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por un máster al año siguiente de terminar la licenciatura, y continuar con

la investigación en el trabajo fin de máster, me embarqué en empezar el
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Abstract

The fuzzy logic has been introduced by L.A. Zadeh in 1965 from the incom-

patibility principle: As a system complexity increases, our ability to make

absolute, precise and significant statements about the system’s behavior di-

minishes until a threshold, fuzzily defined, is reached. Beyond that threshold

precision and significance are mutually exclusive. This logic tries to provide

a mathematical framework to model the uncertainty in human cognitive

processes.

During this half century, the fuzzy logic has been widely studied by

the scientific community, introducing extensions of the original definition of

fuzzy set, such as interval-valued fuzzy sets, Atanassov’s intuitionistic fuzzy

sets or type-2 fuzzy sets.

In the last years, an interesting extension of the fuzzy logic has been

provided, the called hesitant fuzzy logic. In this framework, different types

of sets have been defined, while in this work we focus on the interval-valued

hesitant fuzzy sets. The properties of this type of sets make it possible to

generalize the most important extensions of fuzzy sets. As a consequence,

all the results introduced for these sets can be applied to other types.

In this work, different concepts for this type of sets have been studied,

starting with the definition of some ordering relations for finitely generated

sets, which are the basis of interval-valued hesitant fuzzy sets. Another
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important definitions given for these sets are the ones of triangular norm

and conorm (t-norm and t-conorm, respectively), which are complemented

with some examples and particular cases used along the research.

From an axiomatic point of view, a cardinality definition is provided

next, and several remarkable properties are proved. Taking into account its

characteristics, some particular cases have been studied, as classical defini-

tions of cardinality can be obtained from them.

The next concept that has been studied is the one of entropy, which

measures the uncertainty associated to a set. The complexity of these sets

leads us to define this entropy as a tuple of three mappings (fuzziness, lack

of knowledge and hesitance). In order to ease their obtaining, several results

and characterizations have been proved.

Lastly, some results about fuzzy partitioning have been generalized to

interval-valued hesitant fuzzy sets, including two different definitions for this

type of partitioning, as well as some characterizations. Particularizing the

obtained results, it has been possible to obtain certain classical definitions

of partitioning for fuzzy sets, such as Ruspini one.

The second part of this work is the development of two applications of

the fuzzy logic generalized to different fields.

The first one is focused on the protection of privacy in microdata. This

type of data can be found in fields such as the medical or economical ones.

The classical procedure is to apply crisp partitions to the non-sensitive

attributes in order to protect the sensitive ones. Among the different tech-

niques to measure the level of protection provided by a partition, we have

selected three of the most renowned ones (k-anonymity, l-diversity and t-

closeness). Our proposal has been the use of fuzzy partitions instead of crisp

ones in order to better protect the released data. In addition, the selected

protection techniques have been adapted to this new situation, obtaining
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three new techniques that measure the level of protection provided by this

new type of partitions. Finally, an experiment has been carried out in order

to prove the goodness of our method.

The second application is related to the detection of edges in grey scale

images. Our start point has been a construction method of interval-valued

fuzzy relations from a fuzzy relation. We have studied the influence of

the variation of the parameters involved on it. Furthermore, a new method

including weights and a smoothing step has been proposed, and in addition,

it has been compared experimentally to the original one in order to affirm

that it is an efficient alternative.





Resumen

La lógica difusa fue introducida por L.A. Zadeh en 1965 a partir del denomi-

nado principio de incompatibilidad: Conforme la complejidad de un sistema

aumenta, nuestra capacidad para ser precisos y construir instrucciones sobre

su comportamiento disminuye hasta el umbral más allá del cual, la precisión

y el significado son caracterásticas excluyentes. Esta lógica busca propor-

cionar un marco matemático que permita modelar la incertidumbre que

aparece en los procesos cognitivos humanos.

En este medio siglo, la lógica difusa ha sido ampliamente estudiada

por la comunidad cient́ıfica, introduciendo extensiones de la definición ori-

ginal de conjunto difuso, tales como interval-valued fuzzy sets, Atanassov’s

intuitionistic fuzzy sets o type-2 fuzzy sets.

En los últimos años, aparece una interesante extensión de la lógica di-

fusa, la llamada hesitant fuzzy logic. En este marco, se han definido distintos

tipos de conjuntos, centrándonos en este trabajo en los llamados interval-

valued hesitant fuzzy sets. Las propiedades de este tipo de conjuntos per-

miten generalizar las extensiones de los conjuntos difusos más importantes.

Como consecuencia, todos los resultados introducidos para estos conjuntos

pueden ser aplicados a otros tipos de conjuntos.

En este trabajo, se han estudiado diferentes conceptos para esta clase

de conjuntos, comenzando con la definición de algunas relaciones de orden
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para conjuntos finitamente generados, los cuales son la base de los interval-

valued hesitant fuzzy sets. Otras importantes definiciones dadas para estos

conjuntos son las de norma y conorma triangulares (t-norma y t-conorma,

respectivamente), las cuales se complementan con algunos ejemplos y casos

particulares que serán utilizados a lo largo de la investigación.

A continuación, y desde un punto de vista axiomático, se proporciona

una definición de cardinalidad, y se prueban varias de sus propiedades más

importantes. Teniendo en cuenta sus caracteŕısticas, se han estudiado al-

gunos casos particulares que nos permiten obtener algunas de las defini-

ciones clásicas de cardinalidad.

El siguiente concepto tratado ha sido el de entroṕıa, a través de la cual

se mide la incertidumbre asociada a un conjunto. La complejidad de estos

conjuntos nos ha llevado a definir dicha entroṕıa como una terna de tres

aplicaciones (fuzziness, lack of knowledge y hesitance). Con el objetivo de

facilitar su obtención, se han probado varios resultados y caracterizaciones.

Finalmente, se han generalizado algunos resultados sobre particionado

difuso al caso de interval-valued hesitant fuzzy sets, incluyendo dos defini-

ciones distintas para este tipo de particionado, aśı como algunas caracteriza-

ciones. Particularizando los resultados alcanzados, ha sido posible obtener

algunas definiciones clásicas de particionado para conjuntos difusos, tales

como la definición de Ruspini.

La segunda parte de este trabajo es el desarrollo de dos aplicaciones de

la lógica difusa generalizada a diferentes campos.

La primera de ellas se centra en la protección de la privacidad en mi-

crodatos. Este tipo de datos se puede encontrar en campos tales como el

médico o el económico. El procedimiento habitual es la aplicación de par-

ticiones ńıtidas a los atributos no sensibles para aśı proteger los atributos

sensibles. Entre las diferentes técnicas para medir el nivel de protección
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proporcionado por una partición, hemos seleccionado tres de las más desta-

cadas (k-anonymity, l-diversity y t-closeness). Nuestra propuesta ha sido

utilizar particiones difusas en lugar de particiones ńıtidas para dar una

mejor protección a la tabla liberada. Además, hemos adaptado las técnicas

de protección previamente elegidas a esta nueva situación, obteniendo tres

nuevas técnicas que nos permiten medir el nivel de protección proporcionado

por este nuevo tipo de particiones. Finalmente, hemos llevado a cabo una

experimentación para comprobar la bondad de dicho método.

La segunda aplicación está relacionada con la detección de bordes en

imágenes en escala de grises. El punto de partida ha sido un método de cons-

trucción de interval-valued fuzzy relations a partir de una relación difusa.

Hemos estudiado la influencia de la variación de los parámetros involucrados

en dicho método. Además, se ha introducido un nuevo método incluyendo

pesos y un paso de suavizado, realizando además una comparación experi-

mental con el original que nos permite afirmar que la nueva propuesta es

una alternativa eficaz.





Foreword

Many frequently used terms are not completely precise. This imprecision

is noticeable in expressions like tall people or high temperature. A classical

point of view to model this imprecision is to give a threshold in order to

discern between who is characterized by the term and who is not. However,

it is not reasonable to say that a 1.80 meters person is tall, but a 1.78 meters

person is not. It looks prudent not to interpret terms like these in this way.

Fuzzy logic is a great tool to tackle this type of uncertainty associated

to certain terms. It has been defined for the first time by Zadeh in 1965

(see [82]). The basis of this logic is the membership degree assigned to

each element with respect to a set, allowing the modeling of terms like the

ones aforementioned. The usual range of values of such degree is the unit

interval [0, 1], where the greater the value, the stronger the membership. In

this way, the possible uncertainty is modelled by the membership degree of

a fuzzy set.

This logic was well received, and as a result, many researchers in the

last 50 years focused their studies on the fuzzy logic and its applications.

Consequently, along this half century, different modifications of the origi-

nal fuzzy sets defined by Zadeh in 1965 were given. It was Sambuc who

proposed the interval-valued fuzzy sets in 1975 (see [67]) to overcome the

possible problems determining the membership functions using intervals in-
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stead of a single value as degrees. An equivalent generalization was defined

by Atanassov in 1986 (see [3]), the Atanassov’s intuitionistic fuzzy sets,

where every element has a membership degree and a non-membership de-

gree associated. A more complex generalization was given by the own Zadeh

in 1975 (see [83]), the type-2 fuzzy sets.

This work is focused on a recent logic developed in the last years: the

hesitant fuzzy logic, which was introduced by Torra in 2009 (see [75]). This

logic has as the main advantage the fact of generalizing fuzzy sets, interval-

valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets, and at the same

time, providing certain properties that make it much more manageable than

the type-2 fuzzy sets. The membership degrees assigned by a hesitant fuzzy

set are any subset of the unit interval [0, 1].

From the starting point given by Torra with hesitant fuzzy sets, differ-

ent modifications have been defined. The main one is the typical hesitant

fuzzy sets (see [7, 8]), where it is required that the membership degree must

be finite. However, an important drawback is that this type of sets does

not generalize interval-valued fuzzy sets nor Atanassov’s intuitionistic fuzzy

sets. Pérez et al. (see [56]) defined the finite interval-valued hesitant fuzzy

sets (from here on out, interval-valued hesitant fuzzy sets) as a modifica-

tion of another generalization provided by Chen (see [20]). The membership

degrees of this type of sets are given by finitely generated sets of the unit

interval. In other words, these sets are the finite union of closed subintervals

of the unit interval. The goodness of these sets is the fact of generalizing

interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets as well.

In addition, these membership functions are more controllable than type-2

fuzzy sets ones.

The previous reasoning lead us to focus on this type of sets: interval-

valued hesitant fuzzy sets. Along this work, several developments have been
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carried out around this kind of sets, such as ordering relations, entropy

measures or cardinality definitions. Furthermore, thanks to the goodness of

this generalization, two different applications have been developed in two

very different fields: privacy protection and edge image detection.

After this explanation of the background of this work, its structure is

explained in the remainder of this foreword.

In Chapters 1 and 2 each necessary basic concept along this work is

explained.

In Chapter 1, fuzzy logic is explained in depth. Firstly, an historical

review of the different types of sets with their pros and cons, definitions and

different notations is given. After this, the section is split into two sections

to deal with two of these types of sets: fuzzy sets and interval-valued fuzzy

sets. Several concepts have been explained there, focusing on the necessary

concepts in the forthcoming chapters of this memory.

On the other hand, Chapter 2 is centered on the hesitant fuzzy logic.

The different types of sets included in this logic are deeply explained.

Interval-valued hesitant fuzzy sets are analyzed in further detail as they

are the cornerstone of the next chapter.

The new material provided in this work is found in Chapters 3 and 4,

whose content is the following.

The full work about interval-valued hesitant fuzzy sets is in Chapter 3,

which is split into five sections.

In the first one, two ordering relations for finitely generated sets are

given, as well as their generalization to interval-valued hesitant fuzzy sets.

In addition, several properties are given in order to ease the other results

given in this very chapter.

In the second part, the definitions of t-norm and t-conorm are adapted

to this type of sets, followed by a pair of functions satisfying their definitions.
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These two first sections serve as the basis for the developments given in the

next three sections.

In the third section a cardinality definition is provided from an ax-

iomatic point of view in order to avoid sticking to a single function. Fur-

thermore, remarkable properties that these cardinalities satisfy and several

results are also given.

The fourth section is centered on the definition of an entropy measure.

Due to the shape of the membership functions of this type of sets, the

entropy definition given is split into three different functions (fuzziness, lack

of knowledge and hesitance) in order to detect different types of entropy. In

addition, several results and characterizations are formulated, followed by

a full-detailed example.

In the last part of this chapter, partitioning concepts are adapted to

interval-valued hesitant fuzzy sets, along with some properties and results.

The two applications shown in this memory can be found in the two

sections that Chapter 4 is split into.

Protection of privacy in microdata is tackled in the first one, replacing

the classical approach with crisp partitions for another using fuzzy parti-

tions. Three techniques to measure the level of privacy have been adapted

to the fuzzy case. In addition, an experimental comparison has been carried

out.

The second section deals with the detection of edges in grey scale im-

ages, through a construction method of interval-valued fuzzy relations from

a fuzzy relation. The influence of certain parameters of the method has

been studied in detail. Furthermore, a new method has been defined in-

cluding weights and a smoothing step in the initial method. As well as in

the previous application, we carried out an experimental comparison.

Finally, in Chapter 4.2.5 the main conclusions are presented, along with
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a brief summary of the obtained accomplishments along this work.
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Chapter 1

Basic Concepts: Fuzzy Logic

The classical interpretation of set theory states that an element has two op-

tions with respect to its membership to a set: it belongs to it, or it does not.

However, this reading is not useful when it comes to dealing with certain

concepts that are usually employed. If a set represents the concept “Tem-

perature higher than 25oC”, it is obvious that the classical interpretation

shapes this concept perfectly, as a temperature of 30oC belongs to the set,

while a 15oC one does not. Nevertheless, if the set is “High temperature”,

this approach is not the proper one to define this concept.

At this point, fuzzy logic comes into play. Sets like the one previously

given are modeled by this logic using membership degrees of each element to

the set. These degrees vary in the closed interval [0, 1], where 0 represents

that the element does not belong to the set at all, while 1 is interpreted

as a total membership. Therefore, the concept “High temperature” can be

modelled by a fuzzy set, where both temperatures 30oC and 35oC would be

considered high, but the degree would be higher for the latter.

The main advantage that fuzzy logic provides, as it has been shown

with the previous example, is that it can deal with the uncertainty asso-
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2 Chapter 1. Basic Concepts: Fuzzy Logic

ciated to usual terminology, not only related to temperature, but also to

other features such as people height, weight or age. For example, a typical

situation related to the age of a person arises when the question “Is this

person young?” is formulated. If this person is 16 years old, the answer is

obvious, but what happens if the age is 35?. It depends on the interpreta-

tion of “Young” made in the context. This interpretation can be perfectly

captured by a fuzzy set.

Fuzzy logic presents such good properties, that has been deeply studied

and developed since the first definition given by Zadeh in 1965 (see [82]).

Coherently, this is the first definition in this chapter.

Definition 1.1 Let X be a non-empty set. A fuzzy set A on X is defined

by its membership function

µA : X → [0, 1],

where ∀x ∈ X, µA(x) represents the membership degree of the element x to

the fuzzy set A.

As stated in the previous definition, a fuzzy set is given by a mapping,

called membership function. For each element in X, it assigns a value in

the closed interval [0, 1] which represents the membership degree of such

element to the fuzzy set.

Remark 1.2 FS(X) denotes the set of all fuzzy sets in X.

It must be noted that any crisp set is a fuzzy set whose membership

function only takes value 0 or 1. Given a crisp set A on X, then A ∈ FS(X).

A basic example of a fuzzy set is shown next.
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Example 1.3 In Figure 1.1 the graphical representation of the fuzzy set

A ∈ FS([0, 4]) is given, whose membership function is given by

µA(x) =


x− 1, if x ∈ [1, 2],

3− x, if x ∈ (2, 3],

0, in other case.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure 1.1: Graphical representation of the fuzzy set A.

The membership function must be determined by some experts. In

some situations, this task is hard to be carried out accurately. In order

to overcome this possible uncertainty, a new type of fuzzy sets has been

developed: the interval-valued fuzzy sets. This type of sets represents a

generalization of classical fuzzy sets, where the membership degree is an

interval instead of just one value in the interval [0, 1]. This concept was

given in 1975 for the first time by Sambuc (see [67]).
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Definition 1.4 Let X be a non-empty set. An interval-valued fuzzy set A

on X is defined by its membership function

µA : X → L([0, 1]),

where L([0, 1]) denotes the family of all closed subintervals of [0, 1], and

∀x ∈ X, µA(x) represents the membership degree of the element x to the

interval-valued fuzzy set A.

In addition, for each x ∈ X, the membership degree can be split into

two values

µA(x) = [µLA(x), µUA(x)].

The interval that shapes each membership degree makes it possible

to capture the uncertainty that the experts may have when it comes to

determining the membership function of a fuzzy set.

Remark 1.5 IV FS(X) denotes the set of all interval-valued fuzzy sets in

X.

It is also obvious that a fuzzy set is an interval-valued fuzzy set with

µLA(x) = µUA(x) for all x ∈ X, i.e., FS(X) ⊆ IV FS(X). A simple example

of an interval-valued fuzzy set is given next.

Example 1.6 In Figure 1.2 the graphical representation of the fuzzy set

A ∈ FS([0, 4]) is shown, whose membership function is given by

µLA(x) =


x− 1, if x ∈ [1, 2],

3− x, if x ∈ (2, 3],

0, in other case,
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and

µUA(x) =


x
2
, if x ∈ [0, 2],

2− x
2
, if x ∈ (2, 4],

0, in other case.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure 1.2: Graphical representation of the interval-valued fuzzy set A (µLA

in blue, µUA in red).

Another generalization of fuzzy sets developed in order to overcome

the uncertainty is the Atanassov’s intuitionistic fuzzy sets, where the set

is determined by a membership function and a non-membership function.

These sets have been developed in 1986 by Atanassov (see [3]).

Definition 1.7 Let X be a non-empty set. An Atanassov’s intuitionistic

fuzzy set A on X is defined by its membership and non-membership functions

µA, υA : X → [0, 1],
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such that

0 ≤ µA(x) + υA(x) ≤ 1, ∀x ∈ X,

where ∀x ∈ X, µA(x) and υA(x) represent the membership and non-member-

ship degree of the element x to the fuzzy set A, respectively.

Remark 1.8 AIFS(X) denotes the set of all interval-valued fuzzy sets in

X.

However, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy

sets are mathematically equivalent (see [73]). For this reason, we have

decided to study just one of them, the interval-valued fuzzy sets.

Finally, type-2 fuzzy sets are a generalization of all the previously de-

fined sets, which has been defined also by Zadeh in 1975 (see [83]).

Definition 1.9 Let X be a non-empty set. A type-2 fuzzy set A on X is

defined by its membership function

µA : X → FS([0, 1]),

where ∀x ∈ X, µA(x) represents the membership degree of the element x to

the fuzzy set A.

Remark 1.10 T2FS(X) denotes the set of all type-2 fuzzy sets in X.

As it has been denoted in the definition, this type of sets assigns another

fuzzy set as a membership degree. As it is obvious, fuzzy sets, interval-

valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets are particular

cases of type-2 fuzzy sets.

Remark 1.11 The types of sets defined in this chapter are related as follows

FS(X) ⊆ IV FS(X) ≡ AIFS(X) ⊆ T2FS(X).
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However, type-2 fuzzy sets have an important drawback: their mem-

bership functions are hard to handle, and as a consequence, they are barely

used.

From here on out, we will focus in two of these type of sets: fuzzy sets

and interval-valued fuzzy sets, developing important features and charac-

teristics that are crucial in the research carried out in this work. It is split

into two sections, where concepts for fuzzy sets and interval-valued fuzzy

sets are given, respectively.
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1.1 Fuzzy sets

As fuzzy sets are the basis of the fuzzy logic, it is the most studied and

developed type of sets since its first definition in 1965 by Zadeh (see [82]).

In this section, the different concepts needed about fuzzy sets are split into

six subsections.

1.1.1 Basic operators

In this subsection, four important concepts are defined for fuzzy sets: nega-

tion, complement, α-cut and order for fuzzy sets. All of them are well

known, and can be found in a wide range of sources, such as [5, 6, 43, 57].

A good summary of negation definitions for fuzzy sets can be found in

[6].

Definition 1.12 Let N : [0, 1]→ [0, 1] be a function. Then,

• N is a fuzzy negation if it satisfies

1. N(0) = 1 and N(1) = 0,

2. a ≤ b ⇒ N(b) ≤ N(a), ∀a, b ∈ [0, 1].

• N is a strict fuzzy negation if it is a fuzzy negation and satisfies

3. N is continuous,

4. a < b ⇒ N(b) < N(a), ∀a, b ∈ [0, 1].
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• N is a strong fuzzy negation if it is a fuzzy negation and involutive,

i.e.,

5. N(N(a)) = a, ∀a ∈ [0, 1].

It must be noted that a strong fuzzy negation is a strict fuzzy negation,

although the reverse is not satisfied.

Example 1.13 The functions N : [0, 1] → [0, 1] given by N(a) = 1 − aα,

are strict fuzzy negations, for every α > 0. The graphical representations

for α = 0.25, 0.5, 1, 2, 4 are shown in Figure 1.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1.3: Graphical representation of the negation N(a) = 1 − aα (α =

0.25 magenta, α = 0.25 green, α = 1 blue, α = 0.25 red, α = 4 cyan).

The special situation where α = 1, i.e., N(a) = 1− a, is known as the

standard negation (blue function in Figure 1.3). Furthermore, it is the only
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value for α such that N is involutive, and as a consequence, a strong fuzzy

negation.

The concept of negation in its different variations is closely related to

another important definition, the one of complement, which is studied next.

This concept is also easily found in fuzzy logic bibliography, for example, in

[5].

Definition 1.14 Let X be a non-empty set, A ∈ FS(X) and N be a fuzzy

negation. Then, the complement of A is denoted by AN ∈ FS(X) and is

defined by µAN (x) = N(µA(x)).

Remark 1.15 In this work, the complement obtained by the standard nega-

tion is used, unless otherwise noted. This complement is denoted by Ac.

A particular fuzzy set is necessary in the forthcoming sections, and it

is given in next definition (see [57]).

Definition 1.16 The set ξ ∈ FS(X) is called equilibrium set if µA(x) =

0.5, ∀x ∈ X.

The following concept given is the one of α-cut of a fuzzy set, which is

well explained in [43]. An α-cut groups the elements of the universal set X

based on the membership degree to the fuzzy set.

Definition 1.17 Let X be a non-empty set, A ∈ FS(X), and α ∈ [0, 1].

The α-cut and strong α-cut of A are the crisp sets Aα and Aα, respectively,

given by

Aα = {x ∈ X|µA(x) ≥ α},

Aα = {x ∈ X|µA(x) > α}.
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Next example shows the meaning of α-cut.

Example 1.18 Given the fuzzy set A ∈ FS([0, 4]),

µA(x) =


x− 1, if x ∈ [1, 2],

3− x, if x ∈ (2, 3],

0, in other case,

the α-cut and strong α-cut of A for α = 0.4 are given, respectively, as

A0.4 = {x ∈ [0, 4]|µA(x) ≥ 0.4} = [1.4, 2.6],

A0.4 = {x ∈ [0, 4]|µA(x) > 0.4} = (1.4, 2.6).

The graphical representation of the 0.4-cut is shown in Figure 1.4.

Figure 1.4: Graphical representation of the α-cut of A for α = 0.4 (red

interval).
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In the next proposition, several properties satisfied by α-cuts and strong

α-cuts are given. Most of the proofs are straightforward, although they can

be found in [43].

Proposition 1.19 Let X be a non-empty set, A ∈ FS(X), and α, β ∈
[0, 1]. Then,

(i) A0 = X,

(ii) Aα ⊆ Aα,

(iii) if α < β, then Aβ ⊆ Aα and Aβ ⊆ Aα,

(iv) (Ac)α = (A1−α)c.

Finally, an ordering between fuzzy sets is also necessary, and the one

selected in this work is given next, which can be found as the most gen-

eralized order for this type of sets, due to it simple and straightforward

definition.

Definition 1.20 Let A,B ∈ FS(X), and µA and µB their membership

functions, respectively. ≤F is a partial ordering relation for fuzzy sets, given

by

A ≤F B ⇔ µA(x) ≤ µB(x), ∀x ∈ X.

These four concepts are widely used, and part of the basis of the con-

cepts explained in the remainder of this section.

1.1.2 t-norms and t-conorms

Two classical operations between sets are their intersection and union. In

fuzzy logic, these concepts are defined as triangular norms and triangular

conorms. The usual abbreviations are t-norm and t-conorm, respectively.
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All the definitions and results given in this subsection are well known

and has been widely used and studied. Therefore, they can be found in

several books and papers related to fuzzy theory. A good source is [42].

First of all, let us start by giving the definition of triangular norm (t-

norm from here on out). This concept is associated to the one of intersection.

Definition 1.21 A function T : [0, 1] × [0, 1] → [0, 1] is a t-norm if it

satisfies, ∀x, y, z ∈ [0, 1],

T1 Commutativity: T (x, y) = T (y, x),

T2 Associativity: T (x, T (y, z)) = T (T (x, y), z),

T3 Monotonicity: T (x, y) ≤ T (x, z), whenever y ≤ z,

T4 Neutral element: T (x, 1) = x.

On the other hand, a triangular conorm (t-conorm from here on out)

is associated to the concept of union.

Definition 1.22 A function S : [0, 1] × [0, 1] → [0, 1] is a t-conorm if it

satisfies, ∀x, y, z ∈ [0, 1],

S1 Commutativity: S(x, y) = S(y, x),

S2 Associativity: S(x, S(y, z)) = S(S(x, y), z),

S3 Monotonicity: S(x, y) ≤ S(x, z), whenever y ≤ z,

S4 Neutral element: S(x, 0) = x.

Obviously, there exists a way to relate these two concepts through the

duality.
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Definition 1.23 Let N be a strong negation, let T and S be a t-norm and

t-conorm, respectively. Then,

• S is the dual t-conorm of T when

S(x, y) = N(T (N(x), N(y))),

• T is the dual t-norm of S when

T (x, y) = N(S(N(x), N(y))).

Note that T and S are duals if one of the two expressions above holds,

since both of them are equivalent.

Remark 1.24 The previous definition of duality is usually applied with the

standard negation N(a) = 1 − a. In this work, when talking about duality,

the standard negation is considered, unless otherwise noted.

The next two definitions provide us with a way to relate two t-norms

(or t-conorms) with an order relation.

Definition 1.25 Let T1, T2 be two t-norms (respectively t-conorms). T1 is

said to be lower than or equal to T2, and it is denoted by T1 ≤ T2, if and

only if ∀x, y ∈ [0, 1], T1(x, y) ≤ T2(x, y).

Definition 1.26 Let T1, T2 be two t-norms (respectively t-conorms). T1 is

said to be strictly lower than T2, and it is denoted by T1 < T2, if and only

if T1 ≤ T2 and ∃x0, y0 ∈ [0, 1] such that T1(x0, y0) < T2(x0, y0).

In the following example, four pairs of dual t-norms and t-conorms are

given, which are the most usual ones in the literature (see [43]).

Example 1.27 The following pairs of t-norm and t-conorm are duals:
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Maximum-minimum:

{
TM(x, y) = min(x, y),

SM(x, y) = max(x, y).

Product:

{
TP (x, y) = xy,

SP (x, y) = x+ y − xy.

Lukasiewicz:

{
TL(x, y) = max(x+ y − 1, 0),

SL(x, y) = min(x+ y, 1).

Drastic product:


TD(x, y) =

{
min(x, y), if x = 1 or y = 1,

0, in other case,

SD(x, y) =

{
max(x, y), if x = 0 or y = 0,

1, in other case.

The 3D graphical representation of these four t-norms and t-conorms

are shown in Figures 1.5 and 1.6, respectively.

These t-norms and t-conorms are related by the order previously given.

Definition 1.28 Given the dual pairs (TM , SM), (TP , SP ), (TL, SL) and

(TD, SD), then

TD < TL < TP < TM ,

SM < SP < SL < SD.

In addition, let T and S be any t-norm and t-conorm, respectively. Then,

TD ≤ T ≤ TM ,

SM ≤ S ≤ SD.

Although t-norms and t-conorms are binary operations, the aforemen-

tioned examples have been generalized in order to obtain their n-ary exten-

sions (see [42]).
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Figure 1.5: 3D graphical representation of t-norms TM , TP , TL and TD.

Example 1.29 The n-ary extensions of the dual pairs (TM , SM), (TP , SP ),

(TL, SL) and (TD, SD) are given by:

Maximum-minimum:

{
TM(x1, . . . , xn) = min(x1, . . . , xn),

SM(x1, . . . , xn) = max(x1, . . . , xn),

Product:


TP (x1, . . . , xn) =

n∏
i=1

xi,

SP (x1, . . . , xn) = 1−
n∏
i=1

(1− xi),

Lukasiwicz:


TL(x1, . . . , xn) = max(

n∑
i=1

xi − (n− 1), 0),

SL(x1, . . . , xn) = min(
n∑
i=1

xi, 1),
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Figure 1.6: 3D graphical representation of t-conorms SM , SP , SL and SD.

Drastic product:


TD(x1, . . . , xn) =

{
xi, if xj = 1 ∀j 6= i,

0, in other case,

SD(x1, . . . , xn) =

{
xi, if xj = 0 ∀j 6= i,

1, in other case.

In addition to these four pairs of t-norms and t-conorms, there are

families of t-norms and t-conorms. These families depend on parameters,

and the previously defined pairs are usually obtainable. In the following

definitions, Frank and Sugeno-Weber t-norm families are given, although

others such as Yager t-norm family (see [81]) and Dombi t-norm family (see

[29]) are also well-known ones.
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Definition 1.30 ([34]) Frank t-norms and t-conorms are defined, ∀λ ∈
[0,∞], as follows

T Fλ (x, y) =


TM(x, y), if λ = 0,

TP (x, y), if λ = 1,

TL(x, y), if λ =∞,
logλ(1 + (λx−1)(λy−1)

λ−1 ), in other case.

SFλ (x, y) =


SM(x, y), if λ = 0,

SP (x, y), if λ = 1,

SL(x, y), if λ =∞,
1− logλ(1 + (λ1−x−1)(λ1−y−1)

λ−1 ), in other case.

Remark 1.31 ∀λ1 < λ2,

T Fλ1(x, y) > T Fλ2(x, y),

SFλ1(x, y) < SFλ2(x, y).

Definition 1.32 ([69, 77]) Sugeno-Weber t-norms and t-conorms are de-

fined, ∀λ ∈ [−1,∞], as follows

T SWλ (x, y) =


TD(x, y), if λ = −1,

TP (x, y), if λ =∞,
max(x+y−1+λxy

1+λ
, 0), in other case.

SSWλ (x, y) =


SP (x, y), if λ = −1,

SD(x, y), if λ =∞,
min(x+ y + λxy, 1), in other case.
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Remark 1.33 • ∀λ1 < λ2,

T SWλ1 (x, y) < T SWλ2 (x, y),

SSWλ1 (x, y) < SSWλ2 (x, y).

• T SWλ and SSWµ are dual if µ = − λ
1+λ

.

• (T SW−1 , S
SW
∞ ) and (T SW∞ , SSW−1 ) are also duals.

The definitions of t-norm and t-conorm are a cornerstone of this work,

as they are generalized to the sets of study (hesitant logic) in order to model

intersection and union for them.

1.1.3 Relations

The concept of relation is widely used in many areas of mathematics, where

ordering and equivalence relations are, obviously, repeatedly used. Such

relations are deeply studied in crisp theory due to their good properties and

utility. As a consequence, the concept of relation has been generalized to

the fuzzy logic as well. A good reference is [43] for detailed information

about fuzzy relations.

Definition 1.34 Let X1, . . . , Xn be n non-empty sets. A fuzzy relation

R on X1, . . . , Xn is a fuzzy set in the cartesian product X1 × · · · × Xn.

R(x1, . . . , xn) is the membership degree of the element (x1, . . . , xn) ∈
n∏
i=1

Xi

to R, which represents the strength of the relation between such elements.

Remark 1.35 FR(X1, . . . , Xn) denotes the set of all fuzzy relations in

X1, . . . , Xn.
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However, the most usual situation arises for two sets X and Y , i.e.,

binary relations.

Definition 1.36 Let X and Y be two non-empty sets. A fuzzy relation R

on X and Y is a fuzzy set in X×Y . R(x, y) is the membership degree of the

element (x, y) ∈ X × Y to R, which represents the strength of the relation

between x and y.

Remark 1.37 FR(X, Y ) denotes the set of all fuzzy relations in X and Y .

Example 1.38 Consider X = {x1, x2, x3} and Y = {y1, y2, y3}. The rela-

tion R ∈ FR(X, Y ) is defined by a matrix:

R =


0.8 0.4 0.6

0.8 1 0.1

0 0.1 0.2

 ,
where R(i, j) is the membership degree of the elements xi and yj to the

relation, i.e., the strength of the relation between both elements.

Furthermore, whenX = Y , a special case arises. The set of binary fuzzy

relations where both sets match are denoted by FR(X,X) = FR(X2).

1.1.4 Entropy and dissimilarity measures

A whole chapter in this memory is devoted to the study of entropy and

dissimilarity measures in the hesitant fuzzy logic. As a consequence, the

basic definitions for fuzzy sets must be explained for a better understanding

of the research.

The aim of an entropy is to quantify the uncertainty associated with

either a fuzzy set or a generalization of it. In the next result, the definition of
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entropy for fuzzy sets is given. The definitions of entropy and dissimilarity

measure in the classical fuzzy sets are well known and can be found in

several sources, such as [31].

Definition 1.39 Consider A,B ∈ FS(X). A mapping E : FS(X)→ [0, 1]

is an entropy measure if it satisfies the following properties:

1. E(A) = 0⇔ A is crisp,

2. E(A) = 1⇔ A is the equilibrium set,

3. E(A) = E(Ac),

4. E(A) ≤ E(B) if |µA(x)− µξ(x)| ≥ |µB(x)− µξ(x)|, ∀x ∈ X.

Dissimilarity measures are being widely used in different fields. The

usual definition in a fuzzy environment is given as follows.

Definition 1.40 Consider A,B,C ∈ FS(X). A mapping D : FS(X) ×
FS(X) → [0, 1] is a dissimilarity measure if it satisfies the following prop-

erties:

1. D(A,B) = D(B,A),

2. D(A,A) = 0,

3. if A ≤ B ≤ C, then D(A,B) ≤ D(A,C) and D(B,C) ≤ D(A,C).

Some authors replace condition (2) by

2. D(A,B) = 0⇔ A = B.

Some others consider a particular case of these dissimilarity measures, the

ones obtained by considering the idea of restricted dissimilarity function

given by Bustince et al. (see [17, 18]), that is, fulfilling the condition:
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4. D(A,Ac) = 1 ⇔ A is a crisp set.

We will work only with restricted dissimilarities from now on.

Another important concept related to dissimilarity and entropy mea-

sures is the similarity measure. However, from a dissimilarity measure, a

similarity measure is easily obtainable by S(A,B) = h(D(A,B)), with h

monotone decreasing such that h(1) = 0 and h(0) = 1 (that is, for any

negation). For this reason, it is enough to study just one of the two mea-

sures.

1.1.5 Cardinality

The capability to count elements in a set is straightforward when working

with crisp sets. However, this task is harder to carry out when we are

dealing with another types of sets, such as fuzzy sets.

For this reason, several authors have developed different ways to mea-

sure the cardinality of this type of sets. Some proposals for fuzzy sets have

been tried, such as σ-count, given by De Luca and Termini (see [25]).

Definition 1.41 Consider X = {x1, . . . , xN} and A ∈ FS(X). The σ-

count cardinality of A is given by

|A|σ =
N∑
i=1

µA(xi).

However, this cardinality is hard to read, as most of the time the ob-

tained value will be a non integer number.

One of the most important attempts to achieve the cardinality of fuzzy

sets has been given by Ralescu (see [61]), where he proposes a non fuzzy

cardinality for this type of sets.
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Definition 1.42 Consider X = {x1, . . . , xN} and A ∈ FS(X) where µA

is its membership function. The values µA(x1), . . . , µA(xN) are ordered de-

creasingly, where µ(i) denotes the i-th largest value, such that

1 = µ(0) ≥ µ(1) ≥ · · · ≥ µ(N) ≥ µ(N+1) = 0.

Then, the non-fuzzy cardinality is defined by

|A|R =


0, if A = ∅,
j, if A 6= ∅ and µ(j) ≥ 0.5,

j − 1, if A 6= ∅ and µ(j) < 0.5.

where

j = max{1 ≤ t ≤ N |µ(t−1) + µ(t) > 1}.

In the same work, Ralescu proves the next result that will be useful in

our paper.

Proposition 1.43 Consider X = {x1, . . . , xN} and A,B ∈ FS(X). Then,

|A ∪B|R = |A|R + |B|R − |A ∩B|R.

This cardinality has been applied in different works, such as in [60],

where an approach to protect the privacy of microdata using fuzzy partitions

is developed.

Another remarkable definition of cardinality for fuzzy sets has been

given by Wygralak (see [78]), where instead of giving a fixed function as

Ralescu did, he proposed an axiomatic definition of cardinality. But before

the definition, it is necessary to define an special fuzzy set (see [27]).

Definition 1.44 Let X be a non-empty set, a ∈ [0, 1] and x ∈ X. The set

a/x ∈ FS(X) is given by the membership function µa/x where µa/x(x) = a

and µa/x(y) = 0, ∀y 6= x.
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Definition 1.45 Consider X = {x1, . . . , xN}. The mapping |·| : FS(X)→
[0,∞) is a scalar cardinality measure for fuzzy sets if it satisfies the following

properties, for all A,B ∈ FS(X) , x, y ∈ X and a, b ∈ [0, 1]:

1. |1/x| = 1 (coincidence),

2. a ≤ b⇒ |a/x| ≤ |b/y| (monotonicity),

3. |A ∪B| = |A|+ |B| if A ∩B = ∅ (additivity).

In the next result we have proven that Ralescu non-fuzzy cardinality is

a Wygralak scalar cardinality.

Proposition 1.46 The non-fuzzy cardinality | · |R is a scalar cardinality for

fuzzy sets.

Proof. The three axioms in Definition 1.45 must be proven:

1. Given 1/x ∈ FS(X), it is obvious that 1 = µ(1) > µ(2) = · · · = µ(N) =

0. Therefore, j = max{1 ≤ t ≤ N |µ(t−1) + µ(t) > 1} = 1, and as

µ(1) = 1 ≥ 0.5, |1/x|R = 1.

2. Consider a ≤ b and the sets a/x, b/y ∈ FS(X). Let µa/x(z) be the

membership degrees associated to the set a/x, for every z ∈ X. By

definition, these membership degrees are ordered decreasingly as fol-

lows

a > 0 = · · · = 0.

In the same way, for the set b/y this order is given as

b > 0 = · · · = 0.

However, by hypothesis a ≤ b, and therefore, it is obvious that |a/x|R ≤
|b/y|R.
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3. Given A,B ∈ FS(X), by Proposition 1.43, |A∪B|R = |A|R + |B|R −
|A∩B|R. However, as A∩B = ∅, by definition of non-fuzzy cardinality,

|A ∩B|R = 0. Hence, |A ∪B|R = |A|R + |B|R.

The three axioms have been proven, and as a result, the proposition. �

Another definitions of cardinality for fuzzy sets have been developed.

However, the ones given in this subsection are the ones that will be impor-

tant in the developments given in this work, as they fit the necessities of

our research.

1.1.6 Partitions

In this subsection, a brief explanation of the basic definitions given by

Montes et al. in [51] are provided, as they will be extended to the hesi-

tant fuzzy logic in the forthcoming chapters of this memory.

First of all, the classical definition of crisp partition must be given.

Definition 1.47 The family Π = {Ai|i ∈ I} of crisp sets, where I is a

finite subset of N, is a partition of A if and only if

1. Ai 6= ∅, ∀i ∈ I,

2.
⋃
i∈I

Ai = A,

3. Ai ∩ Aj = ∅, ∀i 6= j.

The first definition of fuzzy partition was given by Ruspini in 1969 (see

[65]), which will be the one used in the last chapter of applications in this

memory, in the privacy of microdata section.
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Definition 1.48 Let X be a non-empty set and A ∈ FS(X). The family

Π = {Ai ∈ FS(X)|i ∈ I} where I is a finite subset of N, is a Ruspini

partition if and only if∑
i∈I

Ai(x) = A(x), ∀x ∈ X.

This is the most remarkable definition of fuzzy partition, although dif-

ferent approaches has been developed by several authors. Bezdek et al. (see

[10]), Dumitrescu (see [32]) or Ovchinnikov (see [53]) gave their definition of

fuzzy partition using t-norms and t-conorms. Markechová (see [48]) relates

it to soft fuzzy σ-algebras. De Baets and Mesiar (see [24]) give the concept

of T-partition in order to establish a correspondence between fuzzy parti-

tions and fuzzy equivalence relations, or an adaptation of their definition

given by Chakraborty and Das (see [19]), among others.

However, the definition of fuzzy partition we have focused on is the one

of δ-ε-partition given by Montes et al. in [51].

Definition 1.49 Let X be a non-empty set and A ∈ FS(X). The family

Π = {Ai ∈ FS(X)|i ∈ I} where I is a finite subset of N, is a δ-ε-partition

with 0 ≤ ε < δ ≤ 1 if and only if

1. ( S
i∈I

(Ai))α = Aα,

2. T (Ai, Aj)α = ∅, ∀i 6= j,

where Aα is the α cut for all α ∈ (ε, δ), and T and S are a t-norm and a

t-conorm respectively.

From this definition, an important characterization was given by the

same authors in order to obtain a δ-ε-partition with other properties, that

in some situations, could be easier to prove or to obtain.
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Theorem 1.50 Let X be a non-empty set and A ∈ FS(X). The family

Π = {Ai ∈ FS(X)|i ∈ I} where I is a finite subset of N, is a δ-ε-partition

with 0 ≤ ε < δ ≤ 1 if and only if, ∀x ∈ X:

1′.


S
i∈I

(Ai)(x) ≥ δ, if µA(x) ≥ δ,

S
i∈I

(Ai)(x) = µA(x), if µA(x) > ε and µA(x) < δ,

S
i∈I

(Ai)(x) ≤ ε, if µA(x) ≤ ε,

2′. T (Ai, Aj)(x) ≤ ε, ∀i 6= j,

where T and S are a t-norm and a t-conorm respectively.

Another definition of fuzzy partition, ε-ε-partition, closely related to

δ-ε-partition is given as follows:

Definition 1.51 Let X be a non-empty set and A ∈ FS(X). The family

Π = {Ai ∈ FS(X)|i ∈ I} where I is a finite subset of N , is a ε-ε-partition

with ε ∈ [0, 1] if and only if

1.

 Aε ⊆ ( S
i∈I

(Ai))ε,

( S
i∈I

(Ai))ε ⊆ Aε,

2. T (Ai, Aj)ε = ∅, ∀i 6= j,

where T and S are a t-norm and a t-conorm respectively.

Finally, a theorem including both definitions of δ-ε-partition and ε-ε-

partition is given next.

Theorem 1.52 Let X be a non-empty set, A ∈ FS(X), and the family

Π = {Ai ∈ FS(X)|i ∈ I} where I is a finite subset of N a δ-ε-partition

with 0 ≤ ε ≤ δ ≤ 1. Then Π is a δ′-ε′-partition ∀ε′, δ′ ∈ [0, 1] such that

ε ≤ ε′ ≤ δ′ ≤ δ.
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All the results given in this subsection are generalized to interval-valued

hesitant fuzzy sets in the forthcoming chapters of this memory. Therefore,

definitions of partitions for this type of sets will be provided as a general-

ization of the aforementioned ones.

In this previous section the basic concepts about fuzzy sets that will be

necessary in the forthcoming chapters of this memory are provided. In an

analogous structure, next section is devoted to explain these concepts for

interval-valued fuzzy sets.
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1.2 Interval-valued fuzzy sets

Besides fuzzy sets, interval-valued fuzzy sets have been widely used since

its first definition by Sambuc in 1975 (see [67]). The capability to deal

with uncertainty is the main characteristic that makes them so useful in

certain fields, such as medicine (see [1]), decision making (see [22]) or image

processing (see [5]). More concretely, this kind of construction methods are

often applied to the detection of edges in grey scale images, which has its

most important application in the medical field (see [64]) and other branches

of science (see [15]).

As in the previous section, this one is split into several subsections in

order to organize every necessary concept related to interval-valued fuzzy

sets.

1.2.1 Basic operators

Negation, complement and α-cut are also defined for interval-valued fuzzy

sets as well as orders for interval-valued fuzzy sets. These definitions can

be found in sources such as [5, 6, 11, 57].

In this case, for the definition of interval-valued fuzzy negation, an

ordering for this type of sets is necessary as well as an ordering of intervals

in L([0, 1]).

Definition 1.53 Let a, b ∈ L([0, 1]), such that a = [aL, aU ] and b = [bL, bU ].

≤I is a partial ordering relation for L([0, 1]) defined by:

a ≤I b⇔ aL ≤ bL and aU ≤ bU .
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It must be noted that in this work, another ordering relation for in-

tervals in L([0, 1]) is used in the forthcoming chapters, developed by Xu

and Yager (see [80]), as a total ordering relation is necessary in certain

situations.

Definition 1.54 Let a, b ∈ L([0, 1]), and the functions score and accuracy

Sc(a) = aU − aL and H(a) = aL + aU respectively. Then, the total ordering

relation ≤XY is defined as follows:

a ≤XY b⇐⇒


H(a) < H(b),

or

H(a) = H(b) and Sc(a) < Sc(b).

The selected ordering relation for interval-valued fuzzy sets is given

next, which is well known and can be found in several sources such as

[9, 55].

Definition 1.55 Let A,B ∈ IV FS(X), and µA and µB their membership

functions, respectively. ≤IV is a partial ordering relation for interval-valued

fuzzy sets defined by:

A ≤IV B ⇔ µA(x) ≤I µB(x), ∀x ∈ X,

With this prior order for interval-valued fuzzy sets, the definition of

interval-valued fuzzy negation is given next as in [5].

Definition 1.56 Let NIV : L([0, 1])→ L([0, 1]) be a function. Then,

• NIV is an interval-valued fuzzy negation if it satisfies

1. NIV ([0, 0]) = [1, 1] and N([1, 1]) = [0, 0],

2. a ≤I b ⇒ NIV (b) ≤I NIV (a), ∀a, b ∈ L([0, 1]).
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• NIV is a strict interval-valued fuzzy negation if it is an interval-valued

fuzzy negation and satisfies

3. NIV is continuous,

4. a <I b ⇒ NIV (b) <I NIV (a), ∀a, b ∈ L([0, 1]).

• NIV is a strong interval-valued fuzzy negation if it is an interval-valued

fuzzy negation and involutive, i.e.,

5. NIV (NIV (a)) = a, ∀a ∈ L([0, 1]).

An important result relating fuzzy negations and interval-valued fuzzy

negations is given by Deschrijver in [26].

Theorem 1.57 Let NIV : L([0, 1]) → L([0, 1]). Then, NIV is a strong

interval-valued fuzzy negation if and only if there exists a strong fuzzy nega-

tion N : [0, 1]→ [0, 1] such that

NIV ([aL, aU ]) = [N(aU), N(aL)].

Example 1.58 Given the standard fuzzy negation N(a) = 1 − a, which is

a strong fuzzy negation, applying the previous theorem, the mapping NIV :

L([0, 1])→ L([0, 1]) given by

NIV ([aL, aU ]) = [N(aU), N(aL)] = [1− aU , 1− aL],

is a strong interval-valued fuzzy negation. This negation is the standard

interval-valued fuzzy negation.

As it happens with fuzzy negations, the concept of interval-valued fuzzy

negation is also connected to the definition of complement of interval-valued

fuzzy sets (see [5]).
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Definition 1.59 Let X be a non-empty set, and A ∈ IV FS(X), then given

an interval-valued fuzzy negation NIV , the complement of A is denoted by

ANIV ∈ IV FS(X) and it is defined by µANIV (x) = NIV (µA(x)).

Remark 1.60 In this work, the complement obtained by the standard inter-

val-valued fuzzy negation is used, unless otherwise noted. This complement

is denoted by Ac, and given ∀x ∈ X by

µAc(x) = [1− µUA(x), 1− µLA(x)],

where µA(x) = [µLA(x), µUA(x)].

The following particular interval-valued fuzzy set is important in the

forthcoming research.

Definition 1.61 The set A ∈ IV FS(X) such that µA(x) = [0, 1], ∀x ∈ X
is called the pure interval-valued fuzzy set.

Taking into account the mathematical duality between both concepts

(see [73]), the concept of pure interval-valued fuzzy set is obtained directly

from the one of pure Atanassov intuitionistic fuzzy set introduced in [54].

The notion of α-cut is also applicable to interval-valued fuzzy sets. A

detailed explanation is given in [36].

Definition 1.62 Let X be a non-empty set, A ∈ IV FS(X), and α ∈
L([0, 1]). The α-cut and strong α-cut of A are the crisp sets Aα and Aα,

respectively, given by

Aα = {x ∈ X|µA(x) ≥ α},

Aα = {x ∈ X|µA(x) > α},

where ≤ represents any ordering relation for L([0, 1]) (such as the one given

in Definition 1.53).
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Example 1.63 Consider A ∈ IV FS([0, 4]) such that

µLA(x) =


x− 1, if x ∈ [1, 2],

3− x, if x ∈ (2, 3],

0, in other case,

and

µUA(x) =


x
2
, if x ∈ [0, 2],

2− x
2
, if x ∈ (2, 4],

0, in other case,

selecting the ordering relation for L([0, 1]) ≤I (Definition 1.53), the α-cut

and strong α-cut of A for α = [0.4, 0.5] are given, respectively, as

A[0.4,0.5] = {x ∈ [0, 4]|µA(x) ≥I [0.4, 0.5]} =

= {x ∈ [0, 4]|µLA(x) ≥ 0.4 and µUA(x) ≥ 0.5} =

= [1.4, 2.6] ∩ [1, 3] = [1.4, 2.6],

A[0.4,0.5] = {x ∈ [0, 4]|µA(x) >I [0.4, 0.5]} =

= {x ∈ [0, 4]|µLA(x) > 0.4 and µUA(x) > 0.5} =

= (1.4, 2.6) ∩ (1, 3) = (1.4, 2.6).

The graphical representation of the [0.4, 0.5]-cut is shown in Figure 1.7.

Analogously to fuzzy α-cuts, some properties satisfied by α-cuts and

strong α-cuts are also satisfied for interval-valued fuzzy sets, whose proofs

are straightforward from the ones given by [43] for fuzzy sets.

Proposition 1.64 Let X be a non-empty set, A ∈ IV FS(X), and α, β ∈
L([0, 1]). Given the ordering relation ≤I for L([0, 1]), then,

(i) A0 = X,
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Figure 1.7: Graphical representation of the α-cut of A for α = [0.4, 0.5] (red

interval).

(ii) Aα ⊆ Aα,

(iii) if α <I β, then Aβ ⊆ Aα and Aβ ⊆ Aα.

Next subsection is focused on the concepts of t-norm and t-conorm,

which are of great importance in the study of interval-valued fuzzy sets,

and are widely used in this work.

1.2.2 t-norms and t-conorms

The concepts of t-norm and t-conorm for interval-valued fuzzy sets are as

valuable as they are in the fuzzy logic, as they make it possible to model

intersection and union in this sets as well. These definitions can be found

in papers such as [27].



1.2. Interval-valued fuzzy sets 35

Definition 1.65 A function T : L([0, 1]) × L([0, 1]) → L([0, 1]) is an

interval-valued fuzzy t-norm if it satisfies, ∀x, y, z ∈ L([0, 1]),

T1 Commutativity: T (x, y) = T (y, x),

T2 Associativity: T (x, T (y, z)) = T (T (x, y), z),

T3 Monotonicity: T (x, y) ≤ T (x, z), whenever y ≤ z (where ≤ represents

any ordering relation for L([0, 1])),

T4 Neutral element: T (x, [1, 1]) = x.

Definition 1.66 A function S : L([0, 1])×L([0, 1])→ L([0, 1]) is an interval-

valued fuzzy t-conorm if it satisfies, ∀x, y, z ∈ L([0, 1]),

S1 Commutativity: S(x, y) = S(y, x),

S2 Associativity: S(x, S(y, z)) = S(S(x, y), z),

S3 Monotonicity: S(x, y) ≤ S(x, z), whenever y ≤ z (where ≤ represents

any ordering relation for L([0, 1])),

S4 Neutral element: S(x, [0, 0]) = x.

There also exists a way to relate these two concepts for interval-valued

fuzzy sets through the duality.

Definition 1.67 Let NIV be a strong negation, let T and S be a t-norm

and t-conorm for interval-valued fuzzy sets, respectively. Then,

• S is the dual t-conorm of T when

S(x, y) = NIV (T (NIV (x), NIV (y))),
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• T is the dual t-norm of S when

T (x, y) = NIV (S(NIV (x), NIV (y))).

It must be noted that T and S are duals if one of the two expressions

above holds, since both of them are equivalent.

Remark 1.68 The previous definition of duality is usually applied with the

standard interval-valued fuzzy negation NIV ([aL, aU ]) = [1− aU , 1− aL]. In

this work, when talking about duality, the standard negation is considered,

unless otherwise noted.

In the next result, a way to obtain interval-valued fuzzy t-norms (and

t-conorms) from fuzzy t-norms (and t-conorms) is defined.

Definition 1.69 Let T1 and T2 be two t-norms, and let S1 and S2 be two

t-norms for fuzzy sets, such that T1 ≤ T2 and S1 ≤ S2. Then, the mappings

TT1,T2 , SS1,S2 : L([0, 1]) × L([0, 1]) → L([0, 1]), defined as follows ∀x, y ∈
L([0, 1]),

TT1,T2(x, y) = [T1(x
L, yL), T2(x

U , yU)],

SS1,S2(x, y) = [S1(x
L, yL), S2(x

U , yU)],

are an interval-valued fuzzy t-norm and t-conorm, and are denoted as t-

representable t-norm and t-conorm, respectively.

This definition enables us to obtain different t-norms and t-conorms for

interval-valued fuzzy sets using the known ones for fuzzy sets given in the

previous section.
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Example 1.70 Consider T1 = TP , T2 = TM , S1 = SM and S2 = SP . They

satisfy T1 < T2 and S1 < S2. Then, applying the previous definition,

TT1,T2(x, y) = [T1(x
L, yL), T2(x

U , yU)] = [xLyL,min(xU , yU)],

SS1,S2(x, y) = [S1(x
L, yL), S2(x

U , yU)] = [max(xL, yL), xU + yU − xUyU ],

TT1,T2 and SS1,S2 are the t-representable t-norm and t-conorm obtained with

TP , TM , SM and SP .

However, there are t-norms and t-conorms that are not t-representable,

such as the ones given in the next example.

Example 1.71 The next pairs of interval-valued fuzzy t-norms and t-co-

norms, are dual and non t-representable, given x, y ∈ L([0, 1]){
T (x, y) = [max(0, xL + yL − (1− xU)(1− yU)− 1),max(0, xU + yU − 1)],

S(x, y) = [min(1, xL + yL),min(1, xU + yU + xLyL)],{
T (x, y) = [max(0,min(xL + yU − 1, yL + xU − 1)),max(0, xU + yU − 1)],

S(x, y) = [min(1, xL + yL),min(1,max(yU + xL, xU + yL))],
T (x, y) = [max(0, xL + yL − 1),

max(0, yU − 2(1− xL), xU − 2(1− yL), xL + yL − 1)],

S(x, y) = [min(1, yL + 2xU , xL + 2yU , xU + yU),min(1, xU + yU)].

As it has been stated in the definitions for fuzzy sets, t-norms and t-

conorms are also of great importance in the study of interval-valued fuzzy

sets.

1.2.3 Relations

The extension to relations can be applied to interval-valued fuzzy sets in

the same way as it has been done for fuzzy sets. These concepts are used

and applied in different papers such as [3, 58].
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Definition 1.72 Let X1, . . . , Xn be n non-empty sets. An interval-valued

fuzzy relation R on X1, . . . , Xn is an interval-valued fuzzy set in the carte-

sian product X1 × · · · ×Xn.

Remark 1.73 IV FR(X1, . . . , Xn) denotes the set of all interval-valued fuzzy

relations in X1, . . . , Xn.

As it has been stated in the fuzzy relations subsection, the most usual

situation arises again for two sets X and Y , i.e., binary relations.

Definition 1.74 Let X and Y be two non-empty sets. An interval-valued

fuzzy relation R on X and Y is a fuzzy set in X × Y .

Remark 1.75 IV FR(X, Y ) denotes the set of all interval-valued fuzzy re-

lations in X and Y . If X = Y , it is denoted by IV FR(X,X) = IV FR(X2)

A brief illustrative example is shown next.

Example 1.76 Let X = {x1, x2} and Y = {y1, y2, y3}. Given a relation

R ∈ IV FR(X, Y ), it is defined by the a matrix:

R =

[
[0.8, 1] [0.2, 0.4] [0.5, 0.6]

[0, 0.3] [0.5, 0.6] [0.8, 0.8]

]
,

where R(i, j) is the membership degree of the elements xi and yj to the

relation, i.e., the strength of the relation between both elements.

The extension from sets to relations is valuable when working in certain

fields, such as image processing (see [58]), where data is given in a matrix

structure.
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1.2.4 Entropy and dissimilarity measures

The definitions of entropy and dissimilarity measures have been adapted

to interval-valued fuzzy sets. In [54], the authors adapt the concept of

entropy to Atanassov’s intuitionistic fuzzy sets. This entropy is split into

two functions, EF and EL, representing each one a different meaning of

entropy. The former describes the fuzziness of the set, i.e., it measures how

similar it is to a crisp set. The latter function outlines the lack of knowledge,

which shows the similarity with a fuzzy set.

Next definition provides the same concepts for interval-valued fuzzy

sets based on the fact that Atanassov’s intuitionistic fuzzy sets and interval-

valued fuzzy sets are mathematically equivalent (see [73]), so results given

for one of them can be translated to the other.

Definition 1.77 Let EF , EL : IV FS(X) → [0, 1] be two mappings. The

pair (EF , EL) is said to be a two-tuple entropy measure if EF satisfies the

following properties, where A,B ∈ IV FS(X):

1. EF (A) = 0⇔ A is crisp or it is the pure interval-valued fuzzy set,

2. EF (A) = 1⇔ A is the equilibrium set,

3. EF (A) = EF (Ac),

4. EF (A) ≤ EF (B) if ∀x ∈ X

µA(x) ≤I µB(x) ≤I µξ(x) for µLB(x) + µUB(x) ≤ 1 or

µξ(x) ≤I µB(x) ≤I µA(x) for µLB(x) + µUB(x) ≥ 1,

and EL satisfies the following properties, where A,B ∈ IV FS(X):

1. EL(A) = 0⇔ A ∈ FS(X),
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2. EL(A) = 1⇔ A is the pure interval-valued fuzzy set,

3. EL(A) = EL(Ac),

4. EL(A) ≤ EL(B) if µUA(x)− µLA(x) ≤ µUB(x)− µLB(x), ∀x ∈ X.

The concept of dissimilarity can be also generalized to interval-valued

fuzzy sets. This concept can be found in [50] for intuitionistic fuzzy sets,

which is adapted to interval-valued fuzzy sets as follows.

Definition 1.78 A mapping D : IV FS(X) × IV FS(X) → [0, 1] is a (re-

stricted) dissimilarity measure if it satisfies the following properties, where

A,B,C ∈ IV FS(X):

1. D(A,B) = D(B,A),

2. D(A,Ac) = 1⇔ A is crisp,

3. D(A,B) = 0⇔ A = B,

4. if A ≤ B ≤ C, then D(A,B) ≤ D(A,C) and D(B,C) ≤ D(A,C).

The approach of the previous definition of entropy is adapted to the

hesitant fuzzy logic in this work, where entropy is split into several mappings

representing different features of a set.

1.2.5 Cardinality

When it comes to interval-valued fuzzy cardinality, few studies have been

done around them. One of the most remarkable cardinalities is given as

a generalization of Wygralak’s scalar cardinality for fuzzy sets in [78], de-

veloped by Deschrijver and Král in [27]. As in the fuzzy case, an special

interval-valued fuzzy set is necessary beforehand (see [27]).
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Definition 1.79 Let X be a non-empty set, a ∈ L([0, 1]) and x ∈ X.

The set a/x ∈ IV FS(X) is given by the membership function µa/x where

µa/x(x) = a and µa/x(y) = 0, ∀y 6= x.

Definition 1.80 Consider X = {x1, . . . , xN}. The mapping |·| : IV FS(X)

→ L([0,∞)) is a scalar cardinality measure for interval-valued fuzzy sets if

it satisfies the following properties, for all A,B ∈ IV FS(X) , x, y ∈ X and

a, b ∈ L([0, 1]):

1. |[1, 1]/x| = [1, 1] (coincidence),

2. a ≤I b⇒ |a/x| ≤I |b/y| (monotonicity),

3. |A ∪B| = |A|+ |B| if A ∩B = ∅ (additivity).

In this work, we study the cardinality for hesitant fuzzy sets, and work

with a extension of Wygralak definition as well, although we have followed

a different path that the described by Deschrijver and Král in [27], as our

cardinality assigns a value in R+ for every set.

In this chapter, we have developed all the basic concepts about the

fuzzy logic necessary to carry out this work. It has been centered on fuzzy

sets and interval-valued fuzzy sets, which are the ones analyzed in depth

along this work.

Several concepts have been provided, from basic operators such as com-

plement and negation, to more specialized ones, such as t-norms and t-

conorms, entropies and dissimilarity measures.

From here on out, the memory is focused on the study of the hesitant

fuzzy logic, which is well explained in the next section.





Chapter 2

Basic Concepts: Hesitant

Fuzzy Logic

In the previous chapter, we have dealt with the basic concepts related to

fuzzy logic. As it has been stated in that chapter, this logic appeared as

a way to formalize certain concepts which the classical set theory can not

properly model.

Starting from the classical fuzzy sets developed by Zadeh in 1965 (see

[82]), a big problem arises: the possible uncertainty in the definition of

the membership functions. As a result, some extensions were provided by

different authors, such as interval-valued fuzzy sets (see [67]), Atanassov’s

intuitionistic fuzzy sets (see [3]) or type-2 fuzzy sets (see [83]).

Type-2 fuzzy sets represent the most general type of fuzzy sets, as it

was stated in Remark 1.11. However, the membership function of a type-2

fuzzy set assigns another fuzzy set to each element of the set, and as a

consequence, the use of these sets is not that convenient.

In order to obtain a generalization of fuzzy sets, interval-valued fuzzy

sets and Atanassov’s intuitionistic fuzzy sets, with a more manageable fuzzy

43
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sets than type-2 fuzzy sets, Torra introduced hesitant fuzzy sets in 2009 (see

[74, 75]) as an intermediate type of fuzzy sets. This type of sets assigns a

subset of the interval [0, 1] to each element instead of a fuzzy set. In fact,

Grattan-Guinness already introduced in 1976 this type of sets (see [38])

under the name of set-valued fuzzy sets. Nevertheless, unlike Grattan-

Guinness, Torra provided functional definitions of union and intersection

for them.

This type of sets presents good properties which make them suitable for

researching (see [7, 79]), and specially, in decision making (see [22, 46, 76]).

Several extensions of hesitant fuzzy sets have been defined lately (see [62]).

In our work, the choice has been the so called finite interval-valued hesitant

fuzzy sets, given for the first time by Pérez et al. in 2014 (see [56]), whose

membership function assigns a union of a finite number of disjoint closed

subintervals of [0, 1].

However, in this chapter, we will go through the hesitant fuzzy sets and

their different extensions which have been developed in the previous years,

although as it has been aforementioned, the one which we have selected to

our studies has been the finite interval-valued hesitant fuzzy sets.

Let P([0, 1]) denote the family of subsets of the closed interval [0, 1].

Firstly, the definition of a hesitant fuzzy set is given next (see [75]):

Definition 2.1 Let X be a non-empty set. A hesitant fuzzy set is defined

by its membership function

µA : X → P([0, 1]),

where ∀x ∈ X, µA(x) represents the membership degree of the element x to

the hesitant fuzzy set A.

Remark 2.2 HFS(X) denotes the set of all hesitant fuzzy sets in X.
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In a hesitant fuzzy set, the membership degree of an element to the

set is given by a subset of the closed interval [0, 1]. However, an obvious

restriction is developed, under the name of typical hesitant fuzzy sets (see

[7, 8]).

Definition 2.3 Let X be a non-empty set and H ⊂ P([0, 1]) the set of all

finite non-empty subsets of the interval [0, 1]. A typical hesitant fuzzy set is

defined by its membership function

µA : X → H,

where ∀x ∈ X, µA(x) represents the membership degree of the element x to

the typical hesitant fuzzy set A.

Remark 2.4 THFS(X) denotes the set of all typical hesitant fuzzy sets in

X.

The membership function of a typical hesitant fuzzy sets assigns to

each element of X a finite subset of the interval [0, 1]. However, another

type of sets has been recently developed by Pérez et al. (see [56]), the finite

interval-valued hesitant fuzzy sets, as a modification of the interval-valued

hesitant fuzzy sets given by Chen et al. (see [20]). Finite interval-valued

hesitant fuzzy sets replace finite subsets by subsets which are generated by

a union of a finite number of closed intervals.

Therefore, it is required to introduce the concept of finitely generated

set.

Definition 2.5 Let n ∈ N. The class of n-finitely generated sets in [0, 1] is

defined by:

FGn([0, 1]) = {I ⊆ [0, 1]|I =
n⋃
i=1

Ii with Ii ∩ Ij = ∅, Ii ∈ L([0, 1]), ∀i 6= j}.
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The class of finitely generated sets in [0, 1] is defined by:

FG([0, 1]) =
∞⋃
n=1

FGn([0, 1]).

Furthermore, a definition of complement for finitely generated sets is

introduced next, where as stated in Section 1, the standard negation is used.

Definition 2.6 Let I = I1∪· · ·∪In ∈ FG([0, 1]). Its complement is defined

as Ic = Ic1 ∪ · · · ∪ Icn, with Ici = [1−max(Ii), 1−min(Ii)], for i = 1, . . . , n.

After these prior concepts, the definition of a finite interval-valued hes-

itant fuzzy set is introduced as follows (see [56]).

Definition 2.7 Let X be a non-empty set. A finite interval-valued hesitant

fuzzy set is defined by its membership function

µA : X → FG([0, 1]),

where ∀x ∈ X, µA(x) represents the membership degree of the element x to

the finite interval-valued hesitant fuzzy set A.

Remark 2.8 IV HFS(X) denotes the set of all finite interval-valued hesi-

tant fuzzy sets in X.

From here on out, we will refer to finite interval-valued hesitant fuzzy

sets as just interval-valued hesitant fuzzy sets for simplicity.

For every interval-valued hesitant fuzzy set, and for each point x ∈ X,

the membership function belongs to FGnx([0, 1]) for some nx ∈ N, which

represents the number of closed subintervals that generates the finitely gen-

erated set. Obviously, in a interval-valued hesitant fuzzy set some of the

closed subintervals can be degenerated, i.e., singletons. If all the intervals

are degenerated, then we recover typical hesitant fuzzy sets.
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Example 2.9 Figure 2.1 shows the graphical representation of the interval-

valued hesitant fuzzy set A ∈ IV HFS([0, 4]). Its membership function for

each x ∈ [0, 4] is determined by the functions

fL(x) =


x− 1, if x ∈ [1, 2],

3− x, if x ∈ (2, 3],

0, in other case,

and

fU(x) =


x
2
, if x ∈ [0, 2],

2− x
2
, if x ∈ (2, 4],

0, in other case.

and the point calculated by the function

g(x) =

∣∣∣∣∣∣
√

1−
(
x− 2

2

)2

∣∣∣∣∣∣ .
For example, for x = 1, as fL(1) = 0, fU(1) = 0.5 and g(1) =

√
3
2

=

0.866, the membership function is given by µA(1) = [0, 0.5] ∪ 0.866.

As previously stated, one of the main interests of the interval-valued

hesitant fuzzy sets lies on the fact that they generalize fuzzy sets and

interval-valued fuzzy sets. The different relations are given in the next

remark.

Remark 2.10 The different types of sets previously introduced are related

as follows:

FS(X) ⊆ IV FS(X) ≡ AIFS(X) ⊆ IV HFS(X) ⊆ T2FS(X),

FS(X) ⊆ THFS(X) ⊆ IV HFS(X) ⊆ T2FS(X).



48 Chapter 2. Basic Concepts: Hesitant Fuzzy Logic

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure 2.1: Graphical representation of the fuzzy set A (fL in blue, fU in

red, g in black).

In the next chapter, we develop and prove several results around the

hesitant fuzzy logic, which are the cornerstone of this work. The different

applications shown in the subsequent chapters are based in these develop-

ments.



Chapter 3

Mathematical tools for

interval-valued hesitant fuzzy

sets

As it has been widely explained in Chapter 2, hesitant fuzzy logic is a

recent theory which is still being developed. Since the introduction in 2009

of hesitant fuzzy sets by Torra in [74, 75], different extensions has been

studied such as typical hesitant fuzzy sets (see [7, 8]) or interval-valued

hesitant fuzzy sets (see [56]).

The developments that have been done related to interval-valued hesi-

tant fuzzy sets are split into five sections. In the former, ordering relations

for finitely generated sets and interval-valued hesitant fuzzy sets are devel-

oped. In the second part, the definition of t-norm and t-conorm and some

examples are provided for this type of sets. In the third one, an axiomatic

definition of cardinality is given. The fourth one is focused on the study of

entropy. In the latter, some definitions of partitions are proposed.

49
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3.1 Ordering relations

Once the prior concepts about both fuzzy logic (Chapter 1) and hesitant

fuzzy logic (Chapter 2) have been introduced, the main goal of this memory

is started in this section. Different results related to ordering relations for

finitely generated sets are proposed. They will be the basis of the studies in

the following sections, where further properties for interval-valued hesitant

fuzzy sets are introduced and proven.

As it has been defined in Chapter 2, the membership function of an

interval-valued hesitant fuzzy set assigns a finitely generated set to each

element. As a result, it is of great importance to analyze this type of sets

in order to carry out developments for interval-valued hesitant fuzzy sets.

This chapter is focused on the study of ordering relations for the finitely

generated sets used in this work.

In the literature, there exist some authors who have developed orders

for finitely generated sets, such as Pérez et al. (see [56]). In this paper,

they propose several orders related to a new concept, denoted by αsg-points.

However, these orders do not suit our needs in this work. As a consequence,

we have developed two different ordering relations. Each one has certain

properties that fit the best in the different studies we have carried out

through this work.

The first order for finitely generated sets is based on Xu and Yager

order for L([0, 1]) structure given in Definition 1.54.
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Proposition 3.1 consider I, J ∈ FG([0, 1]) such that:

I =

nI⋃
i=1

Ii =

nI⋃
i=1

[ILi , I
U
i ] and J =

nJ⋃
i=1

Ji =

nJ⋃
i=1

[JLi , J
U
i ],

where, for simplicity and without loss of generality, it is supposed that the

sets are ordered increasingly, i.e., Ii ≤XY Ii+1, Ji ≤XY Ji+1, and Ii ∩ Ij = ∅
and Ji ∩ Jj = ∅, ∀i 6= j. Let Sc and H the following functions (score and

accuracy, respectively):

Sc(I) =

nI∑
i=1

(IUi − ILi ), H(I) =
1

nI

nI∑
i=1

[
ILi + IUi

2

]
.

Then,

I ≤1 J ⇐⇒



(a) H(I) < H(J)

or

(b) H(I) = H(J) and Sc(I) < Sc(J)

or

(c) H(I) = H(J), Sc(I) = Sc(J) and nI < nJ

or

(d) H(I) = H(J), Sc(I) = Sc(J), nJ = nJ , and

IUi ≤ JUi and ILi ≤ JLi , ∀i = 1, . . . , nI ,

is an ordering relation for finitely generated sets.

Proof. Let us prove the reflexivity, anti-symmetry and transitivity of

the relation, given I, J,K ∈ FG([0, 1]):

• Reflexivity: it is obvious by condition (d) with equalities that I ≤1 I.

• Anti-symmetry: given I ≤1 J and J ≤1 I, the only situation that

does not lead to a contradiction is when both inequalities are given

by condition (d) with equalities. As a result, it is obvious that I = J .
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• Transitivity: given I ≤1 J and J ≤1 K, let us analyze the possible

situations:

– if I ≤1 J is satisfied by condition (a), H(I) < H(J).

Furthermore, as J ≤1 K, by any condition, H(J) ≤ H(K).

Therefore, H(I) < H(K) and I ≤1 K,

– if I ≤1 J is satisfied by condition (b), H(I) = H(J) and Sc(I) <

Sc(J).

If J ≤1 K is given by condition (a), H(J) < H(K). In other

case, Sc(J) ≤ Sc(K).

Therefore, Sc(I) < Sc(K) and I ≤1 K.

– if I ≤1 J is satisfied by condition (c), H(I) = H(J), Sc(I) =

Sc(J) and nI < nJ .

If J ≤1 K is given by condition (a), H(J) < H(K), so H(I) <

H(K). If J ≤1 K is given by condition (b), Sc(J) < Sc(K), so

Sc(I) < Sc(K). In other case, nJ ≤ nK , so nI < nK .

As a result, I ≤1 K.

– if I ≤1 J is satisfied by condition (d), H(I) = H(J), Sc(I) =

Sc(J), nI = nJ and IUi ≤ JUi and ILi ≤ JLi , ∀i = 1, . . . , nI .

If J ≤1 K is satisfied by condition (a), (b) or (c), then H(I) <

H(K), Sc(I) < Sc(K) or nI < nK respectively, and as a result,

I ≤1 K. If it is given by condition (d) too, then IUi ≤ KU
i and

ILi ≤ KL
i , ∀i = 1, . . . , nI .

Therefore, I ≤1 K.

As a consequence, I ≤1 K is satisfied in every situation.

The three axioms have been proved, so ≤1 is an ordering relation. �.
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It must be noted that this order is a partial ordering relation for finitely

generated sets. The incomparability of sets will be studied later in this

chapter. Let us show now how this order runs with an example.

Example 3.2 Let I, J ∈ FG([0, 1]) defined as I = [0, 0.2] ∪ {0.8} and

J = [0.2, 0.4] ∪ [0.5, 0.7]. As H(I) = H(J) = 0.45 and Sc(I) = 0.2 <

Sc(J) = 0.4, then I ≤1 J .

Remark 3.3 It is straightforward to see that this ordering relation, when

it is restricted to [0, 1], matches the usual order in R, as H({a}) = a,

∀a ∈ [0, 1].

Along the next pages of this chapter, ≤1 will be the object of the study,

where several results and properties are developed.

Proposition 3.4 Consider ≤1 and I, J ∈ FG([0, 1]). If I ≤1 J , H(I) =

H(J), Sc(I) = Sc(J) and nI = nJ , then I = J .

Proof. By hypothesis, I ≤1 J must be satisfied by condition (d), so

IUi ≤ JUi and ILi ≤ JLi , ∀i = 1, . . . , nI . Furthermore:
H(I) = H(J),

Sc(I) = Sc(J),

nI = nJ(= n).

⇒

⇒


1

n

n∑
i=1

IUi + ILi
2

=
1

n

n∑
i=1

JUi + JLi
2

,

1

n

n∑
i=1

(IUi − ILi ) =
1

n

n∑
i=1

(JUi − JLi ),

⇔


n∑
i=1

IUi =
n∑
i=1

JUi ,

n∑
i=1

ILi =
n∑
i=1

JLi ,

.

Let us suppose that I 6= J . Then, ∃i′ ∈ {1, . . . , n} such that IUi′ < JUi′



54 Chapter 3. Mathematical tools for interval-valued hesitant fuzzy sets

or ILi′ < JLi′ . Without loss of generality, IUi′ < JUi′ . Then, it is obvious that:

n∑
i=1

IUi <

n∑
i=1

JUi ,

which is a contradiction and as a result, I = J . �

However, it is not a total ordering relation but a partial one. Therefore,

it is possible for two finitely generated sets to be unrelated.

Definition 3.5 Consider I, J ∈ FG([0, 1]). I and J are incomparable with

respect to the ordering relation ≤1 if none of the possible relations I <1 J ,

J <1 I or I = J hold. This is denoted by I||1J .

Some important results related to incomparability of ≤1 ordering rela-

tion are introduced in the next propositions.

Proposition 3.6 Consider I, J ∈ FG([0, 1]) such that I 6= J , then:

I||1J ⇔ H(I) = H(J), Sc(I) = Sc(J), nI = nJ .

Proof. Let us suppose that I||1J . If H(I) 6= H(J), they are comparable,

so H(I) = H(J). If Sc(I) 6= Sc(J), they are comparable, so Sc(I) = Sc(J).

If nI 6= nJ , they are comparable, so nI = nJ .

The opposite implication is obvious by definition. With this hypoth-

esis, the only possible condition of the order is (d). However, if IUi ≤
JUi and ILi ≤ JLi , ∀i = 1, . . . , nI , and ∃i such that IUi < JUi or ILi < JLi ,

then H(I) < H(J) = H(I), which is a contradiction. �

The following example illustrates the application of the previous result.

Example 3.7 Let I, J ∈ FG([0, 1]) be defined as I = [0, 0.2] ∪ {0.7} and

J = {0.3} ∪ [0.6, 0.8]. As H(I) = H(J) = 0.5, Sc(I) = Sc(J) = 0.2, nI =

nJ = 2, by Proposition 3.6, I||1J .



3.1. Ordering relations 55

In the previous proposition, a characterization of incomparability for

the ordering relation ≤1 is presented. In the following result, a situation

when two finitely generated sets are always comparable is shown.

Corollary 3.8 Let I ∈ FG([0, 1]) and δ ∈ [0, 1]. Then, I and {δ} are

always comparable.

Proof. If I = {δ}, they are obviously comparable. If I 6= {δ}, by Propo-

sition 3.6:

I||1{δ} ⇔ H(I) = H({δ}) = δ, Sc(I) = Sc({δ}) = 0, nI = n{δ} = 1.

However, these conditions leads to the next equalities:

IU + IL

2
= δ,

IU − IL = 0,

which is obviously equivalent to IU = IL = δ. Thus, I = {δ}, and it

contradicts our hypothesis, so they are comparable. �

Another important feature of an order is the possibility of finding an

element z such that x < z < y, given x < y. In the next two propositions,

this is analyzed for finitely generated sets with the ordering relation ≤1.

The first proposition shows this is satisfied in a certain case.

Proposition 3.9 Let I ∈ FG([0, 1]) and δ ∈ [0, 1] such that I <1 {δ}.
Then, ∃J ∈ FG([0, 1]) such that I <1 J <1 {δ}.

Proof. Let us distinguish the possible situations:

• if I <1 {δ} is satisfied by condition (a), H(I) < H({δ}) = δ. In

addition, ∃µ ∈ [0, 1] such that H(I) < µ < δ. Then, J = {µ} ∈
FG([0, 1]) satisfies that I <1 J <1 {δ}.
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• if I <1 {δ} is satisfied by condition (b), Sc(I) < Sc({δ}) = 0, which

leads to a contradiction, as the score function is non-negative.

• if I <1 {δ} is satisfied by condition (c), ni < n{δ} = 1, which leads

to a contradiction, as at least one interval or point must shape the

finitely generated set.

• if I <1 {δ} is satisfied by condition (d), then H(I) = H({δ}) = δ,

Sc(I) = Sc({δ}) = 0 and nI = n{δ} = 1. However, this only holds if

I = {δ}, which leads to a contradiction, as by hypothesis, I <1 {δ}.

Hence, the only possibility is that there exists a finitely generated set J

such that I <1 J <1 {δ}. �

In the following proposition, a characterization of the no existence of

such element z is given.

Proposition 3.10 Let I, J ∈ FG([0, 1]) such that I <1 J , then:{
@K ∈ FG([0, 1])

such that I <1 K <1 J
⇐⇒

{
H(I) = H(J), Sc(I) = Sc(J), and

nI < nJ = nI + 1.

Proof. Firsly, let us suppose that @K ∈ FG([0, 1]) such that I <1 K <1 J .

Let us distinguish the possible situations:

• if I <1 J is satisfied by condition (a), H(I) < H(J). In addition,

∃µ ∈ [0, 1] such that H(I) < µ < H(J). Then, K = {µ} ∈ FG([0, 1])

satisfies that I <1 K <1 J .

• if I <1 J is satisfied by condition (b), H(I) = H(J) and Sc(I) <

Sc(J). In addition, ∃µ ∈ [0, 1] such that Sc(I) < µ < Sc(J). Then,

K ∈ FG([0, 1]) such that H(K) = H(I) and Sc(K) = µ satisfies that

I <1 K <1 J .
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• if I <1 J is satisfied by condition (c), H(I) = H(J), Sc(I) = Sc(J)

and nI < nJ . If nJ > nI + 1, then K ∈ FG([0, 1]) such that H(K) =

H(I) and Sc(K) = Sc(I) and nK = nI +1 satisfies that I <1 K <1 J .

• if I <1 J is satisfied by condition (d), it is a contradiction, as the

strict inequality can not be satisfied by condition (d).

So the only possible situation arises when H(I) = H(J), Sc(I) = Sc(J)

and nI < nJ = nI + 1.

Conversely, let us suppose that H(I) = H(J), Sc(I) = Sc(J) and

nI < nJ = nI + 1. It is straightforward that if there exists K ∈ FG([0, 1])

such that I <1 K <1 J , H(K) = H(I), Sc(K) = Sc(I) and nI < nK <

nJ = nI + 1, which leads to a contradiction. �

The second order applied in this work is related to classical membership

and it is defined as follows.

Proposition 3.11 Consider I, J ∈ FG([0, 1]). Then,

I ≤2 J ⇔ I ⊆ J,

is an ordering relation.

Proof. Reflexivity, anti-symmetry and transitivity must be proven. In

this case, it is obvious that this relation satisfy all of them. �

The order ≤2 is, obviously, a partial ordering relation.

Example 3.12 Consider I, J ∈ FG([0, 1]) defined as I = [0, 0.2] ∪ {0.8}
and J = [0, 0.4] ∪ [0.7, 0.8]. As I ⊆ J , then I ≤2 J .

However, this last ordering relation is so closely related to the classical

set theory, that most necessary properties are already developed.
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In order to finish off this chapter, the extensions of both ordering rela-

tions for finitely generated sets ≤1 and ≤2 to interval-valued hesitant fuzzy

sets are studied.

Proposition 3.13 Let X be a non-empty set with cardinality N , A,B ∈
IV HFS(X) such that ∀x ∈ X,

µA(x) =

nAx⋃
i=1

Axi =

nAx⋃
i=1

[Ax
L

i , A
xU

i ] and µB(x) =

nBx⋃
i=1

Bx
i =

nBx⋃
i=1

[BxL

i , BxU

i ]

where, for simplicity and without loss of generality, it is supposed that the

sets are ordered increasingly ∀x ∈ X, i.e., Axi ≤XY Axi+1, Bx
i ≤XY Bx

i+1.

Furthermore, Axi ∩ Axj = ∅ and Bx
i ∩Bx

j = ∅ for i 6= j.

Then, given Sc and H the score and accuracy functions,

A ≤1I B if only if

(a) H(µA(x)) ≤ H(µB(x)) ∀x ∈ X and ∃x′ s. t. H(µA(x′)) < H(µB(x′))

or

(b) H(µA(x)) = H(µB(x)) ∀x ∈ X and

(b1) Sc(µA(x)) ≤ Sc(µB(x)) ∀x ∈ X and ∃x′ s. t. Sc(µA(x′)) <

Sc(µB(x′)) or

(b2) Sc(µA(x)) = Sc(µB(x)) ∀x ∈ X and

(b2.1) nAx ≤ nBx ∀x ∈ X and ∃x′ s. t. nAx′ < nBx′ or

(b2.2) nAx = nBx , A
xU

i ≤ BxU

i and Ax
L

i ≤ BxL

i , ∀x ∈ X and ∀i =

1, . . . , nAx ,

is and ordering relation.
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Proof. In order to prove that this relation is an ordering relation, it

must be proven that it is reflexive, anti-symmetric and transitive.

(i) Reflexivity: it is obvious, as all the conditions in the definition of

the relation are fulfilled with equalities (Condition (b2.2)).

(ii) Anti-symmetry: given A,B ∈ IV HFS(X) such that A ≤1I B and

B ≤1I A. Let us see that the only possible situation in A = B,

distinguishing situations depending on the condition satisfied for each

inequality.

– If A ≤1I B satisfies (a) and B ≤1I A satisfies (a), then

H(µA(x)) ≤ H(µB(x)) ≤ H(µA(x)), ∀x ∈ X,

but there exists x′ ∈ X such that H(µA(x′)) < H(µB(x′)) ≤
H(µA(x′)), which is a contradiction.

– If A ≤1I B satisfies (a) and B ≤1I A satisfies (b),

H(µA(x)) ≤ H(µB(x)) = H(µA(x)), ∀x ∈ X,

but there exists x′ ∈ X such that H(µA(x′)) < H(µB(x′)) =

H(µA(x′)), which is a contradiction.

– Analogously, it is proven that it is a contradiction for every com-

bination unless A ≤1I B satisfies (b2.2) and B ≤1I A satisfies

(b2.2), where

Ax
L

i ≤ BxL

i ≤ Ax
L

i and Ax
U

i ≤ BxU

i ≤ Ax
U

i ,

∀x ∈ X and ∀i = 1, . . . , nx. Therefore, Ax
L

i = BxL

i and Ax
U

i =

BxU

i , and then A = B.
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(iii) Transitivity: given A,B,C ∈ IV HFS(X) such that A ≤1I B and

B ≤1I C, let us see that A ≤1I C.

– If A ≤1I B satisfies (a) and B ≤1I C satisfies (a):

H(µA(x)) ≤ H(µB(x)) ≤ H(µC(x)), ∀x ∈ X,

but there exists x′ ∈ X such that H(µA(x′)) < H(µB(x′)) ≤
H(µC(x′)), so A and C satisfies (a) and hence, A ≤1I C.

– If A ≤1I B satisfies (a) and B ≤1I C satisfies (b1) or (b2.1) or

(b2.2), then

H(µA(x)) ≤ H(µB(x)) = H(µC(x)), ∀x ∈ X,

but there exists x′ ∈ X such that H(µA(x′)) < H(µB(x′)) =

H(µC(x′)), so A and C satisfies (a) and hence, A ≤1I C.

– If A ≤1I B satisfies (b1) and B ≤1I C satisfies (b2.1) or (b2.2),

both A ≤1I B and B ≤1I C satisfy (b), then

H(µA(x)) = H(µB(x)) = H(µC(x)), ∀x ∈ X.

As A ≤1I B satisfies (b1) and B ≤1I C satisfies (b2.1), then

Sc(µA(x)) ≤ Sc(µB(x)) = Sc(µC(x)) ∀x ∈ X.

In addition, ∃x′ s. t. Sc(µA(x′)) < Sc(µB(x′)). As Sc(µB(x)) =

Sc(µC(x)) ∀x ∈ X, in particular, Sc(µB(x′)) = Sc(µC(x′)).

Therefore,

∃x′ s. t. Sc(µA(x′)) < Sc(µB(x′)) = Sc(µC(x′)).

Thus A ≤1I C by (b1).
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– If A ≤1I B satisfies (b2.1) and B ≤1I C satisfies (b2.2), both

A ≤1I B and B ≤1I C satisfy (b), then

H(µA(x)) = H(µB(x)) = H(µC(x)), ∀x ∈ X.

As A ≤1I B satisfies (b2.1) and B ≤1I C satisfies (b2.2), then

Sc(µA(x)) = Sc(µB(x)) = Sc(µC(x)) ∀x ∈ X.

In addition,

nAx ≤ nBx ∀x ∈ X and ∃x′ s. t. nAx′ < nBx′ ,

and

nBx = nCx , B
xU

σ(i) ≤ CxU

σ(i) and BxL

σ(i) ≤ CxL

σ(i) ∀x ∈ X, ∀i = 1, . . . , nAx .

Thus,

nAx ≤ nBx = nCx ∀x ∈ X.

In addition, as ∃x′ s. t. nAx′ < nBx′ , and nBx = nCx ∀x ∈ X, then

nAx′ < nBx′ = nCx′ .

That means ∃x′ s. t. nAx′ < nCx′ and therefore A ≤1I C because it

satisfies (b2.1).

– If A ≤1I B satisfies (b2.2) and B ≤1I C satisfies (b2.2), both

A ≤1I B and B ≤1I C satisfy (b), then

H(µA(x)) = H(µB(x)) = H(µC(x)), ∀x ∈ X.

As both A ≤1I B and B ≤1I C satisfy (b2.2), then

Sc(µA(x)) = Sc(µB(x)) = Sc(µC(x)) ∀x ∈ X.
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In addition,

nAx = nBx , A
xU

σ(i) ≤ BxU

σ(i) and Ax
L

σ(i) ≤ BxL

σ(i) ∀x ∈ X, ∀i = 1, . . . , nAx ,

nBx = nCx , B
xU

σ(i) ≤ CxU

σ(i) and BxL

σ(i) ≤ CxL

σ(i) ∀x ∈ X, ∀i = 1, . . . , nAx .

Thus,

nAx = nCx , A
xU

σ(i) ≤ CxU

σ(i) and Ax
L

σ(i) ≤ CxL

σ(i) ∀x ∈ X, ∀i = 1, . . . , nAx ,

and therefore, A ≤1I C, since (b2.2) is fulfilled.

Thus, reflexivity, anti-symmetry and transitivity have been proven, and as

a result, ≤1I is an ordering relation. �

Proposition 3.14 Let X be a non-empty set, and A,B ∈ IV HFS(X).

Then,

A ≤2I B ⇔ µA(x) ≤2 µB(x), ∀x ∈ X.

Proof. As the relation given in Proposition 3.11 is an ordering relation for

finitely generated sets, it is obvious that this one also satisfies reflexivity,

anti-symmetry and transitivity, and the result is held. �

These results are quite useful in the study of t-norms, t-conorms and

the other concepts which are developed along the chapter.
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3.2 t-norms and t-conorms

As for fuzzy logic (see Chapter 1), the definition of t-norm and t-conorm is

of great importance for interval-valued hesitant fuzzy sets, as they make it

possible to model the concept of intersection and union.

The specific definitions keep the same structure than for fuzzy sets and

interval-valued fuzzy sets, although some attention must be paid to the

ordering relation in the monotonicity axioms.

Definition 3.15 A function T : FG([0, 1]) × FG([0, 1]) → FG([0, 1]) is a

t-norm if it satisfies, ∀I, J,K ∈ FG([0, 1]),

T1 Commutativity: T (I, J) = T (J, I),

T2 Associativity: T (I, T (J,K)) = T (T (I, J), K),

T3 Monotonicity: T (I, J) ≤FG T (I,K), whenever J ≤FG K, where ≤FG
is an ordering relation for FG([0, 1]),

T4 Neutral element: T (I, {1}) = I.

Definition 3.16 A function S : FG([0, 1]) × FG([0, 1]) → FG([0, 1]) is a

t-conorm if it satisfies, ∀I, J,K ∈ FG([0, 1]),

S1 Commutativity: S(I, J) = S(J, I),

S2 Associativity: S(I, S(J,K)) = S(S(I, J), K),

S3 Monotonicity: S(I, J) ≤FG S(I,K), whenever J ≤FG K, where ≤FG is

an ordering relation for FG([0, 1]),
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S4 Neutral element: S(I, {0}) = I.

The different orders that we have considered for the monotonicity ax-

ioms are the ones given in the previous section, ≤1 and ≤2.

Some operations between finitely generated sets were introduced by

Chen et al. in [20]. Among them, the most important ones for the study

of the cardinality are their union and intersection definitions, which are

detailed in the next proposition. In addition, it is proven that they are a

t-norm and t-conorm for interval-valued hesitant fuzzy sets, respectively.

Proposition 3.17 Let I, J ∈ FG([0, 1]) be such that I =

nI⋃
i=1

Ii and J =

nJ⋃
i=1

Ji, where Ii = [ILi , I
U
i ] and Ji = [JLi , J

U
i ] are pairwise disjoint closed

subintervals of [0, 1] respectively. Then,

• I∧J =
⋃̇
{[min(ILi , J

L
j ),min(IUi , J

U
j )]|∀i = 1, . . . , nI , ∀j = 1, . . . , nJ},

• I∨J =
⋃̇
{[max(ILi , J

L
j ),max(IUi , J

U
j )]|∀i = 1, . . . , nI , ∀j = 1, . . . , nJ},

are respectively a t-norm and t-conorm for interval-valued hesitant fuzzy sets

considering the partial ordering for finitely generated sets ≤2, and where
⋃̇

denotes a disjoint union.

Proof. Let us start with ∧ and see that it satisfies the axioms T1 − T4.

Consider I, J,K ∈ FG([0, 1]):

T1 Commutativity: it is obvious by definition.
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T2 Associativity:

(I ∧ J) ∧K =
⋃̇
{[min(min(ILi , J

L
j ), KL

k ),min(min(IUi , J
U
j ), JUk )]|

∀i = 1, . . . , nI , ∀j = 1, . . . , nJ , ∀k = 1, . . . , nK} =

=
⋃̇
{[min(ILi , J

L
j , K

L
k ),min(IUi , J

U
j , J

U
k )]|

∀i = 1, . . . , nI , ∀j = 1, . . . , nJ , ∀k = 1, . . . , nK} =

=
⋃̇
{[min(ILi ,min(JLj , K

L
k )),min(IUi ,min(JUj , K

U
k ))]|

∀i = 1, . . . , nI , ∀j = 1, . . . , nJ , ∀k = 1, . . . , nK} =

= I ∧ (J ∧K).

T3 Monotonicity: by definition of ≤2, if J ≤2 K, then J ⊆ K. Then,

∀j ∈ {1, . . . , nJ}, ∃k ∈ {1, . . . , nK} such that Jj ⊆ Kk, i.e., KL
k ≤

JLj ≤ JUj ≤ KU
k . Furthermore, ∀i ∈ {1, . . . , nI}, it is obvious that:

min(ILi , K
L
k ) ≤ min(ILi , J

L
j ),

min(IUi , J
U
j ) ≤ min(IUi , K

U
k ).

As a result,

[min(ILi , J
L
j ),min(IUi , J

U
j )] ⊆ [min(ILi , K

L
k ),min(IUi , K

U
k )].

As for every interval of the set J , there exists another interval of K

such that this membership hold for every i = 1, . . . , nI , it is obvious

that I ∧ J ⊆ I ∧K, and therefore, I ∧ J ≤2 I ∧K.

T4 Neutral element: is obvious, as [min(ILi , 1),min(IUi , 1)] = [ILi , I
U
i ].

Proving that ∨ satisfies S1 − S4 is analogous. Thus, ∧ and ∨ are

interval-valued hesitant fuzzy t-norm and t-conorm, respectively. �

The t-norm ∧ and t-conorm ∨ given in Proposition 3.17 are essential

in the study of the cardinality provided in the following section. However,

as their definitions are slightly complex, a brief example is given next.
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Example 3.18 Let I = {0.8} and J = [0.4, 0.6] ∪ [0.7, 0.9], i.e., I, J ∈
FG([0, 1]). Then,

I ∧ J =
⋃̇
{[min(ILi , J

L
j ),min(IUi , J

U
j )]|∀i = 1, ∀j = 1, 2} =

= [0.4, 0.6] ∪ [0.7, 0.8],

I ∨ J =
⋃̇
{[max(ILi , J

L
j ),max(IUi , J

U
j )]|∀i = 1, ∀j = 1, 2} =

= {0.8} ∪ [0.8, 0.9] = [0.8, 0.9].

In the next results, we will focus on the t-norm and t-conorm introduced

in Proposition 3.17. In the next proposition, an important property of this

intersection is given, which is useful in the next sections.

Proposition 3.19 Let I, J ∈ FG([0, 1]) such that I ∧ J = ∅. Then, I = ∅
or J = ∅.

Proof. Let I =

nI⋃
i=1

Ii and J =

nJ⋃
i=1

Ji, where Ii = [ILi , I
U
i ] and Ji = [JLi , J

U
i ]

are pairwise disjoint closed subintervals of [0, 1] respectively. By Definition

3.17,

I ∧ J =
⋃̇
{[min(ILi , J

L
j ),min(IUi , J

U
j )]|∀i = 1, . . . , nI , ∀j = 1, . . . , nJ}.

Let us suppose that I 6= ∅ and there exists i′ ∈ {1, . . . , nI} such that

Ii′ 6= {0}. Then, as I ∧ J = ∅, by the definition of intersection:

[min(ILi′ , J
L
j ),min(IUi′ , J

U
j )] = {0}, ∀j = 1, . . . , nJ .

Besides, as Ii′ 6= {0}, then min(IUi′ , J
U
j ) = JUj = 0, and as a consequence,

Jj = {0} for every j = 1, . . . , nJ , i.e., J = ∅. �

The extension of the union and intersection explained in Definition 3.17

for interval-valued hesitant fuzzy sets is detailed in the next result.
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Definition 3.20 Let X be a non-empty set, and A,B ∈ IV HFS(X).

Then,

• A ∨B ∈ IV HFS(X) such that µA∨B(x) = µA(x) ∨ µB(x), ∀x ∈ X,

• A ∧B ∈ IV HFS(X) such that µA∧B(x) = µA(x) ∧ µB(x), ∀x ∈ X.

All these results are necessary in the forthcoming sections. As it has

been repeatedly stated, the definitions of t-norm and t-conorm are essential

in the fuzzy logic, and as a consequence, in the hesitant fuzzy logic.
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3.3 Cardinality

The concept of cardinality has always been present in every type of sets. For

crisp sets, it is an intuitive concept which is easy to define mathematically.

However, when working with fuzzy sets, this definition is not straightfor-

ward, and different options have been given by several authors. De Luca

and Termini in 1972 (see [25]) defined the σ-count cardinality, which is de-

fined by the sum of all the membership degrees, although this one is hard

to read. Ralescu proposed in 1995 (see [61]) the concepts of fuzzy and

non-fuzzy cardinality, applied in other papers, such as [60], where it is used

for the protection of privacy in microdata using fuzzy partitions. From an

axiomatic point of view, Wygralak gives a definition of scalar cardinality

for fuzzy sets in 2003 (see [78]), which includes the non-fuzzy cardinality

given by Ralescu as it has been proven in Chapter 1. The axiomatic defini-

tion given by Wygralak has been extended to interval-valued fuzzy sets by

Deschrijver and Král (see [27]), among results around this new definition.

As it has been mentioned before, the hesitant fuzzy logic is a fresh

theory. Furthermore, the extension which is taken into account in this work,

the interval-valued hesitant fuzzy sets, is even more recent. The aim of this

subsection is to study the cardinality for this type of sets. In particular, it

is provided an axiomatic definition of cardinality in order to get different

cardinalities, without the restrictions of a fixed one. A particular case is also

studied, which presents good properties when it is restricted to fuzzy sets, as

it matches the non-fuzzy cardinality given by Ralescu. Other results related

to the axiomatic definition of cardinality for interval-valued hesitant fuzzy
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sets are also studied, where some properties of this cardinality are specified.

First of all, the next interval-valued hesitant fuzzy set will be necessary

in the axiomatic definitions of cardinality.

Definition 3.21 Let X be a non-empty set, a ∈ FG([0, 1]) and x ∈ X.

The set a/x ∈ IV HFS(X) is characterized by µa/x(x) = a and µa/x(y) =

0, ∀y 6= x.

It is obvious that the cases for fuzzy sets and interval-valued fuzzy sets

are particularizations of the previous definition.

Remark 3.22 Let a/x ∈ IV HFS(X) as in the previous definition,

• if a ∈ [0, 1], then a/x ∈ FS(X),

• if a ∈ L([0, 1]), then a/x ∈ IV FS(X).

In the following result, the axiomatic definition of cardinality for interval-

valued hesitant fuzzy sets is introduced, with the same structure of the one

given by Wygralak in Definition 1.45, and which will be the centre of the

study of this section.

Definition 3.23 Consider X = {x1, . . . , xN}. The mapping |·| : IV HFS(X)

→ [0,∞) is a scalar cardinality measure for interval-valued hesitant fuzzy

sets if it satisfies the following properties, for all A,B ∈ IV HFS(X),

x, y ∈ X and a, b ∈ FG([0, 1]):

1. |1/x| = 1 (coincidence),

2. a ≤FG b ⇒ |a/x| ≤ |b/y|, where a ≤FG b represents an ordering

relation for finitely generated sets (monotonicity),

3. |A ∨B| = |A|+ |B| if A ∧B = ∅ (additivity).
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Some important properties that scalar cardinalities for interval-valued

hesitant fuzzy sets satisfy are shown and proven in the next result.

Proposition 3.24 Consider X = {x1, . . . , xN}, |·| : IV HFS(X)→ [0,∞)

a scalar cardinality measure for interval-valued hesitant fuzzy sets, and ≤FG
any ordering relation for finitely generated sets. Then, | · | satisfies the

following properties:

(i) Given A1, . . . , An ∈ IV HFS(X) such that Ai∧Aj = ∅, ∀i 6= j. Then,∣∣∣∣∣
n∨
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai|.

(ii) If A is a crisp set, then |A| is the number of elements in A.

(iii) Given x, y ∈ X and a ∈ FG([0, 1]), then |a/x| = |a/y|.

(iv) Given A,B ∈ IV HFS(X) and a bijection σ : {1, . . . , N} → {1, . . . , N}
such that µA(xi) = µB(xσ(i)), ∀i ∈ {1, . . . , N}, then |A| = |B|.

(v) |∅| = 0 and |X| = N .

Proof.

(i) Let A1, . . . , An ∈ IV HFS(X) such that Ai ∩ Aj = ∅, ∀i 6= j. Then:

n∨
i=1

Ai =

(
n−1∨
i=1

Ai

)∨
An and

(
n−1∨
i=1

Ai

)∧
An = ∅,

so by the third axiom of scalar cardinality,∣∣∣∣∣
n∨
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
(
n−1∨
i=1

Ai

)∨
An

∣∣∣∣∣ =

∣∣∣∣∣
n−1∨
i=1

Ai

∣∣∣∣∣+ |An|.
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Taking the n− 1 first sets,

n−1∨
i=1

Ai =

(
n−2∨
i=1

Ai

)∨
An−1 and

(
n−2∨
i=1

Ai

)∧
An−1 = ∅,

and therefore∣∣∣∣∣
n−1∨
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
(
n−2∨
i=1

Ai

)∨
An−1

∣∣∣∣∣ =

∣∣∣∣∣
n−2∨
i=1

Ai

∣∣∣∣∣+ |An−1|.

Repeating this process for every set,∣∣∣∣∣
n∨
i=1

Ai

∣∣∣∣∣ = |A1|+ · · ·+ |An| =
n∑
i=1

|Ai|.

(ii) If A is a crisp set, then:

A =
∨

i∈Supp(A)

1/xi,

where Supp(A) = {x ∈ X|µA(x) 6= {0}} ⊆ {1, . . . , N}, which repre-

sents the support of the set. Applying the property (i) and the first

axiom of scalar cardinality:

|A| =

∣∣∣∣∣∣
∨

i∈Supp(A)

1/xi

∣∣∣∣∣∣ =
∑

i∈Supp(A)

|1/xi| = |Supp(A)| ∈ N.

However, as A is a crisp set, Supp(A) = {x ∈ X|µA(x) = {1}}, and

as a result, |A| matches the number of elements in A.

(iii) Given x, y ∈ X and a ∈ FG([0, 1]), it is enough to apply the second

axiom of scalar cardinality,

a ≤FG a⇒ |a/x| ≤ |a/y|,

a ≥FG a⇒ |a/x| ≥ |a/y|,

and therefore, |a/x| = |a/y|.
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(iv) Let A,B ∈ IV HFS(X) and a bijection σ : {1, . . . , N} → {1, . . . , N}
such that µA(xi) = µB(xσ(i)), ∀i ∈ {1, . . . , N}. Then,

A =
N∨
i=1

µA(xi)/xi =
N∨
i=1

µB(xσ(i))/xi and B =
N∨
i=1

µB(xi)/xi.

For every i ∈ {1, . . . , N}, ∃j ∈ {1, . . . , N} such that µB(xj) = µB(xσ(i)).

As σ is a bijection, and by property (iii):

|µB(xj)/xi| = |µB(xσ(i))/xi|, ∀i ∈ {1, . . . , N}.

Thus, applying property (i),

|A| =

∣∣∣∣∣
N∨
i=1

µA(xi)/xi

∣∣∣∣∣ =

∣∣∣∣∣
N∨
i=1

µB(xσ(i))/xi

∣∣∣∣∣ =
N∑
i=1

|µB(xσ(i))/xi| = |B|.

(v) Given A, ∅ ∈ IV HFS(X), it is obvious that A ∧ ∅ = ∅. Applying the

third axiom of scalar cardinality:

|A| = |A ∨ ∅| = |A|+ |∅|,

and therefore, |∅| = 0.

In order to obtain the cardinality of X, this set can be decomposed as

follows

X =
N∨
i=1

1/xi.

Applying the property (i) and the first axiom of scalar cardinality,

|X| = |
N∨
i=1

1/xi| =
N∑
i=1

|1/xi| = N. �

Usually some definitions require certain conditions that are hard to

satisfy. A way to overcome such problem is through results that simplify

them. In the next theorem, a simplification is proposed in order to obtain

scalar cardinalities in an easier way than the original definition.
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Theorem 3.25 Let X = {x1, . . . , xN}, and ≤FG any ordering relation for

finitely generated sets. Then, the mapping | · | : IV HFS(X) → [0,∞)

is a scalar cardinality for interval-valued hesitant fuzzy sets if and only if,

there exists a mapping f : FG([0, 1]) → [0, 1] that satisfies the following

properties:

1. f({0}) = 0 and f({1}) = 1,

2. if a, b ∈ FG([0, 1]) such that a ≤FG b, then f(a) ≤ f(b),

such that for every A ∈ IV HFS(X):

|A| =
N∑
i=1

f(µA(xi)).

Proof. Firstly, let us suppose that | · | is a scalar cardinality. Let

us define the mapping f : FG([0, 1]) → [0, 1], where f(a) = |a/x|, with

a ∈ FG([0, 1]) and whichever x ∈ X (as it does not matter this choice by

property (iii) in Proposition 3.24).

As any set A ∈ IV HFS(X) can be decomposed as:

A =
N∨
i=1

µA(xi)/xi,

by property (i) of Proposition 3.24,

|A| =

∣∣∣∣∣
N∨
i=1

µA(xi)/xi

∣∣∣∣∣ =
N∑
i=1

|µA(xi)/xi| =
N∑
i=1

|µA(xi)/x| =
N∑
i=1

f(µA(xi)).

Therefore, it is enough to see that f satisfies the two properties of the

theorem:
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1. Applying property (v) of Proposition 3.24 and the first axiom of scalar

cardinality respectively:

f({0}) = |0/x| = |∅| = 0,

f({1}) = |1/x| = 1.

2. Given a, b ∈ FG([0, 1]) such that a ≤FG b, then by the second axiom

of scalar cardinality, |a/x| ≤ |b/x|, and by definition of f , f(a) ≤ f(b).

In the second part of the proof it is supposed that there exists a mapping

f as defined in the theorem. To see that | · | is a scalar cardinality, the three

axioms of Definition 3.23 must be proven.

1. Given x ∈ X:

|1/x| =
N∑
i=1

f(µ1/x(xi)) = f(µ1/x(x)) = f({1}) = 1.

2. Given x, y ∈ X, and a, b ∈ FG([0, 1]) such that a ≤FG b, by hypothe-

sis, f(a) ≤ f(b). By definition of the sets |a/x| and |b/y|,

|a/x| =
N∑
i=1

f(µa/x(xi)) = f(µa/x(x)) = f(a) ≤ f(b) =

= f(µb/y(y)) =
N∑
i=1

f(µb/y(xi)) = |b/y|.

3. Let A,B ∈ IV HFS(X) such that A∧B = ∅. By Proposition 3.19, it

is known that µA(x) = ∅ or µB(x) = ∅ for every x ∈ X, which means

that the intersection of the support is null. In our case:

Supp(A) ∩ Supp(B) = ∅ and Supp(A ∨B) = Supp(A) ∪ Supp(B).
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Thus,

|A ∨B| =
N∑
i=1

f(µA∨B(xi)) =
∑

Supp(A∨B)

f(µA∨B(xi)) =

=
∑

Supp(A)

f(µA∨B(xi)) +
∑

Supp(B)

f(µA∨B(xi)) =

=
∑

Supp(A)

f(µA(xi)) +
∑

Supp(B)

f(µB(xi)) =

=
N∑
i=1

f(µA(xi)) +
N∑
i=1

f(µB(xi)) = |A|+ |B|,

as for every x 6∈ Supp(A), µA(x) = {0} and as a result f(µA(x)) = 0.

Respectively for B and A ∨B.

Therefore, the three axioms have been proven, and the result is demon-

strated. �

In the following result, some added properties satisfied for scalar car-

dinalities are given for fixed orders.

Proposition 3.26 Consider X = {x1, . . . , xN}, |·| : IV HFS(X)→ [0,∞)

a scalar cardinality measure for interval-valued hesitant fuzzy sets, and the

ordering relation ≤2I . Then, | · | satisfies the following properties:

(i) Given A,B ∈ IV HFS(X) such that A ≤2I B, then |A| ≤ |B|.

(ii) 0 ≤ |A| ≤ N , ∀A ∈ IV HFS(X).

Proof.

(i) Let A,B ∈ IV HFS(X) such that A ≤2I B. By definition:

A =
N∨
i=1

µA(xi)/xi and B =
N∨
i=1

µB(xi)/xi.
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Furthermore,

µA(xi)/xi
∧

µA(xj)/xj = ∅ and µB(xi)/xi
∧

µB(xj)/xj = ∅, ∀i 6= j.

By Proposition 3.14,

A ≤2I B ⇔ µA(xi) ≤2 µB(xi), ∀xi ∈ X.

and by the second axiom of a scalar cardinality,

|µA(xi)/xi| ≤ |µB(xi)/xi|, ∀xi ∈ X.

As a result, and applying the previous property,

|A| = |
N∨
i=1

µA(xi)/xi| =
N∑
i=1

|µA(xi)/xi| ≤

≤
N∑
i=1

|µB(xi)/xi| = |
N∨
i=1

µB(xi)/xi| = |B|.

(ii) Given A ∈ IV HFS(X), it is obvious (see Proposition 3.14) that ∅ ≤2I

A ≤2I X. Applying property (i) to both inequalities and the property

(v) from Proposition 3.24:

0 = |∅| ≤ A ≤ |X| = N. �

Remark 3.27 Previous properties are also satisfied for ≤1I (see Proposi-

tion 3.13), with a slight modification in the proof.

Once the theoretical results has been stated, a subsection with partic-

ular cases and examples is given next.



3.3. Cardinality 77

3.3.1 Examples

This axiomatic definition classifies a wide range of functions as cardinalities

for interval-valued hesitant fuzzy sets, avoiding the restriction to a fixed

one. The first example studied, which is obtained using a previous result,

has a resemblance to a well known cardinality for fuzzy sets: the σ-count

cardinality.

Example 3.28 Consider X = {x1, . . . , xN}, and ≤1 the ordering relation

for finitely generated sets. Then, | · | : IV HFS(X)→ [0,∞) defined as

|A| =
N∑
i=1

H(µA(xi)), A ∈ IV HFS(X),

with H the accuracy function, is a scalar cardinality for interval-valued hes-

itant fuzzy sets.

In order to prove it, it is enough to see that the accuracy function H

satisfies both axioms of Theorem 3.25:

1. H({0}) = 0 and H({1}) = 1 by definition.

2. Given a, b ∈ FG([0, 1]) such that a ≤1 b, if this order satisfies condi-

tion (a) of Proposition 3.1, then H(a) < H(b). If it satisfies condition

(b), then H(a) = H(b). Thus, H(a) ≤ H(b).

Remark 3.29 The scalar cardinality defined in the previous example matches

the σ-count cardinality when it is restricted to fuzzy sets.

Another particular case is highlighted in this section due to the special

properties that it presents when it is restricted to fuzzy sets.

Firstly, a way to obtain a fuzzy set from an interval-valued hesitant

fuzzy set using the accuracy function introduced in Proposition 3.1 is pro-

posed. Furthermore, a result related to this definition is stated right after.



78 Chapter 3. Mathematical tools for interval-valued hesitant fuzzy sets

Definition 3.30 Consider X = {x1, . . . , xN}, A ∈ IV HFS(X) and H the

accuracy function. A′ = {(x, µA′(x))|x ∈ X} obtained from A as

µA′(x) = H(µA(x)), ∀x ∈ X,

is a fuzzy set.

Proposition 3.31 Let A,B ∈ IV HFS(X) such that A ∧B = ∅. Then,

(A ∨B)′ = A′ ∪B′,

where ∪ represents the fuzzy t-norm of maximum.

Proof. By hypothesis, A ∧ B = ∅, so µA∧B(x) = ∅, and by Proposition

3.19, µA(x) = ∅ or µB(x) = ∅, ∀x ∈ X.

Fixed an element x ∈ X, let us suppose without loss of generality that

µA(x) 6= ∅ and µB(x) = ∅, where µA(x) is given as follows:

µA(x) =

nAx⋃
i=1

Axi =

nAx⋃
i=1

[Ax
L

i , A
xU

i ].

By Definition 3.17,

µA∨B(x) =
⋃̇
{[max(Ax

L

i , 0),max(Ax
U

i , 0)]|∀i = 1, . . . , nAx } = µA(x),

and therefore, µ(A∨B)′(x) = H(µA(x)).

On the other hand:

µA′∪B′(x) = max(H(µA(x)), H(µB(x))) = H(µA(x)),

as µB(x) = ∅ and as a result H(µB(x)) = 0.

Thus, µ(A∨B)′(x) = µA′∪B′(x), ∀x ∈ X, and as a consequence,

(A ∨B)′ = A′ ∪B′. �
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In the following example, the aforementioned particular case is shown,

where it is structured in the same way as Ralescu non fuzzy cardinality

detailed in Definition 1.42.

Example 3.32 Let X be the set with elements {x1, . . . , xN}, and the set

A ∈ IV HFS(X) where

µA(xi) =

nxi⋃
j=1

Axij =

nxi⋃
j=1

[A
xLi
j , A

xUi
j ], ∀i = 1, . . . , N,

and A′ ∈ FS(X) obtained from the set A. The finitely generated sets

µA′(xi) ∀i = 1, . . . , N, are ordered decreasingly, where µ(i) denotes the i-

th largest value such that:

1 = µ(0) ≥ µ(1) ≥ · · · ≥ µ(N) ≥ µ(N+1) = 0.

Then, the function | · |RH : IV HFS(X)→ [0,∞) is defined by:

|A|RH =


0, if A = ∅,
j, if A 6= ∅ and µ(j) ≥ 0.5,

j − 1, if A 6= ∅ and µ(j) < 0.5.

where

j = max{1 ≤ t ≤ N |µ(t−1) + µ(t) > 1}.

Remark 3.33 It is immediate to see that the function | · |RH restricted to

fuzzy sets matches Ralescu’s cardinality for fuzzy sets (Definition 1.42), as

if A ∈ FS(X), H(µA(xi)) = µA(x) ∀x ∈ X, so A′ = A, and the rest of the

process is the same. It also must be noted that |A|RH = |A′|R.

In the next result, it is proven that the function previously defined is a

scalar cardinality.
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Proposition 3.34 Let ≤1 be the selected ordering relation for finitely gen-

erated sets, and ∩ and ∪ be the minimum-maximum dual pair of t-norm

and t-conorm for fuzzy sets. Then, the function | · |RH is a scalar cardinality

measure for interval-valued hesitant fuzzy sets with respect to ≤1, ∩ and ∪.

Proof. In order to see that it is a scalar cardinality, the three axioms

of Definition 3.23 must be proven.

1. Given 1/x ∈ IV HFS(X), then µ1/x(x) = 1 and µ1/x(y) = 0, ∀y 6=
x. Furthermore, H(µ1/x(x)) = 1 and H(µ1/x(y)) = 0, ∀y 6= x, i.e.,

1/x′ = 1/x. Thus, the ordered membership degrees are the following:

1 = µ(1) > µ(2) = · · · = µ(N) = 0.

Hence, j = 1, and as µ(1) = 1, |1/x|RH = 1.

2. Given a, b ∈ FG([0, 1]) such that a ≤1 b, and x, y ∈ X, then |a/x|RH
and |b/y|RH are defined as follows:

µa/x(x) = a, µa/x(z) = 0, ∀z 6= x,

µb/y(y) = b, µb/y(z) = 0, ∀z 6= y.

In order to obtain the sets a/x′ and b/y′ as in Definition 3.30, the

accuracy function is applied to every membership degree,

µa/x′(x) = H(µa/x(x)) = H(a), µa/x′(z) = H(µa/x(z)) = 0, ∀z 6= x,

µb/y′(y) = H(µb/y(y)) = H(b), µb/y′(z) = H(µb/y(z)) = 0, ∀z 6= y.

Thus, the ordered membership degrees for a/x′ is given as follows,

H(a) ≥ 0 = · · · = 0,

and for the set b/y′,

H(b) ≥ 0 = · · · = 0.
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And as a consequence, ja/x = jb/y = 1. Furthermore, as a ≤1 b by

Proposition 3.1, if it is satisfied by condition (1), then H(a) < H(b),

and if it is satisfied by condition (2), then H(a) = H(b), i.e., H(a) ≤
H(b). Now, let us distinguish the three possible situations:

• if H(a) ≤ H(b) < 0.5, then |a/x|RH = |b/y|RH = 0,

• if H(a) < 0.5 ≤ H(b), then |a/x|RH = 0 < |b/y|RH = 1,

• 0.5 ≤ H(a) ≤ H(b), then |a/x|RH = |b/y|RH = 1,

and therefore, |a/x|RH ≤ |b/y|RH .

3. Let A,B ∈ IV HFS(X) such that A ∧ B = ∅, and A′, B′ ∈ FS(X)

the sets according to Definition 3.30.

By hypothesis, A ∧B = ∅. In addition, by Proposition 3.19,

µA(x) = ∅ or µB(x) = ∅, ∀x ∈ X.

As a consequence, ∀x ∈ X:

µA′(x) = H(µA(x)) = H(0) = 0 or µB′(x) = H(µB(x)) = H(0) = 0,

so min(µA′(x), µB′(x)) = 0, ∀x ∈ X, and therefore, A′ ∩ B′ = ∅.
Furthermore, by Proposition 1.43 applied to A′, B′ ∈ FS(X), as |A′∩
B′|R = 0:

|A′ ∪B′|R = |A′|R + |B′|R,

However, by Proposition 3.31, (A ∨ B)′ = A′ ∪ B′, and obviously,

(A ∨B)′, A′ ∪B′ ∈ FS(X), so |(A ∨B)′|R = |A′ ∪B′|R. Hence,

|(A ∨B)′|R = |A′|R + |B′|R,
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but as it has been stated in Remark 3.33, |A|RH = |A′|R, and as a

result:

|(A ∨B)′|R = |A′|R + |B′|R ⇒ |A ∨B|RH = |A|RH + |B|RH .

As a consequence, the three axioms have been demonstrated and it is proven

that | · |RH is a scalar cardinality. �

This previous result shows that the function given in Example 3.32 is a

scalar cardinality for interval-valued hesitant fuzzy sets given by Definition

3.23. Furthermore, when restricted to fuzzy sets it matches Ralescu’s car-

dinality, which is also a scalar cardinality for fuzzy sets given by Definition

1.45.

Obviously, the definition of scalar cardinality for interval-valued hes-

itant fuzzy sets, when restricted to fuzzy sets, matches the definition for

fuzzy sets.

In conclusion, this section has been focused in an axiomatic definition of

cardinality, along with several results that make it possible to prove certain

properties, as well as various examples which, when restricted to fuzzy sets,

match well known cardinalities for such sets.
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3.4 Entropy

The study of entropy measures in the fuzzy set theory became an impor-

tant part of this research, firstly defined by De Luca and Termini in 1972

(see [25]), whose aim was to quantify the uncertainty associated to a fuzzy

set. This concept has been adapted to other types of fuzzy sets, such as

Atanassov’s intuitionistic fuzzy sets (see [54]), interval-valued fuzzy sets (see

[16]) or even interval-valued hesitant fuzzy sets (see [33]).

Nevertheless, the existing definition of entropy for interval-valued hes-

itant fuzzy sets in [33] only reflects one type of uncertainty, associated to

how distant a set is from a union of crisp sets. Our proposal along this

section is to define a new entropy measure for interval-valued hesitant fuzzy

sets, where three types of uncertainty are reflected through three mappings,

instead of the classical concept of just one function for one type of uncer-

tainty associated. In addition, several results have been developed in order

to obtain such mappings with ease, and as a result, the entropy measure

can be obtained with simpler conditions.

Remark 3.35 Along this section, the ordering relations considered for finite-

ly generated sets and interval-valued hesitant fuzzy sets are ≤1 and ≤1I ,

respectively.

As it has been aforementioned, Farhadinia made in [33] a study of en-

tropy for this type of sets. Firstly, his definition of dissimilarity for interval-

valued hesitant fuzzy sets is given next, which we will use along this section.
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Definition 3.36 A mapping D : IV HFS(X) × IV HFS(X) → [0, 1] is a

hesitant dissimilarity measure if it satisfies the following properties, where

A,B,C ∈ IV HFS(X):

1. D(A,B) = D(B,A),

2. D(A,Ac) = 1⇔ A is crisp,

3. D(A,B) = 0⇔ A = B,

4. If A ≤1I B ≤1I C, then D(A,B) ≤ D(A,C) and D(B,C) ≤ D(A,C).

Some examples of hesitant dissimilarity measures were proposed by Xu

and Xia (see [79]). In the next example, the Hamming distance is introduced

as dissimilarity measure. This distance will be used further in this section.

Example 3.37 Let X be a finite set with cardinality N , the Hamming dis-

tance is defined as

DH(A,B) =
1

N

∑
x∈X

[
1

2nx

nx∑
i=1

(|AxLi −BxL

i |+ |Ax
U

i −BxU

i |)

]
,

for all A,B ∈ IV HFS(X) where µA(x) =
nx⋃
i=1

Axi =
nx⋃
i=1

[Ax
L

i , A
xU

i ] with

Axi ≤XY Axi+1 (Definition 1.54) for every x ∈ X and i ∈ {1, . . . , nx − 1},
and analogously for the set B.

The entropy definition for interval-valued hesitant fuzzy sets provided

by Farhadinia is detailed next. It is associated to a hesitant dissimilarity

measure.

Definition 3.38 Let E : IV HFS(X) → [0, 1] be a mapping, and D a

hesitant dissimilarity measure. E is said to be a hesitant entropy measure

associated to D if it satisfies, where A,B ∈ IV HFS(X):



3.4. Entropy 85

1. E(A) = 0⇔ µA(x) ⊆ {0, 1} ∀x ∈ X,

2. E(A) = 1⇔ A is the equilibrium set,

3. E(A) = E(Ac),

4. E(A) ≤ E(B), if D(A, ξ) ≥ D(B, ξ).

However, this definition only takes into account the distance to the

equilibrium set, which may not be enough to quantify the uncertainty as-

sociated to an interval-valued hesitant fuzzy set.

In order to overcome this, a different definition of entropy is studied. It

is characterized by three mappings instead of just one, as Pal et. al (see [54])

did for Atanassov’s intuitionistic fuzzy sets with two different mappings.

Hence, the new entropy proposed for interval-valued hesitant fuzzy sets

is split into three functions: EF (fuzziness), EL (lack of knowledge) and EH

(hesitance). They are studied separately in the next three subsections, rep-

resenting each one a different type of uncertainty associated to an interval-

valued hesitant fuzzy set. This makes it possible to provide a more detailed

entropy measure.

3.4.1 Fuzziness entropy measure

The first function of the interval-valued hesitant fuzzy entropy, is the one

that represents the fuzziness of the set. The goal of this function is to

measure how distant the set is from the union of a finite number of crisp

sets. This mapping is similar to the one given by Definition 3.38, but with

a modification in the first and last axioms, which makes it more efficient in

order to represent this part of the entropy.



86 Chapter 3. Mathematical tools for interval-valued hesitant fuzzy sets

Definition 3.39 Let EF : IV HFS(X) → [0, 1] be a mapping, A,B ∈
IV HFS(X). EF is said to be a fuzziness entropy measure associated to a

hesitant dissimilarity measure D if it satisfies the following properties:

1. EF (A) = 0⇔ µA(x) ∈ {0, 1, {0, 1}, [0, 1]}, ∀x ∈ X,

2. EF (A) = 1⇔ A is the equilibrium set,

3. EF (A) = EF (Ac),

4. EF (A) ≤ EF (B), if D(Ax, ξ) ≥ D(Bx, ξ) ∀x ∈ X, where Ax, Bx ∈
IV HFS(X) are given such that µAx(y) = µA(x) and µBx(y) = µB(x),

∀y ∈ X.

The first axiom states that the fuzziness is null if the membership func-

tion is the union of crisp sets or the pure interval-valued fuzzy set. In the

second axiom, the maximum fuzziness happens when the set is the equilib-

rium. The third one requires a set and its complement to take the same

entropy. The fourth axiom states that two interval-valued hesitant fuzzy

sets are compared with respect to EF using the associated hesitant dissim-

ilarity measure. In fact, the definition of fuzziness entropy is related to

the dissimilarity, but it is not detailed in all the cases, since there is not

ambiguity.

Furthermore, local property is obtained for this entropy measure in the

case of finite referential sets. To develop it, some notation is necessary.

Definition 3.40 Let X = {x1, . . . , xN} be a finite set with cardinality N .

Given A ∈ IV HFS(X) and M ⊆ {1, . . . , N}, A(M) is an interval-valued
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hesitant fuzzy set whose membership function is defined ∀xi ∈ X as

µA(M)(xi) =


µA(xi) if i /∈M,

{0} if i ∈M and Axi ≤1I ξ,

{1} if i ∈M and Axi >1I ξ.

Remark 3.41 Note that as both sets Axi and ξ have constant membership

functions (in µA(xi) and {0.5} respectively), Axi ≤1I ξ or Axi >1I ξ must

hold, as this order is equivalent to the one given between the finitely gener-

ated sets µA(xi) and {0.5} with respect to the ordering relation ≤1 (Corollary

3.8).

It is clear that A(M) is only different to A in xi ∈ X with i ∈ M . In

the particular case M = {j}, the notation is simplified to A(j). In next

definition, the local property is given for this entropy.

Definition 3.42 Let X be a finite set with cardinality N and the mapping

EF : IV HFS(X) → [0, 1] a fuzziness entropy measure. EF is said to be a

local fuzziness entropy measure if there exists a function f : FG([0, 1]) →
[0, 1] such that for every xj ∈ X, given A ∈ IV HFS(X),

EF (A)− EF (A(j)) = f(µA(xj)),

or equivalently, it only depends on the term µA(xj).

Remark 3.43 Note that EF (A)−EF (A(j)) ∈ [0, 1] for all j = 1, . . . , N . It

is enough to see that D(Axj , ξ) ≤ D(A
(j)
xj , ξ), as for the other x ∈ X, the

equality is immediate.

• If Axj ≤1I ξ, then A
(j)
xj = {(x, 0)|x ∈ X} = ∅. Hence, ∅ = A

(j)
xj ≤1I

Axj ≤1I ξ. By the last property in Definition 3.36, D(Axj , ξ) ≤
D(∅, ξ) = D(A

(j)
xj , ξ), and by the last condition of a fuzziness entropy,

EF (A(j)) ≤ EF (A).



88 Chapter 3. Mathematical tools for interval-valued hesitant fuzzy sets

• If Axj >1I ξ, then A
(j)
xj = {(x, 1)|x ∈ X} = X. Hence, ξ ≤1I Axj ≤1I

A
(j)
xj = X. By the last property in Definition 3.36, D(Axj , ξ) ≤

D(X, ξ) = D(A
(j)
xj , ξ), and by the last condition of a fuzziness entropy,

EF (A(j)) ≤ EF (A).

Henceforth, two results have been presented in order to ease the ob-

taining of local fuzziness entropy measures with functions whose properties

are more manageable than the original ones in the definition of such en-

tropy. Initially, the local fuzziness entropies are characterized by means of

the following result.

Theorem 3.44 Let X be a finite set with cardinality N , EF be the mapping

EF : IV HFS(X) → [0, 1] and D a hesitant dissimilarity measure. Then,

EF is a local fuzziness entropy measure associated to D if and only if there

exists a mapping h : FG([0, 1])→ [0, 1] such that

EF (A) =
1

N

∑
x∈X

h(µA(x)),

which also satisfies the following four axioms, given I, J ∈ FG([0, 1]):

1. h(I) = 0⇔ I ∈ {0, 1, {0, 1}, [0, 1]},

2. h(I) = 1⇔ I = µξ(x),

3. h(I) = h(Ic),

4. h(I) ≤ h(J) if D(XI , ξ) ≥ D(XJ , ξ), where XI = {(x, I)|x ∈ X} and

XJ = {(x, J)|x ∈ X}.

Proof. First, let us suppose that EF is a local fuzziness entropy. Then,

by Definition 3.42, there exists a function f : FG([0, 1])→ [0, 1] such that:

EF (A)− EF (A(j)) = f(µA(xj)), ∀j ∈ {1, . . . , N}.
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Given A ∈ IV HFS(X), applying recursively the definition of local:

EF (A) = EF (A(N)) + f(µA(xN)) =

= EF ((A(N))(N−1)) + f(µA(N)(xN−1) + f(µA(xN)) =

= EF (A(N−1,N)) + f(µA(xN−1) + f(µA(xN)) = · · · =

= EF (A(1,...,N)) +
∑
x∈X

f(µA(x)).

However, µA(1,...,N)(x) ∈ {0, 1}, ∀x ∈ X, i.e., A(1,...,N) is a crisp set, and

therefore, by the first axiom of fuzziness entropy, EF (A(1,...,N)) = 0. Hence,

EF (A) =
∑
x∈X

f(µA(x)).

In addition, it is known that EF (A) ∈ [0, 1] for every A ∈ IV HFS(X).

Then, for all xi ∈ X, applying the mapping EF to the set XµA(xi):

EF (XµA(xi)) =
∑
x∈X

f(µA(xi)) = Nf(µA(xi)) ∈ [0, 1]⇒ f(µA(xi)) ∈ [0,
1

N
].

Consequently, taking h : FG([0, 1])→ [0, 1] such that h(I) = Nf(I), it

is immediate that:

EF (A) =
1

N

∑
x∈X

h(µA(x)).

Now, let us see that h satisfies the four conditions of the theorem.

1. Given I ∈ FG([0, 1]) and XI ∈ IV HFS(X), then:

EF (XI) =
1

N

∑
x∈X

h(I) = h(I),

so by the first axiom of Definition 3.39, it is known that:

EF (XI) = h(I) = 0 ⇔ µA(x) = I ∈ {0, 1, {0, 1}, [0, 1]}.
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2. Given I ∈ FG([0, 1]) and XI ∈ IV HFS(X) such that EF (XI) = h(I).

From the second axiom of EF , it is obvious that:

EF (XI) = h(I) = 1 ⇔ µA(x) = I = {0.5} = µξ(x).

3. Given I ∈ FG([0, 1]), and XI ∈ IV HFS(X), it is obtained that

EF (XI) = h(I) and EF (XIc) = h(Ic), and as EF satisfies the third

axiom of Definition 3.39, EF (XI) = EF (XIc) and hence,

h(I) = h(Ic).

4. Given I, J ∈ FG([0, 1]), and XI , XJ ∈ IV HFS(X), it is supposed

that D(XI , ξ) ≥ D(XJ , ξ), where by construction, EF (XI) = h(I)

and EF (XJ) = h(J). Due to EF being a fuzziness entropy, the fourth

axiom is satisfied and:

EF (XI) ≤ EF (XJ)⇔ h(I) ≤ h(J).

Now, in order to proceed with the second part of the proof, it is sup-

posed that h satisfies the four conditions of the theorem, so it is necessary

to prove that EF is a local fuzziness entropy. First, let us see that it satisfies

the four axioms of Definition 3.39:

1. Given A ∈ IV HFS(X):

0 = EF (A) =
1

N

∑
x∈X

h(µA(x))⇔ h(µA(x)) = 0,∀x ∈ X,

and as h satisfies the first item of the theorem, this only happens

when:

µA(x) ∈ {0, 1, {0, 1}, [0, 1]}, ∀x ∈ X.
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2. Given A ∈ IV HFS(X):

1 = EF (A) =
1

N

∑
x∈X

h(µA(x))⇔ h(µA(x)) = 1,∀x ∈ X,

which is the same as µA(x) = 0.5,∀x ∈ X, as h fulfills the second

axiom of the theorem.

3. Given A ∈ IV HFS(X) and Ac its complement, as h satisfies the third

item of the theorem, it is known that h(J) = h(J c) for every finitely

generated set, therefore:

EF (A) =
1

N

∑
x∈X

h(µA(x)) =
1

N

∑
x∈X

h(µA(x)c) =

=
1

N

∑
x∈X

h(µAc(x)) = EF (Ac).

4. Let A,B ∈ IV HFS(X) such that D(Ax, ξ) ≥ D(Bx, ξ) ∀x ∈ X.

By the fourth axiom of the theorem for I = µA(x) and J = µB(x),

h(µA(x)) ≤ h(µB(x)) ∀x ∈ X, hence by construction of the mapping

EF :

EF (A) ≤ EF (B).

In order to close the proof, let us see that it is also a local fuzziness

entropy measure (Definition 3.42):

(L) Given A ∈ IV HFS(X), for every xj ∈ X:

EF (A)− EF (A(j)) =

=
1

N

∑
x∈X

h(µA(x))− 1

N

 ∑
x∈X\{xj}

h(µA(x)) + h(µA(j)(xj))

 =

=
1

N
(h(µA(xj))− h(µA(j)(xj)) =

1

N
h(µA(xj)) = f(µA(xj)),
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i.e., it only depends on the term µA(xj) for every j as µA(j)(xj) ∈ {0, 1}
and by hypothesis, h(µA(j)(xj)) = 0. Therefore, it is local. �

After the simplification provided by the previous theorem, the next

result goes another step forward and ease even more the obtaining of a

local fuzziness entropy.

Corollary 3.45 Let X be a finite set with cardinality N , let EF be the

mapping EF : IV HFS(X) → [0, 1] and let D be a hesitant dissimilarity

measure where D(A, ξ) is defined in function of the terms |AxUi − 0.5| and

|AxLi − 0.5|, and where D(A, ξ) = 0.5 if and only if Ax
L

i , A
xU

i ∈ {0, 1} for

every x ∈ X and i ∈ {1, . . . , nx}.
Then, EF is a local fuzziness entropy associated to D if and only if there

exists a mapping g : [0, 1]→ [0, 1] such that

EF (A) =
1

N

∑
x∈X

g(2D(Ax, ξ)),

which also satisfies the following properties:

1. g(a) = 0⇔ a = 1,

2. g(a) = 1⇔ a = 0,

3. g is monotone decreasing.

Proof. It is enough to see that the function h(I) = g(2D(XI , ξ))

satisfies the four axioms in Theorem 3.44, and the result will be proven.

1. Let I ∈ FG([0, 1]) such that h(I) = g(2D(XI , ξ)) = 0, and by the

second axiom that g satisfies:

h(I) = g(2D(XI , ξ)) = 0⇔ 2D(XI , ξ) = 1⇔ D(XI , ξ) = 0.5.
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Given I = I1∪· · ·∪InI ∈ FGnI ([0, 1]) with Ii = [ILi , I
U
i ] ∀i, by the hy-

pothesis about D, this only happens when ILi , I
U
i ∈ {0, 1} ∀i, or what

is the same, Ii ∈ {0, 1, [0, 1]} ∀i. Equivalently, I ∈ {0, 1, {0, 1}, [0, 1]}.

2. Given I ∈ FG([0, 1]) such that h(I) = g(2D(XI , ξ)) = 1. This only

holds when D(XI , ξ) = 0 for the first axiom that g satisfies, and by

the definition of hesitant distance (third axiom of Definition 3.36)

I = {0, 5} = µξ(x).

3. Given I ∈ FG([0, 1]), as 0.5 is the center of the interval [0, 1], by

symmetry and the hypothesis about how D is defined, D(XI , ξ) =

D(XIc , ξ), and it is immediate that g(2D(XI , ξ)) = g(2D(XIc , ξ)).

4. Given I, J ∈ FG([0, 1]) such that D(XI , ξ) ≥ D(XJ , ξ), as g is mono-

tone decreasing by the third axiom:

h(I) = g(2D(XI , ξ)) ≤ g(2D(XJ , ξ)) = h(J).

So the four axioms have been proven. �

These two last results simplify the obtaining of fuzziness entropies given

by Definition 3.39, where it is only needed a hesitant distance and a function

h satisfying the three conditions from Corollary 3.45, which are much more

manageable than the original ones.

In order to illustrate this first part of the entropy, an example is pre-

sented next, where a particular dissimilarity and function g are selected as

in Corollary 3.45.



94 Chapter 3. Mathematical tools for interval-valued hesitant fuzzy sets

Example 3.46 Let X be a finite set with cardinality N , and the mapping

EF : IV HFS(X)→ [0, 1] given by:

EF (A) =
1

N

∑
x∈X

[1− 2DH(µA(x), {0.5})] ,

and where DH is the hesitant normalized Hamming dissimilarity, which

was first developed by [79] for hesitant fuzzy sets, and adapted to interval-

valued hesitant fuzzy sets by [33]. The dissimilarity for finite interval-valued

hesitant fuzzy sets has the expression given in Example 3.37.

Then, EF is a local fuzziness entropy measure, as it is a particular

situation of the Corollary 3.45, where g(a) = 1 − a and D = DH , both

satisfying the required properties.

3.4.2 Lack of knowledge entropy measure

The second part of the entropy definition is obtained by a function which

represents the lack of knowledge. With this function the distance of the set

to the union of a finite number of classical fuzzy sets is measured. Thus, a

different kind of uncertainty is considered.

Using the same notation as in the previous subsection, this function is

defined as follows:

Definition 3.47 Let EL : IV HFS(X) → [0, 1] be a mapping, A,B ∈

IV HFS(X) with µA(x) =
nx⋃
i=1

Axi =
nx⋃
i=1

[Ax
L

i , A
xU

i ] ∈ FGnx([0, 1]) ∀x ∈ X,

and respectively for B. EL is said to be a lack of knowledge entropy measure

if it satisfies the following properties:

1. EL(A) = 0⇔ Sc(Axi ) = 0, ∀i = 1, . . . , nx, ∀x ∈ X,

2. EL(A) = 1⇔ A is the pure interval-valued fuzzy set,
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3. EL(A) = EL(Ac),

4. EL(A) ≤ EL(B) if ∀x ∈ X Sc(µA(x)) ≤ Sc(µB(x)), where Sc denotes

the score function given (Proposition 3.1).

The first axiom states that the entropy is null when all the sets Axi are

singletons, i.e., the set A is a classical fuzzy set. The maximum entropy is

found when A is the pure interval-valued fuzzy set. In the third point, the

entropy of a set and its complement must match. The last axiom shows

how to compare two interval-valued hesitant fuzzy sets with respect to the

lack of knowledge entropy measure, where it is taken into account the upper

(Ax
U

i ) and lower (Ax
L

i ) bounds of each Axi for every i = 1, . . . , nx and x ∈ X.

As it has been done for the fuzziness entropy in the previous subsection,

the concept of local lack of knowledge is also important.

Definition 3.48 Let X be a finite set with cardinality N and the mapping

EL : IV HFS(X)→ [0, 1] a lack of knowledge entropy measure. EL is said

to be a local lack of knowledge entropy measure if there exists a function

f : FG([0, 1])→ [0, 1] such that for every xj ∈ X, given A ∈ IV HFS(X):

EL(A)− EL(A(j)) = f(µA(xj)),

or equivalently, it only depends on the term µA(xj).

Remark 3.49 Note that EL(A)−EL(A(j)) ∈ [0, 1] for all j = 1, . . . , n. By

construction, S(µA(x)) = S(µA(j)(x)), ∀x 6= xj. Furthermore, S(µA(j)(xj)) =

0, so it is obvious that S(µA(xj)) ≥ S(µA(j)(xj)), and by the last axiom of

a lack of knowledge entropy, EL(A) ≥ EL(A(j)).

From here on out, the following two results ease the obtaining of local

lack of knowledge entropy measures, with functions whose properties are

more manageable than the ones of the original definition.
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Theorem 3.50 Let X be a finite set with cardinality N and EL be the

mapping EL : IV HFS(X) → [0, 1]. Then, EL is a local lack of knowledge

entropy measure if and only if there exists a mapping h : FG([0, 1])→ [0, 1]

such that

EL(A) =
1

N

∑
x∈X

h(µA(x)).

which also satisfies the following four axioms, given I, J ∈ FG([0, 1]):

1. h(I) = 0⇔ Sc(Ii) = 0, ∀i = 1, . . . , nI ,

2. h(I) = 1⇔ I = [0, 1],

3. h(I) = h(Ic),

4. h(I) ≤ h(J) if Sc(I) ≤ Sc(J).

Proof. First, let us suppose that EL is a local lack of knowledge

entropy. By definition, it exists a function f : FG([0, 1])→ [0, 1] such that:

EL(A)− EL(A(j)) = f(µA(xj)), ∀j ∈ {1, . . . , N}.

Given A ∈ IV HFS(X), applying recursively the definition of local:

EL(A) = · · · = EL(A(1,...,N)) +
∑
x∈X

f(µA(x)).

However, µA(A(1,...,N))(x) ∈ {0, 1}, ∀x ∈ X, i.e., the score function applied

to each of them is equal to 0, and by the first axiom of lack of knowledge

entropy, EL(A(1,...,N)) = 0. Hence,

EL(A) =
∑
x∈X

f(µA(x)).
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In addition, it is known that EL(A) ∈ [0, 1] for every A ∈ IV HFS(X).

Then, for all xi ∈ X, applying the mapping EL to the set XµA(xi):

EL(XµA(xi)) =
∑
x∈X

f(µA(xi)) = Nf(µA(xi)) ∈ [0, 1]⇒ f(µA(xi)) ∈ [0,
1

N
].

Consequently, taking h : FG([0, 1])→ [0, 1] such that h(I) = Nf(I), it

is immediate that:

EL(A) =
1

N

∑
x∈X

h(µA(x)).

Now, let us see that h satisfies the four conditions of the theorem.

1. Given I ∈ FG([0, 1]) such that I = I1 ∪ · · · ∪ InI , let us take XI ∈
IV HFS(X) such that µXI (x) = I for all x ∈ X. Then:

EL(XI) =
1

N

∑
x∈X

h(µXI (x)) =
1

N

N∑
i=1

h(I) = h(I),

and therefore h(I) = 0 ⇔ EL(XI) = 0. EL satisfies the first ax-

iom of lack of knowledge entropy, so h(I) = 0 ⇔ Sc(Ii) = 0, for all

i = 1, . . . , nI and the first axiom is proved.

2. Given I ∈ FG([0, 1]), and XI ∈ IV HFS(X), it is direct that

h(I) = 1⇔ EL(XI) = 1,

and as EL satisfies the second axiom of Definition 3.47, I = [0, 1].

3. Given I ∈ FG([0, 1]), and XI ∈ IV HFS(X), it is obtained that

EL(XI) = h(I) and EL(XIc) = h(Ic), and as EL satisfies the third

axiom of a lack of knowledge entropy, EL(XI) = EL(Xc
I ) = EL(XIc)

and hence,

h(I) = h(Ic).
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4. Let I, J ∈ FG([0, 1]) such that Sc(I) ≤ Sc(J). Given XI , XJ ∈
IV HFS(X), as Sc(I) ≤ Sc(J) and EL satisfies the fourth axiom of

the lack of knowledge entropy, EL(XI) ≤ EL(XJ). However, EL(XI) =

h(I) and EL(XJ) = h(J), so

h(I) ≤ h(J).

Now, in order to proceed with the second part of the proof, it is sup-

posed that h satisfies the four conditions of the theorem, so it is needed to

prove that EL is a local lack of knowledge entropy. First, let us prove the

four conditions of Definition 3.47:

1. Given A ∈ IV HFS(X),

0 = EL(A) =
1

N

∑
x∈X

h(µA(x))⇔ h(µA(x)) = 0, ∀x ∈ X,

and as h satisfies (1), then Sc(µA(x)) = 0, ∀x ∈ X, and hence, it is a

finite union of singletons.

2. Given A ∈ IV HFS(X),

1 = EL(A) =
1

N

∑
x∈X

h(µA(x))⇔
∑
x∈X

h(µA(x)) = N,

and it is known by definition that h(I) ∈ [0, 1] for every finitely gen-

erated set, so the only possible situation is that

h(µA(x)) = 1⇔ µA(x) = [0, 1], ∀x ∈ X.

3. Given A ∈ IV HFS(X) and Ac its complement, as h satisfies the third

item of the theorem, it is known that h(J) = h(J c) for every finitely
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generated set, therefore:

EL(A) =
1

N

∑
x∈X

h(µA(x)) =
1

N

∑
x∈X

h(µA(x)c) =

=
1

N

∑
x∈X

h(µAc(x)) = EL(Ac).

4. Given A,B ∈ IV HFS(X) such that ∀x ∈ X:

Sc(µA(x)) ≤ Sc(µB(x)).

From the last inequality, as h satisfies the fourth axiom of the theorem,

h(µA(x)) ≤ h(µB(x)). Therefore:

EL(A) =
1

N

∑
x∈X

h(µA(x)) ≤ 1

N

∑
x∈X

h(µB(x)) = EL(B).

Finally, it must be proven that EL is also local:

(L) Given A ∈ IV HFS(X), for every xj ∈ X:

EL(A)− EL(A(j)) =

=
1

N

∑
x∈X

h(µA(x))− 1

N

 ∑
x∈X\{xj}

h(µA(x)) + h(µA(j)(xj))

 =

=
1

N
(h(µA(xj))− h(µA(j)(xj)) =

1

N
h(µA(xj)) = f(µA(xj)),

i.e., it only depends on the term µA(xj) for every j as µA(j)(xj) ∈ {0, 1}
and by hypothesis, h(µA(j)(xj)) = 0. Therefore, it is local. �

With the support of the previous result, the next corollary provides

a way to get local lack of knowledge entropies by a mapping with simpler

achievable conditions.
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Corollary 3.51 Let X be a finite set with cardinality N and let EL be the

mapping EL : IV HFS(X) → [0, 1]. Then, EL is a local lack of knowledge

entropy if and only if there exists a mapping g : [0, 1]→ [0, 1] such that

EL(A) =
1

N

∑
x∈X

g(Sc(µA(x))),

which also satisfies the following properties:

1. g(a) = 0⇔ a = 0,

2. g(a) = 1⇔ a = 1,

3. g is monotone increasing.

Proof. It is enough to see that the function h(I) = g(Sc(I)) fulfills

the four conditions of Theorem 3.50, and the result would be proven.

1. Given I ∈ FG([0, 1]),

h(I) = 0 = g(Sc(I)),

but for the first property that g satisfies, g(a) = 0⇔ a = 0, and then

S(I) = 0.

2. Given I ∈ FG([0, 1])

h(I) = 1 = g(Sc(I)),

and for the second property of g, Sc(I) = 1, which only happens when

I = [0, 1].
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3. Given I ∈ FG([0, 1]) such that I = I1 ∪ · · · ∪ In, and the complement

Ic = Ic1 ∪ · · · ∪ Icn. Given any i:

Ici = [1− IUi , 1− ILi ],

so

Sc(Ici ) = IUi − ILi = Sc(Ii).

Bearing this in mind, h(I) = h(Ic).

4. Let I, J ∈ FG([0, 1]) such that Sc(I) ≤ Sc(J). The third property

states that g is monotone increasing, hence:

g(Sc(I)) ≤ g(Sc(J))⇔ h(I) ≤ h(J).

Thus, the four axioms have been demonstrated. �

With this two last results, it has been found a way to obtain local

lack of knowledge entropy measures just with a mapping g satisfying the

properties of Corollary 3.51, which are less complicated to obtain than the

ones in the original definition of this entropy measure.

As it has been done with the first type of entropy, an example is given

next, starting from the last corollary.

Example 3.52 Let X be a finite set with cardinality N , and the mapping

EL : IV HFS(X)→ [0, 1] given by:

EL(A) =
1

N

∑
x∈X

nx∑
i=1

S(Axi ),

where µA(x) = Ax1∪· · ·∪Axnx ∈ FGnx([0, 1]), ∀x ∈ X, with Axi = [Ax
L

i , A
xU

i ], ∀i.
This is obviously a local lack of knowledge entropy, as it is the particular

case of Corollary 3.51 with g(a) = a.
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3.4.3 Hesitance entropy measure

The last part of the definition of entropy in an interval-valued hesitant

environment is given by a function which measures the distance of a set

to a single interval-valued fuzzy set. It has been called hesitance, and it is

defined as follows:

Definition 3.53 Let EH : IV HFS(X) → [0, 1] be a mapping, A,B ∈
IV HFS(X). EH is said to be a hesitance entropy measure if it satisfies the

following properties:

1. EH(A) = 0⇔ A ∈ IV FS(X),

2. lim
nAx→∞

EH(A) = 1 ∀x ∈ X,

3. EH(A) = EH(Ac),

4. EH(A) ≤ EH(B) if ∀x ∈ X:

nAx ≤ nBx ,

where

µA(x) =

nAx⋃
i=1

Axi and µB(x) =

nBx⋃
i=1

Bx
i ∀x ∈ X,

i.e., nAx and nBx represent the number of disjoint intervals that shapes

the set µA(x) and µB(x) respectively.

As it has been already said, a null entropy happens when the set is

an interval-valued fuzzy one. The second axiom remarks that the entropy

tends to its maximum when the number of sets defining µA(x) for each point

tends to infinite. In this axiom there is an abuse of notation: since A is

fixed, also nAx is; but with this expression we would like to say that, for any
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x, if we consider the infimum of the values of the entropies of the sets with

n disjoint intervalar components, the limit when n tends to infinity is equal

to 1. The third one, states that a set and its complement must have the

same entropy value. In the latter property, a set is greater than another

with respect to this entropy when for every point, the number of intervals

defining the set is also greater.

Next, an extension of this definition is given, adding the property of

local to hesitance entropy measures.

Definition 3.54 Let X be a finite set with cardinality N and the mapping

EH : IV HFS(X)→ [0, 1] a hesitance entropy measure. EH is said to be a

local hesitance entropy measure if there exists a function f : FG([0, 1]) →
[0, 1] such that for every xj ∈ X, given A ∈ IV HFS(X):

EH(A)− EH(A(j)) = f(µA(xj)),

or equivalently, it only depends on the term µA(xj).

Remark 3.55 Note that EH(A) − EH(A(j)) ∈ [0, 1] for all j = 1, . . . , n.

By construction, nAx = nA
(j)

x , ∀x 6= xj. Furthermore, nA
(j)

xj
= 1, so it is

obvious that nAxj ≥ nA
(j)

xj
, and by the last axiom of a hesitance entropy,

EH(A) ≥ EH(A(j)).

The next two results that are about to be developed, provide a way to

obtain local hesitance entropies with simpler conditions, avoiding the more

complex ones in the original definition previously given.

Theorem 3.56 Let X be a finite set with cardinality N and EH be the

mapping EH : IV HFS(X)→ [0, 1]. Then, EH is a local hesitance entropy

measure if and only if there exists a mapping h : FG([0, 1]) → [0, 1] such
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that

EH(A) =
1

N

∑
x∈X

h(µA(x)).

which also satisfies the following four axioms, given I, J ∈ FG([0, 1]) such

that I ∈ FGnI ([0, 1]) and J ∈ FGnJ ([0, 1]):

1. h(I) = 0⇔ nI = 1,

2. lim
nI→∞

h(I) = 1,

3. h(I) = h(Ic),

4. h(I) ≤ h(J) if nI ≤ nJ .

Proof. First, let us suppose that EH is a local hesitance entropy, and

by the definition of local for hesitance entropy, it is known that there exists

a function f : FG([0, 1])→ [0, 1] such that:

EH(A)− EH(A(j)) = f(µA(xj)), ∀j ∈ {1, . . . , N}.

Given A ∈ IV HFS(X), applying recursively the definition of local:

EH(A) = · · · = EH(A(1,...,N)) +
∑
x∈X

f(µA(x)).

However, µA(A(1,...,N))(x) ∈ {0, 1}, ∀x ∈ X, i.e., nAx = 1 ∀x ∈ X, and by

the first axiom of hesitance entropy, EH(A(1,...,N)) = 0. Hence,

EH(A) =
∑
x∈X

f(µA(x)).

In addition, it is known that EH(A) ∈ [0, 1] for every A ∈ IV HFS(X).

Then, for all xi ∈ X, applying the mapping EH to the set XµA(xi):

EH(XµA(xi)) =
∑
x∈X

f(µA(xi)) = Nf(µA(xi)) ∈ [0, 1]⇒ f(µA(xi)) ∈ [0,
1

N
].



3.4. Entropy 105

Consequently, taking h : FG([0, 1]) → [0, 1] such that h(I) = Nf(I), it is

immediate that:

EH(A) =
1

N

∑
x∈X

h(µA(x)).

Now, let us see that h satisfies the four conditions of the theorem.

1. Given I ∈ FGnI ([0, 1]) ⊆ FG([0, 1]) and XI ∈ IV HFS(X) such that

µXI (x) = I for all x ∈ X. Then:

EH(XI) =
1

N

∑
x∈X

h(µXI (x)) =
1

N

∑
x∈X

h(I) = h(I),

and therefore h(I) = 0 ⇔ EH(XI) = 0. EH satisfies the first axiom

of a hesitance entropy, so h(I) = 0 ⇔ nI = 1, and the first axiom is

proved.

2. Given I ∈ FGnI ([0, 1]) ⊆ FG([0, 1]), and XI ∈ IV HFS(X), it is

direct that

h(I) = 1⇔ EH(XI) = 1,

and as EH satisfies the second axiom of a hesitance entropy mea-

sure, lim
nx→∞

EH(XI) = 1, x ∈ X, and by definition, nI = nx, so

lim
nI→∞

h(I) = 1.

3. Given I ∈ FG([0, 1]), and XI ∈ IV HFS(X), it is obtained that

EH(XI) = h(I) and EH(XIc) = h(Ic), and as EH satisfies the third

axiom of a hesitance entropy, EH(XI) = EH(Xc
I ) = EH(XIc) and

hence,

h(I) = h(Ic).
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4. Let I, J ∈ FG([0, 1]) such that I ∈ FGnI ([0, 1]) and J ∈ FGnJ ([0, 1])

and nI ≤ nJ , and XI , XJ ∈ IV HFS(X). By the last axiom of a

hesitance entropy and the hypothesis nI ≤ nJ , EH(XI) ≤ EH(XJ),

and by definition of both interval-valued hesitant fuzzy sets, h(I) ≤
h(J).

To prove the converse, it is supposed that h satisfies the four conditions

of the theorem, so it is needed to prove that EH is a local hesitance entropy.

On one hand, the properties of Definition 3.53 must be proven:

1. Given A ∈ IV HFS(X),

0 = EH(A) =
1

N

∑
x∈X

h(µA(x))⇔ h(µA(x)) = 0, ∀x ∈ X,

and as h satisfies (1), then nx = 1, ∀x ∈ X where µA(x) =
nx⋃
i=1

Axi , or

equivalently, A ∈ IV FS(X).

2. Given A ∈ IV HFS(X), and by the second condition of the theorem,

lim
nI→∞

h(I) = 1, for every finitely generated set. Therefore, ∀x ∈ X:

lim
nx→∞

EH(A) = lim
nx→∞

1

N

∑
x∈X

h(µA(x)) =
1

N

∑
x∈X

lim
nx→∞

h(µA(x)) = 1.

3. Given A ∈ IV HFS(X) and Ac its complement. As h satisfies the

third item of the theorem, it is known that h(J) = h(J c) for every
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finitely generated set, therefore:

EH(A) =
1

N

∑
x∈X

h(µA(x)) =
1

N

∑
x∈X

h(µA(x)c) =

=
1

N

∑
x∈X

h(µAc(x)) = EH(Ac).

4. Given A,B ∈ IV HFS(X) where µA(x) =

nAx⋃
i=1

Axi and µB(x) =

nBx⋃
i=1

Bx
i ,

∀x ∈ X. Let us suppose that nAx ≤ nBx ∀x ∈ X, and by the fourth

axiom that h satisfies:

h(µA(x)) ≤ h(µB(x)), ∀x ∈ X,

and by construction of the mapping EH :

EH(A) =
1

N

∑
x∈X

h(µA(x)) ≤ 1

N

∑
x∈X

h(µB(x)) = EH(B).

On the other hand, let us prove that EH is also local:

(L) Given A ∈ IV HFS(X), for every xj ∈ X:

EH(A)− EH(A(j)) =

=
1

N

∑
x∈X

h(µA(x))− 1

N

 ∑
x∈X\{xj}

h(µA(x)) + h(µA(j)(xj))

 =

=
1

N
(h(µA(xj))− h(µA(j)(xj)) =

1

N
h(µA(xj)) = f(µA(xj)),

i.e., it only depends on the term µA(xj) for every j as µA(j)(xj) ∈ {0, 1}
and by hypothesis, h(µA(j)(xj)) = 0. Therefore, it is local. �
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The next result provides another step forward to simplify the conditions

required to obtain a local hesitance entropy measure, where a new mapping

is used to get it. Before the corollary, some notation is needed.

The mapping NInt : FG([0, 1]) → N provides the number of closed

disjoint subintervals that shape the finitely generated set. Given I =

nI⋃
i=1

Ii ∈

FG([0, 1]), NInt(I) = nI .

Corollary 3.57 Let X be a finite set with cardinality N and let EH be the

mapping EH : IV HFS(X)→ [0, 1]. Then, EH is a local hesitance entropy

if and only if there exists a mapping g : N→ [0, 1] such that

EH(A) =
1

N

∑
x∈X

g(NInt(µA(x))),

which also satisfies the following properties:

1. g(a) = 0⇔ a = 1,

2. lim
a→∞

g(a) = 1,

3. g is monotone increasing.

Proof. To prove the result, it is enough to see that the function

h(I) = g(NInt(I)) satisfies the four axioms in Theorem 3.56.

1. Given I ∈ FGnI ([0, 1]) ⊆ FG([0, 1]):

h(I) = g(NInt(I)) = 0,

but for the first property that g satisfies, g(a) = 0⇔ a = 1, and then

NInt(I) = nI = 1.
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2. Given I ∈ FGnI ([0, 1]) ⊆ FG([0, 1]):

lim
nI→∞

h(I) = lim
nI→∞

g(NInt(I)) = lim
nI→∞

g(nI),

but for the second property of g, lim
a→∞

g(a) = 1, and then lim
nI→∞

h(I) =

1.

3. Given I, Ic ∈ FGnI ([0, 1]) ⊆ FG([0, 1]) a finitely generated set I and

its complement Ic, as both are generated by the same number of closed

disjoint intervals:

h(I) = g(NInt(I)) = g(NInt(Ic)) = h(Ic).

4. Given I ∈ FGnI ([0, 1]) ⊆ FG([0, 1]) and J ∈ FGnJ ([0, 1]) ⊆ FG([0, 1])

such that nI ≤ nJ , it is known by the increasing monotony of g that:

h(I) = g(NInt(I)) = g(nI) ≤ g(nJ) = g(NInt(J)) = h(J).

Thus, all the axioms have been proved. �

As it has been done with the previous two mappings of this new def-

inition of hesitant entropy, these last two results get rid of the difficulties

associated to the third part of the entropy with functions which are easier

to obtain than the one in the original definition.

Again, a brief example is shown next to illustrate an obtainable partic-

ular case of local hesitance entropy by these last two results.

Example 3.58 Let X be a finite set with cardinality N . Let the mapping

EH : IV HFS(X)→ [0, 1] be given by:

EH(A) =
1

N

∑
x∈X

(1− 1

nx
),
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where µA(x) =
nx⋃
i=1

Axi , ∀x ∈ X.

Then, EH is a local hesitance entropy, as it is the particular case of

Corollary 3.57 with g(a) = 1− 1

a
.

Once that the three mappings have been defined and studied separately

in the last three subsections, the joint definition of entropy is given and

analyzed in the next one.

3.4.4 Joint hesitant entropy measure

The definition of the hesitant entropy proposed in this work is given next,

where the three mappings EF , EL and EH are put together in order to

measure different types of uncertainties associated to a hesitant fuzzy set.

Definition 3.59 Let EF , EL, EH : IV HFS(X)→ [0, 1] be three mappings.

The triplet (EF , EL, EH) is said to be a joint entropy measure in an interval-

valued hesitant fuzzy environment if EF , EL and EH satisfy the axioms of

Definitions 3.39, 3.47 and 3.53 and the local properties of Definitions 3.42,

3.48 and 3.54, respectively.

In order to illustrate the way that this entropy works and how it varies

depending on the type of interval-valued hesitant fuzzy sets used, the next

example has been carried out.

Example 3.60 Let us obtain a joint entropy measure (EF , EL, EH) through

the different results developed in the previous sections, specifically, Corol-

laries 3.45, 3.51 and 3.57 for EF , EL and EH respectively.

The set that we are working with has four elements: X = {x1, x2, x3, x4}.

Given A ∈ IV HFS(X) defined by µA(xi) =

nxi⋃
j=1

Axij =

nxi⋃
j=1

[A
xLi
j , A

xUi
j ], ∀xi ∈
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X:

• For EF , the dissimilarity measure selected is the hesitant normalized

Hamming dissimilarity, defined previously in Example 3.37, as well as

the function g(a) = 1− a2, which satisfies the properties of Corollary

3.45. The local fuzziness entropy obtained is given as:

EF (A) =
1

4

4∑
i=1

1−

(
1

nxi

nxi∑
j=1

(|Ax
U
i
j − 0.5|+ |Ax

L
i
j − 0.5|)

)2
 .

• For EL, the function g(a) = a2 is selected, which satisfies the proper-

ties of Corollary 3.51. The local lack of knowledge entropy obtained is

given as:

EL(A) =
1

4

4∑
i=1

( nxi∑
j=1

S(Axij )

)2

.

• For EH , the function g(a) = 1 − 1

a2
is selected, which satisfies the

properties of Corollary 3.57. The local hesitance entropy obtained is

given as:

EH(A) =
1

4

4∑
i=1

(
1− 1

n2
xi

)
.

Once that the three mappings are defined, the value of each one has

been obtained for different interval-valued hesitant fuzzy sets, as it is shown

in the Table 3.1.

Let us analyze each situation separately:

• A1: which is a crisp set, as the only values that it takes are 0 and 1.

As a result, all the entropies are null, i.e., (EF , EL, EH) = (0, 0, 0),

because the only values are 0 and 1 (EF (A1) = 0), they are single-

tons (EL(A1) = 0) and there is a single interval (point) for each xi
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IVHFS(X) A1 A2 A3 A4

x1 {1} {[0,0.4],[0.41,0.8],[0.81,1]} {0.5} {0}
x2 {0} {[0,0.4],[0.41,0.7],[0.71,1]} {[0.45,0.5]} {[0,0.004], [0.005,1]}
x3 {0} {[0,0.5],[0.51,0.7],[0.71,1]} {[0.5,0.55], [0.56, 0.6]} {[0.99,0.994], [0.995,1]}
x4 {1} {[0,0.5],[0.51,1]} {[0.4,0.6]} {1}
EF 0 0.9032 0.9995 0.0197

EL 0 0.9653 0.0126 0

EH 0 0.8542 0.1875 0.375

Table 3.1: Different entropy values for four interval-valued hesitant fuzzy

sets.

(EH(A1) = 0). This shows that it is possible to obtain a low value in

all of them with the same set.

• A2: whose values are all close to or include the point 0.5 (high value

of EF (A2)), the membership functions are close to the interval [0, 1]

(high value of EL(A2)) and for each point there are several intervals

defining the membership function (high value of EH(A2)). Hence, the

values of all the entropies are high, showing that this is possible in the

same set.

• A3: the memberships include and are all close to the point 0.5 (high

value of EF (A3)), the total lengths of the memberships are small (low

value of EL(A3)), and the number of intervals are one in three out of

the four elements (low value of EH(A3)).

• A4: the memberships are all close to the extremes 0 and 1 (low value

of EF (A4)), the total lengths of the memberships are very small (low

value of EL(A4)), and the number of intervals are one in two out of the

four elements and two in two out of the four elements (low-medium

value of EH(A4)).



3.4. Entropy 113

The last two sets show that the three mappings do not usually take sim-

ilar values as it happened in the sets A1 (low values) and A2 (high values).

In A3, EF (A3) is much higher than the other two, while in A4, it is EH(A4)

which takes a greater value.

Taking into account the results given in this example, it is straight-

forward to see that the variety of uncertainties that the new definition of

entropy quantify is reflected clearly in each shown example. Obviously, the

uncertainty associated to the definition of entropy given by Farhadinia in

[33], is included in our new proposal, as the first mapping of our definition

(EF ) represents a similar concept.

In summary, this new approach makes it possible to obtain the clas-

sical concept of entropy for other types of sets, which is the distance to a

crisp set, as well as another two uncertainties, related to the distance to a

fuzzy set and to an interval-valued fuzzy set, being up to the researcher the

importance given to each one in the studied situation.
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3.5 Partitions

Partitioning a set of elements is a task which has been of great importance

in statistics. The capability to classify these elements in groups with similar

features is a key point in the study of surveys in order to identify groups of

opinion. When the information is one-dimensional, the existence of an order

makes the task of partitioning much easier. However, it gets tougher when

data is multi-dimensional. Different approaches exist such as the classical

k-means to deal with these situations.

However, when dealing with fuzzy information, partitioning becomes

even harder to be carried out. Some fuzzy partitioning methods such as

Gustafson-Kessel and fuzzy c-means are experimentally used in the next

applications chapter.

In this section, we are generalizing the concepts about partitions given

by Montes et al. (see [51]) for fuzzy sets in Chapter 1. These results include

two different definitions of partitions for interval-valued hesitant fuzzy sets,

as well as several results and characterizations of these definitions.

First of all, it is necessary to extend the concept of α-cut and strong

α-cut for interval-valued hesitant fuzzy sets.

Definition 3.61 Let X be a non-empty set, A ∈ IV HFS(X) and α ∈
FG([0, 1]). Then:

Aα = {x ∈ X|µA(x) ≥1 α},

Aα = {x ∈ X|µA(x) >1 α},

represent the α-cut and strong α-cut of A respectively.
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Remark 3.62 As well as with the definition of t-norm and t-conorm, when

the previous α-cut definition given for interval-valued hesitant fuzzy sets is

restricted to fuzzy sets (A ∈ FS(X) and α ∈ [0, 1]), it matches the classical

definition of α-cut for such sets.

Once this previous concept is adapted, δ-ε-partition definition for this

type of sets is given as follows.

Definition 3.63 Let X be a non-empty set and A ∈ IV HFS(X). The

family Π = {Ai ∈ IV HFS(X)|i ∈ I}, where I is a finite subset of N, is a

δ-ε-partition with 0 ≤ ε < δ ≤ 1 if and only if

1. ( S
i∈I

(Ai))α = Aα,

2. T (Ai, Aj)α = ∅, ∀i 6= j,

for all α ∈ FG([0, 1]) such that {ε} <1 α <1 {δ}, where T and S are a

t-norm and a t-conorm respectively.

Remark 3.64 As it has been stated previously along this chapter, t-norms

(and t-conorms) and α-cuts defined in a hesitant environment, when they

are restricted to a classical fuzzy situation, their definitions match the usual

ones in this type of sets.

As a result, it is immediate to see that Definition 3.63 of δ-ε-partition,

when restricted to fuzzy sets, matches the one given by Montes et. al in [51]

for such sets.

This definition is the basis of this section. As a consequence, the forth-

coming results will be developed around it. Furthermore, an interesting

characteristic of this definition is given in the following Remark.
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Remark 3.65 If Definition 3.63 is restricted to fuzzy sets, it matches the

definition given originally for such sets. As a consequence, the classical

definition of partition given by Ruspini (Definition 1.48) can be obtained by

Lukasiewicz t-norm and t-conorm.

The next theorem, is a characterization of this definition of δ-ε-partition

for interval-valued hesitant fuzzy sets.

Theorem 3.66 Let X be a non-empty set and A ∈ IV HFS(X). The

family Π = {Ai ∈ IV HFS(X)|i ∈ I}, where I is a finite subset of N, is a

δ-ε-partition with 0 ≤ ε < δ ≤ 1 if and only if, ∀x ∈ X:

(1′)


S
i∈I

(Ai)(x) ≥1 {δ}, if µA(x) ≥1 {δ},

S
i∈I

(Ai)(x) = µA(x), if µA(x) >1 {ε} and µA(x) <1 {δ},

S
i∈I

(Ai)(x) ≤1 {ε}, if µA(x) ≤1 {ε},

(2′) T (Ai, Aj)(x) ≤1 {ε}, ∀i 6= j,

where T and S are a t-norm and a t-conorm respectively.

Proof. Assume first that Π is a δ-ε-partition, and prove that it sat-

isfies both axioms from the theorem. In order to prove (1′), all possible

situations are studied. Given x ∈ X:

• µA(x) ≥1 {δ}: let us suppose that S
i∈I

(Ai)(x) <1 {δ}. Then, by

Proposition 3.9, ∃α ∈ FG([0, 1]) such that S
i∈I

(Ai)(x) <1 α <1 {δ},
and we can suppose that also {ε} <1 α <1 {δ} (if not, applying

Proposition 3.9 to α and {δ} repeatedly if necessary, an element β ∈
FG([0, 1]) with such properties would be obtained). As a result, x ∈
Aα and x 6∈ ( S

i∈I
(Ai))α, which contradicts (1).

• µA(x) ≤1 {ε}: let us suppose that S
i∈I

(Ai)(x) >1 {ε}. Let us distin-

guish two situations:



3.5. Partitions 117

– ∃α ∈ FG([0, 1]) such that {ε} <1 α <1 S
i∈I

(Ai)(x): as in the

previous point, we can suppose that {ε} <1 α <1 {δ}. However,

x 6∈ Aα and x ∈ ( S
i∈I

(Ai))α, which contradicts (1).

– @α ∈ FG([0, 1]) such that {ε} <1 α <1 S
i∈I

(Ai)(x): by Proposi-

tion 3.10, H( S
i∈I

(Ai)(x)) = H({ε}) = ε, Sc( S
i∈I

(Ai)(x)) = Sc({ε}) =

0 and n{ε} = 1 < n S
i∈I

(Ai)(x) = 2.

However, ε <1 δ, so H( S
i∈I

(Ai)(x)) = H({ε}) < H({δ}), and as a

result S
i∈I

(Ai)(x) <1 {δ}. Then, given α = S
i∈I

(Ai)(x), {ε} <1 α

and {ε} <1 α <1 {δ}. As a result, x 6∈ Aα and x ∈ ( S
i∈I

(Ai))α,

which contradicts (1).

• µA(x) <1 {δ} and µA(x) >1 {ε}: let us suppose that S
i∈I

(Ai)(x) 6=
µA(x). Let us distinguish three situations:

– S
i∈I

(Ai)(x)||µA(x): given α = µA(x), {ε} <1 α <1 {δ}, so x ∈ Aα
and x 6∈ ( S

i∈I
(Ai))α, which contradicts (1).

– S
i∈I

(Ai)(x) <1 µA(x): given α = µA(x), {ε} <1 α <1 {δ}, so

x ∈ Aα and x 6∈ ( S
i∈I

(Ai))α, which contradicts (1).

– S
i∈I

(Ai)(x) >1 µA(x): it is necessary to study two different situa-

tions:

- ∃α ∈ FG([0, 1]) such that µA(x) <1 α <1 S
i∈I

(Ai)(x): it is

obvious that x 6∈ Aα and x ∈ ( S
i∈I

(Ai))α, which contradicts

(1).

- @α ∈ FG([0, 1]) such that µA(x) <1 α <1 S
i∈I

(Ai)(x): by

Proposition 3.10, H( S
i∈I

(Ai)(x)) = H(µA(x)), Sc( S
i∈I

(Ai)(x)) =

Sc(µA(x)) and nµA(x) < n S
i∈I

(Ai)(x) = nµA(x) + 1.

On one hand, µA(x) <1 {δ}, and as it has been shown in

the proof of Proposition 3.10, then H(µA(x)) < δ, and as
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a consequence, S
i∈I

(Ai)(x) <1 {δ}. On the other hand, by

hypothesis {ε} <1 µA(x) <1 S
i∈I

(Ai)(x), so {ε} <1 S
i∈I

(Ai)(x).

Then, given α = S
i∈I

(Ai)(x), it is obvious that x 6∈ Aα and

x ∈ ( S
i∈I

(Ai))α, which contradicts (1).

Once that (1′) has been proven, let us continue with the second axiom.

Given i, j such that i 6= j, let us suppose that T (Ai, Aj)(x) >1 {ε}, and

analyze the two different situations:

• ∃α ∈ FG([0, 1]) such that {ε} <1 α <1 T (Ai, AJ)(x): as it has been

done before in this proof, we can suppose that {ε} <1 α <1 {δ}.
However, it is obvious that x ∈ (T (Ai, Aj))α, which contradicts (2).

• @α ∈ FG([0, 1]) such that {ε} <1 α <1 T (Ai, AJ)(x): by Propo-

sition 3.10, H(T (Ai, AJ)(x)) = H({ε}) = ε, Sc(T (Ai, AJ)(x)) =

Sc({ε}) = 0 and n{ε} = 1 < nT (Ai,AJ )(x) = n{ε} + 1 = 2. In addition,

H(T (Ai, AJ)(x)) = H({ε}) < H({δ}), so {ε} <1 T (Ai, AJ)(x) <1 {δ}.
Given α = T (Ai, AJ)(x), x ∈ (T (Ai, Aj))α, which contradicts (2).

So the first implication has been demonstrated.

To prove the converse, let us start proving (1). Given α ∈ FG([0, 1])

such that {ε} <1 α <1 {δ}, the equality Aα = ( S
i∈I

(Ai))α must be proven.

(⊆) Given x ∈ Aα, by definition, µA(x) ≥1 α. Two different situations must

be studied:

• {ε} <1 µA(x) <1 {δ}: by property (1′), S
i∈I

(Ai)(x) = µA(x), so x ∈
( S
i∈I

(Ai))α.

• µA(x) ≥1 {δ}: by property (1′), S
i∈I

(Ai)(x) ≥1 µA(x), so x ∈ ( S
i∈I

(Ai))α.

(⊇) Given x ∈ ( S
i∈I

(Ai))α, by definition S
i∈I

(Ai)(x) ≥1 α. Let us suppose

that x 6∈ Aα:
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• µA(x) <1 α: if {ε} <1 µA(x), then by property (1′), S
i∈I

(Ai)(x) =

µA(x), which is a contradiction. If µA(x) ≤1 {ε}, then by property

(1′), S
i∈I

(Ai)(x) ≤1 {ε} <1 α, which is a contradiction.

• µA(x)||α: if µA(x) ≤1 {ε} or {δ} ≤1 µA(x), it would lead to a con-

tradiction with the incomparability. If {ε} <1 µA(x) <1 {δ}, then by

property (1′), S
i∈I

(Ai)(x) = µA(x)||α, which is also a contradiction.

In order to prove (2), by property (2′), it is known that T (Ai, Aj)(x) ≤1

{ε}, ∀i 6= j,∀x ∈ X. However, given {ε} <1 α <1 {δ}, T (Ai, Aj)(x) ≤1

{ε} <1 α, and T (Ai, Aj)α = ∅, ∀i 6= j.

So the second implication has been proven, and as a consequence, as

well the whole result. �

After this characterization, another definition of partition is given, ε-ε-

partition for interval-valued hesitant fuzzy sets.

Definition 3.67 Let X be a non-empty set and A ∈ IV HFS(X). The

family Π = {Ai ∈ IV HFS(X)|i ∈ I}, where I is a finite subset of N, is a

ε-ε-partition with ε ∈ [0, 1] if and only if

1.

 A{ε} ⊆ ( S
i∈I

(Ai)){ε},

( S
i∈I

(Ai)){ε} ⊆ A{ε},

2. T (Ai, Aj){ε} = ∅, ∀i 6= j,

where T and S are a t-norm and a t-conorm respectively.

The next result analyzes the properties of these two last definitions

(δ-ε-partition and ε-ε-partition), studying how the relation between the pa-

rameters affect the preservation of the properties.
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Theorem 3.68 Let X be a non-empty set, A ∈ IV HFS(X), and the fam-

ily Π = {Ai ∈ IV HFS(X)|i ∈ I}, where I is a finite subset of N a δ-ε-

partition with 0 ≤ ε ≤ δ ≤ 1. Then Π is a δ′-ε′-partition ∀ε′, δ′ ∈ [0, 1] such

that ε ≤ ε′ ≤ δ′ ≤ δ.

Proof. If ε′ < δ′, it is obvious by definition of δ-ε-partition. Let us suppose

that ε′ = δ′. Both axioms of Definition 3.67 must be proven:p

1. Firstly, given x ∈ A{ε′}, by definition, µA(x) >1 {ε′}. Let us distin-

guish two situations:

• µA(x) <1 {δ}: by Theorem 3.66, S
i∈I

(Ai)(x) = µA(x) >1 {ε′}, and

therefore, x ∈ ( S
i∈I

(Ai)){ε′} ⊆ ( S
i∈I

(Ai)){ε′}.

• µA(x) ≥1 {δ}: by Theorem 3.66, S
i∈I

(Ai)(x) ≥ {δ} ≥1 {ε′}, and

therefore, x ∈ ( S
i∈I

(Ai)){ε′}.

Given x ∈ ( S
i∈I

(Ai)){ε′}, by definition, S
i∈I

(Ai)(x) >1 {ε′}. Let us study

two different situations:

• ε′ > ε:

x ∈ ( S
i∈I

(Ai)){ε′} ⊆ ( S
i∈I

(Ai)){ε′} = A{ε′},

by definition of δ-ε-partition.

• ε′ = ε: then ∃η ∈ (ε, δ], such that S
i∈I

(Ai)(x) >1 {ε′} = {ε} > {η}.
Therefore:

x ∈ ( S
i∈I

(Ai)){η} ⊆ ( S
i∈I

(Ai)){η} = A{η} ⊆ A{ε} = A{ε′},

by definition of δ-ε-partition and ε < η.

2. As in the previous axiom, let us study two different situations, given

i 6= j:
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• ε′ > ε:

T (Ai, Aj){ε′} ⊆ T (Ai, Aj){ε′} = ∅,

• ε′ = ε: let us suppose that ∃x ∈ T (Ai, Aj){ε′}, i.e., T (Ai, Aj)(x) >1

{ε′}. Then, ∃η ∈ (ε, δ], such that T (Ai, Aj)(x) >1 {ε′} = {ε} >1

{η}, and therefore, x ∈ T (Ai, Aj){η} = ∅ by definition of δ-ε-

partition, which is a contradiction. �

Finally, from these definitions, equivalence relations are easily obtained,

associated to ε and δ, as stated in the next definition.

Definition 3.69 Let X be a non-empty set, A,B ∈ IV HFS(X) and 0 ≤
ε ≤ δ ≤ 1. Then:

A =(ε,δ) B ⇐⇒ Aα = Bα, ∀α ∈ FG([0, 1]) such that {ε} <1 α <1 {δ}.

Theorem 3.70 Given 0 ≤ ε ≤ δ ≤ 1, the relation =(ε,δ) is an equivalence

relation.

Proof. Reflexivity, transitivity and symmetry must be proven. All three

are shown just by applying the definition straightforwardly. �

Additionally, the original definition of δ-ε-partition can be also rewrit-

ten in terms of this equivalence relation.

Proposition 3.71 Let X be a non-empty set and A ∈ IV HFS(X). The

family Π = {Ai ∈ IV HFS(X)|i ∈ I} where I is a finite subset of N, is a

δ-ε-partition with 0 ≤ ε < δ ≤ 1 if and only if:

(1) S
i∈I

(Ai)) =(ε,δ) A,

(2) T (Ai, Aj) =(ε,δ) ∅, ∀i 6= j,
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where T and S are a t-norm and a t-conorm respectively.

Proof. It is immediate to prove it, as by definition of =(ε,δ), and bearing

in mind that ∅α = ∅, both pairs of axioms are equivalent. �

Along this section, we have adapted some definitions of partition given

by Montes et al. in [51], where some of the characterizations and results

given for fuzzy sets, have been generalized to interval-valued hesitant fuzzy

sets.

These new definitions, when they are restricted to fuzzy sets, match the

original definitions, obtaining classical definitions of fuzzy partitions, such

as Ruspini’s by selecting Lukasiewicz t-norm and t-conorm.



Chapter 4

Applications

In this chapter we have carried out two applications: protection of privacy

in microdata and detection of edges in grey scale images.

The first application is devoted to the study of the protection of privacy

in microdata, and a new approach involving the use of fuzzy partitions

instead of the classical crisp point of view in this type of problem. In

addition, an experimentation has served as a basis to prove the goodness of

our proposal.

The second one is focused on the development of a new method to detect

edges in grey scale images, applying methods to obtain interval-valued fuzzy

relations from a fuzzy relation, which represents the original image. As well

as in the previous application, an experimentation has been carried out in

order to compare the results with other existing methods.

This chapter is structured in two sections covering the protection of

privacy in microdata and the detection of edge images, respectively.

123
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4.1 Protection of privacy in mi-

crodata

The sharing and diffusion of information is maybe the most common ac-

tivity in the networked society. Therefore, the microdata (i.e., those data

not summarized by some statistics but related to individuals) mining is

becoming basic in an open range of fields such as Medicine or Business.

Microdata are often presented by tables containing information about indi-

viduals. With the purpose of avoiding individuals to be uniquely identified,

a common practice for organizations is to remove explicit identifiers such as

name, phone number or social security number. However, although some-

times the published table looks anonymous, the privacy of the released data

is involuntary compromised. For example, joining the data available in a re-

leased table with some publicly available database (like census database) or

other attributes (for example race or ZipCode) can be used to identify indi-

viduals. The problem of protecting private information is actually legislated

in several countries. The most representative laws regulating this task are

the United States Healthcare Information Portability and Accountability

Act and European Union directive 95/46/EC.

Therefore, as some public administrations are required to make public

certain information, there is a need to find the balance between the right

to privacy and the data dissemination. In order to avoid the identification

of individuals, some techniques have been developed. Most of them are

based on grouping individuals into equivalence classes, as the well known k-
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anonymity. Samarati in [66] and Sweeney et al. in [70] define this technique

as the property that makes every individual in the data indistinguishable

from al least other k−1 individuals. There are many techniques to efficiently

achieve k-anonymous tables, as the ones proposed by [66] and [70], or some

more elaborated techniques, as the one given by Maimon et al. (see [47]).

However, k-anonymity does not represent a good protection if sensi-

tive values in an equivalence class lack diversity (homogeneity attack). A

new technique was developed by Machanavajjhala et al. (see [35]) called

l-diversity, that requires the sensitive attributes in each group of k indistin-

guishable individuals to have at least l well represented different values.

The l-diversity presents also some drawbacks, mainly based on bias and

similarity attacks. For instance, if the sensitive attribute is numeric, the l-

diversity does not take into account that some values can be very similar.

To solve this similarity attacks, a new technique was recently developed by

Li et al. in [45], known as t-closeness, which establishes that the distribution

of the sensitive attribute in each equivalence class has to be similar to the

one in the whole table. In this approach, the similarity is measured by

means of the Earth Mover’s Distance (see [45]).

There are other approaches to preserve privacy in data contexts. For

example, in [21] it is introduced local suppression to achieve a tailored

privacy model for trajectory data anonymization. Zhong in [84] studies

how to maintain privacy in distributed mining of frequent itemsets without

revealing each party’s portion of the data to the other. Other highlighted

works about this issue can be seen in [14, 30, 63, 68].

Each technique has a weak point. The proposal made in this section is

based on the use of fuzzy sets properties to improve these techniques and to

get a better protection. Therefore, each attribute will be masked by fuzzy

partitions instead of the crisp ones. This is not a simple generalization, as
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it requires a different cardinality (see [28]). The goal of this section is to

protect released data using fuzzy set theory and to check the performance

of this approach.

4.1.1 Basic concepts

This subsection is devoted to describe the methods and tools related to

privacy upon which this work is based. For a more detailed description see

[23, 35, 44].

Microdata are represented by tables (denoted by T ), where the rows

represent the individuals, and the columns the attributes defining these

individuals. In a privacy context, two types of attributes are defined, the

sensitive ones (the ones to be protected, denoted by S), and the non sensitive

ones (the others, denoted by Q). A quasi-identifier (denoted by QI) is a

subset of the non sensitive attributes.

Example 4.1 Table 4.1 shows the information of 12 individuals, with re-

spect to three attributes, where the sensitive one is the Illness, as this in-

formation must not be publicly associated to the individual. On the other

hand, the non sensitive attributes are the ZIP code and the Age. Formally,

S = {Illness} and Q = {ZIP, Age}. Q, Q1 = {Illness} and Q2 = {Age}
are the possible quasi-identifiers in this case.

However, it is easily detected the poor privacy protection provided by

a table like the one given in the previous example in Table 4.1. A direct

relation between the non sensitive attribute and the sensitive one makes it

possible to obtain sensitive information with a small amount of knowledge

(in Table 4.1, knowing an individual who is in the data and is 22 years old

leads to discovering the illness of such person: gastritis).
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Individual ZIP Age Illness

1 47677 29 gastric ulcer

2 47602 22 gastritis

3 47678 27 stomach cancer

4 47905 43 gastritis

5 47979 52 flu

6 47906 47 broncuitis

7 47973 36 pneumonia

8 47607 32 stomach cancer

9 47906 55 heart attack

10 47925 56 heart attack

11 47923 61 angina

12 47923 67 pneumonia

Table 4.1: Example of microdata.

In order to overcome this problem, the classical procedure is to apply

crisp partitions to the quasi-identifier, so this direct identification is not as

straightforward as in the original data. The definition of crisp partition is

the usual one, where the sets are pairwise disjoint and the union of all of

them gets the whole set.

Example 4.2 Given Table 4.1, crisp partitions are applied to non sensitive

attributes. ZIP code can be split into two subsets, {476**, 479**}. Mean-

while, Age into four: {[0, 30], (30, 40], (40, 50], (50,∞]}. Then, we obtain

Table 4.2 as a result of applying these two partitions.

In Table 4.2, the individuals have been grouped in function of the value

of the quasi-identifier, where in each block, they are indistinguishable with

respect to them.
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Individuo ZIP Edad Enfermedad

1 476** [0,30] gastric ulcer

2 476** [0,30] gastritis

3 476** [0,30] stomach cancer

7 479** (30,40] pneumonia

8 476** (30,40] stomach cancer

4 479** (40,50] gastritis

6 479** (40,50] broncuitis

5 479** (50,∞] flue

9 479** (50,∞] heart attack

10 479** (50,∞] heart attack

11 479** (50,∞] angina

12 479** (50,∞] pneumonia

Table 4.2: Example with crisp partitions applied.

Formally, a q∗-block of a table T is given by the individuals which are

indistinguishable with respect to the quasi-identifier QI and which value for

such attributes is q∗.

It is obvious that the simple use of partitions is not enough, as some

blocks can be represented by a single individual, and as a result, the sensitive

information is compromised.

Partitions are used to mask microdata in order to obtain a new table,

which is meant to be released minimizing the risk of revealing private in-

formation. However, some additional properties are mandatory in order to

obtain a proper protection. The ones studied here, are the most well-known

techniques, and will be deeply analyzed in the next subsection.
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4.1.2 Protection techniques

The three techniques studied in this subsection are k-anonymity, l-diversity

and t-closeness, and as it will be explained, each one protects the informa-

tion from different types of attacks.

k-anonymity

This first technique is of great importance in order to protect the data from

attacks like the one shown in Example 4.2, where a block is shaped by a

single individual. Samarati and Sweeney (see [66, 70]) define a k-anonymous

table as the one that makes every individual in the data indistinguishable

from al least other k − 1 individuals.

Definition 4.3 A table T satisfies k-anonymity if for all tuple t ∈ T , there

exists other k−1 tuples indistinguishable with respect to the quasi-identifier,

i.e., it exists ti1 , . . . , tik−1
∈ T such that t[QI] = ti1 [QI] = · · · = tik−1

[QI],

where t[QI] denotes the values taken by the tuple t for the quasi-identifier

QI.

Example 4.4 Given Table 4.1, and applying the partitions {476**, 479**}
for the ZIP code and {[0, 32], (32, 52], (52,∞]} for Age, Table 4.3 is the

resulting table.

This table is 4-anonymous, as each block has at least 4 individuals,

which are indistinguishable with respect to the quasi-identifier {Zip, Age}.

This technique also has some drawbacks. The most important one lies

in the homogeneity of the sensitive attribute. If all the sensitive values of a

block are the same, the privacy is again compromised. To prevent this type

of attack a new metric is developed: l-diversity.
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Individuo ZIP Age Illness

1 476** [0, 32] gastric ulcer

2 476** [0, 32] gastritis

3 476** [0, 32] stomach cancer

8 476** [0, 32] stomach cancer

4 479** (32, 52] gastritis

5 479** (32, 52] flu

6 479** (32, 52] broncuitis

7 479** (32, 52] pneumonia

9 479** (52,∞] heart attack

10 479** (52,∞] heart attack

11 479** (52,∞] angina

12 479** (52,∞] pneumonia

Table 4.3: 4-anonymous example.

l-diversity

The main goal of this technique is to measure the diversity of the sensi-

tive attribute in each block, thus dealing with and, as a result, avoiding

homogeneity attacks (see [35]).

Definition 4.5 A q∗-block is l-diverse if it contains at least l well-represented

values for the sensitive attribute S. A table is l-diverse if every q∗-block is

l-diverse.

Associated to the l-diversity technique can be found the concepts of

prior and posterior belief. The second one is obtained as stated in the next

result through a generalization (from the original table T to the new one

T ∗), where the sensitive value is s given that the non sensitive value is q. It
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is computed as follows (see [35]).

Theorem 4.6 Let q be a value of the non sensitive attributes Q in the

table T ; q∗ be the generalized values of q in the private table T ∗; s be a

possible value of the sensitive attribute; n(q∗, s′) be the number of tuples

t∗ ∈ T ∗ where t∗[Q] = q∗ and t∗[S] = s′; and f(s′|q∗) be the conditional

probability of the sensitive attribute conditioned on the fact that the non

sensitive attributes Q can be generalized to q∗. Then the posterior belief is

defined by:

β(q,s,T ∗) =

n(q∗,s)
f(s|q)
f(s|q∗)∑

s′∈S

n(q∗,s′)
f(s′|q)
f(s′|q∗)

.

Example 4.7 The protected Table 4.3, in addition to be 4-anonymous, it

is also 3-diverse, as in each block, at least 3 different sensitive values are

possible.

Even if a table satisfies l-diversity, it could be attacked using similarity

of values. If all the possible sensitive values in a block are similar or closely

related, the attacker can get some undesirable extra information. In order

to deal with such drawback, the last technique helps to deal with it: t-

closeness.

t-closeness

t-closeness (see [45]) protects the data from the similarity attacks previ-

ously mentioned as a weak point of l-diversity. The procedure of this new

technique is developed as follows.

Suppose an attacker has a prior belief about the sensitive attribute of

an individual (denoted by B0). He gets the information about the whole
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published table (denoted by W ). Then his belief changes to B1. After iden-

tifying the values of the quasi-identifier, the attacker identifies the block the

individual belongs to, obtaining the distribution of the sensitive attribute

in that block (denoted by P ). Then, the attacker’s belief changes to B2.

B0
W−−→ B1

P−−→ B2

Assuming that the information given by W is public, if the goal is to

minimize B2−B0, B2−B1 should be minimized. To measure that distance

the Earth Mover’s Distance (see [45]) was used. The next definition is

devoted to the Earth Mover’s Distance for both quantitative and qualitative

attributes.

Definition 4.8 Let P = (p1, . . . , pm) be the distribution of the sensitive

attribute in the block, W = (w1, . . . , wm) the distribution of the sensitive

attribute in the whole table and {v1, . . . , vm} the values assumed by the sen-

sitive attribute. The Earth Mover’s Distance is split into two cases, given

ri = pi − wi, ∀i = 1, . . . ,m:

• Quantitative sensitive attribute: {v1, . . . , vm} are numerical val-

ues ordered increasingly, then:

D[P,W ] =
1

m− 1

m∑
i=1

∣∣∣∣∣
i∑

j=1

rj

∣∣∣∣∣ .
• Qualitative sensitive attribute:

D[P,W ] =
1

2

m∑
i=1

|ri|.

Based on this distance, the definition of t-closeness is given as follows.
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Definition 4.9 A block is said to satisfy t-closeness if the distance between

the distribution of a sensitive attribute in this class P and the distribution

of the attribute in the whole table W is no more than a threshold t. A table

is said to have t-closeness if all blocks have t-closeness.

Example 4.10 Let Table 4.4 be a protected one by a partition of the non

sensitive attributes (ZIP code and Age), where the sensitive one is Salary.

Individuo ZIP Age Salary(k)

1 476** [0, 30) 3

2 476** [0, 30) 4

3 476** [0, 30) 5

4 479** [40,∞) 6

5 479** [40,∞) 11

6 479** [40,∞) 8

7 476** [30, 40) 7

8 476** [30, 40) 9

9 476** [30, 40) 10

Table 4.4: 3-anonymity, 3-diversity, 0.1667-closeness example.

There are 3 blocks in the table, with 3 individuals each one, hence, it

is a 3-anonymous table. In each block, there are 3 different values of the

sensitive attribute, so the table is 3-diverse.

Regarding the study of the t-closeness, given {3, . . . , 11} the set of values

that the sensitive attribute take, the distributions in the whole table (W ) and
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in each block (P1, P2, P3) are given by

W = (
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
),

P1 = (
1

3
,
1

3
,
1

3
, 0, 0, 0, 0, 0, 0),

P2 = (0, 0, 0,
1

3
, 0,

1

3
, 0, 0,

1

3
),

P3 = (0, 0, 0, 0,
1

3
, 0,

1

3
,
1

3
, 0).

Applying the Earth Mover’s Distance for each q∗-block, the obtained

values are D[P1,W ] = 0.375, D[P2,W ] = 0.1667 and D[P3,W ] = 0.2361.

Hence, t = min(0.375, 0.1667, 0.2361) = 0.1667.

In order to conclude this subsection, a diagram of the different types

of attacks and the developed techniques is given in Figure 4.1.

Figure 4.1: Relationships between privacy metrics and different attacks.
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As it can be read in Figure 4.1, the additional information attack is

common to all the techniques. Obviously, if an attacker has at his disposal

a great amount of information to cross with the released data, he can dis-

card possible values of the sensitive attribute, reducing the privacy of such

data. However, this additional information can not be dealt with, as it is

impossible to know the attacker’s additional background knowledge.

4.1.3 Fuzzy approach

In this subsection, the new approach using fuzzy partitions instead of the

usual crisp partitions is given. This new point of view uses the good proper-

ties of fuzzy sets to protect the privacy of data by the uncertainty associated

to them.

In a k-anonymous table the equivalence classes are constructed so that

each individual record is indistinguishable from at least k−1 records within

the same class (with regard to the quasi-identifier). This condition might

not be enough, as sensitive information could be homogeneously associated

to individuals within the same class. This drawback could be overcome by

introducing a fuzzy model. A priori, the fuzzyfied released table provides a

first level of privacy as some uncertainty is introduced to protect the data

against an attacker.

However, the introduction of fuzziness requires a redefinition in terms

of fuzzy sets of the aforementioned metrics. Two concepts are needed to

carry it out. The definitions of the selected fuzzy cardinality and fuzzy

partition.

The cardinality selected for this application has been the non-fuzzy

cardinality given by Ralescu in [61] (Definition 1.42). This cardinality, as it

has been stated in Chapter 3, can be obtained as a scalar cardinality defi-
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nition for interval-valued hesitant fuzzy sets (Definition 3.23) restricted to

fuzzy sets, as given in Example 3.32. Furthermore, we associate a possibility

measure to this cardinality, given by

Poss(|A|R ≥ k) =

{
µ(k), if k ≥ j,

(1− µ(j)) ∨ µ(j), if k < j,

where

j =

{
max{1 ≤ s ≤ n | µ(s−1) + µ(s) > 1}, if A 6= ∅,
0, if A = ∅,

,

and µ(1), . . . , µ(n) represent the membership degrees of A ordered decreas-

ingly.

On the other hand, Ruspini’s fuzzy partition definition is the one used

for this proposal, given in [65] (Definition 1.48). In addition, as it has been

mentioned in Chapter 3, the new definition of δ-ε-partition (Definition 3.63),

when it is restricted to fuzzy sets, matches the original definition (Definition

1.49), being able to obtain the classical Ruspini’s fuzzy partition definition,

by selecting Lukasiewicz t-norm and t-conorm.

Next, different generalizations of the previous techniques are given and

explained in detail. First, it is introduced a new privacy metric based on

assigning a fuzzy number to anonymity. Secondly, it is checked that the

traditional privacy metrics l-diversity and t-closeness can be extended using

fuzzy partitions, along with several results and examples in order to get a

better understanding of these new techniques.

Q-anonymity

The first technique is an adaptation of the classical k-anonymity. It is

obtained in a different way than the other studied techniques, where a

possibility measure and an aggregation operator are used.
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Definition 4.11 Let T be a table with attributes {A1, . . . , An}, and let FQ

be a fuzzy quasi-identifier associated with it. The Q-anonymity of T with

respect to FQ is given by:

Poss(|T |R ≥ Q) = T (βf1 , . . . , βfs),

where

• T [FQ]1, . . . , T [FQ]s are the different fuzzy classes that shape the fuzzy

partition,

• Poss is the aforementioned possibility measure,

• βfi is the possibility that T [FQ]i has at least Q elements and

• T is an aggregation operator, i.e., a mapping T : ∪n∈N[0, 1]n → [0, 1]

fulfilling the boundary conditions (T (0, . . . , 0) = 0 and T (1, . . . , 1) =

1), being the identity when unary (T (x) = x,∀x ∈ [0, 1]) and be-

ing increasing (∀n ∈ N : x1 ≤ y1, . . . , xn ≤ yn ⇒ T (x1, . . . , xn) ≤
T (y1, . . . , yn)) (see [37]).

An example is given next so it is easier for the reader to understand

how to obtain the value provided by this technique.

Example 4.12 The original data with which we are working in this ex-

ample are given in Table 4.5, where the sensitive attribute, as usual in the

examples along this section, is Illness.

The fuzzy partition carried out is given by the sets Y oung = (−∞; 30; 36),

Adult = (30; 36; 54; 60) and Advanced Age = (54; 60;∞). This partition

leads us to Table 4.6, whose Q-anonymity value is obtained through the

results shown in Table 4.7 by selecting as aggregation operator the average.
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Individual Age Illness

1 21 gastritis

2 24 flu

3 32 stomach ulcer

4 36 gastritis

5 45 pneumonia

6 56 flu

7 58 heart attack

8 62 heart attack

9 65 pneumonia

Table 4.5: Original data for Q-anonymity example.

Age Illness

gastritis

Young flu

stomach ulcer

gastritis

Adult pneumonia

flu

Advanced Age
heart attack

pneumonia

Table 4.6: Data after applying a fuzzy partition to attribute Age.

In this case, the value obtained for the Q-anonymity of Table 4.6 through

Table 4.7 is Q = 3, as it is given by the greatest value of Q where Poss(|T |R ≥
Q) ≥ 0.5.
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Q=1 Q=2 Q=3 Q=4

Poss(Young) 0.67 0.67 0.67 0

Poss(Adult) 0.67 0.67 0.67 0

Poss(Advanced Age) 0.67 0.67 0.67 0.33

Poss(|T |R ≥ Q) 0.67 0.67 0.67 0.11

Table 4.7: Values associated with Q-anonymity.

Although this technique provides a better protection than the classical

one with respect to the homogeneity attack thanks to the labels assigned

to the non-sensitive attribute, there is a necessity for another technique in

order to give further security against this type of attacks. To do so, the

generalization of l-diversity is analyzed in the next part of the subsection.

l-diversity

The focus of the beginning of this part is on the generalization of the ob-

taining of the posterior belief (Theorem 4.6), or what is the same, of the

expression

β(q,s,T ∗) =

n(q∗,s)
f(s|q)
f(s|q∗)∑

s′∈S

n(q∗,s′)
f(s′|q)
f(s′|q∗)

.

In order to do it, we are adapting each term one by one. Firstly, as

in the fuzzy case the element q∗ does not exist, it is substituted by the

membership functions associated to each partition. Secondly, the values

n(s, q, T ∗) are defined as follows:

Definition 4.13 Let s ∈ S and q ∈ Q, where S and Q are the sensi-

tive and non sensitive attributes, respectively. Given the fuzzy partition
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{Q1, . . . , Qn}, the term n(s, q, T ∗) denotes the number of elements in the

generalized table whose values are s and q for the sensitive and non sensi-

tive attributes respectively. Then,

n(s, q, T ∗) =
n∑
i=1

µQi(q) · |Qi ∩ s|R.

The adaptation of the term
f(s|q)
f(s|q∗)

is given next. f(s|q) is obtained

analogously to the classical situation, while for the term f(s|q∗) we proceed

in a similar way to how we did for n(s, q, T ∗).

Definition 4.14 Let s ∈ S and q ∈ Q, where S and Q are the sensi-

tive and non sensitive attributes, respectively. Given the fuzzy partition

{Q1, . . . , Qn}, then

f(s|q∗) =
r∑
i=1

µQi(q) · f(s|Qi),

where

f(s|Qi) =
|s ∩Qi|R
|Qi|R

∀i ∈ {1, . . . , n}.

Finally, it is necessary to prove that f(·|Qi) is a probability as previ-

ously defined.

Theorem 4.15 f(·|Qi) given as in Definition 4.14 is a probability, for any

i = 1, . . . , n.

Proof. Let us prove that f(·|Qi) satisfies the three axioms of Kol-

mogorov.

• f(s|Qi) ≥ 0: Obvious by construction,
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• f(S|Qi) = 1:

f(S|Qi) =
|S ∩Qi|R
|Qi|R

=
|Qi|R
|Qi|R

= 1.

• Given (An)n ⊂ S, pairwise disjoint,

f(∪nAn|Qi) =

∣∣∣∣∣⋃
n

An ∩Qi

∣∣∣∣∣
R

|Qi|R
=

∣∣∣∣∣⋃
n

(An ∩Qi)

∣∣∣∣∣
R

|Qi|R

=

∑
n

|An ∩Qi|R

|Qi|R
=
∑
n

|An ∩Qi|R
|Qi|R

=
∑
n

f(An|Qi).

So the three axioms have been demonstrated, and as a result, f(·|Qi) is a

probability. �

Bearing all this results in mind, it is possible to define the posterior

belief in the fuzzy case as follows.

Definition 4.16 Let s ∈ S and q ∈ Q, where S and Q are the sensi-

tive and non sensitive attributes, respectively. Given the fuzzy partition

{Q1, . . . , Qn}, then,

β(q,s,T ∗) =

(
n∑
i=1

µQi(q) · |Qi ∩ s|R

)
f(s|q)

n∑
i=1

µQi(q) ·
|Qi ∩ s|R
|Qi|R∑

s′∈S

(
n∑
i=1

µQi(q) · |Qi ∩ s′|R

)
f(s′|q)

n∑
i=1

µQi(q) ·
|Qi ∩ s′|R
|Qi|R

.

Therefore, the definition of l-diversity is consistent when using fuzzy

partitions, only adapting the corresponding posterior believes to the case
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of using fuzzy sets. As a consequence, the definition of l-diversity for fuzzy

partitions is given as follows.

Definition 4.17 Given a table T with a fuzzy partition {Q1, . . . , Qn}, T is

l-diverse if for every Qi, there exists at least l well-represented values for

the sensitive attribute.

Example 4.18 Given the Table 4.6 with a fuzzy partition in the non sen-

sitive attribute Age, it is straightforward to see that it satisfies a l-diversity

for l = 2.

The use of labels is again a weapon that makes this approach more

interesting than the classical one, and as a result, it is better protected

against similarity attacks. However, an extension of t-closeness is given

next so a better level of protection is provided.

t-closeness

The consistence of t-closeness is checked when fuzzy partitions are used.

Remember that t-closeness minimizes the distance between the distribution

of the sensitive attribute in the whole table and the distribution of the

sensitive attribute associated to each block of the table in the crisp case.

However, in the fuzzy case, this comparison is carried out between the

whole distribution and the distribution associated to each individual of the

table instead of each block. It is necessary to prove that the expression

associated to an individual given in the next result is also a probability in

order to define correctly the technique.

Theorem 4.19 Let A1, . . . , An be the non sensitive attributes and S be the

sensitive one, where s1, . . . , sm are the values that it can assume. Given
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{Q1, . . . , Qr} a fuzzy partition, W = (w1, . . . , wm) the distribution of the

sensitive attribute in the whole table, P1, . . . , Pr the distribution in Q1, . . . , Qr

respectively, with Pi = (pi1, . . . , p
i
m), ∀i = 1, . . . , r, and µQi the member-

ship function of Qi for each i. Then, for all x individual,

Px =
r∑
i=1

µQi(x) · Pi

is a probability distribution.

Proof. Consider Px = (p1, . . . , pm) associated to each x. To check

that Px is a probability distribution, it is proved that Px is non negative

(pi ≥ 0) and
m∑
i=1

pi = 1.

• pi ≥ 0, ∀i = 1, . . . ,m:

As µQi(x) ≥ 0 and pij ≥ 0, ∀i, j. Then:

pj =
r∑
i=1

µQi(x) · pij ≥ 0, ∀j = 1, . . . ,m.

•
m∑
i=1

pi = 1:

As Pj are probability distributions,
m∑
i=1

pji = 1 and by the definition

of fuzzy partition,
r∑
i=1

µQi(x) = 1.
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Then:

m∑
j=1

pj =
m∑
j=1

r∑
i=1

µQi(x) · pij =

=
r∑
i=1

m∑
j=1

µQi(x) · pij =

=
r∑
i=1

µQi(x) · (
m∑
j=1

pij) =

=
r∑
i=1

µQi(x) = 1.

Therefore, Px is a probability distribution for every individual x. �

Once that this result is given, the definition of t-closeness in the fuzzy

case is consistent.

Definition 4.20 An individual x satisfies t-closeness if the distance be-

tween the distribution of the sensitive attribute associated to the individual,

Px (see Theorem 4.19), and the distribution of the sensitive attribute in

the whole table W is no more than a threshold t. A table is said to have

t-closeness if every individual satisfies that property.

As it has been done in the crisp case, the distance between distributions

is done again by the Earth Mover’s Distance. A brief example is given next.

Example 4.21 An example where the sensitive attribute is the Salary is

shown in Table 4.8.

Let us apply to the Age attribute the fuzzy partition Young = (−∞, 30, 36),

Adult = (30, 36, 54, 60) and AdvancedAge = (54, 60,∞). Table 4.9 is the

resulting one.
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Individual Age Salary(k)

1 21 3

2 24 4

3 32 5

4 36 6

5 45 7

6 56 4

7 58 8

8 62 8

9 65 7

Table 4.8: Original data for t-closeness example.

In order to get the parameter for fuzzy t-closeness, the distributions of

the sensitive attribute associated to each individual must be obtained, given

by:

P1 = P2 = PY , P3 =
2

3
PY +

1

3
PA,

P4 = P5 = PA, P6 =
2

3
PA +

1

3
PAA,

P7 =
1

3
PA +

2

3
PAA, P8 = P9 = PAA,

where PY , PA, PAA are the distributions associated to each set of the fuzzy

partition. Finally, it must be calculated the Earth Mover’s Distance of each

individual to the distribution in the whole table, and select the minimum

one as the parameter.

D[P1,W ] = 0.3556, D[P2,W ] = 0.3556, D[P3,W ] = 0.2444,

D[P4,W ] = 0.1111, D[P5,W ] = 0.1111, D[P6,W ] = 0.1222,

D[P7,W ] = 0.2222, D[P8,W ] = 0.3444, D[P9,W ] = 0.3444,
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Age Salary (k)

3

Young 4

5

4

Adult 6

7

Advanced Age
7

9

Table 4.9: Data after applying a fuzzy partition to attribute Age.

In this example, t = 0.1111.

As a result, this technique helps to deal with the similarity attacks that

l-diversity is weak to. With these three new techniques (Q-anonymity, l-

diversity and t-closeness), we have developed a way to measure the level of

protection provided by the fuzzy partitions.

In order to compare both approaches, crisp and fuzzy ones, an exper-

imental comparison has been carried out, and it is developed in the next

part of this section.

4.1.4 Experimentation

In this part of the section the performance of the proposed approach in

terms of privacy preservation is checked. The level of protection obtained

when a database is coded using either a fuzzy partition or a crisp one is

studied. Firstly, the analyzed methods are explained, both crisp and fuzzy

ones. Secondly, information about the selected database and the obtained



4.1. Protection of privacy in microdata 147

results are shown.

Analyzed methods

In order to get a crisp partition, the k-means (see [41]) method is used, as

it is widely used in clustering when dealing with crisp data. The algorithm

describing the method is summarized as:

Step 1. Randomly place k points representing initial group centroids.

Step 2. Assign each object to the group that has the closest centroid.

Step 3. Recalculate the positions of the k centroids after assigning all objects.

Step 4. Repeat Steps 2 and 3 until the centroids no longer move.

The Matlab (version 7.11.0, R2010b) implementation of this method

was used in this experiment (see [41]).

On the other hand, the selected methods to obtain fuzzy partitions

have been fuzzy c-means and Gustafson-Kessel method.

Fuzzy c-means (see [39]) minimize the functional:

J(X;U, V ) =
c∑
i=1

N∑
k=1

(µik)
m||xk − vi||2A,

where X is the data set, U = [µik] the membership matrix of each indi-

vidual to each set, V = [v1, . . . , vc] the set of centroids and m a parameter

controlling the fuzziness. The used inner product norm is:

D2
ikA = ||xk − vi||2A = (xk − vi)TA(xk − vi),

the one induced by A = I. The implementation of the used algorithm

was FCMclust of the package Fuzzy Clustering and Data Analysis Toolbox
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Figure 4.2: Fuzzy sets obtained by fuzzy c-means algorithm.

of Matlab (see [4]). In Figure 4.2, an example of a representation of this

method is given for 4 sets.

Gustafson-Kessel (see [39]) method extends the standard fuzzy c-means

algorithm by employing an adaptive distance norm, in order to detect clus-

ters of different geometrical shapes in one data set. Each cluster has its own

norm-inducing matrix Ai, which yields the inner-product norm D2
ikAi

.

The matrices Ai represent optimization variables in the c-means func-

tional, thus allowing each cluster to adapt the distance norm to the local

topological structure of the data. The objective functional of the Gustafson-

Kessel algorithm is defined by

J(X;U, V,A) =
c∑
i=1

N∑
k=1

(µik)
mD2

ikAi
.

This algorithm is known as GKclust in the aforementioned Matlab

package (see [4]).
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As it has been previously done, in Figure 4.3, an example of a repre-

sentation of Gustafson-Kessel method is given for 4 sets.

Figure 4.3: Fuzzy sets obtained by Gustafson-Kessel algorithm.

It is remarkable the difference between both fuzzy methods. While

fuzzy c-means provides sets with soft curves and membership centered in a

single area, Gustafson-Kessel’s sets have irregular shapes and are not that

centered in a single zone (see sets 3 and 4 from Figure 4.3). The reason

behind these differences is the use of various matrices in the definition of

Gustafson-Kessel instead of one, as in fuzzy c-means. These differences lead

us to study both methods, as they provide solutions of different types.

Results

Results have been obtained for two different databases, CENSUS and EIA,

both available at sdcMicro R-package (see [71]), in order to test the perfor-

mance of the proposed approach.
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CENSUS dataset was obtained on July 27, 2000 using the public Data

Extraction System of the U.S. Bureau of the Census. It consists of 1080

examples characterized by 13 attributes (afnlwgt, agi, emcontrb, ernval,

fedtax, fica, intval, pearnval, pothval, ptotval, statetax, taxinc and walval).

To test the performance of the approach the attributes ptotval (total

person income) and taxinc (taxable income amount) have been selected as

sensitive variable. Therefore two different experiments are considered, one

with ptotval as sensitive value and other with taxinc.

In addition, the quasi-identifier is formed by any combination of two

elements of the other eleven attributes, which are clustered according to

the previously defined methods. According to the size of the dataset and in

order to better compare the results, the quasi-identifier is coded using three

sets (fuzzy or crisp).

On the other hand, EIA dataset was obtained from the U.S. Energy

Information Authority. It consists of 4092 examples characterized by 15 at-

tributes (utilityid, utilname, state, year, month, resrevenue, ressales, com-

revenue, comsales, indrevenue, indsales, othrevenue, othrsales, totrevenue

and totsales).

In order to study the performance of the attribute 13 (othrsales), the

first five attributes have not been considered, as they contain administrative

information. Again, the quasi-identifier is formed by any combination of two

of the remaining 9 attributes.

After coding the quasi-identifier according to the three algorithms, k-

anonymity, l-diversity, t-closeness and Q-anonymity are computed. Note

that when fuzzy partitions are considered, the k-anonymity is computed

taking as k the estimation obtained by Ralescu’s non fuzzy cardinality (Def-

inition 1.42).

Tables 4.10 and 4.11 show the number of experiments with the high-
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est level of protection according to each metric and clustering method for

CENSUS and EIA database respectively.

k-means Gustafson-Kessel fuzzy c-means

k-anonymity 25% 18% 57%

Q-anonymity - 14% 86%

Sensitive Attribute

PTOTVAL
l-diversity 53% 16% 31%

t-closeness 0% 78% 22%

TAXINC
l-diversity 51% 30% 48%

t-closeness 0 78% 22%

Table 4.10: Summary of Results for CENSUS database.

k-means Gustafson-Kessel fuzzy c-means

k-anonymity 13% 63% 24%

Q-anonymity - 60% 40%

Sensitive Attribute

OTHRSALES
l-diversity 31% 44% 25%

t-closeness 0% 69% 31%

Table 4.11: Summary of Results for EIA database.

As it can be seen in Table 4.10, fuzzy c-means performs the best with

regard to both k-anonymity andQ-anonymity. Anyhow, this behaviour does

not remains when both l-diversity and t-closeness are studied. Focusing

on l-diversity crisp methods seem to perform better. On the other side,

Gustafson-Kessel algorithm performs the best with regard to t-closeness.

Meanwhile in Table 4.11, it is Gustafson-Kessel the method which performs
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the best with regard to both k-anonymity and Q-anonymity as well as l-

diversity and t-closeness.

As a complementary check, once the data are protected, the number of

individuals with risk of re-identification higher than the rest is computed.

This number is computed using the function measure risk of package sd-

cMicro in R (see [71]). This measure of individuals in risk is computed as

follows (see [40]):

• For each individual in the released table i∗, it is computed the prob-

ability of this individual to be related to another one in the original

table (ρi).

• The individual risk of re-identification, ri, that represents the same

probability of ρi, but with the condition that the attacker tries to

obtain the values of all the individuals of the released table.

• The output argument is the number of individuals of the table whose

ri is much bigger than the rest.

Tables 4.12 and 4.13 show the averages of the values of each parameter

(X) and the distance to the optimum value (D) (when the method is not

the optimum) for CENSUS and EIA databases respectively.

It must be noted that the fuzzy methods perform better because their

behaviour with regard to all the metrics is more stable, i.e., when the method

is not the best, the distance to the optimum is low. The only exception

appears in Table 4.13, where measure risk is slightly better in the crisp

method. Anyway, this fact is offset by the results obtained for k-anonymity,

l-diversity and t-closeness, as they are much better in Gustafson-Kessel

method than the crisp one k-means.
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k-means Gustafson-Kessel fuzzy c-means

Criteria X D X D X D

k-anonymity 213.62 100.27 200.78 107.05 278.42 23.78

measure risk 164.42 189.36 236.78 257.83 109.22 107.9

Q-anonymity - - 184.36 99.3 262.29 47.63

PTOTVAL
l-diversity 97.73 41.88 89.55 32.54 109.56 10.7

t-closeness 0.0867 0.0827 0.0049 0.0042 0.0129 0.0115

TAXINC
l-diversity 93.76 37.42 86.13 30.96 104.6 10.19

t-closeness 0.0879 0.0841 0.0047 0.004 0.0122 0.0107

Table 4.12: Averages and distances to the optimal values for CENSUS

database.

k-means Gustafson-Kessel fuzzy c-means

Criteria X D X D X D

k-anonymity 127.11 80.42 319.38 36.5 134.69 81

measure risk 852.8 109.28 944.44 294.42 960.8 195.17

Q-anonymity - - 201.6 18.56 119.69 85.5

OTHRSALES
l-diversity 125.11 68.72 155.69 30.85 121.42 68.56

t-closeness 0.10833 0.105 0.00417 0.0035 0.00636 0.0047

Table 4.13: Averages and distances to the optimal values for EIA database.

In Tables 4.14 and 4.15 a brief summary of information about risk of

re-identification for both databases are given.

Table 4.14 clearly shows that the risk of re-identification for the CEN-

SUS experimentation when released data are encoded using a fuzzy parti-

tion is lower. First column of Table 4.14 shows the percentage of times each

method obtained the lowest risk of re-identification. As it can be seen, fuzzy

partitions prevent the risk of re-identification most of times. In addition,
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% X D

k-means 34% 164.42 189.36

Gustafson-Kessel 24% 236.78 257.83

fuzzy c-means 42% 109.22 107.9

Table 4.14: Risk of re-identification for CENSUS database.

% X D

k-means 53% 852.8 109.28

Gustafson-Kessel 31% 944.44 294.42

fuzzy c-means 16% 960.8 195.17

Table 4.15: Risk of re-identification for EIA database.

the second column shows the number of re-identified elements (in average).

Again, fuzzy partitions obtained by fuzzy c-means performs better. Finally,

the third column of Table 4.14 shows the distance to the optimal, reinforcing

the goodness of fuzzy c-means method. Table 4.15 shows the same infor-

mation for the EIA experimentation, where as it has been stated above, the

crisp method is slightly better with respect to this measure.



4.2. Detection of edges in grey scale images 155

4.2 Detection of edges in grey

scale images

This section studies the behaviour of a construction method for an interval-

valued fuzzy relation built from a fuzzy relation. The behaviour of this

construction method is analyzed depending on the used t-norms and t-

conorms, showing that different combinations of them produce a big vari-

ation in the results. Furthermore, an hybrid construction method which

considers weight functions and a smoothing procedure is also introduced.

Among the different applications of this method, the detection of edges in

images is one of the most challenging. Thus, the performance of the pro-

posal in detecting image edges is tested, showing that the hybrid approach

which combines weights and a smoothing procedure provides better results

than the non-weighted methods.

Interval-valued fuzzy sets have been applied to many different domains

such as medicine [1], decision making [22] or image processing [5]. More con-

cretely, this kind of construction methods are often applied to the detection

of edges in grey scale images, which has its most important application in

the medical field (see [64]) and other branches of science (see [15]). The im-

portance of image processing in several areas is proven by the huge amount

of studies devoted to this topic, where different problems with different tools

are considered (see, for instance, [2, 12, 52, 72]).

The aim of this section is twofold. First it is studied how the selec-

tion of different t-norms and t-conorms affects the construction of interval-
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valued fuzzy relations from fuzzy relations. The study shows how the rela-

tion between t-norms and t-conorms can be linked to the relation between

the interval-valued fuzzy relations obtained from them. Secondly, a new

construction method for interval-valued fuzzy relations is proposed. This

method is based on adding weights to make the points closer to the one

studied have a greater strength in the construction method than the ones

that are not.

4.2.1 Construction method of interval-valued fuzzy

relations

This construction method builds an interval-valued fuzzy relation, where

the starting point is a fuzzy relation, as it has been previously stated. This

process is carried out with two constructors (lower and upper constructors)

in order to obtain both sides of each interval with the values of each new

fuzzy relation. From this interval-valued fuzzy relation, another fuzzy rela-

tion is defined as the length of each interval. This is the relation used to

apply the method to generate fuzzy edge images.

Definition 4.22 Consider X and Y two finite universes of natural numbers

X = {0, 1, . . . , P − 1} and Y = {0, 1, . . . , Q − 1}, R ∈ FR(X, Y ) a fuzzy

relation in X×Y , two t-norms T1, T2, two t-conorms S1, S2, and n,m ∈ N
such that n ≤ P−1

2
and m ≤ Q−1

2
,

• the lower constructor associated to T1, T2, n and m is defined as fol-

lows:

Ln,mT1,T2 : FR(X, Y )→ FR(X, Y ), where

Ln,mT1,T2 [R](x, y) =

m
n
T1
i=−n
j=−m

(T2(R(x− i, y − j), R(x, y))),
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• the upper constructor associated to S1, S2, n and m is defined as fol-

lows:

Un,m
S1,S2

: FR(X, Y )→ FR(X, Y ), where

Un,m
S1,S2

[R](x, y) =

m
n
S1
i=−n
j=−m

(S2(R(x− i, y − j), R(x, y))),

∀(x, y) ∈ X × Y , where i, j take values such that 0 ≤ x − i ≤ P − 1 and

0 ≤ y− j ≤ Q−1, n and m indicate that the considered window is a matrix

of dimension (2n+ 1)× (2m+ 1) and
n

T
i=1
xi = T (x1, . . . , xn).

The specific subsets of the natural numbers X and Y are considered in

the definition above, since the main application taken into account here of

this method is the edge image detection.

Definition 4.23 Let R be a fuzzy relation in X × Y , Ln,mT1,T2 [R] a lower

constructor and Un,m
S1,S2

[R] an upper constructor, then Rn,m defined by:

Rn,m
T1,T2,S1,S2

(x, y) = [Ln,mT1,T2 [R](x, y), Un,m
S1,S2

[R](x, y)],

for all (x, y) ∈ X × Y is an interval-valued fuzzy relation in X × Y .

In the previous definition, when Si is the dual t-conorm of Ti, the

interval-valued fuzzy relation is just denoted by Rn,m
T1,T2

.

After obtaining both lower and upper constructors from the initial fuzzy

relation (Definition 4.22), and the interval-valued fuzzy relation generated

by them (Definition 4.23), the last step of the construction method is to

obtain another fuzzy relation from such interval-valued fuzzy relation. To

do so, the next definition is given, where the length of each interval is used.

Definition 4.24 Let R be a fuzzy relation in X × Y and let Ln,mT1,T2 [R] and

Un,m
S1,S2

[R] be its lower and upper constructors, respectively, for two t-norms
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T1 and T2 and two t-conorms S1 and S2, the W -fuzzy relation associated to

them is given by:

W [Rn,m
T1,T2,S1,S2

](x, y) = Un,m
S1,S2

[R](x, y)− Ln,mT1,T2 [R](x, y).

Definitions 4.22, 4.23 and 4.24 (see [5]) establish the construction method

procedure, as it is schematized in Algorithm 1.

Algorithm 1 Non-weighted construction method algorithm.

Input: R ∈ FR(X, Y ), n,m ∈ N, T1, T2 t-norms, S1, S2 t-conorms

Output: W-fuzzy relation W ∈ FR(X, Y )

1: Obtain the lower constructor Ln,mT1,T2 [R] associated to n,m, T1 and T2

(Def. 4.22)

2: Obtain the upper constructor Un,m
S1,S2

[R] associated to n,m, S1 and S2

(Def. 4.22)

3: Construct the interval-valued fuzzy relation Rn,m
T1,T2,S1,S2

from Ln,mT1,T2 and

Un,m
S1,S2

(Def. 4.23)

4: Obtain the W -fuzzy relation W [Rn,m
T1,T2,S1,S2

] from Rn,m
T1,T2,S1,S2

(Def. 4.24)

4.2.2 The problem of edges detection in grey scale

images

The detection of edges in images has one of its most important applications

in the medical field, where it can be used, for example, for brain tumor

pattern recognition (see [64]).

In order to adapt the previous construction method, it is necessary to

explain how to deal with grey scale images and their representation.

Definition 4.25 A grey scale image R whose dimensions are P ×Q pixels
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is a fuzzy relation where the finite sets used are X = {0, 1, . . . , P − 1} and

Y = {0, 1, . . . , Q− 1}.

This means that the grey scale images are represented by fuzzy rela-

tions. With this premise, all the construction method can be applied, and

the outputs are the following:

• The lower constructor: it represents a darker version of the original

image. Depending on the t-norms chosen, this image can be more

or less dark. In Figure 4.4, there is a representation of three lower

constructors with different pairs of t-norms.

Original image L1
TM ,TM

L1
TP ,TM

L1
TP ,TP

Figure 4.4: Comparative of lower constructors depending on the t-norms,

where TM and TP are the minimum and product t-norms, respectively.

• The upper constructor: it represents a brighter version of the orig-

inal image. Depending on the t-conorms chosen, this image can be

more or less bright. In Figure 4.5, there is a representation of three

upper constructors with different pairs of t-conorms.
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Original image U1
SM ,SM

U1
SP ,SM

U1
SP ,SP

Figure 4.5: Comparative of upper constructors depending on the t-conorms,

where SM and SP are the maximum and product t-conorms respectively.

• The W-fuzzy edge image: it represents the difference of contrast

between both constructors. The edges can be identified in this image.

In Figure 4.6, there is a representation of three W-fuzzy images with

different pairs of t-norms and t-conorms.

Original image W [M,M ] W [P,M ] W [P, P ]

Figure 4.6: Comparative of W-fuzzy images depending on the pairs of t-

norms and t-conorms, where W [P,M ] = Un,m
SP ,SM

−Ln,mTP ,TM , and analogously

for the others.

Figures 4.4, 4.5 and 4.6 highlight the fact that different t-norms and

t-conorms cause a variation in the resulting lower constructor, upper con-
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structor and W-fuzzy image respectively. That is the reason to study in the

next section certain properties that these relations keep from the selected

t-norms and t-conorms.

4.2.3 Influence of the chosen t-norms and t-conorms

As it has been aforementioned, the construction method needs two t-norms

and two t-conorms, and as the Figures 4.4, 4.5 and 4.6 show, the selection

affects the resulting interval-valued fuzzy relation. It seems a natural step to

study how the relation between the t-norms and t-conorms can be reflected

in the constructors, and therefore, in the interval-valued fuzzy relation.

In addition, some examples with the most usual t-norms (respectively t-

conorms) are shown.

Proposition 4.26 Let Ta, Tb, Tc, Td be t-norms such that Ta ≤ Tb and Tc ≤
Td. Then, Ln,mTa,Tc ≤ Ln,mTb,Td.

Proof: Let R be any fuzzy relation in X×Y . Taking into account the

t-norms monotony property:

Ln,mTa,Tc [R](x, y) =

m
n
Ta
i=−n
j=−m

(Tc(R(x− i, y − j), R(x, y))) ≤

≤
m
n
Ta
i=−n
j=−m

(Td(R(x− i, y − j), R(x, y))) ≤

≤
m
n
Tb
i=−n
j=−m

(Td(R(x− i, y − j), R(x, y))) = Ln,mTb,Td [R](x, y). �

The same relation is satisfied for t-conorms as the next proposition

states.
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Proposition 4.27 Let Sa, Sb, Sc, Sd be t-conorms such that Sa ≤ Sb and

Sc ≤ Sd. Then, Un,m
Sa,Sc

≤ Un,m
Sb,Sd

.

After these results about both lower and upper constructors, the next

step is to analize what happens with W-fuzzy relations.

Corollary 4.28 Let (Ta, Sa), (Tb, Sb), (Tc, Sc) and (Td, Sd) be dual pairs of

t-norms and t-conorms such that Ta ≤ Tb and Tc ≤ Td. Then:

W [Rn,m
a,c ] ≥ W [Rn,m

b,d ].

Proof: Because of the duality, Sa ≥ Sb and Sc ≥ Sd. Therefore, it is

immediate, since

W [Rn,m
a,c ](x, y) = Un,m

Sa,Sc
[R](x, y)− Ln,mTa,Tc [R](x, y) ≥

≥ Un,m
Sb,Sd

[R](x, y)− Ln,mTb,Td [R](x, y) = W [Rn,m
b,d ](x, y),

for any (x, y) ∈ X × Y. �
The last result is proven straightforwardly from the previous results

about t-norms and t-conorms. Keeping Corollary 4.28 in mind, it is possible

to apply to some particular cases with well known t-norms and t-conorms,

as it is shown in the next examples.

Example 4.29 (Minimum-Maximum, Product and Lukasiewicz) Since TL <

TP < TM and SM < SP < SL, the W-fuzzy relations are related as given

by Figure 4.7, where W [M,P ] denotes W [Rn,m
TM ,TP

] = Un,m
SM ,SP

[R]−Ln,mTM ,TP [R]

for any R ∈ FR(X, Y ), and analogously for the others.

Furthermore, in order to see the results in the edge image detection,

in Figure 4.8, these nine combinations of W-fuzzy relations are shown for

a grey scale image. It is easy to see that the results are reflected in this

application. From this figure, it can be noted that the use of certain t-norms
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Figure 4.7: Relationships between the different W-fuzzy relations depending

on t-norms and t-conorms.

and t-conorms builds an unclear W-fuzzy relation, like Lukasiewicz ones.

This is the reason to skip them in the carried out experimentation.

Example 4.30 (Frank t-norms) Taking into account the definition of this

family, with λ ∈ [0,∞] (see [34]),

T Fλ (x, y) =


TM(x, y), if λ = 0,

TP (x, y), if λ = 1,

TL(x, y), if λ =∞,
logλ(1 + (λx−1)(λy−1)

λ−1 ), in other case,

SFλ (x, y) =


SM(x, y), if λ = 0,

SP (x, y), if λ = 1,

SL(x, y), if λ =∞,
1− logλ(1 + (λ1−x−1)(λ1−y−1)

λ−1 ), in other case,

and given λ1, λ2, λ3, λ4 such that λ1 > λ2 and λ3 > λ4, then:

T Fλ1 ≤ T Fλ2 , T Fλ3 ≤ T Fλ4 , SFλ1 ≥ SFλ2 , SFλ3 ≥ SFλ4 ,

and therefore Ln,m
TFλ1

,TFλ3
≤ Ln,m

TFλ2
,TFλ4

and Un,m

SFλ1
,SFλ3
≤ Un,m

SFλ2
,SFλ4

. As a result,

W [λF2 , λ
F
4 ] ≤ W [λF1 , λ

F
3 ].
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W [M,M ] W [M,P ] W [M,L]

W [P,M ] W [P, P ] W [P,L]

W [L,M ] W [L, P ] W [L,L]

Figure 4.8: W-fuzzy edge images obtained by the combination of Minimum-

Maximum, Product and Lukasiewicz t-norms and t-conorms.

These results can also be adapted to other families of t-norms and t-

conorms like Yager, Dombi or Sugeno-Weber families.

All these results provided in this part are useful for choosing the right

combination of t-norms and t-conorms depending on the purpose of the

study, as the greater the value of the W-fuzzy image, the brighter the pixels

in the image, and therefore, affecting the appearance of the edges.
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4.2.4 Weighted construction method

In the method developed by [5], for each element of the relation, a cen-

tered window in that element is considered. Window dimension depends on

natural numbers n and m, which are the parameters in both constructors.

This new approach tries to make that the closer the value to the center

of the window, the greater the importance that it takes in the definition

of the constructors. This goal is useful, as the detection of an edge must

be more related to the pixels that are closer to the central one, and that is

the main objective of this subsection: to develop a method to capture this

reasoning.

In other words, our goal is to obtain the final lower and upper con-

structors which are obtained by weighting the original lower and upper

constructor given in Definition 4.22 by means of weights in such a way that

the smaller windows have more strength in the definition. Formally:

Definition 4.31 Consider X and Y two finite universes of natural numbers

X = {0, 1, . . . , P − 1} and Y = {0, 1, . . . , Q − 1}, R ∈ FR(X, Y ) a fuzzy

relation in X×Y , two t-norms T1, T2, two t-conorms S1, S2, and n,m ∈ N
such that n ≤ P−1

2
and m ≤ Q−1

2
, for any i = 1, 2 . . . ,max(n,m) we consider

the two fuzzy relations Li[R] and U i[R] defined by

Li[R](x, y) = L
min(i,n),min(i,m)
T1,T2

[R](x, y)

and

U i[R](x, y) = U
min(i,n),min(i,m)
S1,S2

[R](x, y).

The next step is to weight these values in an appropriate way. Thus,

we obtain the final lower and upper constructors associated to any fuzzy
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relation R ∈ FR(X × Y ) as follows:

L[R](x, y) =
k∑
i=1

wiL
i[R](x, y) and U [R](x, y) =

k∑
i=1

wiU
i[R](x, y),

where k denotes the maximum of n and m.

Finally, it is necessary to determine the weights wi such that they satisfy

wi ≥ wi+1, so the smaller windows have more strength. We have considered

three cases:

• Average of the k windows:
k∑
i=1

wi = 1,

w1 = · · · = wk ∈ (0, 1), i = 1, . . . , k,

which leads us to the weights:

wi =
1

k
, i = 1, . . . , k.

• An equidistant version of the weights with a constant increase given

by the next restrictions:

k∑
i=1

wi = 1,

wi ∈ (0, 1), i = 1, . . . , k,

wi − wi+1 = C, i = 1, . . . , k − 1,

wk = C,

where C ∈ (0, 1) is a constant. With some calculation, the expression

of the weights is reached as follows:

wk−1 − wk = C ⇒ wk−1 = 2C ⇒ · · · ⇒ wk−i = (i+ 1)C,
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and applying it on the first condition:

1 =
k∑
i=1

wi =
k−1∑
i=0

wk−i =
k−1∑
i=0

(i+ 1)C = C

k−1∑
i=0

(i+ 1) = C
k(k + 1)

2
.

Hence C = 2
k(k+1)

and the weights are:

wk−i =
2(i+ 1)

k(k + 1)
, i = 0, . . . , k − 1,

or equivalently,

wi =
2(k − i+ 1)

k(k + 1)
, i = 1, . . . , k.

• A constant relation between two consecutive weights, given N ∈
N\{1}: 

k∑
i=1

wi = 1,

wi ∈ (0, 1), i = 1, . . . , k,

wi/wi+1 = N, i = 1, . . . , k − 1,

wk = C,

where C ∈ (0, 1) is a constant. From these conditions it follows than

wi = Nk−iC for all i. Thus, after some calculation, the expression of

the weights is reached as follows:

1 =
k∑
i=1

wi = C
k∑
i=1

Nk−i = C
k−1∑
i=0

N i = C
Nk − 1

N − 1
⇒

⇒ C =
N − 1

Nk − 1
⇒

⇒ wi = Nk−i N − 1

Nk − 1
, i = 1, . . . , k.

Note that the bigger the value of N , the greater the importance on the

central pixels. Moreover, note that the case N = 1 is not considered,



168 Chapter 4. Applications

because in that case the weights are selected according the average of

the k windows method.

Once the values of the weights are calculated, and therefore, both lower

and upper constructors, the remaining steps of the method in Algorithm 1

(Definitions 4.23 and 4.24) must be applied in order to get the new interval-

valued fuzzy relation and the W-fuzzy relation.

It should be noted that the fact of using weights causes the appearance

of some values very close to 0 or 1, but not the own value. The reason

is that the use of the biggest windows can make a little influence in such

value. To avoid this situation, a smoothing step is used such that the final

W-fuzzy edge image W is modified with some cut point α ∈ (0, 0.5).

GivenW a fuzzy relation, the smoothing step with cut point α ∈ (0, 0.5)

is carried out as follows:

1. If W (x, y) < α, then its value is modified such that Wα(x, y) = 0.

2. If W (x, y) > 1−α, then its value is modified such that Wα(x, y) = 1.

3. For the remaining values in the closed interval [α, 1 − α], they are

expanded to the closed interval [0, 1] keeping the original proportion:

W (x, y)→ Wα(x, y) = 0.5 +
1

1− 2α
(W (x, y)− 0.5).

The reason to take values in the interval (0, 0.5) lies in the fact that

when α→ 0, the smoothing step leads us to the method without such step,

as sets of points modified by parts 1 and 2 of it tends to the empty set. On

the other hand, the remaining values get the modification:

Wα(x, y) = 0.5+
1

1− 2α
(W (x, y)−0.5) −−→

α→0
0.5+W (x, y)−0.5 = W (x, y).
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If the value α where greater or equal to 0.5, it would make no sense to apply

the smoothing step, as there would be pixels whose value must be changed

to 0 (step 1) and to 1 (step 2) at the same time.

The scheme of the weighted method with the smoothing step is shown in

Algorithm 2. In order to obtain the weighted method without the smoothing

step, point 8 of Algorithm 2 is skip, where W = Ww.

Algorithm 2 Weighted construction method algorithm.

Input: R ∈ FR(X, Y ), n,m ∈ N, T1, T2 t-norms, S1, S2 t-conorms, N ∈
N ∪ {0}, α ∈ (0, 0.5)

Output: W-fuzzy relation Wα ∈ FR(X, Y )

1: Fix k = max(n,m)

2: Obtain Li[R] associated to n,m, T1 and T2 ∀i = 1, . . . , k (Def. 4.31)

3: Obtain U i[R] associated to n,m, S1 and S2 ∀i = 1, . . . , k (Def. 4.31)

4: Obtain weights wi for i = 1, . . . , k, with the method assigned:

Average (N = 0): wi =
1

k
,

Equidistant (N = 1): wi =
2(k − i+ 1)

k(k + 1)
,

Constant (N ≥ 2): wi = Nk−i N − 1

Nk − 1
.

5: Calculate the lower and upper constructors as:

L[R](x, y) =
k∑
i=1

wiL
i[R](x, y) and U [R](x, y) =

k∑
i=1

wiU
i[R](x, y)

6: Construct the interval-valued fuzzy relation Rn,m
T1,T2,S1,S2

from L and U

(Def. 4.23)

7: Obtain the W-fuzzy relation W [Rn,m
T1,T2,S1,S2

] from Rn,m
T1,T2,S1,S2

(Def. 4.24)

8: Calculate Wα from W with the smoothing step defined by the cut point

α

In the experimentation carried out in the next subsection, the influence
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of α, along with the comparison of this new approach with the non-weighted

one are analyzed with a grey scale database.

4.2.5 Experiments

In this part of the section, the weighted method is compared to the one

introduced in [5]. To do that, a grey scale images database has been con-

sidered. These grey scale images were obtained from the Berkeley Segmen-

tation Dataset (see [49]). This database contains original images and its

corresponding edge images, which are used as the base to the comparison

between all the methods of study.

The first 25 images from the test set were selected, whose dimensions

are 481 × 321 (or 321 × 481) pixels. The t-norms and t-conorms selected

for this study are the standard ones (Minimum-Maximum), as the goal of

this experimentation is to check if the weighted method outperforms the

non-weighted one under the same conditions.

The studied situations in this experimentation are:

• Non-weighted method with n = m = 1 (windows of size 3×3) (NW1).

• Non-weighted method with n = m = 2 (windows of size 5×5) (NW2).

• Weighted method with the combination of:

– Methods to obtain weights: average (A), equidistant method

(I) and constant relation method with N = 2, 3, 4, 5 (II, III, IV,

V).

– Number of terms: number of windows of different dimensions

taken into account. k = 2, k = 3 or k = 4 terms (2,3,4).

– Smoothing step parameter: α ∈ {0, 0.05, 0.1, . . . , 0.4, 0.45}.
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Note that the equidistant method with 2 terms and the constant rela-

tion method with N = 2 with 2 terms too are the same. The non-weighted

selected situations are the ones that obtain the best results (as it has been

proven in [5]), and that is the reason to select these window sizes. In Figure

4.9 some of the W-fuzzy images obtained for each one of the test images are

given.

Original image NW1 NW2

III × 3 no smoothing IV × 2 no smoothing W × 2 no smoothing

III × 3 with α = 0.2 IV × 2 with α = 0.2 W × 2 with α = 0.2

Figure 4.9: Comparative of W-fuzzy images depending on the experimental

parameters, where two non-weighted methods (NW1, NW2), and III × 3,

IV × 2 and V × 2 without smoothing step and with α = 0.2 are shown.

Each edge image is compared to the one given by the source. To make

such comparison, for each image a value is assigned. Let S be the edge
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image given in [49] and let M be the one obtained by our method, the value

assigned to M is given by the expression

v(M) =
1

#(X × Y )

∑
(x,y)∈X×Y

|M(x, y)− S(x, y)|,

where #(X × Y ) represents the number of pixels of the image.

Notice that this value v(M) is in fact the normalized Hamming dis-

tance between M and the edge image S (see, for instance, [43]), since fuzzy

relations are just fuzzy sets of X × Y .

The parameter α that defines the smoothing step is an important factor

that must be taken into account when comparing the results. In Figure 4.10,

five representations of an image with different values of α are presented.

Original image Without smoothing III × 2 with α = 0.1

III × 2 with α = 0.2 III × 2 with α = 0.3 III × 2 with α = 0.4

Figure 4.10: Comparative of W-fuzzy images depending on the parameter

α, where it is used the constant relation method to obtain the weights with

two terms (III × 2).

To summarize the results obtained, the mean of the value v(M) for all
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the selected 25 images is calculated for each method. Obviously, the smaller

mean value provides the best result.

Figures 4.11, 4.12 and 4.13 provides the mean values of v(M) obtained

for each method, whereX and Y axes represent the value α of the smoothing

step and the mean value obtained for that method, respectively.

(a) (b)

Figure 4.11: (a) Non-weighted methods (NW1, NW2) and weighted meth-

ods with average weights (A). (b) Non-weighted methods (NW1, NW2) and

weighted methods with equidistant weights (I).

From the results showed by the Figures 4.11, 4.12 and 4.13, all the

methods but one in the first graphic always obtain better results than the

non-weighted method with m = n = 2 (NW2). Meanwhile, the other

non-weighted method where m = n = 1 (NW1) is also improved by every

combination of type of weights and number of terms, from an α value on-

wards. Depending on the method analyzed, this α value can be further or

closer to 0, as it can be observed in the graphics.

These results prove that this new method where weights are added to

the construction method, overcomes the one without its use, as long as the

smoothing step is applied with a big enough α value.
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(a) (b)

Figure 4.12: (a) Non-weighted methods (NW1, NW2) and weighted meth-

ods with constant relation weights for N = 2 (II). (b) Non-weighted meth-

ods (NW1, NW2) and weighted methods with constant relation weights for

N = 3 (III).

(a) (b)

Figure 4.13: (a) Non-weighted methods (NW1, NW2) and weighted meth-

ods with constant relation weights for N = 4 (IV). (b) Non-weighted meth-

ods (NW1, NW2) and weighted methods with constant relation weights for

N = 5 (V).



Conclusions

This research has been focused on the development of different tools for

fuzzy sets, particularly, for interval-valued hesitant fuzzy sets. The mem-

bership function of this type of sets assigns to each element a finitely gen-

erated set, so it has been necessary to provide some results for this type of

sets.

The first concept that has been treated is the one of ordering rela-

tion, for both finitely generated sets and interval-valued hesitant fuzzy sets.

Firstly, two ordering relations have been defined for finitely generated sets,

analyzing the incomparability of one of them by characterizing the possible

situations in which it can occur. These two orders have been extended to

interval-valued hesitant fuzzy sets. Both pairs of ordering relations have

been essential in the remainder research.

Another remarkable concepts in the fuzzy logic, the ones of t-norm and

t-conorm, have been necessary along this work, so we have defined both for

interval-valued hesitant fuzzy sets, including a particular example of t-norm

and t-conorm, necessary in the forthcoming results. The aforementioned

ordering relations were necessary for these definitions, as the monotonicity

requires it.

Bearing these results in mind, the next studied concept is the cardinal-

ity of interval-valued hesitant fuzzy sets, providing an axiomatic definition

175
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of it. Several properties that this type of cardinalities satisfy have been

proved, as well as a characterization of the definition has been obtained.

In addition, some examples have been presented, whose cardinalities, when

they are restricted to fuzzy sets, match some well-known definitions (σ-count

cardinality and Ralescu’s cardinality).

The concept of entropy is a remarkable element of this memory. The

aim of an entropy is to measure the amount of uncertainty associated to

a set. In the case of interval-valued hesitant fuzzy sets, several types of

uncertainty can be found, and as a consequence, the proposed definition

is shaped by three different mappings (fuzziness, lack of knowledge and

hesitance), where each one detects a different class of uncertainty associated

to a set. Results and characterizations of each function have been proposed

and proved. Finally, a global example is fully explained in order to show

how the combination of these three mappings provide a good way to detect

different types of uncertainty.

The last concept that has been analyzed about interval-valued hesitant

fuzzy sets is the one of partitioning. Definitions of partitions (δ-ε-partition,

ε-ε-partition) have been adapted to this new logic, as well as different results

about them. Furthermore, these adaptations make it possible to obtain

classical fuzzy definitions of partition such as Ruspini’s one.

The second part of this memory is focused on the applications developed

from the proposals of the present work: protection of privacy in microdata

and edge detection in grey scale images.

The diffusion of information is one of the most important activities in

the modern world, and as a result, the preservation of privacy is of great im-

portance. We have focused on the protection of privacy in microdata. The

classical procedure to protect such data is the use of crisp partitions to the

non sensitive attributes in order to protect the sensitive ones. Our proposal
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has been based on the use of fuzzy partitions instead. In order to measure

the level of protection of a particular case, the most usual techniques are

k-anonymity, l-diversity and t-closeness. However, it was necessary to adapt

them to the fuzzy case so it is possible to measure the protection in this

situation.

It is also necessary to compare both procedures, so an experimental

comparison has been carried out with two real databases. The obtained

results, using two different databases (CENSUS and EIA), show that this

new proposal is a good alternative to the classical one with respect to such

techniques, thanks to the inclusion of the fuzzy logic.

The second application of this work is related to the edge detection in

grey scale images. The starting point has been a construction method of

interval-valued fuzzy relations from a fuzzy relation. The behaviour of the

method has been analyzed taking into account, among others elements, the

selected t-norms and t-conorms.

In addition, a new method have been developed from the initial one,

including two new features. The first one is the inclusion of weights to the

method, in order to provide a greater importance to certain pixels in the

process. The second one complements the previous one, as it is a smoothing

step that erases certain deviations created by small weights. Finally, an

experimental comparison of both construction methods has been carried

out, using a grey scale images database. The obtained results show that

this new method, after adding weights and the smoothing step, is an efficient

alternative to the initial one.
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Conclusiones

La investigación llevada a cabo se ha centrado en el desarrollo de distin-

tas herramientas para conjuntos difusos, en particular para interval-valued

hesitant fuzzy sets. La función de pertenencia de este tipo de conjuntos

asigna a cada elemento un conjunto finitamente generado, por lo que ha

sido necesario construir algunos resultados para este tipo de conjuntos.

El primer concepto que ha sido tratado es el de relación de orden, tanto

para conjuntos finitamente generados como para interval-valued hesitant

fuzzy sets. Primero, hemos definido dos órdenes para conjuntos finitamente

generados, analizando la incomparabilidad de uno de ellos mediante la ca-

racterización de las situaciones en las que puede suceder. Estos dos órdenes

los hemos extendido a interval-valued hesitant fuzzy sets. Ambos pares de

órdenes han sido indispensables para el resto de la investigación.

Otros conceptos importantes en la lógica difusa como son los de t-nor-

ma y t-conorma han sido necesarios a lo largo de este trabajo, por lo que

hemos definido ambos conceptos para interval-valued hesitant fuzzy sets,

incluyendo algunos ejemplos de t-norma y t-conorma, necesarios en desa-

rrollos posteriores. Las relaciones de orden previamente mencionadas han

sido necesarias en este punto de la investigación, ya que la condición de

monoticidad aśı lo requiere.

Teniendo en cuenta estos resultados, el siguiente concepto que hemos
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estudiado ha sido el de cardinalidad para interval-valued hesitant fuzzy sets,

dando una definición axiomática de la misma. Hemos probado algunas de

las propiedades que dichas cardinalidades satisfacen, y se ha obtenido una

caracterización de dicha definición. También se han presentado algunos

ejemplos, cuya cardinalidad, cuando se restringe al caso de conjuntos difu-

sos, coincide con algunas ya conocidas (σ-count y Ralescu’s cardinality).

El concepto de entroṕıa es un elemento a destacar en esta memoria.

El objetivo de la entroṕıa es medir la cantidad de incertidumbre asociada

a un conjunto. En el caso de interval-valued hesitant fuzzy sets, se pueden

encontrar varios tipos de incertidumbre, y como consecuencia, hemos pro-

puesto una definición de entroṕıa compuesta por tres aplicaciones diferentes

(fuzziness, lack of knowledge y hesitance), donde cada una de ellas puede

detectar diferentes tipos de incertidumbre asociada a un conjunto. Hemos

propuesto y probado varios resultados y caracterizaciones de cada una de

las funciones. Finalmente, y a través de un ejemplo, se ha podido observar

cómo la combinación de dichas funciones proporciona un buen modo de

detectar diferentes tipos de incertidumbre.

El último concepto tratado sobre interval-valued hesitant fuzzy sets es

el de particionado. Hemos adaptado definiciones de partición (δ-ε-partition,

ε-ε-partition) a esta nueva lógica, aśı como diferentes resultados relaciona-

dos. Además, estas adaptaciones nos han permitido obtener definiciones

clásicas de partición tales como la dada por Ruspini.

La segunda parte de esta memoria está centrada en las aplicaciones

desarrolladas a partir de los propuestas recogidas en el presente trabajo: la

protección de privacidad en microdatos y la detección de bordes en imágenes

en escala de grises.

La difusión de información es una de las actividades más importantes

en el mundo actual, por lo que la preservación de la privacidad es de gran
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importancia. Nos hemos centrado en la protección de la privacidad en mi-

crodatos. El procedimiento habitual para proteger este tipo de datos es

mediante el uso de particiones ńıtidas sobre los atributos no sensibles para

aśı proteger los sensibles. Nuestra propuesta ha estado basada en el uso

de particiones difusas en su lugar. Para poder medir el nivel de protección

de un caso particular, las técnicas más usuales son k-anonymity, l-diversity

y t-closeness. Sin embargo, ha sido necesario adaptarlas al caso difuso de

modo que sea posible medir la protección en dicha situación.

También ha sido necesario comparar ambos enfoques, por lo que hemos

llevado a cabo una comparación experimental con dos bases de datos reales.

Los resultados obtenidos, utilizando dos bases de datos (CENSUS y EIA),

muestran que esta nueva propuesta es una buena alternativa a la clásica con

respecto a dichas técnicas, gracias a la inclusión de la lógica difusa.

La segunda aplicación de este trabajo está relacionada con la detección

de bordes en imágenes en escala de grises. El punto de partida ha sido un

método de construcción de interval-valued fuzzy relations a partir de una

relación difusa. El comportamiento del método ha sido analizado teniendo

en cuenta, entre otros elementos, las t-normas y t-conormas utilizadas.

Además, hemos desarrollado un nuevo método a partir del inicial, in-

cluyendo dos nuevas caracteŕısticas. La primera de ellas es la inclusión de

pesos en el método, para poder aśı proporcionar una mayor importancia

a ciertos ṕıxeles en el proceso. El segundo complementa el anterior, y es

un paso de suavizado que permite eliminar ciertas desviaciones creadas por

pequeños pesos. Finalmente, se ha llevado a cabo una comparación ex-

perimental entre ambos métodos, utilizando para ello una base de datos

de imágenes en escala de grises. Los resultados alcanzados muestran que

este nuevo método, tras incluir los pesos y el paso de suavizado, es una

alternativa eficiente a la inicial.
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