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ABSTRACT: The adjustment of the S-N curve through a general statistical model and the
normalization of the fatigue life of the material permit to establish equivalencies between
states of damage for different stress levels. On the other side, the analysis of the stiffness
curves of composites under fatigue loading provides an important information about the
state of damage accumulation and the failure mechanisms inside of the material. Joining
both procedures permits to present the stiffness evolution as a function of a normalized
variable, instead of as a function of the number of cycles, supplying in this way the
possibility of a unified study for results belonging to various load levels and histories.

INTRODUCTION

The generally scarce and sparse number of fatigue results available from
experimental programmes, especially in composites materials, emphasizes
the necessity of efficient procedures for evaluating the statistical parameters
defining the S-N field, so that a consistent statistical non-linear regression
model for analysing the Wöhler field is needed. In this paper, the statistical
fatigue model developed by Castillo et al. will be considered for this
purpose [1].

Unlike metals, composites accumulate damage in a general rather than a
localised fashion and failure does not occur by the propagation of a single
macroscopic crack. Thus, the evolution of the stiffness curve gives an
important information about micro-structural mechanisms of damage and
their sequence of appearance [2]. Nevertheless, the results from
experimental programmes performed with different stress levels and load
histories are not feasible to compare. Due to that, representing the material



stiffness as a function of the number of cycles, N or log N, is not an
adequate procedure for the analysis of these curves.

In this work, the importance of modelling the S-N field and the definition
of normalized variables for stiffness curve comparison are presented,
together with a study about the influence of load variability in the evolution
of these curves.

A MODEL FOR THE S-N FIELD

In the S-N field, two random variables have to be considered − the stress
range ∆σ and the number of cycles to failure N − from which two different
statistical distributions, F(N; ∆σ), representing the number of cycles to
failure given the stress range ∆σ or, alternatively, E(∆σ; N), representing the
stress range given the number of cycles to failure, are envisaged. Both
distributions must fulfill physical and statistical conditions for the statistical
model to be valid.

Castillo et al. [1,3] have developed a statistical model valid for the S-N
field, based on the weakest link principle, arising from a functional equation
after setting physical (threshold number of cycles to failure, etc) and
statistical requirements (stability, compatibility and limit conditions) to the
distributions F(N; ∆σ) and E(∆σ; N) which prove to be three-parameter
Weibull distribution families for minima. It is worthwhile mentioning that
the same model has been justified by Bolotin [4] based on micro-structural
considerations.

Moreover, using dimensional analysis it can be shown that the variables
of the S-N field have to be used in logarithmic scale, i.e. log ∆σ and log N.
The cumulative distribution function (c.d.f.) of the logarithm of the lifetime
N, given the stress range ∆σ, is given by:
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from which the percentile curves can be derived:
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where N is the lifetime measured in number of cycles to failure, ∆σ is the
stress range and A, B, C, D and E are the model parameters to be
determined, where:

A = Weibull shape parameter;

B = Threshold value or limit lifetime;

C = Endurance limit;

D = Scale parameter;

E = Parameter determining the position of the zero-percentile curve.

As soon as the five parameters are determined, the analytical expression
of the whole S-N field is known, what enables the probabilistic prediction of
the fatigue failure under constant amplitude loading. As it can be observed,
the percentile curves are represented by equilateral hyperbolas, see Figure1.

Figure 1 - S-N field with percentiles curves in the fatigue model of
Castillo et al. [1,3].

logN

C

B

log ∆σ

P=0



ESTIMATION OF MODEL PARAMETERS USING NORMALIZED
VARIABLES

To estimate the five parameters of the model, the analyst has pairs of values
(Ni , ∆σi) obtained in experimental tests carried out at several stress ranges.
It is possible to estimate the five parameters simultaneously through
maximisation of the likelihood function, but this procedure generally
encounters convergence and precision problems. Alternatively, a more
advantageous two-step method for estimating the model parameters has
been proposed by Castillo et al. [3].

Expression (2) reveals that for the proposed fatigue model the probability
of failure for an element subject to a stress level ∆σ, during N cycles
uniquely depends on the product ( ) ( )ClogBNlog −σ∆− . As soon as the
model parameters B and C are known, the transformation:

)C)(logBN(logV −σ∆−=
(3)

provides an useful normalized variable depending on the stress level and on
the number of cycles resulting in the test. This variable follows a Weibull
distribution with three parameters λ*, δ* and β*, only related to A, D and E.
This fact suggests estimating the five parameters in two steps, first B and C,
and then A, D and E.

This procedure is justified by the fact that a Weibull distribution remains
stable with respect to location and scale transformations. Thus, if the
variable X follows a Weibull distribution for minima ( )βδλ ,,W , expressed
as ( )βδλ ,,W~X , the normalized variable Z, defined as ba)-(X Z = , will
also follow a Weibull distribution for minima (see Figure 2):
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A suitable choice for “a” and “b” will be crucial in the analysis of the
reliability of the evaluation and in its interpretation. In our fatigue analysis it
is apparent that log N is the original variable identifiable with X, V is the
normalized variable Z and that Ba =  and )C(log1b −σ∆= .



A normalized variable which fulfills the S-N model is independent of the
stress level and its values have associated a probability value, thus, a curve
in the S-N field has associated a value of the normalized variable [5,6].

Figure 2 - S-N field with pdfs of log N at different stress ranges and
corresponding pdf of the normalized lifetime, V.

STIFFNESS CURVES

In fatigue, the evolution of the stiffness curves indicates the state of damage
accumulation of the material [7,8]. The present work analyses the stiffness
curves obtained through fatigue experimental programmes carried out under
conditions of constant and variable stress, using a carbon fibre and epoxy
resin laminate, IM7/8552 [0/90]4s.

From the analysis of the experimental results it was observed that for
constant stress and low load levels the stiffness degradation of the material
follows the description found in the specialized literature, showing three
different states, called I, II and III states (Figure 3a), or only two in a semi-
logarithmic scale (Figure 3b). The state I is characterized by a quick loss of

βδ−λ ,b,ba

log N

log ∆σ

λi  δi  βi

λj  δj  βj

λn  δn βn

V

βi=βj=βn



stiffness due to matrix cracks and fibre breaks, the state II, where inter-
laminar matrix cracks occur, is a long period with a small stiffness
reduction, and finally, the state III presents a sudden drop of stiffness caused
by a joint appearance of delaminations and fibre breaks. It was also
observed that for high load levels the state III disappears and the length of
state II decreases when the load increases.

Figure 3. Stiffness curves for constant stress and low load levels
a) in natural scale and b) in semi-logarithmic scale.

To compare the stiffness curves obtained by testing programmes under
different load levels and histories it is compelled the use of a normalized
variable which permits to convert all the curves to an unique reference unit.
Using the normalized variable, V, defined before, Figure 4a shows how for
high load levels the failure of the composite laminate occurs before reaching
a stiffness reduction of 10% approximately, whereas for low load levels the
stiffness reduction of 10% marks a change of the slope between the two
existing states of the curve.

In this way, first of all, plotting the stiffness reduction data as a function
of the normalized variable, V, permits to distinguish the fatigue failure of
high and low number of cycles and, on the other hand, to fix a threshold of
10% that determines the presence of delamination inside the material.

Related to fatigue under conditions of variable stress, such as block and
random loading, Figure 4b shows similar curves to that obtained under
constant stress conditions, but in this case the threshold is located around the



5% or 6% of the initial value and the total loss of stiffness is much lower.
Apart from that, it can be also observed that the curve pertaining to random
loading has got a significant smaller slope and a less total stiffness
reduction. This denotes that for random loading the failure process takes
place with an apparent minor damage degradation, what agrees with the
prediction results of the fatigue life obtained for this kind of testing.

Figure 4. Stiffness curves of the IM7/8552 [0/90]4s laminate in function of
V a) for constant stress fatigue and b)for different fatigue load histories.

CONCLUSIONS

1.- Plotting the stiffness curves as a function of a normalized variable
permits to make a complete analysis of the data evolution obtained under
different load histories.

2.- The analysis of the stiffness curves allows to exclude wrong results in
the adjustment of fatigue data, as well as to redefine the testing strategy.

3.- The study of the fatigue stiffness curves under constant stress reveals a
threshold value of stiffness reduction of 10% of the initial value, which is
independent of the load level.

4.- The total stiffness reduction and the slope of the first part of the curve
decrease with the loading variability. Due to that, it is not valid to
extrapolate results under constant to variable stress.



ACKNOWLEDGEMENTS

The authors would like to acknowledge the economical support given by
CICYT through the research project MAT95-0613-C02-01.

REFERENCES

1. Castillo, E., Fernández-Canteli, A., Esslinger, V., Thürlimann, B.,
(1985) “Statistical Model for Fatigue Analysis of Wires, Strands and
Cables”, IABSE P82/85.

2. Sendeckyj, G.P. (1985), “Life Prediction for Resin-Matrix Composite
Materials”. Fatigue of Composite Materials, ed. K.L. Reifsnider.
Elsevier.

3. E. Castillo, A. Fernández Canteli (2001), “A General Regression Model
for Lifetime Evaluation and Prediction”. Journal of Fracture Mechanics,
Nº 107, pp 117-137.

4. Bolotin V.V. (1981), “Wahrscheinlichkeitsmetho-den zur Berechnung
von Konstruktionen”. VEB Verlag.

5. López Aenlle M., (2000) “Caracterización a fatiga de materiales
compuestos bajo carga aleatoria y carga por bloques (Characterization of
composites subject to fatigue under random and block loading)”. PhD
University of Oviedo. Spain.

6. E. Castillo, M. López Aenlle, M. J. Lamela, A. Fernández Canteli
(2000), "Evaluation of Fatigue Life Data By Normalizing Procedures".
European Conference on Fracture, San Sebastián. Spain.

7. D.H. Allen (1994), “Damage Evaluation in Laminates”. Damage
Mechanics of Composite Materials, ed. R. Talreja. Elsevier.

8. P.W.R. Beaumont (1994), “Damage Accumulation”. Damage
Mechanics of Composite Materials, ed. R. Talreja. Elsevier.


