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Abstract
Recent advances in three dimensional (3D) printing technology that allow multiple materials to
be printed within each layer enable the creation of materials and components with precisely
controlled heterogeneous microstructures. In addition, active materials, such as shape memory
polymers, can be printed to create an active microstructure within a solid. These active materials
can subsequently be activated in a controlled manner to change the shape or configuration of the
solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th
dimension being the time-dependent shape change after the printing. In this paper, we advance
the 4D printing concept to the design and fabrication of active origami, where a flat sheet
automatically folds into a complicated 3D component. Here we print active composites with
shape memory polymer fibers precisely printed in an elastomeric matrix and use them as
intelligent active hinges to enable origami folding patterns. We develop a theoretical model to
provide guidance in selecting design parameters such as fiber dimensions, hinge length, and
programming strains and temperature. Using the model, we design and fabricate several active
origami components that assemble from flat polymer sheets, including a box, a pyramid, and two
origami airplanes. In addition, we directly print a 3D box with active composite hinges and
program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on
demand.

S Online supplementary data available from stacks.iop.org/SMS/23/094007/mmedia
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1. Introduction

Origami is a traditional art where a flat sheet of paper is
folded into a complicated three dimensional (3D) shape. This
art form emerged in the 1600s or earlier in countries such as
Japan, China, Spain, Italy, and Germany, and has drawn
significant interest in the art and mathematics communities
since the 1940s and 1950s. Nowadays, origami is increasingly
being explored to provide technological solutions to engi-
neering problems of packing large objects into a small volume
for storage or transport then deploying them for use, such as
solar arrays in space structures or telescopes, airbags in
automobiles, shopping bags and cartons (Dubey and
Dai 2006, Merali 2011, Wu and You 2011), shape changing

photovoltaic solar cells (Guo et al 2009, Myers et al 2010),
and biomedical devices (Chalapat et al 2013, Gracias 2013,
Hawkes et al 2010, Ionov 2011, Mahadevan and Rica 2005,
Yang et al 2012). In these engineering applications, origami
design can provide innovative solutions for ways to pack the
material into its final form. But the packaging process itself is
complex and presents automation challenges that may be
unique to a specific packed configuration (Dubey and
Dai 2006). These challenges increase the infrastructure cost,
as a new automation infrastructure may be required if there
are changes in the folding design. In addition, some folding
patterns cannot be achieved by using regular folding pro-
cesses. Active origami, where an object self-folds or self-
unfolds, is therefore intriguing, as it can reduce the
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infrastructure investment for folding automations (Gra-
cias 2013, Ionov 2011). Active materials, especially active
polymers, are a natural choice for the design of active ori-
gami; e.g., origami using shape memory polymers (Liu
et al 2012), light activated polymers (Ryu et al 2012), and
shape memory alloys (Peraza-Hernandez et al 2013) were
reported recently.

Recent developments in 3D printing enable the precise
placement of multiple materials at micrometer resolution to
create complex 3D configurations with no (or little)
restrictions on the spatial arrangement of the materials. This
unprecedented design freedom has motivated myriad stu-
dies and applications in science and engineering to create
heterogeneous, designer materials with multiple functions.
For example, Babaee used 3D printing to fabricate molds
for casting spherical shells that are 3D metamaterials with
negative Poisson’s ratios due to local instabilities (Babaee
et al 2013). The use of printed molds to cast spherical shells
has also been employed to study buckling-induced encap-
sulation of structured elastic shells (Shim et al 2012) as
well as the mechanics of nonspherical pressurized elastic
shells (Lazarus et al 2012, Nasto et al 2013). Additionally,
3D printing has been used to directly fabricate hetero-
geneous materials. For example, Li et al (2013) fabricated
soft multi-material polymer composites to investigate the
mechanisms of the formation of wrinkled interfaces in soft
multi-layered composites. Dimas et al (2013) printed
fracture resistant composites that emulate biological com-
posite topologies. In addition, 3D printing was used to
create terahertz plasmonic waveguides (Pandey et al 2013),
acoustic cloaks (Sanchis et al 2013), and medical devices
(Khalyfa et al 2007, Lam et al 2002, Leukers et al 2005).
Generally, 3D printing has been used as a fabrication
technology to create 3D structures with complex details that
cannot be created by other techniques (or are prohibitively
expensive). Recently Tibbits introduced a new idea (Tib-
bits 2013), termed 4D printing, where a component is
created by 3D printing but at a later time transforms into
another shape or configuration. His materials and structures
work by a hygroscopic effect, where the material swells in a
temporally and spatially dependent manner when immersed
in water. The different swelling ratios in regions made of
different materials leads to deformation that conceptually
can be designed to obtain a new configuration (Westbrook
and Qi 2008). About the same time, Ge et al (2013)
reported a paradigm of 4D printing to create printed active
composites (PACs) by directly printing shape memory
polymer fibers in an elastomeric matrix to enable pro-
grammable shape change of the composites. In the PAC
system, the shape memory polymer (SMP) fibers, which are
capable of fixing a temporary shape and recovering to their
permanent shape in response to temperature change (Ge
Luo et al 2012, Ge Yu et al 2012, Lendlein and
Kelch 2002, 2005, Liu et al 2007, Mather et al 2009,
Nguyen et al 2008, Qi et al 2008, Yu et al 2012), are
critical to intelligentize the printed composite. The active
composites are imbued with intelligence by thermo-
mechanically programming a PAC lamina (printed fibers in

a thin layer) or laminate (stacks of printed lamina) struc-
ture. After the thermomechanical programming (subjecting
the material or structure to a prescribed thermal and
mechanical loading profile), laminates designed and printed
in a simple thin flat form assume complex 3D configura-
tions including bent, coiled, and twisted strips; folded
shapes; and complex contoured shapes with nonuniform,
spatially-varying curvature. The resulting shape can be
designed based on the theoretical understanding of the
thermomechanical shape memory behavior of the compo-
sites and their constituents. The original flat form can be
recovered by heating the material again. While the paper
demonstrated the concept with simple printed flat laminate
structures, more sophisticated shapes can be obtained by
4D printing, providing even more design freedom. For
example, the two layer PACs can also serve as hinges
connecting with rigid panels to create a self-folding/open-
ing box. Potentially, the developed PAC hinges can play a
striking role of making 3D self-assembly structures from a
thin flat form.

In this paper, we advance the concept of self-assembling
origami that works by printing flat polymer sheets connected
by hinges consisting of PACs. When programmed with the
appropriate thermomechanical protocol, the PAC hinges will
fold the flat sheet into the desired final shape automatically,
thus achieving active origami by 4D printing. Our approach
is based on a rigorous understanding of the complex ther-
momechanics of the composite hinge structures and includes
experiments to determine the folding angle of a hinge in
terms of relevant microstructural parameters as well as a
theory to describe the phenomena. With our theory, we can
digitally design and manufacture components that can
assemble themselves via active origami. In this paper, we
first introduce the materials used to print PAC hinges then
describe experiments to determine the hinge behavior as a
function of the hinge PAC microstructural parameters and
the thermomechanical loading parameters. In section 3, we
develop a theoretical model to describe the bending angle of
a PAC hinge as a function of the microstructure of the PAC
composite and the thermomechanical constitutive behavior
of the fibers and matrix. In our PACs, the matrix behaves as
a simple elastomer, but the shape memory behavior of the
PAC derives from that of the fibers, so we describe their
behavior in the context of a thermomechanical constitutive
model and characterize the relevant parameters. In section 4,
we then use the understanding derived from our theory and
experiments to design and manufacture by 4D printing a
series of components that transform between two config-
urations: an as-printed initial configuration and an as-
designed final configuration. These applications include a
self-assembling box and pyramid that self-assemble from an
initially flat shape, two origami airplanes that assemble into
complex configurations from an initially flat shape, and a
box that is printed in its 3D shape, deformed into a flattened
temporary shape, and then re-assembled into its 3D box
shape.
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2. Printed active composite hinges—fabrication and
characterization

2.1. Fabrication and materials

We fabricate PAC hinges by creating computer aided design
(CAD) files that specify the complete 3D architecture of the
fibers and matrix then printing them using a multi-material
polymer 3D printer (Objet 260 Connex, Stratasys, Edina,
MN, USA). The layer-by-layer printing process works by
depositing droplets of polymer ink onto the building platform,
wiping them into a smooth film, and ultraviolet (UV) pho-
topolymerizing the film. Once a layer is created, the platform
moves down, and the next layer is printed. Several inkjet
heads with separate material sources exist in the printing
block, so multiple materials can be printed in each layer. In
our work, each layer generally contains materials that con-
stitute part of the matrix and part of the fibers. In addition, a
hydrophilic gel is printed and used as a sacrificial material for
the fabrication of complex geometries (Stiltner et al 2011).

Our strategy to create PAC hinges consisting of com-
posites with a matrix that is elastomeric over our desired
operating temperature range of between room temperature
and about 100 °C and fibers that exhibit the shape memory
effect (SME) over this temperature range. Thus we design our
PACs to have a matrix with a glass transition temperature ( )Tg

below 25 °C and fibers exhibiting SME in the range
25 °C–70 °C. To this end, we make use of the digital materials
that are available with an Objet 3D printer. It provides two
base materials: one is Tangoblack, a rubbery material at room
temperature polymerized with a material ink containing ure-
thane acrylate oligomer, Exo-1,7,7-trimethylbicyclo [2.2.1]
hept-2-yl acrylate, methacrylate oligomer, polyurethane resin,
and photo initiator; the other is Verowhite, a rigid plastic at
room temperature polymerized with a material ink containing
isobornyl acrylate, acrylic monomer, urethane acrylate, epoxy
acrylate, acrylic monomer, acrylic oligomer, and photo
initiator. The printer can also print digital materials that
consist of varying compositions of these two materials that
lead to different thermomechanical properties. In the current
printing system, although users can tune thermomechanical
properties of printed materials by choosing limited numbers

of digital materials, we believe with the development of 3D
printing technique, users will have more freedom of material
choices. In this paper, we created PACs consisting of Tan-
goblack as the matrix (Tg ∼−5 °C) and a digital material
(termed Gray 60) with Tg ∼ 47 °C.

We created PAC hinges to characterize experimentally
by directly printing two-layer PAC laminates that are con-
nected to inactive (rigid) panels. These panels can be used as
end tabs to apply mechanical loads (figure 1(a)). The PAC
laminates consist of two layers: one layer of matrix-only
material and one layer of a PAC lamina with a prescribed
fiber size and spacing (figure 1(a)). The composite archi-
tecture is characterized by the lamina thicknesses and volume
fraction (determined from the size and spacing).

Our hinges function via a mechanism of programmed
strain mismatch (eigenstrain) between the two layers that
leads to constant curvature bending over the hinge region,
resulting in the plates on each side rotating an angle of θ with
respect to each other (figure 1(b)). The strain mismatch is
created by: i) stretching the hinge at an elevated programming
temperature (TH , TH >Tg) to a prescribed strain (ε0), ii) cooling
it to the usage temperature (TL, TL <Tg) while maintaining the
strain ε0, and then iii) releasing the load. Upon releasing the
mechanical constraint, the hinge bends to an angle θ due to
the combined effect of the entropic elasticity of the pure
matrix material lamina and the shape memory effect of the
PAC lamina (Ge Qi et al 2013). The hinge returns to its
original flat shape after heating back to TH .

2.2. PAC hinge behavior

We characterize the hinge performance by its bending angle θ
, which depends on the hinge materials (matrix and fiber
thermomechanical constitutive behaviors), geometric para-
meters (hinge length L, and laminate/lamina configuration),
and programming parameters (ε0, TH , and TL) (figure 1). In
general our programming parameters are chosen so that rate
effects do not play a role. In order to investigate the effects of
these factors on hinge angle, we designed, fabricated, and
carried out tests for a range of parameters including five
different laminate/lamina configurations, three different pro-
grammed deformations (ε0 ∼ 10, 20, and 30%), and four

Figure 1. Schematics of a PAC hinge and the thermomechanical programming steps. (a) Geometrical and material properties of a PAC hinge.
(b) Thermomechanical programming steps to train a self-folding/unfolding PAC hinge.

3

Smart Mater. Struct. 23 (2014) 094007 Q Ge et al



different hinge lengths (L = 2.5, 5.0, 7.5, and 10 mm). All of
our tests were done with TH = 70 °C and TL = 25 °C. The
laminate configuration is defined by the thickness of the hinge
t and the thickness of the PAC lamina h. The PAC lamina is
characterized by the fiber volume fraction π=( )v R hw/(2 )f

2 ,
which we control by varying the fiber radius R and the PAC
lamina thickness h, while keeping the fiber pitch fixed at w2
= 1 mm. Table 1 shows the range of hinge parameters we used
in our experiments. As described in section 3, we developed a
theoretical model of the behavior of a PAC hinge, and this
allows us to predict the result of hinge behavior beyond the
range of parameters considered in our experiments.

We carried out experiments to determine the behavior of
the PAC hinges. Figure 2 shows hinge angles (measured at
∼1 min after unloading) as a function of the programming
stretch and hinge length, respectively, for various laminate/
lamina configurations. The results in figure 2(a) are for hinges
with L = 5 mm and those in figure 2(b) for hinges with ε0

= 20%. Figure 2 demonstrates behaviors that are important to
understand for the design of PAC hinges. For a fixed material
and geometric configuration, the hinge angle decreases (the
bending increases) with increasing programming stretch. This
is simply because the mismatch strain between the layers
increases with applied stretch, and this drives increased
bending. Furthermore, as the length L increases, the hinge
angle decreases. This is also easy to understand, as the strain
mismatch results in approximately constant curvature over the
length of the hinge, and so geometry dictates a larger cur-
vature (or smaller hinge angle θ) as L increases. More details
regarding the behavior of the PAC hinges are presented in the
following section in the context of a theoretical model we
develop to describe the behavior.

2.3. Thermomechanical testing

In order to obtain parameters used for the models developed
in the next section, we also conducted a series of fundamental
thermomechanical tests, including dynamic mechanical ana-
lysis (DMA) tests, uniaxial tensile tests, thermal strain tests,
and stress relaxation tests.

We measured the storage modulus and tanδ vs tempera-
ture for the matrix and fiber materials (figure 3(a)) in uniaxial
tensile tests performing on a DMA machine (TA Q800)
(frequency = 0.1 Hz; cooling rate = 2 °C min−1; sample
dimension 15 mm× 6mm×2mm). In figure 3(a), within the
temperature range from 100 °C− 50 °C, the storage modulus
of the matrix soars from ∼0.7 MPa –∼900MPa, and that of
the fiber soars from ∼6MPa –∼1.7 GPa. The peak of tanδ in

the inset of figure 3(a) indicates the Tg of the matrix is ∼−5 °C,
and the Tg of the fiber is ∼47 °C.

The uniaxial tensile tests and thermal strain tests were
also conducted on the DMA machine. The uniaxial tension
tests were performed at 70 °C, where both the matrix and the
fiber are at the rubbery state, and the samples with dimension
15 mm× 6mm×2mm were stretched by 5% at a strain rate of
0.1%/s. In figure 3(b), the stress-strain behavior of the matrix
and fibers shows a good linearity. Young’s modulus of the
fiber material is ∼6MPa, while that of the matrix material is
∼0.7 MPa, which are consistent with those from the DMA
tests. In the thermal strain tests, the termperature was
descreased from 70 °C to 25 °C at a cooling rate of
2 °C min−1, under a constant tensile loading of 0.001 N to
prevent samples from buckling. In figure 3(c), both the fiber
material and the matrix material contract linearly with coef-
ficient of thermal expansions (CTEs) 2 × 10−4 °C−1 and
2.3 × 10−4 °C−1, respectively. In figure 3(d), we also tested the
stress relaxations for fibers at 25 different temperatures from
0 °C – 60 °C with an inteval of 2.5 °C, which are used to
construct the stress relaxation master curve and fit parameters
in the multi-branch model.

3. Theoretical estimates for PAC hinge behavior

Here we develop a simple but straightforward model to esti-
mate the PAC hinge behavior; the model can then be used to
guide the design of hinges. We first describe our modeling
strategy to determine the curvature of the PAC hinge by
combining a multilayer beam theory, homogenization, and the
nonlinear time and temperature dependent constitutive beha-
vior of the fibers and the matrix. We then introduce suitable
constitutive behaviors for the fiber and matrix in the PAC.
With parameters characterized from experiments, we use the
developed model to estimate the hinge bending angle and
compare the estimates with experimental results.

3.1. Hinge behavior—bending of a PAC bilayer laminate

For a material undergoing thermomechanical loading, the
total deformation is due to both the thermal deformation (e.g.,
from thermal expansion/contraction, phase transformations,
etc.) that if unconstrained does not give rise to stress and the
mechanical deformation that gives rise to stress. The total
deformation (or stretch, in the 1D case) of the material λTotal (
λ = l L/Total , where l is the deformed length in the current state
and L is the original length in the reference state) can be
decomposed into the mechanical deformation λ and the
thermal deformation λT . That is, λ λ λ=Total T . For the sake of
convenience, we use subscripts M and F to differentiate the
deformations of the matrix or the fiber.

The bending of our hinges results from the mismatch
strain between layers of the PAC laminate that arise from the
shape fixing of the deformed shape memory fibers. As such,
we model it as a two-layer laminate; one layer is simply an
elastomer with properties of the matrix, and the other layer is
a unidirectional fiber-reinforced lamina. To facilitate the

Table 1. Geometrical parameters that describe PAC lamina and
laminates.

Case I Case II Case III Case IV Case V

t (mm) 0.6 0.6 0.6 0.5 0.5
R (mm) 0.125 0.1 0.1 0.1 0.08
h (mm) 0.3 0.3 0.2 0.2 0.2
vf (%) 16 10 16 16 10
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analysis, we set Cartesian coordinates at the geometric center
of the PAC laminate with the z-axis in the fiber direction, the
y-axis downward, and the x-axis within the plane of the
laminate (figure 4(a)). We consider the following thermo-
mechanical loading steps: we uniaxially stretch the hinge at

TH , maintain the strain, cool it to TL, and then release the
constraint.

During the first step, the sample is uniaxially stretched to
λ0 λ ε= +( )10 0 in a time period of t1 at a constant stretch
rate. Here, it is reasonable to assume that both the matrix and

Figure 2. The measured deformation of PAC hinges. (a) Hinge angle vs applied strain for 5 mm long hinges with five different cross-section
profiles. (b) Hinge angle vs hinge length for hinges with five different cross-section profiles pre-stretched by 20%.

Figure 3. Thermomechanical tests for the matrix and fiber materials (M and F, respectively). (a) The results from DMA tests. (b) Uniaxial
tensile tests at 70 °C. (c) Thermal strain tests. (d) Stress relaxation tests for the fiber material from 0 °C–60 °C with an interval of 2.5 °C.

5
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the fibers have the same strain, i.e.:

⎛
⎝⎜

⎞
⎠⎟ε= = + ⩽e t e t

t

t
t t( ) ( ) ln 1 , for . (1)M t

1
0 1

At =t t1, λ= =e t e t( ) ( ) lnM t1 1 0. In the cooling step, let
the cooling rate to be ̇T ; then the cooling time is

= − ̇( )t T T T/H L2 . Both the matrix and fiber undergo thermal
contraction, thus:

λ λ λ λ= ̇ = ̇( ) ( )t T T t T T( ) , and ( ) , . (2)M
T

M
T

H F
T

F
T

H

The formulations of the thermal deformations
λ ̇( )T T,M F

T
H/ will be introduced in equations (9) and (13),

respectively.
Since the two ends of the hinge are fixed during the

cooling, the total deformation (or stretch) does not change.
This gives the mechanical deformations in the matrix and
fibers as:

λ λ λ λ λ λ= = ⩽ ⩽t t t t t t t a( ) ( ), ( ) ( ), for , (3 )M M
T

F F
T

0 0 1 2

and the strains are

⎡⎣ ⎤⎦λ λ

λ λ

=

= ⩽ ⩽( )
e t t e t

t t t b

( ) ln ( ) , ( )

ln , for . (3 )

M M
T

F

F
T

0

0 1 2

After releasing the constraint, the hinge bends with a
curvature κ t( ). Due to bending, the midplane at =y 0
undergoes a change in deformation (or stretch) by
Δλ ε= +t t(0, ) 1 ( )b (figure 4(b)). Based on beam theory,
other planes perpendicular to the y-axis deform by
Δλ ε κ= + + ⋅y t t t y( , ) 1 ( ) ( )b . Therefore, during bending,
the total mechanical deformations (or stretches) in the matrix
and fiber are:

⎪

⎪

⎧
⎨
⎩

λ λ λ Δλ
λ λ λ Δλ

= ⋅
= ⋅

>
y t y t

y t y t
t t

( , ) ( , )

( , ) ( , )
, for . (4)M M

T

F F
T

0

0

2

Note that from the mechanics point of view, the hinge
can be taken as a thin beam or plate. Therefore, although it
can bend with a large rotation, the strain is usually small, and

the Hencky strains are thus:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

λ λ ε κ

λ λ ε κ

λ λ ε κ

λ λ ε κ

= + + ⋅

= + + ⋅

>

( )
( )

( )
( )

e y t

t t y
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t t y

t t

, , , , ,

ln ( ) ( )

, , , , ,

ln ( ) ( )

, for . (5)

M M
T

b

M
T

b

F F
T

b

F
T

b

0

0

0

0

2

Since the bending occurs after releasing the external
constraint, the total external force and total external moment
applied to the hinge are zero (Dunn et al 2002, Ge Westbrook
et al 2013, Westbrook Mather et al 2011):

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∬
∬

∬
∬

Σ σ λ λ ε κ

σ λ λ ε κ

Σ σ λ λ ε κ

σ λ λ ε κ

=

+

=

=

+

=

( )
( )

( )
( )

e y t dydx

e y t dydx

e y t ydydx

e y t ydydx

F , , , , ,

, , , , ,

0,

M , , , , ,

, , , , ,

0. (6)

M M M
T

b

F F F
T

b

M M M
T

b

F F F
T

b

0

0

0

0

In equation (6), the stresses on the matrix σM and the
fibers σF can be calculated through constitutive equations (8)
and (10) introduced in the following subsections, by inputting
the corresponding mechanical Hencky strains in equation (5).
In equation (5), the variables λ0, λM F

T
/ , and t are measurable or

calculable, but εb and κ are two unknowns which can be
calculated by solving equation (6).

Once the curvature κ is calculated, the bending angle θ
resulting from the geometrical relation (figure 4(b)) is:

κ θ π⋅ + =L . (7)

In summary, to compute the curvature κ and the bending
angle θ, we first build up a set of two equations (equation (6))
to describe the total external force and total external moment.
In the two equations, stresses on the fibers and matrix are
calculated by their respective constitutive models, including
measurable or calculable variables λ0, λM F

T
/ , t, and two

unknowns εb and κ . The two unknowns can be computed by
solving the two equations in (6). Once the curvature κ is

Figure 4. Schematics of achieving bending of a PAC hinges. (a) The flat PAC laminate is stretched by ε0 at TH and then cooled to TL while
maintaining the strain ε0. (b) After releasing the loading, the PAC laminate bends to a curvature κ (hinge angle θ).
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obtained, the bending angle θ can be calculated by
equation (7). Using the developed model, we are able to
describe the hinge bending angle as a function of the geo-
metries, material constituents, and programming parameters.

Here, we note that the developed model is one dimen-
sional, as it suffices to describe the operative deformation
mode—bending of the hinges. The extension to 2D or 3D is
important in general to extend the concepts here (tailored
shape memory composite architectures in a laminated con-
figuration) to more complex deformation modes, but it is not
very important, in our opinion, to describe the deformation of
the hinges in our work here. Indeed, we think this simplicity
is somewhat elegant. The extension of the model to 2D or 3D
is conceptually straightforward but practically challenging, as
it will require nonlinear homogenization in 3D as well as
characterization of the 3D constitutive behavior of the con-
stituents. This would most likely be best done in a two-step
approach (homogenization of the fibers and matrix within a
layer followed by homogenization of the layers in the lami-
nate) rather than in the combined manner we pursued here. As
the goal of this model is to predict the macroscopic defor-
mation of the laminate (curvature), we note a couple of
treatments: (i) for simplicity we use a beam, rather than a
plate, theory. We think this is warranted, given the simple
deformation modes that our composite hinges exhibit; (ii)
rather than homogenize each layer in the laminate (fibers and
matrix) first and then proceed to model the laminate with its
layers having effective homogenized properties, we homo-
genize within the layers (fibers and matrix) and throughout
the laminate all in one step. This is tractable, given the 1D
beam theory we adopt for simplicity, but in a full plate
treatment it would probably be better to do each step sepa-
rately. The end result is equivalent, though; (iii) in the
homogenization of the fibers and matrix, we use a fairly
sophisticated multi-branch constitutive model for the fibers
that accounts for the nonlinear, time-dependent shape mem-
ory/fixing behavior as well as a simple hyperelastic model for
the matrix. We realize that a more detailed model could be
developed, at both the lamina level in terms of a fiber
orientation distribution and inelastic behavior of the con-
stituents (Dunn and Ledbetter 1997, Dunn et al 1996) and at
the laminate level in terms of plate or even continuum
behavior (Dunn et al 2002, Zhang and Dunn 2003, 2004), but
we think the approach here is reasonable for understanding
the basic behavior and designing components.

3.2. Thermomechanical constitutive behavior of the matrix

The matrix material shows entropic hyperelastic behavior
over the operating temperature range of the hinge. Therefore,
a simple hyperelastic model is adopted:

σ = E T e( ) , (8)M M M

where λ=e lnM M is the Hencky strain, which can be readily
incorporated into the bending theory, and =E T N kT( ) 3M M is
the temperature dependent Young’s modulus due to the
entropic elasticity where NM is the cross-link density, k is
Boltzmann’s constant, and T is the absolute temperature.

Based on our experimental observations (figure 3(c)), we
describe the thermal deformation by a linear relation with the
CTE of the matrix material αM:

λ α= + −( )T T1 . (9)M
T

M H

3.3. Thermomechanical constitutive behavior of the fiber

The behavior of the fiber material over the temperature range
is more complicated, as it exhibits the shape memory effect.
To calculate the stress acting on the fiber material, we adopt a
thermomechanical multi-branch model that decomposes the
total deformation λF

Total into a mechanical deformation λF and
a thermal deformation λF

T (Westbrook, Kao et al 2011, Yu
et al 2014). For the mechanical elements in the model, an
equilibrium branch associated with elastic response and sev-
eral nonequilibrium branches associated with viscoelastic
response are arranged in parallel. Each nonequilibrium branch
is taken to be a Maxwell element, where an elastic spring and
a dashpot are arranged in series. The total stress (Castro
et al 2010, Ferry 1961) acting on the fiber material σF can be
expressed as the sum of that in the equilibrium and none-
quilibrium branches:

⎡
⎣⎢

⎤
⎦⎥



  

 

∫ ∫∑

σ
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+
∂

∂
− ′
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E T e
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T
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( )

( , )
exp

( )
. (10)

F F F

Equilibrium

m

n

non
m

t
F

s

t

m

Nonequilibrium

1 0

In equation (10), the first term is the stress from the
equilibrium branch, where =E T N kT( ) 3F F is the temperature
dependent Young’s modulus and λ=e lnF F. The second term
is the stress contribution from the nonequilibrium branches,
where Enon

m and τ T( )m are the Young’s modulus and the
temperature dependent relaxation time for the mth branch.
τ T( )m can be expressed in terms of τm

R and a temperature
dependent shifting factor a T( )T :

τ τ=T a T( ) ( ) , (11)m T m
R

where τm
R is the relaxation time for the mth branch at a

reference temperature. Depending on whether the temperature
is above, near, or below Tg, a T( )T is calculated by two dif-

ferent methods (O’Connell and McKenna 1999):

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

= −
−

+ −
⩾

= − − <

( )
( ) ( )

( )

a T
C T T

C T T
T T a T

AF

k T T
T T

log ( ) , and ln ( )

exp
1 1

, (12)

T
r

r
r T

C

r
r

1

2

where C1, C2, and A are material constants, Fc is the config-
uration energy, k is Boltzmann’s constant, and Tr is the
reference temperature.

Generally as a polymer goes through the glass transition
from the equilibrium rubbery state to the nonequilibrium
glassy state, the thermal deformation is a function of tem-
perature as well as time. In addition, the dependence on time
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can become very weak (as the time constant for this depen-
dence can be very long) as the time in the nonequilibrium
state increases (Yu et al 2014). In the past, multiple theories
(Kovacs et al 1979, Moynihan et al 1976, Robertson
et al 1984) have been developed to represent the evolution of
the nonequilibrium volume change. In this paper, we take a
simple empirical approach based on our experimental obser-
vations. We represent the thermal deformation during the
temperature change as:

λ α= + −( )T T1 , (13)F
T

F H

where αF is a linear thermal expansion coefficient of the fiber.

3.4. Parameter characterization

There are nine sets of parameters used in the thermo-
mechanical constitutive models in total. They can be directly
characterized by fitting the thermomechanical tests in
section 2.

In the thermomechanical constitutive models for the
matrix material, there are only two parameters, the cross-
linking density NM and CTE αM . By simply using
equation (8), σ λ= N kT3 lnM M M , to fit the uniaxial tensile test
in figure 3(b) for the matrix material at 70 °C, one can readily
have N kT3 M = 0.65MPa and NM = 4.58 × 1025 m−3. Using
equation (9), λ α= + −( )T T1M

T
M H , to fit the thermal strain

test in figure 3(c), we have αM = 2.3 × 10−4 °C−1.
Among the parameters in the multi-branch model in

equation (10), the crosslinking density, NF, can be readily
identified by simply using σ λ= N kT3 lnF F F to fit the stress-
strain for the fiber material at 70 °C in figure 3(b), and NF

= 4.23 × 1026 m−3. Stress relaxation tests in figure 3(d) were
used to identify parameters in nonequilibrium branches. A
stress relaxation master curve at 35 °C in figure 5(a) was
constructed by shifting relaxation curves using shift factors
a( )T at different temperatures (figure 5(d)). The master curve
can be described by Maxwell elements in parallel, and the
stress relaxation modulus is:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑

τ
τ

τ

= + −

= =

∞
=

−

E t E E
t

m n

( ) exp with

10 , ( 2,..., ). (14)

m

n

non
m

m
R m

R

m R

1

1
1

In equation (14), ∞E is the relaxation modulus at time t =
∞ ( ∞E ∼5MPa in figure 5(a)); τR

m is the relaxation time for the
mth branch at the reference temperature (35 °C). We assume
that the relaxation time of the mth branch is a decade longer
than the (m-1)-th branch. At time t = 0, the relaxation modulus
is = + ∑∞ =E E E(0)

m

n
non
m

1
. Figures 6(a)–(c) present the model

fitting for the stress relaxation. In figure 5(a), one none-
quilibrium branch (m = 1) was used to describe the stress
relaxation modulus master curve. Based on equation (14),

= +∞( )E E E(0) non
1 , one has =E 700MPanon

1 (
=E (0) 705MPa and =∞E 5MPa in figure 5(a). Through the

observation of the stress relaxation master curve in
figure 5(a), the obvious stress relaxation occurs at ∼0.006 min
Here, τ = 0.36sR

1 was taken for the relaxation time of the first
nonequilibrium branch. It is shown that an increasing number

of nonequilibrium branches is required to precisely describe
the stress relaxation modulus master curve. Figures 5(b) and
(c) show the model fitting for the stress relaxation with m = 4,
8 nonequilibrium branches, and the model fitting improves
dramatically by introducing more nonequilibrium branches.
Here, we take m = 2 as an example to demonstrate the fitting
procedure. In figure 5(a), at time τ=t R

1 , the discrepancy
between the master curve and the model fitting is ∼250MPa.
This discrepancy can be corrected by introducing the second
nonequilibrium branch with =E 250MPanon

2 . Based on
equation (14), = + +∞( )E E E E(0) non non

1 2 , one has a new Enon
1

equal to 450MPa. Assuming that the relaxation time of the
second nonequilibrium branch is a decade longer than the first
one, we have τ τ= 10R R

2 1 . Following the same fitting proce-
dure, one has moduli for the all of the eight nonequilibrium
branches (Enon

1 = 238MPa, Enon
2 = 250MPa, Enon

3 = 100MPa,
Enon

4 = 50MPa, Enon
5 = 30MPa, Enon

6 = 20MPa, Enon
7 = 10MPa,

and Enon
8 = 2MPa).

The parameters C1, C2, and AF k/c in equation (12) can be
obtained by fitting the shift factor-temperature curve
(figure 5(d)). Based on the experimental observation in
figure 3(c), the CTE of the fiber material α( )F is
0.2 × 10−4 °C−1. All values of parameters in the constitutive
models are listed in table 2.

3.5. Theoretical estimates and discussions

As introduced in 3.1, the curvature κ and the midplane strain
εb can be solved by incorporating the constitutive equations
for the matrix and fibers from equations (8)–(13) with the
corresponding mechanical Hencky strains in equation (5) into
equation (6) (Details are straightforward, although tedious,
and are shown in the appendix):

⎧⎨⎩
⎫⎬⎭

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎫⎬⎭

ε
κ

=
−t

t
A B
B D

N

M

( )

( )
. (15)b t

t

1

In composite laminate mechanics, A, B, and D are termed
the extensional stiffness, coupling stiffness, and bending
stiffness, respectively. If the laminate is symmetric with
respect to the geometric midplane, then B = 0 (in our case it is
not by design). Nt and Mt are called the thermal force and
moment, respectively. Here they arise from the mismatch
strain between layers in the laminate due to the shape fixing
of the shape memory fibrous lamina; they are the driving
force for the bending of the hinge. Equation (15) yields the
curvature of the laminate:

κ =
− +

−
BN AM

AD B
. (16)t t

2

Once the curvature κ is calculated, the bending angle θ
can be directly obtained by equation (7).

With the characterized parameters listed in table 2, we
use our model to plot the predicted hinge angle vs applied
strain at TL (figure 6(a)), and the hinge angle vs the hinge
length (figure 6(b)) for the five different cross section profile
cases of table 1. Table 3 shows the predicted laminate para-
meters (A, B, D, Nt , and Mt) for the laminate, with Nt and Mt

computed for an applied strain of 30%. It is noted that as ε t( )b

8

Smart Mater. Struct. 23 (2014) 094007 Q Ge et al



and the curvature κ t( ) are time dependent; all laminate
parameters are computed at 1 min after unloading.

The hinge behavior as a function of applied strain and
hinge length is easy to understand, but its behavior in terms of
other microstructural parameters, e.g., cases I-V, is less
straightforward to understand. Composite laminate mechanics
provide a convenient way to understand the behavior of the

PACs in terms of the microstructural parameters, specifically
as it is expressed through the variation of A, B, D, Nt , and Mt.
These are a function of the applied strain but reported for ε0

= 30% in table 3. In essence, the five cases in table 3 sys-
tematically vary the volume fraction of the SMP fibers in the
PAC lamina and the thicknesses of the two lamina that make
up the laminate. Here we make a few observations important

Figure 5. Model fitting for stress relaxation: (a)–(c) the stress relaxation master curve at 35 °C; (d) the shifting factors with temperature.

Figure 6. Model predictions of PAC hinge bending. (a) Hinge angle vs applied strain for 5 mm long hinges with five different cross-section
profiles. (b) Hinge angle vs hinge length for hinges with five different cross-section profiles pre-stretched by 20%.

9

Smart Mater. Struct. 23 (2014) 094007 Q Ge et al



for the design of PAC hinges, based on our experiments and
theory:

• Compared to Case I, the Case II hinge bends more
because of the lower fiber volume fraction, with the
lamina thicknesses equal.

• In Case III, the hinge bends more than that in Case II as
the thickness of the lamina with the SMP fibers
decreases, even though the volume fraction increases.

• The behavior of Case IV is comparable to that of Case II,
and this arises because of the combination of the higher
volume fraction for Case IV and the smaller thickness of
lamina, and thus laminate.

• Case V, with the lowest fiber volume fraction and the
thinnest lamina (and most compliant laminate) bends
the most.

The hinge bending results from the interplay among the
laminate parameters A, B, D, Nt , and Mt, which represent the
effects of the microstructural parameters on the collective
behavior of the shape memory fibers and the elastomeric
matrix that contribute to produce the applied loading and
laminate stiffness. Table 3 shows that the coupling between
extension and bending (represented by the stiffness B and its
role in equation (16)) significantly influences the bending of
the laminate and the resulting hinge angle. Indeed it is
through this coupling that our hinges operate as we apply a
tensile strain. Via the internal workings of the lamina and
laminate architecture, the laminate bends. Our results
demonstrate that PAC laminate hinges can be designed to
exhibit a controlled hinge angle, but because of the numerous
design variables and their interacting influence, their design
benefits greatly from a theory that can describe the observed
behavior.

4. Creating printed origami

We created a number of examples that demonstrate how we
can print flat-plate structures consisting of PAC hinges
directly connected to rigid plastic components of arbitrary
shape then program the hinges to assemble the as-printed
structure into a desired 3D configuration. As we showed,
composite hinges can be programmed to assume prescribed
folding angles, and these depend on a set of material, geo-
metrical, and programming parameters. As such, here we use
our experimentally validated model to design the hinge
parameters for a range of applications.

First we designed a box consisting of six sides connected
by PAC hinges that is printed in a flat (unfolded) form as
shown in figure 7(a). The hinges were designed by choosing
parameters from figure 6(a) that result in a hinge angle of 90°.
Specifically, we created hinges from PACs with parameters
from Case III of table 1 and stretched the box biaxially by
20%. Figure 7(a) shows the as-printed box (the flat plate),
where the rigid sides are white and the hinges are black. The
assembled box was created after biaxially stretching the as-
printed structure by 20% at TH , cooling to TL, and releasing the
load. It clearly assembles into the desired box shape
(figure 7(b)), with only small deviations from the desired 90°
angles, and these are likely due to inaccuracies in the straining
process.

Figure 7(c) and d show a similar structure, a five-sided
3D pyramid. Here the printed flat Ninja star shape plate
consists of a square base with four triangular sides
(figure 7(c)) that are folded to 3D pyramids with 60° angles
(figure 7(d)). We create the printed Ninja star shape using
hinges from Case V of figure 6(c) with a programming stretch
of 20%. Again, the desired 3D shape is in good agreement
with the intended shape.

Table 2. Lists of parameters for constitutive models.

Parameter Value

Matrix material
Crosslinking Density NM 4.58 × 1025 m−3

CTE αM 2.3 × 10−4 °C−1

Fiber material
Crosslinking Density NF 4.23 × 1026 m−3

Elastic Moduli on
Nonequilibrium
Branches

Enon
1 , Enon

2 , Enon
3 ,

Enon
4 Enon

5 , Enon
1 ,

Enon
1 , Enon

1

238, 250, 100, 50,
30, 20, 10, 2 MPa

Relaxation Time of the
1st Branch

τ R
1

0.36 s

WLF constant C1 17.66
WLF constant C2 51.6 °C
Pre-exponential
parameter

AF k/c −20000 K

CTE αF 0.2 × 10−4 °C−1

Figure 7. Active origami box and pyramid. The printed flat cross
shape in (a) assembles itself into a desired box shape in (b) after the
programming steps. The printed flat Ninja star shape plate in (c)
assembles itself into a desired pyramid shape in (d) after the
programming steps.
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We can also create complex 3D shapes with different
hinge angles by printing hinges with different geometries.
Figure 8(a) shows a flat triangle sheet that folds itself into an
origami airplane with a 0° angle in the middle hinge that
bends upward and 90° angles in the two side hinges that bend
downward. To realize such an assembled configuration, we
printed a 7.5 mm hinge (Case V in figure 6(b)) in the middle
and two 4 mm hinges (Case V in figure 6(b)) on the two sides
and stretched the flat triangle sheet by 20%. The hinges are
created by printing the bilayer composites with the fibers on
the top layer for the 0° hinges and on the bottom for the 90°
hinges. To simplify the loading process (allowing simply a
20% stretch), we print the 90° hinges in figure 8(a) at an
inclined angle relative to the base of the plane, but we
maintain the fiber orientations parallel to the base (and the
applied stretch, figure 8(a) inset). We create an even more
sophisticated origami airplane by printing not only hinges
with different lengths but also ones with different cross-
section profiles (figure 8(b)). Here the origami airplane has
two winglets created by printed hinges designed to bend 120°
upwards (4 mm long Case IV hinges in figure 6(b)).

The relationships among the hinge parameters (hinge
angle, stretching strain, hinge length) for the five cross-
section profile cases provide valuable information to design a
desired hinge angle with a combination of stretching strain,
hinge length, and one of the cross-section profile cases. Of
course, the options for the cross-section profile are not limited
to the five cases presented in this paper. Depending on the
application, a strategy might involve using a few parameters
to define the cross-section profile then adjusting the applied
stretch and hinge length to achieve a desired hinge angle. In
fact, the advantage of PACs is that the choice of the combi-
nation of these parameters to obtain a particular hinge angle
can be large, thus allowing considerable design flexibility. Of
course, the most powerful is the ability to use our model to
design the hinge parameters, including the temperature range,
with minimal experiments.

The use 3D printing of active materials to create com-
ponents that controllably change their shape over time is not

limited to the use of PAC hinges. In fact, we can directly print
3D devices by strategically placing shape memory polymers
at pivotal locations or throughout an entire structure. We can
then program a temporary shape of arbitrary form that can be
achieved by applying a prescribed mechanical loading at TH

followed by releasing the constraints at TL. The components
can then be returned to their complex original 3D shapes after
heating back to TH . Figure 9 shows such an example. We
directly printed a 3D box with a pattern of SUTD-CU logos
on the five panels. In figure 9(a), the complete 3D box is
printed with a three-layer laminate consisting of a Verowhite
middle layer embedded in a Tangoblack matrix. The box is
then deformed to a flat form (figure 9(b)) by applying
mechanical loads at TH , and cooled to TLwhere the constraints
were removed, leaving it in a flat form. Upon heating back to
TH , the structure retakes the original 3D box shape
(figure 9(a)).

Compared to the means of printing flat components with
PAC hinges and then assembling them into 3D components,
directly printing 3D components with SMPs allows the
creation of complex 3D configurations that are potentially
more precisely controlled, as they are printed directly in their
permanent shapes. However, the direct printing requires
longer manufacturing times and uses more material than
printing flat components and assembling them. For example,
the fabrication time depends on the thickness dimension of
the printed object, since it is created in a layer-by-layer pro-
cess. With the Objet printer used in this work, a 1 mm thick
structure takes roughly 10 mins to complete. Creating a
20 mm× 20mm×20 mm box requires only about 10 mins to
print the ∼1 mm thick flat sheet with PAC hinges that can
then be assembled as in figure 8(a), but it takes about three
hours to print the 3D box directly (e.g., figure 9). Further-
more, to support the upper part of the 3D box, a large amount
of sacrificial material is used. The process to remove the
sacrificial material can also take several hours, depending on
the complexity of the structure.

5. Conclusions

In this paper, we furthered the 4D printing concept to enable
active origami as a means of creating 3D components. In our
approach, we printed 2D flat sheets with hinges created by
composites with polymer fibers. These fibers exhibit the
shape memory effect over a desired operating temperature
range in an elastomeric matrix. By a suitable thermo-
mechanical programming process, we actuated the hinges,
making them fold to a prescribed angle and, as a result,
folding the 2D sheet into a 3D structure. The folding of the
printed composite hinges depends on the material properties
of the polymers (including the shape memory behavior of the
fibers), the lamina and laminate architecture, and the ther-
momechanical loading profile. We developed a theoretical
model to describe the behavior of the printed active composite
hinges and used it to design several active origami structures,
including a self-assembling box and pyramid and two origami
airplanes. While our design parameters here were limited to

Figure 8. Active origami airplanes. A flat triangle sheet with three
hinges in (a) assembles itself into an origami airplane with a 0° angle
in the middle hinge that bends upward and 90° angles in the two side
hinges that bend downward in (b). A flat triangle sheet with five
hinges in (c) assembles itself into an origami airplane with two
winglets in (d).
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composite hinges placed at locations where we desired fold-
ing, a more flexible approach based on topology optimization
with active materials could be used in more general situations
(Howard et al 2009, Pajot et al 2006). Finally, we also
demonstrated the direct printing of a complex 3D structure
that can then be programmed to assume a simpler temporary
shape (a flat sheet in our case) and then recover its original 3D
shape.
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Appendix A. Solution for the PAC bilayer laminate
bending

Equations (8) and (10) in section 3 expressed the stresses on
matrix and fibers in any plane perpendicular to the y-axis,

including two unknowns εb and κ . Here, we first convert them
from the calculus form to summation form:
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In order to reduce the difficulty in solving equation (6),
the mathematical treatments were made to separate εb and κ
from other terms in equation (A1). For the stress on the
matrix, we simply separate the parts before unloading (at

=t tk) and during unloading (at = +t tk 1):

⏟
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where σ = ⋅( )E T eM
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M L M
k is the stress before unloading and

denoted as a for brevity. ε κ⋅ + ⋅( )E T y( )M L b is the stress

during unloading, and ( )E TM L is denoted as b. For the stress

on fibers, to separate εb and κ from other amounts, we have:
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k is the stress on the equilibrium

branch before unloading (at =t tk), and
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nonequilibrium branch before unloading (at =t tk). The
detailed derivation for equation (A2b) is listed in appendix B.

Table 3. Laminate thermomechanical parameters that determine the hinge angle of a PAC laminate. (All parameters are computed at 1 min
after unloading. Nt and Mt are computed at an applied strain of 30%).

Case I Case II Case III Case IV Case V

A (N) 4.63 3.02 3.02 2.99 1.97
B ⋅(N mm) 0.67 0.43 0.57 0.43 0.27

D ⋅( )N mm2 0.12 0.076 0.13 0.074 0.047

Nt (N) −0.078 −0.066 −0.066 −0.059 −0.051
Mt ⋅(N mm) −0.0048 −0.0031 −0.0059 −0.0031 −0.002

Figure 9. A directly printed origami SUTD-CU box. An as-printed
3D SUTD-CU box in (a) was deformed into a flat form at TL in (b).
After heating back to TH , the structure recovers the 3D box shape.
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As the laminate consists of different materials within dif-
ferent geometries, we divide the cross-section into four sub-
regions (figure 10(a)): I. the part right beneath the fiber consists
of the matrix material (the green part in figure 10(a)). II. The
semi-circular fiber (the purple part in figure 10(a)). III. The part
right above the fiber consists of the matrix material (the yellow
part in figure 10(a)). IV. The remaining part consists of the
matrix material (the blue part in figure 10(a)). The upper and
lower y coordinates on the semi-circular fiber are (figure 10(b)):

= − ± −±y x
t h

R x( )
2

. (A3)2 2

We calculate the forces in the sub-regions I–IV (FI,FII,FIII,
and FVI) by using the stress forms in equations (A2a) and (A2b):
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As in equation (6) the total external force is zero
+ + + =( )F F F F 0I II III IV . We have:

ε κ− + + =N bA B 0, (A4 )t b

where α δ γ μ= − + + +N ( )t and β ϕ η ν= + + +A and
χ φ λ= + +B .
Also, we calculate the moments in the sub-regions I–IV (

MI,MII,MIII, and MVI) by using the stress forms in
equations (A2a) and (A2b):
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Figure 10. Schematics of the cross-section of a PAC laminate. (a)
The cross-section is divided into four sub-regions. (b) The semi-
circular fiber is broken into l segments.
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As in equation (6) the total external force is zero
+ + + =( )M M M M 0I II III IV . We have:

ε κ− + + =M dB D 0, (A4 )t b

where ϖ ς ω= − + +M ( )t and ϑ υ ξ ψ= + + +D .
The midplane strain εb and the curvature κ can be solved

by using equations (A4b) and (A4d):
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Appendix B. Detailed derivation for equation (A2b)

At time =t tk, when it is cooled to TL, but the strain constraint
is still on, we have the stress on the fibers in the summation
form:
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where σEq
k is the stress on the equilibrium branch and σm

k is the

nonequilibrium stress on the mth branch.
At time Δ= = ++ +t t t tk k k1 1, a strain Δε ε κ= + ⋅+ yF

k
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is released. Similar to equation (A6), we have the stress on the
fibers:
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Through equation (A7a), we can separate σEq
k and σm

k from
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Equation (A7b) is equation (A2b).
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