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Abstract

Background: Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve
tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex
(MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs
had not been explored.

Methodology/Principal Findings: We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II
molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent
stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these
genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low
levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with
antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and
load of peptides. Furthermore, lack of b2-microglobulin (b2m) light chain in these cells limited the expression of MHC class I
trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines.
Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and b2m acquired
the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression
was regulated by DNA methylation.

Conclusions/Significance: Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs.
Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against
these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and
improve stem cell allograft acceptance.

Citation: Suárez-Álvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST, et al. (2010) Epigenetic Mechanisms Regulate MHC and Antigen Processing
Molecules in Human Embryonic and Induced Pluripotent Stem Cells. PLoS ONE 5(4): e10192. doi:10.1371/journal.pone.0010192

Editor: Joanna Mary Bridger, Brunel University, United Kingdom

Received October 20, 2009; Accepted March 22, 2010; Published April 16, 2010
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Introduction

Human embryonic stem cells (hESCs) are pluripotent cells

derived from the inner cell mass of blastocysts. hESCs have the

capacity to differentiate into all tissues of the body, making them

useful in regenerative medicine. Nevertheless, elucidation of the

immunogenicity of hESCs-derived allografts, and their potential

rejection by the recipient remains elusive. Major histocompatibil-

ity complex (MHC) class I antigen processing and presentation is

required for effective T cell recognition and impacts graft

rejection. Early work showed that hESCs express very low levels

of MHC class I molecules on the cell surface and fail to elicit

immune responses in immune-competent mice [1], supporting the

hypothesis that these cells have immune-privilege properties which

expands their use in cell replacement therapy [2–5]. Several

reproductive and developmental tissues such as sperm, oocyte,

pre-implantation embryos and trophoblast cells show a reduced or

no expression of MHC class I as well as a lack of MHC class II

molecules. The lack of human lymphocyte antigen (HLA)-A, -B,

and MHC class II expression in trophoblast cells provide
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mechanisms by which these cells escape maternal immune

recognition [6]. Similarly, the loss of MHC class I expression in

tumour cells has allowed tumour survival and hindered the

rejection by host immune system [7,8]. Defects in the expression of

some components of the antigen processing machinery (APM),

such as transporter associated with antigen processing (TAP1/2),

low molecular mass protein (LMP2, LMP7) or tapasin (TPN)

genes have occurred at the epigenetic, transcriptional and

posttranscriptional level [9]. Additionally, a deficiency in some

proteins involved in MHC class I antigen processing and peptide

generation was reported in mesenchymal stem cells (MSCs) [10].

The non classical MHC class I molecules HLA-E, HLA-F and

HLA-G display a more restricted expression pattern and have

specialized immune regulatory functions. HLA-E exhibits leader

peptides derived from other HLA class I molecules and

predominantly inhibits NK (Natural Killer) cell functions. HLA-

G is mainly expressed in trophoblast cells and promotes tolerance

of the fetus by the maternal T and NK cells. Trophoblast cells

express HLA-G and –E which serves to prevent destruction by

maternal decidual NK cells [11,12]. Recently, it had been

reported that MSC secrete soluble HLA-G, inhibiting the lysis of

target cells by CTLs [13].

Although low MHC class I expression hinders recognition by T

and B cells, it may also lead to natural killer cell rejection of the

transplanted cells. Stimulatory NK cell receptors such as NKG2D

can recognize ligands (MICA, -B, ULBPs 1–5) expressed in

embryonic stem cells and lead to their elimination [14,15].

NKG2D is a potent stimulatory receptor which binds to a

family of ligands with structural homology to MHC class I proteins

[16]. Human ligands for NKG2D are not expressed in adult

healthy tissues but can be induced by cellular stress such as DNA

damage, inflammation, heat shock, viral infection or malignant

transformation [17,18].

The constitutive expression of MHC class II molecules is

restricted to antigen-presenting cells (APCs). Previous studies

showed that MHC class II gene expression is regulated by

epigenetic mechanisms. For example, the MHC class II transacti-

vator (CIITA) and the regulatory factor X (RFX) proteins serve as

focal points for recruiting histone modifying enzymes to MHC

class II promoters. CIITA itself is regulated by DNA methylation

and histone modifications [19,20].

Some soluble factors, such as TGF-b [21] and FasL [3] had

been proposed to inhibit immune responses by ESCs. Neverthe-

less, other reports showed that hESCs were rejected after

transplantation into wild-type, fully MHC-mismatched recipients

[22–24], indicating hESCs immunogenicity. Recently, Yachimo-

vich-Cohen et al [25] had demonstrated a new mechanism to

explain how hESCs avoid the allorecognition by the host immune

system. They attributed the hESCs inhibitory effect to the

L-arginine consumption by hESC arginase I, resulting in downreg-

ulation of the TCR CD3-f chain and T cell unresponsiveness.

Derivation of induced pluripotent stem cells (iPSCs) from adult

somatic cells has raised the possibility of their use for cell

replacement therapy and potentially avoiding immunological

rejection [26–28]. The knowledge of the molecular mechanisms

that regulates MHC expression on iPSCs may also have an impact

on potential use in transplant therapies.

In the present study, we hypothesized that the low expression of

MHC class I and absence of MHC class II in hESCs cells was

regulated through epigenetic mechanisms. DNA methylation and

histone modification analysis of genes involved in the antigen

processing pathway revealed a tight epigenetic control in hESCs.

Moreover, we demonstrated that MHC expression in iPSCs

behave in a similar way to hESCs.

Results

Low levels of MHC-I and absence of MHC-II expression in
Shef-1 and NTera2 cell lines

The expression of MHC class I and class II molecules was

analyzed in undifferentiated human embryonic stem cell line Shef-

1 and teratocarcioma cell line NT2 by real-time RT-PCR and

flow-cytometry. Both cell lines expressed low levels of MHC class I

and no expression of MHC class II on the cell surface (Figure 1A).
In agreement with these results, we observed low levels of mRNA

transcripts of classical HLA-I molecules (HLA-A and -B) and lack

of the non-classical molecules HLA-E, -F and –G in both cell lines

(Figure 1B). Moreover, the mRNA levels of b2-microglobulin

(b2m) were nearly undetected in Shef-1 cells but slightly enhanced

in NT2 cell line. Additionally, no expression of MHC class II

molecules was detected in stem cells.

To determine whether the reduced MHC class I expression

might reflect alterations in the antigen processing and presentation

in stem cells, we analyzed the expression of APM molecules by

real-time PCR. We used the PITOUT cell line, which express

MHC class I and class II molecules at high levels, as positive

control. Analysis of the APM components revealed that, the

transporter molecules TAP-1 and TAP-2 were absent or weakly

detected in Shef-1 and NT2 stem cell lines (Fig. 1B). hESC lacked

expression of Tapasin (TPN) and Calreticulin (CLR), which are

involved in the correct folding of MHC class I molecules, but these

molecules were detected at normal levels in the NT2 cell line.

Expression of the chaperone molecules, Calnexin (CNX) and

ERp57, and the immunoproteasome component LMP7 was

commonly detected in both cell lines and exhibited levels

comparable to the control cell line. In contrast, lack of the

expression of LMP2 was observed. The impaired constitutive

expression of MHC class I molecules in Shef-1 and NT2 cells

could be due to reduced transcription of some APM components.

Down-regulation of MHC expression in induced
pluripotent stem cells (iPSCs)

Although induced pluripotent stem cells have been proposed as

an alternative resource for tissue generation to minimize transplant

rejection, their immunological properties are at the moment

unknown. We analyzed the MHC expression in the induced

pluripotent stem cell line MSUH-002 and its parental human

fibroblasts IMR90.

The HLA class I and b2m mRNA levels were lower in iPSCs

than in parental fibroblast line (Figure 1C). HLA-B, -C, -E, and

b2m mRNA levels were reduced compared to parental fibroblasts.

HLA–F was expressed at similar levels in both cell types whilst

HLA-A and HLA-G expression was absent in stem cells.

Regarding the APM genes, TAP-1, TPN, LMP2 and RFX5

mRNA levels plummeted during the reprogramming process to

iPSCs. TAP-2, CLR and CIITA were expressed at very low levels

in both cell types. The chaperone molecules, CNX and ERp57,

and LMP7, had elevated mRNA levels in iPSCs versus fibroblasts.

Similar to hESC, no expression of HLA-G and MHC class II

molecules was observed. In short, iPSC show reduced MHC class

I expression with respect to its parental fibroblast line, suggesting

down-regulation of these genes during the cellular reprogramming

process.

Increase of MHC expression during the differentiation
process

To determine the effect of differentiation on MHC expression,

Shef-1 cell line was differentiated to embryoid bodies (EBs) and

MHC in Human Stem Cells
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NT2 cells to neuronal progenitors (Figure S1). We compared the

expression of MHC and APM molecules on undifferentiated and

differentiated cells (Figure 2). EBs displayed significantly higher

expression of HLA-I classical molecule, HLA-B, and the non-

classical HLA-E and –F compared to the undifferentiated cells.

b2m showed the highest increase of 42 fold as a result of the

differentiation process. We proposed that a possible mechanism of

the MHC class-I up-regulation could be augmented expression

and/or the activation of the APM components. Expression of

TAP-1, TAP-2, TPN, ERp57, CNX, CLR and LMP7 genes was

induced in differentiated cells, although the level of up-regulation

varied. TAP-1 and TPN increased over 23 and 20 times

respectively, compared to undifferentiated Shef-1 cells. In contrast,

differentiation did not induce HLA-G, LMP-2, HLA-DR, and the

transcription factor CIITA mRNA expression. These data inferred

that these molecules might be repressed in a stable manner in

hESCs or regulated by other mechanisms. Similarly, the NT2 cell

line showed the highest up-regulation in HLA-B, b2m, TAP-1 and

TPN genes. However, in contrast to hESCs, RFX5 increased

slightly during the differentiation process with retinoic acid (RA).

In conclusion, b2m, TAP-1 and TPN increased significantly

during differentiation, suggesting that these genes could be

responsible for a limited HLA class I expression in undifferentiated

human stem cells.

Expression of NKG2D ligands in human stem cell lines
Downregulation of MHC class I molecules on cancer cells can

lead to their elimination by NK cells if the target cells express

ligands for stimulatory NK cell receptors, such as NKG2D ligands

(MICA-B, ULBPs 1–5). Analysis of the expression of NKG2D

ligands on the cell surface of Shef-1 and NT2 cell lines detected

only low expression of MICA proteins (Figure 3A). Quantitative

PCR analyses of NKG2D-L revealed that both cell lines express

MICA and MICB mRNA transcripts whilst ULBPs 1–3 were

absent or weakly expressed in these stem cell lines (Figure 3B,
C). The human embryonic kidney HEK-293T cell line, which

expressed all NKG2D-L mRNA transcripts was used as positive

control. These results indicated that expression of NKG2D-L in

stem cells could be regulated post-transcriptionally.

We further studied if differentiation was associated with

differences in the expression levels of NKG2D ligands. During

the differentiation process of hESC to embryoid bodies, most

NKG2D-L were maintained in EBs at levels similar to

undifferentiated cells, and only MICB expression was slightly

Figure 1. Expression of MHC class I and class II, and the molecules involved in the APM in undifferentiated Shef-1 and NT2 cell
lines. A) The expression of HLA class I and class II was determined by flow cytometry in undifferentiated Shef-1 and NT2 cell lines. The EBV-
transformed B cell line Pitout, which expresses class I and class II, was used as positive control. HLA class I and class II were stained with an anti-pan
HLA class I (anti-HLA-ABC mAb)-FITC and HLA-DR-PerCP respectively. Viable cells were gated using 7AAD staining. Thin lines show cells treated with
isotype control and black histograms represent positive cells. Similar results were obtained from four independent experiments. B) Quantitative-PCR
analysis of classical MHC class I molecules (HLA-A,–B and -C), non-classical MHC molecules (HLA-E,-F and –G), antigen processing molecules (TAP-1,
TAP-2, TPN, CNX, CLR, ERp57, LMP2, LMP7) and the transcription factors RFX5 and CIITA in undifferentiated Shef-1 and NT2 cells, compared to the
control, Pitout cell line. mRNA levels were normalized to GADPH mRNA. C) Quantitative-PCR analysis of the MHC genes and APM components in
iPSCs and parental IMR90 fibroblast line. The upper right histogram has shown the expression levels of the pluripotent transcription factors Nanog
and Oct-4 in fibroblast and iPSCs. mRNA levels were normalized to GADPH mRNA. The results of quantitative PCR are represented as means 6 SD
from triplicate experiments. * P,0.05.
doi:10.1371/journal.pone.0010192.g001
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reduced (Figure 3B). Additionally, we differentiated the NT2

teratocarcinoma cell line in vitro by the addition of RA to the

cultures for 3 weeks and compared the expression levels of

NKG2D-L between undifferentiated and differentiated cells

(Figure 3C). Treatment with RA significantly increased MICB

mRNA expression in a time dependent manner. However, the

increased MICB transcripts were not correlated with high levels of

MICB protein on cell surface (data not shown), suggesting

additional mechanisms of regulation in this molecule.

Human IMR90 fibroblasts, which were the source for the

iPSCs, expressed all NKG2D-L (Figure 3D) but only MICA and

MICB expression were detected by real-time RT-PCR in iPSCs,

suggesting down-regulation of these ligands during the repro-

gramming process to pluripotent stem cells.

Expression of MHC and APM genes is up-regulated by
TSA and 5-azaC

To examine the possibility that some MHC class I processing

pathway components were epigenetically regulated in hESCs, cells

were treated with the epigenetic inhibitors, Trichostatin A (TSA)

and 5-azacytidine (5aza-C). IFN-c, which was reported to induce

MHC class I and II expression, was used as control.

MHC class I expression was up-regulated in NT2 cells treated

with IFN-c and 5aza-C predominantly (Figure 4A), but the

expression of MHC class II was only increased by exposure to the

inhibitor of DNA methyltransferase, 5aza-C. Notably, the effects

of TSA and 5aza-C were not synergistic. These results suggested

that the absence of MHC class II expression might be due to DNA

methylation of these genes or the molecules involved in their

regulation.

The effects of epigenetic inhibitors on MHC class I expression

were investigated by quantitative real-time RT-PCR in Shef-1 cell

line (Figure 4B). Treatment with 5aza-C significantly increased

the expression of TAP-2 gene but only modestly augmented most

APM genes. The histone deacetylase inhibitor (HDACi), trichos-

tatin A (TSA), promoted acetylation of histones by inhibiting

HDAC and is generally associated with enhanced transcription.

Here, we showed that TSA treatment altered MHC class I

expression. HLA-B, b2m, TAP-2, TPN and LMP7 expression was

significantly enhanced after treatment with 100 nM of TSA.

Combined effects of both epigenetic inhibitors were only observed

in HLA-B and b2m genes. These results suggested that epigenetic

mechanisms may be involved in the regulation of genes required

for correct antigen processing and presentation of MHC class I

molecules on cell surface of hESCs.

While alone IFN-c-treatment did not significantly increase the

expression of the non-classical MHC class I molecule HLA-G,

cells treated with epigenetic inhibitors alone or in combination

significantly augmented HLA-G expression, inferring that epige-

netic modifications were necessary for the correct expression of

HLA-G. Similarly, MHC class II molecules (HLA-DRA) and the

essential transcription factor for its expression, CIITA, were

significantly induced after treatment with epigenetic modifiers. No

relevant changes in the expression of RFX5 were observed.

Previous studies in tumour cells have shown that the expression

of IFN-c-inducible genes can be enhanced by treatment with

epigenetic inhibitors. In our study, we observed that the combined

effects of 5aza-C and IFN-c slightly enhanced the expression of

HLA-B and HLA-G compared to cells treated with 5aza-C alone

(Figure 4B). The combination of 5aza-C plus IFN-c on the

CIITA gene exerted a greater than additive effect, suggesting that

demethylation of the CIITA promoter may be necessary for the

further induction by IFN-c.

Methylation of HLA-G, MHC-II and CIITA in hESCs
Methylation is one of the major epigenetic modifications that

repress transcription in vivo. The methylation state of the genes

implicated in the MHC expression (HLA class I and II molecules,

and APM components) was assessed with bisulfite modification of

isolated genomic DNA from undifferentiated stem cells and its

derivative cells. Most genes studied were not methylated in the

promoter region, indicating that the transcription of these genes in

Figure 2. Up-regulation of MHC genes during the differentiation process. Expression levels of the MHC genes and APM components were
analyzed by quantitative RT-PCR at different times during the differentiation process to EBs and neuronal precursors. Results are represented as fold
up-regulation for each gene in differentiated cells compared to their undifferentiated cells. The results of quantitative PCR are represented as means
6 SD from triplicate experiments. * P,0.05. Abbreviation; w: week; RA: Retinoic acid.
doi:10.1371/journal.pone.0010192.g002
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hESCs was not regulated by DNA methylation. In contrast, HLA-

G, HLA-DR and CIITA genes were fully methylated. Profiles of

CpG methylation in the regulatory regions of these genes were

represented graphically in Figure 5. HLA-DR loci were

completely methylated at all 9 CpG sites analyzed in Shef-1 and

NT2 cells and this methylation status was maintained through the

differentiation process. In contrast, the control cell line Pitout

expressed MHC class II and displayed no methylation in the

promoter region. The transcription factor CIITA, which regulated

the expression of MHC class II molecules, was completely

methylated in Shef-1, NT2 cells, and neuronal progenitors,

although some CpG sites exhibited partial methylation in EBs

(Figure 5). HLA-G gene contained a CpG island around its

transcriptional start site. This region was partially methylated in

Shef-1 and EBs, and only 4 CpG sites were fully methylated

(region 2211 to 2272). NT2 and derivative cells exhibited full

methylation in all HLA-G CpG sites.

Results of bisulfite sequencing were confirmed by methylation

arrays (Figure S2, Table S1). The MHC class II genes (HLA-

DP, -DQ and –DR) and their transcription factor CIITA were

hypermethylated in hES and iPS cells (array signal $0.7, red)

whereas MHC class I and APM components were demethylated in

hES and iPS cells (array signal ,0.3, green). Some divergences

respects to bisulfite sequencing were observed in HLA-G and

TAP-1, probably due to the different regions analyzed by both

methods. The specific probe for HLA-G gene overlapped a region

(2497 bp) far from the transcription start, and not include CpG

sites.

As we show by methylation arrays (Figure S2), profiles of

methylation were very similar between induced pluripotency and

human embryonic stem cells. Thus, the absence of MHC class II

and HLA-G expression in hESC and iPSC may be due to DNA

methylation of these genes in combination with the transcription

factor, CIITA.

H3-K4 and H3-K9 methylation profiles in hES and iPS cells
Posttranslational modifications of the amino-terminal tails of

core histones also contribute to regulation of gene expression. To

determine whether histone modifications regulate MHC tran-

scription during the differentiation process, we performed ChIP

assays using antibodies against the marks H3K4me3 (active) and

H3K9me3 (repressive). H3K4 trimethylation at the HLA-B

promoter was higher in EBs than in undifferentiated Shef-1 cells

(Figure 6A), whereas H3K9me3 was similar in both cell types.

Similarly, the level of H3K4 trimethylation in b2m gene was 60

fold higher in EBs than in Shef-1 cells, and corresponded to the

Figure 3. Expression of NKG2D ligands for natural killer cells in undifferentiated and differentiated human stem cells. (A) The
expression of NKG2D ligands was analyzed in undifferentiated Shef-1 and NT2 cells by flow cytometry using monoclonal antibodies against MICA,
MICB, ULBP-1, ULBP-2 and ULBP-3 (1 mg of mAb for sample) followed by FITC-conjugated goat anti-mouse as secondary reagent. Dead cells were
excluded by staining with 7AAD. Isotype controls were shown by thin lines and black histograms represented expression of each specific antibody.
The HEK-293T cell line was used as positive control. All experiments were performed at least two - three times with similar results. Transcript levels of
NKG2D ligands were analyzed by quantitative RT-PCR in undifferentiated human stem cells and during the differentiation process. Undifferentiated
Shef-1 (B) and NT2 (C) cells were differentiated to EBs and neuronal precursors, respectively and the expression for NKG2D ligands was analyzed. The
induced pluripotent stem cell line, MSUH-002 (D) was compared to parental fibroblast line. The HEK-293T cell line, which expresses mRNA of all the
NKG2D ligands, was used as positive control. Histograms represented the relative expression of each gene normalized against the housekeeping
gene GADPH. Data are represented as mean 6 SD of three independent experiments. * P,0.05. Abbreviation; w: week; RA: Retinoic acid.
doi:10.1371/journal.pone.0010192.g003
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high increase of b2m mRNA in EBs. These results indicated that

the histone modification H3K4me3 facilitated chromatin relaxa-

tion in HLA-B and b2m genes during the differentiation process

and allowed its expression. CIITA gene also showed high levels of

H3K4me3 in EBs, suggesting a possible increased mRNA

transcript level in these cells. In respect to the APM genes,

H3K4me3 of TAP-1, TAP-2 and TPN genes was similar in

undifferentiated and differentiated cells. However, the repressive

mark was significantly higher on TPN in Shef-1 cells than in EBs,

and corresponded to undetectable TPN levels in undifferentiated

Figure 4. Epigenetic treatments enhanced MHC class I and II expression in undifferentiated embryonic stem cells. A) MHC class I and II
cell-surface expression in NT2 cells. Cells were treated with IFN-c (100 U/ml for 24 h), 5aza-C (2 mM for 48 h), TSA (100 nM for 24 h) or a combination
of both. After 24 h in culture, cells were stained with specific monoclonal antibodies for MHC class I and II or isotype controls and analyzed by flow
cytometry. Isotype controls were shown by thin lines and black histograms represented expression detected by each specific antibody. The
proportions of living, dead and apoptotic cells were determined with 7AAD and Annexin V-FITC. Similar results were obtained from three
independent experiments. B) Quantitative PCR analysis of mRNA levels of MHC class I, class II and APM components in Shef-1 cells treated with
epigenetic agents. Cells were cultured with 5aza-C (10 mM), TSA (100 nM) and IFN-c (100 U/ml) alone, or in combination for 6 hours, and maintained
for additional 24 h before RNA extraction. The histograms represented the fold increase of each gene after treatment compared to the basal level of
untreated undifferentiated Shef-1 cells. Results were mean 6 SD from three independent cultures. * P,0.05.
doi:10.1371/journal.pone.0010192.g004
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cells and higher TPN levels in differentiated EBs. This

modification may hinder their transcription by maintaining a

compact state of chromatin in undifferentiated cells,. The limited

HLA-DR and RFX5 expression during the differentiation process

may reflect the high H3K9me3 in the promoter region in EBs. We

did not find any mark in the promoter region of the non-classical

MHC class I genes (HLA-E, -F and –G) (data not shown),

suggesting that other histone modifications or mechanisms were

involved in their regulation.

Histone modifications in fibroblasts on HLA-B, b2m, and some

APM genes exhibited activation marks congruent with their

expression (Figure 6B). In contrast to hESCs, iPSCs exhibited

the repressive mark H3K9me3 at the HLA-B promoter, which

correlated with the reduced expression of this gene. Histone

modifications in TPN gene were similar between iPSCs and

hESCs, and high levels of both marks were observed, consistent

with its repression in undifferentiated stem cells. However,

H3K9me3 was higher in the promoter region of HLA-DR,

CIITA and RFX5 in iPSCs than in hESCs.

Thus, HLA-B, b2m, HLA-DR, TPN and CIITA might be

regulated in hESCs by histone modifications, such as H3K4me3

and H3K9me3 marks. Additionally, we verified that HLA-B,

TPN, HLA-DR, CIITA and RFX5 acquired repressive marks

which suggested chromatin was remodelled during the repro-

gramming process from human somatic cells to induced

pluripotency stem cells.

Discussion

Overcoming the immunological barriers to the stem cell

transplantation is one of the most important clinical challenges,

and will change the future of regenerative medicine and cellular

therapy. Therefore, it is critical to understand the immunogenicity

of hESCs, and the necessary modifications to induce acceptance of

these cells by the patient’s immune system. Several approaches

had been proposed to overcome graft rejection, such as

development of hESCs banks, nuclear transfer, or the creation

of a universal stem cell line [29]. The iPSCs technology potentially

could overcome two important problems associated with human

hESCs: ethical problems based on the use of human embryos and

immune rejection after transplantation [30], although little is

known so far about the immunogenicity of these new pluripotent

stem cells.

In this report, we demonstrated that hESCs expressed low levels

of classical HLA-class I and absence of HLA-class II molecules on

the cell surface. Analogous expression levels were observed in

human iPSCs, suggesting down-regulation of these molecules

during the cellular reprogramming process from human adult

fibroblast. Furthermore, pluripotent stem cells (Shef-1, NT2 and

MSUH-002 cell lines) show absent or reduced expression of b2-

microglobulin light chain, which could limit the expression of the

MHC class I trimeric molecule on the cell surface. Similarly with

tumour and trophoblast cells, the absence of MHC class I

Figure 5. Methylation profile of HLA-G, CIITA and HLA-DRA promoter regions in undifferentiated and differentiated cells by
bisulfite sequencing analysis. The upper panels displayed a schematic map of each promoter region studied. The position of each CpG
dinucleotide was depicted with thin vertical lines. Transcriptional start site is indicated by a thick vertical line and the +1 position indicated the
translation start site. Arrows indicated the amplified region by RT-PCR for bisulfite sequencing analysis. In HLA-G, the horizontal gray line marked the
CpG island. Ten clones were sequenced for each sample and each circle represented the average methylation for each CpG dinucleotide (open circle:
100% unmethylated, black circle: $50% CpG methylated, gray circle: ,50% CpG methylated). The numbers denoted the position of each CpG site
studied. Pitout cell line, which express MHC class I and II was used as control.
doi:10.1371/journal.pone.0010192.g005
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expression represents a mechanism of immune evasion in these

cells.

We hypothesized that low levels of MHC class I molecules could

be due to defects in the APM components in stem cells. Expression

of TAP-1, TAP-2 and TPN molecules, which are implicated in the

transport and load of peptides onto MHC class I molecules, was

weakly detected in embryonic and induced pluripotent stem cells.

Unexpectedly, the NT2 teratocarcinoma cell line shows a low

expression of TAP-1 and TAP-2, but express tapasin at normal

levels. The lack of the TAP-1/TAP-2 complex in hESCs implied

that the pool of endogenous peptides can not bind to MHC class I

dimers, and inhibited the MHC class I heavy and light chain

complexes from leaving the endoplasmic reticulum. TAP-1

knockout mice show significantly reduced levels of MHC class I

surface expression [31]. In addition, the chaperones ERp57, CNX

and the immunoproteasome component LMP7 were commonly

expressed at high levels by all stem cell lines, indicating that the

folding of MHC molecules and generation of antigenic peptides in

these cells were not damaged. Taken together, our results

confirmed that pluripotent stem cells were partially defective in

their ability to process and present MHC class I molecules on the

cell surface. These results are in line with a previous report which

show that the HS293 hESC line lack the expression of some APM

components [32].

During the differentiation process to EBs, most HLA class I

molecules and APM components except HLA-G and LMP2

increased significantly compared to undifferentiated Shef-1 cells.

Additionally, b2m protein, TAP-1 and TPN increased strongly

upon differentiation, suggesting that the up-regulation of MHC

class I in differentiated cells might be a consequence of the

increased expression of these genes during the differentiation

process. However, no changes in the expression of MHC class II

and CIITA were observed. Thus, increased expression of MHC

class I in differentiated stem cells may lead to the recognition and

elimination by T cells, representing the most important barrier for

transplantation of pluripotent stem-cell-derived allografts.

That is the first time that NKG2D ligands were analyzed in

human stem cells. Expression of MICA and MICB genes at RNA

Figure 6. Methylation of histones H3-K4 and H3-K9 regulated MHC expression in hES and iPS cells. Levels of the trimethylation H3-K4
(active mark, H3K4me3) and H3-K9 (repressive mark, H3K9me3) were determined at selected regions of MHC genes and APM components in: A)
undifferentiated Shef-1 cells (white columns), or embryoid bodies (EBs) (black columns) formed after 10–15 d differentiation in culture and B) IMR90
human fibroblast (light gray columns) and MSUH-002 cells (dark gray columns). Cells were subjected to ChIP assay using antibodies against H3K4me3
and H3K9me3, and analyzed by quantitative PCR with specific primers for each gene. Normal rabbit IgG was used as negative control for the
specificity of the immunoprecipitation (IP). As a positive control, aliquots of chromatin fragments obtained before IP were also subjected to Q-PCR
analysis (Input). Immunoprecipitated DNA associated with a given histone modification was normalized to a 100-fold dilution of input chromatin.
Data are expressed as fold enrichment of each modification compared to negative control antibody (normal rabbit IgG), and represented mean 6 SD
of two representative experiments with similar results (*P,0.05: **P,0.01).
doi:10.1371/journal.pone.0010192.g006
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level was found in Shef-1 and NT2 cell lines and maintained

during the differentiation to EBs and neuronal progenitors,

respectively. ULBP proteins were weakly expressed and only

slightly increased during the differentiation with RA. iPSCs

showed a similar pattern of NKG2D-L expression, although it

was not possible in this study to determine the protein level on the

cell surface. Human stem cells with MICA and MICB expression

may be recognized and lyzed by NK cells even in the presence of

inhibitory MHC class I molecules. Previous studies have reported

that mouse embryonic stem cells are resistant to lysis by NK cells

[33] while Dressel et al [34] showed that susceptibility to lysis by

NK cells mediated by NKG2D ligands is a common feature of

pluripotent murine stem cells. Differences between these studies

may be explained by differences in the activation status of the NK

cells. Recently, Di Tomaso et al [35] have demonstrated that

cancer stem cells (CSCs) isolated from human tumours were

negative for NKG2D ligands. Treatment of CSCs with the

demethylating agent, 5aza-C, restored the expression of these

molecules, and led to their recognition and lysis by NK cells.

Nevertheless, in our study, no cell surface expression of

NKG2D-L was detected on Shef-1 and NT2 cell line except low

levels of MICA. These results suggest that NKG2D ligands might

be regulated at the post-transcriptional level in stem cells. Several

microRNAs have suppressed the expression of MICA and MICB

proteins below a certain threshold and facilitated an acute up-

regulation during cellular stress [36,37]. Furthermore, MICB has a

shorter half-life at the plasma membrane than MHC molecules

[38]. MICB expression depends on its recycling in trans-Golgi

network and late endosome-related compartments as well as

shedding into the extracellular medium.

Expression of NKG2D-L at RNA level but no protein

expression was detected on the cell surface of trophoblast cells

[39,40], showing a permanent shedding of these ligands from

trophoblast cells mediating the maternal-fetal tolerance. Addition-

al studies have confirmed that exosomes bearing NKG2D-L are

released by human placenta and tumour cells and induce down-

regulation of the NKG2D receptor on NK and CD8+ T cells

which inhibited their cytolytic capability [41,42]. Our data

suggested that human stem cells may use similar mechanisms to

evade the recognition by NK cells and contribute to the immune-

privileged properties of these cells. Further studies are warranted

to verify the role and regulation of NKG2D ligands in hESC.

Epigenetic modifications, such as hypermethylation of promoter

regions or histone modifications may regulate the expression of

MHC class I and II, and APM molecules in human pluripotent

stem cells. To confirm this, we cultured hESCs in vitro with 5aza-C

and TSA, showing that epigenetic mechanisms alter the expression

of all APM components involved in the antigen processing and

presentation. We observed that expression of HLA-DR and

CIITA was only induced by the treatment with epigenetic agents

but not during the differentiation. These data suggested that direct

or indirect epigenetic modifications were required to restore their

expression. Absence of MHC class II molecules in hESCs was

associated with hypermethylation in the CIITA promoter region,

in addition to methylation in the promoter region of the HLA-

DRA gene. Moreover, methylation of CIITA may be at least

partially responsible for the low levels of MHC class I expression,

as transfection of trophoblast cells with CIITA has restored MHC

class I expression [43]. Additionally, HLA-G promoter was fully

methylated in 4 CpG sites in hESCs and EBs, so this region could

be directly implicated in the regulation of HLA-G. In agreement

with our results, it has been recently reported that the 4 CpG sites

in the HLA-G promoter region contained a hypoxia response

element (HRE) that remained completely methylated in ovarian

cancer cell lines [44]. Thus, methylation of HLA-DR and HLA-G

promoters in human stem cells contributed to the restricted

expression of these genes in somatic cells.

Modifications of histones proteins are responsible for a ‘‘histone

code’’ that epigenetically regulates chromatin and gene expression

[45]. We have analyzed some of these histone marks to determine

whether they are involved in the regulation of APM components.

H3K4me3, a histone mark that facilitates the binding of

transcription factors, was present at high levels in HLA-B and

b2m gene promoters in EBs in comparison to undifferentiated

Shef-1 cells. Although no H3K9me3 was observed in undifferen-

tiated cells, other repressive marks not analyzed here could be

involved in the repression of these genes. Absence of TPN

expression in undifferentiated hESCs might be due to the presence

of the repression mark H3K9me3, which is present at lower levels

in differentiated cells. Tapasin is involved in the stabilization of

TAP-1/2 complex and peptide loading in MHC class-I molecules,

and could act as a limiting factor in the expression of these

molecules in hES cells. Furthermore, this repressive mark was

acquired when human IMR90 fibroblasts were reprogrammed

into iPSCs, indicating that epigenetic changes in MHC genes

occur during the cellular reprogramming process.

Absence of MHC class II induction in EBs can be associated

with H3K9me3 in HLA-DR, although we demonstrated above

that other mechanisms such as DNA methylation can also

participate in their repression. The active mark, H3K4me3, was

present in CIITA gene in EBs and facilitated the transcription

process during differentiation. However, we now know that the

CIITA promoter was methylated in human stem cells. Addi-

tionally, the HLA-DR gene and the transcription factors CIITA

and RFX5 exhibited high levels of H3K9me3 in iPSCs. These

data indicated that these genes could be silenced during the

reprogramming process by repressive histone modifications in

addition to DNA methylation. In fact, it has been described

previously that trimethylation of H3K9 is associated with DNA

methylation [46]. This is the first time that histone modifications

(H3K4me3 and H3K9me3) were described in APM components

and implicated in the low expression of MHC class-I or absence

of MHC class-II molecules in hESCs. Moreover, the analogous

distribution of histone modifications between hESC and iPSCs

suggest that changes detected in regulatory regions of MHC

genes are indicative of remodelling chromatin on APM

promoters to acquire an epigenetic state characteristic of

pluripotent cells. Likewise, murine iPSCs were highly similar in

their epigenetic state to ES cells, showing that transcription

factor-induced reprogramming leads to the global reversion of

the somatic epigenome into an ES-like state [47]. Further studies

with other histone modifications will be necessary to elucidate the

complete epigenetic regulation of these genes in pluripotent stem

cells.

In short, the lack or down-regulation of MHC molecules in

hESCs is due to absence of some APM mRNA transcription. The

differentiation process augments mRNA transcription of APM

components which yield an increase of MHC class I on cell

surface. This process is regulated by modifications in chromatin

remodelling, mainly H3K4me3 in HLA-B, and b2m, as well as

H3K9me3 in TPN gene, respectively. Moreover, DNA methyl-

ation profile matched the absence of MHC class-II and the

tolerogenic molecule HLA-G expression in undifferentiated and

differentiated hES cells. We conclude that epigenetic modifications

regulate MHC class I and class II expression in hESCs and iPSCs,

similar to trophoblast and tumour cells. Reduced MHC class I and

class II expression in hESCs and iPSCs can limit their recognition

by the immune response against these cells. The knowledge of
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these mechanisms will further the development of strategies to

induce tolerance and improve acceptance of stem cell allografts.

Materials and Methods

Cell lines
The lymphoblastic cell line PITOUT was grown in RPMI

medium supplemented with 10% heat-inactivated fetal bovine

serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin and

100 mg/ml streptomycin. HEK-293T (human embryonic kidney

293T cells) cell lines were maintained in supplemented DMEM

medium.

Embryonic stem cells culture, differentiation and
treatment

The hES cell line, Shef-1 [48] was maintained in hESCs

medium, Knock-Out DMEM medium supplemented with 20%

Knock-Out Serum Replacement on inactivated mouse embryonic

fibroblast (MEF) as previously described [49,50]. For differentia-

tion to embryoid bodies (EBs), hES Shef-1 colonies were cultured

in suspension in hESCs medium without bFGF-2 for 10–15 days.

The human embryonal carcinoma cell line NTera2 clone D1

(NT2) was cultured in DMEM medium +10% FBS and differen-

tiated to neuronal progenitors with 10 mM all-trans-retinoic acid

(Sigma-Aldrich) for 3–4 weeks as previously described [51].

Culture and characterization of Shef-1 and NT2 cell lines was

detailed in Methods S1 and Figure S1.

Shef-1 and NT2 cells were cultured in ES medium supple-

mented with 5-Aza-Cytidine (5azaC) and/or Trichostatin A (TSA)

(Sigma-Aldrich) at indicated concentrations. Subsequently, cells

were cultured in fresh medium for 24 h before RNA extraction. As

control, Interferon-c was used at 100 U/ml.

Induced Pluripotent stem cells
DNA and RNA from the human induced Pluripotent Stem Cell

(iPSC) Line, MSUH-002, were kindly gifted by Professor J. Cibelly

at the University of Michigan University. These stem cells were

produced from IMR90 cells as previously described [28]. Briefly,

viral vectors were packed in HEK-293T cells. The resulting viral

particles were concentrated by ultracentrifugation and the viral

transductions were performed in hESCs media. iPSCs colonies

were manually detached and expanded as individual clones in the

same media.

Immunofluorescence
hES cells were fixed with 4% paraformaldehyde and stained

with the primary antibodies SSEA-3 (1:40), SSEA-1 (1:10) and

TRA1-60 (1:100) (kindly gifted by Professor Moore, Sheffield, UK)

overnight at 4uC followed by incubation with FITC-conjugated

second antibodies for 1 h.

Reverse transcription-PCR and real-time RT-PCR
Total RNA was isolated using the RNeasy kit (Qiagen,

Valencia, CA) according to the manufacturer’s instructions and

reverse transcribed using the iScriptTM cDNA Synthesis kit

(BioRad, Hercules, CA). Real-time PCR assay was performed in

20 ml of SYBR Green Super Mix (Bio-Rad) using a MyiQ Single-

Color Real-Time PCR Detection System (Bio-Rad). DNA was

denatured at 95uC for 30 seconds, annealing at 60uC for 1 min,

elongation at 72uC for 1 min and extension at 72uC for 5 min.

Primers used are reported in Table S2. Fold changes in transcript

levels were calculated using threshold cycle (Ct) values standard-

ized to GAPDH, which was used as the endogenous control. All

samples were run in triplicate and at least two independent

experiments were carried out.

Flow cytometry analysis
hES colonies were harvested with 0.1% collagenase IV

(Invitrogen, CA), dissociated into single cells and stained with

the monoclonal antibodies FITC-conjugated anti-pan HLA class I

(anti-HLA-ABC mAb) and PerCP-conjugated HLA-DR (BD

Biosciences). Analysis was carried out in a FACScan Cytometer

(Becton Dickinson). Antibodies against NKG2D ligands (MICA,

MICB, ULBP 1–3) (R&D Systems) were used at 1 mg/ml and

FITC goat anti-mouse (eBioscience) was used as secondary

antibody. The proportions of living, dead and apoptotic cells

were determined with 7AAD and the Annexin V-FITC apoptosis

detection kit (Immunostep Inc; Spain).

DNA methylation array
Methylation was assessed at 1,505 CpG sites using Illumina

Goldengate Methylation Arrays� and analyzed as we previously

described [48]. Details are reported in Methods S1.

Bisulfite modification
DNA methylation was determined by PCR analysis after

bisulfite modification of the DNA. Genomic DNA was purified

using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA)

according to manufacturer’s recommendations. DNA bisulfite

modification was performed using the EZ-DNA Methylation kit

(Zymo Research, CA) and the DNA was amplified using specific

primers designed with the Methyl Primer Express SoftwareH
(Applied Biosystems). Primers were shown in Table S3. PCR

products were cloned into pGEM-T Easy Vector System II

(Promega, Madison, WI) and DNA plasmids purified with the

QIAprep Spin Miniprep Kit (Qiagen). In each case, ten

independent clones were automatically sequenced to determine

their degree of methylation.

Chromatin immunoprecipitation (ChIP) assay
Chromatin immunoprecipitation assays using 0.5-16106 cells

per sample were performed as previously described [52] with the

anti-trymethylated H3K4 and H3K9 (Upstate Biotechnologie-

s.Inc) antibodies. Normal IgG was used as negative control. In

brief, fixed cells with 1% formaldehyde were lysed in SDS-lysis

buffer (1%SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.1) and

sonicated. The shared chromatin were diluted into ChIP dilution

buffer (0,01% SDS, 1,1% Triton X100, 1,2 mM EDTA, 16,7 mM

Tris-HCl pH 8,1, 167 mM NaCl) and incubated with the

antibodies overnight at 4uC. Antibody-chromatin complexes were

precipitated with Salmon Sperm DNA/Protein A-Agarose beads

(Upstate Biotechnologies), washed and eluted from the beads using

elution buffer (1% SDS, 0.1 M Na HCO3). After cross-link

reversal and proteinase K treatment, DNA was extracted with

phenol-chloroform and ethanol precipitated. Immunoprecipitated

DNA was analyzed in triplicate by real-time PCR from 1 ml of

eluted DNA. Primers for each promoter were listed in Table S4.

Aliquots of chromatin obtained before immunoprecipitation were

analyzed as input control. Results are presented as fold enrichment

of precipitated DNA associated with a given histone modification,

relative to a 1/100 dilution of input chromatin.

Statistics
Statistics were calculated using SPSS Student version 14.0

software. Student’s t test was used for statistical analysis. A P value

of ,0.05 was considered significant.
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Supporting Information

Methods S1

Found at: doi:10.1371/journal.pone.0010192.s001 (0.03 MB

DOC)

Figure S1 Culture and characterization of human embryonic

stem cell line Shef-1 and the human carcinoma cell line NTera2

and differentiated cells. A) Culture of Shef-1 hES cell line and

differentiation to embryoid bodyes (EBs). Shef-1 cells were grown

in mouse embryonal fibroblast (MEFs) in gelatine-coated dishes in

complete hESC medium with bFGF-2 (a). To differentiate to EBs

(c), colonies were detached from MEFs and culture in suspension

without bFGF-2 for 15 days. Panels b and d displayed hESC and

EBs from Shef-1 cells respectively, at high magnification. B)

Immunofluorescence analysis of specific cell-surface antigens,

SSEA-1, SSEA-3 and TRA1-60 in Shef-1 hESC. Undifferentiated

cells were strongly positive for SSEA-3 and TRA1-60 and only

differentiated cells were stained by SSEA-1 antibodies. C)

Induction of neuronal morphology in NT2 cell line. Undifferen-

tiated cells (a) were treated with retinoic acid (RA) for 3–4 weeks.

Samples were taken 1 week (b) and 3 weeks (c,d) and neuronal

progenitors were observed. D) RT-PCR analysis of in vitro

differentiated hESCs to EBs for detection of expressed genes of the

three embryonic germ layers, enolase (mesoderm), amylase

(endoderm) and neurofilament (ectoderm) and pluripitency genes

(Nanog and Oct-4). E) RT-PCR analysis during the differentiation

process of NT2 cell line to neuronal progenitors, Differentiated

cells express well-characterized neuronal markers such as Tau or

NeuroD whilst Nestin, a typical neuroectodermal marker, was

downregulated by RA treatment. The transcription factors Nanog

and Oct-4 were lost after 1 week in culture showing a right process

of neural differentiation.

Found at: doi:10.1371/journal.pone.0010192.s002 (5.40 MB TIF)

Figure S2 Methylation profiles of MHC genes and APM

components. Methylation profiles of HLA class I, class II, antigen

processing machinery (APM) genes and transcription factors (TF)

involved in MHC regulation in hESCs, NT2 cell line, iPSCs and

IMR90 fibroblast were obtained by Illumina arrays. Cluster

analysis was based on correlation of methylation profiles of MHC

and PM genes. The methylation levels vary from fully methylated

(red) to fully unmethylated (green) sequences.

Found at: doi:10.1371/journal.pone.0010192.s003 (0.92 MB

TIF)

Table S1 Classification of MHC genes according to their

promoter methylation status in hESCs Shef-1, NT2 cell line,

iPSC cell line and human fibroblast IMR90. The classification

criteria are described in the Methods S1.

Found at: doi:10.1371/journal.pone.0010192.s004 (0.07 MB

XLS)

Table S2 Primers used for real-time RT-PCR.

Found at: doi:10.1371/journal.pone.0010192.s005 (0.06 MB

DOC)

Table S3 Primers used for bisulfite sequencing.

Found at: doi:10.1371/journal.pone.0010192.s006 (0.04 MB

DOC)

Table S4 Primers used for Chromatin Immunoprecipitation

(ChIP) assay.

Found at: doi:10.1371/journal.pone.0010192.s007 (0.04 MB

DOC)
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15. Dressel R, Schindehütte J, Kuhlmann T, Elsner L, Novota P, et al. (2008) The

tumorigenicity of mouse embryonic stem cells and in vitro differentiated

neuronal cells is controlled by the recipients’ immune response. PLoS ONE 9

3(7): e2622.
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