1	Determination of kinetic parameters for biomass combustion
2	Álvarez Aª, Pizarro C ^{a,*} , García R ^b , Bueno J.L. ^a , G. Lavín A ^a
3	^a Department of Chemical and Environmental Engineering. Faculty of Chemistry
4	University of Oviedo, Julián Clavería 8, 33006, Oviedo, Asturias, Spain.
5	^b Instituto Nacional del Carbón, INCAR-CSIC, c/ Francisco Pintado Fe 26,
6	33011. Oviedo, Spain
7	
8	ABSTRACT
9	The aim of this work is to provide a wide database of kinetic data for the most
10	common biomass by thermogravimetric analysis (TGA) and differential
11	thermogravimetry (DTG). Due to the characteristic parameters of DTG curves, a
12	two-stage reaction model is proposed and the kinetic parameters obtained from
13	model-based methods with energy activation values for first and second stages
14	in the range 1.75.10 ⁴ – 1.55.10 ⁵ J/mol and 1.62.10 ⁴ – 2.37.10 ⁵ J/mol,
15	respectively. However, it has been found that Flynn-Wall-Ozawa and Kissinger-
16	Akahira-Sunose model-free methods are not suitable to determine the kinetic
17	parameters of biomass combustion since the assumptions of these two
18	methods were not accomplished in the full range of the combustion process.
19	
20	Keywords
21	Biomass, combustion, kinetic parameters, Coats-Redfern method,
22	thermogravimetric analysis
23	

1. INTRODUCTION

The importance of waste biomass as an energy source is likely to increase during the coming years as a result of European energy policy targets (European Environment Agency (EEA), 2010). The total amount of potential biomass in Spain is about 88,677,193 t/year (data from Spanish Renewable Energies Plan 2011-2020 referencing in (Álvarez et al., 2015)), belonging to the agricultural and harvesting residues the largest quantity (up to 37.8% of the total potential biomass).

There are still some problems in current biomass combustion furnaces, such as low thermal efficiency, instability of heat load, and slagging (Szemmelveisz et al., 2009; Yang et al., 2004). Computational Fluid Dynamics (CFD) could be useful in solving these problems (Dixon et al., 2005; Ma et al., 2007), but it is absolutely essential having a deep knowledge of the composition (proximate, ultimate and structural analysis) and thermal behaviour as well as the kinetics of the combustion process of biomass.

The aim of this article is to determine the combustion kinetics parameters of the most commonly used types of biomass in Spain using a thermogravimetric analyser (TGA), since this technique is widely used in the analysis of weight loss characteristics of biomass fuels (Garcia-Maraver et al., 2015; Kok and Özgür, 2013; Maia and de Morais, 2016)

44

45 2. MATERIALS AND METHODS

46 2.1 Materials

Twenty eight different biomass samples were tested to obtain their activation
energy, E_a, and pre-exponential Arrhenius factor, k_o, values for combustion.

These samples were selected trying to track a wide variety of different biomass origins such as commercial fuels, industrial and forest wastes, energy crops and cereals. Their proximate and ultimate analysis data and other properties are available in a database previously published by this research group (García et al., 2014a, 2014b). These samples were pre-treated to assure homogeneity and reproducibility of the carried-out tests and to that aim they were air-dried for a day at room temperature, grinded and sieved to 250-500 µm.

56

57 **2.2. TG method**

10 mg of the sample were subjected to thermal decomposition at 4 different
low heating rates (5, 10, 15 and 20 K/min) in a Perkin-Elmer STA 6000, using
40 ml/min of both purge (N₂) and carrier (air) gas.

Particle diameter and, consequently, heating rates must be low, particle size
should be smaller than 500µm (Garcia-Maraver et al., 2015; Parthasarathy et
al., 2013; Shen et al., 2009), while oxidizing gas flux high in order to guarantee
chemical-kinetic reaction control, avoiding as possible temperature and
concentration gradients (Parthasarathy et al., 2013).

66

67 2.3. Kinetic models

In the case of combustion some authors consider just one global reaction divided in three different stages (drying, pyrolysis and char combustion) (Fang et al., 2013; Gangavati et al., 2005), others consider two parallel reactions with three reaction stages (Wang et al., 2014). Finally (Gil et al., 2010) considers a two stage reaction, with a first step between 200-365 °C (oxidative degradation)

⁷³ followed by combustion of char between 365-500 °C. A similar model is

proposed by (Shen et al., 2009) and (Fang et al., 2006), who apply those

75 methods to a two reaction oxidation-reduction pyrolysis.

There are two main mathematical approaches to obtain the descriptors of combustion kinetics of biomass samples: (a) model-free methods (isoconversional methods) and (b) model-based methods. Both approaches depart from a general conversion-time relationship:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \mathbf{k}(T) \cdot \mathbf{f}(\alpha) \tag{1}$$

Where f(α) is the mechanistic temr and k(T) the thermal dependence term
that can be defined by Arrhenius law:

$$k(T) = k_0 \cdot e^{-E_a/_{RT}}$$
(2)

Conversion rate can be defined as a relation between initial (m_0) , final (m_{∞})and instantaneous (m_t) sample mass. These data can be obtained from each sample TG profile.

$$\alpha = \frac{\mathbf{m}_0 - \mathbf{m}_t}{\mathbf{m}_0 - \mathbf{m}_\infty} \tag{3}$$

The kinetic term $f(\alpha)$ depends on the conditions and the stage of the reaction to study, but it can be usually expressed as $(1-\alpha)$ (Bahng et al., 2009; Fang et al., 2006; Shen et al., 2009), if first reaction order is considered. If other reaction model is required it should be substituted by one of the expressions shown at Table 1. Combining both expressions, the experimental rate of reaction may be formulate as:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \mathbf{k}_0 \cdot \mathrm{e}^{-\mathrm{E}_a/_{\mathrm{RT}}} \cdot \mathbf{f}(\alpha) \tag{4}$$

If the heating rate $\beta = dT/dt$, is included in the previous differential equation, a new expression is obtained following a simple mathematical procedure which can be seen in previous articles such as (Gil et al., 2010; Maia and de Morais, 2016):

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{1}{\beta} \cdot \mathbf{k}_0 \cdot \mathrm{e}^{-\mathrm{E}_a/\mathrm{RT}} \cdot \mathbf{f}(\alpha)$$
⁽⁵⁾

95 Therefore:

$$\frac{d\alpha}{f(\alpha)} = \frac{k}{\beta} \cdot dT \to \frac{d\alpha}{f(\alpha)} = \frac{k_0}{\beta} \cdot e^{-E_a/_{RT}} dT$$
(6)

96

Then the following integer, that must be numerically solved, is obtained:

$$g(\alpha) = \int_0^{\alpha} \frac{d\alpha}{f(\alpha)} = \frac{k_0}{\beta} \int_{T_0}^{T} e^{-E_a/RT} dT = \frac{k_0 E_a}{\beta R} P\left(\frac{E_a}{RT}\right)$$
(7)

The function $P(E_a/RT)$ has no exact solution. Thus Eq. (7) can be solved by numerical methods or approximations as can be seen in (White et al., 2011).

99 2.3.1. Model-free methods

100 The model-free methods allow for evaluating the Arrhenius parameters

101 without choosing the reaction order (Janković et al., 2009; Ravi et al., 2012).

102 These methods rest upon the isoconversional principle, which states that, at a

103 constant extent of conversion, the reaction rate is a function only of the

temperature (Vyazovkin and Sbirrazzuoli, 2006).

105 2.3.1.1. Flynn-Wall-Ozawa method

106 The solution of Eq. 7 using Doyle's approximation (Eq. 8) (Doyle, 1961), is

the Flynn-Wall-Ozawa (FWO) method (Eq. 9) (Flynn and Wall, 1966; Ozawa,

108 1965).

$$ln\left[p\left(\frac{E_a}{RT}\right)\right] \simeq -5.331 - 1.052 \frac{E_a}{RT} \tag{8}$$

$$\ln(\beta) = ln\left(\frac{k_0 E_a}{Rg(\alpha)}\right) - 5.331 - 1.052\frac{E_a}{RT}$$
⁽⁹⁾

Eq. 8 is valid only if $20 \le E_a/RT \le 60$ (Flynn and Wall, 1966). For a series of

111 measurements with different heating rates at the fixed conversion value $\alpha = \alpha_i$,

the plot of ln (β) vs. T⁻¹ is a straight line with the slope m = -1.052 E_a/R.

- 113 2.3.1.2. Kissinger-Akahira-Sunose method
- 114 The Kissinger–Akahira–Sunose method (KAS) is obtained using Eq. 10,
- which is valid for $20 \le E_a/RT \le 50$ (Sbirrazzuoli et al., 2009).

$$p\left(\frac{E_{a}}{RT}\right) \simeq \frac{e^{-E_{a}}/RT}{\left(\frac{E_{a}}{RT}\right)^{2}}$$
(10)

In KAS method, the relation between the temperature and heating rate isgiven by Eq. 11 (Kissinger, 1957).

$$\ln\left(\frac{\beta}{T^2}\right) = \ln\left(\frac{k_0 R}{E_a g(\alpha)}\right) - \frac{E_a}{RT}$$
(11)

118 The plot of the left side of Eq. 11 vs. T⁻¹ at constant conversion value is a

119 straight line with the slope $m=-E_a/R$.

120 2.3.2. Model-based methods. Coats-Redfern method.

- 121 Coats-Redfern method uses the asymptotic series expansion for
- approximating the exponential integral in Eq. 7 (Coats and Redfern, 1964).

$$\ln\left(\frac{g(\alpha)}{T^2}\right) = \ln\left(\frac{k_0 R}{\beta E_a}\left(1 - \frac{2R\overline{T}}{E_a}\right)\right) - \frac{E_a}{RT}$$
(12)

If term 2RT/E_a is much lower than one it can be ignored, being the right
logarithmic term constant:

$$\ln\left(\frac{g(\alpha)}{T^2}\right) = \ln\left(\frac{k_0 R}{\beta E_a}\right) - \frac{E_a}{RT}$$
(13)

Plotting the left side of Eq. 13 vs. T^{-1} , E_a and k_0 are obtained from the slope and intercept respectively. Finally, the model that gives the best linear fit is selected as the chosen model.

128 Several reaction model for $g(\alpha)$ and $f(\alpha)$ are listed at Table 1. With these

129 mathematical approach the kinetic triplet (decomposition model/reaction order,

130 pre-exponential Arrhenius factor and activation energy) can be obtained from

thermal decomposition data in a thermobalance scale (Bahng et al., 2009).

132

133 3. RESULTS AND DISCUSSION

134 **3.1 Parameters of DTG curves**

The characteristic parameters of DTG plots, which are presented in Fig. 1, 135 136 are shown in Table 2. As shown in Table 2, the combustion behaviour of biomass samples studied is almost the same. There are two steps in 137 combustion of biomass, except for charcoal, lignin and cellulose which 138 presented only one step. The first step is related with combustion of cellulose 139 and hemicelluloses and the second one is related with the lignin fraction. All the 140 temperatures at maximum DTG (T_{peak}) of first stage are in the range between 141 249-353 °C, while the range for second stage is 414-627 °C. Temperature at 142 maximum weight loss rate of cellulose is 338 °C, which correspond to the first 143 stage while in the case of lignin this temperature is 548 °C belonging to second 144

stage. Thus, the first step is related with combustion of cellulose and
hemicelluloses and the second one is related with the lignin fraction.
Due to the data in Table 2, a two-stage reaction kinetic scheme has been
proposed in this article:

149

150 **3.2 Kinetic parameters**

The samples of biomass fuels were subjected to four heating ramps at 5, 10, 151 15 and 20 K/min. Obtained data was adjusted using previously described FWO, 152 153 KAS and Coats-Redfern method as well as numerically using Scientist software, supposing first reaction order in all cases, which showed a really good 154 mathematical adjust. In that way, a four point straight line was obtained for each 155 conversion value from 10 to 90%, so a value of E_a is obtained for each 156 conversion (FWO and KAS methods) while only one heating ramp data (15 157 158 K/min) were necessary when Coats-Redfern or numerical methods were used 159 to obtain the kinetic triplet. The obtained kinetic data are shown at Table 3 and Table 4 for Coats-Redfern and numerical solutions respectively. 160 161 When FWO or KAS method were applied, their particular assumptions were only accomplished in the a range of conversion belonging to hemicelluloses and 162 cellulose fractions, while at the level of conversion for which the combustion of 163 164 lignin starts the assumptions were not accomplished (Fig 2). In Fig 2 the values 165 of E_a/RT for FWO and KAS methods are plotted against temperature as well as

dotted lines for maximum and minimum E_a/RT values for both methods. It can

167 be seen clearly that the assumptions of FWO and KAS methods were only accomplished in the first stage with E_a/RT values (red and green lines) between 168 dotted lines while these coloured lines are below minimum dotted line when the 169 second stage takes place. In commercial lignin and charcoal samples, the 170 171 assumptions were not accomplished at all. Taking into account that charcoal is mainly composed of lignin, it is clear that FWO and KAS methods cannot 172 predict activation energy of biomass combustion when lignin decomposition 173 174 takes place.

175 Regarding Coats-Redfern and numerical method kinetic data, the activation 176 energy in both stages is almost the same although it must be stated that in most 177 samples this value is slightly higher in second stage. However, the activation 178 energy of lignin is lower than cellulose, this is thought to be because of the 179 synergistic effect. Since both stages are overlapped, in the Coats-Redfern 180 method a γ -factor is used in order to link both stages:

$$\frac{d\alpha}{dT} = \gamma \left(\frac{d\alpha}{dT}\right)_{\text{stage 1}} + (1 - \gamma) \left(\frac{d\alpha}{dT}\right)_{\text{stage 2}}$$
(15)

181

182 The γ -factor is modelled as a modified Gomperzt function (Collado et al., 183 2016):

$$\gamma = 1 - A \exp\left\{-\exp\left(\frac{\mu e}{A}\left(T_c - T\right) + 1\right)\right\}$$
(16)

Figures 3a and 3b show the simulations of the Coats-Redfern method. As it can be seen in Table 5, where the Gomperzt parameters are shown, A values are close to 1 and T_c is the turning point between both stages, while μ values are related with the rate of change of the γ -factor.

188 **4. CONCLUSIONS**

There were determined the kinetic parameters (activation energy and the pre-exponential factor of Arrhenius expression) for 28 biomass samples by Coats-Redfern method. All of them showed good adjust to first global reaction order. It was experimentally demonstrated that FWO and KAS method are not suitable for getting the kinetic parameters of the combustion of biomass.

194

195 ACKNOWLEDGEMENTS

196 This article is greatly indebted to MINECO for the economic support given to

197 the Normalized vegetable Biomass for Eficient Energetic Trigeneration project

198 (MINECO-13-CTQ2013-45155-R) and Consejería de Economía y Empleo del

199 Principado de Asturias for the economic support given to the TRIBIONOR

200 project (PCTI Asturias 2013–2017, Ref. FC-15-GRUPIN14-095), which makes

the continuation of research in this field possible.

A. Álvarez acknowledges receipt of a graduate fellowship from the Severo
 Ochoa Program (Principado de Asturias, Spain).

204 We also wish to thank many companies such as Pellets Asturias, Factor

205 Verde, Molygrasa, Dibiosur, Enfosur, Acciona, Nutral, Arrocerías Dorado,

206 Carsan Bio, Parque Verde, Viñadecanes Vinos, la Cooperativa Agrícola de

207 Cangas del Narcea, Vino de la Tierra de Cangas , Gebio, Aragonesa

208 Bioenergía and Cafés El Gallego for their disinterested collaboration supplying

209 most of the necessary biomass samples.

210

211

REFERENCES

213	1.	Álvarez, A., Pizarro, C., García, R., Bueno, J.L., 2015. Spanish biofuels
214		heating value estimation based on structural analysis. Ind. Crops Prod.
215		77, 983–991. doi:10.1016/j.indcrop.2015.09.078
216	2.	Bahng, MK., Mukarakate, C., Robichaud, D.J., Nimlos, M.R., 2009.
217		Current technologies for analysis of biomass thermochemical
218		processing: A review. Anal. Chim. Acta 651, 117–138.
219		doi:10.1016/j.aca.2009.08.016
220	3.	Coats, A.W., Redfern, J.P., 1964. Kinetic Parameters from
221		Thermogravimetric Data. Nature 201, 68–69. doi:10.1038/201068a0
222	4.	Collado, S., Rosas, I., González, C., Diaz, M., 2016. Biodegradation of p-
223		hydroxybenzoic acid by Pseudomonas putida. Desalination Water
224		Treat. 57, 15230–15240. doi:10.1080/19443994.2015.1072584
225	5.	Dixon, T.F., Mann, A.P., Plaza, F., Gilfillan, W.N., 2005. Development of
226		advanced technology for biomass combustion—CFD as an essential
227		tool. Fuel, Special Issue Dedicated to Professor Terry Wall 84, 1303–
228		1311. doi:10.1016/j.fuel.2004.09.024
229	6.	Doyle, C.D., 1961. Kinetic analysis of thermogravimetric data. J. Appl.
230		Polym. Sci. 5, 285–292. doi:10.1002/app.1961.070051506
231	7.	European Environment Agency (EEA), 2010. Europe 2020: A strategy for
232		smart, sustainable and inclusive growth [WWW Document]. URL
233		http://www.eea.europa.eu/policy-documents/com-2010-2020-europe-
234		2020 (accessed 2.11.15).
235	8.	Fang, M.X., Shen, D.K., Li, Y.X., Yu, C.J., Luo, Z.Y., Cen, K.F., 2006.
236		Kinetic study on pyrolysis and combustion of wood under different
237		oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl.
238		Pyrolysis 77, 22–27. doi:10.1016/j.jaap.2005.12.010
239	9.	Fang, X., Jia, L., Yin, L., 2013. A weighted average global process model
240		based on two-stage kinetic scheme for biomass combustion. Biomass
241		Bioenergy 48, 43–50. doi:10.1016/j.biombioe.2012.11.011
242	10.	Flynn, J.H., Wall, L.A., 1966. General treatment of the thermogravimetry of
243		polymers. J. Res. Natl. Bur. Stand. Sect. Phys. Chem. 70A, 487.
244		doi:10.6028/jres.070A.043
245	11.	Gangavati, P.B., Safi, M.J., Singh, A., Prasad, B., Mishra, I.M., 2005.
246		Pyrolysis and thermal oxidation kinetics of sugar mill press mud.
247		Thermochim. Acta 428, 63–70. doi:10.1016/j.tca.2004.09.026
248	12.	García, R., Pizarro, C., Lavín, A.G., Bueno, J.L., 2014a. Spanish biofuels
249		heating value estimation. Part I: Ultimate analysis data. Fuel 117, Part
250		B, 1130–1138. doi:10.1016/j.fuel.2013.08.048
251	13.	García, R., Pizarro, C., Lavín, A.G., Bueno, J.L., 2014b. Spanish biofuels
252		heating value estimation. Part II: Proximate analysis data. Fuel 117,
253		Part B, 1139–1147. doi:10.1016/j.fuel.2013.08.049
254	14.	Garcia-Maraver, A., Perez-Jimenez, J.A., Serrano-Bernardo, F., Zamorano,
255		M., 2015. Determination and comparison of combustion kinetics
256		parameters of agricultural biomass from olive trees. Renew. Energy 83,
257		897–904. doi:10.1016/j.renene.2015.05.049

258	15. Gil, M.V., Casal, D., Pevida, C., Pis, J.J., Rubiera, F., 2010. Thermal
259	behaviour and kinetics of coal/biomass blends during co-combustion.
260	Bioresour. Technol. 101, 5601–5608.
261	doi:10.1016/j.biortech.2010.02.008
262	16. Janković, B., Kolar-Anić, L., Smičiklas, I., Dimović, S., Aranđelović, D.,
263	2009. The non-isothermal thermogravimetric tests of animal bones
264	combustion, Part. I. Kinetic analysis, Thermochim, Acta 495, 129–138.
265	doi:10.1016/i.tca.2009.06.016
266	17. Kissinger, H.E., 1957. Reaction Kinetics in Differential Thermal Analysis.
267	Anal. Chem. 29, 1702–1706, doi:10.1021/ac60131a045
268	18. Kok, M.V., Özgür, E., 2013. Thermal analysis and kinetics of biomass
269	samples. Fuel Process. Technol. 106. 739–743.
270	doi:10.1016/i.fuproc.2012.10.010
271	19. Ma. L., Jones, J.M., Pourkashanian, M., Williams, A., 2007, Modelling the
272	compustion of pulverized biomass in an industrial combustion test
272	furnace Euel 86 1959–1965 doi:10.1016/i.fuel 2006.12.019
273	20 Maia A A D de Morais I C 2016 Kinetic parameters of red pepper
275	waste as biomass to solid biofuel Bioresour Technol 204 157–163
275	doi:10 1016/i biortech 2015 12 055
270	21 Ozawa T 1965 A New Method of Analyzing Thermogravimetric Data
277	Bull Chem Soc. Inn 38 1881–1886 doi:10.1246/bcsi.38.1881
270	22 Parthasarathy P. Narayanan K.S. Arockiam I. 2013 Study on kinetic
275	parameters of different biomass samples using thermo-gravimetric
280	analysis Biomass Bioenergy 58, 58–66
201	doi:10.1016/i biombioe 2013.08.004
202	23 Ravi P Vargeese A A Tewari S P 2012 Isoconversional kinetic
285	analysis of decomposition of nitronyrazoles. Thermochim. Acta 550
204	83–89. doi:10.1016/i tca.2012.10.003
286	24 Shirrazzuoli N Vincent I Mija A Guigo N 2009 Integral differential
200	and advanced isoconversional methods: Complex mechanisms and
207	isothermal predicted conversion-time curves. Chemom, Intell, Lab
200	Syst Chimiometrie 2007 Lyon France 29-30 November 2007 96
205	219-226. doi:10.1016/i.chemolab.2009.02.002
200	25 Shen D.K. Gu S. Luo K.H. Bridawater A.V. Fana M.X. 2009 Kinetic
201	study on thermal decomposition of woods in oxidative environment
202	Fuel 88, 1024–1030, doi:10.1016/i fuel 2008.10.034
201	26 Szemmelveisz K Szűcs I Palotás Á B Winkler I Eddings E G
205	20.0 Examination of the combustion conditions of herbaceous
295	high high high high high high high high
290	doi:10.1016/i fuproc.2009.03.001
297	27 Vyazovkin S. Shirrazzuoli N. 2006 Isoconversional Kinetic Analysis of
290	Thermally Stimulated Processes in Polymers, Macromol, Rapid
299	Commun 27 1515 1532 doi:10.1002/marc.200600404
300	28 Wang G. Zhang J. Shao J. Pon S. 2014 Characterisation and model
202 201	fitting kinetic analysis of coal/biomass co-compustion. Thormachim
202	Acta 501 $68-74$ doi:10.1016/j.top.2014.07.010
204	20 White IE Catallo W I Logandro RI 2011 Piamaco puralucia kinatias
304 205	23. WITHE, J.E., Galano, W.J., Legenure, D.L., 2011. Diomass pyrolysis kinelics
305	A comparative childar review with relevant agricultural residue case

306	studies. J. Anal. Appl. Pyrolysis 91, 1–33.
307	doi:10.1016/j.jaap.2011.01.004
308	30. Yang, Y.B., Sharifi, V.N., Swithenbank, J., 2004. Effect of air flow rate and
309	fuel moisture on the burning behaviours of biomass and simulated
310	municipal solid wastes in packed beds. Fuel, Fundamental Mechanisms
311	of Biomass, Pyrolysis and Oxidation 83, 1553–1562.
312	doi:10.1016/j.fuel.2004.01.016
313	

314 **TABLES**

- 315 Table 1. Solid state rate equations
- Table 2. DTG data of biomass samples
- Table 3. Kinetic parameters obtained by means of Coats-Redfern method.
- Table 4. Kinetic parameters obtained by numerical solution.
- Table 5. Gompertz model parameters of the biomass samples analysed

Table 1. Solid state rate	equations
---------------------------	-----------

Abbreviation	Reaction model	f(α)	g(α)					
Nucleation models								
P2	Power Law	2α ^{1/2}	α ^{1/2}					
P3	Power Law	3α ^{2/3}	α ^{1/3}					
P4	Power Law	4α ^{3/4}	α ^{1/4}					
A2	Avarami-Erofe'ev	$2(1-\alpha)[-\ln(1-\alpha)]^{1/2}$	[-ln(1-α)] ^{1/2}					
A3	Avarami-Erofe'ev	$3(1-\alpha)[-\ln(1-\alpha)]^{2/3}$	[-ln(1-α)] ^{1/3}					
A4	Avarami-Erofe'ev	4(1-α)[-ln(1-α)] ^{3/4}	[-ln(1-α)] ^{1/4}					
Rea	ction orders and ge	eometrical contraction	ons					
F1	First order	1-α	-ln(1-α)					
F2	Second order	(1 - α) ²	(1-α) ⁻¹ -1					
F3	Third order	(1-α) ³	[(1-α) ⁻² -1]/2					
R2	Contracting area	2(1-α) ^{1/2}	1-(1-α) ^{1/2}					
R3	Contracting volume	3(1-α) ^{2/3}	1-(1-α) ^{1/3}					

	Fir	st stage	Second stage		
Sample	T _{peak} (ºC)	Temperature range (°C)	T _{peak} (ºC)	Temperature range (°C)	
Cellulose	338	300-360	-	-	
Lignin	-	-	548	450-600	
Almond shell	298	250-390	477	400-720	
Apple tree leaves	311	220-350	414	410-600	
Beetroot pellets	342	210-380	541	400-640	
Briquette	343	260-400	509	410-550	
Charcoal	-	-	490	400-900	
Chestnut tree chips	335	260-370	473	400-520	
Cocoa bean husk	312	225-350	627	425-634	
Coffee bean husk	319	220-360	502	440-520	
Corncob	289	250-340	454	400-550	
Eucalyptus tree chips	340	250-370	486	420-520	
Extracted olive pomace	328	230-360	550	400-725	
Gorse	339	250-390	560	450-570	
Grape seed flour	340	255-375	546	400-775	
Miscanthus	307	240-340	550	450-550	
Olive stone	340	260-360	418	400-820	
Olive tree pruning	342	250-375	469	430-570	
Pepper plant	311	220-374	460	400-807	
Pine and pineapple leave pellets	324	250-360	422	400-740	
Pine kernel shell	249	270-370	515	400-820	
Pineapple leaf	344	250-380	496	420-570	
Rice husk	334	260-360	450	400-540	
Sainfoin	301	230-330	456	390-522	
Scrubland pruning	334	260-370	538	400-760	
Thistle	345	240-400	473	420-550	
Vine shoot	318	250-380	468	420-500	
Wheat straw	312	260-360	543	420-650	
Wheat straw pellets	300	230-365	458	400-528	

Somala		Stage 1		Stage 2			
Sample	ko	Ea (J/mol)	R ²	ko	Ea (J/mol)	R ²	
Cellulose	9.47E+17	2.12E+05	0.997	-	-	-	
Lignin	-	-	-	6.87E+03	6.95E+04	0.98	
Almond shell	2.07E+03	4.82E+04	0.994	1.00E+00	1.71E+04	0.94	
Apple tree leaves	3.54E+01	2.94E+04	0.997	2.65E+00	2.06E+04	0.996	
Beetroot pellets	5.36E+00	2.16E+04	0.998	3.99E+00	2.32E+04	0.98	
Briquette	4.65E+02	4.28E+04	0.997	2.24E+03	5.55E+04	0.96	
Charcoal	-	-	-	9.17E-01	2.29E+04	0.98	
Chestnut tree chips	1.35E+03	4.66E+04	0.998	2.83E+03	5.38E+04	0.98	
Cocoa bean husk	2.86E+01	2.90E+04	0.995	6.28E-01	1.51E+04	0.99	
Coffee bean husk	1.06E+02	3.46E+04	0.998	7.10E+03	6.25E+04	0.96	
Corncob	1.65E+07	8.69E+04	0.994	3.20E+00	1.95E+04	0.93	
Eucalyptus tree chips	4.60E+02	4.18E+04	0.9995	1.03E+04	6.30E+04	0.98	
Extracted olive pomace	5.96E+01	3.23E+04	0.993	5.08E-01	1.46E+04	0.92	
Gorse	3.07E+01	3.07E+04	0.997	3.31E+02	4.71E+04	0.95	
Grape seed flour	8.85E+00	2.56E+04	0.995	3.09E+02	5.70E+04	0.96	
Miscanthus	2.56E+02	3.79E+04	0.996	6.76E+02	5.09E+04	0.97	
Olive stone	1.37E+03	4.63E+04	0.98	7.33E+01	4.76E+04	0.91	
Olive tree pruning	1.48E+02	3.64E+04	0.9991	2.26E+00	1.92E+04	0.92	
Pepper plant	4.58E+00	2.14E+04	0.9993	7.02E+01	4.73E+04	0.95	
Pine and pineapple leave pellets	1.05E+03	4.51E+04	0.994	1.09E-01	7.35E+03	0.97	
Pine kernel shell	2.84E+02	4.05E+04	0.996	7.91E+01	4.81E+04	0.97	
Pineapple leaf	1.31E+02	3.69E+04	0.997	5.33E+02	4.92E+04	0.95	
Rice husk	7.31E+03	5.39E+04	0.9991	4.13E+01	3.28E+04	0.92	
Sainfoin	1.64E+02	3.49E+04	0.996	1.88E+02	4.09E+04	0.995	
Scrubland pruning	2.26E+01	2.90E+04	0.995	2.86E+00	2.09E+04	0.92	
Sorghum	2.93E+03	4.99E+04	0.998	2.01E+00	1.81E+04	0.98	
Thistle	9.64E+01	3.46E+04	0.998	5.61E+01	3.50E+04	0.99	
Vine shoot	5.12E+03	5.16E+04	0.998	8.68E+02	4.82E+04	0.96	
Wheat straw	1.93E+06	7.75E+04	0.96	4.13E+00	2.34E+04	0.92	
Wheat straw pellets	1.35E+04	5.46E+04	0.995	1.51E+01	2.75E+04	0.96	

Table 3. Kinetic parameters obtained by means of Coats-Redfern method.

Correcto	· ·	Stage 1		Stage 2			
Sample	ko	Ea	R ²	ko	Ea	R ²	
Cellulose	3.24E+10	1.26E+05	0.997	-	-	-	
Lignin				4.49E+05	9.73E+04	0.99993	
Almond shell	2.97E+02	3.83E+04	0.9997	7.11E+01	4.36E+04	0.999996	
Apple tree leaves	1.29E+02	3.42E+04	0.9998	2.57E+01	3.23E+04	0.999998	
Beetroot pellets	3.26E+00	1.75E+04	0.999996	1.26E+03	6.04E+04	0.9999995	
Briquette	1.98E+04	5.98E+04	0.99996	3.90E+09	1.48E+05	0.9999997	
Charcoal				1.09E+00	2.10E+04	0.9996	
Chestnut tree chips	1.76E+05	6.88E+04	0.9998	3.01E+08	1.24E+05	0.99995	
Cocoa bean husk	2.48E+02	3.77E+04	0.9998	9.87E+00	2.91E+04	0.999997	
Coffee bean husk	9.03E+02	4.35E+04	0.999996	4.70E+10	1.62E+05	0.999997	
Corncob	3.99E+07	9.06E+04	0.998	1.30E+03	5.29E+04	0.999996	
Eucalyptus tree chips	2.02E+03	4.79E+04	0.99995	3.69E+11	1.72E+05	0.9999997	
Extracted olive pomace	2.04E+02	3.69E+04	0.9994	4.11E+01	4.11E+04	0.99998	
Gorse	1.28E+03	4.72E+04	0.999995	3.64E+08	1.38E+05	0.999997	
Grape seed flour	1.19E+02	3.64E+04	0.99991	5.80E+00	2.84E+04	0.99997	
Miscanthus	3.11E+03	4.87E+04	0.9998	4.30E+07	1.22E+05	0.999998	
Olive stone	2.00E+02	3.63E+04	0.9995	1.80E+00	2.09E+04	0.99998	
Olive tree pruning	2.31E+03	4.85E+04	0.99995	2.15E+03	5.89E+04	0.999991	
Pepper plant	2.10E+01	2.68E+04	0.999993	3.58E+11	2.37E+05	0.999999994	
Pine and pineapple leave pellets	7.78E+04	6.46E+04	0.99995	1.20E+00	1.62E+04	0.999994	
Pine kernel shell	7.07E+03	5.51E+04	0.99997	2.03E+02	5.66E+04	0.999998	
Pineapple leaf	3.53E+03	5.15E+04	0.999995	3.13E+04	7.61E+04	0.9999991	
Rice husk	1.57E+04	5.69E+04	0.99991	1.85E+04	6.95E+04	0.99997	
Sainfoin	2.00E+03	4.53E+04	0.9998	2.11E+04	6.88E+04	0.999994	
Scrubland pruning	4.09E+03	5.24E+04	0.99998	3.57E+03	6.21E+04	0.99998	
Sorghum	1.09E+04	5.54E+04	0.9997	1.79E+01	2.81E+04	0.999980	
Thistle	3.65E+03	5.08E+04	0.999991	2.35E+05	8.64E+04	0.999998	
Vine shoot	3.24E+04	5.97E+04	0.99992	3.31E+10	1.54E+05	0.9999992	
Wheat straw	2.59E+13	1.55E+05	0.9998	1.25E+01	3.06E+04	0.99997	
Wheat straw pellets	6.25E+06	8.21E+04	0.99992	3.90E+04	1.54E+05	0.999998	

Table 4. Kinetic parameters obtained by numerical solution.

Sample	Α	μ (K⁻¹)	T _c (K)
Almond shell	0.999	0.016	597.9
Apple tree leaves	1.292	0.074	591.3
Beetroot pellets	0.852	0.029	638.8
Briquette	0.957	0.031	637.8
Charcoal	-	-	-
Chestnut tree chips	1.000	0.064	633.7
Cocoa bean husk	1.000	0.145	594.5
Coffee bean husk	0.879	0.032	606.9
Corncob	1.014	0.028	573.2
Eucalyptus tree chips	0.949	0.019	621.2
Extracted olive pomace	0.996	0.017	589.7
Gorse	0.976	0.012	603.6
Grape seed flour	1.372	0.018	603.2
Miscanthus	1.000	0.017	583.0
Olive stone	1.011	0.035	616.0
Olive tree pruning	1.016	0.023	605.2
Pepper plant	0.677	0.050	593.6
Pine and pineapple leave pellets	1.251	0.029	595.8
Pine kernel shell	1.000	0.011	595.2
Pineapple leaf	0.988	0.021	613.0
Rice husk	1.002	0.029	606.9
Sainfoin	1.509	0.056	586.2
Scrubland pruning	1.031	0.019	600.4
Sorghum	1.000	0.052	600.5
Thistle	1.944	0.016	612.1
Vine shoot	0.991	0.018	593.9
Wheat straw	1.000	0.068	588.7
Wheat straw pellets	0.976	0.023	570.8

328	Table 5.	Gompertz m	odel parameter	s of the biomass	samples analysed.
-----	----------	------------	----------------	------------------	-------------------

330 FIGURE CAPTIONS

- Fig. 1. DTG curves of the combustion process ($\beta = 15$ K/min) of biomass
- samples analysed. (PPLP in b is the pine and pineapple leave pellet sample).
- Fig 2. Matches between DTG and Ea values in FWO and KAS methods.
- Fig. 3a. Simulations for CR method; 1. Almond shell; 2. Apple tree leaves; 3.
- Beetroot pellets; 4. Briquette; 5. Charcoal; 6. Chestnut tree chips; 7. Cocoa
- bean husk; 8. Coffee bean husk; 9. Corncob; 10. Eucalyptus tree chips; 11.
- Extracted olive pomace; 12. Gorse; 13. Grape seed flour; 14. Miscanthus; 15.
- Olive stone; 16. Olive tree pruning.
- Fig. 3b. Simulations for CR method; 17. Pepper plant; 18. Pine and pineapple
- leave pellets; 19. Pine kernel shell; 20. Pineapple leaf; 21. Rice husk; 22.
- 341 Sainfoin; 23. Scrubland pruning; 24. Sorghum; 25. Thistle; 26. Vine shoot; 27.
- 342 Wheat straw; 28. Wheat straw pellets.

- Fig. 1. DTG curves of the combustion process (β = 15 K/min) of biomass
- samples analysed. (PPLP in b is the pine and pineapple leave pellet sample)

347 Fig 2. Matches between DTG and Ea values in FWO and KAS methods

348

Fig. 3a. Simulations for CR method; 1. Almond shell; 2. Apple tree leaves; 3.
Beetroot pellets; 4. Briquette; 5. Charcoal; 6. Chestnut tree chips; 7. Cocoa
bean husk; 8. Coffee bean husk; 9. Corncob; 10. Eucalyptus tree chips; 11.

Extracted olive pomace; 12. Gorse; 13. Grape seed flour; 14. Miscanthus; 15.

353 Olive stone; 16. Olive tree pruning.

Fig. 3b. Simulations for CR method; 17. Pepper plant; 18. Pine and pineapple

leave pellets; 19. Pine kernel shell; 20. Pineapple leaf; 21. Rice husk; 22.

357 Sainfoin; 23. Scrubland pruning; 24. Sorghum; 25. Thistle; 26. Vine shoot; 27.

358 Wheat straw; 28. Wheat straw pellets.