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Abstract. In this paper we consider a variant of the flexible job shop scheduling
problem with uncertain task durations modelled as fuzzy numbers. We propose a
cooperative coevolutionary algorithm to minimise the schedule’s makespan, with two
different populations evolving the two main aspects that conform a solution: machine
assignment and task relative order. Additionally, we incorporate a specific local search
method for each population. The resulting hybrid algorithm, called CELS, is then
evaluated on existing benchmark instances, comparing favourably with the state-of-
the-art methods.
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1 Introduction

Research in scheduling is important, both because it poses complex combinatorial optimisation
problems but also as a field with numerous real applications in industry, finance, welfare, etc. In
particular, shop problems in their multiple variants— for instance, incorporating flexibility or
operators— can model many situations which naturally arise in manufacturing environments.
The applicability of scheduling can be enhanced using fuzzy sets as a means of handling flexible
constraints and uncertain data, as well as improving solution robustness [10],[18].

In deterministic scheduling, the complexity of problems such as job shop means that practical
approaches to solving them usually involve metaheuristic strategies. Some attempts have been
made to extend such methods, mostly evolutionary algorithms, to the case where uncertain du-
rations are modelled via fuzzy intervals. In particular, the fuzzy flexible job shop is receiving
an increasing attention, with proposals including a genetic algorithm [12], a hybrid artificial
bee colony algorithm [17] and a coevolutionary algorithm [13]. In general, coevolutionary algo-
rithms [16] are proving to be very successful in solving complex problems, such as instance and
feature selection [2] or parallelisation of multiobjective evolutionary algorithms [3].

In the sequel we tackle the fuzzy flexible job shop problem using a cooperative coevolutionary
algorithm hybridised with local search. After introducing the problem, we shall see how it nat-
urally lends itself to cooperative coevolution. We shall later propose neighbourhood structures
for each population, so local search can be embedded in the coevolutionary algorithm. The
experimental results will illustrate the synergy between the coevolution and the local search, as
well as the competitiveness of our approach when compared to the state-of-the-art.



2 The fuzzy flexible job shop scheduling problem

The flexible job shop scheduling problem, fJSP in short, consists in scheduling a set of jobs J =
{J1,...,Jn} on a set of physical machines M = {M;, ..., M,,}, subject to a set of constraints.
There are precedence constraints, so each job J;, i = 1,...,n consists of a sequence of n; tasks
©; = {bi1,...,0in,} that must be sequentially scheduled. There are also capacity constraints,
whereby each task 0;; requires the uninterrupted and exclusive use of one machine from a subset
R;; C M for a processing time p;;i, which is dependent on the machine M}, € R;;.

A feasible schedule or solution consists of an assignment to machines of all N = Y | n; tasks
in the set © = U1<;<,0; together with an allocation of starting times for each task such that all
constraints hold. Alternatively, a solution consists of a feasible assignment of each task 6;; € ©
to a machine M}, € R;; and a task processing order for each machine in M. Indeed, given these,
the starting time of 6;;, denoted S5, is easily computed as the maximum between the completion
times of the predecessor of 6;; in its job and the predecessor of 6;; in the machine M}, where it
has been allocated, and the completion time is given by Cj; = Si; + p;jx. The objective is to
find an optimal solution according to some criterion, in our case, minimise the makespan, which
is the completion time of the last task to be executed, denoted Cyuaz = maxy,;co Cij-

2.1 Uncertain processing times

In real-life applications, it is often the case that the exact processing time of tasks is not known
in advance. However, based on previous experience, an expert may be able to estimate, for
instance, an interval for the possible processing time or its most typical value. When there is
little knowledge available, the crudest representation for uncertain processing times would be a
human-originated confidence interval. If some values appear to be more plausible than others,
a natural extension is a fuzzy interval or fuzzy number. The simplest model is a triangular
fuzzy number or TEN, using an interval [a', a®] of possible values and a modal value a2, and
with the membership function taking a triangular shape. It is common to denote such TFN as
A= (a',a? a®).

In the flexible job shop, we essentially need two operations on fuzzy numbers, the sum and the
maximum. These are obtained by extending the corresponding operations on real numbers using
the Fatension Principle. In the case of the addition, it turns out that for any pair of TFNs A
and B, A+ B = (a' +b',a® + b, a® + b3). Unfortunately, computing the maximum can be
cumbersome and, most importantly, the set of TFNs is not closed under this operation. For
the sake of simplicity and tractability of numerical calculations, we follow [5] and approximate
the maximum (a continuous isotonic function) by a TFN, evaluating only the operation on
the three defining points. For any two TFNs A, B, if F' denotes their maximum and G =
(max{a',b'}, max{a?, b*}, max{a3, b3}) its approximated value, it holds that Vo € [0, 1], f, <
Qavfa < g, Where [ia,?a] denotes the a-cut of F or its support if & = 0. In particular, F' and
G have identical support and modal value, that is, Fy = Gy and F} = G1.

The interpretation of membership functions as possibility distributions on the real numbers
allows to define the ezpected value of a fuzzy number [9], given for a TFN A by E[A] = %(al +
2a? +a®). The expected value coincides with the the neutral scalar substitute of a fuzzy interval
and can also be obtained as the centre of gravity of its mean value or using the area compensation
method [4]. It induces a total ordering <g in the set of fuzzy intervals [5], where for any two
fuzzy intervals A, B A <p B if and only if F[A] < E[B.

When task durations are given as TFNs, the resulting problem is a fuzzy flexible job shop problem,
F{JSP in short. Here, our objective will be to minimise the Cj,4, according to <g.



3 Cooperative coevolutionary algorithm for the FfJSP

Coevolutionary algorithms are advanced evolutionary techniques specially suited to solve com-
plex problems which are decomposable. They handle two or more populations, each with its
own coding schemes and recombination operators, that interact through evaluation.When all
populations cooperate to build the problem solution, we talk about cooperative algorithms [16].

Cooperative coevolution seems specially suited for the FfJSP, due to the composite nature of
its solutions. First, we need to assign the processing of each task 6ij to a machine M;, € R;;.
Once this has been done, we need to establish the order in which tasks are to be processed in
each machine. We thus propose a coevolutionary framework to separately evolve a “machine
assignment population” PM and a “task ordering population” PT.

3.1 Genotype coding and decoding

Every individual from population P encodes a machine assignment as a vector o =
{ai1,...,an}; task 60;; is associated to the element in position p = j + Z;;% ny, o a, € Ryj
represents the machine assigned to ¢;;. On the other hand, an individual in PT encodes a topo-
logical order of tasks as a permutation with repetition 7 = {my,...,mx} such that VI,1 < m <n
and [{m : m = i}| = n;,Vi = 1,...,n. This is a permutation of the set of tasks as proposed
in [1] for the JSP, where each task is represented by its job number. For example, the topological
order 921, 011, 922, (931, 932, 012 is encoded as (2 1233 1)

Notice that the encoding of each population is completely independent of the other population,
unlike other proposals from the literature, for instance [13]. This independence allows both
populations to evolve separately, interacting only at the evaluation phase. Indeed, to calculate
a schedule we require a full solution, combining an individual o from P™ and an individual 7
from PT. Then, a pair (o, 7) € PM x PT will be decoded using the following insertion strategy.
For a task 6;; assigned to machine My, a feasible insertion interval is defined as a time interval
[tf,tkE] in which machine M, is idle and such that tg + pijr < tkE and tf > Cij—ny (if j =0,
Ci(j—1) is taken to be 0), that is 6;; can be processed within that time interval without violating
precedence constraints. When t,f , tkE and p;;r are TFNs, we require that these inequalities hold
in each of their three components (in accordance to the definition of maximum and addition).
Then, the earliest starting time for operation ¢;; in machine My, denoted E STy, is the smallest
tf that can be found. The insertion strategy essentially traverses the task sequence in the order
given by 7 and, for each task 0;;, if M}, is the machine assigned to this task by chromosome «;,
the task is scheduled in machine M}, with starting time S;; = EST; ;.

3.2 Initial populations

The simplest way to generate both initial populations is to do it randomly. Alternatively, we
propose a heuristic seeding method based on the insertion decoding algorithm. The idea is to
use this algorithm as a production rule to generate a full schedule for the FfJSP and then encode
its task ordering as an individual for P and its machine assignment as an individual for P%.

More precisely, let A denote the set of tasks that can be scheduled at a certain stage, initially
the first task from each job. We iteratively select a random task ¢;; € A and compute C* =
min{EST;ji, + pijr : M € R;j}, the earliest possible completion time for 6;; in all machines
where it can be processed. A machine My, is randomly selected from the set K = {Mj :
EST;ji + piji = C*} of machines where this earliest completion time can be achieved, so 6;; is
scheduled in My, with starting time EST; ;.. 0;; is removed from A and its successor in the job
is added to A, provided it exists. The process finishes when A becomes empty.



3.3 Reproduction

For the machine assignment population P we use the one-point crossover: given two genotypes

ot = {afl,... a4} and of = {aP,...,af} the operator chooses a random point p € (1, N)

and builds two offsprings o, P such that aic = af‘ and ole = af for i < p and aic = af and
D

o = af‘ for i > p. The mutation operator takes a random gene ¢ in the genotype associated

to task 0;; and changes its value to a random machine in Rz;;.

In the case of PT, individuals are combined using the JOX operator. Given two genotypes
74, 78, JOX selects a random subset of jobs, copies their genes to one offspring in the same
positions as in the first parent 74, and fills the remaining genes from the second parent 72 so
that they maintain their relative ordering. The second offspring is formed exchanging the role
of the parents with their “unused” genes. The well-known insertion operator or PSM, is used
for mutation. A random gene 7, in the genotype is chosen and changes its position to a random

one, while keeping the relative order of the other tasks.

In both populations, all individuals are grouped in pairs for mating. Acceptance is carried out
using tournament in each group of parents and offsprings, selecting the best two individuals
from this group of four to pass to the next generation. Additionally, we introduce elitism, so the
best individual from a population substitutes the global worst individual in the next generation.

3.4 Cooperative partners for evaluation

It is at the time of evaluation that populations need to cooperate: any individual only encodes
part of a solution and needs to be complemented by an individual from the other population,
the so-called cooperative partner, to conform a full solution which can be evaluated, using the
decoding method above. Based on [11], we use three cooperative partners to evaluate each
individual. Assuming all individuals in both populations are arbitrarily ordered, an individual
in position p from one population, has as cooperative partners from the other population the
best individual in the previous generation, a random individual and the individual in the same
position p. The fitness value will be the best makespan from this group of three solutions.

4 Local Search

Evolutionary algorithms are often hybridised with local search to benefit from the synergy
between both methods. Here, we propose to apply local search to each individual after its
evaluation following a hill-climbing strategy. Local search is applied three times, one for each pair
of cooperative partners. The best solution after the three local search processes per individual
will be selected and the chromosome will be updated accordingly, thus introducing lamarckism.

It is common in the literature to represent solutions to shop problems using acyclic graphs and
define neighbourhood structures based on critical paths in these graphs. Here, we adapt the
solution graph model from [8] to incorporate machine flexibility. A solution can be represented by
an acyclic directed graph G with a node for each task of the problem, labelled with the machine
to which it has been assigned, plus two nodes representing fictitious tasks start and end with null
processing times. There are conjunctive arcs representing job precedence constraints (including
arcs from node start to the first task of each job and arcs from the last task of each job to node
end) and disjunctive arcs representing machine processing orders. Each arc is weighted with the
processing time of the task at the source node (a TFN in our case).

The starting and completion times of each task can be found by propagating constraints in the
graph, and the makespan will be the completion time of task end (which may not coincide with
the completion time of any job). In the crisp case, the makespan corresponds to the cost of a



critical path, which is defined as the longest path in a solution graph from node start to node
end. It is not trivial to extend concepts and algorithms related to criticality to the problem
with uncertain durations (cf [5], [4]). Here we adopt the definition from [8], where it is proposed
that a solution graph G be decomposed into three parallel solution graphs G*, i = 1,2, 3, with
identical structure to G but where the cost of any arc is the i-th component of the TFN labelling
that arc in G. The union of all critical paths in G* i = 1,2, 3 will be the set of critical paths in
G and critical nodes and arcs will be those within a critical path. Finally, a critical block is a
maximal subsequence of tasks of a critical path assigned to the same machine. The makespan of
the schedule is not necessarily the cost of a critical path in G, but it holds that each component

C? .. is the cost of a critical path in the corresponding solution parallel graph G°.

For population PM| representing machine assignments, based on the work of [15] and [6] for
other variants of fJSP, we build a neighbour by taking a critical task 6;; and assign it to a new
machine My, € R;;. The resulting neighbours are always feasible, so no repair strategy is needed.
The evaluation of neighbours and, hence, the cost of the local search procedure, is optimised by
using makespan estimates in the line of [6]

Regarding population P, aimed at finding good task orderings, the local search assumes a fixed
machine assignment (provided by the cooperative partner). This allows to use the structure for
fuzzy job shop from [7], where a neighbour is built by reversing a critical arc at the extreme of a
critical block; the motivation for this definition is that reversing critical arcs preserves feasibility
and, additionally, reversing arcs inside critical blocks does not improve the makespan. Again,
the evaluation of neighbours and consequent cost of the local search procedure is optimised using
makespan estimates.

5 Experimental study

For the experimental evaluation, we use the instances available in the literature for the FfJSP
which, to our knowledge, are the four instances proposed in [12] (denoted 01-04), and the two in-
stances proposed in [13] (denoted 05,06), these two being the largest ones. Our hybrid algorithm
(denoted CELS hereafter) has been implemented in C++ on a PC with a Xeon E5520 processor
and 24 Gb RAM. After some preliminary testing, the parameters have been set as follows: 50
individuals per population and 100 generations as stopping criterion, crossover probability equal
to 0.90 and mutation probability equal to 0.05 for both populations. A reference for the quality
of a solution is the lower bound of the expected makespan given by LBy = E[max;{> ;. p;}, }]
with pj; = min{p;jr, k € Ri;}.

5.1 Analysis of algorithm’s components

A first set of experiments is devoted to analysing the different components of our algorithm. To
evaluate the heuristic seeding we generate two pairs of initial populations, HP = (HPM, HPT)
and RP = (RPM,RPT), the first pair following Section 3.2 and the second pair at random.
We then evaluate the quality of the resulting chromosomes in terms of expected makespan. A
summary of the results can be seen in the first columns of Table 1. For reference, the lower bound
LBy is written in brackets under the id of each instance, and the best-known solution (pBKS) is
included in the second column. The third and fourth columns report the best (average) expected
makespan for both pairs of initial populations. We observe a considerable gain in quality for
the heuristic solutions: the average makespan mean relative error (MRE) w.r.t. LBy is reduced
76% across all instances.

We now evaluate the contribution of the cooperative coevolutionary algorithm (CCEA) and the
local search procedure (LS). To this end, CCEA is run with no local search for the same time



| Instance | pBKS| RP | HP [ CCEA| LS | CELS |
01 30.00 | 62.48 32.30 | 30.25 | 28.75 | 28.50
(28.50) (83.53) | (37.18) | (31.15) | (29.51) | (28.53)
02 45.25 | 81.98 4780 | 45.75 | 4525 | 45.25
(45.00) (107.39) | (54.53) | (46.60) | (45.38) | (45.25)
03 4750 | 90.88 50.23 | 47.00 | 45.25 | 43.50
(43.50) (114.11) | (56.95) | (47.63) | (45.86) | (44.18)
04 37.75 | 76.25 39.25 | 37.25 | 36.00 | 34.25
(33.50) (95.22) | (44.85) | (38.28) | (36.51) | (35.08)
05 62.00 | 110.18 | 63.33 | 5850 | 57.75 | 53.25
(37.50) (133.92) | (69.58) | (60.43) | (58.73) | (55.07)
06 63.75 | 103.89 | 61.63 | 57.00 | 55.75 | 52.75
(40.25) (125.26) | (68.04) | (58.50) | (57.41) | (53.93)

Table 1: Analysis of algorithm’s components with best (average) expected makespan values
obtained in each case.

taken by CELS. Additionally, since CELS uses two populations of size 50 and evolve for 100
generations, we evaluate LS by generating two populations of 500 individiduals and applying LS
to the resulting populations (three searches per chromosome, one per cooperative partner). The
last three colums in Table 1 report the best(average) expected makespan values obtained with
the three methods CCEA, LS and CELS. We can see that CCEA improves the best expected
makespan 18% w.r.t. the heuristic initial population, which means that the heuristic seeding
provides a good starting point for the CCEA in terms of quality but also in terms of diversity,
allowing for a proper evolution of the populations. In fact, the results of CCEA are already
quite competitive, especially as the problem size increases. LS obtains even better results than
CCEA, with a MRE equal to 17.57% in the best case and equal to 19.67% in average. More
importantly, CELS, combining both CCEA and LS, improves the best and average expected
makespan in every instance, with the exception of 02, where the best makespan is equal for
CELS and LS. As an added value for CELS, the runtime of LS is in average 134% greater than
the runtime of CELS. We conclude that there is a synergy effect between the two metaheuristics.

5.2 Comparison with the state-of-the-art in the FfJSP

To our knowledge, the most competitive approaches to FfJSP in the literature are the coevolu-
tionary genetic algorithm (CGA) from [13], the swarm-based neighbourhood search algorithm
(SNSA) from [14], and the hybrid artificial bee bolony algorithm (hABC) from [17]. Table 2
shows the results of 30 runs of CELS on each instance compared to these methods. For each
method it includes the makespan of the best solution (with its expected value between brack-
ets), the average expected makespan across all solutions found in several runs, the corresponding
MRE values and the average runtime of a single run in seconds. The missing rows for instances
05 and 06 correspond to the cases when the original works do not report results on these in-
stances. In bold we highlight the best solution from all methods, marked with “(*)” when it
improves the previous best-known solution. We see that CELS improves the best and average
values in all cases except for instance 02, where it obtains the same best expected value as
SNSA. For instances 01-04 (for which all algorithms provide results), CELS reduces the MRE
more than 77% in average. For instance 05, the reduction w.r.t. CGA and SNSA exceeds 38%,
and on instance 06 it obtains a 46% reduction w.r.t. SNSA. Notice that solutions for instances
01 and 03 are indeed optimal, as they coincide with the lower bound.



Instance | Algor. Best(Craz) Avg(E[Craz)) MRE Time
(LBy) (E[Best(Craz)] ) Best | Avg (s.)
01 CGA 21,29,41 (30.00) 33.18 526 | 16.40 | 8.3
(28.50) SNSA 21,29.42 (30.25) 31.68 6.14 11.14 8.7
hABC 19,30,43 (30.50) 32.15 7.02 12.81 9.9
CELS | 21,28,37 (28.50)(*) 28.53 0.00 | 0.09 | 1.9
02 CGA 32,47,57 (45.75) 47.45 1.67 5.44 8.3
(45.00) | SNSA | 35,43,60 (45.25) 47.05 0.56 | 456 | 8.9
hABC 33,46,58 (45.75) 47.70 1.67 6.00 10.9
CELS 32,46,57 (45.25) 45.25 0.56 0.56 2.3
03 CGA 34,47,63 (47.75) 51.00 9.77 | 17.24 | 10.7
(43.50) | SNSA |  36,46,62 (47.50) 51.25 920 | 17.82 | 11.4
hABC 33,47,64 (47.75) 50.70 9.77 | 16.55 | 14.8
CELS | 31,43,57 (43.50)(*) 44.18 0.00 | 1.55 | 3.0
04 CGA 26,37,51 (37.75) 40.80 12.69 | 21.79 | 10.8
(33.50) | SNSA 26,39,53 (39.25) 41.45 17.16 | 23.73 | 11.5
hABC 23,38,53 (38.00) 40.45 13.43 | 20.75 | 13.9
CELS | 24,33,47 (34.25)(*) 35.08 2.24 | 4.73 | 2.7
05 CGA 42,62,82 (62.00) 65.95 65.33 | 75.87 | 23.9
(37.50) | SNSA |  40,65,93 (65.75) 68.53 75.33 | 82.73 | 14.2
CELS | 35,53,72 (53.25)(*) 55.07 42.00 | 46.84 | 6.7
06 SNSA 46,63,83 (63.75) 65.65 58.39 | 63.11 | 144
(40.25) CELS | 35,52,72 (52.75)(*) 53.93 31.06 | 34.00 | 6.7

Table 2: Summary of results in FfJSP instances with best-known solutions in bold. (*) improves
previous best-known solution.

Overall, CELS establishes new best solutions for all instances except for 02, where it obtains
the same expected makespan as SNSA. Regarding the average expected makespan, not only is
CELS significantly better than the others methods, but it also improves the previously known
best value.

6 Conclusions

We have tackled the flexible job shop scheduling problem with fuzzy durations and have proposed
a new cooperative coevolutionary algorithm hybridised with local search, named CELS, to solve
it. The experimental results have assessed the quality of the initial heuristic seeding and the
synergy between coevolution and local search. They have also shown that CELS outperforms the
state-of-the-art methods, establishing new best known solutions and, in two cases, even finding
the optimal solution.
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