
Habits -14.58 (10.1953)
FElecteff -5.844 (4.6685)
New pipes 0.7768 (2.2752)
Noelecteff 5.686 (4.9989)
o? 3.466 (2.3373)
~ 0.9446%%%  (0.0379)

119



References

Agthe, D. E., R. B. Billings, J. L. Dobra, and K. Raffiee (1986). A simultaneous
equation demand model for block rates. Water Resources Research 22(1), 1-4.
25

Aigner, D., C. Lovell, and P. Schmidt (1977). Formulation and estimation of
stochastic frontier production function models. Journal of Econometrics 6(1),
21 -37. 73,78

Aitchison, J. and C. G. G. Aitken (1976). Multivariate binary discrimination by
the kernel method. Biometrika 63(3), 413-420. 75

Alcamo, J., P. Doll, T. Henrichs, F. Kaspar, B. Lehner, T. Rosch, and S. Siebert
(2003). Development and testing of the watergap 2 global model of water use
and availability. Hydrological Sciences Journal 48(3), 317-337. 70

Alvarez, A., C. Amsler, L. Orea, and P. Schmidt (2006). Interpreting and Testing
the Scaling Property in Models where Inefficiency Depends on Firm Charac-
teristics. Journal of Productivity Analysis 25(3), 201-212. 71

Angrist, J. D. and J. S. Pischke (2009). Mostly Harmless Econometrics: An
Empiricist’s Companion, Chapter Chapter 3. Princeton University Press. 41,
110

Arbués, F., M. Garcia-Valinas, and R. Martinez-Espineira (2003). Estimation
of residential water demand: A state-of-the-art review. Journal of socio-
economics 32, 81-102. 22, 47

120



REFERENCES

Arbués, F. and 1. Villantia (2006). Potential for pricing policies in water resource
management: Estimation of urban residential water demand in Zaragoza,
Spain. Urban studies 43(13), 2421-2442. 410

Ayyagari, P., P. Deb, J. Fletcher, W. Gallo, and J. Sindelar (2013). Understanding
heterogeneity in price elasticities in the demand for alcohol for older individuals.
Health Economics 22(1), 89-105. 24

Bates, B., Z. W. Kundzewicz, S. Wu, and J. Palutikof (2008). Climate Change
and Water. Intergovernmental Panel on Climate Change (IPCC). 47

Battese, G. E. and T. J. Coelli (1988). Prediction of firm-level technical efficiencies
with a generalized frontier production function and panel data. Journal of
Econometrics 38(3), 387-399. 78

Battese, G. E. and G. S. Corra (1977). Estimation of a production frontier model:
With application to the pastoral zone of eastern australia. Australian Journal
of Agricultural Economics 21(3), 169-179. 78

Beaumais, O., A. Briand, K. Millock, and C. Nauges (2010). What are households
willing to pay for better tap water quality? A cross-country valuation study.
Université Paris 1 Panthéon-Sorbonne (Post-Print and Working Papers), HAL.
31, 80

Becker, G. S. (1965). A theory of the allocation of time. The Economic Journal,
493-517. 71

Bennear, L. S., J. M. Lee, and L. O. Taylor (2011). Participation incentives, re-
bound effects and the cost-effectiveness of rebates for water-efficient appliances.
Technical Report Paper EE11-10, Duke Environmental Economics Working Pa-

per Series. 48, 51

Blundell, R. and J. L. Powell (2003). Endogeneity in nonparametric and semi-
parametric regression models. Econometric Society Monographs 36, 312-357.
30

121



REFERENCES

Bockstael, N. E. and K. E. McConnell (1983). Welfare Measurement in the
Household Production Framework. American Economic Review 73(4), 806
14. 26

Boter, J., J. Rouwendal, and M. Wedel (2005). Employing Travel Time to Com-

pare the Value of Competing Cultural Organizations. Journal of Cultural Eco-
nomics 29, 19-33. 24

Brooks, D. B. (2006). An operational definition of water demand management.
International Journal of Water Resources Development 22(4), 521-528. 69

Cai, Z., M. Das, H. Xiong, and X. Wu (2006). Functional coefficient instrumental
variables models. Journal of Econometrics 133(1), 207 — 241. 76

Calvache, M. L., J. M. Gémez-Fontalva, and C. Duque (2013). New data about
the water budget generated with a flow model in the aquifer of Vega de
Granada. Geogaceta 54(127-130). 13

Cameron, A. C. and P. K. Trivedi (2005). Microeconometrics: Methods and
applications. Cambridge University Press, New York. 20, 26

Campbell, D., D. A. Hensher, and R. Scarpa (2011). Non-attendance to at-
tributes in environmental choice analysis: A latent class specification. Journal
of Environmental Planning and Management 54 (8), 1061-1076. 25

Campbell, H. E., R. M. Johnson, and E. H. Larson (2004). Prices, devices, people,
or rules: The relative effectiveness of policy instruments in water conservationl.
Review of Policy Research 21(5), 637-662. 41, 48, 51

CEPS (2012). Which economic model for a water-efficient Europe? EEA (2012)
Towards efficient use of water resources in Europe. Report No 1/2012. European
Environment Agency (EEA). 69

Chemak, F. (2011). Nonparametric approach for measuring the productivity
change and assessing the water use efficiency in the irrigated areas of tunisia.
Working papers, Agricultural University of Athens, Department Of Agricul-

tural Economics. 71

122



REFERENCES

Clark, W. A. and J. C. Finley (2007). Determinants of water conservation inten-
tion in blagoevgrad, bulgaria. Society and Natural Resources 20(7), 613-627.

Q29
JJ

Coleman, E. A. (2009). A comparison of demand-side water management strate-
gies using disaggregate data. Public Works Management and Policy 13(3),
215-223. 23

Collins, R., P. Kristensen, and N. Thyssen (2009). Water resources across Europe-
confronting water scarcity and drought. Office for Official Publications of the

European Communities. 68

Cowen, T. (1989). Are all tastes constant and identical?: A critique of Stigler
and Becker. Journal of Economic Behavior & Organization 11(1), 127 — 135.
72

d’ Uva, T. B. (2006). Latent class models for utilisation of health care. Health
Economics 15, 329-343. 24

Dalhuisen, J. M., R. Florax, H. D. Groot, and P. Nijkamp (2003). Price and
income elasticities of residential water demand: A meta-analysis. Land FEco-
nomics 79(2), 292-308. 22

Davis, L. W. (2008). Durable goods and residential demand for energy and water:
evidence from a field trial. RAND Journal of Economics 39(2), 530-546. 48,
52

De Oliver, M. (1999, 05). Attitudes and inaction: A case study of the manifest
demographics of urban water conservation. Environment and Behavior 31(3),
372-394. 50

Deb, P. and P. K. Trivedi (2002). The structure of demand for health care: Latent

class versus two-part models. Journal of Health Economics 21, 601-625. 24

Dharmaratna, D. and E. Harris (2012). Estimating residential water demand
using the stone-geary functional form: The case of sri lanka. Water Resources
Management 26(8), 2283-2299. 16

123



REFERENCES

Dhehibi, B., L. Lachaal, M. Elloumi, and E. B. Messaoud (2007, September).
Measuring irrigation water use efficiency using stochastic production frontier:
An application on citrus producing farms in tunisia. African Journal of Agri-

cultural and Resource Economics 1(2). 70

Di Cosmo, V., M. Hyland, and M. Llop (2014). Disentangling water usage in

the european union: A decomposition analysis. Water Resources Manage-
ment 28(5), 1463-1479. 70

Domene, E. and D. Sauri (2006). Urbanisation and water consumption: Influ-
encing factors in the metropolitan region of barcelona. Urban Studies 43(9),
1605-1623. 50

EC (2009). Study on water efficiency standards. Technical report, European

Comission. 53

EC, E. C. (2012). Report on the Review of the European Water Scarcity and
Droughts Policy. Communication from the Commission to the European Par-

liament and the Council. 67

EEA (2009). Water resources across europe. confronting water scarcity and

drought. Technical Report 2/2009, European Environment Agency. 52

EIA, E. I. A. (1995). Measuring enerqy efficiency in the United States’ economy:
a beginning. DOE/EIA-0555(95)/2, Washington, DC, USA. 70

Eshghi, A., D. Haughton, P. Legrand, M. Skaletsky, and S. Woolford (2011).
Identifying groups: a comparison of methodologies. Journal of Data Science 9,
271-91. 43

Fernandez-Blanco, V., L. Orea, and J. Prieto-Rodriguez (2009). Analyzing con-
sumers heterogeneity and self-reported tastes: An approach consistent with

the consumer’s decision making process. Journal of Economic Psychology 30,
622-633. 24, 27

Fielding, K. S., S. Russell, A. Spinks, and A. Mankad (2012). Determinants of
household water conservation: The role of demographic, infrastructure, behav-

ior, and psychosocial variables. Water Resources Research 48(10). 41

124



REFERENCES

Filippini, M. and L. C. Hunt (2012). Us residential energy demand and energy
efficiency: A stochastic demand frontier approach. Energy Economics 34(5),
1484-1491. 70

Filippini, M. and L. C. Hunt (2013). Underlying Energy Efficiency in the US. Fi-
dgenossische Technische Hochschule Zirich, CER-ETH — Center of Economic
Research at ETH Zurich - Economics working paper series 13/181. 70, 73

Filippini, M., L. C. Hunt, and J. Zorié¢ (2014). Impact of energy policy instruments
on the estimated level of underlying energy efficiency in the {EU} residential
sector. Energy Policy 69(0), 73 —81. 70

Freire-Gonzélez, J. (2011). Methods to empirically estimate direct and indirect
rebound effect of energy-saving technological changes in households. Ecological
Modelling 223(1), 32 — 40. Can We Break the Addiction to Fossil Energy? Spe-
cial Issue, 7th Biennial International Workshop “Advances in Energy Studies”,
Barcelona, Spain, 19-21 October 2010. 51

Garcia-Valinas, M. (2005). Efficiency and equity in natural resource pricing: a
proposal for urban water distribution services. FEnuvironmental and Resources

Economics 32(3), 183-204. 25

Garcia-Valinas, M. A., W. Athukorala, C. Wilson, B. Torgler, and R. Gifford
(2014). Nondiscretionary residential water use: the impact of habits and
water-efficient technologies. Australian Journal of Agricultural and Resource
Economics 58(2), 185-204. 46

Garrido, A., M. A. Garcia-Valinas, J. Calatrava, and F. Gonzalez-Gdémez (2015).
Water pricing in Spain: Following the footsteps of somber climate change pro-

jections. Number forthcoming. Springer Netherlands. &, 10

Gaudin, S. (2006). Effect of price information on residential water demand. Ap-
plied Economics 38(4), 383-393. 31

Gaudin, S., R. C. Griffin, and R. C. Sickles (2001). Demand Specification for
Municipal Water Management: Evaluation of the Stone-Geary Form. Land
Economics 77(3), 399-422. 46

125



REFERENCES

Ghosh, N. K. and M. F. Blackhurst (2014). Energy savings and the rebound
effect with multiple energy services and efficiency correlation. Fcological FEco-
nomics 105(0), 55 — 66. 51

Giannoccaro, G. and J. Martin-Ortega (2010). Environmental concerns in water
pricing policy: an application of data envelopment analysis (dea). Working
Papers 2010-04, BC3. 70

Gilg, A. and S. Barr (2006). Behavioural attitudes towards water saving? evi-
dence from a study of environmental actions. Ecological Economics 57(3), 400
—414. 33, 50

Gleick, P. (2000). The World’s Water 2000-2001: The Biennial Report on Fresh-
water Resources. Technical report, Pacific Institute. Island Press, Washington,
D.C. 69

Gleick, P. H. (2003). Water use. Annual review of environment and re-

sources 28(1), 275-314. 69

Gourieroux, C., A. Monfort, E. Renault, and A. Trognon (1987). Generalised
residuals. Journal of Econometrics 34 (1-2), 5-32. 56, 110

Grafton, R. Q. (2014). Household behaviour and water use, Chapter 5, pp. 149—
182. Greening Household Behaviour: Overview from the 2011 survey. OECD
publishing. 2

Grafton, R. Q., M. B. Ward, H. To, and K. T. (2011). Determinants of residential
water consumption: Evidence and analysis from a 10-country household survey.

Water Resources Research 47(W08537, doi:10.1029/2010WR009685). 31

Greene, W. and D. Hensher (2013). Revealing additional dimensions of prefer-
ence heterogeneity in a latent class mixed multinomial logit model. Applied
Economics 45(14), 1897-1902. 25

Greene, W. H. and D. A. Hensher (2010). Modeling Ordered Choices. Cambridge

Books, Cambridge University Press. Cambridge University Press. 54, 55

126



REFERENCES

Grisolfa, J. M. and K. G. Willis (2012). A latent class model of theatre demand.
Journal of Cultural Economics 36, 113-139. 25

Hall, P., L. Qi, and J. S. Racine (2004). Nonparametric estimation of regression
functions in the presence of irrelevant regressors. Review of Economics and
Statistics 89(4), 784-789. 76

Hassan, F. A. (2003). Water management and early civilizations: From cooper-
ation to conflict. History and future of shared water resources (PCCP Series
No. 6). 1

Hensher, D. A. and W. H. Greene (2003). The mixed logit model: The state of
practice. Transportation 30, 133-176. 25

Hess, S., M. Ben-Akiva, and J. Walker (2011). Advantages of latent class over
continuous mixture of logit models. Working paper, University Press, Harris-

burg. 25

Hewitt, J. and W. Hanemann (1995). A discrete/continuous choice approach
to residential water demand under block rate pricing. Land Economics 71,
173-192. 25, 79, 107

Hirschman, A. O. (1984). Against Parsimony: Three Easy Ways of Complicating
Some Categories of Economic Discourse. Bulletin of the American Academy of
Arts and Sciences 37(8), 11-28. 72

Howard, G. and B. E. Roe (2013). Stripping Because You Want to Versus Strip-
ping Because the Money is Good: A Latent Class Analysis of Farmer Pref-
erences Regarding Filter Strip Programs. 2013 Annual Meeting, August 4-6,
2013, Washington, D.C., Agricultural and Applied Economics Association. 30,
106, 107

Hyppolite, J. and P. Trivedi (2012). Alternative approaches for econometric
analysis of panel count data using dynamic latent class models (with application
to doctor visits data). Health Economics 21(1), 101-128. 241

Imbens, G. M. and J. M. Wooldridge (2007, Summer). Control Function and
Related Methods. The National Bureau of Economic Research (NBER). 30

127



REFERENCES

INE  (2014). Cifras  oficiales de poblacion resultantes de
la  revision del Padrén municipal a 1 de enero de 2014.
http://www.ine.es/dynt3/inebase/es/index.html?padre=517dh=1. 13

Inman, D. and P. Jeffrey (2006). A review of residential water conservation
tool performance and influences on implementation effectiveness. Urban Water
Journal 3(3), 127-143. 11

IPCC (2007). Climate Change 2007 - The Physical Science Basis: Working
Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge

University Press. 7, 13

IPCC (2008). Climate change and water. Intergovernmental Panel on Climate
Change (IPCC). 2

Kaneko, S., K. Tanaka, T. Toyota, and S. Managi (2004). Water efficiency of
agricultural production in China: regional comparison from 1999 to 2002. In-

ternational Journal of Agricultural Resources, Governance and Ecology 3(3/4),
231-251. 70

Kantola, S. J., G. J. Syme, and A. R. Nesdale (1983). The effects of appraised
severity and efficacy in promoting water conservation: An informational anal-
ysis. Journal of Applied Social Psychology 13(2), 164-182. 33

Kenney, D. S., C. Goemans, R. Klein, J. Lowrey, and K. Reidy (2008). Residential
water demand management: Lessons from aurora, coloradol. JAWRA Journal
of the American Water Resources Association 44 (1), 192-207. 48, 65

Krause, K. (2003). The demand for water: Consumer response to scarcity -.
Journal of Regulatory Economics 23(2), 167-191. 24

Kumbhakar, S. and C. Lovell (2000). Stochastic Frontier Analysis, pp. 142. Cam-
bridge University Press, UK. 78

Lam, S.-P. (2006). Predicting intention to save water: Theory of planned be-
havior, response efficacy, vulnerability, and perceived efficiency of alternative
solutionsl. Journal of Applied Social Psychology 36(11), 2803-2824. 50, 51

128



REFERENCES

Li, Q., D. Ouyang, and J. S. Racine (2013). Categorical semiparametric varying-
coefficient models. Journal of Applied Econometrics 28(4), 551-579. 75, 77

Lopez-Gunn, E., P. Zorrilla, F. Prieto, and M. Llamas (2012). Lost in translation?
water efficiency in spanish agriculture. Agricultural Water Management 108(0),
83 —95. 7,21, 68

Ma, S. and J. S. Racine (2012). Additive regression splines with irrelevant cate-

gorical and continuous regressors. Statistica Sinica. 77, 117

Ma, S.; J. S. Racine, and L. Yang (2012). Spline regression in the presence of

categorical predictors. Journal of Multivariate Analysis. 77, 117

Mansur, E. T. and S. M. Olmstead (2012). The value of scarce water: Measuring
the inefficiency of municipal regulations. Journal of Urban Economics 71, 332—
346. 24

Martinez-Espifeira, R. and M. A. Garcia-Valifias (2013). Adopting versus adapt-
ing: adoption of water-saving technology versus water conservation habits in
spain. International Journal of Water Resources Development 29(3), 400-414.

50, 51, 52

Martinez-Espineira, R., M. A. Garcfa-Valinas, and C. Nauges (2014). House-
holds’ pro-environmental habits and investments in water and energy con-
sumption: Determinants and relationships. Journal of Environmental Man-
agement 133(0), 174 — 183. 53

Martinez-Espineira, R. and C. Nauges (2004). Is all domestic water consumption
sensitive to price control? Applied Economics 36(15), 1697-1703. 29, 46

Mayer, P. W., W. B. De Oreo, E. M. Opitz, J. C. Kiefer, W. Y. Davis,
B. Dziegielewski, and J. O. Nelson (1998). Residential End Uses of Water.
Am. Water Works Assoc. Res. Found., Denver, Colorado. 48, 51

McCloud, N. and S. Kumbhakar (2008). Do subsidies drive productivity? A cross-
country analysis of Nordic dairy farms. Advances in Econometrics, 245-274.
71

129



REFERENCES

Michael, R. T. and G. S. Becker (1973). On the new theory of consumer behavior.
The Swedish Journal of Economics 75(4), 378-396. 72

Millock, K. and C. Nauges (2010). Household adoption of water-efficient equip-
ment: The role of socio-economic factors, environmental attitudes and policy.
Environmental and Resource Economics 46(4), 539-565. 50, 51

Miyawaki, K., Y. Omori, and A. Hibiki (2010). Panel Data Analysis of Japanese
Residential Water Demand Using a Discrete/Continuous Choice Approach.
Global COE Hi-Stat Discussion Paper Series gd09-123, Institute of Economic
Research, Hitotsubashi University. 24

Nataraj, S. and M. W. Hanemann (2011). Does marginal price matter? a regres-
sion discontinuity approach to estimating water demand. Journal of Environ-
mental Economics and Management 61(2), 198 — 212. 23

Nauges, C. and D. Whittington (2010). Estimation of water demand in developing
countries: An overview. The World Bank Research Observer 25(2), 263-294.
22

Nguyen, Q. H. and V. J. Rayward-Smith (2008). Internal quality measures for
clustering in metric spaces. International Journal of Business Intelligence and
Data Mining 3(1), 4-29. 43

Nieswiadomy, M. L. and D. J. Molina (1988). Urban water demand estimates
under increasing block rates. Growth and Change 19(1), 1-12. 25

Nieswiadomy, M. L. and D. J. Molina (1989). Comparing residential water de-
mand estimates under decreasing and increasing block rates using household
data. Land Economics 65(3), 280-289. 25

Nylund, K. L., T. Asparouhov, and B. O. Muthén (2007). Deciding on the Num-
ber of Classes in Latent Class Analysis and Growth Mixture Modeling: A
Monte Carlo Simulation Study. Structural Equation Modeling: A Multidisci-
plinary Journal 14(4), 535-569. 28, 35

130



REFERENCES

Olmstead, S. M. (2009). Reduced-form versus structural models of water demand
under nonlinear prices. Journal of Business and Economics Statistics 27(1),
84-94. 25, 79, 107

Olmstead, S. M. (2010). The economics of managing scarce water resources.
Review of Environmental Economics and Policy 4(2), 179-198. 2

Olmstead, S. M. and R. N. Stavins (2007). Managing Water Demand, Price vs.

Non-price conservation programs. A Pioneer Institute Water Paper 39. 2, 20

Patunru, A. A., B. J. B., and S. Chattopadhyay (2007). Who cares about environ-
mental stigmas and does it matter? A latent segmentation analysis of stated

preferences for real estate. American Journal of Agricultural Economics 89(3),
712-726. 25

Pérez-Luque, A., F. Bonet, R. Pérez-Pérez, and R. Zamora (2012). Monitoring
global change in Sierra Nevada LTER platform (Spain): Preliminary results.
2012 LTER ASM: The unique role of the LTER Network in the Anthropocene:

Collaborative Science across Scales. Presentation in Estes Park, Colorado. 13

Pint, E. (1999). Household responses to increased water rates during the Califor-
nia drought. Land Economics 75, 246-266. 23, 25

Polebitski, A. and R. Palmer (2010). Seasonal residential water demand fore-
casting for census tracts. Journal of Water Resources Planning and Manage-

ment 136(1), 27-36. 23

R Core Team (2014). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing. 118

Racine, J. S. (2014). A Primer on Regression Splines. 117

Racine, J. S. and Z. Nie (2014). crs: Categorical Regression Splines. R package
version 0.15-23. 118

Renwick, M. and S. Archibald (1998). Demand side management policies for
residential water use: who bears the conservation burden? Land Economics 7/,
343-359. 24, 48, 65

131



REFERENCES

Renwick, M. E. and R. D. Green (2000). Do residential water demand side man-
agement policies measure up? An analysis of eight California water agencies.

Journal of Environmental Economics and Management 40, 37-55. 24, 48, 65

Roibés, D., M. Garcia-Valinas, and A. Wall (2007). Measuring welfare losses from
interruption and pricing as responses to water shortages: an application to the

case of Seville. Environmental & Resource Economics 38(2), 231-243. 19

Ruijs, A., A. Zimmermann, and A. M. v. d. Berg (2008). Demand and distribu-
tional effects of water pricing policies. Ecological Economics 66(2-3), 506-516.
24

Ruiz Canete, O. and D. Dizy Menéndez (2009). The water sector in Spain.
CIRIEC Working Paper 04. 8

Russell, S. and K. Fielding (2010). Water demand management re-
search: A psychological perspective. Water Resources Research 46(W05302,
do0i:10.1029/2009WR008408). 32, 68, 95

Saunders, H. D. (1992). The Khazzoom-Brookes Postulate and Neoclassical
Growth. The Energy Journal (4), 131-148. 48, 92

Saunders, H. D. (2008). Fuel conserving (and using) production functions. Energy
Economics 30(5), 2184 — 2235. 48

Scarpa, R., M. Thiene, and T. Tempesta (2007). Latent Class Count Models of
total visitation demand: days out hiking in the eastern Alps. FEnvironmental
and Resource Economics 38(4), 447-460. 25

Scarpa, R., K. G. Willis, and M. Acutt (2005). Individual-specific welfare mea-
sures for public goods: A latent class approach to residential customers of

Yorkshire Water. FEconometrics Informing Natural Resource Management, 14,
316-337. 25

Schlosser, C., K. Strzepek, X. Gao, A. Gueneau, C. Fant, S. Paltsev, B. Rasheed,
T. Smith-Greico, E. Blanc, H. Jacoby, and J. Reilly (2014). The Future of
Global Water Stress: An Integrated Assessment. Joint programme report se-

ries, MIT Joint Programme on the Science and Policy of Global Change. 67

132



REFERENCES

Schmidt, P. and C. K. Lovell (1979). Estimating technical and allocative ineffi-
ciency relative to stochastic production and cost frontiers. Journal of Econo-
metrics 9(3), 343 — 366. 72

Scott, D. and F. K. Willits (1994). Environmental Attitudes and Behavior: A
Pennsylvania Survey. Environment and Behavior 26(2), 239-260. 33

Shen, J. (2010). Latent class model or mixed logit model? A comparison by
transport mode choice data. Applied Economics 41, 2915-2924. 25

Shen, J., Y. Sakata, and Y. Hashimoto (2006). A comparison between latent
class model and mixed logit model for transport mode choice: Evidences from
two datasets of Japan. Osaka University, Graduate School of Economics and
Osaka School of International Public Policy (OSIPP) Discussion Papers in

Economics and Business(06-05). 25

Simar, L., C. Lovell, and P. van den Eeckaut (1994). Stochastic frontiers incorpo-
rating exogenous influences on efficiency. Discussion Paper No. 9403, Institut
de Statistique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
74

Simar, L. and P. Wilson (2010). Inferences from Cross-Sectional, Stochastic Fron-
tier Models. Econometric Reviews 29(1), 62-98. 78

Small, K. A. and K. V. Dender (2007). Fuel efficiency and motor vehicle travel:
The declining rebound effect. The Energy Journal, International Association
for Energy Economics 0(Number 1), 25-52. 51

Smeets, E.,; A. Tabeau, S. van Berkum, J. Moorad, H. van Meijl, and G. Woltjer
(2014). The impact of the rebound effect of the use of first generation biofuels
in the {EU} on greenhouse gas emissions: A critical review. Renewable and
Sustainable Energy Reviews 38(0), 393 — 403. 51

Sorrell, S.; J. Dimitropoulos, and M. Sommerville (2009). Empirical estimates of
the direct rebound effect: A review. Energy Policy 37(4), 1356 — 1371. 51

Stern, D. I. (2012). Modeling international trends in energy efficiency. Energy
Economics 34(6), 2200 — 2208. 70

133



REFERENCES

Stern, P. C. (2000). New environmental theories: Toward a coherent theory of
environmentally significant behavior. Journal of Social Issues 56, 407-424. 32,

95

Stern, P. C. and G. T. Gardner (1981a). Psychological research and energy policy.
American Psychologist 36, 329-342. (68

Stern, P. C. and G. T. Gardner (1981b). The place of behavior change in managing
environmental problems. Zeitschrift fur Umweltpolitik 2, 213-239. 68

Stigler, G. J. and G. S. Becker (1977, March). De Gustibus Non Est Disputandum.
American Economic Review 67(2), 76-90. 20, 72

Strong, A. and V. K. Smith (2010). Reconsidering the economics of demand
analysis with kinked budget constraints. Land Economics 86(1), 173-190. 26

Sun, K. and S. C. Kumbhakar (2013). Semiparametric smooth-coefficient stochas-
tic frontier model. Economics Letters 120(2), 305-309. 68, 71, 74, 77, 78, 83

The World Bank (2012). Turn down the heat. Why a 4 C warmer world must be
avoided. Technical report, The World Bank. 19

Trumbo, C. W. and G. J. O’Keefe (2005). Intention to conserve water: Envi-
ronmental values, reasoned action, and information effects across time. Society
and Natural Resources 18(6), 573-585. 40

UNDESA (2009). World population prospects, the 2008 revision- executive sum-
mary. Technical report, UNDESA (United Nations Department of Economic
and Social Affairs). 19

Veettil, P. C.; S. Speelman, and G. van Huylenbroeck (2013). Estimating the
impact of water pricing on water use efficiency in semi-arid cropping system: An
application of probabilistically constrained nonparametric efficiency analysis.
Water Resources Management 27(1), 55-73. 71

Watkins, K. (2006). Human development report 2006-beyond scarcity: Power,
poverty and the global water crisis. Technical report, UNDP Human Develop-
ment Reports. 2

134



REFERENCES

Worthington, A. C., H. Higgs, and M. Hoffmann (2009). Residential water de-
mand modeling in Queensland, Australia: a comparative panel data approach.
Water Policy 11(4), 427-441. 23

Worthington, A. C. and M. Hoffman (2008). An empirical survey of residential
water demand modelling. Journal of Economic Surveys 22(5), 842-871. 22, 47

135



	Contents
	List of Figures
	1 Introduction
	2 Context and data
	2.1 Context
	2.1.1 Brief overview
	2.1.2 The case of Granada

	2.2 Database

	3 Responses to changes in domestic water tariff structures: a Latent Class Analysis on household-level data from Granada, Spain
	3.1 Introduction
	3.2 Background
	3.3 Methodology
	3.4 Residential Water Tariffs in Granada
	3.5 Data
	3.6 Results
	3.6.1 Sensitivity analysis

	3.7 Conclusions

	4 Adoption and use of efficient technologies at residential level: a disaggregated analysis in the water sectorâ•‰
	4.1 Introduction
	4.2 Literature review
	4.3 Water-efficient technologies: public policies in Spain
	4.4 Methodology
	4.5 Data
	4.6 Results
	4.7 Conclusions

	5 The impact of environmental behavior on the efficiency in residential water consumption
	5.1 Introduction
	5.2 Literature review
	5.3 Utility maximization and input demand function
	5.4 Methodology
	5.5 Data
	5.6 Results
	5.7 Conclusion

	6 Conclusions and extensions
	7 Conclusiones y futuras extensiones
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	References

