
A New Local Search for the Job Shop Problem with Uncertain Durations

In és Gonźalez-Rodŕıguez
Dept. of Mathematics, Statistics and Computing, University of Cantabria, 39005 Santander (Spain)

e-mail: ines.gonzalez@unican.es

Camino R. Vela and Jorge Puente and Ramiro Varela
Dept. of Computer Science and A.I. Centre, University of Oviedo, 33271 Gijón (Spain)

e-mail:{crvela,puente,ramiro}@uniovi.es

Abstract

In the sequel we consider the job shop scheduling problem
with uncertain durations represented as triangular fuzzy num-
bers. We propose a new neighbourhood structure for local
search, based on a new definition of critical path for fuzzy
durations. A theoretical analysis of the proposed structure
shows that it improves a previous one from the literature. It
also shows that feasibility and connectivity hold, these being
two highly desirable properties. Experimental results are re-
ported which further illustrate the potential of the proposal.

Introduction
Scheduling problems form an important body of research
since the late fifties, with multiple applications in industry,
finance and science (Brucker & Knust 2006). Part of this
research is devoted to fuzzy scheduling, in an attempt to
model the uncertainty and vagueness pervading real-world
situations. The approaches are diverse, ranging from repre-
senting incomplete or vague states of information to using
fuzzy priority rules with linguistic qualifiers or preference
modelling (Dubois, Fargier, & Fortemps 2003),(Słowiński
& Hapke 2000).

Incorporating uncertainty to scheduling usually requires a
significant reformulation of the problem and solving meth-
ods, in order that the problem can be precisely stated and
solved efficiently and effectively. For instance, extend-
ing critical path analysis to ill-known processing times
is far from being trivial (Dubois, Fargier, & Fortemps
2003). Furthermore, in classical scheduling the complex-
ity of problems such as shop problems means that prac-
tical approaches to solving them usually involve heuris-
tic strategies: simulated annealing, genetic algorithms, lo-
cal search, etc (Brucker & Knust 2006). Some attempts
have been made to extend these heuristic methods to fuzzy
scheduling problems where uncertain durations are mod-
elled via fuzzy intervals, most commonly and successfully
for the flow shop problem: among others, a genetic al-
gorithm is used in (Celano, Costa, & Fichera 2003) and
a genetic algorithm is hybridised with a local search pro-
cedure in (Ishibuchi & Murata 1998). For the job shop,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

single objective problems are tackled using simulated an-
nealing in (Fortemps 1997) and a genetic algorithm hy-
bridised with local search in (González Rodrı́guez, Vela,
& Puente 2007), whilst multiobjective problems are solved
using genetic algorithms in (Sakawa & Kubota 2000) or
(González Rodrı́guezet al. 2008) and using a neural ap-
proach in (Tavakkoli-Moghaddam, Safei, & Kah 2008).

In the following, we consider a job shop problem with
task durations modelled as triangular fuzzy numbers. We
propose new definitions of critical path and neighbourhood
structure for local search. We give theoretical results which
demonstrate the potential of the new proposal, further illus-
trated by the experimental results.

Uncertain Durations
In real-life applications, it is often the case that the exact
duration of a task, i.e. the time it takes to be processed, is not
known in advance. However, based on previous experience,
an expert may have some knowledge (albeit uncertain) about
the duration. In the literature, it is common to use fuzzy
intervals to represent such uncertainty, as an alternative to
probability distributions, which require a deeper knowledge
of the problem and usually yield a complex calculus.

When there is little knowledge available, the crudest
representation for uncertain processing times would be a
human-originated confidence interval. If some values ap-
pear to be more plausible than others, a natural extension
is a fuzzy interval or fuzzy number. The simplest model is
a triangular fuzzy numberor TFN, using only an interval
[a1, a3] of possible values and a modal valuea2 in it. For a
TFN A, denotedA = (a1, a2, a3), the membership function
takes the following triangular shape:

µA(x) =











x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers and more generally fuzzy
intervals have been extensively studied in the literature
(cf. (Dubois & Prade 1986)). Afuzzy intervalQ is a fuzzy
quantity (a fuzzy set on the reals) whoseα-cutsQα = {r ∈
R : µQ(r) ≥ α}, α ∈ (0, 1], are intervals (bounded or not).
Thesupportof Q is Q0 = {r ∈ R : µQ(r) > 0}. A fuzzy

124

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)

numberis a fuzzy quantity whoseα-cuts are closed inter-
vals, with compact support and unique modal value.

In the job shop, we essentially need two operations on
fuzzy quantities, the sum and the maximum. These are ob-
tained by extending the corresponding operations on real
numbers using theExtension Principle. However, com-
puting the resulting expression is cumbersome, if not in-
tractable. For the sake of simplicity and tractability of nu-
merical calculations, we follow (Fortemps 1997) and ap-
proximate the results of these operations by a TFN, eval-
uating only the operation on the three defining points of
each TFN. The approximated sum coincides with the sum
of TFNs as defined by the Extension Principle, so for any
pair of TFNsM andN :

M + N = (m1 + n1, m2 + n2, m3 + n3) (2)

The same is not always true for the maximum∨, although
it is possible to prove that for any two TFNsM, N , if F =
N ∨ M denotes their maximum andG = (m1 ∨ n1, m2 ∨
n2, m3 ∨ n3) its approximated value, it holds that:

∀α ∈ [0, 1], f
α
≤ g

α
, fα ≤ gα. (3)

where[f
α
, fα] is theα-cut of F . In particular,F andG

have identical support and modal value, that is,F0 = G0

andF1 = G1. This approximation can be trivially extended
to the case of more than two TFNs.

The membership functionµQ of a fuzzy quantityQ can
be interpreted as a possibility distribution on the real num-
bers, so we naturally obtain thepossibilityΠ andnecessity
measureN thatQ ≤ r, wherer is a real number (Dubois &
Prade 1986). These measures are used to define theexpected
valueof a fuzzy quantity (Liu & Liu 2002), given for a TFN
A by

E[A] =
1

4
(a1 + 2a2 + a3). (4)

The expected value coincides with the theneutral scalar
substituteof a fuzzy interval and can also be obtained as
the centre of gravity of its mean value or using the area
compensation method (Dubois, Fargier, & Fortemps 2003).
It induces a total ordering≤E in the set of fuzzy inter-
vals (Fortemps 1997), where for any two fuzzy intervals
M, N M ≤E N if and only if E[M] ≤ E[N]. Clearly,
for any two TFNsA andB, if ∀i, ai ≤ bi, thenA ≤E B.

The Job Shop Scheduling Problem
The classicaljob shop scheduling problem, also denoted
JSP, consists in scheduling a set of jobs{J1, . . . , Jn} on
a set{M1, . . . , Mm} of physical resources or machines,
subject to a set of constraints. There areprecedence con-
straints, so each jobJi, i = 1, . . . , n, consists ofm tasks
{θi1, . . . , θim} to be sequentially scheduled. Also, there are
capacity constraints, whereby each taskθij requires the un-
interrupted and exclusive use of one of the machines for
its whole processing time. A solution to this problem is a
schedule, i.e. an allocation of starting times for each task,
which, besides beingfeasible(i.e. all constraints hold), is
optimal according to some criterion, most commonly that
themakespanis minimal.

Expected Makespan Model
For a job shop problem instance of sizen × m (n jobs and
m machines), letp be a duration matrix and letν be a ma-
chine matrix such thatpij is the processing time of task
θij andνij is the machine required byθij , i = 1, . . . , n,
j = 1, . . . , m. Let σ be a feasible task processing order,
i.e., a lineal ordering of tasks which is compatible with a
processing order of tasks that may be carried out so that all
constraints hold. A feasible schedule may be derived from
σ using asemi-active schedule builder. Let Ci(σ, p, ν) de-
note the completion time of jobJi and letSij(σ, p, ν) and
Cij(σ, p, ν) denote the starting and completion times of task
θij , i = 1, . . . , n j = 1, . . . , m. These times are obtained as
follows:

Ci(σ, p, ν) = Cim(σ, p, ν) (5)

Sij(σ, p, ν) = Ci(j−1)(σ, p, ν) ∨ Crs(σ, p, ν) (6)

Cij(σ, p, ν) = Sij(σ, p, ν) + pij (7)

whereθrs is the task precedingθij in the machine according
to the processing orderσ, Ci0(σ, p, ν) is assumed to be zero
and, analogously,Crs(σ, p, ν) is taken to be zero ifθij is the
first task to be processed in the corresponding machine. The
makespanCmax(σ, p, ν) is the maximum completion time
of jobsJ1, . . . , Jn:

Cmax(σ, p, ν) = ∨1≤i≤n (Ci(σ, p, ν)) (8)

For the sake of a simpler notation, we may write, for in-
stance,Cmax(σ) when the problem (hencep andν) is fixed
or evenCmax when no confusion is possible regarding the
task processing order.

If task processing times are fuzzy intervals, then the addi-
tion and maximum in the equations above are taken to be
the corresponding operations on fuzzy intervals, approxi-
mated for the particular case of TFNs as proposed above.
The obtained schedule will be a fuzzy schedule, where the
starting and completion times of all tasks and the makespan
are fuzzy intervals. Such intervals may be seen as possibility
distributions on the values that the times may take. However,
the task processing orderingσ that determines the schedule
is crisp; there is no uncertainty regarding the order in which
tasks are to be processed. In other words, we obtain a fuzzy
schedule from a crisp task ordering.

To illustrate the schedule builder, consider a problem of 3
jobs and 2 machines with the following matrices for fuzzy
processing times and machine allocation:

p =

(

(3, 4, 7) (1, 2, 3)
(4, 5, 6) (2, 3, 4)
(1, 2, 6) (1, 2, 4)

)

ν =

(

1 2
2 1
2 1

)

For the feasible task orderθ11, θ21, θ31, θ22, θ12, θ32, for in-
stance, the starting and completion times for taskθ22 will
beS22 = C21 ∨ C11 = (4, 5, 7) andC22 = S22 + p22 =
(6, 8, 11). Figure 1 corresponds to the Gantt chart (adapted
to TFNs following (Fortemps 1997)) of the resulting sched-
ule, using different textures for tasks in different jobs. It
shows the final makespan as well as the starting times of
tasks scheduled in each machine: forM1, S11 = (0, 0, 0),

125

Makespan

M1

M2

5 10 15 200

5 10 15 200

5 10 15 200

J1

J2

J2

J3
J1

J3

Figure 1: Gantt chart of the schedule represented by
θ11, θ21, θ31, θ22, θ12, θ32

S22 = (4, 5, 7), S32 = (6, 8, 12), and for M2, S21 =
(0, 0, 0), S31 = (4, 5, 6), S12 = (5, 7, 12).

Since we may build a feasible schedule from a feasible
task processing order, we restate the goal of the job shop
problem as that of finding an optimal task processing order,
in the sense that makespan for the derived schedule is opti-
mal. However, it is not trivial to optimise a fuzzy makespan,
since neither the maximum nor its approximation define a
total ordering in the set of TFNs. In the literature, this
problem is tackled using ranking methods, lexicographical
orderings, comparisons based onα-cuts or defuzzification
methods. Here we use the concept of expected value for
a fuzzy quantity and the total ordering it provides, and con-
sider that the objective is to minimise the expected makespan
E[Cmax(σ, p, ν)], a crisp objective function. An optimal
task processing order is then defined as follows:

Definition 1. Let Σ be the set of feasible task processing
orders. A task processing orderσ0 ∈ Σ is said to beoptimal
if and only ifE[Cmax(σ0)] = min {E[Cmax(σ)] : σ ∈ Σ}

A feasible task processing order may be represented by a
decision variablez = (z1, . . . , znm), where1 ≤ zl ≤ n for
l = 1, . . . , nm and|{zl : zl = i}| = m for i = 1, . . . , n.
This is a permutation with repetition (Bierwirth 1995), a per-
mutation of the set of tasks, where each task is labelled with
its job name, so the order of precedence among tasks re-
quiring the same machine is given by the order in which
they appear in the decision variablez. For instance, the
processing order from the example in Figure 1 is repre-
sented by the decision variable (1 2 3 2 1 3). Using this
representation, theexpected makespan modelfor the job
shop (González Rodrı́guez, Vela, & Puente 2007) is ex-
pressed as follows:


























min E[Cmax(z, p, ν)]

subject to:
1 ≤ zl ≤ n, l = 1, . . . , nm,

|{zl : zl = i}| = m, i = 1, . . . , n,

zl ∈ Z
+, l = 1, . . . , nm.

(9)

The Disjunctive Graph Model Representation
A job shop problem instance may be represented by a di-
rected graphG = (V, A ∪ D). Each node in the setV
represents a task of the problem, with the exception of the

dummy nodesstart or 0 andendor nm + 1, representing
tasks with null processing times. Taskθij , 1 ≤ i ≤ n,
1 ≤ j ≤ m, is represented by nodex = m(i − 1) + j.
Arcs in A are calledconjunctive arcsand represent prece-
dence constraints (including arcs from nodestart to the first
task of each job and arcs form the last task of each job to the
nodeend). Arcs inD are calleddisjunctive arcsand repre-
sent capacity constraints. SetD is partitioned into subsets
Di, D = ∪i=1,...,mDi, whereDi corresponds to machine
Mi and includes an arc for each pair of tasks requiring that
machine. Each arc is weighted with the processing time of
the task at the source node (a TFN in our case). A feasi-
ble schedule task processing orderσ is represented by an
acyclic subgraphG(σ) of G, G(σ) = (V, A∪R(σ)), where
R(σ) = ∪i=1...mRi(σ), Ri(σ) being a hamiltonian selec-
tion of Di. Figure 2 shows the solution graph for the exam-
ple in Figure 1.

0

1

5

2

6

3 4 7

(3,4,7)

(3,4,7)

(4,5,6)

(4,5,6)
(1,2,6)

(1,2,4)

(2,3,4)

(2,3,4)

(1,2,3)

(1,2,6)

Figure 2: Solution graphG(σ) for the processing order
σ =(1 3 5 4 2 6) corresponding to the Gantt chart of Fig-
ure 1.Cmax(σ) = (7, 10, 16)

In the crisp case, acritical path is defined as the longest
path from nodestart to nodeendand acritical arc or crit-
ical activity is an arc or activity in a critical path. It is not
trivial to extend these concepts and related algorithms to the
problem with uncertain durations (cf. (Dubois, Fargier, &
Fortemps 2003)). For the fuzzy job shop considered herein
it may even be the case that the makespan (a TFN) does
not coincide with the completion time of one job (unlike the
crisp case).

Local Search
Part of the interest of critical paths stems from the fact that
they may be used to define neighbourhood structures for lo-
cal search. Roughly speaking, a typical local search schema
starts from a given processing order, calculates its neigh-
bourhood and then neighbours are evaluated (for instance,
using the aforementioned semiactive schedule builder) in
the search of an improving solution. Insteepest descent
hill-climbing, all neighbours are evaluated, the best one is
selected and it replaces the original solution if it is an im-
proving neighbour (in our case, with a smallerE[Cmax]). In
simple hill-climbing, evaluation stops as soon as the first im-
proving neighbour is found. Local search starts again from
that improving neighbour, so the procedure finishes when no
neighbour satisfies the acceptation criterion.

Clearly, a central element in any local search procedure
is the definition of neighbourhood. For the crisp job shop,

126

a well-known neighbourhood, which relies on the concepts
of critical path and critical block, is that proposed in (Van
Laarhoven, Aarts, & Lenstra 1992).

Definition 2. A move for a feasible task processing order
σ ∈ Σ is defined as the change in the order of a pair of con-
secutive tasks(x, y) in a critical block. Theneighbourhood
of σ is defined as the set of processing orders obtained from
σ after applying all possible moves.

This neighbourhood presents certain interesting charac-
teristics in the crisp case. First, all neighbours considered
represent feasible solutions and the reversal of a non-critical
arc in the graph can never reduce the makespan. Therefore,
it reduces the search space without any loss in the potential
quality of solutions. Also, there exists a finite sequence of
transitions leading from any given element to some globally
optimal element. This is usually referred to as connectivity
property in the literature and, as we shall argue in the sequel,
is a desirable (but not general) property of neighbourhood
structures.

New Criticality Model and Neighbourhood
Structure

We now propose a new neighbourhood structure for the job
shop with uncertain durations represented as TFNs. To do
so, we give a new definition of criticality, based on the fact
that all arithmetic operations used in the scheduling process
are performed on the three defining points or components of
the TFNs. This allows to decompose the solution graph with
fuzzy durations in three parallel graphs with crisp durations.

Definition 3. Letσ ∈ Σ be a feasible task processing order
and letG(σ) = (V, A ∪ R(σ)) be the corresponding solu-
tion graph, where the cost of any arc(x, y) ∈ A ∪ R(σ)
is a TFN representing the processing timepx of task x.
From G(σ), we define theparallel solution graphsGi(σ),
i = 1, 2, 3, which are identical toG(σ) except for the cost
of arc (x, y) ∈ A∪R(σ), which for graphGi(σ) will be the
i-th defining point ofpx, that is,pi

x.

Each of the parallel graphsGi(σ) is a solution graph iden-
tical to those for crisp JSP. Therefore, in each of them a criti-
cal path is the longest path from nodestart to nodeend. No-
tice that it is not necessarily unique; for instance, Figure 3,
shows the three parallel graphs generated from the graph in
Figure 2; we see that ifp3

6 = 3 there would be two critical
paths inG3(σ): (3 4 6) and (3 5 6).

Using the parallel graph representation, we may define
criticality for the fuzzy job shop as follows:

Definition 4. A pathP in G(σ) is acritical pathif and only
if P is critical in someGi(σ). Nodes and arcs in a critical
path are termedcritical. A critical path is naturally decom-
posed into critical blocksB1, . . . , Br, where acritical block
is a maximal subsequence of tasks of a critical path requir-
ing the same machine. Hence, the sets of critical paths, arcs,
tasks and blocks are respectively the union of critical paths,
arcs, tasks and blocks in the parallel solution graphs.

Unlike for the crisp JSP, we may not state that the
makespan of the schedule is the cost of a critical path. How-
ever, it holds that each component of the makespanCi

max(σ)

0

1

5

2

6

3 4 7

3

1 2

1

4

3

2

1

4

1

G1. Critical path = (3 4 6).C1
max = 7

0

1

5

2

6

3 4 7

4

3

2

2

5

4

3

2

5 2

G2. Critical path = (3 4 6).C2
max = 10

0

1

5

2

6

3 4 7

7

4

3

6

6

7

4

4

6 6

G3. Critical path = (3 5 6).C3
max = 16

Figure 3: Parallel graphs corresponding to the graph in Fig-
ure 2, with critical paths in bold.

is the cost of a critical path in the corresponding solution
parallel graphGi(σ).

For a solution graphG(σ) and a taskx, letSx andCx de-
note respectively the starting and completion times ofx, let
Pνx andSνx denote the predecessor and successor nodes
of x on the machine sequence (predecessor and successor in
R(σ)), and letPJx andSJx denote respectively the prede-
cessor and successor nodes ofx on the job sequence (pre-
decessor and successor inA). We now extend some well-
known notions for the crisp job shop and define theheadrx

of taskx as the starting time ofx i.e. Sx, in our context, a
TFN rx = (r1

x, r2
x, r3

x) given by:

rx = (rPJx
+ pPJx

) ∨ (rPνx
+ pPνx

), (10)

and thetail qx of taskx as:

qx = (qSJx
+ pSJx

) ∨ (qSνx
+ pSνx

), (11)

Clearly,Cx = rx + px. For each parallel graphGi(σ), ri
x

is the length of the longest path from nodestart to nodex
andqi

x + pi
x is the length of the longest path from nodex to

nodeend. Hence,ri
x + pi

x + qi
x is the length of the longest

path from nodestart to nodeendthrough nodex in Gi(σ);
it is a lower bound of thei-th component of the makespan,
being equal toCi

max(σ) if nodex belongs to a critical path
in Gi(σ). For two TFNsA andB let A ≃ B denote that

127

∃i, ai = bi. The next proposition states some properties of
critical arcs and tasks which follow trivially from the above
definition:

Proposition 1. If an arc(x, y) is critical, thenrx+px ≃ ry .
A taskx is critical if and only ifrx + px + qx ≃ Cmax.

For the proposed definition of criticality, we may ex-
tend the neighbourhoodstructure defined in (Van Laarhoven,
Aarts, & Lenstra 1992) to the fuzzy case as follows:

Definition 5. Given an arcv = (x, y) ∈ R(σ), let σ(v)

denote the processing order obtained fromσ after an ex-
change in the processing order of tasks in arcv. Then,
the neighbourhood structureobtained fromσ is given by
H(σ) = {σ(v) : v ∈ R(σ) is critical}.

Comparison to Previous Approaches
In (Fortemps 1997), we find a first proposal to extend
the neighbourhood structure in (Van Laarhoven, Aarts, &
Lenstra 1992) to the fuzzy case. An arc(x, y) in the solu-
tion graph for the job shop problem with fuzzy durations is
taken to be acritical arc if and only if Cx ≃ Sy, that is, if
it is critical in any of its components. This definition, be-
ing quite natural, yields some counterintuitive results. For
instance, in the graph from Figure 2, arc(5, 2) would be
considered to be critical.

In (González Rodrı́guez, Vela, & Puente 2007), this defi-
nition was refined by incorporating backpropagation: acriti-
cal pathis taken to be a path in the solution graph from node
0 to nodez whereCz ≃ Cmax and such that for all arcs
(x, y) in the path it holdsCx ≃ Sy. A critical arc (respec-
tively a critical task) is an arc (respectively task) belonging
to a critical path.

Let us denote as critical’ an arc which is critical accord-
ing to this last definition. All arcs considered to be criti-
cal according to (Fortemps 1997) will still be critical’, but
the reverse does not hold, avoiding some of the counterintu-
itive examples. For instance, in Figure 2 the critical’ arcs are
(1,4), (3,4), (3,5), (4,6) y (5,6) and the critical’ tasks are 1, 3,
4, 5 y 6. Clearly, it is possible to use the criticality definition
from (González Rodrı́guez, Vela, & Puente 2007) to extend
the neighbourhood structure proposed in (Van Laarhoven,
Aarts, & Lenstra 1992) to the fuzzy case; for a given fea-
sible task processing orderσ, let H ′(σ) = {σ(v) : v ∈
R(σ) is critical’} denote the resulting neighbourhood. The
next proposition follows trivially from the above definitions:

Proposition 2. The set of critical paths is a subset of the
critical’ ones. Consequently, neighbourhoodH is contained
in H ′, that is

∀σ ∈ Σ, H(σ) ⊆ H ′(σ) (12)

Notice that the set of critical paths may be a proper subset
of the set of critical’ paths. Moreover, the second condition
in Proposition 1 may not hold for a critical’ task. For in-
stance, in the example from Figure 2, arc(1, 4) is critical’
but is not critical and task 1 is critical’ but∀i, ri

1 +pi
1+qi

1 6=
Ci

max.
Proposition 2 means a reduction in the number of neigh-

bours whenH is considered instead ofH ′. We now show

that this reduction does not affect the potential quality of so-
lutions found by the local search, as the reversal of a non
critical arc can never reduce the makespan:

Proposition 3. Let σ ∈ Σ be a feasible processing order
and letτ ∈ Σ be a feasible processing order obtained by the
reversal an arc which is not critical inG(σ). Then

∀i, Ci
max(σ) ≤ Ci

max(τ) (13)

and therefore

Cmax(σ) ≤E Cmax(τ) (14)

Proof Let τ be obtained fromσ by the reversal of an arc
v = (x, y) wherev is not a critical arc, that is, it is not
a critical arc in any of the parallel graphsGi(σ). Clearly,
for all i = 1, 2, 3 the arcs inside critical paths ofGi(σ)
remain unchanged inGi(τ) after the move, and therefore
Ci

max(σ) ≤ Ci
max(τ) for all i.

In particular, neighbours inH ′ which do not belong toH
can never improve the makespan:

Corollary 1. ∀σ ∈ Σ, ∀τ ∈ (H ′(σ) − H(σ))
⋂

Σ,
Cmax(σ) ≤E Cmax(τ)

We may conclude that usingH instead ofH ′ in the local
search procedure leads to a reduction in the number of evalu-
ated neighbours without missing any improving neighbours,
i.e. with no loss in the quality of the solution obtained by
the local search. Notice that ifH ′ were to denote the neigh-
bourhood proposed in (Fortemps 1997), all the above results
would still hold.

Some Desirable Properties
Now we further study the new neighbourhoodH , in order to
prove that it has two highly desirable properties: feasibility
and connectivity.

Theorem 1. Letσ ∈ Σ be a feasible task processing order;
the reversal of a critical arcv = (x, y) ∈ R(σ) produces
a feasible processing order, i.e.,σ(v) ∈ Σ. In consequence,
H(σ) ⊂ Σ.

Sketch of ProofSuppose by contradiction thatG(σ(v))
has a cycle; this means that there exists an alternative path
fromx toy in G(σ). This, together with(x, y) being critical,
leads to the inequalityrk

x + pk
x ≥ rk

x + pk
x + pk

SJx
+ pk

PJy

for somek = 1, 2, 3, which contradicts the fact that all task
durations are strictly positive.

Notice that feasibility means that local search is automat-
ically limited to the subspace of feasible task orders. It has
the additional advantage of avoiding feasibility checks for
the neighbours, hence increasing the efficiency of the local
search procedure (reducing computational load) and avoid-
ing the loss of feasible solutions that is usually encountered
for feasibility checking procedures (cf. (Dell’ Amico & Tru-
bian 1993)).

Theorem 2. H verifies the connectivity property, that is,
for every non-optimal task processing orderσ we may build
a finite sequence of transitions ofH leading fromσ to a
globally optimal processing orderσ0.

128

Sketch of proof.The first step is to prove that ifVσ(σ0) =

{v = (x, y) ∈ R(σ) : v is critical , (y, x) ∈ R(σ0)} = ∅

thenσ is optimal, whereR(σ0) denotes the transitive closure
of R(σ0). To do this, first prove that ifσ is not optimal, there
exists at least a critical arc inR(σ). Then prove that ifσ
is not optimal, there exists some critical arc(x, y) ∈ R(σ)

such that(y, x) ∈ R(σ0), using the fact that the set of critical
arcs inG(σ) is the union of critical arcs inGi(σ) for all i.
The second step is to define the sequence{λk}k≥0, where
λ0 = σ, andλk+1 is obtained fromλk by reversal of an arc
v ∈ Vλk

(σ0). To prove that this sequence is finite, define
Mσ(σ0) = {v = (x, y) ∈ R(σ) : (y, x) ∈ R(σ0)} and
Mσ(σ0) = {v = (x, y) ∈ R(σ) : (y, x) ∈ R(σ0)}, notice
that if ‖Mλk

(σ0)‖ > 0 then‖Mλk+1
(σ0)‖ = ‖Mλk

(σ0)‖−
1 and use the property from step 1.

As mentioned above, connectivity is an important prop-
erty for any neighbourhood used in local search. It ensures
the non-existence of starting points from which local search
cannot reach a global optimum. It also ensures asymptotic
convergence in probability to a globally optimal order. Ad-
ditionally, although the neighbourhood structure is used in a
heuristic procedure in this paper, the connectivity property
would allow to design an exact method for fuzzy job shop,
like the well-known Branch and Bound for the crisp case.

Experimental Results
Hybrid methods combining a genetic algorithm with lo-
cal search usually improve the quality of results obtained
when these methods are used independently (see for in-
stance (Ishibuchi & Murata 1998), (González Rodrı́guez,
Vela, & Puente 2007), (Vela, Varela, & González 2008)).
The usual approach is to apply local search to every chro-
mosome right after this chromosome has been generated.
The resulting algorithm is called amemetic algorithm(MA).
To obtain experimental results for the proposed neighbour-
hood we shall then use a memetic algorithm proposed in
(González Rodrı́guez, Vela, & Puente 2007) for the fuzzy
job shop, but substituting the local search procedure used
therein with the local search that results from using the new
neighbourhoodH together with simple hill-climbing.

The goal of the first set of experiments is to analyse the
performance of the MA using the new local search com-
pared to other methods from the literature. First, we consider
a simulated annealing (SA) method from (Fortemps 1997),
where the author generates fuzzy versions of well known
benchmark problems (Applegate & Cook 1991): FT06 of
size 6 × 6 and LA11, LA12, LA13 and LA14 of size
20 × 5. The only difference is that we generate 3-point
fuzzy numbers or TFNs as fuzzy durations, instead of 6-
point fuzzy numbers. The durations are symmetric TFNs, so
the optimal solution to the crisp problem provides a lower
bound for the fuzzified version (see (Fortemps 1997) and
(González Rodrı́guez, Vela, & Puente 2007) for further de-
tail). In total, a family of 10 instances of fuzzy job shop are
generated from each original benchmark problem.

The MA has been run 30 times for each of the 50 fuzzy job
shop instances with the following configuration: population

size 20 and number of generations 50 (denoted 20/50 in the
following). Table 1 shows the results obtained by the MA
compared to the results SA reported in (Fortemps 1997). It
contains expected makespan values of the best, average and
worst solution for the 10 fuzzy instances of the same crisp
problem. It can be seen that the MA performs better than the
SA in all cases. In fact, the best expected makespan value
obtained by the MA coincides with the optimal solution for
the crisp problem. Regarding CPU times, on a 3GHz Pen-
tium IV machine, our MA takes 0.18 seconds per run for
FT06 and 1.45 in average for problems LA (no CPU times
are reported for the SA in the above paper).

Table 1: MA versus SA
Problem Method Best Avg Worst

FT06 SA 55.02 55.2 56.01
(55) MA 55 55.03 55.03

LA11 SA 1222 1222 1222
(1222) MA 1222 1222 1222
LA12 SA 1041 1046.81 1056.35
(1039) MA 1039 1039.67 1041.75
LA13 SA 1050 1155.07 1181.76
(1150) MA 1150 1150 1150
LA14 SA 1292 1292 1292
(1292) MA 1292 1292 1292

Now, we compare the MA with the GA proposed
in (Sakawa & Kubota 2000), denoted GA00, accord-
ing to the implementation and parameters used in
(González Rodrı́guezet al. 2008). The problem instances
are those proposed in (Sakawa & Kubota 2000), and com-
prise three problems of size6 × 6, denoted S6-1, S6-2 and
S6-3, and three problems of size10 × 10, denoted S10-1,
S10-2 and S10-3. Table 2 shows the expected makespan re-
sults obtained using the same parameter setting for MA as
above, 20/50, and 100/200 for GA00, both ensuring the con-
vergence of each algorithm. It is clear that MA outperforms
GA00. Moreover, the CPU time is considerably reduced,
going from 33.65 seconds per run to 1.91 seconds per run in
average for problems of size10 × 10, keeping convergence
curves identical, both for the average population fitness and
for the fitness of the best individual.

Another interesting comparison is that of the
MA using the new local search with the MA from
(González Rodrı́guez, Vela, & Puente 2007), denoted
MA07, that usesH ′ as neighborhood structure and steepest
descent as acceptance criterion. This comparison also serves
to illustrate the theoretical results showing thatH improves
H ′ regarding the size of sets of neighbours without worsen-
ing the expected makespan values. The set of fuzzy problem
instances are those used in (González Rodrı́guez, Vela,
& Puente 2007) and they are generated from well-known
benchmark problems for crisp JSP: FT10 of size10 × 10,
LA24 of size10×15, FT20 of size20×5 and ABZ7 of size
20×15, following the same method as above, so the optimal
solution to the crisp problem provides a lower bound for the
fuzzified version. The objective is to compare both MA and

129

Table 2: MA versus GA00
Problem Method Best Avg Worst

S6-1 GA00 82.25 83.11 86.25
MA 79.75 79.75 79.75

S6-2 GA00 75.25 75.69 78.75
MA 70.25 70.58 75.25

S6-3 GA00 66.25 66.25 66.25
MA 66.25 66.25 66.25

S10-1 GA00 133.50 135.51 138.50
MA 129.00 129.74 133.00

S10-2 GA00 127.50 128.38 132.75
MA 123.75 126.67 127.75

S10-3 GA00 116.50 121.08 125.00
MA 115.00 115.00 115.00

MA07 on larger (and more difficult) problems. In total, a
family of 10 instances of fuzzy job shop are generated from
each original benchmark problem.

Table 3 shows the average across the 10 instances of
the same family of best, mean and worst solution obtained
in 30 runs of each method with the parameter settings
from (González Rodrı́guez, Vela, & Puente 2007). The opti-
mal makespan of the crisp problem is shown between brack-
ets under the problem’s name. We see that the expected
makespan values are almost identical for both methods, with
differences between mean relative errors w.r.t. the expected
makespan lower bound about 0.1% in average.

Table 3: Makespan comparison between MA and MA07.

Problem Method Best Avg Worst
FT10 MA07 934.05 938.29 952.78
(930) MA 933.85 939.09 952.98
FT20 MA07 1165.35 1175.34 1180.90
(1165) MA 1165.35 1175.12 1181.03
LA24 MA07 942.30 949.15 963.65
(935) MA 942.93 948.56 962.65
ABZ7 MA07 677.90 686.18 693.38
(656) MA 677.48 685.77 693.23

Table 4: Total Number of Neighbours and CPU Time for
MA and MA07

Problem Method Neigh. CPU
FT10 MA07 2.11E+06 50.45

MA 9.43E+05 26.94
FT20 MA07 5.73E+06 125.87

MA 2.26E+06 56.82
LA24 MA07 3.53E+06 122.26

MA 1.29E+06 52.65
ABZ7 MA07 1.24E+07 852.45

MA 3.25E+06 248.30

To further illustrate the efficiency gain of the new local
search, combining neighbourhoodH with simple hill climb-
ing, Table 4 reports the total number of evaluated neigh-
bours and the time required by each method, MA and MA07.
The CPU times, on a 3GHz Pentium IV machine, refer to
the seconds taken per run of the MA in average. There is
a clear advantage in using the new local search. It is re-
markable that the new neighbourhoodH combined with the
new selection criterion obtains identical makespan values to
MA07, whilst reducing the number of evaluated neighbours
more than 63% in average. This agrees with the theoretical
properties regardingH andH ′. The reduction of evaluated
neighbours is reflected in a reduction of CPU times, despite
it being more expensive to compute the neighbourhoodH
than H ′ because the search for critical arcs is performed
through tree solution graphs instead of one. The average
time reduction of MA w.r.t. MA07 is as much as 57%, with
the remarkable case of the largest problem ABZ7, with a
time reduction superior to 70%. Notice that the reduction
in time is increased with the size of the problem, something
natural since evaluating new neighbours has a higher com-
putational cost in larger problems.

We have also conducted experiments (not reported here)
to compare the gain usingH insteadH ′ independently from
the acceptance criterion. The obtained makespan values
equal those in Table 3, with an average reduction in the num-
ber of neighbours near 20%, which again increases with the
problem size. These results are the same regardless of the
acceptance criterion used, steepest descent and simple hill-
climbing. Also, if MA is given the same time as MA07, it
obtains slightly better solutions, but the improvement does
not compensate the increase in running time.

The objective of the final set of experiments is to illus-
trate the synergy gained when combining the GA and the
local search procedure (LS hereafter), by evaluating LS and
GA separately, as well as both of them combined in the MA.
This experiment also serves to test that there is no premature
convergence to local optima. For results to be comparable,
it is necessary to test all methods under equivalent condi-
tions regarding computational resources. To do so, assum-

Table 5: Synergy: Comparison between LS, GA and MA.
Problem Method Best Avg Worst

LS 965.50 989.13 1005.92
FT10 GA 937.40 956.19 981.45
(930) MA 933.85 939.09 952.98

LS 985.70 1004.70 1017.20
LA24 GA 960.80 981.53 1005.50
(935) MA 942.93 948.56 962.65

LS 1266.83 1298.85 1322.78
FT20 GA 1178.55 1188.36 1208.80
(1165) MA 1165.35 1175.12 1181.03

LS 724.00 734.59 742.13
ABZ7 GA 690.75 706.31 720.90
(655) MA 677.48 685.77 693.23

ing a uniform computational load in all generations, for each

130

problem we consider the ratio between CPU times of both
GA and MA when they were executed with the same con-
figuration (100/200) and then readjust the number of gener-
ations for the GA to obtain similar CPU times. To study LS
independently, the LS algorithm is run 30 times for each in-
stance starting from a set of 20000 random solutions, so as
to evaluate the same number of individuals that the GA and
obtain similar running times (about 27 seconds for FT10, 57
for FT20, 53 for LA24 and 248 for ABZ7). Table 5 shows
the expected makespan results for each family of problems.
It is worth noting that for MA, the CPU time dedicated to
local search is 91-96% of the total, which can be explained
by the fact that LS is applied to every chromosome in the
population. We may conclude that, with the same computa-
tional time, the MA benefits from the synergy between the
GA and LS and always yields better solutions than the GA
or LS alone.

Conclusions

We have considered a job shop problem with uncertain pro-
cessing times modelled as triangular fuzzy numbers, where
the objective is to minimise the expected makespan value.
We have proposed a new definition of criticality for this
problem and a consequent new neighbourhood structure for
local search. We have shown that the new structure improves
previous proposals from the literature, reducing the set of
neighbours by discarding non-improving ones. Addition-
ally, we have shown that the new neighbourhood structure
has two highly desirable properties: feasibility and connec-
tivity, which further improve the efficiency of the resulting
local search, as well as ensuring asymptotic convergence in
probability to a globally optimal solution. The experimen-
tal results support the theoretical results and illustrate the
potential of the new local search when used in combination
with a genetic algorithm, comparing favourably with previ-
ous approaches from the literature.

In the future, makespan estimation procedures will be de-
veloped to reduce the computational cost of local search.
These estimates may also be used to design a branch and
bound type algorithm, taking advantage of the connectiv-
ity property. Additionally, metaheuristics other than the
memetic algorithm will be proposed using the new neigh-
bourhood, for instance, a taboo search procedure. Finally,
the parallel solution graph model and consequent defini-
tions of criticality and neighbourhood, proposed for dura-
tions represented as TFNs, may be extended to piece-wise
linear fuzzy intervals, usingα-cuts.

Acknowledgments

All authors are supported by MEC-FEDER Grant TIN2007-
67466-C02-01.

References

Applegate, D., and Cook, W. 1991. A computational
study of the job-shop scheduling problem.ORSA Journal
of Computing3:149–156.

Bierwirth, C. 1995. A generalized permutation approach to
jobshop scheduling with genetic algorithms.OR Spectrum
17:87–92.
Brucker, P., and Knust, S. 2006.Complex Scheduling.
Springer.
Celano, G.; Costa, A.; and Fichera, S. 2003. An evolu-
tionary algorithm for pure fuzzy flowshop scheduling prob-
lems. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems11:655–669.
Dell’ Amico, M., and Trubian, M. 1993. Applying tabu
search to the job-shop scheduling problem.Annals of Op-
erational Research41:231–252.
Dubois, D., and Prade, H. 1986.Possibility Theory: An Ap-
proach to Computerized Processing of Uncertainty. New
York (USA): Plenum Press.
Dubois, D.; Fargier, H.; and Fortemps, P. 2003. Fuzzy
scheduling: Modelling flexible constraints vs. coping with
incomplete knowledge.European Journal of Operational
Research147:231–252.
Fortemps, P. 1997. Jobshop scheduling with imprecise
durations: a fuzzy approach.IEEE Transactions of Fuzzy
Systems7:557–569.
González Rodrı́guez, I.; Puente, J.; Vela, C. R.; and Varela,
R. 2008. Semantics of schedules for the fuzzy job shop
problem.IEEE Transactions on Systems, Man and Cyber-
netics, Part A38(3):655–666.
González Rodrı́guez, I.; Vela, C. R.; and Puente, J. 2007. A
memetic approach to fuzzy job shop based on expectation
model. InProceedings of IEEE International Conference
on Fuzzy Systems, 692–697. London: IEEE.
Ishibuchi, H., and Murata, T. 1998. A multi-objective
genetic local search algorithm and its application to flow-
shop scheduling.IEEE Transactions on Systems, Man, and
Cybernetics–Part C67(3):392–403.
Liu, B., and Liu, Y. K. 2002. Expected value of fuzzy vari-
able and fuzzy expected value models.IEEE Transactions
on Fuzzy Systems10:445–450.
Sakawa, M., and Kubota, R. 2000. Fuzzy programming for
multiobjective job shop scheduling with fuzzy processing
time and fuzzy duedate through genetic algorithms.Euro-
pean Journal of Operational Research120:393–407.
Słowiński, R., and Hapke, M., eds. 2000.Scheduling Un-
der Fuzziness, volume 37 ofStudies in Fuzziness and Soft
Computing. Physica-Verlag.
Tavakkoli-Moghaddam, R.; Safei, N.; and Kah, M. 2008.
Accessing feasible space in a generalized job shop schedul-
ing problem with the fuzzy processing times: a fuzzy-
neural approach.Journal of the Operational Research So-
ciety59:431–442.
Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job
shop scheduling by simulated annealing.Operations Re-
search40:113–125.
Vela, C. R.; Varela, R.; and González, M. A. 2008. Local
search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times.Journal of
HeuristicsForthcoming.

131

