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In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in 
the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation 
around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of 
the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these 
bound states with low values of quantized magnetic flux are described fully, and their main properties 
are discussed.
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1. Introduction

Very soon after the discovery of Abrikosov quantized flux lines 
in the Ginzburg–Landau theory of Type II superconductors [1], the 
existence and nature of fermionic bound states on these vortex 
filaments were discussed by Caroli et al. in Ref. [2]. Quantized 
magnetic flux lines were rediscovered by Nielsen and Olesen in the 
Abelian Higgs model, see [3], a finding that enhanced the interest 
of these topological defects by promoting them to the relativis-
tic and quantum world. By adjusting the couplings in the Abelian 
Higgs model to drive the system to the critical point between 
Type II and Type I superconductors, Bogomolny showed, see [4], 
that quantized vortex lines still exist but move without interaction 
with respect to each other. Bosonic vortex bound states were in-
vestigated by Goodman and Hindmarsh, see [5], in the context of 
the Abelian Higgs model for any value of the parameter govern-
ing the transition between Type I and Type II superconductivity. In 
this short note we shall focus on finding BPS vortex bound states 
and we shall describe these internal boson-vortex modes by a mix-
ture of analytical and numerical methods, at least at the same 
level of numerical precision as the BPS vortex solutions them-
selves.
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2. BPS vortex fluctuations

The Abelian Higgs model describes the minimal coupling be-
tween a U (1)-gauge field and a charged scalar field in a phase 
where the gauge symmetry is broken spontaneously. In fact, it 
is a relativistic version of the Ginzburg–Landau theory of super-
conductivity. At the transition point between Type I and Type II
superconductivity, where the masses of the Higgs and vector fields 
are equal, the AHM action reads

S[φ, A] =
∫

d4x

[
−1

4
Fμν F μν + 1

2
(Dμφ)∗Dμφ

− 1

8
(φ∗φ − 1)2

]
. (1)

Here, non-dimensional coordinates, couplings and fields are used, 
while φ(x) = φ1(x) + iφ2(x) is a complex scalar field and Aμ(x) =
(A0(x), A1(x), A2(x), A3(x)) is the vector potential. The covariant 
derivative is defined in the conventional form, Dμφ(x) = (∂μ −
i Aμ(x))φ(x), whereas the electromagnetic field tensor is also stan-
dard: Fμν(x) = ∂μ Aν(x) − ∂ν Aμ(x). We choose the metric ten-
sor in Minkowski space as gμν = diag(1, −1, −1, −1), μ, ν =
0, 1, 2, 3, and use the Einstein repeated index convention. In the 
simultaneous temporal and axial gauges A0 = A3 = 0, the Bogo-
molny arrangement of the energy per unit length for static and 
x3-independent field configurations V [φ, A], see [4], shows that 
solutions of the first-order PDE system
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ne,
D1φ ± iD2φ = 0 , F12 ± 1

2
(φ∗φ − 1) = 0 , (2)

with appropriate asymptotic behavior at infinity in the R2 x1 : x2-pla
are absolute minima of V [φ, A]. It was proved in [6] that there 
exist solutions of the PDEs (2) with finite string tensions that 
are proportional to the magnetic flux along the x3-axis of n ∈ Z

quanta: V [φ, A] = 1
2 | ∫

R2 d2xF12| = π |n|. These topological ob-
jects are denoted BPS vortices because they correspond to the 
Abrikosov–Nielsen–Olesen vortex filaments arising in Type II su-
perconductors, see [1–3], when the scalar and vector penetration 
lengths in the Ginzburg–Landau free energy are equal and the sys-
tem lives exactly at the transition point to Type I materials.

Denoting the BPS vortex fields as:

φV = ψ(�x;n) = ψ1(�x;n) + i ψ2(�x;n) ,

AV = (V 1(�x;n), V 2(�x;n)) with �x = (x1, x2) ,

and assembling the vector and scalar vortex fluctuations (a1(�x),
a2(�x)), ϕ(�x) = ϕ1(�x) + iϕ2(�x) in a column vector ξ(�x) with trans-
pose

ξ t(�x) = (
a1(�x) a2(�x) ϕ1(�x) ϕ2(�x)

)t
,

one checks that the linearized dynamics is governed by the action 
of the second-order vortex fluctuation operator H+

H+ =
⎛
⎜⎜⎜⎜⎝

−	 + |ψ |2 0 −2D1ψ2 2D1ψ1
0 −	 + |ψ |2 −2D2ψ2 2D2ψ1

−2D1ψ2 −2D2ψ2 −	 + 1
2 (3|ψ |2 − 1) + Vk Vk −2Vk∂k − ∂k Vk

2D1ψ1 2D2ψ1 2Vk∂k + ∂k Vk −	 + 1
2 (3|ψ |2 − 1) + Vk Vk

⎞
⎟⎟⎟⎟⎠

(3)

on ξ(�x). Resolution of the spectral problem H+ξλ(�x) = ω2
λ ξλ(�x), 

where λ is a label in either the discrete or the continuous spec-
trum of H+ , permits the decomposition of ξ(�x) as a linear combi-
nation of the ξλ(�x) eigenfunctions.

In the search for bound state (normalizable) eigenfunctions 
other than zero modes, i.e., 0 < ω2

λ < 1 assuming that ω2
λ = 1 is 

the scattering threshold, we shall profit from a hidden SUSY struc-
ture of H+ . Linear deformation of the PDE system (9), together 
with the background gauge

∂1[ξ(�x)]1 + ∂2[ξ(�x)]2 − ψ1(�x) [ξ(�x)]4 + ψ2(�x) [ξ(�x)]3

≡ ∂kak(�x) − ψ1(�x)ϕ2(�x) + ψ2(�x)ϕ1(�x) = 0 , (4)

is encoded in the following first-order PDE operator

D =

⎛
⎜⎜⎝

−∂2 ∂1 ψ1 ψ2
−∂1 −∂2 −ψ2 ψ1
ψ1 −ψ2 −∂2 + V 1 −∂1 − V 2
ψ2 ψ1 ∂1 + V 2 −∂2 + V 1

⎞
⎟⎟⎠ , (5)

acting on the space of BPS vortex fluctuations. This operator D
allows us to embed H+ in a SUSY Quantum Mechanical system 
because H+ = D†D and we find the following SUSY algebra gen-

erated by the supercharge Q =
(

0 0
D 0

)
:

Q 2 =
(

Q †
)2 = 0 ,

H = Q Q † + Q † Q =
(
H+ = D† D 0

0 H− = DD†

)
, (6)

H being the SUSY Hamiltonian, while the SUSY partner to H+ is:
 

H− =
⎛
⎜⎜⎜⎜⎝

−	 + |ψ |2 0 0 0

0 −	 + |ψ |2 0 0

0 0 −	 + 1
2 (|ψ |2 + 1) + Vk Vk −2Vk∂k − ∂k Vk

0 0 2Vk∂k + ∂k Vk −	 + 1
2 (|ψ |2 + 1) + Vk Vk

⎞
⎟⎟⎟⎟⎠ .

(7)

Except for the eigenfunctions in the kernel of D, which are zero 
modes of H+ , the two operators are isospectral. This supersym-
metric structure led to the proof of the Weinberg index theorem 
on the plane [7]:

indD = dim KerD = lim
M→∞ TrL2

{ M2

D†D + M2
− M2

DD† + M2

}

= 2n ,

stating that H+ has 2n zero modes in its spectrum: H+ξ+
0l (�x) = 0, 

l = 1, 2, · · · , 2n. Moreover, (6) also guarantees that the H+-spec-
trum is non-negative, such that the zero modes of D are all the 
ground states of H because KerH− = 0.

We shall focus on BPS cylindrically symmetric vortex filaments 
shaped according to the Nielsen–Olesen ansatz:

φ(�x) = fn(r) einθ ; r Aθ (r, θ) = n βn(r) . (8)

We stress that: (1) Cylindrical coordinates are chosen in the 
R

3-space and the vector potential components are adapted to 
them. (2) Besides the temporal and axial gauges, the radial gauge 
Ar = 0 is assumed such that the vector field is purely vorticial. 
(3) The complex scalar field is expressed in polar form.

The first-order PDE system (2) becomes the following ODE sys-
tem:

dfn

dr
(r) = n

r
fn(r)[1 − βn(r)] ,

dβn

dr
(r) = r

2n
[1 − f 2

n (r)] . (9)

The solutions for the radial profiles fn(r) and βn(r), in the 
x1 : x2-plane and infinitely repeated along the x3-axis, determine 
the cylindrically symmetric BPS vortex solutions. The finiteness of 
the energy per unit length demands that fn(r) → 1 and βn(r) → 1
as r → ∞.

Some analytical progress in the investigation of the zero-mode 
fluctuations on BPS cylindrically symmetric vortices was achieved 
in [7]. Further comprehension of their structure was obtained in 
Refs. [8] and [9]. Here, the motivation leading several researchers 
to describe in detail the vortex zero modes came from the study of 
vortex scattering at low energies within the approach of geodesic 
dynamics in their moduli space, see e.g. [10]. In this note we shall 
focus on finding and describing excited fluctuation modes in the 
discrete H+-spectrum, i.e., internal modes of fluctuation, where 
the BPS vortex captures scalar and/or vector mesons, an issue not 
discussed in the literature on the Abelian Higgs model.

3. Spectrum of cylindrically symmetric BPS vortex fluctuations

In the search for positive bound states ξ+
λ (�x) in the discrete 

spectrum of the operator H+ , the use of supersymmetry is con-
venient. If ω2

λ > 0, the SUSY structure (6) implies that H±ξ±
λ (�x) =

ω2
λξ

±(�x). Moreover, the eigenfunctions of H± are related through 
the supercharges: ξ+

λ (�x) = 1
ωλ

D†ξ−
λ (�x). In addition, it should be 

recalled that the background gauge condition must be satisfied in 
order to eliminate spurious gauge fluctuations. The strategy is thus 
to solve the spectral problem for H− first and apply the D† oper-
ator to the ξ−

λ eigenfunctions, finally obtaining the eigenfunctions 
ξ+
λ of H+ . This indirect path is more appropriate because the spec-

tral problem of H− is more tractable owing to its block-diagonal 
form. Two classes of eigenmodes of the operator H− can be dis-
tinguished:



A. Alonso-Izquierdo et al. / Physics Letters B 753 (2016) 29–33 31
• Class A H−-eigenmodes: The two 1 × 1 block-diagonal sub-
matrix differential operators in H− prompt a complete decoupling 
of the vector field from the scalar fluctuations in the H−-spectral 
problem. Thus there exist eigenfunctions of the form [ξA−

λ (�x)]t =(
a1(�x) 0 0 0

)t
and [ζ A−

λ (�x)]t = (
0 a2(�x) 0 0

)t
. The H+-wave 

functions of the form D†[ζ A−
λ (�x)] do not satisfy the background 

gauge. Therefore, we shall study only the physically meaning-
ful possibilities D†[ξA−

λ (�x)] among this class of eigenmodes. The 
non-null component of ξA−

λ (�x) complies with the PDE (−∇2 +
|ψ |2) a1(�x) = ω2

λ a1(�x), or, in polar coordinates,

−∂2a1

∂r2
− 1

r

∂a1

∂r
− 1

r2

∂2a1

∂θ2
+ [ f 2

n (r) − ω2
λ]a1 = 0 . (10)

The separation ansatz a1(�x) = vnk(r) cos(kθ)1 leads to the 1D 
Sturm–Liouville problem

−d2 vnk(r)

dr2
− 1

r

dvnk(r)

dr
+

[
f 2
n (r) − ω2

λ + k2

r2

]
vnk(r) = 0 (11)

for the radial form factor vnk(r). Univaluedness of the fluctua-
tions demand that the wave number k must be a natural number: 
k = 0, 1, 2 . . . . The ODE (11) is no more than a radial Schrödinger 
differential equation with a potential well V A

eff(r; n, k) = f 2
n (r) + k2

r2 , 
which includes a centrifugal barrier when k 	= 0, bounded below 
and running to 1 at infinity: limr→∞ V eff(r) = 1. Consequently, 
a continuous spectrum arises in the ω2

λ ∈ [1, ∞) range, i.e., for 
energies above the scattering threshold ω2

λ = 1. Below this thresh-
old, in the ω2

λ ∈ (0, 1) range, boson-vortex bound states may exist 
if the spectral problem (11) admits eigenvalues. The procedure to 
find both the eigenvalues ω2

j and the eigenfunctions vnk; j(r) will 
be implemented in the next section for low values of n. The need 
to identify the eigenvalues will lead us to convert the ODE (11), 
where ω2

λ is a priori unknown, in a system of equations of finite 
differences by some discretization method of the half-line to a lat-
tice with a finite but large number of points. Diagonalization of 
the matrix of the linear system in turn provides the eigenvalues 
and eigenfunctions, which are very good approximations to the 
eigenfunctions and eigenvalues of H− provided that the number 
of points of the discretization is large enough.

• Class B H−-eigenmodes: The 2 × 2 block-diagonal sub-matrix in 
H− acts only on scalar field fluctuations of the form [ξB−

λ (�x)]t =(
0 0 ϕ1(�x) ϕ2(�x)

)t
, leading to the spectral PDE system:

[
−∇2 + 1

2 (|ψ |2 + 1) + Vk Vk

]
ϕ1(�x) − 2 Vk ∂kϕ2(�x) = ω2

λ ϕ1(�x)
(12)[

−∇2 + 1
2 (|ψ |2 + 1) + Vk Vk

]
ϕ2(�x) + 2 Vk ∂kϕ1(�x) = ω2

λ ϕ2(�x) .

(13)

For cylindrically symmetric BPS vortices, the ansatz ϕ1(�x) =
− unk(r) sin[(k + 1)θ], ϕ2(�x) = unk(r) cos[(k + 1)θ] that converts the 
PDE system (12) and (13) into the spectral ODE is clear:

Runk(r) = −d2unk(r)

dr2
− 1

r

dunk

dr

+
[1

2
(1 + f 2

n (r)) + (nβn(r) − (1 + k))2

r2
− ω2

λ

]
unk(r)

= 0 , (14)

1 a1(�x) = vnk(r) sin(kθ), k = 1, 2 . . . , also leads to (11). We shall pursue the cosine 
alternative, for the sake of brevity.
where the radial form factor unk(r) is the unknown. This is a radial 
Schrödinger differential equation with an effective potential well: 
V B

eff(r) = 1
2 [1 + f 2

n (r)] + 1
r2 [nβn(r) − (1 + k)]2. From the functional 

behavior of V B
eff, we may conclude that a continuous spectrum 

arises settled on the threshold value ω2
λ = 1. The same reason-

ing indicates that there could exist bound states in this class with 
eigenvalues in the ω ∈ (0, 1) range. However, a theoretical argu-
ment can be used to discard this possibility. The linear differential 
operator R associated with the ODE (14) can be factorized as 
R − 1 = L†L, where L refers to the first-order differential op-
erators L = − d

dr + 1
r [1 + k − nβn(r)]. This means that the R − 1

operator has a non-negative spectrum and, consequently, there are 
no bound states in the discrete spectrum of H− within this class B 
of fluctuations.

Translation via use of the supercharges of all the H−-spectral 
information described previously reveals the structure of the 
H+-spectrum:

• Class A H+-eigenmodes: Assuming knowledge of ω2
λ and vnk(r)

from the solution of (11) the eigenfunctions of H+ paired through 
supersymmetry with these class A H−-eigenmodes take the form:

ξA+
λ (�x,n,k) =

⎛
⎜⎜⎜⎝

sin θ cos(kθ)
∂vnk(r)

∂r − k
r vnk(r) cos θ sin(kθ)

− cos θ cos(kθ)
∂vnk(r)

∂r − k
r vnk(r) sin θ sin(kθ)

fn(r) vnk(r) cos(nθ) cos(kθ)

fn(r) vnk(r) sin(nθ) cos(kθ)

⎞
⎟⎟⎟⎠ ,

k = 0,1,2, . . . . (15)

It is immediate to check that ξA+
λ (�x) satisfies the background gauge 

(4), meaning that the fluctuations (15) correspond to admissible 
eigenfunctions of the second-order BPS vortex fluctuation opera-
tor H+ .2 From (11) we may conclude that a continuous spectrum 
emerges at the threshold value ω2 = 1, while the discrete spec-
trum is confined to the open interval ω2

j ∈ (0, 1). The presence 
of bound states in the H+-spectrum, however, requires the exis-
tence of eigenfunctions of (11) satisfying the boundary conditions 
dvnk

dr (0) = 0 and limr→∞ vnk(r) = 0. This point will be addressed in 
the next section.

• Class B H+-eigenmodes: The corresponding SUSY partner

H+-eigenfunctions ξB+
λ (�x) associated with the class B H−-eigen-

functions are given by:

ξB+
λ (�x) = rn−k−1

⎛
⎜⎜⎜⎜⎝

hnk(r) sin[(n − k − 1)θ]
hnk(r) cos[(n − k − 1)θ]

−h′
nk(r)
fn(r) cos(kθ)

−h′
nk(r)
fn(r) sin(kθ)

⎞
⎟⎟⎟⎟⎠ .

The new radial form factor hnk(r) may be defined from the relation 
unk(r) = rn−k−1

fn(r) hnk(r) in such a way that the ODE (14) turns into the 
equation

r h′′
nk(r) + [−1 − 2k + 2nβn(r)]h′

nk(r) + r[ω2
λ − f 2

n (r)]hnk(r) = 0 ,

for the radial form factor hnk(r). Regularity at the origin, however, 
of the positive eigenfluctuations ξB+

λ (�x) requires that 0 ≤ k ≤ n − 1. 

2 The sine alternative leads to degenerate eigenfunctions with ξ A+
λ (�x, n, k) ob-

tained by simply replacing cos(kθ) by sin(kθ) and sin(kθ) by − cos(kθ) in the wave 
function (15). Knowledge of the radial form factor vnk(r) automatically gives both 
the cos and sin bound states.
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Table 1
Numerical estimation of the discrete spectrum eigenvalues associated with the class A eigenfunctions ξA+

λ (�x, n, k) with angular momentum k, 
together with a graphical representation of the second-order small n-vortex fluctuation operator H+ spectrum. The eigenvalues of the form ωn0

shown in this table agree with those given in Table 3 of Ref. [5] for critical quotient of the scalar and vector field masses up to a factor of 2 due 
to a different convention.

n Eigenvalues of the discrete spectrum of H+

k = 0 k = 1 k = 2

1 (ωA
10;1)2 = 0.777446 – –

2 (ωA
20;1)2 = 0.538573 (ωA

21;1)2 = 0.972563 –

3 (ωA
30;1)2 = 0.402692 (ωA

31;1)2 = 0.830078 –

4
(ωA

40;1)2 = 0.319276

(ωA
40;2)2 = 0.988212

(ωA
41;1)2 = 0.701708 –

5
(ωA

50;1)2 = 0.263671

(ωA
50;2)2 = 0.939461

(ωA
51;1)2 = 0.601223 (ωA

52;1)2 = 0.942438

Fig. 1. Plots of the effective radial potential wells V A
eff(r, n = 4, k) arising in (11) for k = 0, 1, 2 (solid lines) with the discrete eigenvalues (dashed lines) overlapped (left) and 

the corresponding radial eigenfunctions v4k, j(r) (right) of the small n = 4 vortex fluctuation operator H+ .
In this case, there exists a continuous spectrum emerging from 
the threshold value ω2 = 1 and no positive eigenvalue bound 
states arise. Notice, however, that the forms of these eigenmodes 
ξB+
λ (�x) follow the ansatz given in [8] for the zero modes, such 

that we can regard the 2n zero modes as the only bound class B 
H+-eigenmodes.3

Orthogonality between eigenfunctions belonging to different 
classes is guaranteed by the conservation of the scalar product 
in the SUSY partnership: 

〈
ξA+
λ (�x), ξB+

λ′ (�x)
〉
=

〈
ξA−
λ (�x), ξB−

λ′ (�x)
〉
= 0, 

because class A and class B eigenfunctions of H− are clearly or-
thogonal. Orthogonality between eigenfunctions belonging to the 
same class with different angular dependence is established by 
Fourier analysis.

4. Positive eigenvalue bound states of the small vortex 
fluctuation operator

We now attempt to elucidate the existence of excited fluctu-
ations of class A belonging to the discrete spectrum of H+ with 
positive eigenvalues lower than 1. The search for and the anal-
ysis of these fluctuations reduce to the numerical computation 
of the radial form factor vnk(r) in the ODE (11). Our strategy to 
achieve this is to employ a second-order finite-difference scheme 
that simulates the differential equation (11) by the recurrence 

3 Other n zero modes are easily generated by rotating π/2 separately in the scalar 
and vector field fluctuations, which is a symmetry of the spectral problem. The 
same argument can be applied to the eigenfunctions ξB+

λ (�x).
relations

− v(i+1)

nk; j − 2v(i)
nk; j + v(i−1)

nk; j

(	x)2
− v(i+1)

nk; j − v(i−1)

nk; j

2i(	x)2

+
[

f 2
n (i	x) + k2

i2(	x)2

]
v(i)

nk; j = ω2
nk; j v(i)

nk; j , (16)

where we have confined the problem to the interval [0, rmax] for a 
large enough rmax. We denote v(i)

nk; j = vnk; j(i	x), with 	x = rmax
N , 

and choose a mesh of N points with i = 0, 1, 2, · · · , N . The eigen-
functions and the eigenvalues depend on the values of the angular 
momentum k and the vorticity n. The index j is used to enumerate 
the discrete eigenfunctions. The contour conditions are:

(1) −4

3

v(2)

nk; j − v(1)

nk; j

(	x)2
+

[
f 2
n (	x) + k2

(	x)2

]
v(1)

nk; j = ω2
nk; j v(1)

nk; j

and

(2) v(N)

nk; j = 0

A good estimation of the discrete eigenvalues ω2
nk; j is obtained 

through diagonalization of the N × N matrix in the left member 
of the linear system (16). We show the eigenvalues of H+ for low 
values of n and k obtained in a Mathematica environment in Ta-
ble 1 by applying this procedure with the choice of N = 400. In 
Fig. 1 we illustrate the behavior of the potential wells of the radial 
Schrödinger equation (11) for n = 4 and the overlapped dashed 
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lines that determine the discrete eigenvalues of the H+-spectrum 
in this case. The radial form factor vnk; j(r) of the eigenfunctions 
associated with these eigenvalues are also shown.

In general, we observe that the number of bound states in-
creases with the magnetic flux n. In particular, we conclude the ex-
istence of one bound state for n = 1-vortices; two bound states for 
the n = 2 and n = 3 vortices; three bound states for n = 4-vortices, 
and four bound states in the case of n = 5-vortices. In Table 1 we 
include a graphical representation of the discrete H+-spectrum for 
several values of the vorticity n.

In sum, there exist bound states ξA+
nk, j(�x) that are eigenfunctions 

of H+ . Here, we have described the stationary wave functions 
where an awkward combination of scalar and vector boson fluctu-
ations are trapped by a cylindrically symmetric BPS vortex. These 
configurations oscillate in time with frequencies determined by the 
discrete eigenvalues and are thus internal modes of fluctuation of 
the BPS n-vortex.
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