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Abstract. In the sequel, we tackle a real-world problem: forming ex-
amination boards for the university-entrance exams at the autonomous
region of Asturias (Spain). We formulate the problem, propose a heuris-
tic GRASP-like method to solve it and show some experimental results
to support our proposal.

1 Introduction

In Spain, students who finish Secondary School must take a University En-
trance Exam (UEE), consisting of several modules or subjects (Maths, Chem-
istry, Art...), some of which are optional. The mark obtained in this exam is
key for entering university. It is therefore the responsibility of the organisers to
provide the best possible environment for the examination process. Its organisa-
tion is undertaken independently in each of the 17 Spanish autonomous regions
by an Organising Committee, and it includes deciding on aspects such as the
number of days allocated to the exam, the number and location of exam venues
or the optional exam-modules offered in each venue.

A critical issue for the committee is to decide for each venue on the composi-
tion of an examination board in charge of invigilation. Exam venues with varying
sizes require a different number of examiners in order to provide proper invigi-
lation. It is also necessary that examiners cover different areas of expertise, so
they can adequately reply to students’ questions. While the board’s composition
must guarantee high standards in terms of expertise and invigilation capacity,
examiners’ travelling expenses incur an economical cost which should be kept to
a minimum.

In the following, we shall tackle the Examination Board Assignment (EBA)
problem. After modelling the problem in Section 2, we shall propose in Section 3
a GRASP algorithm to solve it. To evaluate our proposal, in Section 4 we will
present some detailed results analysing the different parts of the algorithm as
well as compare it with the solution provided by the human experts on some
real-world instances of the problem. Finally, Section 5 presents some conclusions.



2 Problem Definition and Formulation

The Organising Committee in the Principality of Asturias (the region where the
University of Oviedo lies) is in charge of a varying number of UEE examination
venues geographically distributed throughout the region’s territory. Students are
assigned to a specific venue depending on their school of origin. The comittee
takes into account the total number of students registered for that particular
UEE session as well as the optional modules they intend to take to select a set
of teachers (examiners hereafter) for invigilation. These examiners can be uni-
versity staff or secondary-school teachers (these include education supervisors,
on special duty at the Education Department of the Administration). Given each
examiner’s academic profile, he/she is associated to a particular subject and is
also meant to have different levels of affinity to every other subject, which make
him /her more or less adequate to answer student questions during the examina-
tion process. The Committee appoints for each board a president and a secretary,
who must be university academic staff and imposes some additional constraints
on the composition of the boards, including their size. The goal in the EBA is
to assign all the examiners from the initial set to different examination boards
given the predefined assignment of president and secretary, in such a way that
all constraints hold and the following objectives are optimised:

1. Tt is not always possible to assign an expert on each subject to every board;
instead, the affinity concept is used and the objective is to mazimise the
expertise affinity coverage provided by the examiners on each board.

2. Examiners get paid for their travel expenses if they are assigned to a venue
located elsewhere than their usual workplace. The total amount depends on
the distance and may include accommodation expenses. Clearly, travel costs
should be minimised.

Having outlined the problem statement, we give some more detail about its
different components in the following.
The input data available when organising each UEE session are the following;:

1. Examiners Let FE denote the set of examiners. For each examiner e € E, we
are given the following information: subject in which he/she is specialised,
denoted Subj(e); type of examiner, which can be university lecturer, educa-
tion supervisor or secondary school teacher on active duty; school, if he/she
is a secondary school teacher, denoted School(e); and city or town where
his/her workplace is located, denoted Town(e).

2. Venues Let V denote the set of venues. For each venue v € V' we are given
the following information: preassigned president and secretary from FE; set
of the secondary schools associated to this venue, denoted Lschools(v); set
of subjects for which exams will take place at this venue, denoted Lsubj(v);
location (city or town), denoted Location(v); and size of the examination
board (i.e. number of examiners) for that venue, denoted Size(v). It is as-

sumed that ) _, Size(v) = |E|.



3. Subjects Let S be the set of subjects where each subject s € S is charac-
terised by a textual description.

4. Affinity array, where rows correspond to examiners and columns to sub-
jects, so A(e, s) € [0,1] is the affinity degree between examiner e and subject
s, elicited by the Organising Commitee based on the area of expertise of
each examiner so it usually corresponds to the affinity between Subj(e) and
s.

5. Data related to travelling costs, namely: table with distances between
different towns or cities where exam venues, schools or university campus
may be located, so distance(a,b) denotes the distance between locations a
and b; travelling cost per kilometre (cg,); distance threshold for staying
overnight and claiming accommodation expenses (A); accommodation cost
per night (h); travelling allowance per day (a); and duration (in days) of the
exam (ng).

The problem solution is the Examination Board Assignment (EBA for
short), specifying the set Board(v) of examiners composing the board for each
venue v € V. This set is the disjoint union of the sets of university and secondary-
school teachers, denoted UBoard(v) and SBoard(v) respectively. The latter in-
cludes both secondary-school teachers on active service and education supervi-
sors, that is, there is a subset ESBoard(v) C SBoard(v) formed by those exam-
iners in Board(v) on special duty as education supervisors. The solution must
also provide the following information for each venue v € V: the total cost asso-
ciated to its board, denoted T'C(v), and the degree of coverage for each subject
s € Lsubj(v), denoted Coverage(v, s), as well as the overall coverage AC(v).

Additional requirements of the Organising Committee translate into five con-
straints for this problem; the first two are hard, while the remaining ones are
soft and may be relaxed if needed.

1. The predefined and final size of each exam board must coincide:
Cy : Vv € V | Board(v)| = Size(v) (1)

where | Board(v)| denotes the cardinality of set Board(v).
2. Teachers from secondary schools associated to a venue may not be assigned
to it (since their students are taking the exam in that same venue):

Cy : Yv € V'Ve € SBoard(v) School(e) ¢ Lschools(v). (2)

3. It is preferred that an equilibrium exists between the number of university
lecturers and secondary-school teachers in each venue:

| UBoard(v)]

Cs:vveV | Board(v)]

€ [0.4,0.6). (3)

4. The number of venues where a subject is taken and the number of examiners
expert on that subject may differ substantially. To distribute experts as



homogenously as possible, an upper bound is established for each each venue
v € V and subject s € Lsubj(v) as follows:
Size(v)

M(v,s) = |14 |[{e € E: s = Subj(e)}] * -
Zv’GV:sGLsubj(v’) SIZQ(U/)

(4)

where [z] denotes the nearest integer greater than or equal to . The con-
straint is then expressed as:

Cy :Yv € V,Vs € Lsubj(v) [{e € Board(v) : s = Subj(e)}| < M(v,s). (5)

5. It is preferred that education supervisors are equally distributed across all
venues:

Cs : max |{e € ESBoard(v)}| — nél‘l;l [{e € ESBoard(v)}| < 1. (6)

Regarding the objectives, the most important one is to maximise the degree
of expertise coverage provided by the members of each board. For any venue
v € S and any subject s € Lsubj(v), the degree of coverage of s at v is given
by Coverage(v,s) = maXcepoard(v)1A(e, s)} and the overall coverage at a venue
v € V is calculated as:

ZsELsubj('u) Coverage(v, s) ™
| Lsubj(v)|

Notice that AC(v) € [0,1] for every venue v € V, with AC(v) = 1 meaning a
perfect coverage. We can then formalise the first objective as:

min f; = |V| — Z AC(v). (8)

veV

AC(v) =

Regarding the second objective, the cost of assigning an examiner e € E to
a venue v € V is computed as:

0 if dye =0,

Cost(e,v) = ¢ 2dyeCrmng + ang if 0 < dye < A, (9)
2dyeCmng + ang + (ng — D)h i dye > A,

where d,. = distance(Location(v), Town(e)) is the distance between the location

of venue v and the workplace of examiner e. The overall cost for a venue v € V'

is then given by TC(v) = }_.cpoara(s) Cost(e, v) so the second objective is:

min fo = Y TC(v) (10)
veV

Since the most important objective for the Organising Committee is to pro-
vide a good expertise coverage, we adopt a lexicographic approach [1] and define
the examination board assignment problem as follows:

lexmin(f1, f2)
subject to: C;,1 < ¢ < 5.

(11)



where lexmin denotes lexicographically minimising the vector (f1, f2): if f(S)
denotes the value of objective f for a feasible solution S, S is preferred to S,
denoted s =jepmin 8, iff f1(S) < f1(S") or f1(S) = f1(5) and f2(S) < f2(97).
Lexicographic minimisation is well-suited to seek a compromise between con-
flicting interests, as well as reconciling this requirement with the crucial notion
of Pareto-optimality [2].

The problem above is related to personnel scheduling problems [3],[4]. It
shares with this family of problems objective functions and constraints, for
example, coverage constraints, which are among the most important soft con-
straints [4]. However, it is not a typical problem from this family: we do not need
to schedule shifts or days off, there is no single workplace (as in nurse rostering),
all “tasks” in our problem demand “specific skills” and despite having groups of
employees, these have individual profiles. All in all, the specific characteristics of
the problem under consideration allow for no comparisons with other proposals
from the literature. Finally, it is possible to prove that the resulting problem is
N P-hard (we omit the proof due to lack of space).

3 Solving the Problem with a GRASP-like Algorithm

The complexity of the problem under consideration suggests using meta-heuristic
methods to solve it. Such methods allow problem-specific information to be incor-
porated and exploited, as well as making it easy to deal with complex objectives,
in particular with “messy real world objectives and constraints” [3]. Here, we
propose a solving method inspired in GRASP (Greedy Randomized Adaptive
Search Procedure) meta-heuristics [5]. GRASP methods have proved popular
for solving personnel scheduling problems (see [6] and references therein). This
is in part due to the fact that these problems can be modelled as allocation
problems and neighbourhood structures can be naturally defined by moving a
single allocation or swapping two or more allocations. It is also natural to fix
one or more allocations at each step of the construction phase.

Our method, in Algorithm 1, consists of a construction phase followed by
an improvement phase. The construction phase is in itself divided in two steps:
first, a Sequential-Greedy-Randomized-Construction algorithm (SGRC) builds
an initial solution and then, if this solution is not feasible, a Solution-Repair
algorithm (SR) obtains a feasible one by relaxing some of the soft constraints.
Once a complete solution is available, the second phase performs a Local Search
(LS) where the solution’s neighbourhood is systematically explored until a local
optimum is found. As random decisions are present in every phase, the process is
repeated N Restarts times. The output is the best solution from all runs chosen
as follows: for a pair of feasible solutions, we use =jczmin; €lse, feasible solutions
are preferred to unfeasible ones and, between two unfeasible solutions, preference
is established in terms of objective values as well as constraint satisfaction.



Input An instance P of an EBA problem, N Restarts
Output A solution S = {Board(v) : v € V} for instance P
for £k =1,..., NRestarts do
S < SGRC();
if S is not complete then S + SR(S);
S+ LS(S);
Update best solution S* so far if needed;
return S*, the best solution.

Algorithm 1: GRASP-like algorithm for the EBA problem

3.1 Sequential Greedy Randomized Construction

The SGRC starts by assigning the president and the secretary to each board as
specified in the input data. Then, examiners from E not assigned yet are allo-
cated to boards in tree consecutive steps: assignment of education supervisors,
assignment of “covering” examiners and assignment of “non-covering” examin-
ers. Non-determinism situations are in some cases solved using heuristic criteria
and in others introducing randomness, thus increasing the diversity of the greedy
algorithm. In all cases, all constraints must be complied with, so it is possible
that, at the end of SGRC some examiners from E still remained unassigned. In
this case, SGRC yields a partial solution that needs to be repaired.

In the first step, provided that C5 holds, each education supervisor is assigned
to that venue v where its contribution to the coverage of Board(v) is maximum.
Ties between venues are broken using costs. In the second step, venues are sorted
in increasing-size order and, following that order, for each venue, valid examiners
are assigned to it as long as the venue’s board is not full and the examiner’s
contribution to the venue’s coverage is positive and maximal. An examiner is
valid if he/she satisfies constraints Cy and Cy as well as two partial constraints
C : |Board(v)| < Size(v) and C% : |UBoard(v)|,|SBoard(v)| < 0.6Size(v)
(satisfying C and C} along SGRC means that C; and C5 will be satisfied in the
end). Ties are broken at random. At the end of the second step, there may be
examiners in F not assigned because of their null contribution to the covering of
compatible boards. In the third step those non-covering examiners are assigned
to venues (ordered at random) keeping costs to their minimum.

3.2 Solution Repair

SGRC may end without assigning all the examiners in E because doing so would
violate some constraints. In this case, SR builds a full solution by relaxing some
of the soft constraints, with a possible deterioration in the coverage objective.
First, Cy is relaxed in as few venues as possible, this being the constraint that
has empirically proved to be more conflicting. For each venue v with free positions
in its board we pick a non-assigned examiner e at random. Then we consider
all pairs (€’,v) such that either v/ = v,e’ = e or v/ # v,e¢’ € Board(v') and
such that assigning e to Board(v') — {€’} and ¢’ to Board(v) satisfies constraints




C1, Cy, C% and Cs. If more than one of such pairs exist, we select the pair
maximising AC(v) + AC(v") after the “swap” and exchange the examiners. This
procedure continues until Board(v) is complete or no swaps are possible. In the
case that relaxing Cy were not enough, we would start all over again asking for
the swap to satisfy only C] and Cs (i.e. we relax the remaining soft constraints
simultaneously). It is possible to prove that this process always terminates with a
full solution where all venues are complete and all examiners have been assigned.

3.3 Local Search

The LS starts from the full solution provided by SRGC+SR and explores its
neighbourhood trying to improve on objective values and constraint satisfac-
tion. To this end, it considers the list, ordered by venue, of examiners who are
not education supervisors nor a prefixed president or secretary. Then, the neigh-
bourhood is generated using a Forward Pairwise Interchange (FPE) [7]: for each
examiner e, we consider exchanging it with another examiner e’ in another board
following e in the list; if the reassignment improves the solution, the exchange
is made, otherwise, it is discarded. After trying all exchanges, the process starts
again from the first examiner in the list. This continues until no exchange has
been made for a whole round of trials.
In this process, the degree to which a solution S does not satisfy Cj is:

D,s(S,Cy) = Z Z [{e € Board(v) : s = Subj(e)}| — M(v,s) (12)

v€V seLSubjects(v)

Analogously, the degree of dissatisfaction of C5, D,s(S,Cs), is the number of
venues v where the equilibrium between university and secondary-school teachers
is broken, and the degree of dissatisfaction of C5, D,s(S,C5), is the number
of venues where the number of supervisors does not correspond to a uniform
distribution. Then, a solution S is better than or preferred to another solution
S’ (denoted S <rs S’) in the sense of Pareto-dominance [8], that is, iff f1(S) <
J1(S"), f2(S) < f2(S"), Dys(S, Ci) < Dps(S’,C;) for i = 3,4,5 and at least one
of these inequalities is strict.

4 Experimental Results

To evaluate the proposed algorithm, we shall use three real instances of the
EBA problem, corresponding to UEE celebrated in June 2010, 2011 and 2012.
Unfortunately, the historical data available before 2010 cannot be used, because
the UEE format was different and so was the problem definition.

First, we shall analyse the behaviour of the two main modules of the algo-
rithm, the constructive phase (including repair) and the local search. Then, we
will compare the solutions of our algorithm to the solutions provided by the hu-
man experts in years 2010 and 2011; in year 2012 the actual solution has already
been obtained with the proposed GRASP algorithm and, therefore, no experts’
solution is available.



Table 1. Evaluation of the stages of the proposed GRASP

Instance Best Average Std. Dev.
AC(%) TCE) AC (%) TC(€) AC TC
SGRC+SR  74.80 38444 73.16 36209  0.0054  599.5

June2010 - op A gp 7746 27824 77.20 28600  0.0011  451.9
Juneooyy SCGRCHSR - 70.31 37067  68.97 34644  0.0045  669.4
une GRASP 71.56 27846  71.32 27837 0.0009 672.9
Juneooly SCGRCHSR 7325 34087 7180 33620 00042 648.38
une GRASP 75.27 26281  74.96 26372  0.0011 585.23

The prototype is programmed in C++ on a Xeon E5520 processor running
Linux (SL 6.0). In all cases, the number of restarts for the GRASP algorithm is
N Restarts = 50. Also, given its strong stochastic nature, the algorithm is run
50 times to obtain statistically significant results. The average runtime for one
run is 391.2, 292.8 and 386.46 seconds for 2010, 2011 and 2012 respectively.

4.1 Analysis of the Algorithm

The first set of experiments provides a better insight into the algorithm’s be-
haviour, namely, into the constructive phase — denoted SGRC+SR and consist-
ing of SGRC followed by SR — and the local search phase. Since SGRC+SR has
N Restarts = 50 restarts in each run of the GRASP algorithm and we consider
results of 50 runs, SGRC+SR is executed 2500 times for fair comparisons.

A summary of the results is as follows: at the end of the first step, in average
70% of the examiners from E have already been allocated to a venue (between
66% and 77%). At the end of the second step, between 93 and 100% (97.8% in
average) of the members of E have already been assigned. When solution repair
is needed, all pending examiners are assigned after relaxing constraint Cy, so C5
and Cs need not be relaxed. Once SR is finished, the percentage of solutions not
satisfying Cj is, respectively, 82%, 89% and 95% for years 2010, 2011 and 2012.
Also, the value of f; (expertise covering) remains unchanged during SR.

We now evaluate the contribution of LS to the GRASP algorithm, by com-
paring the results obtained after the constructive phase (SGRC+SR) (the first
set of complete solutions) to those obtained at the end of the GRASP algorithm,
after applying local search. Table 1 contains the best, average and standard de-
viation of the two objective values Average Coverage (AC) and Total Cost of
travel expenses (T'C') obtained in both cases. It does not report data related to
constraint satisfaction because LS always yields solutions where all 5 constraints
hold. We can see that LS noticeably reduces the total cost as well as improving
the expertise coverage. Clearly, the greatest improvement is in costs, since this
objective received considerably less attention in the constructive phase. Costs
are reduced in average 9215€ for the best solution and 7224€ for the average
solution. Regarding the expertise coverage, it is not surprising that local search



Table 2. Comparison between expert and GRASP results

Problem Objectives  Constraint satisfaction degree(%)
Instance  Method AC (%) TC(e) Ci Co Cs Cy Cs

Expert 73.04 32032 100 100 60.00 93.40 80
GRASP Best  77.46 27824 100 100 100 100 100
GRASP Avg 77.20 28600 100 100 100 100 100

Expert 68.20 32748 100 100 69.23 100  61.53
GRASP Best  71.56 27846 100 100 100 100 100
GRASP Avg 71.32 27837 100 100 100 100 100

June2010

June2011

makes little difference: coverage levels around 70% are already quite high, consid-
ering the proportion of small venues with few examiners. The standard deviation
values obtained in all cases support the robustness of the results.

4.2 Comparison With Experts’ Solutions

We will now assess the quality of the best and average GRASP solutions com-
pared to the solution provided each year by human experts. Table 2 shows for
all cases the objective values of expertise coverage (AC) and total cost (T'C), as
well as a measure of the degree of constraint satisfaction, defined as follows:

C3: Percentage of venues v € V' where % € [0.4,0.6].

Cy: Percentage of venues v € V where for every subject s € Lsubj(v) |{e €
Board(v) : s = Subj(e)}| < M(v, s).

Cs: Percentage of venues v € V where the number of education supervisors does
not follow a uniform distribution.

Unlike the experts’ solutions, both the best and average solutions provided
by the GRASP algorithm fully satisfy constraints in all cases. At the same time,
they improve in expertise coverage and costs, despite the fact that constraint
satisfaction is usually obtained at the cost of worsening objective function values.
Furthermore, comparing both Tables 1 and 2 we can see that even SGRC+SR
improves the experts’ coverage whilst simultaneously satisfying C's and Cs.

The solution provided by the proposed GRASP algorithm has another ad-
vantage: a considerable saving in working hours and effort for the team in charge
of finding the EBA at hand. The differences between instances of the EBA prob-
lem made it impossible for the experts to somehow reuse previous solutions, so
solutions had to be built from scratch, requiring full-time commitment from a
team of experts for days. Time is specially critical because the input data are
usually available only a few days before the UEE takes place. Our GRASP pro-
posal allows to obtain a better solution with considerable less effort in a much
shorter time. Additionally, the modular design of the algorithm allows it to be
used as a replanning procedure in the case of unexpected incidences. It is also



possible to perform some of the phases at hand, should it be the wish of the
experts, or simply start from a human-made assignment and improve it. These
characteristics add to the value of the proposed solution. Finally, it must be
highlighted that, as from 2012, our method has substituted the human experts
who can now employ their time and effort in more fruitful tasks.

5 Conclusions

We have tackled a real-world problem which consists in assigning a set of exam-
iners to different boards in order to maximise expertise coverage in each board
and also minimise the total costs incurred, subject to a series of hard and soft
constraints. We have modelled this problem in the framework of multiobjective
combinatorial optimisation with constraints and proposed a solving method,
based on GRASP techniques, which significatively improves the results obtained
by human experts: not only does it obtain better objective values while satisfy-
ing more constraints, but it has also proved a considerable saving both in time
and effort for the team in charge of solving the problem.
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