
A New Hybrid Genetic Algorithm for the Job Shop Scheduling Problem with
Setup Times

Miguel A. González and Camino R. Vela and Ramiro Varela
Artificial Intelligence Center, University of Oviedo, Spain,

Campus of Viesques, 33271 Gijón
email raist@telecable.es and {crvela,ramiro}@uniovi.es

Abstract

In this paper we face the Job Shop Scheduling Problem with
Sequence Dependent Setup Times by means of a genetic al-
gorithm hybridized with local search. We have built on a pre-
vious work and propose a new neighborhood structure for this
problem which is based on reversing operations on a critical
path. We have conducted an experimental study across the
conventional benchmarks and some new ones of larger size.
The results of these experiments show clearly that our ap-
proach outperforms the current state-of-the-art methods.

Introduction

In the last decades, scheduling problems have been subject
to intensive research due to their multiple applications in ar-
eas of industry, finance and science (Brucker & Knust 2006).
In this paper, we consider the Job Shop Scheduling Problem
with Sequence Dependent Setup Times (SDST-JSP). This is
an extension of the classical Job Shop Scheduling Problem
(JSP) in which a setup operation is required between any
two consecutive operations on the same machine. In this
way, the SDST-JSP models much more real situations than
the JSP. At the same time, setup considerations makes the
problem more complex so as formal properties and methods
have to be reconsidered. The SDST-JSP has been confronted
by a number of researchers. Consequently, a number of ap-
proaches can be found in the literature that, in general, try to
extend solutions that were successful for the classical JSP.
For example, the branch and bound algorithm proposed by
(Brucker & Thiele 1996) is an extension of the well-known
algorithms proposed in (Brucker, Jurisch, & Sievers 1994),
(Brucker 2004) and (Carlier & Pinson 1994). The genetic
algorithm proposed by (Cheung & Zhou 2001) is also an
extension of a genetic algorithm for the JSP. Also, (Balas,
Simonetti, & Vazacopoulos 2005) extend the shifting bottle-
neck heuristic proposed in (Adams, Balas, & Zawack 1988)
for the JSP.

In this paper we follow a similar methodological approach
and extend a genetic algorithm and a local search method
that were successfully applied to the JSP in (González et al.
2006b). This genetic algorithm was designed by combin-
ing ideas taken from the literature such as the G&T algo-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rithm proposed in (Giffler & Thomson 1960) and the cod-
ification schema proposed by (Bierwirth 1995). The local
search methods are inspired by those developed for the JSP
by various researchers, for example (Dell’ Amico & Tru-
bian 1993), (Nowicki & Smutnicki 1996), (Mattfeld 1995)
or (Jain, Rangaswarny, & Meeran 2000). In (González et
al. 2006b) we report results from an experimental study
across a set of hard problems selected by (Applegate & Cook
1991) showing that the genetic algorithm hybridized with
local search is competitive with the most efficient methods
for the JSP. In order to extend this algorithm to the SDST-
JSP, we have first substituted the decoding algorithm by the
Serial Schedule Generation Schema proposed in (Artigues,
Lopez, & Ayache 2005). Then, for local search we have en-
visaged a new neighborhood structure which is inspired by
the branching schema of the B&B algorithm proposed by
(Brucker, Jurisch, & Sievers 1994) for the JSP and also by
some ideas taken from (Dell’ Amico & Trubian 1993) and
(Nowicki & Smutnicki 1996). The new hybrid genetic al-
gorithm is an extension of the algorithm proposed in (Vela,
Varela, & González 2008).

For the purpose of comparison with other methods, the
experimental study has been conducted over the set of 15
instances proposed by (Brucker & Thiele 1996) (called BT
set in the literature). First, we have evaluated separately the
plain genetic algorithm and the local search starting from
random solutions. Then, we have combined both methods;
our approach consists of applying the local search to every
chromosome generated by the genetic algorithm. The re-
ported results show that the genetic algorithm and the local
search produce quite similar results and that the genetic al-
gorithm combined with local search is much more efficient
than either of them alone, when all of them are run for the
same or similar amount of time. Moreover, the results show
that solutions obtained by the hybrid algorithm are quite
competitive with the results obtained by the best current ap-
proaches, such as the branch and bound method proposed
by (Artigues & Feillet 2008), the heuristic method proposed
by (Balas, Simonetti, & Vazacopoulos 2005) or the hybrid
genetic algorithm proposed in (Vela, Varela, & González
2008). For the five larger instances we have even improved
the best results reported so far. Additionally, we reported
results of experiments conducted over another benchmark,
proposed in (Vela, Varela, & González 2008), with larger

116

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)

instances than that in the BT set. These instances were gen-
erated from the set of problems selected in (Applegate &
Cook 1991) as hard to solve for the JSP.

The remaining of the paper is organized as follows. In
the next section, we formulate the SDST-JSP and introduce
the notation used across the paper. In the third section, we
describe the genetic algorithm for the SDST-JSP, in partic-
ular we describe the local search algorithm and formalize
the neighborhood structures for the SDST-JSP. The fourth
section reports results obtained from the experimental study.
Finally, in the last section we summarize the main conclu-
sions.

The Job Shop Scheduling Problem with

Sequence-Dependent Setup Times

The Job Shop Scheduling Problem with Sequence-
Dependent Setup Times (SDST-JSP) requires scheduling a
set of N jobs {J1, . . . , JN} on a set of M physical resources
or machines {R1, . . . , RM}. Each job Ji consists of a set of
tasks or operations {θi1, . . . , θiM} to be sequentially sched-
uled, each one on a different machine. Each task θij has a
single resource requirement, a fixed duration pθij

and a start
time stθij

whose value should be determined.
After an operation θij leaves the machine and before an

operation θkl enters the same machine, a setup operation is
required with duration Sθijθkl

. S0θij
is the setup time re-

quired before θij if this operation is the first one scheduled
on the machine, analogously Sθij0 is the cleaning time after
operation θij if this is the last operation scheduled on the
machine.

The SDST-JSP has two binary constraints: precedence
constraints and capacity constraints. Precedence constraints,
defined by the sequential routings of the tasks within a job,
translate into linear inequalities of the type: stθij

+ pθij
≤

stθi(j+1)
(i.e. θij before θi(j+1)). Capacity constraints

that restrict the use of each resource to only one task at
a time translate into disjunctive constraints of the form:
stθij

+pθij
+Sθijθkl

≤ stθkl
∨ stθkl

+pθkl
+Sθklθij

≤ stθij
,

where θij and θkl are operations requiring the same ma-
chine. The objective is to obtain a feasible schedule such
that the completion time of all jobs, i.e. the makespan,
denoted Cmax, is minimized. This problem is denoted by
J |sij |Cmax according to the α|β|γ notation used in the lit-
erature.

The Disjunctive Graph model Representation

The Disjunctive Graph is a common representation model
for scheduling problems. The definition of such graph de-
pends on the particular problem. For the SDST-JSP, Dis-
junctive Graphs can be defined as follows. A problem in-
stance may be represented by a directed graph G = (V, A ∪
E ∪ I). Each node in the set V represents a task of the prob-
lem, with the exception of the dummy nodes start or 0 and
end or nm + 1 which represent tasks with null processing
times. For a task θij , the label of the corresponding node
will be k = m(i − 1) + j. The arcs of set A are called
conjunctive arcs and represent precedence constraints and
the arcs of set E are called disjunctive arcs and represent

start R121

31

end

R R12 2

R3
R

R R1 3

R 1311 1

2

1

3+2

3+1

4+1

4 3

2+1

3+2
3+2

431

3 3

3+2 4+1 3+11

32

θ 22

θ θ

θ

θ

θ

R
33

23

θ θ θ

3

2

Figure 1: A feasible schedule to a problem with 3 jobs and 3
machines. Bold face arcs show a critical path whose length,
i.e. the makespan, is 22.

capacity constraints. Set E is partitioned into subsets Ei,
with E = ∪i=1,...,MEi. Ei corresponds to resource Ri and
includes an arc (v, w) for each pair of operations requiring
that resource. Each arc (v, w) of A is weighted with the
processing time of the operation at the source node, pv, and
each arc (v, w) of E is weighted with pv + Svw. The set
I includes arcs of the form (start, v) and (v, end) for each
operation v of the problem. These arcs are weighted with
S0v and pv + Sv0 respectively. In this paper, we consider
that the triangular inequality holds for the setup times, i.e.
Suw ≤ Suv +Svw if u, v and w are operations requiring the
same machine.

A feasible schedule is represented by an acyclic subgraph
Gs of G, Gs = (V, A ∪ H ∪ J), where H = ∪i=1...MHi,
Hi being a hamiltonian selection of Ei. J includes arcs
(start, vi) and (wi, end) for all i = 1 . . .M , vi and wi be-
ing the first and last operations of Hi respectively.

Therefore, finding a solution can be reduced to discover-
ing compatible hamiltonian selections, i.e. processing order-
ings for the operations requiring the same resource, or partial
schedules, that translate into a solution graph Gs without cy-
cles. The makespan of the schedule is the cost of a critical
path. A critical path is a longest path from node start to
node end. Nodes and arcs in a critical path are termed crit-
ical. The critical path is naturally decomposed into subse-
quences B1, . . . , Br called critical blocks. A critical block
is a maximal subsequence of operations of a critical path re-
quiring the same machine.

Figure 1 shows a solution to a problem with 3 jobs and
3 machines. Dotted arcs represent the elements H and J ,
while arcs of A are represented by continuous arrows.

The concepts of critical path and critical block are of ma-
jor importance for scheduling problems due to the fact that
most of the formal properties and solution methods rely on
them. For example, it is well-known that a schedule of a
JSP instance is optimal if a critical path consists solely of
operations of the same job or operations requiring the same
machine. This is an interesting property, as it can be used
as a termination criterion for a search algorithm. However,
for the SDST-JSP only one of these properties holds, as it is
proved in the following two theorems.

Theorem 1 Let H be a schedule of a SDST-JSP instance.
Even if H has critical path where all operations require the

117

1 2

50

3

5

5+15

4
5

0

0

5+0

5+0

5+0

Figure 2: A feasible schedule to a problem with 2 jobs and 2
machines. Bold face arcs show a critical path whose length,
i.e. the makespan, is 25.

1 2

50

3

5

4
5

5+0

5+0

0

0

5+3
5+0

Figure 3: A feasible schedule to the same problem as 2.
Bold face arcs show a critical path whose length, i.e. the
makespan, is 23.

same machine, it might be non-optimal.

Proof 1 Let us consider an instance with 2 jobs and 2 ma-
chines. θ11 and θ22 require R1 and θ12 and θ21 require R2.
The processing time of the four operations is 5. All the setup
times are zero, except for S23 = 3 and S32 = 15. It’s clear
that the triangular inequality holds for this instance. Fig-
ures 2 and 3 show a counterexample. Figure 2 shows a non-
optimal schedule for this instance, with a critical path con-
sisting of two operations requiring the same machine and
Figure 3 shows the optimal schedule for this instance.

Theorem 2 Let H be a schedule of a SDST-JSP instance
with a critical path where all operations belongs to the same
job. If the triangular inequality holds for the setup times,
then H is optimal.

Proof 2 Let i be the the job whose operations make up
the critical path. Then the length of this path is S0θi1 +∑

j=1,...,M pθij
+ SθiM0. Due to the triangular inequality,

θi1 can not start at a time earlier than S0θi1 and the time
after θiM can not be lower than SθiM0, so the length of that
critical path is a lower bound of the optimal schedule and
consequently H is optimal.

The Genetic Algorithm

To solve the SDST-JSP we use here a variant of the hybrid
genetic algorithm proposed in (Vela, Varela, & González
2008). These algorithms differ mainly in the schedule
builder schema used to evaluate chromosomes and also in
the neighborhood structure used for local search.

To codify chromosomes, the schema based on permuta-
tions with repetition proposed in (Bierwirth 1995) is used.

In this schema a chromosome is a permutation of the set
of operations, each one being represented by its job num-
ber. In this way a job number appears within a chromo-
some as many times as the number of its operations. For
example, the chromosome (2 1 1 3 2 3 1 2 3) actually repre-
sents the permutation of operations (θ21 θ11 θ12 θ31 θ22 θ32

θ13 θ23 θ33). This permutation should be understood as ex-
pressing partial schedules for each set of operations requir-
ing the same machine. This codification presents a number
of interesting characteristics; for example, it is easy to eval-
uate with different algorithms and allows efficient genetic
operators. In (Varela, Serrano, & Sierra 2005) this codifica-
tion is compared with other permutation based codifications
and demonstrated to be the best one for the JSP over a set of
12 selected problem instances of common use.

For chromosome mating, the genetic algorithm uses the
Job Order Crossover (JOX) described in (Bierwirth 1995).
Given two parents, JOX selects a random subset of jobs and
copies their genes to the offspring in the same positions as
they are in the first parent, then the remaining genes are
taken from the second parent so as to maintain their relative
ordering.

To build schedules, in (Vela, Varela, & González 2008),
we have used a decoding algorithm based on the algorithm
EG&T proposed in (Artigues & Lopez 2000). This is an ex-
tension of the G&T algorithm for the JSP given in (Giffler
& Thomson 1960) that considers setup times. Algorithm
EG&T is simple and produces active schedules, but it is
not dominant. In this paper, we consider a different sched-
ule builder, the Serial Schedule Generation Scheme (SSGS)
proposed by Artigues et al. in (Artigues, Lopez, & Ayache
2005). The schedule builder based on SSGS iterates over
the operations in the order they appear in the chromosome
sequence and for each one it selects the earliest starting time
that satisfies all constraints with respect to the previous oper-
ations. Algorithm SSGS produces active schedules as well
and it is dominant, provided that the triangular inequality
holds. In some preliminary experiments, not reported here,
we have compared SSGS with EG&T and SSGS have re-
sulted more efficient overall.

Local Search

Local search is implemented by defining a neighborhood of
each point in the search space as the set of chromosomes
reachable by a given transformation rule. Then a chromo-
some is replaced in the population by the selected neighbor,
provided that it satisfies the acceptance criterion. In this pa-
per, we use a simple hill-climbing based on makespan es-
timation, i.e. a chromosome is replaced by its first neigh-
bor whose estimated makespan is better than the actual
makespan of the chromosome. The local search from a given
point finishes either after a number of iterations or when no
neighbor satisfies the acceptance criterion. The local search
algorithm is applied to every chromosome right after this
chromosome has been generated.

In the neighborhood study carried out in this paper for the
SDST-JSP, we have tried to extend the results and methods
developed for the classical JSP. Some of the pioneer works
for the JSP are described in (Matsuo, Suh, & Sullivan 1988)

118

and (Van Laarhoven, Aarts, & Lenstra 1992). In these pa-
pers, some interesting results are given such as that revers-
ing a single critical arc always produce a feasible schedule
and that reversing a single arc may produce an improvement
only if the reversed arc is either at the beginning or at the
end of a critical block. Also, for the JSP, the optimality of a
schedule H can be established if the critical path contains
only one critical block. From these results, a number of
neighborhood structures have been proposed that gave rise
to some of the most outstanding methods to solve the JSP.
Among these we can cite (Dell’ Amico & Trubian 1993),
(Nowicki & Smutnicki 1996), (Nowicki & Smutnicki 2005),
(Balas & Vazacopoulos 1998), (Zhang et al. 2008). Further-
more, a number of interesting properties have been studied
and proved for some neighborhood structures. For example,
some structures have the connectivity property; i.e. given
any schedule H , an optimal one is always reachable from H
by applying a finite sequence of transformations. This is the
case of the structures proposed in (Van Laarhoven, Aarts, &
Lenstra 1992) and (Dell’ Amico & Trubian 1993). Should
this property holds, the structure could also be exploited as a
branching schema in an exact branch and bound algorithm.
Also, for some structures, if the set of neighbors is empty
for a schedule, this schedule is optimal. This is the case of
the structure proposed in (Nowicki & Smutnicki 1996); this
property allows to stop the search in about 20% of the in-
stances solved in the experimental study.

For the SDST-JSP, things are not the same as for JSP prob-
lem. The problem structure changes significatively due to
setup times, so as new approaches are required. Few re-
sults have been given with respect to neighborhood struc-
tures. For example, in (Zoghby, Barnes, & J.J. 2005), it is
proved that feasibility is not guaranteed when reversing an
arc of the critical path. Moreover, it easy to see that such a
reversal might lead to improving schedules, even if this arc
is not at the border of a critical block. In this paper, we es-
tablish two new results about connectivity and optimality for
the SDST-JSP. This results are given in the following theo-
rem.

Theorem 3 Let N be a neighborhood structure such that
N(H) is made up of feasible schedules obtained from H
by reversing processing orders of critical operations only.
Then N does not fulfil the connectivity property. Moreover,
H might not be globally optimal even if N(H) = ∅.

Proof 3 These results can be proved from the example pre-
sented in Figures 2 and 3. Let H be the schedule of figure 2.
As we can observe, the only critical block of H is given by
the arc (3, 2), and reversing this arc gives rise to an unfea-
sible schedule, so N(H) = ∅. However, H is not optimal
as it is worse than the schedule of figure 3 which is the only
optimal solution for this problem. Hence, in order to reach
the optimal solution from H , both a critical arc and a non-
critical arc have to be simultaneously reversed.

The connectivity is a convenient property for a neighbor-
hood structure as, in principle, it reinforces the chance of
success in finding and optimal schedule. However, it has
not usually a great relevance in the context of a local search

algorithm where the number of iterations is limited or the
acceptation criterion is based on hill climbing.

In this paper we propose a new neighborhood structure
for the SDST-JSP which is inspired by the branching schema
used in the algorithm presented in (Brucker & Thiele 1996)
for the SDST-JSP. This branching schema considers all crit-
ical blocks of a critical path, and for each block B, each op-
eration is moved to any other position of B including before
and after all the remaining operations of B. In order to estab-
lish an efficient neighborhood schema, we analyze all these
moves and give sufficient conditions for non-improvement
and feasibility. Also, we provide an algorithm for makespan
estimation after a move.

Let us consider a critical block of the form (b′ v b w b′′).
A sufficient condition for feasibility, after moving the opera-
tion w before v, is that a cycle does not exist in the resulting
solution graph. In other words, none of the alternative paths
showed in figure 4 may exists. An exact determination of
these paths not existing is very time consuming; for these
reason it is usual to establish any sufficient condition, but
not necessary, that can be efficiently evaluated. In this case
we have the risk of discarding some feasible neighbors. In
general, there is not only one sufficient condition so as we
have to consider their cost and accuracy to chose the most
appropriate one.

v

w

SJ

SJ

SJ

SJ

PJ

u

u

u

u1

ui

un

w

1

i

n

v

Figure 4: Potential alternative paths between two operations
v and w in a critical block that could lead to a cycle after
moving operation w before operation v.

The next result establishes a sufficient condition for feasi-
bility after moving an operation w in a critical block towards
the beginning of such block (just before v). This result is
suitable for any structure involving reversing processing or-
ders of tasks in a critical path, and have to be evaluated for
each processing order reversed. The head rv of an operation
v is the length of the longest path from node start to v in the
solution graph. Also, PJv and SJv denote the predecessor
and sucesor of operation v in the job sequence.

Theorem 4 Given a critical block of the form (b′ v b w b′′),
where b, b′ and b′′ are sequences of operations, a sufficient
condition for an alternative path from v to w not existing is
that

rPJw
< rSJu

+pSJu
+min {Skl|(k, l) ∈ E, Jk = Ju} (1)

119

∀u ∈ {v} ∪ b

Proof 4 Let us denote b = (u1 . . . ui . . . un). The only al-
ternative paths from v to w are those indicated in Figure 4.
As each potential alternative path includes at least a setup
time, none of these paths can exist if condition (1) holds.

Here is important to remark that this condition can be
evaluated in constant time for each pair of operations u and
w and that all positions to which an operation w can be
moved before its current position can be determined with
only one iteration over operations preceding w in the criti-
cal block. An analogous reasoning can be done regarding
moves toward the end of the critical block.

As we have commented above, after a neighbor is deter-
mined to be feasible, its makespan should be obtained in or-
der to evaluate the acceptance condition of the local search.
As obtaining the exact makespan for all neighbors is very
time consuming, it is common to establish conditions for
non-improvement that can be evaluated with a low cost. In
this paper we give the following result that establishes a suf-
ficient condition for non-improvement when an operation is
moved inside a critical block.

Theorem 5 Let H be a schedule and (b v b′ w b′′) a crit-
ical block, where b, b′ and b′′ are sequences of opera-
tions of the form b = (u1 . . . un), b′ = (u′

1 . . . u′

n′) and
b′′ = (u′′

1 . . . u′′

n′′). Even if the schedule H ′ obtained from
H by moving w just before v is feasible, H ′ does not improve
H if the following condition holds

Sunv + Su′

n′
w + Swu′′

1
≤ Sunw + Swv + Su′

n′
u′′

1
. (2)

In case of n′ = 0, u′

n′ should be substituted by v in (2).

Therefore, we can finally define the proposed neighbor-
hood structure, termed NS , as follows

Definition 1 (NS) Let operation v be a member of a critical
block B. In a neighboring solution, v is moved to another
position in B, provided that condition (2) is not fulfilled and
that the sufficient condition of feasibility (1) is preserved.

Makespan estimation For makespan estimation, we use
the procedure lpathS given in (Vela, Varela, & González
2008) for the SDST-JSP. This procedure takes as input a
sequence of operations (x Q1 . . . Qq y) requiring the same
machine after a move, where Q1 . . .Qq is a permutation of
operations O1 . . .Oq appearing as (x O1 . . . Oq y) before
the move. For each i = 1 . . . q, lpathS computes the cost of
the shortest path from nodes start to end through Qi. The
maximum of these values is taken as the makespan estima-
tion for the neighboring schedule, which is clearly a lower
bound.

This procedure is suitable for neighborhood structures
proposed in (Vela, Varela, & González 2008) and also for
the structure proposed here by taking the appropriate input
sequence (Q1 . . .Qq) in each case. For NS, if w is moved
before v in a block of the form (b′ v b w b′′), the input se-
quence is (w v b).

Experimental Results
For experimental study we have used the set of problems
proposed in (Brucker & Thiele 1996) (the BT set) and also

some new benchmark instances proposed in (Vela, Varela,
& González 2008). The first one is a set of instances de-
fined from the classical JSP instances, LA01 to LA15, by
introducing setup times. Each instance is characterized by
a number of machines, a number of jobs and a matrix of
setup types of operations. So, each instance is identified by
a triplet (machines× jobs× setup types). There is a total
of 15 instances named t2-ps01 to t2-ps15. Instances t2-ps01
to t2-ps05 are of type 5×10×5 (small instances). Instances
t2-ps06 to t2-ps10 are of type 5×15×5 (medium instances).
And instances t2-ps011 to t2-ps15 are of type 5 × 20 × 10
(large instances). In (Brucker & Thiele 1996) and (Artigues
& Feillet 2008) the authors remark that the corresponding
instances without setup times were easily solved by their
branch and bound methods. We have also solved these in-
stances to optimality with the genetic algorithm proposed in
(González et al. 2006a).

The paper by (Artigues & Feillet 2008) summarizes the
best results obtained by the most efficient methods proposed
so far. They report results from their branch and bound al-
gorithm, as well as results from a number of previous ap-
proaches proposed by themselves and also from approaches
proposed by other researches, such as the branch and bound
method from (Brucker & Thiele 1996) and the method based
on the shifting bottleneck heuristic from (Balas, Simonetti,
& Vazacopoulos 2005).

Table 1 summarizes the best results reported in (Artigues
& Feillet 2008) and also the results from (Vela, Varela, &
González 2008). It shows the best known lower bounds and
the best solutions reached by three methods termed BSV05
(Balas, Simonetti, & Vazacopoulos 2005), AF08 (Artigues
& Feillet 2008) and VVG08 (Vela, Varela, & González
2008) respectively together with the times taken in any case.
It is important to be aware of the differences in the tar-
get machines. The algorithm proposed in (Balas, Simon-
etti, & Vazacopoulos 2005) was implemented in C language
and run on a Sun Ultra 60 with UltraSPARC-II processor at
360MHz. The hybrid GA from (Vela, Varela, & González
2008) is coded in C++ and run in a Pentium IV (1.7GHz)
machine. And the algorithm reported in (Artigues & Feillet
2008) is coded in C++ and run on a PC computer (no other
details are given).

In the experimental study, we evaluated the local search
and the genetic algorithm (GA) separately and both of them
in combination. The results are summarized in Table 2. We
run the GA 30 times for each problem instance and report
the best solution reached in all 30 runs and the average of
the best solutions from each run. The parameters are set to
obtain similar run time in all cases. When the GA is com-
bined with local search, it is parameterized as follows: for
instances t2-ps01 to t2-ps05 the population size is 100 chro-
mosomes and the number of generations is 100 (/100/100/),
for instances of medium size t2-ps06 to t2-ps10 the param-
eters are /100/200/ and for the largest instances t2-ps10 to
t2-ps15 the parameters are /200/400/. When local search
is not used, the GA parameters are /190/190/, /270/400/ and
/600/1000/ respectively. To study local search independently
from GA, the local search algorithm is run 30 times for each
instance starting from a set of 4000, 7000 and 25000 random

120

Table 1: Summary of previous results
Instance LB BSV05 AF08 VVG08

Best Time (UB1) Time Best Avg. Time

t2-ps01 798 798* 358 798* 54 798* 799 2.7
t2-ps02 784 784* 550 784* 57 784* 784 2.6
t2-ps03 749 749* 834 749* 77 749* 749 2.3
t2-ps04 730 730* 515 730* 11 730* 732 2.1
t2-ps05 691 693 248 691* 14 691* 696 2.6

t2-ps06 1009 1018 1192 1009* 6151 1026 1026 13.3
t2-ps07 970 1003 1338 970* 10008 970* 970 10.8
t2-ps08 958 975 833 982 1471 963 974 12.4
t2-ps09 1051 1060 423 1061 595 1060 1061 10.2
t2-ps10 1018 1018* 557 1047 5692 1018* 1024 10.5

t2-ps11 1382 1470 3047 1494 8452 1441 1478 105.9
t2-ps12 1226 1305 2173 1381 1748 1293 1340 103.5
t2-ps13 1320 1439 2468 1457 12401 1415 1438 97.4
t2-ps14 1431 1485 2131 1483 3299 1466 1537 97.8
t2-ps15 1390 1527 3111 1661 25153 1492 1529 105.7

* tight bound
All algorithms are coded in C or C++ and target machines are a Sun Ultra 60 (360Mhz) in (BSV05); a PC computer in (AF08)
and a Pentium IV (1.7GHz) in (VVG08) (in this case, times refers to average CPU time of an execution)

solutions for small, medium and large instances respectively
to obtain similar run times (about 0.78, 3.84 and 32.29 sec-
onds per run for small, medium and large instances respec-
tively). The algorithms are coded in C++ and the target ma-
chine is Intel Core 2 Duo at 2,6 GHz.

As we can observe from the best and mean values in Ta-
ble 2, the GA alone and the local search alone produce quite
similar results, slightly better for the latter on the larger in-
stances. Also, these methods are clearly worse than the GA
combined with local search. The differences in efficiency
can be more clearly appreciated from the mean relative er-
rors also reported in Table 2, where the mean relative error
is defined as RE = 100 ∗ (Average−BKS)/BKS, being
BKS the Best Known Solution. Also, the standard errors of
the average values (calculated as SE = σ/

√
30, where σ is

the standard deviation of the best solutions reached in the 30
runs) of local search algorithm are lower than those of the
GA. These differences indicate that the average values from
the local search algorithm are slightly more representative
than the values from the GAs. However, if we consider the
confidence interval with level 95% for the mean makespan
from all three methods, we can see that the upper bound of
the interval for the hybrid GA is much lower than the lower
bounds for the local search and the GA. In summary, the ef-
ficiency of both methods is similar when they are exploited
separately but synergies gained from the joint application
largely improve the efficiency.

Regarding comparison with the branch and bound method
described in (Artigues & Feillet 2008), the hybrid genetic al-
gorithm achieves better mean values for seven instances, the
same values for four instances, and worse values for the re-
maining four, as we can observe in Tables 1 and 2. It is
worth noting that for four of the largest instances, the mean
value of the hybrid genetic algorithm is better than the best
value reached by the branch and bound algorithm. More-

over, in seven cases the mean value is also better than the
best value reached by the shifting bottleneck heuristic de-
scribed in (Balas, Simonetti, & Vazacopoulos 2005). Also,
the new hybrid genetic algorithm outperforms the algorithm
proposed in (Vela, Varela, & González 2008), in particular
regarding mean values. The standard error values confirm
the reliability of these results, with a low sampling fluctua-
tion on the average value obtained by the hybrid GA. Even
for the large instance t2-ps12, with the highest standard error
(3.81), the upper 95% confidence limit for the mean value is
1298.5 which is still better than the solutions given by (Ar-
tigues & Feillet 2008) and by (Balas, Simonetti, & Vaza-
copoulos 2005) (see Table 1).

Summarizing, the hybrid genetic algorithm reaches the
optimal solution in all of the five small instances. For
medium instances, it reaches the optimal solution in two
cases and the best known solution in two cases. For instance
t2-ps06 it is not able to reach the best known solution of
1009 which is optimal; however, in all 30 cases the solution
reached was 1026 as it is in many of the methods reported in
(Artigues & Feillet 2008). For the hardest instances, t2-ps11
to t2-ps15, the new hybrid genetic algorithm has improved
the best known solutions in all cases.

Experiments with the new benchmark of selected
instances

In order to experiment with problem instances larger than
those in the BT set, we use the benchmark proposed in (Vela,
Varela, & González 2008). These instances are derived from
the set of 10 selected problems identified in (Applegate &
Cook 1991) as hard to solve for the classical JSP. The sizes
of these problems are 15 × 10 for the smallest ones (La21
to La25), 20 × 10 for La27 and La29, 15 × 15 for La38 and
La40, and 20×15 for the largest (ABZ instances). These in-

121

Table 2: Summary of results from the comparison of the GA alone, Local Search alone and the GA hybridized with Local
Search

GA LS GA+LS Time
Instance Best Avg. RE SE Best Avg. RE SE Best Avg. RE SE sec.

t2-ps01 798* 806 0.96 1.60 798* 809 1.42 1.22 798* 798 0.00 0.00 0.70
t2-ps02 784* 786 0.19 0.43 784* 793 1.17 1.62 784* 784 0.00 0.00 0.73
t2-ps03 749* 762 1.67 1.35 749* 763 1.82 1.00 749* 749 0.03 0.33 0.81
t2-ps04 733 739 1.21 0.71 733 743 1.84 1.02 730* 730 0.00 0.00 0.70
t2-ps05 710 715 3.43 0.23 693 695 0.62 0.76 691* 692 0.13 0.57 0.96

t2-ps06 1026 1052 4.29 3.43 1026 1036 2.71 1.52 1026 1026 1.68 0.00 4.74
t2-ps07 988 1008 3.96 2.58 1020 1032 6.40 1.61 970* 971 0.08 0.00 3.34
t2-ps08 992 1023 6.18 2.30 988 1010 4.92 1.32 963 966 0.29 0.31 4.38
t2-ps09 1062 1075 1.41 1.59 1060 1069 0.89 1.35 1060 1060 0.00 0.00 3.54
t2-ps10 1018* 1052 3.31 4.28 1047 1062 4.29 1.12 1018* 1018 0.00 0.00 3.22

t2-ps11 1510 1564 8.75 7.04 1510 1526 6.10 1.45 14381 14391 0.05 0.39 31.62

t2-ps12 1357 1413 11.36 7.85 1350 1363 7.38 1.14 12691 12911 1.73 3.81 34.28

t2-ps13 1441 1510 7.42 6.44 1443 1472 4.71 2.59 14061 1415 0.65 0.47 31.14

t2-ps14 1519 1581 8.86 6.92 1502 1539 6.00 1.51 14521 1489 2.57 1.50 27.83

t2-ps15 1542 1602 7.87 4.91 1577 1612 8.58 2.90 14851 1502 1.13 2.48 36.58

Values in bold are best known solutions, 1 improves previous best known solution, * tight bound.

Table 3: Summary of results across the benchmark issued
from the 10 selected instances

VVG08 GA+LS
Instance Best Avg. Best Avg. Time

La21 st 1351 1383 1351 1375 25.48
La24 st 1171 1177 1171 1177 22.48
La25 st 1221 1226 1213 1222 27.47
La27 st 1774 1802 1732 1770 80.24
La29 st 1740 1765 1729 1747 90.44
La38 st 1461 1473 1456 1469 42.59
La40 st 1470 1487 1476 1482 40.27
ABZ7 st 1273 1300 1242 1262 199.45
ABZ8 st 1294 1323 1255 1274 179.76
ABZ9 st 1264 1301 1235 1250 191.37

stances are extended to the SDST-JSP by using the same cri-
teria as in the BT instances, i.e. the setup times depend only
on the jobs and are taken from one of two matrices. These
matrices can be found, for example, in (Artigues, Lopez, &
Ayache 2005) and identify the type of setup times 5 or 10.
Instances with 15 jobs are of type 5 and instances with 20
jobs are type 10. Each instance is identified by the the name
of the JSP instance followed by st. Table 3 summarizes the
best and average values reached from both methods across
these instances. We have set parameters for both hybrid GAs
as /200/400/ for all instances. As before, the hybrid GA was
run 30 times for each instance and the average and the best
of the 30 solutions are reported. As parameters are different,
results reported in Table3 for VVG08 method are, in gen-
eral, better than those included in (Vela, Varela, & González
2008). As we can see, the results reached with the new hy-
brid GA are also better than that obtained with the previous
one.

Conclusions

We have considered the job shop problem with sequence de-
pendent setup times, where the objective is to minimize the
makespan. We have used a hybrid genetic algorithm, com-
bining a genetic algorithm with a dominant active sched-
uler builder and a local search procedure. For local search,
we have devised a new neighborhood structure which is
based on reversing orders of operations on the critical path.
We have studied the moves that might yield improving
solutions in presence of setup times and we have estab-
lished conditions that allow to discard unfeasible and some
non-improving schedules. We have reported results from
an experimental study across the benchmarks proposed in
(Brucker & Thiele 1996) and (Vela, Varela, & González
2008), and have compared our hybrid genetic algorithm with
state-of-the-art methods. To our knowledge, the best of these
methods are the branch and bound algorithm given by (Ar-
tigues & Feillet 2008) and the method based on the shifting
bottleneck heuristic proposed in (Balas, Simonetti, & Vaza-
copoulos 2005). Also we have compared with another hy-
brid genetic algorithm from (Vela, Varela, & González 2008)
that differs in the schedule builder, the neighborhood struc-
ture and the acceptance criterion in the local search. The
results of this study show that our approach outperforms all
the current state-of-the-art methods.

As future work, we plan to study other moves in the criti-
cal path to establish new neighborhood structures and refine
the conditions to check both feasibility and improvement.
Also, we plan to experiment with other meta-heuristics such
as tabu search or simulated annealing. These techniques
have demonstrated to be very efficient for problems such as
the classical JSP and we expect they will be good for the
SDST-JSP as well.

122

Acknowledgements
This work has been supported by the Spanish Ministry of
Science and Education under research project MEC-FEDER
TIN2007-67466-C02-01, and by the Principality of Asturias
under grant BP07-109.

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling. Managa-
ment Science 34:391–401.

Applegate, D., and Cook, W. 1991. A computational
study of the job-shop scheduling problem. ORSA Journal
of Computing 3:149–156.

Artigues, C., and Feillet, D. 2008. A branch and bound
method for the job-shop problem with sequence-dependent
setup times. Annals of Operations Research 159(1):135–
159.

Artigues, C., and Lopez, P. 2000. Extending Giffler-
Thompson algorithm to generate active schedules for job-
shops with sequence-dependent setup times. LIA report
129, University of Avignon.

Artigues, C.; Lopez, P.; and Ayache, P. 2005. Sched-
ule generation schemes for the job shop problem with
sequence-dependent setup times: Dominance properties
and computational analysis. Annals of Operations Re-
search 138:21–52.

Balas, E., and Vazacopoulos, A. 1998. Guided local search
with shifting bottleneck fo job shop scheduling. Manage-
ment Science 44 (2):262–275.

Balas, E.; Simonetti, N.; and Vazacopoulos, A. 2005. Job
shop scheduling with set-up times, deadlines and prece-
dence constraints. In Proceedings of MISTA’2005.

Bierwirth, C. 1995. A generalized permutation approach to
jobshop scheduling with genetic algorithms. OR Spectrum
17:87–92.

Brucker, P., and Knust, S. 2006. Complex Scheduling.
Springer.

Brucker, P., and Thiele, O. 1996. A branch and bound
method for the general-job shop problem with sequence-
dependent setup times. Operations Research Spektrum
18:145–161.

Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49:107–127.

Brucker, P. 2004. Scheduling Algorithms. Springer, 4th
edition.

Carlier, J., and Pinson, E. 1994. Adjustment of heads and
tails for the job-shop problem. European Journal of Oper-
ational Research 78:146–161.

Cheung, W., and Zhou, H. 2001. Using genetic algorithms
and heuristics for job shop scheduling with sequence-
dependent setup times. Annals of Operations Research
107:65–81.

Dell’ Amico, M., and Trubian, M. 1993. Applying tabu
search to the job-shop scheduling problem. Annals of Op-
erational Research 41:231–252.

Giffler, B., and Thomson, G. L. 1960. Algorithms for solv-
ing production scheduling problems. Operations Research
8:487–503.

González, M.; Sierra, M.; Vela, C.; Varela, R.; and Puente,
J. 2006a. Combining metaheuristics for the job shop
scheduling problem with sequence dependent setup times.
In Proceedings of the First International Conference on
Software and Data Techonoliges, ICSOFT’2006, 211–220.

González, M. A.; Sierra, M.; Vela, C. R.; and Varela,
R. 2006b. Genetic algorithms hybridized with greedy
algorithms and local search over the spaces of active and
semi-active schedules. Lecture Notes in Computer Science
4177:231–240.

Jain, A. S.; Rangaswarny, B.; and Meeran, S. 2000.
New and ”stronger” job-shop neighbourhoods: A focus on
the method of nowicki and smutnicki (1996). Journal of
Heuristics 6 (4):457–480.

Matsuo, H.; Suh, C.; and Sullivan, R. 1988. A controlled
search simulated annealing method for the general jobshop
scheduling problem. Working paper 03-44-88, Graduate
School of Business, University of Texas.

Mattfeld, D. C. 1995. Evolutionary Search and the Job
Shop Investigations on Genetic Algorithms for Production
Scheduling. Springer-Verlag.

Nowicki, E., and Smutnicki, C. 1996. A fast taboo search
algorithm for the job shop scheduling problem. Manage-
ment Science 42:797–813.

Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling 8:145–159.

Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job
shop scheduling by simulated annealing. Operations Re-
search 40:113–125.

Varela, R.; Serrano, D.; and Sierra, M. 2005. New cod-
ification schemas for scheduling with genetic algorithms.
Lecture Notes in Computer Science 3562:11–20.

Vela, C. R.; Varela, R.; and González, M. A. 2008. Local
search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics Forthcoming.

Zhang, C. Y.; Li, P.; Rao, Y.; and Guan, Z. 2008. A very
fast ts/sa algorithm for the job shop scheduling problem.
Computers and Operations Research 35:282–294.

Zoghby, J.; Barnes, J.; and J.J., H. 2005. Modeling the re-
entrant job shop scheduling problem with setup for meta-
heuristic searches. European Journal of Operational Re-
search 167:336–348.

123

