
T2GAME: A New Domain Specific Language to Model Behavior

Patterns on Games

Ismael Posada Trobo *a,b, Vicente García-Díaz a, Jordán Pascual Espada a, Rubén González

Crespo c, Enrique Herrera-Viedma d,e

a MDE Research Group, Department of Computer Science, University of Oviedo, c/Calvo Sotelo s/n, 33007, Oviedo, Asturias, Spain

b CERN IT/OIS, 1211 Geneva 23, Switzerland

c School of Engineering, Universidad Internacional de La Rioja - UNIR, Avda. Rey Juan Carlos I, 42, Logroño, La Rioja, Spain

d Dept. of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

e Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

*Corresponding author: Tel.: +34 616462523

E-mail addresses: ismael.trobo@cern.ch

C/ Calvo Sotelo s/n Facultad de Ciencias 3º OOTLab , 33007, Oviedo, Asturias, Spain

Abstract

Game generation applications from Domain Specific Languages (DSLs) have prevailed during the last few years. For example, in the

Gade4all Project, a game code generator application, was developed in order to allow users to create different computer games, using domain

specific languages, allowing them to define their ideas with a programming misknowledge. Gade4all allowed us to define the whole process

of a computer game, without going into complex parts of the game, as for instance, behaviors of Non-Player Characters (NPC). Based on

this, in this work we go a step further and we provide users the necessary tools so that, with a non-extensive or even low notions of

programming knowledge, users are able to provide a customized behavior for the NPCs through an application generator. T2Game is a

proposal regarding how to make and deploy complex behavior patterns, proposing a design which allows users with a lack of programming
knowledge to define complex behavior and interaction patterns of enemies in a simple way.

Keywords: DSL, MDE, Computer Games, Behavior Patterns, Modeling Tools, Code Generation.

I. INTRODUCTION

From the beginning of computer games

development, provided generation code tools

contained a strong programming factor, which

limited to some extent the access or the elaboration

process to a part of the society of this kind of

software. By this way, only a selected and

qualified group of people were able to develop

computer games, as they had the required

knowledge about it, especially regarding code

programming, increasing exponentially the

complexity of these kind of systems.

Gade4all [1], a computer games development

environment, was developed in order to allow

users to create simple 2D computer games from a

Domain Specific Language (DSL). The main goal

of that project was to provide the necessary tools

for computer games creation in a simple way to

users with a lack of programming knowledge, as

compared with the way third-party tools provided

at that time. It greatly facilitates the general

workflow of the solution, but with some

limitations.

Computer games show up many customized

aspects, being part of the whole process of

computer games creation. Creating or modifying

these aspects through commercial editors could be

relatively easy, depending on the knowledge of the

user in terms of programming, although normally

these editors facilitate the labors of creating a

game by raising the level of abstraction. However,

there are other aspects we could consider complex

for which editors does not provide a clear help,

such as configuring behaviors of the NPCs. Over

the last few years, game development has been

largely influenced by Artificial Intelligence (AI)

[2] [3] [4]. AI plays an outstanding role in modern

video games by making them feel both more

realistic and funnier to play, working alongside the

game logic, invisible to the players who enjoy the

resulting character behaviors [5]. It has been

developing and focusing on different game

categories, such as platform games, First-Person-

Shooter (FPS), Role Playing Games (RPGs), etc.

[6], being one of the biggest challenges to create

NPCs behavior [7]. It can delimitate the whole

gameplay in terms of quality and interaction.

Creating an understandable abstraction of these

aspects is not easy for common users of such tools,

as we could leave aside some important parts that

for us are not important, but they really are. All

this suggests that the configuration of enemies’

behaviors can be much more optimized if we

create the proper abstraction.

Thus, T2Game, our proposal, is born to help

users to design and create behavior and interaction

patterns based on a DSL, serving as a base for the

reuse of code in an automatic way, improving the

efficiency and solving typical problems of

software development by the use of Model Driven

Engineering (MDE) paradigm [8]. MDE increases

the level of abstraction through a design, based on

formal models, understandable by users with a

lack of programming knowledge, although with a

knowledge of the specific domain in which the

DSL focuses.

In this paper, we discuss the method we adopted

to solve the lack of proposals regarding the

modeling of behavior patterns on games. The rest

of this paper structured as follows. Section II

overviews the background on this topic,

introducing the user to several ways of configure

behaviors and their usage difficulties. Section III

introduces the user to our proposal, T2Game, and

the way it works. Section IV shows how T2Game

can be used to address the modeling actions with

real life samples. Section V evaluates the proposal

and finally, Section VI presents the conclusions

and the future work.

II. BACKGROUND

In 90s, computer games development

experimented a boom, being the proliferation of

the games creation tools massive. Practically the

majority of these tools began to follow a

philosophy of fast development without delving

into any special feature, but a vast knowledge of

the domain was required. These developments

were used by a unique person, an expert in many

fields concerned to computer games.

With the raise of industry in the XXI century,

these developments begin to be used by

inexperienced users. No much programming

knowledge about development was needed and

users started to do their own developments. Games

industry realized the importance of development

for these users and evolved offering two

alternatives: computer games editors based on

wizards, for modeling elements of a computer

game and specific frameworks for, basically,

experienced users. As opposed, the development

time consumed by these applications had no

experimented big changes since then, being

extremely high [9].

Some of these used tools are, inter alia: Game

Maker Studio [10], Construct-2 [11] and Stencyl

[12].

Game Maker Studio is a games development

tool based on an interpreted programming

language called GML. It has been designed to

allow users to easy develop computer games for

different platforms such as iOS, Android or PC.

This tool uses the philosophy of drag and drop for

configuring interactions and the relationships

between the objects included in the game. The

main goal of this tool is to minimize the creation

of the game elements avoiding code writing.

Relative to enemies behavior, this tool brings up

plenty possibilities of creation, based on the

concept of associated actions to events.

Contruct-2 is a 2D games editor developed by

Scirra, especially for web platforms (HTML5),

intended by users with a lack of programming

knowledge. It uses drag & drop philosophy using

a behaviors editor with the particularity of adding

functionality even with a logic system based on.

Behavior system is based on predefined

packages in order to add more functionality, with

a bunch of customized properties. Essentially, it

could be considered as ‘shortcuts’ in order to

improve productivity, also known as ‘time-

savers’.

Stencyl is a games development tool created by

Stencyl Works which provide designers a graphic

editor in order to develop games for different

platforms. Apart from the possibilities that brings

up about configuring actors, scenes, etc., it has a

particular way to define actors behaviors, based on

linked pieces of a puzzle. These ‘pieces’ are called

Behaviors, reusable entities that are joint to actors

or scenes. At a glance, a programmer could believe

that it sets a kind of pseudo-code.

Delving into configuring behaviors could

require certain programming and algorithm

knowledge.

All of these tools offer a similar range of

functionalities and operations, having its own

particularities, defined by different rules and

parameters, especially in terms of behaviors

configuration, but similarities means same

limitations. Any user could define different

elements within game, but once we want to go a

step further configuring complex behaviors, for

instance, mixing them, these tools begin to limit to

some extent the behavior creation, being necessary

a depth knowledge of what we are doing.

Those limitations are directly related with the

proposal we introduce in the next section, as we

try to define a known and interpreted common way

of building enemies behaviors by users.

More alternatives for computer games

development are the use of frameworks, such a

Unity 3D [13] or Blueprints [14] from Unreal.

These are specifically designed to facilitate the

managed of a particular problem through coding,

as it is on Unity 3D, or through diagrams and

coding, as it is on Blueprints. Both show different

ways to achieve same solutions, but it is more

intended by experienced users.

There are many researchers focused on the

design of tools or platforms for modeling through

MDE, as shown in Krogmann and Becker [15],

comparing code development to software

developed using the MDE approach with same

functionality.

Gade4all project (Fig.1) is created with MDE

approach in mind, proposing the use of models for

creating games from the beginning, allowing users

with non-technical knowledge only focusing over

the creative area.

Fig. 1 Gade4all editor

Other proposal defends the use of working

together both designers and developers on a more

productivity way using MDE, as it is said in

Furtado and Santos [16].

Jaime et al. [17] try to reduce the cost of

traditional games development with a new

approach of modeling the game loop of a game

called VGPM.

Carton [18], with the use of Java Emitter

Templates (JET) technology for coding

generation, presents an approach in order to

manage the complexity based on a combination of

aspect-oriented development and model-driven

engineering techniques.

Some works related to behaviors applied to

games can be seen in Cardamone et al. [19]

III. T2GAME PROPOSAL: A NEW DOMAIN SPECIFIC

LANGUAGE TO MODEL BEHAVIOR PATTERNS ON GAMES

The main focus of this work is the creation of a

graphic domain-specific modeling language to

allow users to model the behavior of enemies in

game. In order to meet this objective and check the

suitability of our solution, we have developed a

prototype which is structured as follows:

 Metamodeling

 Model & Graphic Syntax: editor

 Import to JET code generator: JET

Templates

 android_platform_miw Android Project

A. Metamodeling

The metamodeling defines the elements of the

modeling language (meta-classes), their

relationship (meta-relations) and their restrictions.

That is, it defines the domain which we are going

to act with. This domain is the enemies’ behavior

patterns modeled in platform games.

Metamodeling is the key of the MDE, and it is

much needed for creating domain specific

languages, model validations, model

transformations, artefact generation and tools

integration [20]. It defines the abstract syntax and

the static semantic, (e.g., by using the Eclipse

Modeling Framework (EMF) tools through

Ecore).

In order to create the domain language, this

metamodeling will be composed by a set of

entities, described below. Those entities have

common names extracted from a natural language,

in order to provide better understanding by users.

The list of entities are described below:

 Behavior

 When

 Condition

 Action

 Otherwise

Behavior: it is the main node, grouping the rest

of entities of the metamodeling. It is composed by

zero or many ‘When’ entities (idem for ‘Action’

entity).

When: entity whose main goal is to set a

condition in the model processing. It carries a

group of predefined identifiers, allowing users to

choose between them. It is composed by

‘Condition’, ‘Otherwise’ and ‘Action’ entities.

This entity could appear alone, without

dependence on others.

Condition: this entity is directly associated with

the When entity, which set what action is going to

be performed through an identifier called

‘idCondition’. If a When entity is set, Condition

entity must appear.

The valid associated identifiers for the

Condition entity are the following in this version

of the language:

 IsThereWall: this identifier allows

enemies to check whether an obstacle

prevents or not to enemies to carry on

with their movement.

 playerIsNear: this identifier allows

enemies to know if the main character is

close. The default value is 150 px.

 playerHasEnoughLife: this identifier

asks for the health of the main character,

in order to do some actions related to

this health.

 playerHitsMe: this identifier checks if

the main character has collided with an

enemy. This is obtained through

intersections of rectangles.

Otherwise: optional entity associated to When

entity. If When entity does not satisfy the

condition, Otherwise entity gets into play. It could

appear (n-1 < x < n) times, being ‘x’ the Otherwise

entity and ‘n’ the When entity.

Action: this entity can act independently, setting

an action within behavior. These actions are

predefined by a finite set of themselves through

the ‘idAction’ variable (or action’s identifier).

Valid ‘idAction’ identifiers are the following:

 stop: this identifier sets the movement of

the enemy to zero, avoiding its

movement.

 turnAround: this identifier sets the

inverse of the current movement. If the

enemy is moving from right to left, this

will set the movement from left to right,

and vice versa.

 moveHorizontal: this identifier sets the

movement to true. That is, start the

process of move an enemy. It is the

opposite of the stop identifier.

 startFire: this identifier allows enemies

to start shooting to the main character.

By default, it has its own fire span in

order to avoid multi shots.

 stopFire: this identifier is the opposite

of the startFire identifier. If enemy has

activated its startFire flag, this will

cancel it.

 killPlayer: this identifier allows

enemies to kill the main character, or in

other words, will terminate with the

main character health. The game is over

when this identifier happens.

If the Action entity is associated to When entity,

this Action entity will be processed when as long

as the Condition entity of the When entity is

satisfied. However, if it is associated to the

Otherwise entity, it will be processed when

Condition entity from When entity is not satisfied.

These pre-associated identifiers refer to the

associated code used in the enemies’ behavior part

at the deployed application. Their election and

identification is based on actions which commonly

appear in platform games. Every single identifier

constitute the method calling, after applying a set

of modifications and refactoring previously. These

associated codes could be easily added by

programming experts, in order to provide more

dynamism and increase the number of actions and

conditions provided to generate more behavior

patterns, and allow more characteristics.

B. Model & Graphic Syntax: editor

Once we have defined the language, it is time to

design the model. This model is an abstraction

focused on solving problems of a specific

applications. In our case, this is the platform

games behavior patterns. This model uses defined

elements from metamodeling in order to specify

the behavior pattern of an enemy within platform

games. These models are used for increasing

productivity and compatibility between different

systems, simplifying the design phase, exalting

work team communications, as it said in Schmidt

[21].

To do that, we are providing two different

editors, looking for being intuitive for users at the

time of creating model. One is based on ‘tree

node’ philosophy, contributing with parent nodes,

child nodes, etc., and the other one is based on the

‘drag & drop’ philosophy, made by the tools

Sirius system provides.

For the first one, we have to place over the

parent node, ‘Behavior’, right-clicking and adding

the proper children and the proper properties to

each entity. It can be seen in Fig. 2.

Fig. 2 Sample of Tree Node editor

For the second one, this editor is developed with

Sirius, and it follows the ‘drag & drop’

philosophy. It is composed by a palette with a

range of elements, placed on the right, as it can be

seen in Fig. 3. These elements represent the

entities previously defined. In addition, it allows

to specify what actions are going to be joined with

both different entities (When and Otherwise),

similar to the first editor, but in a more ‘colorful’

and graphical way.

Fig. 3 'Drag & drop' editor, developed with Sirius

Both editors will generate a XMI version 2.0

specification, as shows Fig. 4, used by default by

EMF technology for data persistence. This

specification will be responsible for

communicating both the model design and the JET

code generator.

Fig. 4 Sample of XMI specification

C. Import to JET code generator: JET Templates

JET code generation is a Model-to-Text (M2T)

engine based on an EMF model. In JET, a variety

of templates are defined, called JET templates.

These templates allow JET code generator to

generate automatic code, as Java, XML, etc.

Code generation is a fundamental part in MDE,

since these templates define the implementations

created by after the transformation step. In our

solution, this JET engine receives a XMI file, and

transforms it into Java code. This Java code is

responsible for setting the proper actions in the

enemy behavior, being ready for the last

execution: our target application.

D. android_platform_miw Android Project

Our target application is a 2D platform game

entirely developed for Android in Java code. The

creation of this application has been carried out by

the project Gade4all. The whole process can be

seen in Fig. 5.

IV. USE CASE: MODELING A REPRESENTATIVE BEHAVIOR

PATTERN

Once the proposal has been introduced, the next

step is to show how the whole videogame

definition is done using it. In this case, the

presented tools will be used to define and generate

an example of the ‘Goomba’s’ behavior, present at

Mario Bros. game developed by Nintendo®. For

this first case we are going to use the ‘Tree node’

editor.

Fig. 6 shows the flow chart we are following in

order to set the behavior to our enemies.

Fig. 6 Flow chart of use case

In order to achieve this, we will generate a

platform game using the Gade4all editor. Now,

it is time to set the behavior. Users must place

over the Behavior node on our editor, and start

to adding nodes through right-clicking the

contextual menu, creating new children,

achieving the model as it is shown on Fig. 7.

Fig. 5 Overview of our solution

Fig. 7 Use case set with Tree node editor

As Fig. 8 shows, we could take a look to the XMI

specification, placing us over the left menu and

open the model up with the Text Editor feature.

This XMI, as we have previously defined, will be

used by the code generator.

Fig. 8 Overview of XMI Specification

With the generated specification done, code

generator must be executed. Through a JET

template, this code generator will transform that

specification into Java code, generating a Java file.

This Java file contains the update method used to

update the behavior of the enemy within game. In

order to apply this code to the target application,

this operation must be performed by hand, but

obviously in a release solution, should be done

automatically. In the target application,

EnemyShooter.java class will be affected.

Finally, in order to see the result, the user must

import the generated projects into the

corresponding integrated development

environment, also known as IDE. In this case, the

application project must be imported into Eclipse

with the Android Development Kit plugin

installed.

When the projects have been imported there are

two possible ways to execute them and check their

behavior: using the emulators included with the

development environment or attaching a physical

device to the computer and deploying the

videogames on it.

Another way to achieve this could do through

Sirius editor, also developed by us. With the same

flow chart as it is shown in Fig. 6, the process of

adding elements is quite similar. In Sirius editor,

users have to accede to the elements provided by

the palette, placing on the right side as shows Fig.

9, and then drag & drop the elements over the

viewer.

Fig. 9 Overview of Sirius editor

Once we have dragged and dropped the

elements, it is time to set the suitable properties,

based on the properties previously annotated on

Section III. In addition, it is necessary to join the

elements through the lines, specifying the order

they are going to execute at. An overview of the

process made with Sirius editor is shown in Fig.10.

Fig. 10 Use case with Sirius editor

Once it is defined, the XMI specification will be

generated. The following steps, in order to deploy

the solution, are similar as defined in the previous

editor.

V. EVALUATION

Once we have set what is the main goal we are

following in our proposal, and having explained

the whole functioning, it is time to evaluate

carefully respect to third-party tools present in the

market about definition of behavior patterns. At

the time of evaluation, it is not clear what is the

best method to affront this, as there are many

factors that carry weight into edition of this kind

of behavior patterns.

In order to do this, we propose an evaluation

system based on those aspects we believe they

affect into the creation complexity of doing the

proper operations to get a behavior. We have 5

elements clearly differenced that they take part

over the whole process of making patterns. They

are:

 Written characters.

 Used/Created classes.

 Provided method(s) by framework or

editors used by helping in the building

phase.

 Used nodes or boxes.

 Affected properties they have been

created for some reason.

Having defined the elements, we have set a kind

of weights that they delimit the complexity of the

operation. For instance, we consider that use a

node has less ‘weight’ than use a provided method

by frameworks, as to reach both elements, there

are clearly differences in term of complexity.

Obtained results for the previous use case can

be seen in Table 1. Weights of different operations

are shown between brackets:
 Characters

(0,3)

Classes

(0,2)

Framework

Methods

(0,3)

Nodes

(0,4)

Properties

(0,6)

Total

Unity 69,9 0,2 0,9 0 1,2 72,2
Game

Maker
21,3 0,2 0,3 0 1,2 23

Stencyl 4,5 0 0 1,6 3 9,1
T2Game 6,6 0 0 0,8 1,2 8,6

Blueprints 10,8 0 0 2,8 3,6 17,2

Table 1 Use case results

Fig. 11 shows a chart with the obtained results

in a logarithmic scale due to data covers a wide

range of values:

Fig. 11 Use case complexity

As we can see, our proposal presents a slight

improvement in terms of creation complexity

compared to solutions like Stencyl. This

improvement is pretty much 0.42% on average.

This tiny difference is concerned to Stencyl is a

tool fairly similar to ours, in principle because of

Stencyl presents a way of doing these kind of

behaviors similar to ours. The main part concerned

to this difference is the puzzle part Stencyl

presents, as well as the use of nodes of our solution

compare to Stencyl solution. As it can be seen in

Fig. 12, the part concerns to edit the behaviors, is

done by a puzzle-like process. In this case, at the

behavior configuration, we have to specify what

actors are getting involved in the behavior pattern,

that is, we have to specify most of the properties

we want to use into behavior and its relationship.

Here the first difference appears, as we provide a

language that internally has their own identifiers

so that the proper actors ‘know’ what behavior has

to perform. We know beforehand how actors are

affected since in most cases these properties are

predefined and assigned at the beginning of

creation.

Fig. 12 Use case made by Stencyl tool

On the other hand, extending behavior patterns

in Stencyl tool could not be easy, as users would

feel data overload as it does not follow an

understandable and continuous flow. Comparing

with our solution as we can see in Fig. 13, we

6
9

.9

0
.2

0
.9 1
.2

7
2

.2

2
1

.3

0
.2 0
.3

1
.2

2
3

4
.5

1
.6 3

9
.1

6
.6

0
.8 1
.2

8
.61
0

.8

2
.8 3
.6

1
7

.2

0.05

0.5

5

50

Use case complexity: Player Hits Me

Unity Game Maker Stencyl T2Game Blueprints

always show the flow that a behavior pattern is

following. In Stencyl, the way to do as a puzzle

could be useful for small behavior patterns, but

once these behaviors are increasing the elements

that get into play, the level of difficulty is

increased at the time of configuring different parts.

The number of properties used tends to grow,

while for our solution all these properties

represents a finite set, being uniquely increased up

depending on the language specification. This

obviously could be proved by doing usability tests

in the future, comparing both Stencyl tool and our

solution and see how users act in both situations.

Thereby, we have clear evidences that our

proposal have improved some parts of the creation

we consider they are difficult for understanding by

users.

Fig. 13 Use case made by T2Game editor

Respect to other solutions as Blueprints, this

tool does a major use of nodes at the time of setting

the different events they are taking part into game.

Thus, having a look to the obtained results, our

solution is 11% simplest than Blueprint on average

in terms of creation complexity. Basically this

difference is concerned as Blueprint needs to set

all the variables in nodes in most cases, which is

not necessary on ours.

Having a look to the results, if we compare

results in different editors or frameworks as

Blueprints, Game Maker or Unity 3D, we notice

that differences increase when we are setting a

major number of options, overall in framework

systems. This could seems obvious, but it is a way

to say that editors way of creation could be

relatively simplest than programmatic way, as

measurements are shown in Table 1.

Summarizing, programmatic way of doing these

kind of behaviors would increase faster the

creation complexity than the editors way permit.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a novel proposal that

allows users to model the behavior patterns logic

of enemies within the game: a new specific

language to model behavior patterns. The

designed language was created based on our

methodology which is being improved and refined

by a research group with new ways of achieving

different use cases. Using this methodology we

will get further information from domain experts

in order to detect more elements and fundaments

of the enemies’ behavior logic, and their

relationship. These specific elements will be

handled by a couple of editors, with the proper

restrictions and the specific properties. This will

be the way we will achieve that users with a lack

of programming knowledge could model a process

that defines the whole logic of an enemy behavior.

The behavior pattern process modeling through

DSLs is based on the combination of both

elements and properties set in the editor for our

first approach. This language is not as powerful as

other programming languages used in games

development due to some limitations and

restrictions provided in order to facilitate its

managing by users. In compensation, the

expressiveness of the defined language is fairly

significant, accomplishing the full coverage of the

different and typical phases an enemy behavior

presents within a game. This allows users define

enemies’ behavior patterns in an easy manner, as

we have demonstrated previously, always keep in

mind that we are in front of inexperienced users.

Thus, our approach is capable of reducing the

creation complexity and the time spent

experimented by users over the whole phase of

behavior creation of enemies, improving the

efficiency of common game development tools, as

well as facilitating the way of creation.

The future work regarding this investigation is

oriented to improve and optimize our proposal. It

is divided in the following areas:

 New improvements and optimizations

about the presented structure with the

aim of setting them more affordable,

simpler to modeling and with the

enough abstraction level in order to

allow variations of it.

 Diversify behavior patterns making

them more specific, so that each enemy

has its own. Furthermore, it will be

interesting to parametrize the behaviors,

as well as include fuzzy logic in this

process.

 Promote the use of behavior patterns not

only for enemies, but for the different

actors present in game, such as items,

main characters, final enemies, etc.

 New dive into behavior patterns of 3D

games. A pattern must be applied to

either 2D game or 3D games.

 New research about new behavior

patterns feedback, acting as conditions

allow, learning from environment. At

the same time, it will be interesting that

behaviors act as emotions allow.

ACKNOWLEDGEMENTS

This paper has been partially developed with the

financing of FEDER funds in TIN2013-40658-P

and Andalusian Excellence Project TIC-5991.

BIBLIOGRAPHY

[1] E. Rolando Nuñez-Valdez, O. Sanjuan, B. C. Pelayo García-Bustelo, J.

M. Cueva-Lovelle y G. Infante Hernández, Gade4all: Developing Multi-
platform Videogames based on Domain Specific Languages and Model

Driven Engineering, Oviedo: International Journal of Artificial

Intelligence and Interactive Multimedia, 2013.

[2] X. Tu y D. Terzopoulos, Artificial fishes: Physics, locomotion,

perception, behavior, Orlando: In Proceedings of SIGGRAPH, 1994.

[3] J. Funge, X. Tu y D. Terzopoulos, Cognitive Modeling: Knowledge,
Reasoning and Planning for Intelligent Pedestrians, Los Angeles, 1999.

[4] S. Russell y P. Norvig, Artificial Intelligence: A Modern Approach,

Pearson Education, 1995.

[5] M. Pirovano y P. L. Lanzi, «Fuzzy Tactics: A scripting game that

leverages fuzzy logic as an engaging game mechanic.,» Expert Systems
with Applications, vol. 41, nº 13, pp. 6029-6038, 2014.

[6] T. S. H. G. Vidaver, Flexible an Purposeful NPC Behaviors using Real-

Time Genetic Control, Vancouver, 2006.

[7] C.-N. ZHOU, X.-L. YU, J.-Y. SUN y X.-L. YAN, Affective

Computation Based NPC Behaviors Modeling, Proceedings of the 2006

IEEE/WIC/ACM Internation Conference on Web Intelligence and
Intelligence Agent Technology, 2006.

[8] S. Kent, «Model Driven Engineering,» IFM '02 Proceedings of the Third

International Conference on Integrated , nº ISBN:3-540-43703-7, pp.
286-298, 2002.

[9] J. Solís-Martínez, J. Pascual Espada, B. C. Pelayo G-Bustelo y J. M.

Cueva Lovelle, BPMN MUSIM: Approach to improve the domain
expert’s efficiency in business process modeling for the generation of

specific software applications, Oviedo: Elsevier, 2014.

[10] «Game Maker Studio,» YoYo Games, 15 Noviembre 1999. [En línea].
Available: https://www.yoyogames.com/studio. [Último acceso: Mayo

2015].

[11] «Construct 2,» Scirra LTD, 4 Febrero 2011. [En línea]. Available:

https://www.scirra.com/construct2. [Último acceso: Mayo 2015].

[12] J. Chung, «stencyl,» Stencyl, LLC, 31 Mayo 2011. [En línea].

Available: http://www.stencyl.com/. [Último acceso: Mayo 2015].

[13] D. Helgason, «unity,» Unity Technologies, 30 Mayo 2005. [En línea].
Available: https://unity3d.com/es. [Último acceso: Mayo 2015].

[14] «Blueprints Visual Scripting,» Unreal Engine, 1998. [En línea].

Available:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html.

[Último acceso: Mayo 2015].

[15] K. Krogmann y S. Becker, A Case Study on Model-Driven and
Conventional Software Development: The Palladio Editor, Karlsruhe,

2007.

[16] A. W. B. Furtado y A. L. M. Santos, Using Domain-Specific Modeling
towards Computer Games Development Industrialization, Pernambuco,

2006.

[17] Martinez, Solis Jaime et al., «VGPM: Using business process modeling
for videogame modeling and code generation in multiple platforms.,»

Computer Standards & Interfaces, vol. 42, pp. 42-45, 2015.

[18] Carton, Andrew; et al., «Aspect-oriented model-driven development

for mobile context-aware computing,» de Proceedings of the 1st

International Workshop on Software Engineering for Pervasive

Computing Applicaitons, Systems and Environments, Dublin, IEEE
Computer Society, 2007, p. 5.

[19] Luigi Cardamone et al., «Advanced overtaking behaviors for blocking

opponents in racing games using a fuzzy architecture,» Expert Systems
with Applications, vol. 40, nº 16, pp. 6447-6458, 2013.

[20] J. Pascual Espada y V. García Díaz, Ingeniería dirigida por modelos,
Oviedo: UNIOVI, 2014.

[21] D. C. Schmidt, «Model-Driven Engineering,» IEEE Computer, vol. 39,

nº 2, pp. 25-31, 2006.

