Authentication of commercial candy ingredients using DNA PCR-cloning methodology

Marta Muñoz-Colmenero^{1*}, Jose Luis Martínez², Agustín Roca¹, Eva García-Vázquez¹

1- Laboratory of Genetics of natural resources, Area of Genetics, Department of Functional Biology, University of Oviedo, Asturias, Spain.

2- Sequencing Unit of the University of Oviedo, Asturias, Spain.

*- Corresponding author: Marta Muñoz Colmenero. Address: Faculty of Medicine, C/Julian Clavería s/n, Oviedo, 33006, Spain; Phone: +34 985102726; Fax: +34

985103534; e-mail: a.martam.colmenero@gmail.com

2	BACKGROUND: Commercial candies are consumed by all population age sectors
3	worldwide, thus methods for quality control and composition authentication are needed
4	for best compliance of consumer's preferences. In this study the applications of DNA-
5	based methodology for candy quality control have been tested. Eighteen samples of
6	commercial candies (marshmallows, gumdrops, jelly, sherbet, gelatin-based desserts)
7	produced by five countries were analyzed to identify the component species by
8	Polymerase chain reaction, cloning and sequencing of 16S rRNA and ribulose -1,5-
9	diphosphate carboxylase oxygenase genes, and the species determined from BLAST
10	comparison with universal databases and phylogenetic analysis.
11	RESULTS: Positive DNA extraction and amplification of the target genes was obtained
12	for 94% of candies assayed, even those containing as little as <0.0005 ng/µl DNA
13	concentration. The results demonstrated that the species detected from DNA were
14	compatible with the information provided on candy labels only in a few products. DNA
15	traces of undeclared species, including fish, were found in most samples, and two
16	products were labeled as vegetarian but contained porcine DNA.
17	CONCLUSION: Based on the inaccuracy found on the labels of sweets we recommend
18	the use of DNA tests for quality control of these popular sweets. The DNA-tests have
19	been useful in this field but Next Generation Sequencing methods could be more
20	effective.
21	
22	Keywords: Candy products, DNA tests, vegetarian labeling, consumer's choice,
23	traceability, labels.
24	

1

2
2
3
4
5
5
6
7
8
0
9
10
11
10
12
13
14
15
15
16
17
10
10
19
20
21
21
22
23
24
27
25
26
27
20
28
29
30
21
31
32
33
31
34
35
36
37
57
38
39
40
14
41
42
43
11
44
45
46
47
+/
48
49
50
50
51
52
53
55 F 4
54
55
56
5/
58
59
60
60

INTRODUCTION

Candies are consumed worldwide in different cultures and countries.¹ The use of sweets in human diet is very old: ancient Arabian, Chinese and Egyptian peoples consumed candied fruits and nuts cooked with honey, and the Aztecs made a chocolate drink with cocoa seeds.² Now candies are consumed by all population sectors and ages; since they are especially popular for children,^{3,4} their quality control should be a priority.

The composition of commercial candies and sweets is complex and often includes many 31 food additives and preservatives.⁵ Many products like soft and jelly-based candy 32 contain gelatin, which is frequently made from pig and cow.^{6,7} The presence of these 33 animals in candy may raise ethical or religious issues in some consumer sectors, for 34 example in vegetarians and in Halal-Kosher consumers,⁷ and consumers should be 35 informed about their choice. Information about the ingredients is important for 36 consumer's health also, since adverse reactions have been reported for allergic patients 37 who consumed candies without knowing they contained saffron,^{8,9} cochineal-made 38 carmine⁹ and peanuts.¹⁰ Anaphylactic shocks after eating marshmallows made from 39 undisclosed fish gelatin have been also documented.¹¹ Therefore, disclosing full 40 information about the species contained in commercial candies is essential for 41 42 consumers to know what they are eating and help them to make ethical and safe choices. Determining the species composition in commercial candies is not easy because they are 43 generally highly processed and can contain a mixture of products. DNA has been often 44 45 used for determining species composition in food, and nowadays the techniques for DNA extraction and amplification by Polymerase chain reaction (PCR) allow the 46 successful analysis of highly processed products,¹²⁻¹⁵ detecting even small traces.¹⁶ In 47 the present study we have purchased different types of candies produced by five 48

JSFA@wiley.com

4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
21
20
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
17
+/ /0
40
49
50
51
52
53
54
55
22
56
57
58
59
60

49	countries, for determining their species composition employing DNA-based molecular
50	techniques. Two different primer sets specific for animal or plant species were
51	employed for PCR amplification and cloning of DNA extracted from the candies. From
52	the results we have assessed the utility of this DNA-based methodology for quality
53	control in candy markets. The following parameters were considered for the assessment:
54	DNA content, PCR-amplification success, number of species detected, accuracy of
55	species identification (from concordance of two assignment methods, BLAST-based
56	and phylogenetic). In addition, comparing the detected and declared species we have
57	evaluated the accuracy of current candy labelling to recommend improvements in
58	quality control, if needed.

59

EXPERIMENTAL

60 Sampling

Eighteen candies from five countries: Spain (8 samples), France (2 samples), Portugal (4 samples), Sweden (1 sample), Spain/Portugal (2 samples), Spain/Turkey (1 sample) were analyzed (Table 1). Different products were considered (Fig. 1), including raw gelatin powder (3), desserts (3), soft candies (7), marshmallows (2), gums (2) and sherbet powder (1). The information provided in each candy label was analyzed in detail, especially the list of ingredients, allergy warnings and indications for specific consumer sectors such as vegetarians, vegans and persons with food restrictions.

68 DNA extraction, quantification, PCR amplification and sequencing process

DNA analysis was carried out in strict sterile conditions to prevent contamination, and
both pre- and post-PCR processes were controlled. Sample manipulation was done
within a sterile room cleaned with 100% ethanol and 10% bleach. All the material
employed was cleaned and put in sterile bags to autoclaving. DNA extraction and PCR

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
52
33
34
35
36
00
37
38
39
40
14
41
42
43
44
15
40
46
47
48
<u>4</u> 0
50
51
52
53
50
04
55
56
57
50
00
59
60

73	amplification were performed into a flow chamber within that sterilized room, with
74	ultraviolet light to ensure destruction of any possible contaminant DNA. During all the
75	process researchers wore two pairs of gloves, paper mask and cap and laboratory coat.
76	Negative controls were used to check possible contamination during the laboratory
77	analysis, from the DNA extraction process to the visualization of PCR products in
78	agarose gels. Pig (Sus scrofa) and rainbow trout (Oncorhynchus mykiss) were used as
79	positive controls of animal detection with the 16S rRNA gene, and apple (Malus
80	domestica) was the positive control for plant detection with rbcL gene. For the rest of
81	post-PCR processes we worked in other laboratory within another flow chamber, also
82	under ultraviolet light.
83	DNA extraction was performed with the kit DNeasy Mericon Food Kit of QIAGEN.
84	From each candy four Eppendorf tubes with 200 mg each one were employed for DNA
85	extraction to get more amount of DNA. Two cleaning steps were done to eliminate
86	potential inhibitors of polymerase chain reaction: first with CTAB detergent and second
87	with chloroform. After, the contents from the four tubes of the same candy was put
88	together to continue with the rest of the protocol. DNA was quantified using Qubit
89	dsDNA HS Assay Kit in a Qubit 2.0 Fluorometer. The detection limit of this method is
90	0.0005ng/µl.
91	PCR amplification was done with the kit PCR core Kit Plus of Roche, with the enzyme
92	uracil glycosylase and dideoxynucleotide with uracil instead of thymine. Since candies
93	are highly processed their DNA is likely degraded, ¹⁷ therefore we targeted short
94	species-specific sequences. For animal species we employed the primers 16S-HF 5'-
95	ATAACACGAGAAGACCCT-3'and 16S-HR 5'-CCCRCGGTCGCCCCAAC-3'

96 developed by Horreo *et al.*¹⁸ that amplify an 80-122 base pair (bp) fragment within the

97 16S rRNA gene. PCR reaction was performed with: 5 μ l of DNA extraction from the

98	candy (from less than 0.0005 ng/µl to 0.328 ng/µl), 0.125 µl of Taq polymerase from the
99	PCR core Kit Plus of Roche, polymerase solution with Mg^{2+} 1x, 0.5 µl of each primer
100	10 μ M, 0.5 μ l dideoxynucleotides (dNTPs with U), 0.5 μ l of Uracil glycosylase and bi-
101	distilled water up to 25 μl of total volume. The PCR conditions were: a cycle at 20 $^{\circ}\mathrm{C}$
102	for 5 min and at 95°C for 2 min to activate and deactivate the uracil glycosylase enzyme
103	respectively; then, 40 cycles at 95°C for 30s, 55°C 30s, 72°C 1min 30s, and a final cycle
104	at 72°C during 7 min. For plant species we employed the primers Plant159-F
105	CTTGATTTTACCAAAGATGATGA and Plant159-R
106	TTCTTCGCATGTACCCGCAG designed by Han <i>et al.</i> ¹⁹ for amplifying a 159 bp
107	fragment of the ribulose-1,5-diphosphate carboxylase oxygenase gene (rbcL). PCR
108	reaction was performed in the same way than 16S rDNA gene but the PCR conditions
109	after the cycle for uracil glycosylase enzyme were 50 cycles at 95°C for 30s, 58°C 30s,
110	72°C 1min 30s, and a final cycle at 72°C during 7 min.
111	PCR products were run in 2% agarose gels stained with ethidium bromide. Purification
112	of PCR product was performed with IllustraIM ExostarIM 1-Step de GE Healthcare
113	Life Sciences. Direct sequencing was performed at the sequencing facilities of the
114	University of Oviedo employing BigDye Terminator Cycle Sequencing chemistry and
115	ABI Prism 3130xl Genetic Analyzer. Chromatograms evidenced species mixture, thus
116	cloning approaches were employed to obtain individual sequences. After purification of
117	PCR product with Wizard SV Gel and PCR Clean-Up System Kit (Promega), the
118	purified DNA was cloned using the Dual Promoter TA Cloning Kit (Invitrogen), with
119	pCR II vector and competent cells TOP10'. Briefly, we did the ligation and performed a
120	transformation process by thermal shock. Then the bacteria (Escherichia coli) were
121	grown in liquid SOC medium for 1 hour and spread on solid LB medium with
122	ampicillin. When bacteria grew (only bacteria carrying the vector are ampicillin-

resistant) we picked white colonies, which carry the insert (their β -galactosidase gene is interrupted) in 50 µl of bidistilled water. DNA was extracted from the colonies by thermal shock at 95 °C during 5 min and a PCR was performed using the primers T7 and SP6 located in the flanking regions of the insertion site. The reaction mix of this PCR was: 1.5 units of Taq polymerase of Biotools $(5U/\mu l)$, polymerase solution 1x, 1.5 mM of Mg2+, 1 μ l of each primer 10 μ M, dideoxynucleotides (dNTPs) of 2.5 mM and bidistilled water up to 20 μ l of total volume. PCR conditions were: a cycle at 95°C for 5 min: 35 cycles at 95°C for 30s, 55°C 30s, 72°C 30s, and a final cycle at 72°C during 10 min. Purification and sequencing were made as explained above. **Analyses of sequences**

The sequences obtained were edited using BioEdit program²⁰ and compared with GenBank database (www.ncbi.nlm.nih.gov/genbank/) using BLAST Nucleotide tool (nBLAST). Species assignment was done to the best match reference sequence within GenBank. Species assignation was confirmed from phylogenetic methodology. A Neighbor-Joining tree containing the problem sequences and reference sequences from GenBank was reconstructed with MEGA version 6.²¹ with Tamura Nei model²² and uniform substitution rates. Robustness of the Neighbor-Joining topology was assessed using 10,000 bootstrap replicates.

RESULTS

- DNA yields obtained from the analyzed candies ranged between undetectable
 <0.0005ng/ul in seven products (samples #3, #7, #8, #10, #15, #17 and #18) to
- 144 0.328ng/µl in the Portuguese gelatin of sample#6 (Table 1). Positive PCR amplification
- of one or the two assayed markers occurred from all except one product, fish gummies

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(sample#3, Table 1). This means that DNA was present at least in 17 out of 18 samples
(94.4%), although in very low (undetectable) quantity in six of them.

148	In the cases of successful DNA amplification, clean negative controls were obtained in
149	all PCR (e.g., Fig. 2). The number of sequences retrieved in total from the 17 candies
150	with positive PCR amplification was 118 for the 16S rDNA gene and 94 for the rbcL
151	gene. The sequences were submitted to the European Nucleotide Archive (ENA), from
152	the European Bioinformatics Institute in the European Molecular Biology Laboratory,
153	EMBL-EBI (<u>www.ebi.ac.uk/</u>). Their accession numbers are HG964177-HG964248. For
154	the 16S rRNA gene, amplicons ranged 116-122 bp in length and exhibited nucleotide
155	polymorphisms corresponding to 13 haplotypes that allowed to unambiguously
156	identifying five animal species to species level: cow Bos taurus, pig Sus scrofa, chicken
157	Gallus gallus, deep Cape hake Merluccius paradoxus, human Homo sapiens. One
158	haplotype could be assigned only at genus level (hake Merluccius sp.). For the rbcL
159	gene, 159 bp long amplicons were obtained representing 14 haplotypes. Seven species
160	were unambiguously identified from the haplotypes found for this DNA region: maize
161	Zea mays, soya Glicine max, cacao Theobroma cacao, onion Allium cepa, tobacco
162	Nicotiana tabacum and chestnut Castanea sativa. One haplotype exhibited the same E-
163	value for two match hits with references sequences of wheat (Triticum sp.) and rye
164	(Secale cereale), of the family Poaceae, and another with cumin (Cuminum cyminum)
165	and carrot (Daucus carota), of the family Apiaceae. The remaining haplotypes could
166	taxonomically assign the sequences only at genus (beans, Vicia sp.; rice, Oryza sp.;
167	honeybush, Ciclopia sp.) or family level (Oleaceae). In spite of the short length of the
168	two sequences here employed, the reconstructed Neighbor-Joining trees exhibited a
169	rather good phylogenetic signal, grouping together the haplotypes of the same species or
170	genus in the tree reconstructed from 16S rDNA sequences (Fig. 3). Likewise, the tree

1
2
2
4
+ 5
5
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2 I 22
22 22
∠3 24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
30
10
40 11
41
4∠ 40
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
60
00

171	reconstructed from rbcL sequences clustered haplotypes by family (Fig. 4); however,
172	and as expected from their shorter length, bootstrapping values were lower than in the
173	16S rDNA-based tree, and some phylogenetic discrepancies occurred; for example, the
174	sequences identified as A. cepa (onion), expected to be clustered with other Liliopsida
175	such as the cereals, were alone in a branch apart.
176	Regarding candies composition, from 16S rDNA one animal species was found for most
177	samples (Table 2), pig (S. scrofa) being the most frequent (in 64.7% of candies)
178	followed by cow (B. taurus) (47.1% of candies), hake (genus Merluccius) (11.8%) and
179	chicken (G. gallus) (5.5%). From rbcL sequences (Table 2) a mixture of at least three
180	plant species was detected in eight of the samples analyzed (44.4%). Seven samples
181	contained maize (Z. mays) and also seven samples contained beans or related species
182	(Vicia sp.). Less frequent ingredients were cereals of the tribe of wheat/rye; soya, rice,
183	honeybush and chestnut; tobacco, cacao, cumin and Oleaceae (found from five; two;
184	and one samples respectively). Some ingredients were unexpected, since contamination
185	from the analysis process can be discarded given clean negative PCR controls and strict
186	measures of sterility, such as human DNA and tobacco found in eight (44% samples:
187	#2, #7, #8, #11, #13, #14, #15 and #17) and one (#13) candies respectively (Table 2).
188	Many species detected from DNA were not stated in the labels and vice versa (Table 2).
189	Only one of the samples analyzed provided DNA results concordant with the label: the
190	gelatin powder of Sample#1 (Tables 1 and 2) that declared to contain porcine gelatin
191	and contained porcine DNA. Other DNA-label concordances occurred in a few samples:
192	#11 label also declared porcine gelatin and porcine DNA was found; #2 and #7 declared
193	corn and contained corn DNA, as did occur in #8 for soya and #15 for wheat. In general
194	there was a difference between the means of animal and plant species found only from
195	DNA and only from labels (Fig. 5, Table 2). More animal species were found from

DNA than from labels with Horreo *et al.*¹⁸ primers, whereas for plants it was the opposite, with more plants and fruits stated in the labels than found from DNA with Han *et al.*¹⁹ primers.

Some cases found in this study can be problematic for consumers. Pig, not accepted by some religions, is one example. Pig traces appeared but were not declared in 55.6% of samples (Fig. 4). Moreover, two samples labeled as apt for vegetarians (vanilla custard, Sample#2; agar, Sample#5) contained pig traces. Another possible problematic case was the failure to declare fish content, although hake traces were present in three samples.

DISCUSSION

Our results revealed that DNA traces were present in most analyzed commercial candies, and that its quality and concentration was sufficient for successful PCR amplification of short DNA sequences of species-specific value. The results obtained here confirm the power of DNA tests for detecting traces of ingredients in complex food matrices, supporting other authors who used DNA for identifying unwanted species in candy, for instance Demirhan et al.⁷ Most studies use specific markers for identifying only targeted species or DNA sequences; for example the mentioned study targeting porcine.⁷ markers for detecting genetically modified maize and sov.¹² or saffron in highly processed products.¹⁵ Here we have followed a different approach of PCR-cloning of conserved DNA sequences using universal primers, instead of species-targeted ones, because our objective was to detect as many species as possible. Indeed, not finding a species in only a dozen sequences (from cloning) cannot ensure that such species is absent from the product; it could be present in low proportion and remain undetected. Due to the many ingredients contained in candy, this process could be

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
10
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
02
33
34
35
36
00
37
38
39
40
11
41
42
43
44
45
40
40
47
48
49
50
50
51
52
53
5/
54
55
56
57
50
50
59
60

220	considerably improved using next generation sequencing technology (NGST): high-
221	throughput sequencing approaches after direct DNA extraction from a matrix or
222	environmental sample. Capable to generate millions of sequences at the same time,
223	NGST is now used in ecology for biodiversity monitoring, and its application in food
224	sciences has been suggested for microbes in complex food matrices. ^{23,24}
225	It should to be taken into account that the absence of DNA traces of a species in a
226	product does not imply that species is really absent; DNA can be so degraded that PCR
227	may fail, and/or primers may fail to anneal if they are insufficiently specific for a
228	taxonomic group. Conversely, if DNA traces of a species occur in a product and
229	contamination can be reasonably discarded, as it is the present case, there is no doubt
230	that the species is really present in that product. Despite quite limited sample size, in our
231	results we found a surprising and unexpected high level of failure to declare species
232	contents in commercial packed candies. Many undeclared species were detected in more
233	than 90% of the analyzed candies, and some of them could raise ethical issues (pig;
234	animal species in vegetarian candies) for many consumers. Since the candy trade is
235	widely globalized, ²⁵ and our study was done from candies made in five different
236	countries, the results here obtained could likely be generalized.
237	Regulations of candy labelling are not homogeneous worldwide and each country has
238	specific laws, generally focused on allergenic ingredients. For example, in the US it is
239	mandatory to list major allergens contained in the ingredients on the label of packed
240	food, including candy, stating the species the major allergen is derived from (Food
241	Allergen Labelling and Consumer Protection Act of 2004; Public Law 108-282, Title
242	II). In European common law, packed food must also display a list of potential allergens
243	separated from the list of ingredients (EU 1169/2011). In addition to this general

normative, at national level some regulations are specifically applied to candy; for

3		
4		
5		
с С		
0		
7		
8		
ā		
2	~	
I	υ	
1	1	
1	2	
1	ີ	
4	4	
1	4	
1	5	
1	6	
1	7	
4	' ^	
1	Ø	
1	9	
2	0	
っ っ	1	
~	-	
2	2	
2	3	
2	4	
	5	
2	0	
2	6	
2	7	
2	R	
<u>م</u>	~	
2	9	
3	0	
3	1	
ົລ	ว	
3	2	
3	3	
3	4	
3	5	
ົລ	6	
2	2	
3	1	
3	8	
3	9	
1	٥ ٨	
4	ý	
4	1	
4	2	
Δ	3	
т Л	1	
4	4	
4	5	
4	6	
Δ	7	
4	' 0	
4	Ø	
4	9	
5	0	
5	1	
5	1	
5	2	
5	3	
5	4	
F	F	
ົ	ວ ເ	
5	6	
5	7	
5	8	
г	2	
с С	9	
6	0	

245	example, in Spain the Royal Decree 1245/2008 states that packed candies must exhibit
246	information about allergens on the label. The results of the present study suggest that
247	the current labeling normative should be improved. At least the species used for the
248	gelatin should be disclosed. The consumer should be informed about fish, which can
249	trigger allergic reactions if inadvertently eaten with candy. ¹¹ On the other hand, pig and
250	cow are frequently employed to produce commercial gelatin, ^{6,7} thus their presence in
251	most candies here analyzed is not surprising. However, their occurrence in candies
252	labelled "For vegetarians" could be considered a fraud and undermine the choice rights
253	of vegetarian consumers.
254	The causes of failure for declaring all the species detected in this study are probably
255	diverse. Some ingredients could have been merely listed as "colorants" or "spice",
256	without disclosing the species contained. ²⁶ In some cases it could be likely deliberate,
257	as in Sample#5 supposedly made only from algae (colorants were not stated) but

as in Sample#5 supposedly made only from algae (colorants were not stated) but
containing really pig, bean and honeybush traces. However in other cases the presence
of some traces could be inadvertent. Some ingredients could have been accidentally
acquired during the process of packing. ²⁷ This could happen also in the cases of
contamination with human DNA and even tobacco; it is very difficult to imagine that
negligent manipulation of food products is deliberate. However, although likely not
deliberate in some (perhaps in many) cases, the results found our study strongly support
the need of a more careful control of the international candy market.

265

CONCLUSIONS

Using DNA analysis we have detected a generalized failure to inform about ingredients in commercial candies from five producer countries. DNA traces of many species undeclared in the labels like porcine, fish, soya, honeybush and others were found from

Ζ	
3	
4	
5	
e	
0	
7	
8	
g	
10	
10	
11	
12	
13	
14	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
20	
21	
28	
29	
30	
24	
31	
32	
33	
34	
25	
35	
36	
37	
38	
00	
39	
40	
41	
42	
7 <u>~</u> 40	
43	
44	
45	
46	
40 47	
41	
48	
49	
50	
50 E 4	
51	
52	
53	
54	
54	
55	
56	
57	
58	
50	
59	
60	

269 most analyzed samples. Undeclared porcine DNA was found in samples labeled as "For 270 vegetarians", undermining the rights of vegetarian consumers. A more strict control of 271 commercial candies is recommended, applying methodology based on DNA-tests or 272 Next Generation Sequencing Technology, which could obtain higher resolution on the 273 composition of these sweets.

274

ACKNOWLEDGEMENTS

This research was financially supported by Fundacion Mapfre (SV13-MAPFRE-1), 275 276 Regional Government of the Principado de Asturias, Spain (Research Grant GRUPIN14-093) and Campus of Excellence of the University of Oviedo. M.M-C. holds 277 a Spanish National Grant (reference AP-2010-5211). The data reported in this paper are 278 279 archived at the following databases: European Nucleotide Archive (ENA), from the European Bioinformatics Institute in the European Molecular Biology Laboratory, 280 EMBL-EBI (http://www.ebi.ac.uk/). We also acknowledge the assistance of Daniel 281 Serna Fuente (Sequencing Unit of the University of Oviedo). 282

- 283

284

REFERENCES

Popkin BM and Nielsen, The Sweetening of the World's Diet. *Obesity* 11: 1325–
 1332 (2003).

Lee IM and Paffenbarger Jr RS, Life is sweet: candy consumption and longevity.
 BMJ 317: 1683-1684 (1998).

289 3. Liem DG, Mars M and De Graaf C, Sweet preferences and sugar consumption of
290 4- and 5-year-old children: role of parents. *Appetite* 43: 235–245 (2004).

Journal of the Science of Food and Agriculture

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
Δ 7
 10
40
49
50
51
52
53
54
55
56
57
50
00
59
60

1 2

291	4. Jansen E, Mulkens S and Jansen A, Do not eat the red food!: Prohibition of
292	snacks leads to their relatively higher consumption in children. Appetite 49: 572-
293	577 (2007).
294	5. Madsen C, Chemicals in food and allergy: fact and fiction. <i>Environ. Toxicol.</i>
295	<i>Pharmacol.</i> 4 : 115–120 (1997).
296	6. Daeyeon K and Sea CM, Trout skin gelatin-based edible film development. J.
297	<i>Food Sci.</i> 77 : E240-E246 (2012).
298	7. Demirhan Y, Ulca P and Senyuva HZ, Detection of porcine DNA in gelatine and
299	gelatine-containing processed food products-Halal/Kosher authentication. Meat
300	Sci. 90: 686-689 (2012).
301	8. Simon RA, Adverse reactions to food and drug additives. <i>Immunol. Allerg. Clin.</i>
302	North Am. 16: 137 (1996).
303	9. Ramesh S, Food Allergy Overview in Children. Clin. Rev. Allergy Immunol. 34:
304	217-230 (2008).
305	10. Al- Ahmed N, Alsowaidi S and Vadas P, Peanut Allergy: An Overview. Allergy
306	Asthma Clin. Immunol. 4: 139–143 (2008).
307	11. Kuehn A, Hilger C and Hentges F, Anaphylaxis provoked by ingestion of
308	marshmallows containing fish gelatin. J. Allergy Clin. Immunol. 123: 708-709
309	(2009).
310	12. Arun OO, Yilmaz F and Muratoglu K, PCR detection of genetically modified
311	maize and soy in mildly and highly processed foods. Food Control 32: 525-531
312	(2013).

3	313	13. Bornatowski H, Braga RR, Simoes V and Jean R, Shark Mislabeling Threatens
4 5 6	314	Biodiversity. Science 340: 923-923 (2013).
7 8 9	315	14. Marko PB, Lee SC, Rice AM, Gramling JM, Fitzhenry TM, McAlister JS,
10 11	316	Harper GR and Moran AL, Mislabelling of a depleted reef fish. Nature 430:
12 13 14	317	309-310 (2004).
15 16 17	318	15. Torelli A, Marieschi M and Bruni R, Authentication of saffron (Cronus sativus
17 18 19	319	L.) in different processed, retail products by means of SCAR markers. Nature
20 21	320	36 : 126-131 (2014).
22 23 24	321	16. Poms RE, Klein CL and Anklam E, Methods for allergen analysis in food: a
25 26 27	322	review. Food Addit. Contam. 21: 1-31 (2004).
28 29	323	17. Mackie IM, Pryde SE, Gonzales-Sotelo C, Medina I, Pérez-Martín R, Quinteiro
30 31	324	J, Rey-Mendez M and Rehbein H, Challenges in the identification of species of
32 33 34	325	canned fish. Trends Food Sci. Technol. 10: 9-14 (1999).
35 36 37	326	18. Horreo JL, Ardura A, Pola IG, Martinez JL and García-Vázquez E, Universal
38 39	327	primers for species authentication of animal foodstuff in a single polymerase
40 41 42	328	chain reaction. J. Sci. Food Agric. 93: 654-361 (2013).
43 44	329	19. Han JX, Wu YJ, Huang WS, Wang B, Sun CF, Ge YQ and Chen Y, PCR and
45 46	330	DHPLC methods used to detect juice ingredient from 7 fruits. <i>Food control</i> 25 :
47 48 49	331	696-703 (2012).
50 51 52	332	20. Hall TA, BioEdit: a user-friendly biological sequence alignment editor and
53 54	333	analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98
55 56 57 58 59	334	(1999).

3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
21
20
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
47
77 10
40
49
50
51
52
53
54
55
56
57
58
50
59
60

335	21. Tamura K, Stecher G, Peterson D, Filipski A and Kumar S, MEGA6: Molecular
336	Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729
337	(2013).
338	22. Tamura K and Nei M, Estimation of the number of nucleotide substitutions in
339	the control region of mitochondrial DNA in humans and chimpanzees. <i>Mol.</i>
340	Biol. Evol. 10: 512-526 (1993).
341	23. Gui J and Patel IR, Recent Advances in Molecular Technologies and Their
342	Application in Pathogen Detection in Foods with Particular Reference to
343	Yersinia. J. Pathog. 2011: 1-11 (2011).
344	24. Ercolini D, High-Throughput Sequencing and Metagenomics: Moving Forward
345	in the Culture-Independent Analysis of Food Microbial Ecology. Appl. Environ.
346	<i>Microbiol.</i> 79 : 3148-3155 (2013).
347	25. Krummel DA, Seligson FH, Guthrie HA and Gans DA, Hyperactivity: Is candy
348	causal? Crit. Rev. Food Sci. Nutr. 36: 31-47 (2009).
349	26. Pieretti MM, Chung D, Pacenza R, Slotkin T and Sicherer SH, Audit of
350	manufactures products: Use of allergen advisory labels and identification of
351	labeling ambiguities. J. Allergy Clin. Immunol. 124: 337-341 (2009).
352	27. Laemmel S and Schnadt S, Food labelling as seen by the allergenic consumer.
353	Results of the inquiry concerning current food marking regarding allergenic
354	ingredients. Allergologie, 31 : 33-40 (2009).

TABLES

Table 1: summary of candy samples analyzed.

							PCR amp	lification
S	Country	Туре	Animal species	Plant species	Specific indications	DNA (ng/µl)	16S rDNA	rbcL
1	Spain/Portugal	Unflavored gelatin	Pork	No	ND	0.0384	+	-
2	France	Vanilla custard	ND	Maize	Vegetarian	0.172	+	+
3	Spain	Fish-shaped gummies	Possible milk, egg traces	Possible peanuts, tree nuts, wheat, soy traces	ND	<0.0005	-	-
4	France	Lemon gelatin dessert	Gelatin. Possible milk & egg traces	Possible soy, nuts traces	Possible gluten content	0.0124	+	+
5	Spain/Portugal	Vegetable gelatin	ND	Agar-agar	Vegan, Agar 100%	0.0258	+	+
6	Portugal	Neutral gelatin	Gelatin	ND	ND	0.328	-	+
7	Spain	Marshmallows	Gelatin	Corn; Arabic gum	Gluten-free	< 0.0005	+	+

8	Spain	Strawberry bubble gum	ND	Soya, arabic gum	ND	<0.0005	+	+
9	Spain	Strawberry candy	Gelatin, cochineal	Cherry, lemon, pineapple, strawberry, orange, apple, blackcurrant, elder berry, aronia, grape, mango, passion fruit, carob, turmeric	ND	0.0238	+	-
10	Portugal	Watermelon candy	Gelatin	ND	ND	<0.0005	+	+
11	Portugal	Marshmallows	Porcine gelatin	Wheat, corn	ND	0.0226	+	+
12	Spain	Green soft jelly	ND	Lemon, orange, strawberry, apple, pineapple, safflower, potato, carrot, radish, hibiscus, blackcurrant, spirulina.	Gluten free	0.0484	+	+
13	Spain	Color gummies	Gelatin	Carrot, blackcurrant, paprika, turmeric	ND	0.0164	+	+
14	Sweden	Gummies	Gelatin	Licorice, peanuts	ND	0.0174	+	+

15	Portugal	Pineapple gelatin dessert	Gelatin; Possible eggs & milk traces	Possible wheat traces	ND	<0.0005	+	+
16	Spain	Strawberry candy	Gelatin, cochineal	Cherry, lemon, pineapple, strawberry, orange, apple, blackcurrant, elder berry, aronia, grape, mango, passion fruit, carob, turmeric	ND	0.0208	+	+
17	Spain	Sherbet powder	ND	ND	Sugar & flavours	< 0.0005	+	-
18	Turkey/Spain	Fruit bubble gum	Gelatin	Watermelon, pineapple, melon, arabic gum, turmeric	Contains Brilliant Blue FCF	<0.0005	+	+

Country of origin, type of product, animal and plant species declared in the label, specific indications for consumers, DNA quantity determined

by fluorometry, PCR amplification of the markers assayed (positive or negative as visualized in agarose gel).

	N° species																		
Sample	Animals	Plants	Clones	Cow	Pork	Hake	Chicken	Beans	Rice	Cereals	Apiaceae	Oleaceae	Onion	Chestnut	Honeybush	Soya	Cacao	Corn	Contaminants
1	1 (1)	0 (0)	8	-	+	-	0	-	-	-	-	-	-	-	-	-	-	-	-
2 (veg)	1 (0)	2(1)	11	-	+	-	_	-	0	+	-	-	-	-	-	-	-	+	+
3	0 (2)	0 (4)	0	-	-	-	-	-	-	6	-	-	-	-	-	-	-	-	-
4	2 (3)	4 (2)	14	+	+	-	-	+	-	+	-		+	-	-	-	+	-	-
5 (veg)	1 (0)	2(1)	12	-	+	-	-	+	-	-	-			-	+	-	-	-	-
6	0(1)	3 (0)	6	-	-	-	-	+	+	-	+	-	-	8		-	-	-	-
7	4 (1)	1 (2)	16	+	+	+	+	-	-	-	-	-	-	-	-	-	-	+	+
8	3 (0)	2 (2)	10	+	+	+	-	+	-	-	-	-	-	-	-	+	-	-	+
9	1 (2)	0 (14)	5	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 2: Composition of the analyzed candy samples as identified from DNA.

10	1 (1)	3 (0)	13	+	-	-	-	+	-	+	-	-	-	-	-	-	-	+	-
11	1 (1)	0 (2)	8	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	+
12	1 (0)	3 (12)	17	+	-			+	-	-	-	+	-	-	+	-	-	I	-
13	2 (1)	2 (4)	14	+	+	-		+	-	-	-	-	-	-	-	-	-	+	+
14	2 (1)	3 (2)	15	+	+	-	-	-		+	-	-	-	-	-	+	-	+	+
15	2 (3)	2(1)	17	-	+	+	-	-	+	+	-	-	-	-	-	-	-	-	+
16	1 (2)	3 (14)	19	+	-	-	-	-	-	+	-	Ya	-	+	-	-	-	+	-
17	1 (0)	0 (0)	4	-	+	-	-	-	-	-	-	_			-	-	-	-	+
18	1 (1)	3 (5)	23	-	+	-	-	-	-	-	-	-	-	+	+	-	-	+	-

Number of animal and plant species from DNA (declared in the label in parenthesis); number of clone sequences obtained from each sample; presence/absence of different ingredients authenticated from DNA sequences as +/-. Samples indicated for vegetarians are marked with (veg)

2
3
1
4 5
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
10
77 19
40
49
50
51
52
53
54
55
56
50
ວ/ 50
58
59
60

1 LEGENDS OF FIGURES

Figure 1: Photographs of different samples of this study: (1) Sample#1, gelatin powder
(2) Sample#3, fish gummy; (3) Sample#2, pre-cooked mix for vanilla custard (4);
Sample#4, lemon jelly; (5) Sample#8, strawberry gum; (6) Sample#7, marshmallow; (7)
Sample#9, strawberry candy; (8) Sample#10, watermelon jelly; (9) Sample#12, green
candy; (10) Sample#18, fruit gum; (11) Sample#11, marshmallow; (12) Sample#14,
candy; (13) Sample#13, soft candy.

Figure 2: Photography of 2% agarose gel stained with ethidium bromide and visualized
under UV light showing PCR products obtained with the 16S-H (A) and Rbc-L (B)
primers; from left to right in A gel: positive control, samples 8-11 (two lanes/sample),
negative control, empty lane, DNA ladder (marker of size, in base pairs); B gel: samples
8-11 (two lanes/sample), positive control, DNA ladder and negative control.

Figure 3: Neighbor-Joining tree reconstructed from the 16S rDNA sequences obtained from the analyzed candy. The haplotype name is followed by the closest taxonomic match. Reference sequences are included indicated as ref_ with their GenBank accession number. A sequence of the limpet *Patella depressa* was employed as outgroup.

Figure 4. Neighbor-Joining tree reconstructed from the rbcL sequences obtained from
the analyzed candy. The haplotype name is followed by the closest taxonomic match.
Reference sequences are included indicated as ref_ with their GenBank accession
number. A sequence of the green alga *Fucus vesiculosus* was employed as outgroup.

Figure 5: Mean number per candy sample of animal and plant species of the followingtypes: concordant, declared only in the labels and found only from DNA.

202x111mm (96 x 96 DPI)

81x107mm (96 x 96 DPI)

JSFA@wiley.com

-

 \vdash

162x147mm (219 x 219 DPI)

....

JSFA@wiley.com

166x198mm (224 x 224 DPI)

152x99mm (96 x 96 DPI)