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Introduction

Graphite is among the best solid lubricants, but it is also known that graphite behaves as

a poor lubricant in vacuum.[1] Such a diverse behaviour makes graphite a target model

in many frictional/tribological studies at both macroscopic[2] and atomic[3, 4, 5] levels.

Graphite also was the first system studied in the seminal work by Mate et al.,[6] when

the friction force microscope was developed. Nowadays graphene has emerged into the

scene of frictional studies[7, 8, 9] and many works have been focused on understanding

the underlying mechanisms of friction in graphite[10, 11] and graphene.[12] For instance,

novel terms like superlubricity[13, 14] have been coined to refer to the near-zero friction

force observed between a graphite substrate and a graphite flake in an incommensurate

configuration.

The vibrational E2g(1) mode of graphite describes a rigid-layer relative movement of

the graphene sheets (see Fig. 1), thus informing on the forces that graphene layers have to

overcome in order to initiate relative displacements.[15, 16] By means of the characteriza-

tion of this vibrational mode and the evaluation of the energetic profile accompanying its

atomic movements, it is possible to get insight into the corrugation energy landscape and

the frictional behavior of graphite at a microscopic level. One of the relevant points at this

regard is to accurately take into account the anharmonicity of this Raman active mode. It

is expected to be noticeable, leading to a stress-induced blue shift of its frequency greater
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Figure 1: Left. Energetic profile versus the relative displacement of the middle layer of the
ABA equilibrium configuration for a given interlayer distance along a selected direction
(the x direction). Right. Arrangements of the tri-layer slab associated with graphite
stackings at critical points. C atoms in the central layer B are in green. C atoms in A layers
are in red. Arrows indicate the atomic movements involved in the E2g(1) vibrational mode.

than in other IR and Raman higher frequency modes.[17, 18] This vibrational mode may

be also used to verify the presence of graphene among graphite-like samples containing

few layers graphene. Although present in graphite and absent in graphene, the Raman

active E2g(1) mode “cannot be (directly) used as method for an experimental verification

of graphene”[19] due to its low Raman intensity.[20] However, since the frequency of

this mode is a measure of the splitting experienced by the E2g mode in graphene into

the infrared active E1u and the Raman active E2g(2) modes of graphite,[21] the lower

frequency of this E2g(2) mode in graphite with respect to graphene could be used as a

potential way to discriminate between graphite and graphene, albeit this is a matter of

current controversy.[22]

From a more theoretical perspective, it should be noticed that in the E2g(1) mode, the

in-plane and out-of-phase atomic movements (see Fig. 1) yield negligible modifications in

the intralayer C-C network. The frequency of this shear-like mode was observed below 50

cm−1 at ambient conditions (see for example Refs.[21, 23, 24] and references therein) and



10

provides a direct and accurate manifestation of the weak van der Waals (vdW) interactions

between graphene sheets in graphite. This is a relevant issue that deserves some comments

since the interplay between vibrational modes and vdW and covalent interactions in

graphite has aroused interest with detailed analysis for decades. In the pioneer works of

Dresselhaus et al.[21, 23] and the more recent studies of Cousins et al.,[24] the focus was on

the simultaneous modelization of both types of interactions (also introducing anharmonic

contributions) to account for experimental elastic data and Γ-point vibrational frequencies.

As highlighted in these works, difficulties in the parametrization of C interactions appear

not only due to the coexistence of both strong and weak interactions but for the fact

that the former are well localized and the later are of a non-directional type. Clearly, a

theoretical determination of the energy profile involved in the E2g(1) mode would benefit

an unambiguous characterization of vdW interactions in graphite-based materials.

By performing detailed first principles calculations, it is possible to accurately describe

the simultaneous energetics involved in intra- and inter-layer C-C interactions. Among

the number of computational simulations related to this topic, and in the context of

our study, it is worth mentioning the early works of di Vincenzo et al.[17] (with explicit

reference to anharmonicity in the E2g(1) mode) and Gonze et al.,[25] where the lack of an

accurate computational methodology was discussed. More recently, vdW contributions

were specifically taken into account in the calculations,[15, 26, 27, 16, 28, 29] and the

particular energetic barrier involved in the transition from the stable ABA to the AAA

stacking of graphene sheets in graphite was calculated.[15, 16, 27, 26] From the energetic

profiles connecting both stackings, the vibrational frequency of the E2g(1) mode can be

straightforwardly calculated.[16] Anharmonicity of phonons in carbon-based materials

has also been the subject of rigorous theoretical studies by Bonini et al.[22] and Paulatto

et al.[30] (and references therein). In these works, the focus is on the phonon scattering

mechanisms and the characterization of phonon decays[22] with the aim at determining

thermal transport properties of these materials,[30] though nor explicit neither implicit
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reference to friction phenomena was reported.

Fortunately, an extensive experimental work,[18] including effects of hydrostatic pres-

sure on this frequency, provides a pertinent source of information to compare with these

computational studies. Moreover, from the frequency (ω)-pressure (p) experimental data

of Hanfland et al.,[18] linear Grüneisen parameters were derived, thus allowing for a

comprehensive discussion of anharmonicity in the E2g(1) mode.

Taking into account the above considerations, we pursue in this Master Thesis to

provide a thorough understanding of anharmonicity in the E2g(1) mode of graphite by

rendering, modeling and evaluating this vibrational mode under different stress con-

ditions. By rendering we mean an illustrative description of the atomic arrangements

with specific attention to the local anisotropy around the absolute energy minima, and an

interpretation of the surface energy potential landscape using intuitive images of charge

density interactions. A simple four-spring model and a perturbative treatment using

Morse-like functions are enough to reasonably account for the anharmonicity associated

to this mode. The evaluation stage consists in a detailed analysis of part of our previous

DFT-based calculations in graphite under different stress conditions.[16] Specifically, we

examined the results of a three-layer graphene slab in which the middle layer is forced

to slide between other two ones, which remain fixed at different interlayer distances,

thus mimicking the atomic movements involved in the E2g(1) mode.[16] Morse functions

accurately account for energy changes along the vibrational coordinate of this mode at

different interlayer separations. It will be shown that anharmonicity decreases as this

parameter decreases or, equivalently, hydrostatic pressure or uniaxial stress is applied.

Overall, our calculations provide a quantitative assessment of the anharmonic contribution

of this rigid-layer frequency mode of graphite under different strain scenarios, and inform

on the trends that frictional forces show as temperature increases and pressure is applied.
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This document contain two more chapters and the conclusions section. The next

chapter collects the basic concepts of the theoretical background needed to perform a

study in Computational Materials Science. The Bloch theorem or the DFT formalism are

examples of what is included in it. Because many of these concepts appear later in the

rest of the Master Thesis, I found important providing this preliminary chapter. Since this

document will not pursue to be in any case a reference for those who look for an insight

understanding of these theoretical concepts, I have tried to avoid tedious developments

and explanations, being the search for a fluent language and rational organization the

main characteristics of this chapter. The referenced bibliography will provide a deeper

scope to the reader, if it were neccesary.

The main part of this work is contained in Chapter 2 and must be read with care due to

its extent and because the most important conclusions obtained in this work comes from

this chapter. The study of the friction like mode of graphite starts with the qualitative

analysis of the energetic profiles at different interlayer distances. The identification of the

interactions responsible of the shape of the potential energy curves are important in the

way that will provide information needed to understand the anharmonic contribution

once this is quantified in subsequent sections. The potential energy curve obtained when

the inner layer (B) is displaced between the outer fixed layers (A) is asymmetric from

the equilibrium point, associated to the ABA stacking of graphite. This asymmetry is

due to the existence of two less stable stackings (AAA and AB’A) emerging when the

displacement is done to the left or to the right. The amount of non covalent interactions

between graphene layers have been mainly related to the electrostatic repulsions arisen

when atoms or bonds in layers B are on top (under) of their counterpart in layers A placed

below (above).

In order to determine numerically the deviation from a harmonic potential, the fol-

lowing section in this chapter shows different ways to modellize this behaviour. Firstly, a
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perturbative treatment of a classic oscillator is presented. The idea which remains under

this model is that in harmonic oscillations the potential is symmetric around the equilib-

rium point and the period does not depend on the energy. Hence, the movement in each

moment is described by a simple sinusoidal function. In contrast, in an anharmonic oscilla-

tor the displacement to the left and to the right from the equilibrium point is not longer the

same. And, although the oscillation remains periodic, the period is not energy independent

and the movement needs a Fourier series expansion to be accurately explained. Thus,

treating the period and the displacements to the left and to the right like perturbations

from the harmonic oscillator, it is possible to obtain an expression for the observed fre-

quency in terms of the harmonic frequency and a small anharmonic contribution which

depends on the energy. The second model presented is based on the idea that the friction

like movement can be approximated to a system with four springs attached to an atom

in layer B. These four springs share all of them the same force constant but their lengths

are equal in pairs. Therefore, two different springs are attached to two atoms in the upper

layer A and the other pair of non equal springs to two atoms in the other (lower) layer

A. The small displacements of the atom in layer B are modellized by a given potential

from this imaginary system of four springs. Following the perturbative treatment, the

anharmonicity emerging from this system can be determined. To end this chapter, a set of

equation of states previously employed in experimental works will give us appropriate

expressions to relate frequency and pressure variations. As we have previously noticed,

it must be remarked that the computational data were fitted to a Morse function, whose

strengths and weakeness are also discussed in this section.

This chapter ends with a full evaluation of all the models studied. The last section is

focussed on answering all the questions which emerged previously. Which external effects

increase/decrease anharmoncity, how reliable the models are or if the available experi-

mental results can be explained in terms of the existence of an anharmonic contribution

and, in case of being true, how important this contribution is, are examples of such of these



questions.

Finally, Chapter 3 is a short study of different considerations derived from Chapter

2: the calculation of the average vibrational energy and the coefficient of temperature

are addressed in this part. To quantify the anharmonic vibrational energy a quantum

mechanical treatment took from the Cohen-Tannoudji text-book [46, 47] for anharmonic

oscillations is followed. The final target is to achieve an expression capable of relating

temperature and anharmonicity. However, other different side products are also included

here and their study is carried out in this chapter too.
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