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RESUMEN  (en  español)  

  
  
La  conservación  del  medioambiente  es  una  prioridad  para  las  autoridades  Europeas.  De  hecho,  
varios   de   los   programas   principales   de   investigación   de   la   Unión   Europea   (UE)   están  
orientados  al  estudio  y  monitorización  de   la  Tierra  desde  diferentes  ámbitos.  Estas   iniciativas  
proporcionan  servicios   relacionados  con  políticas  de  protección  ambiental,   ingeniería   forestal,  
cambio  climático,  desarrollo  sostenible  o  agricultura.  En  este  marco,  el  sector  agrícola  tiene  una  
importancia  estratégica  para  la  economía  global.  
  
Uno   de   los   servicios   más   relevantes   en   el   dominio   agrícola   y   medioambiental   es   la  
monitorización   terrestre.   Principalmente,   estos   servicios   proporcionan   información   geográfica  
sobre   la   cobertura   terrestre   y   el   estado   de   la   vegetación,   con   cobertura   global   y   local.   Esta  
información  es   crítica   para   los   procesos  de  planificación   y   la   toma  de  decisiones.  De  hecho,  
hay   varios   proyectos   Europeos   intentando   proporcionar   soluciones   en   este   contexto.   Sin  
embargo,   los   datos   deben   ser   tratados   y   analizados   adecuadamente.   El   procesamiento   de  
estos  datos  puede  resultar  complejo  debido  a  que  se  actualizan  rápidamente,  creciendo  de  una  
forma  que  su  monitorización,   análisis   y  almacenamiento   se   convierte  en  un   reto.  Además,   la  
utilización  de  estos  datos  con  procesos  de  toma  de  decisiones  y  aprendizaje  automático  puede  
entenderse  como  un  problema  de  análisis  de  big  data.  
  
La   Inteligencia   Artificial   (AI)   puede   verse   como   una   herramienta   para   analizar   este   tipo   de  
problemas  y  también  para  proporcionar  aplicaciones  y  servicios  de  gran  valor  para  los  procesos  
de  planificación  y  toma  de  decisiones  relacionados  con  el  dominio  agrícola  y  medioambiental.  
Tales   decisiones   pueden   llevar   a   una   agricultura   sostenible   en   un   contexto   eco-­friendly.   De  
hecho,  los  servicios  de  Agricultura  de  Precisión  pueden  ser  mejorados  y  potenciados  por  medio  
del  uso  de  algoritmos  de  aprendizaje  automático  y  otras  técnicas  de  IA.  Por  tanto,  el  estudio  y  
desarrollo   de   modelos   robustos   para   proporcionar   servicios   smart-­agro   alimentados   con  
fuentes  heterogéneas  de  datos  representa  un  reto  hoy  en  día.  
  
Con   esta   finalidad,   la   presente   tesis   está   orientada   al   estudio   y   desarrollo   de  modelos   para  
servicios  smart-­agro  relacionados  con  la  delimitación  automática  del   terreno  y   la   identificación  
de   zonas   homogéneas   de   terreno   cultivable,   por   medio   del   análisis   de   imágenes   satélite  
combinado  con  algoritmos  de  aprendizaje  automático.  Esta   tesis   también  propone  un  modelo  
para   la  predicción  de   la  producción  de  uva,  combinando  fuentes  heterogéneas  de  datos   tales  
como   imágenes   satélite,   registros   históricos   de   producción   y   análisis   de   suelo,   utilizando  
algoritmos   de   aprendizaje   automático.   Además,   estos   servicios   smart-­agro   podrían   ser  
integrados   en   plataformas   agrícolas   especializadas   tales   como   Farm-­Oriented   Open   Data   in  
Europe  (FOODIE)  (http://www.foodie-­project.eu/).        
  



                                                                
!
!

 

'
RESUMEN'(en'Inglés)'

'
'
Environmental,conservation,is,a,priority,for,European,authorities.,In,fact,,several,main,research,
European, Union, (EU), programs, are, focused, on, the, study, and, monitoring, of, the, Earth, from,
different, scopes., These, initiatives, provide, services, related, with, environmental, protection,
policies,, forest, engineering,, climate, change,, sustainable, development, or, agriculture., In, this,
framework,,the,agriculture,sector,has,a,strategic,importance,for,the,global,economy.,
,
One, of, the, most, relevant, services, in, the, agriculture, and, environmental, domains, is, land,
monitoring.,These,services,mainly,provide,geographical, information,about, the, land,cover,and,
the,state,of, the,vegetation,,with,both,global,and, local,coverage.,This, information, is,critical, for,
planning,and,for,decisionRmaking,processes.,In,fact,,there,are,some,European,projects,trying,to,
provide, solutions, in, this, context., However,, data, must, be, properly, treated, and, analyzed.,
Processing, these, data, may, become, complex, because, the, available, datasets, are, quickly,
updated,,growing, in,a,way, that, their,monitoring,,analysis,and,storage,become,challenging., In,
addition,,the,learning,and,decision,making,processes,using,these,data,can,be,understood,a,big,
data,analysis,problem.,
,
Artificial,intelligence,(AI),can,be,seen,as,a,tool,for,both,analyzing,this,kind,of,problems,and,also,
for,providing,specific,and,highRvalue,applications,and,services,for,planning,and,decisionRmaking,
processes,related,to,the,agricultural,and,environmental,domains.,These,decisions,may,lead,to,a,
sustainable,agriculture,in,an,ecoRfriendly,context.,In,fact,,Precision,Agriculture,services,could,be,
improved,by,means,of,machine,learning,algorithms,and,other,AI,techniques.,Hence,,the,study,
and, development, of, robust, models, for, smart, agroRservices, relaying, on, heterogeneous, data,
sources,using,machine,learning,algorithms,represent,a,challenge,nowadays.,,
,
To,that,end,,this,thesis,aims,to,study,and,develop,models,for,smart,agroRservices,related,with,
the,automatic,cultivable,land,delimitation,and,the,automatic,identification,of,homogeneous,land,
zones,by,means,of,the,analysis,of,satellite,imagery,combined,with,machine,learning,algorithms.,
The, thesis,also,proposes,a,model, for, forecasting,grape,production,,combining,heterogeneous,
data,sources,such,as,agroRmeteorological,stations,,satellite, imagery,,historical,records,of,yield,
production,and,soil,analysis,,using,machine,learning,algorithms.,In,addition,,these,smart,agroR
services, could,be, integrated,on,agricultural, specialized,platforms,as, the,FarmROriented,Open,
Data,in,Europe,(FOODIE),(http://www.foodieRproject.eu/).,,,
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Abstract

Environmental conservation is a priority for European authorities. In fact, several main

research European Union (EU) programs are focused on the study and monitoring of the Earth

from different scopes. These initiatives provide services related with environmental protection

policies, forest engineering, climate change, sustainable development or agriculture. In this

framework, the agriculture sector has an strategic importance for the global economy.

One of the most relevant services in the agriculture and environmental domains is land

monitoring. These services mainly provide geographical information about the land cover and

the state of the vegetation, with both global and local coverage. This information is critical for

planning and for decision-making processes. In fact, there are some European projects trying

to provide solutions in this context. However, data must be properly treated and analyzed.

Processing these data may become complex because the available datasets are quickly updated,

growing in a way that their monitoring, analysis and storage become challenging. In addition,

the learning and decision making processes using these data can be understood a big data

analysis problem.

Artificial intelligence (AI) can be seen as a tool for both analyzing this kind of problems and

also for providing specific and high-value applications and services for planning and decision-

making processes related to the agricultural and environmental domains. These decisions may

lead to a sustainable agriculture in an eco-friendly context. In fact, Precision Agriculture services

could be improved by means of machine learning algorithms and other AI techniques. Hence,

the study and development of robust models for smart agro-services relaying on heterogeneous

data sources using machine learning algorithms represent a challenge nowadays.

To that end, this thesis aims to study and develop models for smart agro-services related with

the automatic cultivable land delimitation and the automatic identification of homogeneous land

zones by means of the analysis of satellite imagery combined with machine learning algorithms.

The thesis also proposes a model for forecasting grape production, combining heterogeneous

data sources such as agro-meteorological stations, satellite imagery, historical records of yield

production and soil analysis, using machine learning algorithms. In addition, these smart agro-

services could be integrated on agricultural specialized platforms as the Farm-Oriented Open

Data in Europe (FOODIE) (http://www.foodie-project.eu/).





Table of Contents

1 INTRODUCTION 1

1.1 Precision agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The concept of Precision Agriculture . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Precision agriculture for sustainability and environmental protection . . . 4

1.1.3 Barrier for adopting precision agriculture . . . . . . . . . . . . . . . . . . 6

1.1.4 Steps for adopting precision agriculture . . . . . . . . . . . . . . . . . . . 7

1.1.5 Potential adoption of precision agriculture . . . . . . . . . . . . . . . . . . 8

1.2 Artificial intelligence and smart agro-services . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Modeling smart agro-services with machine learning algorithms . . . . . . 9

1.3 Scenery for the cases of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 MACHINE LEARNING IN THE PRECISION AGRICULTURE CON-

TEXT 13

2.1 Introduction to Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Supervised learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Applying supervised learning algorithms . . . . . . . . . . . . . . . . . . . 26

2.1.3 Unsupervised learning algorithms . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 Clustering validation and selection of the number of partitions . . . . . . 33

2.1.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Automatic land delimitation and land cover classification . . . . . . . . . 41

2.2.2 Identification of management zones . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Crop yield forecasting and yield planning . . . . . . . . . . . . . . . . . . 42

2.2.4 Variable-rate fertilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.5 Automatic plant identification . . . . . . . . . . . . . . . . . . . . . . . . 44

3 HETEROGENEOUS DATA SOURCES FOR PRECISION AGRICULTURE 45

3.1 Open data satellite imagery for precision agriculture services . . . . . . . . . . . 46

3.1.1 NASA Land Processes Distributed Active Archive Center . . . . . . . . . 46

3.1.2 Earthnet Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

i



TABLE OF CONTENTS

3.1.3 Copernicus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4 The National Oceanic and Atmospheric Administration . . . . . . . . . . 49

3.1.5 Challenges of the analysis of satellite imagery . . . . . . . . . . . . . . . . 50

3.2 Climate and meteorological data sources . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Public station networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 In-field private station networks . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Meteorological radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Weather forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.5 Bioclimatic indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Agricultural data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Soil analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Crop treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Crop yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.4 Land parcel identification systems (LPIS) . . . . . . . . . . . . . . . . . . 58

3.3.5 Phenological stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.6 Vegetation and moisture indices . . . . . . . . . . . . . . . . . . . . . . . 59

4 IMPACT OF TEMPORAL RESOLUTION FOR AUTOMATIC LAND DE-

LIMITATION 63

4.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Evaluation of time-series of reflectance . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Clustering aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Using hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 MAPPING CULTIVABLE LAND WITH MACHINE LEARNING 77

5.1 Automatic cultivable land detection with supervised machine learning . . . . . . 78

5.1.1 Retrieving input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Results of automatic cultivable land detection with supervised machine learning . 80

5.2.1 Settings of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Mapping cultivable land from satellite imagery with clustering algorithms . . . . 86

5.3.1 Cultivable land delimitation methodology . . . . . . . . . . . . . . . . . . 87

5.3.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Selection of the clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Automatic land identification . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



TABLE OF CONTENTS

5.4.2 Validation of cultivable land identification . . . . . . . . . . . . . . . . . . 92

6 IDENTIFICATION OF AGRICULTURAL MANAGEMENT ZONES WITH

UNSUPERVISED LEARNING ALGORTIHMS 97

6.1 Management zone identification methodology . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Data collection, transformation and dataset generation . . . . . . . . . . . 99

6.1.2 Data normalisation and dataset generation . . . . . . . . . . . . . . . . . 100

6.1.3 Clustering and management zone identification . . . . . . . . . . . . . . . 100

6.1.4 Clustering validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Results of identification of agricultural management zones . . . . . . . . . . . . . 101

6.2.1 Data collection, transformation and dataset generation . . . . . . . . . . . 101

6.2.2 Clustering and management zone identification . . . . . . . . . . . . . . . 101

6.2.3 Validation of management zones . . . . . . . . . . . . . . . . . . . . . . . 103

7 APPLYING SUPERVISED LEARNING ALGORITHMS TO GRAPEVINE

YIELD FORECASTING 111

7.1 Drawing computationally manageable data . . . . . . . . . . . . . . . . . . . . . 112

7.1.1 Soil analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.2 Phenological stages of the grapevine . . . . . . . . . . . . . . . . . . . . . 113

7.1.3 Meteorological variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.4 Bioclimatic indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1.5 Satellite imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.6 Crop production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Modelling yield forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.2 Experimental results for combinations of input variables . . . . . . . . . . 120

7.3.3 Forecasting model considering grape variety, soil composition and satellite

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 CONCLUSIONS AND FUTURE WORK 125

Appendices

Appendix A Downloading and processing satellite imagery 147

A.1 Procesing MODIS data products . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.1 Downloading MODIS data products . . . . . . . . . . . . . . . . . . . . . 147

A.1.2 Processing MODIS data products . . . . . . . . . . . . . . . . . . . . . . . 148

A.1.3 Calculation of vegetation and moisture indices from MODIS data products 148

A.2 Processing Landsat 8 data products . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2.1 Calculation of vegetation and moisture indices from Operational Land

Imager data products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

iii



TABLE OF CONTENTS

A.2.2 LST8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2.3 Example of use of LST8 package . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 R scripts related with MODIS data extraction and calculation of vegetation indices153

A.3.1 Function getMOD09GQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3.2 Function getMYD09GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3.3 Function getVI MYD09GA . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3.4 NDVI calculation from MOD09GQ . . . . . . . . . . . . . . . . . . . . . 156

Appendix B Meteorological features and regression equations for yield forecast-

ing 157

B.1 List of meteorological features considered for yield prediction . . . . . . . . . . . 157

B.2 Regression equations for yield forecasting . . . . . . . . . . . . . . . . . . . . . . 158

iv



List of Figures

1.7 Location of the Terras Gauda vineyards . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Process for applying supervised Machine Learning . . . . . . . . . . . . . . . . . 27

3.4 Electromagnetic spectrum related with vegetation . . . . . . . . . . . . . . . . . 60

4.4 Silhouette coefficient obtained by the clustering algorithm . . . . . . . . . . . . . 68

5.1 ROC curves of the automatic arable land classification when no feature selection

is performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 ROC curves of the automatic arable land classification when features are selected

according to IG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 ROC curves of the automatic arable land classification when features are selected

according to CFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 Performance of spectral bands for the automatic delimitation of the land parcel

1 with clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Performance of spectral bands for the automatic delimitation of the land parcel

2 with clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Performance of spectral bands for the automatic delimitation of the land parcel

3 with clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Metrics related with the automatic delimitation of the land parcel 1 with clustering 94

5.12 Metrics related with the automatic delimitation of the land parcel 2 with clustering 95

5.13 Metrics related with to automatic delimitation of the land parcel 3 with clustering 96

6.1 Tasks involving the proposed method for the MZs identification based on cluster-

ing remote-sensed spectral and thermal infrared data from satellite. . . . . . . . . 98

6.2 Silhouette index for the MZs of Plot 1 representing the behaviour of the clustering

associated to each band and vegetation index when the number of clusters ranges

from 3 to 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Silhouette index for the MZs of Plot 2 representing the behaviour of the clustering

associated to each band and vegetation index when the number of clusters ranges

from 3 to 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

v



LIST OF FIGURES

6.4 Silhouette index for the MZs of Plot 3 representing the behaviour of the clustering

associated to each band and vegetation index when the number of clusters ranges

from 3 to 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Representation on a map of the clustering and MZs distribution . . . . . . . . . . 106

6.7 Clustering delimitation of Parcel 1 for 15 MZs considering bands B10 and 11 . . 107

6.8 Clustering delimitation of Parcel 2 for 10 MZ considering bands B10 and 11 . . . 108

6.9 Clustering delimitation of Parcel 3 for 6 MZ considering bands B10 and 11 . . . 108

6.10 Accuracy, Precision, Recall and F1 of the MZs obtained using MC with thermal

bands B10 and B11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Comparative of local minimum, local maximum and averaged minimum for the

best combinations of groups of attributes . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Yield forecasting model tree considering grape variety, soil composition and satel-

lite data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



List of Tables

2.1 Distance metrics for measuring the dissimilarity between two object . . . . . . . 21

3.1 MODIS data products related with agriculture . . . . . . . . . . . . . . . . . . . 47

3.2 Representation of the major phenological stages of grapevine revised by Coombe 59

5.2 Results of the automatic arable land classification when no feature selection is

performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Results of the automatic arable land classification when features are selected

according to IG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Results of the automatic arable land classification when features are selected

according to CFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 Description of MODIS bands for data products MYD09GQ and MYD09GA . . . 148

A.2 Description of OLI and TIRS bands . . . . . . . . . . . . . . . . . . . . . . . . . 149

vii



LIST OF TABLES

viii



Chapter 1

INTRODUCTION

Agricultural production was intensified by the end of the 20th century to satisfy food demand.

An increased application of fertilizers, massive inversions on irrigation systems and the reduction

of maturity cycles are some of the factors responsible for the increase in production. However,

the demand for food continues increasing and yield potential seems to be reaching a ceiling

(Cassman, 1999). Therefore, in order to overcome that barrier, a Precision Agriculture (PA)

approach is required (McBratney et al., 2005). Such approach may also benefit economical and

environmental issues(Bongiovanni and Lowenberg-DeBoer, 2004).

In this regard, Information and Communications Technology (ICT) and Artificial Intelligence

(AI) techniques may contribute to develop and improve agricultural Decision Support Systems

(DSS) which are necessary to the full adoption of PA (McBratney et al., 2005).

This chapter is an introduction to PA, describing the challenges of the integration in this

domain of ICT and AI in order to model Smart Agro-Services for planning and DSS. The chapter

is organized as follows. Section 1.1 introduces the concept of PA. Section 1.2 introduces AI and

Smart Agro-services. Section 1.2 introduces the location and characteristics of the vineyards

used in the case study. Finally, Section 1.4 explains the objectives of this thesis.

1.1 Precision agriculture

Environmental conservation is a priority for European authorities. In fact, several main research

programs from the European Union (EU) are focused on the study and monitoring of the Earth

from different scopes(http://www.2020horizon.es). The EU also has a hub for Earth monitoring

called Copernicus (http://www.Copernicus.eu). It collects data from different sources such as

satellite imagery and meteorological stations. These initiatives provide services related with

environmental protection policies, forest engineering, climate change, sustainable development

or agriculture.

In fact, the agriculture sector has an strategic importance for the global economy and it

has also a crucial role on the human food supply (see Figure 1.1). For instance, cereals are
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Figure 1.1: Caloric intake per capita in least developed, other developing and developed countries

responsible for providing about two-thirds of all food energy in human diets (Cassman, 1999).

However, 21st-century agriculture faces multiple changes (FAO et al., 2009) including those

related to the growth of food and fibre production in order to satisfy the food demand of a

rising population (see Figs. 1.2 and 1.3). It is also important to increase feed-stocks for future

new bioenergy markets. Fulfilling this demand with a smaller rural labour force (FAO et al.,

2009) without depleting the resources and protecting the environment requires to adopt more

efficient production methods (Cassman, 1999). In fact, it will require precise management of all

agricultural production elements in time and space dimensions (Cassman, 1999). The foundation

of this kind of management is to provide the right inputs at the right place and time (Bongiovanni

and Lowenberg-DeBoer, 2004) for maximizing yield production with agricultural practices that

are economically viable and eco-friendly. This is the idea behind PA that will be explained on

the following section.

1.1.1 The concept of Precision Agriculture

PA is related with Site-specific Management (SSM), a concept that it is defined in (Lowenberg-

DeBoer and Swinton (1997)) as the ”electronic monitoring and control applied to data collection,

information processing and decision support for the temporal and spatial allocation of inputs for

crop production”. In this framework, PA provides a technological frame for automating SSM

by means of ICT (Bongiovanni and Lowenberg-DeBoer, 2004). Thus, SSM could be a viable

approach in commercial agriculture.

However, the definition of PA is elusive because it is evolving along with technological changes

(McBratney et al., 2005). Initially, this concept was only associated to Variable-Rate Application

(VRA) of fertilizers (Robert, 1993) which is intended provide the right inputs taking into account

site-specific needs of crops.

2
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Figure 1.2: Population growth. Tendency from 1950 to 2050

Figure 1.3: Projected growth of crop production in least developed, other developing and devel-
oped countries. Increase in volume and percentage, 2024 relative to 2012-14

3
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In fact, the use of VRA techniques for nutrients and pesticides in a field provide an oppor-

tunity for effective management of inputs through PA, while increasing production efficiency

(Hatfield, 2000). This idea of managing inputs, as it is required by the crops, is as old as agri-

culture (Bongiovanni and Lowenberg-DeBoer, 2004) and it is strongly related to the variations

existing within a field. Such variations were categorized (Hatfield (2000)) as:

• Natural variations, such as soil composition.

• Random variations, for instance those caused by rainfall or weather events.

• Managed variations, such as agricultural interventions.

In order to address site-specific needs instead of applying uniform rates of inputs over large

areas it is necessary to be aware of within-field spatial variability (Bongiovanni and Lowenberg-

DeBoer, 2004). In fact, managed variations are well known by farmers whilst random variations

could be difficult to foresee. On the other hand, the quantification of natural variations includes

the knowledge of soil variation, biological variation and soil process variation (Hatfield, 2000).

Spatial variation of the physical and chemical properties of the soil can be determined with

soil analysis or predicted using pedotransfer functions such as those derived from the reflectiv-

ity of soil (Ludwig et al., 2008). Biological variations include, among others, populations of

insects, weeds, soil microbial populations and disease outbreaks that could be inferred by the

harvestable yield (Bongiovanni and Lowenberg-DeBoer, 2004). Finally, soil process variations as

those produced by nitrogen dynamics are the most difficult to quantify because of the complex

interactions between the physical environment and the biological response (Bongiovanni and

Lowenberg-DeBoer, 2000).

However, PA is an holistic approach that not only manages the spatial dimension (see Fig1.4).

The temporal dimension, often referred as Developmental Stage (DS) (Swinton, 1997), also plays

a crucial role and comprises the information about the life cycles of agricultural crops or diseases.

Hence, a broader definition of PA including both spatial and temporal dimensions could be:

”that kind of agriculture that increases the number of (correct) decisions per unit area of land

per unit time with associated net benefits” (McBratney et al., 2005). Those decisions and their

associated benefits will be reviewed on the following section.

1.1.2 Precision agriculture for sustainability and environmental protection

The American Society of Agronomy (ASA) (1989) defines Sustainable Agriculture as ”the one

that, over the long term, enhances environmental quality and the resource base in which agri-

culture depends; provides for basic human food and fiber needs; is economically viable; and

enhances the quality of life for farmers and the society as a whole”.

In this regard, PA could have a positive impact on both the economical and environmental

dimensions. These positive outputs can be categorized as follows (Bongiovanni and Lowenberg-

DeBoer, 2000):

4
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Figure 1.4: Spatial variability managed with the aid of WebGIS tools vs traditional maps

• Nutrient management. Regarding the amount of nitrogen fertilizer applied using Vari-

able Rate Technology (VRT-N), the reduction could reach around the 36% (Griepentrog

and Kyhn, 2000) maintaining the production. The environmental benefits of VRT-N are

also remarkable (Thrikawala et al., 1999) and it can be concluded that VRT-N treat-

ments produce larger decreases in residual soil nitrate than the uniform application of this

fertilizer (Hergert et al., 1996; Delgado et al., 2001; Whitley et al., 2000).

• Herbicides and Pesticides. The use of VRT in the application of herbicides (see Fig-

ure 1.5) shows a decrease in environmental damage and reduces consumption about the

40–60% (Stafford and Miller, 1996; Timmermann et al., 2001) reaching savings of 66–75%

according to some studies (Heisel et al., 1996). Regarding the use of pesticides for treat-

ments related with diseases, it is stated in (Hatfield, 2000) than can be treated similarly

to weeds using the same VRA principles.

• Insecticides. Site-specific pest management can contribute to the slow development of

insecticide resistance and to conserve natural enemies (Midgarden et al., 1997). In addition,

it can reduce insecticide inputs by 30–40% compared to a whole-field strategy.

• Soil quality. Soil quality can be defined as ”the capacity of a soil to function in a

productive and sustained manner, while maintaining or improving the resource base, envi-

ronment, and plant, animal, and human health” (Larson and Pierce, 1991). In this regard,

PA practices help to prevent soil erosion while environmental impacts are reduced and

profits are increased (Meyer-Aurich et al., 2001).

• Record keeping. The registration of information regarding to applied inputs (as for

5
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Figure 1.5: Use of VRT machinery for the application of herbicides and pesticides

instance the use of phytosanitary products) helps to implement environmental regulations

based on observed practices (Swinton, 1997). For instance, Spanish farmers are required to

keep a register with all kind of agricultural operations in a document called Cuaderno de

Explotación Agŕıcola (Agricultural Holding Notebook). This notebook consists of several

sections including one for detailing the phytosanitary treatments applied in the holding.

Such information allows local and central administrations to perform spatial analysis tasks

in order to generate maps of use of certain products or to study their impact on water

quality.

1.1.3 Barrier for adopting precision agriculture

Considering the economical benefits and positive impact on the environment derived from PA

(see Section 1.1.2) use, it is reasonable to think that farmers tend to embrace this set of tech-

nologies. However, there are some barriers that may hinder the use of PA. Wiebold et al. (1998)

identifies the following ones:

• Costs of technology adoption, uch as the cost of the equipment or the time invested

in learning how to use technology.

• Training programs and consultation resources. For instance, lack of local experts

or training deficiencies.

• Data quality control. For example, difficulty in storing and retrieving data with different

formats or methods to analyze yield data in order to better understand yield limiting

factors.

• Consumer guide for precision agriculture. Mainly, reports with comparatives of PA

equipment, techniques and software.

6
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• Environmental aspects of precision agriculture. For instance, documented benefits

of PA on the environment.

• Need for new technology development. Including the development of new types of

sensors or methods for detecting and treating weeds and diseases.

1.1.4 Steps for adopting precision agriculture

Section 1.1.1 shows that PA takes advantage of ICT in order to provide valuable information

and services to farmers. However, to take advantage of PA potential benefits, a certain degree of

knowledge on ICT is required for farmers. In addition, it is necessary to overcome some barriers

(see Section 1.1.3). Thus, in (Kitchen et al., 2002) it is proposed a natural learning process for

PA based on the following six steps:

1. Learning and understanding spatial data management. The aim of this step is to

understand within-field spatial variability and to use mapped information for analysis and

decision making.

2. Learning the proper use of sensors. It includes at least the following:

• Global Positioning System (GPS) to geo-localize relevant data for a field.

• Yield monitoring systems for collecting data on-the-go across a field providing yield

maps.

• Remote sensing data to interpret images looking for patterns an to obtain crucial

data about the health of crops (see Section 3.3.6) and other variables related.

• VRT for the use of machinery equipped with VRA for its automatic application.

3. Learning to use computers and software. It is required to use of Geographic Infor-

mation System (GIS) for storing the spatial data collected in previous steps and to manage

computerized maps for their visual representation.

4. Learning to identify relevant and manageable yield influencing factors. In order

to make crop production decisions it is feasible to analyze yield maps looking for spatial

patterns identifying the factors that may influence on yield. Such patterns may suggest

the partition of fields into Management Zones (MZ), regions with similar properties and,

therefore, can be uniformly managed (Kholsa et al., 2001).

5. Learning to develop site-specific management plan. Once the information is ana-

lyzed and interpreted the following step is to determine achievable goals and to develop a

site-specific management plan to achieve them.

6. Learning to do strategic sampling and on-farm trials. The final step is the op-

timization and refinement of the management process by means of monitoring the crop

progress.

7
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1.1.5 Potential adoption of precision agriculture

Regarding the potential worldwide-adoption of PA, the following topology of regions is identified

in (McBratney et al., 2005). It is mainly based on economic criteria and government support

for agriculture:

• Type A. Developed economies with government-supported agriculture. It in-

cludes the European Union, Japan and the USA. This type deals with environmental

impact of agriculture due to an increase on inputs to maximize production. PA practices

could help to put the stress on environmentally optimal production.

• Type B. Developed economies with minimally government-supported agricul-

ture. It comprises Australia, New Zealand, Argentina and Brazil; where PA technology

came later than to Europe or the US. This type focus on production quantity and quality

and less in protecting the environment because of the economical dependence on agricul-

tural exports.

• Type C. Developing economies with plantation and/or centrally-planned agri-

culture. It refers to most third-world countries such as Brazil, Mauritius, Malaysia and

Costa Rica where already PA is being applied.

• Type D. Developing economies with small-scale or subsistence agriculture. In

this countries PA has been scarcely adopted due to the dependence of technology inherent

to PA.

On the other hand, focusing on the use of VRT, it can be considered three levels of adoption of

PA practices from a technological perspective (Blackmore et al., 1995). The initial level is taken

as a reference and states the traditional within-field practice with no ICT and no PA. Level two

includes some investment on ICT that provides the farmer understanding for taking decisions

about site-specific treatments. However, in this technological level the agricultural machinery is

not equipped with VRT technology and the process must be done manually changing the setting

of the equipments. Finally, level three represents fully adoption of VRT.

1.2 Artificial intelligence and smart agro-services

AI is a formal discipline which dates from the late 1950s and early 1960s and roots in other

disciplines such as Philosophy, Mathematics, Psychology, Linguistics and Computer Science

(Goldstein and Papert, 1977).

AI is defined in (Marr, 1977) as ”the study of complex information processing problems that

have their roots in some aspect of biological information processing”. However, the definition

of AI moves along different approaches of the AI related with behaviour, thought processes

and reasoning (Russell et al., 1995). For instance, following the behavioural approach, AI is

defined in (Luger and Stubblefield, 1990) as ”The branch of Computer Science that is concerned

with the automation of intelligent behaviour”. Whilst Bellman in Bellman et al. (1978) defined

8
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it as ”[The automation of] activities that we associate with human thinking, activities such as

decision-making, problem solving, learning ...”. This latter definition follows the aforementioned

reasoning approach applied to the branch of IA used in this thesis, Machine Learning (ML).

ML (see Section 2.1) is a branch of artificial intelligence that provides methods with the

ability to learn from or to make predictions from data. Other branches of AI study, among

others, natural language processing; computer vision, sensing and computer-aided translation;

knowledge representation; robotics and expert systems (Bourbakis, 1992).

The following section will introduce the potential of ML in the agricultural domain and

specifically in the PA context.

1.2.1 Modeling smart agro-services with machine learning algorithms

PA techniques supported by ICT provide knowledge about spatial variability and different char-

acteristics of an specific area, helping to define more efficient and rational crop management plans

in relation to more localized use of fertilizers and agrochemicals (Yu et al., 2010; Fernández-

Quintanilla et al., 2011). In fact, PA practices require Decision Support Systems (DDS) to

provide valuable information for the farmers by means of analysing relevant and manageable

factors (Kitchen et al., 2002) and to facilitate the full adoption of PA (McBratney et al., 2005).

These PA services could be improved by means of machine learning algorithms and other AI

techniques related with forecasting, classification and clustering that can provide a new kind of

services that could be named as smart agro-services. The following services can be categorised

as smart agro-services:

• Automatic delimitation of crop land areas, that can provide land classification by

means of remote-sensed imagery analysis.

• Automatic delimitation of MZs, that is based on clustering homogeneous land regions

based on spatial and temporal analysis of remote-sensed imagery and other relevant factors.

• Crop yield forecasting, based on regression algorithms and heterogeneous data sources

such as climatic indices, biophysical features and remote-sensed imagery.

• Recommendations about harvesting, intended to predict the dates for harvesting be-

ginning of each MZ and for selective harvesting by means of clustering the crops according

to multi-spectral imagery.

• Recommend site-specific phytosanitary treatments, using specific diseases fore-

casting models for predicting outbreaks and progress of common crop disease such as

Plasmopara Viticola or Uncinula Necator.

• Recommend site-specific fertilization and irrigation needs, using analysis of multi-

spectral imagery for advising farmers regarding what MZ or specific regions of crops show

water stress or lack of vigour.

9
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Regarding the application of ML techniques in agricultural environments there are different

approaches (see Section 2.2). For instance, Support Vector Machines (SVM, see Gualtieri and

Cromp (1999)), k-Nearest Network Classifier (k-NN, see Zhu and Basir (2005)) or Random forest

(Gislason et al., 2006) are algorithms often applied for land cover classification. Artificial Neural

Networks (NN) were also used for this purpose in (Kavzoglu and Mather, 2003). However, when

the variable to predict is continuous (as in yield prediction), the methods commonly used are

M5 (Quinlan et al., 1992), k-NN (Altman, 1992) or Support Vector Regression (SVR, see Basak

et al. (2007)). Bayesian techniques have been also used in PA for pest prediction (Tripathy

et al., 2011) or for predicting coffee diseases (Perez-Ariza et al., 2012). ML techniques based on

SVM are also extensively used for predicting pests (Wang and Ma, 2011). All these different

approaches show the benefits of applying ML techniques in agricultural environment, pointing

out that this area is promising.

1.3 Scenery for the cases of study

Bodegas Terras Gauda is a well-known Spanish wine producer under the Ŕıas Baixas denomi-

nation of origin (DO) in Galicia, Spain. The region of Ŕıas Baixas has an Atlantic climate with

moderate temperatures and significant rainfall well distributed along the year, decreasing in the

summer stage. However, it is also characterized by daily variations in weather. Such variations

influence in the phenological development stages of the crops and their production (Lorenzo

et al., 2013).

Figure 1.6: Terras Gauda vineyards

The scenery for the cases of study of this thesis is located in the Terras Gauda vineyards,

in R̀ıas Baixas. Specifically, at O Rosal Valley, 41◦ 56’N 8◦ 47’W, (see Fig. 1.7 and 1.8). The

extension of the vineyard considered in this thesis is about 60 hectares and includes varieties

of Vitis vinifera such as Albariño, Caiño, Loureiro and Treixadura. In fact, Albariño, is one of

the most important varieties of Vitis vinifera in Galicia (Loureiro et al., 1998) and produces

high-quality wines.

10
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Figure 1.7: Location of the Terras Gauda vineyards. (a) Land parcel 1, (b) Land Parcel 2, (c)
Land Parcel 3.

Figure 1.8: Detailed view of the Terras Gauda Parcels. Land parcel 1 (left), Land parcel 2
(middle), Land parcel 3 (right)

1.4 Thesis objectives

The aim of this research is to analyse and design models of smart agro-services for planning

and decision support systems in the framework of Precision Agriculture. The goal is twofold:

on one hand, a massive volume of heterogeneous data sources such as satellite imagery, agro-

meteorological stations and data provided by public repositories like Copernicus is analysed. On

the other hand, it will develop and adapt models for decision support in this kind of context.

In particular, the following objectives are identified:

• Evaluate potential data sources for smart agro-services, such as open-data satellite imagery

or agro-meteorological networks (see Section 3).

• Analyze the effect of satellite temporal resolution in automatic delimitation of land (see

11



1. INTRODUCTION

Section 4).

• Develop a method for automatic delimitation of cultivable land (see Section 5).

• Design a procedure for agricultural MZs identification(see Section 6).

• Establish models for predicting crop yield (see Section 7).

Sections 3 to 7 describe the proposals of this thesis. Section 2 describes the foundations of

this work providing an overview of concepts, methods and algorithms from machine learning.

Finally, Section 8 extracts conclusions and future work.

12



Chapter 2

MACHINE LEARNING IN THE

PRECISION AGRICULTURE

CONTEXT

Any decision-making system strongly depends on both the intelligent system used to produce

decisions and the data to learn from. In particular, modelling smart agro-services requires the

selection of the right ML algorithm for each kind of problem depending on the positive impact

on the results and also on the computational cost (Domingos, 2012).

On the other hand, data is also a challenge in the smart-agro context because it requires

collecting, processing and analyzing massive quantities of data (Lynch, 2008) from heterogeneous

data sources. In addition, sometimes it is necessary to apply dimensional reduction methods in

order to reduce the amount of data. In this chapter, the basic ML techniques as well as feature

reduction techniques are described in order to a better understanding of the proposed smart

agro-services.

Finally, Section 2.2 reviews related work in regard with the use of ML algorithms and tech-

niques in the agricultural domain. In particular, those applications related with this thesis and

with future works.

2.1 Introduction to Machine learning

AI follows two approaches to artificial learning (Hutchinson, 1994). The first one studies the

learning process of the human mind and aims to translate these processes into algorithms and

computer programs. The second approach is ML, which involves the development of algorithms

that learn from data. In fact, ML is a branch of artificial intelligence that provides methods

with the ability to learn from or to make predictions on data. These methods build a model

from example inputs in order to make predictions (Mitchell et al., 1997).

ML does not make any assumption about the structure of the data model, allowing the
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construction of complex non-linear models. There are many different paradigms in ML: lazy

methods such as k-Nearest Neighbors (Altman, 1992), methods based on tree construction as,

for instance, C4.5 (Quinlan, 1993) or Neural or Bayesian networks (Mitchell et al., 1997). All of

them have been successfully used in many different domains.

Learning how to classify grapevine varieties, for example considering certain characteristics

of their leaves, could be treated as a ML problem. The idea is to train an algorithm for dis-

tinguishing the varieties using examples already classified. The examples would have a set of

input features with the values of morphological attributes of the leaf such as width, leaf area

and so on; and a label identifying the corresponding variety of each input (see Fig.2.2). Once

the algorithm is trained it predicts the grapevine variety from other input data with the same

structure as the training set.

Other example regarding ML would be how to predict the grapevine yield based on features

such as the area of the parcel, the grapevine variety and the total solar irradiance. In this case the

training set would consist on data from past harvests for such features and their corresponding

yield. Once the algorithm is trained it predicts the grapevine yield for the next campaign based

on new input data (see Fig.2.5).

These examples follow a Supervised Machine Learning (SML) approach. In particular, the

first one, predicting grapevine varieties, is a classification problem whilst the last one, forecasting

yield, is a regression problem. Both classifiers and regression models are described in Section

2.1.1.

Following with this practical approach by means of examples, let’s consider data collected

in a vineyard days before the harvesting by a drone equipped with a multi-spectral camera.

Assuming that the values of the reflectivity of the grapes are in some way correlated with their

quality, it would be interesting to obtain different groups of grapes sharing similar reflectivity

values. Once the groups of grapes are formed and represented in a map, it could be relatively easy

to do selective harvesting without mixing the grapes from different qualities. This problem could

be treated as a ML problem considering the reflectivity values as the training data. It should be

noted that, in this case, the learner do not have any information about the expected quality of

the grape based on the reflectivity values, as a SML would have. Hence, this problem correspond

to the family of Unsupervised Machine Learning (UML) algorithms. These algorithms will be

described on Section 2.1.3.

All these examples would arise some questions. For instance:

• How to evaluate the predictions? For performance evaluation of ML algorithms,

Section 2.1.6 describes several performance measures (Jardine and van Rijsbergen, 1971)

• Are the groups well formed? Regarding the goodness of the groups obtained with

UML algorithms, Section 2.1.4 describes some metrics such as the silhouette coefficient

(Rousseeuw, 1987) and the Calinski-Harabasz index (Caliński and Harabasz, 1974).

• In the case of a large number of features, which ones should be considered as

input data? This question is addressed by means of feature selection techniques described

14
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in Section 2.1.5 such as Correlation-based Feature Selection (Hall and Smith, 1997).

2.1.1 Supervised learning algorithms

This family of algorithms is called supervised because the learning process requires the output

(label) for each sample of the training data. In the case of the aforementioned examples, the

output corresponds to the grapevine variety and the yield of the parcel, respectively. Formally,

Supervised Learning Algorithms (SLA) uses as input a vector of discrete and/or continuous

feature values xi = (xi,1, ..., xi,d) and outputs yi (Domingos, 2012). In order to obtain that

output, the algorithms require to be trained with a set of examples (xti, yti) where xti has the

same dimensionality as the vector of input features xi and yti is the label.

Considering whether the nature of the output to predict yi is discrete or continuous, the

learning problem is approached by means of classifiers or regression models, respectively. It

should be noticed that there are ML models and algorithms specifically designed to classify

such as Naive Bayes (Nilsson, 1965) and other ones specialized on regression problems such as

regression trees (Morgan and Sonquist, 1963). However, neural networks (Ripley and Hjort,

1995), for example, could be applied to both kind of problems.

Classifiers

Classification provides solutions such as deciding whether an email is considered SPAM or gen-

uine (Guzella and Caminhas, 2009) or classify agricultural l (Duro et al., 2012) according to the

aforementioned example of the grapevine leaves. SML algorithms classification task is related to

decide the membership of an input vector of features xi to a known class yi. In this regard, there

are different approaches considering whether it is assigned a class to each xi or if it is assigned a

probability of class membership P (yi|xi). For instance, with the first approach a grapevine leaf

would be classified as Treixadura. However, in the second approach the leaf would be classified

as Treixadura with a probability p.

SVM (Cortes and Vapnik, 1995) are one the most representative algorithms of the first

approach (Dreiseitl and Ohno-Machado, 2002). On the contrary, Naive Bayes (Duda et al.,

1973) follows the probabilistic approach.

Classification is formally defined by the process of determining to which class an input vector

of features belongs. This process requires the construction of a classifier which is a function that

assigns a class label to the input vector (Friedman et al., 1997). The discrimination between two

classes is known as a binary classification problem. However, if the classification involves more

than two classes the classification problem is referred as multiclass. An example that falls into

the first category would be determining if a given set of weather conditions leads to an outbreak

of a particular crop disease. Whilst the classification of grapevine leaves into several varieties

falls into the second type.

In this regard, specific algorithms are designed for providing solutions to binary classification.

That is the case, for instance, of SVM and the Perceptron algorithm (Wasserman, 1989). Other

algorithms, such as decision trees, are applicable to both problems. In fact, multiclass problems
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Figure 2.1: Decision tree for the dataset iris

can be addressed using binary classification techniques (Lorena et al., 2008). These approaches

use decomposition strategies such as one-against-the-rest (Montanes et al., 2005), for dividing

the problem into several binary subproblems and building a binary learner for each one.

On the other hand, the performance of classifiers partially depends on the selection of the

training set (Zadrozny, 2004). For instance, unbalanced training sets where there is a predomi-

nant class are example of potential low performance of the algorithm.

In the following the SML methods related to the research proposed in this thesis are described

(in particular for automatic land classification, see Section 5).

• Decision trees.

C4.5 (Quinlan, 1994) is probably the decision tree classifier that has been most extensively

used in the literature (Bae and Kim, 2011; Chou, 2012; Mistikoglu et al., 2015). The

algorithm can be applied for classifying unordered discrete values.

C4.5 constructs the tree from the training data following a greedy approach that splits the

training set T successively in each node until the stop condition is reached (see Alg. 2.1).

Considering n as the number of classes of T and a as the minimum of classes to stop

the splitting process, if required. The tree-construction algorithm is applied recursively to

each T .

The first step is to compute the frequency of each class Ci in T . If all instances in T have

the same class (or the number of classes in T is less than a certain a (Murthy, 1998))

then a leaf node is created with the associated class Ci (or the most frequent class). In

other case, the Information Gain (IG) is calculated (see Section 2.1.5) for each attribute

Aj . Then a decision node is created selecting the attribute with the highest IG for test

the node.

The algorithm continues splitting T into k subsets where. Taking into account that dis-

crete attributes consider as many partitions as possible values takes. Whilst continuous

attributes consider two partitions based on whether the elements of T have a value for
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this attribute greater than a certain value or not, which has to be determined (Ruggieri,

2002). As a result of this process the algorithm considers each new partition as follows.

A new leaf node is generated if the partition is empty, with the most frequent class of the

parent mode. The algorithm is applied recursively to all the non-empty partitions.

Algorithm 2.1 Pseudo-code of a BuildTree function for the construction of C4.5 algorithm
(Ruggieri, 2002)

for all class Ci in T do
compute the frequency of the classes in T : freq(Ci, T )

end for

if (freq(Ci, T ) = n) or (n <a) then
return a leaf

end if

create a decision node

for all attribute Aj do
compute InformationGain(A)

end for

nodeTest = attributeWithBestGain

if nodeTest is continuous then
find threshold for splitting T

end if

for all T´ in the splitting of T do
if T´ is empty then

child of nodeTest is a leaf
else

child of nodeTest = BuildTree(T´ )
end if

end for

The second stage involving the construction of a tree is pruning. It is intended to remove

irrelevant and redundant nodes of the tree resulting in smaller trees (Zhang et al., 2002).

In addition, it improves generalization and reduces overfitting (Chawla, 2003). Among

the different pruning methods Bradford et al. (1998) identifies cost-complexity pruning

(Breiman et al., 1984) and reduced error pruning and pessimistic pruning (Quinlan, 1987)

as the most used.

Despite the advantages of C4.5 concerning simplicity, speed and error rate (Lim et al.,

2000), the algorithm does not handle classes with continuous values (Lakshminarayan

et al., 1996). On the other hand, may be affected by a selection bias regarding contin-

uous variables with numerous distinct values (Quinlan, 1996b). This is related with the

calculation of the threshold required for the splitting criteria.
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An improved version is the C5.0 algorithm. It is faster than C4.5 and uses less memory

than Quinlan’s algorithm, in addition to producing trees that are usually smaller than

those obtained with C4.5 (see Kuhn and Johnson (2013)), among other improvements.

The algorithm builds the classifier from the training data starting for seeking the feature

that best divides the training data. This feature would be the root node of the tree. In

this regard, there are several methods available and depending of the problem it has to

be decided which method should be used (Murthy, 1998). The same process is recursively

repeated for each partition creating sub-trees until no partitions can be done (Kotsiantis,

2007). The result (see Fig.2.1) is a tree where each node represents a feature and each

branch its associated value. The leaves correspond to classes. Once the decision tree is

build, the process of classify new instances is similar to follow a flowchart and involves

beginning from the root following the branches according to the values of the features.

For example, Fig.2.1 shows a decision tree built from the Iris dataset (Fisher, 1936)

for classifying iris plants (Setosa, Versicolour and Virginica) based on the length and

width of both sepal and petal. For the classification of a new instance with this values:

Petal.Length=4.7, Petal.Width=1.4, Sepal.Length=7.0, Sepal.Width=3.2; it is clear that

in the root it should be follow the right branch because the value of Petal.Length for the

plant to classify is greater than 2.5. In the next level it should be followed the left branch

because Petal.Width, 1.4, is lower than 1.75, and so on until reach the bottom of the tree

and the node with the class versicolor, which is in fact the right type of plant for this

instance.

• Naive Bayes. It is a simple probabilistic classifier based on Bayes theorem (see Equ. 2.1)

and is a widely used classifier, in many different domains (Lau et al., 2014; Kang and Kim,

2011; Koc et al., 2012).

P (y|x) =
P (x|y)P (y)

P (x)
(2.1)

The classifier assumes that the values of the features are statistically independent within

each class (Farid et al., 2011) and given a new instance calculates the probability of mem-

bership to a class computing posterior probabilities using Equ.2.3.

P (yi|(x1, x2, ..., xn)) =
p(yi)

∏n
i=1 P (xj |yi)

P (x1, x2, ..., xn)
(2.2)

where P (x|y), P (y) and P (x) are calculated from the training data.

The result of the classifier is a probabilistic summary for each of the possible classes yi.

For instance, let’s take the aforementioned grapevine leaf classifier assuming a Naive Bayes

trained for the types of leaves (classes) y = {Loureiro, Treixadura} and the discrete

attributes: width category (w) and leaf area category (la). For classifying a new leaf

(instance) with the attributes x = {w = 10, la = 3}, Naive Bayes will compute the

following posterior probabilities:
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Figure 2.2: SVM and maximum margin

P (L|(w = 10, la = 3)) =
p(L)P (la = 3|L)P (w = 10|L)

P (w = 10, lac = 3)
(2.3)

P (T |(w = 10, la = 3)) =
p(T )P (la = 3|T )P (w = 10|T )

P (w = 10, la = 3)
(2.4)

where L and T are Loureiro and Treixadura, respectively.

• Support Vector Machines: SVM (Cortes and Vapnik, 1995) is one the most popular

ML algorithm due to their efficiency and effectiveness in many problems (Dı́az et al., 2004).

SVM deals with the notion of margin or either side of a hyperplane that separates two

classes (Kotsiantis, 2007). The idea is to maximize the margin between the classes in

order to reduce an upper bound on the expected generalisation error (Kotsiantis, 2007)

(see Fig. 2.2).

The basic form of SVM learns the parameters a and b of a linear decision rule (Zadrozny,

2004) (see Equ. 2.5) and the sign, positive or negative, will determine the class membership

of a new instance to classify.

h(x) = sign(a · x+ b) (2.5)

The aforementioned margin maximization between the classes is accomplished solving the

following optimization problem:

minimize: V (a, b) = 1/2a · a
subject to: ∀i : yi [a · xi + b] ≥ 1

However, in practice, it could be difficult to obtain a decision rule that classifies correctly
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all the inputs. Thus, the aforementioned optimization is modified with the inclusion of

slack variables εi (Cortes and Vapnik, 1995):

minimize: V (a, b, ε) = 1/2a · a+ C

n∑
i=1

εi

subject to: ∀i : yi [a · xi + b] ≥ 1− εi, εi > 0

On the other hand, there are classification problems that require non-linear decision bound-

aries. To that end, it was introduced the use of kernel functions (Aizerman et al., 1964)

defined by (Kotsiantis, 2007) as ”special class of function that allow inner products to be

calculated directly in feature space”. Literature proposes a large number of kernels, some

popular ones are the following (Kotsiantis, 2007):

– Polynomial kernels (Min and Lee, 2005):

K(x, y) = (x · y + 1)P , (2.6)

where P is the degree of the polynomial.

– Radial Basis Function (RBF) (Lin and Liu, 2007):

K(x, y) = e
−‖x−y‖2

2ς2 , (2.7)

where ς is the width of the radial basis function.

• k-NN. It is an example of instance based learning method (Altman, 1992) as it does not

produce a model in training time. It is characterized for being one of the simplest ML

methods and for its reduced training time. This machine learning approach is widely used

in many areas, such as for example text classification (Jiang et al., 2012).

The idea is to classify new instances by observing the class of their neighbours. In fact,

k-NN finds the k most nearest instances of the training set to the new one. Then assigns

the most frequent class of those k neighbours to the new instance. This closeness be-

tween instances is calculated by means of a distance metric. Some of the most significant

(Kotsiantis, 2007) are shown on Table 2.1.
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Camberra D(x, y) =
m∑
i=1

|xi − yi|
|xi + yi|

Chebychev D(x, y) = maxmi=1 |xi − yi|

Euclidean D(x, y) =

(
m∑
i=1

|xi − yi|2
)

Manhattan D(x, y) =
m∑
i=1

|xi − yi|

Minkowsky D(x, y) =

(
m∑
i=1

|xi − yi|r
)1/r

Table 2.1: Example of distance metrics

There are several approaches for selecting the class from the k neighbours. For instance,

using the voting strategy where the class is chosen by selecting the most voted (Chiang

et al., 2012), that is, the majority class among the k neighbours. Other approach is the

distance-weighting strategy (Wilson and Martinez, 2000) which means that the class of a

closer neighbour affects more than the class of a more distant one. Hence, the problem of

this algorithm is the selection strategy of the optimum k (Kotsiantis, 2007). In fact, such

strategy is often experimentally selected.

• Artificial neural networks. Artificial NN (Ripley and Hjort, 1995) are inspired in

biological neural networks and have been applied in a wide variety of classification and

regression problems (Paliwal and Kumar, 2009; Dreiseitl and Ohno-Machado, 2002). NN

are composed by nodes called perceptrons or neurons. Each node takes an input vector and

compute a nonlinear summing function (activation function, Dayhoff and DeLeo (2001))

in order to obtain the output y (see Fig. 2.3). Such mapping from the input vector to

the desired output uses weight vectors which are recomputed in the training stage (see

Equ. 2.8).

Sj =

n∑
i=0

wjai, (2.8)

where wj is the weight for unit j and ai the activation value for unit i.

There are different activate functions. Karlik and Olgac (2011) includes Uni-polar sigmoid,

Bi-polar sigmoid, Hyperbolic tangent, Conic Section, and RBF. The Uni-polar sigmoid

function (Cybenko, 1989) is the most popular one (Dayhoff and DeLeo, 2001) and is

defined as:
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Figure 2.3: Artificial NN processing unit. aj is the activation value for unit j, and Wji is the
weight from unit 1 to unit j. The square at top-left represent the bias

g(x) =
1

1 + e−x
(2.9)

Hence, the activation function aj would be:

aj =
1

1 + e(−Sj)
, (2.10)

where Sj is the incoming sum for unit aj .

Although the use of the uni-polar sigmoid function is extended, the study of performance

analysis of activate functions in (Karlik and Olgac, 2011) concludes that the Hyperbolic

tangent performs better recognition accuracy than those of the other functions. The

Hyperbolic tangent function is defined as:

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(2.11)

where Sj is the incoming sum for unit aj .

Regarding the architecture of NN, the most popular is the multilayered perception (MPL)

(Dayhoff and DeLeo, 2001) which groups neurons in different interconnected layers (see

Fig. 2.4):

– Input layer. The neurons of this layer are fed with the input vector.

– Hidden layers. Each neuron is fed with the output of all the neurons in the input

layer or in the previous hidden layer. MPL have at least one hidden layer and this

number is parametrizable for each algorithm.
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Figure 2.4: Example of NN with MPL architecture. Source: Thiago M. Geronimo, Carlos E. D.
Cruz, Fernando de Souza Campos, Paulo R. Aguiar and Eduardo C. Bianchi (2013).

– Output layer. Each neuron is fed with the output of all the neurons in the last

hidden layer. The output is the class y.

Other architectural approaches such as deep convolutional neural networks (Krizhevsky

et al., 2012) consider thousands of layers. Recently, this kind of artificial NN seems to be

gaining popularity due to notables advances in image recognition (Taigman et al., 2014)

and speech recognition (Hinton et al., 2012), among other fields (Hadsell et al., 2009;

Collobert et al., 2011).

Regarding improving generalization for avoiding over-fitting, there is a strong dependency

on the balance between the training set and the complexity of the NN (Schwartz et al.,

1990). In this regard, there are mechanisms for controlling such complexity. Simple Weight

Decay is a parameter which controls the complexity of the model by means of limiting the

growth of the weights of the NN (Moody et al., 1992). It penalizes large weights and

choosing the right value of the parameter may improve generalization.

Regression models

Regarding the learning problem related to predict the value of a class yi for a vector of inputs xi

when yi is a continue value, the idea is to use a function representing the expected relationship

between xi and yi (see, for example, Fig. 2.5). For instance, for one feature the relationship is

expressed in Equ.2.12)

yi = h(xi) + ei, (2.12)

where ei is the error and h(xi) is the hypothesis:

hϑ(xi) = ϑ0 + ϑ1x (2.13)
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Figure 2.5: Example of linear regression

Considering the aforementioned example, at the beginning of this section, predicting the

grapevine yield based on the total solar irradiance; the question would be how to find the

“right” values of the parameters ϑ0 and ϑ1 in the following equation:

hϑ(xi) = ϑ0 + ϑ1TotalSolarIrradiance (2.14)

The intuition behind this is to use a cost function:

J (ϑ0, ϑ1) =
1

2m

m∑
i=1

(hϑ (xi)− yi)2 (2.15)

with the goal of to minimize that function with algorithms such as gradient descent.

On the other hand, regression trees learners produce a classification based on piecewise linear

functions as they partition the space into a set of regions and fit the predicted value within each

region using a linear model. A well-known regression tree algorithm is M5-Prime (Wang and

Witten, 1996). It is a learner which constructs regression trees producing a classification based

on piecewise linear functions as they partition the space into a set of regions and fit the predicted

value within each region using a linear model.

The way this method works is the following: Assuming a training set with examples each

one defined by its value on a set of attributes (discrete or continuous) and a continuous target,

the method constructs a model that relates the target values of the training examples to the

values of the variables defining the example.

This model can then be easily applied to predict the target variable: in the first phase, the

decision tree (see, for example, Fig.2.6) is used to classify the example into one of the groups;
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Figure 2.6: Example of regression tree (partial view) where for each leave it shown the cor-
responding linear model reference, the number of the instances from the training set and the
percentage of error. For instance, the linear mode corresponding to leave number 4 is LM 1, it
has 30 instances and the error is 20.586%

.

then, the linear equation associated to the particular group the example has been classified into

(see Appendix B for examples of these equations).

M5-Prime selects the split that maximizes the expected error reduction. Once the tree is

constructed, a multivariate linear model is computed for the examples at each tree node with

standard regression techniques and using only attributes that are referenced by tests or linear

models somewhere in the sub-tree at this node.

The main characteristics of this method are:

• Regression tree construction:

– Splitting criterion: Maximize SDR = sd(T )−
∑
i

|Ti|
|T |
× sd(Ti)

being T the set of examples that reaches the node and T1, T2, . . . the subsets resulting

from the node split according to the selected attribute.

– Stopping criterion: Standard deviation below a given threshold (small enough) in

all nodes

– Pruning: Heuristic estimation of absolute error of linear regression models according

to
n+ v

n− v
with n being the number of examples that reach the node and the number of param-

eters that represents the class value at that node. Pruning greedily removes terms

25



2. MACHINE LEARNING IN THE PRECISION AGRICULTURE CONTEXT

from linear regression models to minimize the estimated error.

– Smoothing is used to compensate discontinuities between adjacent linear models at

the leaves of the pruned tree. The smoothing process uses first the leaf model to

compute the predicted value and then filters that value along the path back to the

root, combining it with the value predicted by the linear model for that node. The

modified prediction p is computed by

p′ =
np+ kq

n+ k

with n the number of examples at the smoothed node, k a constant, p and q are

respectively the predictions passed to the studied node from below and the value

predicted by the model at the studied node. Basically, what this process does is to

achieve the effect of incorporating ancestor models into the leaves.

• The value at each leaf is estimated using a linear regression function.

• At each node, it uses only a subset of attributes occurring in the sub-tree.

2.1.2 Applying supervised learning algorithms

As a general idea, for the process of applying SLA to a problem Kotsiantis (2007) proposes the

following task (see Fig. 2.7):

1. Identification of required data to the problem. This task may include dimensionality

reduction by means of feature selection techniques (see Section 2.1.5)

2. Data pre-processing, cleaning and standardizing the data.

3. Definition of training set, selection of random samples from the input data.

4. Algorithm selection, studying those SLA more applicable to the problem.

5. Training, executing the algorithm with the training set.

6. Evaluation with test set, using performance evaluation (see Section 2.1.6).

7. Verify results, if the results of the performance evaluation are not the expected then

consider repeating previous steps or setting up the parameters of the algorithm.

8. Apply the classifier to the input data when the results are the expected.

2.1.3 Unsupervised learning algorithms

Unsupervised Machine Learning (UML) algorithms use as input a vector of discrete and/or

continuous feature values xi = (xi,1, ..., xi,d). In the case of clustering algorithms, the aim is to

group the input data into k partitions which are defined using a measure of similarity between
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Figure 2.7: The process of supervised ML (Kotsiantis, 2007)

the elements of xi (see Table 2.1). The clustering is obtained by means of breaking the input

data up into groups until some stability condition is reached.

Cluster analysis is often used to bring similar individuals into groups (Jain and Dubes, 1988)

and to identify natural structures in a dataset (Jain, 2010; Gurrutxaga et al., 2011). Therefore,

its used in many fields such as biology (Sneath et al., 1973), image processing (Chou et al.,

2004) and pattern recognition (Mirkin, 2012). For instance, the aforementioned example of

selective harvesting grouping grapes is a typical problem that can be addressed with clustering

algorithms.

Regarding the clustering methods, Milligan and Cooper (1987) identify four categories: par-

titioning algorithms, hierarchical methods, overlapping clustering procedures and ordination

techniques. This work considers the two main categories (Milligan and Cooper, 1987): parti-

tioning algorithms and hierarchical methods. In particular, the following algorithms were used

for MZ identification and for mapping cultivable land: Partition Around Medoids (PAM) and

hierarchical clustering.

Partitioning methods

Although literature proposes many partition methods, PAM and K-means (MacQueen et al.,

1967) are among the most popular ones. In fact, they are very similar and the main difference

between them is that PAM minimizes a sum of dissimilarities instead of a sum of squared
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euclidean distances. The following lines describe PAM which is the partition algorithm used in

this thesis.

PAM (Li, 2009) is a partitioning algorithm. Thus, it breaks the input data up into k groups,

defined in advance, until some stability condition is reached. It tries to find a set of representative

objects called medoids which are centrally located in clusters. The objective function used is

the sum of the distances from each object to the closest medoid.

Regarding the distance or dissimilarity among the samples, PAM builds a dissimilarity matrix

from the input data based on a particular metric of distance (see Table 2.1). Let’s put an example

based on the Iris dataset considering these values of characteristic of flowers as input:

Sepal.Length Sepal.Width Petal.Length Petal.Width

Flower 1 5.1 3.5 1.4 0.2

Flower 2 5.0 3.4 1.6 0.4

Flower 3 6.5 2.8 4.6 1.5

Flower 4 6.3 2.3 4.4 1.3

Flower 5 5.8 2.8 5.1 2.4

Flower 6 4.8 3.4 1.9 0.2

Apparently, flowers 1, 2 and 3 are similar each other, the same for flowers 3, 4 and 5.

Computing the dissimilarity matrix will show the average distances among them. For instance,

these are the results considering the euclidean distance.

1 2 3 4 5

Flower 2 0.3162278

Flower 3 3.7920970 3.5805028

Flower 4 3.6180105 3.3985291 0.6082763

Flower 5 4.4170126 4.1533119 1.2449900 1.4832397

Flower 6 0.5916080 0.4123106 3.4971417 3.3045423 4.0546270

It is clear that flowers 1 and 2 are the most similar (0.3162278), then flowers 2 and 6

(0.4123106), then flowers 1 and 6 (0.5916080) and so on. Computing the dissimilarity matrix

using Manhattan distance lead to the same conclusions:

1 2 3 4 5

Flower 2 0.6

Flower 3 6.6 6.2

Flower 4 6.5 6.1 1.1

Flower 5 7.3 6.9 2.1 2.8

Flower 6 0.9 0.7 6.3 6.2 7.0

Regarding how PAM builds the clusters, the algorithm involves three steps:

1. Initialization. Select, at random, the k medoids from the data input. For instance, in

the previous example, if k = 2 the algorithm would choose flower 3 and flower 4 as the

representative objects of the clusters.
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Figure 2.8: First step of the PAM algorithm. Fi denotes the number of the flower.

2. Assignment. For each sample of the data input, locate the closest medoid to and assign

it to the corresponding cluster. Continuing with the example, this means to compute the

distance between the medoids, flowers 3 and 4, and the other flowers. As a result of these

assignment, the groups would be (see Fig.2.8):

• Group 1:

Sepal.Length Sepal.Width Petal.Length Petal.Width

Flower 3 (medoid) 6.5 2.8 4.6 1.5

Flower 5 5.8 2.8 5.1 2.4

• Group 2:

Sepal.Length Sepal.Width Petal.Length Petal.Width

Flower 1 5.1 3.5 1.4 0.2

Flower 2 5.0 3.4 1.6 0.4

Flower 4 (medoid) 6.3 2.3 4.4 1.3

Flower 6 4.8 3.4 1.9 0.2

3. Update. For each cluster, compute the new medoid from the points assigned to the

cluster. The new medoid will be the point that minimizes the dissimilarity to the rest of

the elements in the cluster. In the case of the example, for the group 1 the new medoid
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Figure 2.9: Final step of the PAM algorithm. Fi denotes the number of the flower.

does not change. The average distance of flower 5 to the other flowers is greater than this

average for flower 3. However, group 2 would have flower 6 as the new medoid.

Steps 2 and 3 are repeated until the clusters are no longer modified. In the case of the

example, this condition is reached with the medoids: flowers 2 and 3; obtaining the following

clustering (see Fig.2.9):

• Group 1:

Sepal.Length Sepal.Width Petal.Length Petal.Width

Flower 3 (medoid) 6.5 2.8 4.6 1.5

Flower 4 6.3 2.3 4.4 1.3

Flower 5 5.8 2.8 5.1 2.4

• Group 2:

Sepal.Length Sepal.Width Petal.Length Petal.Width

Flower 1 5.1 3.5 1.4 0.2

Flower 2 (medoid) 5.0 3.4 1.6 0.4

Flower 6 4.8 3.4 1.9 0.2

On the other hand, PAM requires to know in advance the number of groups k for clustering.

However, this number could be unknown. That could be the case, for instance, of clustering
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areas of land that share similar properties. Section 2.1.4 explains several techniques to address

the challenge of deciding the appropriate number of clusters.

Hierarchical clustering

Hierarchical clustering provides solutions represented as a tree (see Fig.2.10) denominated den-

drogram (Phipps, 1971). The construction of the tree follows two approaches. Agglomerative

algorithms were clusters are built from bottom up (Zhao and Karypis, 2002) and partitioning

algorithms were hierarchical clusters are built from top down (Milligan and Cooper, 1987). This

thesis uses the first approach.

Agglomerative algorithms initially assign each object to its own cluster. Then the algorithm

proceeds iteratively, at each stage joining the two most similar clusters and continuing until there

is just a single cluster. However, there is other approach that builds the hierarchical clusters

from top down using partitioning algorithms (Milligan and Cooper, 1987).

In order to merge the clusters Ch and Ck, the algorithm use a linkage function based on the

dissimilarity between them (Ding and He, 2002). Milligan and Cooper (1987) cites the following

methods as linkage functions, dij is a dissimilarity measure:

• Single linkage (Sneath et al., 1973), defined as the minimum dissimilarity between clus-

ters:

dsingle(Ch, Ck) = min
i∈Ch j∈Ck

dij (2.16)

• Complete linkage (King, 1967), defined as the maximum dissimilarity between clusters:

dcomplete(Ch, Ck) = max
i∈Ch j∈Ck

dij (2.17)

• Average linkage (Jain and Dubes, 1988), defined as the average of all distances between

two clusters.

daverage(Ch, Ck) =
1

|Ch| |Ck|
∑

i∈Ch, j∈Ck

dij (2.18)

• Minimum variance (Ward Jr, 1963; Murtagh and Legendre, 2014), Ward’s minimum

variance method aims at finding compact, spherical clusters minimizing the total within-

cluster variance.

Regarding the generic application of these methods in the agglomerative process, in Lance

and Williams (1966) it is proposed a generalized recurrence formula for computing the dissimilar-

ity between two clusters (see Equ. 2.19). This approach uses the same formula for each linkage

method using the corresponding parameters described in Table 2.2 (Day and Edelsbrunner,

1984).

31



2. MACHINE LEARNING IN THE PRECISION AGRICULTURE CONTEXT

Figure 2.10: Example of dendogram with the same sample used for PAM

d(h, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)|, (2.19)

where αi, αj , β and γ are parameters of the linkage method (see Table 2.2).

Linkage method αi αj β γ

Single linkage (Nearest neighbor) 1/2 1/2 0 −1/2

Complete linkage (Furthest neighbor) 1/2 1/2 0 1/2

Average linkage (UPGMA) ni
ni+nj

nj
ni+nj

0 0

Minimum variance (Ward) ni+nk
ni+nj+nk

nj+nk
ni+nj+nk

−nk
ni+nj+nk

0

Table 2.2: Parameter values for the Lance and Williams formula for computing the dissimilarity
between two clusters
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2.1.4 Clustering validation and selection of the number of partitions

A large number of ways of evaluating the goodness of a clustering algorithm have been proposed

in the literature. Such evaluation includes criteria for measuring the compactness of the clusters

(within-cluster criteria) and their isolation (between-cluster criteria) (Cormack, 1971). One

approach to this evaluation is the use of Cluster Validity Indices (CVI) (Halkidi et al., 2001)

such as the Calinski-Harabasz index (Caliński and Harabasz, 1974). However, literature includes

numerous CVI and could be challenging to select one of them. In this particular, in Milligan and

Cooper (1985) one of the most extensive comparatives regarding the study of indices is studied.

One of the CVI studied by Milligan and Cooper’s is the Calinski-Harabasz index. It evaluates

the cluster validity considering the sum of the squared errors between different clusters and the

squared differences of all objects in a cluster to their respective cluster center. The index is

calculated as follows (Maulik and Bandyopadhyay, 2002):

CH(K) =

(
K∑
k=1

nk|zk − z|2)/(K − 1)

(
K∑
k=1

nk∑
i=1
|xki − zk|2)/(n−K)

(2.20)

where n is the number of points, K is the number of clusters, nk is the number of points in

cluster k, zk is the centroid of cluster k, xki is the i-th point in cluster k and z is the centroid of

the entire data set.

Other widely-used index (Wang et al., 2009) is the Silhouette coefficient (Rousseeuw, 1987).

The index is based on the comparison of cluster tightness and separation. Using this information,

a graph called Silhouette is built. This Silhouette graph shows which objects lie well within their

cluster and which ones are merely somewhere in between clusters. The average silhouette width

(see Equ. 2.21 and Fig. 2.11) provides an evaluation of the clustering validity and can be used

to select an “appropriate” number of clusters.

s(i) =
b(i)− a(i)

max(a(i), b(i))
, (2.21)

where a(i) is the average dissimilarity of i to all other objects of A; d(i, C) is the average

dissimilarity of i to all objects any cluster C different from A; and b = mind(i, C) , with C 6= A

Regarding the selection of the number k of clusters, a common procedure is to generate the

clustering for k = 2 to a certain value n and select the k with the best clustering distribution.

However, the bottleneck of clustering algorithms is to properly select the best clustering dis-

tribution (Hartigan, 1975; Sugar and James, 2003). Let’s consider, for example, the Silhouette

coefficient as criterion for evaluating the cluster validity. To select the optimum k according to

this coefficient, it can be followed a procedure described in (Hennig, 2010). The procedure is

briefly described in Alg.2.2 considering that the number of elements to cluster is n, K∗ is the

maximum number of clusters (which is at most n) and d(., .) a distance.

To sum up, clustering processes can be executed following the steps described in (Milligan
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Algorithm 2.2 Selection of optimum k according to Silhouette coefficient

for j = 1,K∗ do

for i = 1, n do

a(i) =

∑
j∈Ci

d(i,j)

#Ci
, Ci cluster of element i.

b(i) = min
k=1...j

d(i, Cl), ∀ cluster Cl

s(i) = b(i)−a(i)
max{(b(i),a(i)} ,

end for

sjavg =
∑n
i=1 s(i)
n

end for

k = argmax{sjavg}

Figure 2.11: Example of a average silhouette width for two clusters
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and Cooper, 1987).

1. Select the identities to be clustered, choosing a representative sample of elements.

2. Select the variables to be used in the cluster analysis, considering those containing “suffi-

cient” information for the clustering.

3. Decide if the data should be standardized.

4. Select a measure of similarity, such as correlation, or a measure of dissimilarity such as

distance.

5. Select the clustering method considering the different types of cluster structures.

6. Determine the number of clusters.

7. Interpret, test and replicate the resulting cluster analysis.

2.1.5 Feature selection

In the past few years, technological advances in data acquisition, data storage and ICT led

to a explosion of data (Mayer-Schönberger and Cukier, 2013). Such huge amount of data is

generated by different domains such as scientific (Guo et al., 2014), healthcare (Raghupathi and

Raghupathi, 2014), game industry (El-Nasr et al., 2013) and agriculture (Ludena and Ahrary,

2013) (see Section 3). This scenario provides the opportunity for extracting valuable information

and support decision-making process by means of data analysis and data mining (Hu et al., 2014).

However, the application of ML algorithms with tens or hundreds of thousands of variables

is a challenge for algorithm performance (Yang and Pedersen, 1997b). Therefore, techniques to

reduce dimensionality of data are required (Guyon and Elisseeff, 2003; Combarro et al., 2005) in

order to identify irrelevant and redundant variables (Kohavi, 1995). Literature proposes a huge

number of feature selection techniques that may be categorized as follows (Guyon and Elisseeff,

2003):

• Feature subset selection. This approach selects subsets of features as a pre-processing

step, independently of the chosen predictor (Kohavi, 1995). Methods falling in this cate-

gory use, for instance, decision trees (Cardie, 1993) or wrapper methods (Kohavi, 1995).

• Feature ranking (Bekkerman et al., 2003). It is a filter method (Guyon and Elisseeff,

2003) which assigns a weight to each feature according to their importance for the class

providing a ranking of the relevance of each feature (Chang and Lin, 2008; Dı́az et al.,

2011). This approach includes IG (Hunt et al., 1966) and Correlation-based Feature Se-

lection (CFS) (Hall and Smith, 1997). Both approaches are used in this thesis because its

simplicity, scalability, and good empirical success (Guyon and Elisseeff, 2003).

As a difference between both approaches, feature subset selection chooses the best set of

features whilst feature ranking selects individual features.
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Feature frequency

The frequency of occurrence of feature values within a class is a simple method used for feature

ranking. The idea behind this method is that attribute values with low frequency are either non-

informative for category prediction, or not influential in global information (Yang and Pedersen,

1997b).

Information Gain

IG is a representative example of feature ranking (Yang and Pedersen, 1997b). It is studied in

Dı́az et al. (2004) takes into account either the presence of the attribute value in the category

or its absence, and it can be defined Yang and Pedersen (1997a) by

IG(a, c) = P (a)P (c/a) log(
P (c/a)

P (c)
) + P (a)P (c/a) log(

P (c/a)

P (c)
)

where P (a) is the probability of the appearance of the attribute a in an instance, P (c/a) is

the probability that an instance belongs to the category c knowing that the attribute a appears

in it, P (a) is the probability that the attribute a does not appear in an instance and P (c/a) is

the probability that an instance belongs to the category c if we know that the attribute a does

not occur in it.

Usually, these probabilities are estimated by means of the corresponding relative frequencies.

Expected cross entropy for attribute value (CET ) (Mladenic and Grobelnik (1999)) only takes

into account the presence of the attribute value in the category. Its expression is

CET (a, c) = P (a) · P (c/a) · lg P (c/a)

P (c)

There are more methods following the feature ranking approach. However, in general, IG

performance is remarkable (Yang and Pedersen, 1997b) and it obtains good results.

Correlation-based Feature Selection

CFS (Hall and Smith, 1997). CFS is a simple filter algorithm that ranks feature subsets according

to a correlation based heuristic evaluation function. The bias of the evaluation function is toward

subsets that contain features that are highly correlated with the class and uncorrelated with each

other. Irrelevant features should be ignored because they will have low correlation with the class.

Redundant features should be screened out as they will be highly correlated with one or more

of the remaining features. The acceptance of a feature will depend on the extent to which it

predicts classes in areas of the instance space not already predicted by other features. The

evaluation function is

MS =
krcf√

k + k(k − 1)rff
, (2.22)

where MS is the merit of a feature subset S containing k features, rcf is the average feature-
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class correlation for features f in S and rff is the average feature-feature intercorrelation. The

numerator represents how predictive the set of features is, while the denominator represents the

amount of redundancy contained in subset S.

2.1.6 Performance evaluation

There are several approaches for evaluating the performance of ML algorithms. In particular,

the evaluation of classifiers is measured, in general, through a confusion matrix (Sokolova and

Lapalme, 2009) (see Table 2.3).

Class Classified as Positive Classified as Negative

Positive TP FN

Negative FP TN

Table 2.3: Confusion matrix for performance evaluation of ML algorithms

Where, True negatives (TN) are the elements correctly classified as not belonging to the

class, False positives (FP) as the elements incorrectly classified as belonging to the class, False

negatives (FN) as the elements incorrectly classified as not belonging to the class and True

positives (TP) as elements correctly classified as belonging to the class.

From these values, it can be computed several performance measures (Jardine and van Rijs-

bergen, 1971) that are widely used when evaluating the behaviour of ML techniques (Sebastiani,

2002):

• Precision, related with the overall effectiveness of the classifier (Sokolova and Lapalme,

2009):

P =
TP

TP + FP
(2.23)

• Recall (Sensitivity), a measure of the effectiveness of a classifier to identify positive

labels:

R =
TP

TP + FN
(2.24)

• Specificity, measures how effectively a classifier identifies negative labels citep-

sokolova2009systematic:

S =
TN

TN + FP
(2.25)

Of course, it would desirable these values to be as close to 1 as possible, but it is well-known

that there is a trade-off between them (Sebastiani, 2002; Powers, 2007). For that reason, these

values are combined in more meaningful performance measures such as the F1 score (Jardine and

van Rijsbergen, 1971; Powers, 2007), which is the harmonic mean of precision and sensitivity:
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F1score =
2TP

2TP + FP + FN
(2.26)

It should be notice that this approach is also applicable for evaluating cluster algorithms,

whether it is possible to compare the clusters obtained from the clustering algorithm to some

other previously defined.

Other popular way of presenting the overall behaviour of a classifier relies on the Receiver

Operating Characteristic (ROC) (see Equ. 2.27) by means of the ROC curve (Fawcett, 2006)

(see Figure 2.12). It plots the sensitivity against specificity as the discrimination threshold of the

method is varied. Notice that the bigger the area under the ROC curve (AUC) (see Equ. 2.28),

the better the classifier is.

ROC =
P (x|positive)
P (x|negative)

, (2.27)

where P (x|C) is the conditional probability that x has the class C.

AUC =
recall + specifity

2
(2.28)
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Figure 2.12: Example of ROC curves. Horizontal and vertical axis represents the false positive
rate and true positive rate, respectively.

Multi-class evaluation

Performance evaluation for classification with more than two classes is based on a generalization

of the aforementioned measures. One approach is to compute the micro-averaging as follows:
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• Precision:

Pµ =

l∑
i=1

TPi

l∑
i=1

(TPi + FPi)

(2.29)

• Recall (Sensitivity):

Rµ =

l∑
i=1

TPi

l∑
i=1

(TPi + FNi)

(2.30)

• Specificity:

Sµ =

l∑
i=1

TNi

l∑
i=1

(TNi + FPi)

(2.31)

• F1score:

F1scoreµ =

l∑
i=1

2TPi

l∑
i=1

(2TNi + FPi + FNi)

(2.32)

Where it is considered Ci classes, TPi are true positive for Ci, FPi false positive, FNi false

negative and TNi true negative. In order to compute them it can be used a confusion matrix

where the rows are the classes and the column the predicted values.

For illustration proposes, let’s consider the following flowers classified as shows the column

Predicted:

Predicted Class

Flower 1 Setosa Setosa

Flower 2 Setosa Setosa

Flower 3 Setosa Versicolor

Flower 4 Versicolor Versicolor

Flower 5 Virginica Virginica

Flower 6 Virginica Setosa

Taking into account the predicted value and the class, the actual type of flower, the confusion

matrix would be the following:
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Class Classified as Setosa Classified as Versicolor Classified as Virginica

Setosa 2 0 1

Versicolor 1 1 0

Virginica 0 0 1

Table 2.4: Confusion matrix for performance evaluation with multi-class classification

Regarding regression models, there numerous metrics that provide a measure of how well

the prediction fits to the original data. In particular, the correlation coefficient (Pearson, 1920;

Fisher, 1915; Lawrence and Lin, 1989) is a well-know metric (Lee Rodgers and Nicewander,

1988). It is defined as follows:

r2 = b b′, (2.33)

where b is:

b =
n
∑
x y −

∑
x
∑
y

n
∑
x2 − (

∑
x)2

(2.34)

and b′ is:

b′ =
n
∑
x y −

∑
x
∑
y

n
∑
y2 − (

∑
y)2

(2.35)

Cross-validation

Cross-validation is an statistical method (Efron and Gong, 1983) for model selection in SML

algorithms. It provides an estimation of the performance evaluation of the model with training

data independent from the set of data for testing the performance. In this regard, it divides

an input dataset into two mutually exclusive partitions: training set and test set; the former

to train the algorithm and the test set for evaluating its accuracy (Kohavi et al., 1995). Such

training and evaluation is repeated k times with different partitions of the same dataset. As a

result, the average of the performance measure is compute with all the measures obtained in

each iteration (Shao, 1993).

There are several methods to decide how the partition is done. k-fold cross-validation splits

the dataset into k disjoint partitions (folds) of similar size (Kohavi et al., 1995). Each iteration

takes a different partition for testing whilst the other k-1 folds are used for training. Leave-

one-out cross-validation is particular case of k-fold cross-validation with k = 1 (Kohavi et al.,

1995). Hence each iteration uses a test set with only one instance. In Stratified cross-validation

(Kohavi et al., 1995) the partitions contains similar proportion of classes as the original dataset.

Regarding the performance measures, Kohavi et al. (1995) found that k-fold cross-validation

with values of k between 10 and 20 reduces the variance while increases the bias. However,

according his study, ten-fold stratified cross-validation is the best method for model selection.
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Bootstraping, bootstrap aggregating and boosting

Bootstraping (Efron, 1979) is a method that generates new training sets by sampling with

replacement the instances of the input dataset in order to generate different classifiers. Such

method is used for approaches intended to obtain a composite classifier combining multiple

classifiers by voting (Quinlan, 1996a). Bootstrap aggregating (bagging) (Breiman, 1996) and

boosting (Freund and Schapire, 1995) follow this approach. Although these methods generate

multiple classifiers manipulating the input dataset, they differ in how the training set is generated

and the voting system to form a composite classifier.

Generally, the use of these methods improve predictive accuracy (Quinlan, 1996a). However,

boosting may produce degradation on some datasets (Quinlan, 1996a).

2.2 Related work

This section gathers literature related with the application of machine learning techniques in

agricultural environments. Although the main focus of this thesis relays on automatic land

delimitation, the identification of MZs and crop yield forecasting, other applications are included

for better describing the framework.

2.2.1 Automatic land delimitation and land cover classification

Regarding the application of machine learning techniques in agricultural environments for land

cover classification, there are many different approaches. Support Vector Machines (Gualtieri

and Cromp, 1999; Huang et al., 2002; Pal and Mather, 2005; Marconcini et al., 2009), K-Nearest

Neighbors Classifier (Zhu and Basir, 2005; Zhang et al., 2013) and Random forest (Gislason

et al., 2006) are well-known examples of these techniques. Artificial Neural Networks were

also used for land cover classification in (Kavzoglu and Mather, 2003) and it was concluded

that accuracies can differ significantly depending on the selection of the network structure and

parameter values.

On the other hand, Friedl and Brodley (1997) proposed the use of Decision trees and HAN

et al. (2011) used a method based on C5.0 and Normalized Difference Vegetation Index (NDVI)

to create a knowledge base of rules indicating that the texture could potentially be applied in

object-oriented classification. Klein et al. (2012) developed a method also based in C5.0 to

study the evolution of land cover using MODIS time-series. Ottinger et al. (2013) presented a

supervised approach to classify Landsat 7 images to monitor changes in the Yellow River Delta.

However, most of these works do not use multitemporal imagery in the training process and

the evaluation is done with only one or two images.

2.2.2 Identification of management zones

In the scientific literature, there are several works related to the automatic delimitation of land

using different data sources, such as the classification of apparent soil electrical conductivity

(Johnson et al., 2003; Peralta and Costa, 2013) or the analysis of yield maps (Blackmore et al.,
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2003). In addition, Ortega and Santibáñez (2007) compared the results of the use of chemical

properties of the soil with several techniques such as PCA and cluster analysis. Simbahan and

Dobermann (2006) tested supervised classification algorithms with different datasets including

soil maps, digital elevation models and apparent soil electrical conductivity. In the same line,

other authors have considered soil properties (Moral et al., 2011; Fu et al., 2010) and also yield

and crop quality (Aggelopooulou et al., 2013).

Schuster et al. (2011) identified homogeneous zones of a cotton field considering two datasets:

the first one with two estimators of the yield and the second one considering geo-referenced field

properties such as topographical characteristics and treatments applied to the field. The use

of biophysical features such as annual moisture deficit/surplus and mean annual precipitation

was explored by Liu and Samal (2002). The authors tested the same dataset with k-means and

fuzzy algorithms concluding that a fuzzy approach generates more accurate delineations.

Kumar et al. (2011) studied the use of the k-means algorithm with the MODIS-based green-

ness index and the seasonal leaf area index (DAAC, 1990), developing a parallel implementation

able to delimit 1,000 agroecozones in 700 seconds using 2,048 processors. On the other hand,

Duro et al. (2012) studied the classification of agricultural landscapes by means of image analysis

techniques with SPOT-5 (VITO, 1998) satellite imagery.

The major drawback of many of these approaches is that they require some kind of in-field

exploration in order to measure the values of the features. On the other hand, biophysical

features can be acquired from public sources such as agro-meteorological stations but the re-

sults will depend on the number and the geographical distribution of the stations. However,

remotely-sensed imagery from satellites does not require in-field exploration and there are satel-

lite programs such as Landsat (USGS, 1972) or the Sentinel missions (ESA, 2014) with global

coverage and free distribution of their data products. Kumar et al. (2011) followed this approach

but their approach for land delimitation only considers two features with a low spatial resolution

for PA applications (250 m.). Even though Duro et al. (2012) have worked with high spatial

resolution imagery (10 m.), the data products they used are not publicly available.

2.2.3 Crop yield forecasting and yield planning

Yu et al. (2010) proposed a crop yield forecasting model based on the combination of artificial

neural networks (ANN). The ANN were trained with data related with the nutrient concentration

of the soil and the amounts of fertilizer provided in the campaign. Although the results of this

work are positives possibly may not be generalized because of some assumptions in the model

such as the same type of crop and a set of fixed values for soil moisture and PH.

Zhou et al. (2007) applied the Grey-Markov forecasting model (Yidan, 1992) to yield pre-

diction. The authors studied its accuracy comparing this model to the Grey Model GM(1,1)

(Sun, 1991). The study used crop yield data from the National Bureau of Statistics of China

and concluded that the Grey-Markov method can achieve better results than the Grey Model

GM(1,1) for yield prediction.

Charvat and Pavel (2012) developed a service which is capable to generate yield planning
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for next season maximizing the expected profit. The heterogeneous data sources processed by

this service include precision agriculture information systems and Sensor Observation Services

(SOS) databases.

On the other hand, Gonzalez-Sanchez et al. (2014) compared the predictive accuracy of

ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple

linear regression, M5-Prime model trees, Perceptron Multilayer Neural Networks, SVR and

KNN methods are ranked. M5-Prime and KNN techniques obtain the lowest errors and the

highest average correlation factors. M5-Prime, which achieves the largest number of crop yield

models with the lowest errors, is considered a very suitable tool for massive crop yield prediction

in agricultural planning. In addition, it is more interpretable than KNN. Other approaches

combine partial least square models and spectral imaging technology (Ye et al., 2007).

The model tree technique (see, for example, Frank et al. (1998) or Samadi et al. (2014)) is

based on combining decision trees with linear regression functions at the leaves. Among these

learners, M5 builds multivariate linear tree-based models, producing a classification based on

piecewise linear functions (Quinlan et al., 1992). Regression trees, have been demonstrated as

suitable methods to crop yield prediction. The most common algorithms to build regression

trees are CART (Breiman et al., 2001), M5 (Quinlan et al., 1992) and M5-Prime (Wang and

Witten, 1996). The strategy to construct the tree is similar in all of them (ElGibreen and Aksoy,

2015).

2.2.4 Variable-rate fertilization

The estimation of the amount of fertilizer required by a specific crop area allows the use of

variable-rate application (VRA) of fertilizer. This not only implies economic advantages but

also may have a positive impact on environment if it entails a reduction on the use of fer-

tilizers. In this regard, Panagos et al. in (Panagos et al., 2013) improved the estimations

of Soil Organic Carbon (SOC) content by means of comparing the outcomes of the Organic

Carbon Content In Topsoils In Europe (OCTOP) (Jones et al., 2005) model with the soil sam-

ples collected from 20,000 points in 23 UE countries and available on the LUCAS database

(http://esdac.jrc.ec.europa.eu/projects/lucas).

Zhang et al. developed a model in (Zhang and Han, 2002) for the representation of crop

yield in both the spatial and temporal dimensions dividing the crop land in small pieces of

land or blocks. The model takes into account the yield from the previous years and calculates

confidence levels for low, average and high crop production for each block. This provides support

decision-making about VRA of fertilizers by means of comparing the confidence levels for the

same block along the temporal dimension.

Seppelt and Voinov (2002) developed a methodology to optimize the use of the land. The

method tries to maximize a specific crop yield goal considering multiple factors regarding the

agricultural production such as the current price of fertilizer products or the results of soil

analysis. The optimization is performed by means of simulation models considering different

land-uses scenarios ranging from wheat and corn plantations. Finally, the method generate
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land-use maps and fertilization maps.

2.2.5 Automatic plant identification

Automatic discrimination between soil and plants based on the dominant spectral component,

green in the first case and red for the second one, may result inaccurate if plants are partially or

totally covered for other materials on ground, for example, as a result of heavy rain conditions.

To address this issue, in Guerrero et al. (2012) it is proposed a classification strategy by means

of supervised learning algorithms. Specifically, SVM trained with vegetation colour indexes

from RGB images and its corresponding black and white images. These last ones obtained from

thresholding techniques and achieving a success rate of 93.1% for a test case with 40 images of

corn crops.

On the other hand, neural networks and hyper spectral imagery were successfully used for

clustering and crop identification (Seiffert et al., 2010). Whilst Meyer et al. (2004) studied the

precision of fuzzy clustering algorithms on plants identification concluding that the Gustafson-

Kessel (GK) algorithm (Gustafson and Kessel, 1978) is more precise than the fuzzy c-means

(FCM) algorithm (Pal and Bezdek, 1995). Both algorithms were enhanced with Zadeh’s (Z)

fuzzy intensification technique (Zadeh, 1965).
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Chapter 3

HETEROGENEOUS DATA

SOURCES FOR PRECISION

AGRICULTURE

Agriculture domain usually deals with multiple heterogeneous data sources such as networks of

agro-meteorological stations, weather forecasts, soil properties, crop properties, satellite imagery

or crop treatments. Although the potential of this information for providing solutions in the PA

context is high, data should be properly collected, treated and analysed. However, such volume

of data is not always available or easily accessible.

Hence, platforms are needed to gather, unify and analyse these data converting them into

valuable information (Kitchen et al., 2002), not only for experts but also for farmers. This

kind of platforms could provide specific and high-value applications and services for the support

in the planning and decision-making processes of different stakeholders groups related to the

agricultural and environmental domains. However, data processing may also become complex if

the datasets are quickly updated, growing in a way that storage and analysis become challenging.

Hence, we are also facing a Big Data Analysis problem that challenges the learning and the

decision making processes.

On the other hand, remote-sensed imagery as those provided by satellites or drones is a

valuable resource for PA (Ormeño Villajos et al., 2008). The possibility of obtaining free-of-

charge satellite images, as those provided by the Landsat program (USGS, 1972), opens new

paths that can be used to approach a more cost-effective solution to the PA. The images can be

used for many purposes such as obtaining indicators related with the health and moisture of the

crops (Kriegler et al., 1969; Qing Liu and Huete, 1995; Fensholt and Sandholt, 2003), inferring

the properties of soil (Ludwig et al., 2008; Xie et al., 2011), land classification (Gualtieri and

Cromp, 1999) or yield forecasting (Ye et al., 2007). However, the analysis of satellite imagery

faces challenges related with the diversity of data sources, heterogeneous data formats and the

massive volumes of data generated (see Section 3.1.5).
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This chapter is organized as follows. Section 3.1 reviews open data satellite imagery with

global coverage that may be used as data source for modelling smart agro-services. Section 3.2

describes climate and meteorological data sources. Finally, Section 3.2.5 shows agricultural data

related with soil and crops.

3.1 Open data satellite imagery for precision agriculture ser-

vices

Spectrometers, luxometers and multi-spectral cameras are some examples of measurement in-

struments which are equipped on small-size unmanned air vehicles and agricultural machinery.

This kind of instruments combined with Global Positioning System (GPS) measure the radia-

tion emitted and reflected by crops and allow to observe multiple geo-located variables which

affect crops (Bingfang et al., 2010) such as chlorophyll or moisture. In this regard, the use of

satellite imagery allows to observe multiple variables which affect crops (Bingfang et al., 2010).

On-board satellite instruments related to environmental and Earth observation, measure elec-

tromagnetic radiation emitted and reflected by the observed objects. Based on these radiometric

data it is possible to obtain valuable variables and indicators related with the agricultural do-

main (Ormeño Villajos et al., 2008) (see Section 3.3.6). These remotely sensed data may be

used for the estimation of soil properties and the recognition of spatial patterns (Bhatti et al.,

1991).

On the other hand, remote-sensed imagery acquired by satellite instruments can provide

valuable information for planning and decision-making processes in the agriculture and environ-

mental domains.

This section reviews satellite programmes related with land monitoring as potential data

sources for modelling smart agro-services. In particular, those with global coverage and data

products free to download.

3.1.1 NASA Land Processes Distributed Active Archive Center

NASA Land Processes Distributed Active Archive Center (LP DAAC) (NASA and USGS, 1990)

provides access to historic data files from the MODIS instrument, operated from TERRA and

AQUA satellites. MODIS offers valuable data related to agriculture such as the vegetation

indices, land temperature or land cover characteristics (see Table 3.1 and Section A.1).
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Name Data Product Res. (m) Frequency

MOD09GA Surface Reflectance 500m Daily

MYD09GQ Surface Reflectance 250m Daily

MOD11A1 Land Surface Temperature and Emissivity 1000m Daily

MOD13Q1 Vegetation Indices 250m 16 days

MOD15A2 Leaf Area Index 1000m 8 days

MOD14A1 Thermal Anomalies and Fire 1000m Daily

MOD44B Vegetation Continuous Fields 250m Annual

Table 3.1: MODIS data products related with agriculture

The data products are publicly available by HTTP or direct search on the Web

(https://lpdaac.usgs.gov/get data/data pool)

3.1.2 Earthnet Online

The European Space Agency (ESA) manages Earthnet Online (Landgraf and Fusco, 1997). It

is a web portal that provides a data pool of numerous satellite instruments, including MODIS

and the Compact High Resolution Imaging Spectrometer (CHRIS) (Cutter et al., 2000) as well

as satellites like Landsat 8.

CHRIS monitors the environment with resolutions of 18m and 36m and five different angles

of view. The data products of this instrument are free available with HDF format. Its potential

for agriculture includes:

• Monitoring the vegetation growth (Kneubuehler et al., 2006)

• Estimation of the chlorophyll content in leaves (Delegido et al., 2008)

• Automatic generation of land cover maps (Duca and Del Frate, 2008)

On the other hand, as a collaboration between the National Aeronautics and Space Admin-

istration (NASA) and the U.S. Geological Survey, the Landsat program (USGS, 1972) provides

several operational satellites. The most recent one is the Landsat 8 that takes about 400 images

every day using its on-board instruments: the Operational Land Imager (OLI) and the Thermal

Infrared Sensor (TIRS). OLI collects data from 9 spectral bands with a spatial resolution of 30m,

except for the band 8 with 15m. TIRS works on two thermal bands with a spatial resolution of

100m resampled to 50m. Both data products are distributed in GeoTIFF format.

3.1.3 Copernicus

This European Programme for the establishment of a European capacity for Earth Observation

(http://www.copernicus.eu/), provides geographic information, land cover data and related vari-

ables such as vegetation health. Copernicus provide data, among other sources, from:

1. SENTINEL missions (ESA, 2014). Six satellite missions that are mainly intended for envi-

ronmental monitoring and climate monitoring. Each mission has its own specific objectives
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and is conformed for two or more satellites, reducing the time required for obtaining new

data from the same location on Earth (revisit time). Currently, March of 2016, there are

three operational missions:

• SENTINEL-1. The mission does not provide optical imagery. However, these

satellites observe land and oceans taking radar data by means of a Synthetic Aperture

Radar (SAR). The instrument uses a technique called radar interferometry that can

detect changes between radar images of the same location. This kind of data could

be beneficial in order to improve crop yield recommendations by means of predicting

the growth development.

• SENTINEL-2. It provides two satellites equipped with high-resolution optical im-

agery focussed on vegetation, soil and coastal areas. The instrument responsible for

the imagery acquisition is the Multispectral Imager (MSI) which collects 13 spectral

bands (10m), 6 in the red and short-wave infrared spectrum (20m) and 3 bands for

atmospheric correction (60m). Considering both satellites, the revisit time is 5 days

and taking into account that the OLI instrument of the Landsat 8 covers 9 spectral

bands (30m.) with a revisit time of 15 days, the SENTINEL-2 mission could lead

remarkable improvements in those PA scientific works relying on open data satellite

imagery.

• SENTINEL-3. The mission mainly focus on ocean monitoring providing optical

imagery, thermal imagery and altimetry. The data products also provide land and

atmospheric applications however the spatial resolution, more than 300m, does not

improve the resolution of other instruments such as MODIS, OLI and TIRS.

The rest of the Sentinel missions, SENTINEL-4, SENTINEL-5 and SENTINEL-5P are

dedicated to monitor the air quality .

2. Earth monitoring satellites included in the Contributing Missions. Currently, there are

about 40 missions grouped in 5 categories or Mission Groups based on the type of mission.

Some of them are atmospheric missions, optical High Resolution (HR) or optical Very

High Resolution (VHR) missions. One example that falls into this last category is the

satellite instrument VITO-SPOT-VEGETATION (VITO, 1998). This instrument offers

the following family of data products related to PA, which are provided in Hierarchical

Data Format (HDF) (Group et al., 2000) format:

• VGT-P. Apparent reflectance perceived at the top of atmosphere. The temporal

resolution of this data product is daily and the spatial resolution is 1km.

• VGT-S1. The maximum NVDI (a vegetation index, see Section 3.3.6) computed

from all the measurements taken for the same geographical area on the same day.

The temporal resolution is daily and the spatial resolution is 1km.

• VGT-S10. It is similar to VGT-S1 but the maximum values correspond to 10 days.
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• VGT-D10. These data products are based on a bidirectional reflectance distribution

function from the data obtained in 10 days. The spatial resolutions are: 1km, 4km

o 8km. In contrast to VGT-S data products, these family of data products include

indicators of sea/land, ice-snow/ice-snow absence and clouds/clear.

The mechanism to access to Copernicus satellite data product is the Copernicus Space Com-

ponent Data Access system (CSCDA) and is restricted to:

• Institutions and Bodies of the EU

• Participants of a research project financed under the Union research programmes - Space

• Participants of a research project financed under the Union research programmes - Non-

space

• Public Authorities

• International Organisations and Non-Governmental Organisations (NGOs)

3.1.4 The National Oceanic and Atmospheric Administration

The National Oceanic and Atmospheric Administration (NOAA) counts with satellites like the

Geostationary Operational Environmental Satellites (GOES) which are mainly involved in cli-

mate models for meteorological forecasting. However NOAA also provides data products re-

lated with PA (NOAA Products, 2005) from the Advanced Very High Resolution Radiometer

(AVHRR). For instance the Vegetation Health Product provide the following indices which fluc-

tuate from 0 to 100, reflecting changes in vegetation conditions from extremely bad to optimal:

• Vegetation Condition Index (VCI) (Kogan, 2002), for estimation of cumulative mois-

ture impacts on vegetation:

V CI = 100
NDV I −NDV Imin

NDV Imax−NDV Imin
, (3.1)

where NDV I is the Normalized Difference Vegetation Index (see Section 3.3.6) and

NDV Imax and NDV Imin are their multi-year absolute maximum and minimum, re-

spectively.

• Temperature Condition Index (TCI) (Kogan, 2002), for estimation of thermal im-

pacts:

TCI = 100
BTmax−BT

BTmax−BTmin
, (3.2)

where BT is the brightness temperature and BTmax and BTmin their multi-year absolute

maximum and minimum, respectively.
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• Vegetation Health Index (VHI) (Kogan, 2002), for estimation of combined conditions:

V HI = a · V CI + (1− a) · TCI, (3.3)

where a is determined by experience, currently, a = 0.5.

NOAA requires an online free registration for the download of the data products which are

stored in a proprietary format called NOAA Level 1b (Oceanic and , NOAA).

3.1.5 Challenges of the analysis of satellite imagery

The use of satellite imagery involves challenges related to their acquisition, processing and

analysis. Mainly, in this work it was identified a diversity of data sources providing massive

volumes of data with different types of structures. The main challenges could be the following

ones:

• Diversity of data sources. The acquisition of data may be considered as a challenge

itself. First, there is not a common approach to seek the data. Satellite data is aggregated

from different organisms such as ESA, NASA or NOAA. In addition, they are usually

provided by web portals. However, each portal has its own functionality. Second, the

download of data via File Transfer Protocol (FTP) or via web services is rarely supported.

Therefore, it is difficult to schedule downloads of new data products and, frequently, human

intervention is required for visiting the web portals and for the download of the data.

• Heterogeneous data structures. There is no a common structure of data for the storage

of data products. Each satellite instrument could use its own structure. For instance,

NOAA data products use a proprietary format whilst other providers use formats like

HDF or Network Common Data Format (netCDF) (Melton et al., 1995). This diversity of

formats requires different tools and processing strategies that hinders the process of data

retrieving.

• Massive volumes of data. The volumes of data generated by each instrument depend on

the characteristics and the operating mode of these sensors, among other factors, mainly:

– Temporal resolution or frequency of observation of the same point in the surface

of Earth: diary, each 8 days, each 16 days, etc. Furthermore, there are data product

that summarize observable variables for a period of time: a month or a year, for

example. The higher the temporal resolution the more data is produced.

– Spatial resolution or the smallest object measured that can be distinguished. To

continue with the MODIS example, it works with resolutions of 250m, 500m and

1000m. Considering the same temporal resolution, a data product from MODIS

with the highest spatial resolution can produce around 30GB of data whilst with the

lowest resolution generates about 700MB. The higher the resolution, the more data

is produced.
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– Spectral resolution or the number of bands captured for each sensor and its band-

width. For instance, MODIS has 36 bands operating a different spatial resolution: 250

m bands 1-2 (250m), bands 3-7 (500m), bands 8-36 (1000m). The number of bands

is also related with the number of data products that can be provided. MODIS, for

example, has available seventy data products and a subset of only seven data prod-

ucts during a one year period was considered it would imply about 260000 files and

2.25 TB of data.

Hence, considering multiple satellite instruments and data products with both high spatial

and temporal resolution might lead to massive volumes of data.

3.2 Climate and meteorological data sources

3.2.1 Public station networks

Networks of agro-meteorological stations are commonly used as sources of valuable data for

farmers. In this regard, public administrations often own networks of agro-meteorological sta-

tions and publicly share their observations via Internet. Using this data from it is possible to

develop, for example, disease early-warning systems (Neto et al., 2012). These systems often

consider leaf moisture, air humidity, air temperature and time factors.

In particular for Spain there are several agro-meteorological networks with coverage in

the main agricultural regions (see Fig.3.1). For example, the Sistema de Información Agro-

climática para el Regad́ıo (SIAR) (http://eportal.magrama.gob.es/websiar/Inicio.aspx) includes

more than 350 stations in regions such as Andalućıa, Canarias, Castilla-La Mancha, Castilla y

León, Extremadura, Murcia and Comunidad Valenciana.

Other remarkable example is the Meteogalicia agro-meteorological network

(http://www.meteogalicia.es/). This network covers the region of Galicia in the North-

West of Spain and provides both historical and current data valuable for farmers as, for

instance: hours of foliar humidity, soil temperature and wind speed. See Appendix B.1 for an

example of the observations measured by agro-meteorological stations of Meteogalicia.

3.2.2 In-field private station networks

The density of public stations could be insufficient for PA purposes and frequently farmers have

their own station network infrastructure. These agro-meteorological stations or motes, involve

a cost of roughly 1000e per station including the sensors. Hence, the study of how many

stations are required for a agricultural exploitation is key for the viability of an PA project

(McBratney et al., 2005). The location of the stations is also crucial as it is related with the

spatial variability and the characteristics of the crop lands. Hence, optimizing the number of

stations in an agricultural exploitation is a challenge problem both for economic and production

purposes.
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Figure 3.1: Location of the SIAR agro-meteorological network in Spain

The mote is a self contained system for the capture, processing and communication of agro-

climate parameters. The mote often offers several ports to connect different sensors such as leaf

wetness, leaf temperature, soil temperature and air temperature and humidity.

The system is solar powered and has an internal battery. To reduce power requirements, it is

often used an strategy in which the microprocessor is in sleep mode and wakes up every certain

number of seconds to take a measurement. Regarding communications, a typical configuration

related with the Internet of Things (IoT) involves a M2M modem (3G) uploading the data to a

server in the cloud using XML or GeoJSON files.

3.2.3 Meteorological radars

This kind of radars collects data about rain precipitation and its evolution measuring the rain-

drop size distribution and the radar reflectivity (see Fig.3.2). From these data, the meteorolog-

ical radars calculate an indicator called Plan Position Indicator (PPI). According to Marshall-

Palmer’s formula (Marshall et al., 1947) (see Eq. 3.4), from PPI allows the following estimations:

• The type and intensity of the rainfall:

– Light rain: intensity lower or equal than 2 mm/h.

– Moderate: intensity greater than 2 mm/h and lower or equal than 15 mm/h.

– Heavy rain: intensity greater than 15 mm/h and lower or equal than 30 mm/h.

– Very heavy rain: intensity greater than 30 mm/hand lower or equal than 60 mm/h.
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Figure 3.2: Radar image provided by Metogalicia for the Northwest region of Spain and Portugal

– Extreme rain: intensity greater than 60 mm/h

• The rain accumulated in 6 hours.

Z = 200 ·R1.6, (3.4)

where Z is the reflectivity measured by the radar expressed inmm6/m3 and R is the precipitation

rate expressed in mm/hr.

3.2.4 Weather forecast

Weather conditions represent an important factor for scheduling agricultural treatments and

crop protection (Adams et al., 1995). Knowing in advance possible events of severe weather

conditions such as floods, hail or strong wind gusts allow farmers to take preventive actions

in order to minimize damage in crops. However, predicting regular weather conditions is also
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important (Zhu et al., 2002). As an example, farmers could decide to apply a phytosanitary

treatment earlier than planned because of a rainfall forecast, even if the impact of infection is

low. Or they could delay spraying the fields because of the forecast of strong wind gust.

To make such predictions, the data from numeric forecast models such as the Weather

Research Forecast (WRF) can be helpful (Cooter et al., 2012). This model provides the following

information (with 1 Km of spatial resolution and 72 hours of temporal resolution):

• Sky state: sunny, high clouds, partly cloudy, overcast, cloudy, etc.

• Temperature

• Precipitation amount

• Wind direction

• Wind module

• Relative humidity

• Cloud area fraction

• Air pressure at sea level

• Snow level

3.2.5 Bioclimatic indices

Literature describes the use of viticultural climatic indices such as the Thermal Index of Winkle

(Amerine and Winkler, 1944; Winkler, 1962) or the Heliothermal Index (Huglin, 1978), which

are representative indicators of the variability of the viticultural regions worldwide (Tonietto

and Carbonneau, 2004).

• Average temperature for the active period of vegetation:

GSTavg =

∫ b
a Tavg

n
, (3.5)

where a and b correspond to the March 1st and August 31th, respectively, Tavg is the

average of the daily temperature and n is the number of days between a and b.

• Average of maximum and minimum temperatures for the active period of vegetation:

GSTmax =

∫ b
a Tmax

n
(3.6)

GSTmin =

∫ b
a Tmin

n
, (3.7)
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where a and b correspond to the March 1st and August 31th, respectively, Tmax is the

daily maximum temperature, Tmin is the daily minimum temperature and n is the number

of days between a and b.

• Frosts (FD) calculated as the number of days of the year with average temperature below

0◦

• Number of days with maximum temperature above 25◦ and above 30◦ (ND25, ND30).

• Active Thermal Integral (Haba et al., 1997):

ATI =

∫ b

a
Ta, (3.8)

where Ta is the active temperature, calculated by adding the daily mean temperatures

above or equal to 10◦ and a and b correspond to the March 1st and August 31th, respec-

tively.

• Thermal Index of Winkle is the sum of effective daily mean temperatures, calculated from

the monthly average temperatures multiplied by days of each month during the growing

season from April to October:

WI =

∫ b

a
Te, (3.9)

where the effective temperature Te is the active temperature Ta minus 10◦ and a and b

correspond to the March 1st and August 31th, respectively.

• Heliothermic product (Branas et al., 1946):

PH = 10−6 ·
∫ b

a
Ta ·

∫ b

a
H, (3.10)

where a and b correspond to the March 1st and August 31th, respectively, Ta is the active

temperature and H the daily hours of light.

• Heliothermic index (P) (Branas et al., 1946):

P =

∫ b

a
Tmavg ·Rmacc, (3.11)

where a and b correspond to March and August, respectively, Tmavg is the monthly average

temperature and Rmacc the monthly accumulate rainfall.

• Huglin index of helio-thermal aptitude (Huglin, 1978):

IH =

∫ b
a ((Ta − 10◦) + (Tm − 10◦))K

2
, (3.12)
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where Ta is the daily average temperature, Tm is the maximum daily temperature during

the active period of vegetation, and K is the length ratio of days varying from 1.02 to 1.06

between 40 and 50 degrees of latitude.

• Average temperature in April, May, June and July.

• Average rainfall (mm) in April, May, June and July.

• Total annual rainfall:

Pannual =

∫ b

a
r, (3.13)

where r is daily rainfall in mm and a and b correspond to the January 1st and December

31th, respectively.

• Annual rainfall for the active period of vegetation:

Pgs =

∫ b

a
r, (3.14)

where r is daily rainfall in mm and a and b correspond to the March 1st and August 31th,

respectively.

• Maximum rainfall (Pmax) calculated as the maximum daily rainfall of the year.

3.3 Agricultural data sources

3.3.1 Soil analysis

The knowledge about soil characterization by means of electrical conductivity and soil analysis

could enhance decisions regarding how to delimit the MZs (Franzen et al., 2002) (see Section

1.1.4). On the other hand, the estimation of soil nutrients from geo-located soil samples could

enhance decisions regarding to the fertilization plan (Cambardella and Karlen, 1999) considering

the levels of parameters such as:

• pH-H2O. pH in water.

• pH-KCl. pH in potassium chloride.

• % Organic matter.

• P-content. Phosphor content.

• K-content. Potassium content.

• Exchangeable Mg. Magnesium ions.

• Electric conductivity. It is a measure of soil salinity (Corwin and Lesch, 2005)
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3.3.2 Crop treatments

The geo-location of all the agricultural interventions that involves the crop management could

be valuable for taking site-specific decisions. However, it requires some kind of registration

process, manual or automatic by means of the signals emitted by the agricultural vehicles whilst

applying the treatment to the crops.

As an example, the following data could be gathered regarding the treatment application:

• Management zone. The ID of the MZ where the treatment is applied.

• Treatment plan ID. The treatment plan related with the intervention.

• Date/hour. The date and hour of the treatment.

• Litres. The amount of litres used in the treatment.

• Machinery. The reference to the machinery used in the treatment (e.g., tractor and

sprayer)

• Pressure. The pressure in bars used.

• Speed. The speed of the vehicle.

• Number of nozzles. The number of nozzles used by the machinery.

• Notes. Annotations about the intervention.

• Geometry. The geometry corresponding to the specific area of the intervention if it is

not the same as the whole MZ.

3.3.3 Crop yield

Crop production is the outcome as a result of the agriculture labours, soil characterization,

weather conditions and other factors. Regarding PA, crop yield might be considered in the

followings tasks:

• MZ identification. For example, by means of yield maps and clustering those zones with

similar rate production per unit of surface.

• Annual fertilization plan. The annual plan of fertilization for next campaign might

consider, among other factors, yield production and soil analysis.

• Yield forecasting. Historical yield data combined with other data sources as, for in-

stance, vegetation indices and weather variables, might be used for yield crop forecasting.

However, the yield could present high variability between regions and between years and

this fact increases the difficulties of this task. As an example, between the years 2011 and

2012, the Designation of Origin Rias Baixas had a variation of production of a 42.9%.
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Figure 3.3: Example of use of SIGPAC to find the boundaries of parcels

3.3.4 Land parcel identification systems (LPIS)

As a mechanism to register and consult the census of the land parcels. Generally, LPIS offers

public Web Mapping Services (WMS) for retrieving the maps providing the field parcel bound-

ary lines, ownership and land use of farm areas. In Spain, the Ministry of Agriculture, Food

and Environment (MAGRAMA) provides a GIS application called SIGPAC (see Fig.3.3) which

provides this kind of information (http://sigpac.mapa.es/fega/visor/) However, the deployment

of these measurement systems is not essential for PA.

3.3.5 Phenological stages

Phenological growth stages of plants describe their developmental stages. In particular, for

grapevines there are some methods for the representation of those stages such as Baggliolini

(1952); Eichhorn et al. (1977). Table 3.2 includes the major phenological stages of grapevine

(Boso et al., 2008) following the method of Eichhorn et al. (1977) and revised from Coombe

(1995).
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Stage Description

04 Bud burst. Leaf tips visible

12 Leaves separated. Shoots about 10 cm long; inflorescence clear

15 Inflorescence elongating. Flowers closely pressed together

19 Flowering begins. About 16 leaves separated; beginning of flowering (first flower caps loosening)

23 Full flowering. 17-20 leaves separated; 50% caps off

27 Setting. Young berries enlarging (> 2 mm diam.), bunch at right angles to stem

31 Berries pea-sized. Bunches hang

32 Beginning of bunch closure, berries touching (if bunches are tight)

34 Berries begin to soften. Sugar starts increasing

35 Beginning of berry ripening. Beginning of loss of green colour veraison

38 Berries ripe for harvest

Table 3.2: Representation of the major phenological stages of grapevine (Boso et al., 2008)
following the method of Eichhorn et al. (1977) and revised from Coombe (1995)

3.3.6 Vegetation and moisture indices

Sensors and on-board satellite instruments related to environmental and Earth observation,

measure electromagnetic radiation emitted and reflected by observed objects. In fact, plants

absorb and reflect the solar radiation following an unique pattern to them according to their

cell structures, leaf and surface widths, amount of water in their bodies and their positions in

their natural environments (see Fig.3.4). In particular, plants absorb light in the wavelength of

0.4-0.7 µm which is called the visible light region (see Fig.3.5), absorbing a small region of the

infrared spectrum and reflecting almost the whole of this spectrum.

Taking into account these patterns of reflectivity, some authors propose the calculation of

indices based on arithmetic combinations of spectral bands for monitoring health, moisture and

water stress of the crops (Jackson and Huete, 1991). Hence, from such radiometric data it is

possible to obtain valuable variables and indicators from the agriculture perspective Villajos

et al. (2008) such as moisture, soil temperature and vegetation health.

The potential of these indices for agriculture is very high (Basso et al., 2004). Such indices

can be categorized as follows based on the potential for the estimation of vegetation health and

moisture conditions:

Vegetation indices

Vegetation indices are based on chlorophyll spectral reflectance (Jordan, 1969) and specifically,

reflectance differences of the chlorophyll on the Red and Near infrared (NIR) spectrum. This last

one is divided on two: Short Wavelength Infrared (SWIR1) from 1.560nm to 1,660nm and Short

Wavelength Infrared 2 (SWIR2) from 2,100nm to 2,300nm. There are numerous vegetation

indices. The following ones are probably among the most known:

• Ratio Vegetation Index (RVI) (Jordan, 1969). It is probably one of the first index to

be defined (Jackson and Huete, 1991) and is an indicator of density and vigour in green

vegetation:
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Figure 3.4: Electromagnetic spectrum related with the cell structure of vegetation and with
their water content. Source: Elowitz, Mark R. (www.markelowitz.com/Hyperspectral.html)

Figure 3.5: The Electromagnetic Spectrum. Source: Zami, Zuly.
(www.zulyzami.com/The+Electromagnetic+Spectrum)
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RV I =
NIR

Red
(3.15)

• Normalized Difference Vegetation Index (NDVI) (Kriegler et al., 1969; Rouse Jr

et al., 1974). Although it is similar to RVI, this index is more sensitive to sparse vegetation

than RVI (Jackson and Huete, 1991). Negative values correspond to water, clouds or snow

since their reflectance in the visible spectrum is greater than the corresponding in near

infrared, whilst soil and rocks have values near zero. Ranges between 0.1 and 0.6 are

indicator of vegetation. Values above 0.6 correspond to dense vegetation canopy:

NDV I =
NIR−Red
NIR+Red

(3.16)

• Enhanced Vegetation Index (EVI) (Qing Liu and Huete, 1995). It is an indicator more

responsive to canopy structural variations, including canopy type, plant physiognomy, and

canopy architecture:

EV I = G
(NIR−Red)

NIR+ (C1 ·Red− C2 ·Blue) + L
, (3.17)

where G = 2.5, C1 = 6.0, C2 = 7.5 and L = 1 (Huete et al., 1997).

• Global Environmental Monitoring Index (GEMI) (Pinty and Verstraete, 1992). It

is related with presence or absence of vegetation. It takes values between 0 and 1 and

is less sensible to atmospheric conditions than NDVI. However, it is not suitable to poor

vegetation zones:

GEMI = eta (1− 0.25 · eta)− Red− 0.125

1−Red
, (3.18)

where

eta =
2(NIR2 −Red2) + 1.5 ·NIR+ 0.5 ·Red

NIR+Red+ 0.5
(3.19)

• Vegetation Condition Index (VCI) (Kogan, 1990). This normalized index is used as

an impact indicator of climate conditions on vegetation (Kogan et al., 2003). The values

of the index ranges from 0 (extremely poor condition) to 100 (excellent):

V CI = 100
NDV I −NDV Imin

NDV Imax −NDV Imin
(3.20)

• Leaf Area Index (LAI) (Chen and Black, 1992). It is related to plant canopies. Con-

sidering the leaf morphology, authors propose different definitions. Chen and Black (1992)

defines LAI as the ratio of total vegetation canopy divided by the surface area of the land

on which the vegetation grows and Myneni et al. (2002) as the projected needle leaf area in
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coniferous canopies. There are wide range of methods to obtain this index. For instance,

MODIS uses an algorithm (Knyazikhin et al., 1998) based on canopy reflectance.

Moisture and thermal indices

These indices are indicators of canopy water content calculated mainly from NIR and SWIR

spectrum. The following vegetation indices are probably among the most known:

• Normalized Difference Water Index 7 (NDI7) (Rubio et al., 2006; Trombetti et al.,

2008):

NDI7 =
(NIR− SWIR2)

(NIR+ SWIR2)
(3.21)

• Shortwave Infrared Water Stress Index (SIWSI) (Fensholt and Sandholt, 2003):

SIWSI =
(NIR− SWIR1)

(NIR+ SWIR1)
(3.22)

• Shortwave Infrared Ratio (SWIRR) (Trombetti et al., 2008):

SWIRR =
SWIR1

SWIR2
(3.23)

• Moisture Stress Index (MSI) (Hunt Jr and Rock, 1989):

MSI =
SWIR1

NIR
(3.24)

• Moisture Stress Index 7 (MSI7) (Trombetti et al., 2008):

MSI7 =
SWIR2

NIR
(3.25)

• Global Vegetation Moisture Index (GVMI) (Ceccato et al., 2002):

GVMI =
(NIR+ 1)− (SWIR1 + 0.02)

(NIR+ 1) + (SWIR1 + 0.02)
(3.26)
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Chapter 4

IMPACT OF TEMPORAL

RESOLUTION FOR AUTOMATIC

LAND DELIMITATION

One of the first steps in the application of PA techniques for a particular geographical zone is

the task of land delimitation, that is, to identify which regions share soil properties and can

be treated in the same way. In particular, automatic land delimitation is focused on providing

delimitations using different data sources as those from satellite or sensors (Arango et al., 2015).

Satellite data products are characterized by the spatial resolution and the temporal resolu-

tion. The last one corresponds to the revisit time and, generally, the higher the spatial resolution,

the lower the temporal one. So there is a trade off between both resolutions.

Hence, taking into account that PA requires high spatial resolution, this chapter studies how

the temporal resolution affects the results of the automatic delimitation of land using clustering

algorithms and satellite reflectivity as input. In order to check this delimitation, two different

clustering paradigms are applied to data collected from Terras Gauda vineyards.

The results are promising in the sense that obtained clusters are consistent to the current

land organization. In addition, it is shown that the lower temporal resolution, the more compact

the clusters. The Chapter is organized as follows. Section 4.1 explains the satellite data products

used in the clustering process. Section 4.2 enumerates the proposed clustering algorithm. Finally,

Section 4.3 shows the main conclusions obtained about time-series reflectance.

4.1 Input data

Valuable data related to PA such as vegetation indices, land surface temperature or surface

reflectance are collected by MODIS. Around 70 data products are provided by this instrument

operated from TERRA and AQUA satellites (see Section 3.1.1). These data products are pub-

licly available by HTTP, FTP and at the NASA Land Processes Distributed Active Archive
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Center (see Appendix A.1.1).

In order to generate the data sets for the MZ identification process, daily surface reflectance

data products were considered. Specifically MOD09GQ at 250m of spatial resolution (see Sec-

tion A.1). It includes data about surface reflectance for spectral bands 1 (B1) and 2 (B2) and

other variables to measure the quality of the observations and their coverage.

The general procedure followed to obtain the data is:

• Identify the spatial coordinates for the geographic zones of interest, the parcels of Terras

Gauda. This task was done taking as a input a shape file with the geometry of all the

polygons of the parcels of Terras Gauda, as registered on the Sistema de Información

Geográfica de Parcelas Agŕıcolas (SIGPAC) (http://sigpac.mapa.es/fega/visor/)

• Download the MOD09GQ data products corresponding to the identified extension between

January and May of 2014, both inclusive. The installation of the Geospatial Data Abstrac-

tion Library (Bivand et al., 2013) and MODIS Reprojection Tool (Dwyer and Schmidt,

2006) was required.

• Obtain the reflectance measures and other quality variables from the data product and for

the Terras Gauda’s vineyard.

• Calculate NDVI and NDVI scaled using the reflectance values (see Section A.1).

• Identify the MODIS GeoTIFF pixels belonging to Terras Gauda parcels, using the overlay

geospatial operation with the shape file and the GeoTIFF.

• Generate files with the geolocated reflectivity values for the MOD09GQ data product (see

table 4.1) and its calculated values. These files were used as input for the clustering

algorithms in order to identify MZ.

Column Description

x Coordinate x of the data point in the UTM 29 CRS

y Coordinate y of the data point in the UTM 29 CRS

date Year + Day number of the year in the format YYYYddd

refl b01 Reflectivity values from MOD09GQ band 1

refl b02 Reflectivity values from MOD09GQ band 2

num observations The number of observations

QC 250m A byte about the quality of the measure

NDVI Normalized Difference Vegetation Index

NDVI scaled Scaled NDVI

Table 4.1: Columns of the dataset for the MOD09GQ data product. Spatial resolution: 250 m.
Temporal resolution: daily. CRS: UTM 29
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4.2 Clustering algorithms

As it was described in Section 4.1, the data used in this approach include information about

surface reflectance for spectral bands 1 and 2 with a spatial resolution of 250m obtained from

MODIS and the NVDI and NVDI-scaled indices.

To obtain the automatic delimitation of the vineyard zones two different approaches were

used, The first one is based on a partition clustering algorithm called PAM. The second one

is based on hierarchical clustering paradigm. Both algorithms and their characteristics are

explained on Section 2.1.3.

Regarding PAM, in order to properly select the best clustering distribution and since there

is no reference to external information, the method selected to validate the clustering was the

Silhouette coefficient (see Section 2.1.4). Therefore, to select the optimum k according to that

method, is followed the procedure described in Algorithm 2.2 of Section 2.1.4. Once k is com-

puted, the cluster algorithm is executed and the cluster assignment is retrieved, providing the

land delimitation.

The other approach followed is based on hierarchical methods. Among all the hierarchi-

cal algorithms, pvclust algorithm (Suzuki and Shimodaira, 2006) was selected because it is a

combination of the standard hierarchical algorithm hclust (Mahdavi et al., 2008) and bootstrap

resampling (see Section 2.1.6), so the groups it obtains have higher confidence. According to

the semantic of the problem being solved here, the most adequate linkage method is Ward’s

minimum variance (see hierarchical clustering, Section 2.1.3). The output of this method is

a dendrogram, showing not only the groups but also the strength of the connection between

them. However, it is not clear how strongly a cluster is supported by the data. To check the

certainty of the existence of a cluster, the approximately unbiased probability values (p-values,

Westfall and Young (1993)) are computed with multiscale bootstrap resampling. If the p-value

is less than a certain threshold (usually a number close to 1), the cluster is rejected (Suzuki and

Shimodaira, 2013).

4.3 Evaluation of time-series of reflectance

The Terras Gauda vineyard is divided into three separated parcels (hereinafter called p1, p2,

p3). According to the spatial resolution provided by the MODIS satellite (250m.), p1 and p2 are

represented using 30 points and p3 by 16 points. Each point is characterised by 4 variables per

day (surface reflectance for spectral bands 1 and 2, NVDI and NVDI-scaled indices). As data

were extracted for 90 days, each point x is represented by 360 values.

The three parcels were clustered using the Manhattan distance (see Table 2.1) as dissimi-

larity metric. Other metrics where tested however the best result were obtained with this the

Manhattan distance.

The performance of the values obtained from the MODIS satellite was tested for the au-

tomatic land delimitation and also for the effect of different temporal resolutions. To test the

temporal resolution, all the attributes every day, every 2 days, ... until every 10 days, were
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Figure 4.1: Land delimitation for parcel p1.

considered.

To test the effect of the four attributes, the clustering procedure was performed considering

each possible combination of the four attributes obtained per day. However, since the results are

similar, only the clusterings obtained when the four attributes afore defined are taken together

will be considered in what follows.

Figures 4.1 to 4.3 show the land delimitation for parcels p1, p2 and p3, respectively. The

structure of each figure is the following: It contains 10 squares divided into smaller squares

according to the the spatial resolution provided by MODIS. Considering each figure as a matrix

with 2 rows and 5 columns, the square at position [1, j] contains the clusters obtained when

temporal resolution is j. The square at position [2, j] contains the clusters obtained when

temporal resolution is j + 5. Therefore the top-left square represents clustering results for daily

resolution and the bottom-right square represents clustering results for a ten days resolution.

The question now is how to decide which land delimitation is the best. As it was stated in

Section 4.2, the criterion used was the Silhouette coefficient. X-axis of Figure 4.4 represents the

temporal resolution (from 1 day to 10 days) while Y -axis represents the value of the Silhouette

coefficient. As it can be seen in Figure 4.4 the lower the temporal resolution, the higher the

Silhouette coefficient. Therefore, the main result we can extract is that there is no need to

include daily information in order to keep the performance of the clusters. In fact, the clusters

are more compact when the temporal resolution is lower.

4.3.1 Clustering aggregation

In order to obtain a better land delimitation from the ones obtained in the previous subsection

with different temporal resolutions, it was been explored the possibility of aggregating the dif-
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Figure 4.2: Land delimitation for parcel p2.

Figure 4.3: Land delimitation for parcel p3.
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Figure 4.4: Silhouette coefficient obtained by the clustering algorithm
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Figure 4.5: Connected components for parcel p1 with h = 5

ferent clusterings. To this extent, it was considered a series of binary relations Rh defined as

follows: two points a1 and a2 are related by Rh (in symbols, a1Rha2) if and only if they appear

together in at least h of the clusterings considered in the previous subsection.

Thus, there are ten different binary relations R1, R2, . . . , R10 each one contained in the

previous one (i.e., if i < j then a1Rja2 implies a1Ria2). It was considered, then, the graph

representation of these binary relations and calculate their connected components. Each of

these connected components contains points that are usually clustered together (with a higher

probability the higher the value of h is) and, in consequence, may be considered as a new,

aggregated clustering.

Figures 4.5 to 4.7 show some of these graphs for parcels p1 to p3. In the case of the two first

parcels we have set h = 5 while h is 6 for the third case.

As can be seen, in these cases 3 areas were obtained for parcels p1 and p2 and 2 for p3 which

may be considered as consensus areas between all the clusterings (cf. Figures 4.1 to 4.3).

4.3.2 Using hierarchical clustering

In this section it is studied the problem of land delimitation using a hierarchical clustering

method. As in the previous case, it just shown the results obtained when using the four input
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Figure 4.6: Connected components for parcel p2 with h = 5

Figure 4.7: Connected components for parcel p3 with h = 6
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variables, testing the influence of temporal resolution.

As it was detailed in Section 4.2, this method provides a parameter p to check the certainty

of the existence of a cluster. Therefore, this parameter is used to select the best temporal

resolution. Figures 4.8 to 4.10 represent p-values against standard error for the best temporal

resolution for parcels p1, p2 and p3 respectively.

Note that the close p-values to 1, the better. In addition, the lower the standard error, the

better. According to these premises, the best resolutions are 9 for parcel p1, 7 for parcel p2 and

10 for parcel p3. Figures 4.11 to 4.13 show the dendrograms associated to the selected resolutions

obtained by pvclust for the three parcels. Groups with a certainty above 90% are highlighted. It

is important to note that in general the lower the temporal resolution, the higher the p-values.

This fact allows to conclude that when temporal resolution is lower, the performance of the

clusterings is at least the same that the one obtained with all data. Therefore, there is no need

to use daily data.

With regard to the groups themselves, note that for parcel p1 the system is not able to group

with a high confidence only four points (9, 12, 20 and 21) , five for parcel p2 and two for parcel

p3.

Figure 4.8: p-value against standard error for parcel p1 and data obtained each 9 days

71



4. IMPACT OF TEMPORAL RESOLUTION FOR AUTOMATIC LAND
DELIMITATION

Figure 4.9: p-value against standard error for parcel p2 and data obtained each 7 days

Figure 4.10: p-value against standard error for parcel p3 and data obtained each 10 days
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Chapter 5

MAPPING CULTIVABLE LAND

WITH MACHINE LEARNING

In PA one of the basic tasks is the classification of land zones in either cultivable or non-cultivable

land. Several works have proposed different approaches using data obtained from soil analysis

or local exploration of the parcels (Van Alphen, 2002; Godwin and Miller, 2003). However,

sometimes only data from satellite images are available and then the problem becomes not only

more challenging but also more interesting because it is much more cost-effective.

The possibilities offered satellite images as those provided by Landsat 8 open new paths

to obtain a more cost-effective solution to the problem, since soil attributes such as organic

matter (Ludwig et al., 2008) or nitrogen content (Xie et al., 2011) may be inferred by means of

hyperspectral remote sensing (Luoa et al., 2008).

Thus, this Chapter explores the use of several ML techniques for the task of automatic land

classification. In particular, the land able to be used for farming, cultivable land (Fawcett, 1930),

using as input satellite remotely sensed data (Kumar et al., 2011) and conducting experiments

with different sets of parameters and feature reduction techniques. In addition, it was also stud-

ied the performance of spectral and thermal bands provided by Landsat 8 satellite in detecting

cultivable land. Finally, a methodology for automatic cultivable land classification is proposed

(Arango et al., 2016).

The Chapter is organized as follows. Section 5.1 addresses the supervised learning techniques

for automatic cultivable land classification proposed in this work. Section 5.2 shows the results

of this supervised approach. Section 5.3 proposes a methodology based on unsupervised ML.

Finally, Section 5.4 shows the results of this unsupervised approach.
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5.1 Automatic cultivable land detection with supervised ma-

chine learning

This Section describes the methodology followed in order to obtain land classification as cul-

tivable or non-cultivable zones. Different spectral and thermal bands are considered from the

Landsat 8 satellite images corresponding to the vineyard used as case study (see Section 1.3).

A range of supervised Machine Learning methods to classify are applied for classify different

land zones. The goal is to check the performance of these methods in solving these kind of

problems. First, it is detailed the input data and how to prepare it. Then, it is explained the

algorithms used to process the information. These methods were tested with the vineyards of

Terras Gauda, a wine producer from Galicia, Spain. The study considers one vineyard parcel

with topographical dissimilarities and compares the results of cultivable land delimitation with

different proposed configurations. The results show that an adequate choice of the algorithm pa-

rameters together with feature selection techniques can yield a classification that is both highly

effective and efficient.

5.1.1 Retrieving input data

Landsat 8 satellite provides radiometric data valuable for precision agriculture (Ormeño Villajos

et al., 2008). It takes about 400 images every day using the instruments OLI and TIRS. The

first one collects data from 8 spectral bands with a spatial resolution of 30 meters and from a

panchromatic band of 15 m. The second one offers two thermal bands of 100 m. resampled to

30 m. All the data collected by these instruments are publicly available in GeoTIFF format via

web portals such as Earthnet Online (EarthOnline, 2000).

The dataset considered in this study (see Table 5.1) contains the raw reflectivity values of

bands 2 through 7 (OLI) and raw thermal infrared values of bands 10 and 11 (TIRS). The

OLI bands B1 (Coastal/aerosol) and B9 (Cirrus) are not considered in the dataset because the

information of these bands is not related to soil or vegetation. The B8 (Panchromatic) band is

not included either because is related with the visible spectrum.

In order to study the relevance of vegetation and moisture indices (see Section 3.3.6), eight

widely-used indicators were also calculated and included in the dataset.

In order to obtain the data shown in Table 5.1, which are the data input for the algorithm,

it is necessary:

1. Download the Landsat 8 TIRS data product corresponding to the region of study and for

the whole winter season of, at least, one crop year. Using EarthExplorer, for instance,

will allow to provide search criteria for both the bounding box coordinates of the plots

and the data range. However, downloading the data from Amazon S3 will require to know

the name of the files and the directory which are located (Amazon, 2015). Both, the

name of the files and the directory structure, are based on the path and row numbers of

the Worldwide Reference System (WRS) (Landsat Programme, 1972) for identifying the

Earth’s location of a Landsat image.
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2. Process the GeoTIFF file (see Section A.2), getting the raw values of the thermal bands

and vegetation indices corresponding to the spatial data points of the region of study.

3. Generate a dataset with the following format with the data extracted in the previous

task:



f11,1 f12,1 . . . f1n,1 f11,2 f12,2 . . . f1n,2 . . . f11,m f12,m . . . f1n,m
...

...

f i1,1 f i2,1 . . . f in,1 f i1,2 f i2,2 . . . f in,2 . . . f i1,m f i2,m . . . f in,m
...

...

f r1,1 f r2,1 . . . f rn,1 f r1,2 f r2,2 . . . f rn,2 . . . f r1,m f r2,m . . . f rn,m


.

Each fki,j represents the value of band i taken day j for pixel k.

In addition, each point is labeled as either being arable or non-arable land considering the

shape files from the Terras Gauda’s plots and the data of the Sistema de Información Geográfica

de Parcelas Agŕıcolas (SIGPAC) (Sistema de Información Geográfica de Parcelas Agŕıcolas,

n.d.), an official database for the identification of agricultural plots in Spain. The labeling

process is done by spatial operators with the data points of the region under study and the

polygons identified as arable land according to SIGPAC.

Column Description

x Coordinate x of the data point in the UTM 29 CRS

y Coordinate y of the data point in the UTM 29 CRS

date Year + Day number of the year in the format YYYYddd

B2 OLI band 2

B3 OLI band 3

B4 OLI band 4

B5 OLI band 5

B6 OLI band 6

B7 OLI band 7

B10 TIRS band 10

B11 TIRS band 11

NDVI Normalized Difference Vegetation Index

EVI Enhanced Vegetation Index

NDI7 Normalized Difference Water Index 7

SIWSI Shortwave Infrared Water Stress Index

SWIRR Shortwave Infrared Ratio

MSI Moisture Stress Index

MSI7 Moisture Stress Index 7

GVMI Global Vegetation Moisture Index

Table 5.1: Columns of the dataset for the Landsat 8 data product. Spatial resolution: 30m.
Temporal resolution: 16 days.
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5.1.2 Supervised learning

Once the data have been preprocessed as detailed in the previous sections, it can be applied

any SML algorithm in order to obtain a classifier able to determine if a point corresponds to an

cultivable land zone. In this work it has been selected some of the most popular SML methods,

taking special care in selecting at least from each of the principal approaches. The algorithms

applied in the experiments of this work were already explained on Section 2.1.1: C5.0, Naive

Bayes, k-NN, SVM with the Radial Basis Function Kernel, which is one of the most commonly

used with this method (Chang et al., 2010); and it was fitted a feed-forward single-hidden-layer

NN. The implementations used were those provided from the Caret R Package (Kuhn, 2008).

5.1.3 Feature selection

The algorithms enumerated in Section 5.1.2 can be applied on all the input data and on subsets

that only include those bands and indices selected after performing a process of feature reduction

(see Section 2.1.5). To select the best set of attributes it was measured their relevance by means

of their IG and then identified the features which have a significantly higher importance (as

implemented in the FSelector R Package (FSelector R Package, n.d.)). It was also performed a

process of redundancy elimination using CFS.

5.2 Results of automatic cultivable land detection with super-

vised machine learning

The experiments conducted in order to test if the methods enumerated in Section 5.1.2 yield

effective results in automatic arable land detection are now detailed. First, the settings of the

experiments are described and then the results obtained according to that settings are shown.

5.2.1 Settings of the experiments

The dataset is obtained by downloading OLI and TIRS data with EarthExplorer, for the exten-

sion of the plots of Terras Gauda (see Fig. 1.8). The data collected correspond to the dormant

stage in the vines (the winter season of 2013-14).

Method Precision Recall F1 AUC

k-NN 0.8112 0.8145 0.8129 0.8768

Naive Bayes 0.7350 0.7944 0.7636 0.8244

C5.0 0.9178 0.8852 0.9013 0.9692

SVM Radial 0.8056 0.8185 0.8120 0.8714

Neural Networks 0.7659 0.7782 0.7720 0.8432

Table 5.2: Results when no feature selection is performed
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The data points prepared as explained in Section 5.1.1 are divided into a training set and

a test set using stratified cross validation (Kohavi, 1995) with a proportion of 0.75 and 10

repetitions. Then, on the training set two feature selection approaches are performed: in the

first one, we compute the IG of each attribute and then select those which are maximally

separated from the rest; the second one is the application of CFS. Thus, we have three sets of

training values: those corresponding to features selected via IG, those selected with CFS and

the whole set, which includes all features.

These sets are the input of the methods of Section 5.1.2. The optimal parameters for the

algorithms are determined using cross validation on the training data. Finally, the classifiers are

tested on the values that were not used for training.

5.2.2 Performance evaluation

The different classifiers are evaluated through a confusion matrix with the predictions of the

different methods and the current values of the test points. For computing the matrix it was used

the same assumptions than those in Section 5.4.2. The metrics obtained were those described

in Section 2.1.6. In addition, it was study the overall behaviour of the classifiers by means of

ROC curves and the study of AUC.

5.2.3 Results

The results obtained when using the optimised methods (see subsection 5.2.3) without feature

selection are shown in Table 5.2. Figure 5.1 shows the ROC curves associated to the five used

algorithms. All the values are the average of the 10 cross validation repetitions. As it can be

seen, almost all the methods obtain fairly good results, but C5.0 clearly outperform the others,

exceeding in more than 10 points the other methods with regard to all the evaluation metrics.

These results are reinforced by the ROC curve behaviour (shown in Figure 5.1), where the area

under the curve obtained by C4.5 is the closest to one.

Table 5.3 and Figure 5.2 present the values and ROC curves for the methods when feature

selection is performed with IG. In this case, only three attributes were selected (namely, B5.2,

B5.6 and B5.9). Again, the results are averaged over all cross validation repetitions. In this case,

the results are very similar one to another (and, for some of them, lower than those obtained

without performing feature selection), probably because the number of features that were taken

into account is very low. In addition, the values obtained for both precision, recall and F1 are

far from those obtained without performing feature selection. Note also that all the features

selected with IG are related to the same band in 3 different days (the suffix .n in the variable

name means the day the value was taken). That means this feature selection method only

considers the information of band B5. From this perspective, the results with only one band are

quite successful.
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Figure 5.1: ROC curves when no feature selection is performed
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Method Precision Recall F1 AUC

k-NN 0.8224 0.7213 0.7686 0.8707

Naive Bayes 0.8365 0.7268 0.7778 0.8507

C5.0 0.8228 0.7104 0.7625 0.8625

SVM Radial 0.8207 0.7377 0.7770 0.8602

Neural Networks 0.8190 0.7295 0.7717 0.8781

Table 5.3: Results when features are selected according to IG
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Figure 5.2: ROC curves when features are selected according to IG

Finally, Table 5.4 and Figure 5.3 show the values and ROC curves of the methods when

CFS was used to select the most relevant features (in this case, 19 of the 170 total attributes

were selected). According to Precision, Recall,F1 and AUC values, K −NN , SVM Radial and

Neural Networks based methods combined with CFS feature selection method performs better

than both K−NN without feature selection or with feature selection via IG. Regarding feature

selection methods associated to Naive Bayes, CFS shows higher Precision, F1 and AUC than no

feature selection. It also improves Recall, F1 and AUC when comparing it to IG. Finally, the
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best results in terms of Precision, Recall, F1 and AUC for C5.0 are obtained when no feature

selection is applied, although the results obtained filtering with CFS are quite close to those

obtained without feature selection.
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Figure 5.3: ROC curves when features are selected according to CFS

Method Precision Recall F1 AUC

k-NN 0.8861 0.8716 0.8788 0.9564

Naive Bayes 0.8279 0.7623 0.7937 0.9071

C5.0 0.9008 0.8689 0.8846 0.9698

SVM Radial 0.9078 0.8880 0.8978 0.9693

Neural Networks 0.8740 0.8907 0.8823 0.9610

Table 5.4: Results when features are selected according to CFS

Thus, most methods show a significant improvement in effectiveness when compared to the

case with all the features and, with the exception of Naive Bayes, all of them obtain AUCs

over 0.95. Also, this setting is very efficient because it uses less than 12% of the features.
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However, CFS negatively affects C4.5, obtaining a performance slightly under that obtained

without feature selection for precision, recall and F1.

On the other hand, the features selected by CFS were B2.3, B2.4, B3.2, B3.5, B3.6, B3.9,

B5.2, B5.6, B5.9, B10.2 , B10.3, B11.7, NDV I.2, NDV I.7, NDV I.8, NDV I.9, EV I.5, EV I.9,

SWIRR.9. Note that those features selected by IG are contained in the features selected by

CFS. In addition, CFS does not select any information related to OLI bands B4, B6, B7.

Regarding vegetation indexes, it only considers NVDI, EV I and SWIRR. It is also important

to remark that there is only one day not considered at all by CFS (day 1).

Considering both performance in terms of Precision, Recall, F1 and AUC, and also in terms

of model complexity, it is clear that the recommended method is to perform feature selection

method combined with C5.0 or SVM Radial.

Optimization of parameter methods

Some of the machine learning methods were optimized according to certain parameters. k-NN

was optimized with regard to the number of elements in the vicinity. Figure 5.4 shows the

behaviour of parameter k (ranging from 2 to 50) when the classifier was trained using the whole

feature set (left), the features selected by CFS (middle) or by IG (right). Note that the behaviour

of knn is more or less the same when no filtering or when feature selection is performed using

CFS, but it is almost the opposite when features are selected according to IG.

This behaviour is shared by SVM with radial kernel (Figure 5.5). In this case, the parameter

to be optimised was the cost (ranging from 0 to 70). Finally, Figure 5.6 shows the optimization

of neural networks regarding the number of hidden units (from 1 unit to 19 units) and the weight

decay (from 0 to 0.1) (see artificial NN in Section 2.1.1). In this case, when all the features are

considered, the ROC value is above 0.8 only when 1, 17 or 19 hidden units are considered. These

numbers of hidden units are the ones performing better also when CFS is applied. Again, when

IG filtering is considered the behaviour of the parameters is completely different.

Naive Bayes does not provide any parameter to be optimised. Regarding C5.0, the three

parameters to optimize are model (set to ”tree”), winnow (set to FALSE) and trials (ranging

from 1 to 100). The optimisation according to trials is more or less the same for the three feature

sets (see Kuhn (2008)).
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Figure 5.4: Optimum k. Without Feature Selection (top-left), CFS (top-right), IG (bottom)

5.3 Mapping cultivable land from satellite imagery with clus-

tering algorithms

In this Section is proposed a methodology for the automatic delimitation of land able to be used

for farming, cultivable land (Fawcett, 1930), using clustering algorithms with publicly available

satellite data. The method uses a partition clustering algorithm called PAM (see Section 2.1.3)

and considers the quality of the clusters obtained for each satellite band in order to evaluate

which one better identifies cultivable land.

In addition, it was also studied the performance of spectral and thermal bands provided

by Landsat 8 satellite in detecting cultivable land. The approach developed was tested and

applied to the case study (see Section 1.3). The study considered three plots with topographical

dissimilarities and compared the results of cultivable land delimitation from clusters obtained

using different spectral and thermal bands. The experimental results show the great potential

of this method for cultivable land monitoring from remote-sensed multispectral imagery.
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Figure 5.5: Optimum Cost. Without Feature Selection (top-left), CFS (top-right), IG (bottom)

5.3.1 Cultivable land delimitation methodology

The proposed method groups the pixels of multispectral images acquired by on-board satellite

instruments for a desired land zone and period of time, in two main clusters: cultivable and non-

cultivable land. Each element of the clustering represents one pixel of the image and is assigned

to a group by means of a dissimilarity metric. The method tries to group as well the pixels in

three, four and five clusters, with the aim of selecting the better clustering configuration. In

this regard, the scientific literature proposes the calculation of indices (Milligan and Cooper,

1985) that measure the quality of the clustering. Subsection 5.3.4 explains the index used by

the method. If as a result the clustering has more than two groups then the method generates

two metaclusters merging the clusters.

Note also that one of the objectives of this work is the study of the performance of Landsat

8 satellite in detecting cultivable land. Thus, the clustering algorithm is applied as many times

as the considered bands and taking as input one satellite band each time. The main steps are

the following:

1. Download and process the Landsat 8 data products corresponding to the region under
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Figure 5.6: Optimum number of hidden layers with respect to weight decay. Without Feature
Selection (top-left), CFS (top-right), IG (bottom)

study, getting the raw values of the spectral and thermal bands.

2. For each band Bi:

• Perform the clustering with a number of clusters k varying from 2 to 5.

• Select the number of clusters k maximizing a quality clustering index (see Subsection

5.3.4).

• If k > 2, merge clusters in 2 groups (associated to cultivable and not cultivable land)

by computing distances between each pair of cluster representatives.

As output of the method, each pixel from the considered image is labeled as cultivable or

non-cultivable land. In this point it is possible to generate, for instance, a new layer for the

raster image with the aim of producing a map of cultivable/non-cultivable land (see Fig. 5.7).

In the following sections, all the steps involved in the methodology are described in detail.
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Figure 5.7: Mapping cultivable land cluster for the land parcel 2 with the Band 5 (NIR). The
zeroes represent the land correctly classified as non-cultivable. The ones represent the the land
incorrectly classified as non-cultivable. The zones without numbers belong to the cultivable-land
cluster.

5.3.2 Input data

The input data used by this SML approach is the same as the describe in Section 5.1.1 with the

exception of the class of each data point, which is not considered because is the class to predict.

5.3.3 Clustering algorithm

As it was described in Section 5.3.2, the data clustered in this approach include spectral and

thermal infrared data collected by satellite from the area of land intended to separate cultivable

land from non-cultivable land. For this purpose, is used the partition clustering algorithm called

PAM, already explained in Section 2.1.3. This algorithm was chosen instead of the well-known
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k-means because PAM is more robust since it minimizes a sum of dissimilarities instead of a sum

of squared euclidean distances. The main difference between this algorithm and the classical

k-means method is that PAM uses medoids as centers of the clusters and these medoids are

selected among the objects to be clustered.

The objective function used is the sum of the distances from each object to the closest

medoid. The distance proposed in this work is the Manhattan distance. Once the number of

clusters is computed, the cluster assignment is retrieved, providing the land delimitation.

5.3.4 Selection of the clusters

In the case of the identification of cultivable land, it used a quality index in order to select those

clusters maximizing the index as candidates for the cultivable land identification. Initially, the

top 5 indices in Milligan and Cooper study (Milligan and Cooper, 1985) were considered, in-

cluding both Silhouette coefficient (Rousseeuw, 1987) and Calinski-Harabasz index (Caliński and

Harabasz, 1974). It was selected one of them taking into account the computational cost. Specif-

ically, the Calinski-Harabasz index was selected to validate the clustering (see Section 2.1.4).

As the goal of this work is to identify those fractions of land which can be considered as

cultivable, if the optimal number of clusters is larger than two, they are reduced to two clusters

just by computing the distances between cluster representatives and merging the k clusters into

two groups according to these distances. The procedure can be summarized in the following

steps.

• Select the representative xi, from each one of the k clusters.

• Run PAM to cluster {xi, i = 1, . . . , k} into two clusters considering as input the matrix of

distances between xi and xj , ∀i, j = 1, . . . , k, i 6= j.

• Assign each point to the final clusters.

5.4 Results

In this section experimental results are shown in order to evaluate: (a) which satellite band

better identifies cultivable land and (b) the proposed methodology for mapping cultivable land

from satellite imagery using clustering algorithms. To this aim, a case study was carried out

with the vineyards of Terras Gauda (see Section 1.3).

Regarding the input data, the dataset is obtained by downloading OLI and TIRS EarthEx-

plorer data for the extension of the land parcels of Terras Gauda. The data collected correspond

to the dormant stage of the vines (the winter season of 2013-14).

5.4.1 Automatic land identification

According to the proposed method (see Section 5.3.1) it were considered as candidates for the

automatic land identification the clusters with highest values for the Calinski-Harabasz quality

index.
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Fig. 5.8 to Fig. 5.10 show the performance of the clustering algorithm with regard to the

Calinsky-Harabasz (CH) index for the three different land parcels. Each line represents the

results obtained using as input a certain band (B2, B3, B4, B5, B6, B7, B10 and B11). The

X-axis represents the number of clusters (ranging from 2 to 5) and the Y-axis contains the value

of the CH index.

Figure 5.8: Performance of different bands for clustering the land parcel 1

Fig. 5.8 shows the behavior of the different bands when the number of clusters ranges from

2 to 5 for parcel 1. The highest CH value is obtained when k = 2 and B3 as input data. Note

that bands B2 and B11 also obtains high CH for k=2. However, when k increases the behavior

of the clustering using B3 as input data steeply falls. As B2 stays more or less the same, this

band is selected.

Fig. 5.9 shows the behavior of the different bands when the number of clusters ranges from 2

to 5 for parcel 2. In this case, the band with best overall performance is B5, which also achieves

the highest CH value when k = 2.

The behavior of the different bands and k for parcel 3 is shown in Fig. 5.10. Bands B3, B6

and B7 are the ones performing better regarding the CH index. However, as it can be seen in

Fig. 5.10 CH for B6 and B7 gradually go down when k increases. In contrast, band B3, which

also obtains high CH values is more stable. Thus, in addition to k = 2 and B7 it seems that one

could select B3 and k = 2, 3 as optimal configuration.

In this case it is possible to validate the performance of the method as the real boundaries

of the cultivable land are known. Therefore we can check if the configurations obtaining the

highest CH also obtain the best performance in classification. The following section is devoted
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Figure 5.9: Performance of different bands for clustering the land parcel 2

to this comparison.

5.4.2 Validation of cultivable land identification

When it is possible to compare the clusters obtained from the clustering algorithm to some other

previously defined, the performance of our method can be measured through a confusion matrix

and the metrics describe in Section 2.1.6. Considering for each cluster, True negatives (a) as

the points correctly classified as not belonging to the cluster, False positives (b) as the points

incorrectly classified as belonging to the cluster, False negatives (c) as the points incorrectly

classified as not belonging to the cluster and True positives (d) as spatial data points correctly

classified as belonging to the cluster.

According to the clustering and identification of cultivable land, Fig. 5.11 presents the metrics

for the bands of the instruments OLI and TIRS considered in this study. The best F1 is obtained

for B2 while the results obtained by B3 are not good. Note that the behavior of B3 regarding

CH index was zig-zagged. The results shown in Fig. 5.11 corresponds to k = 4. The values

obtained for Precision, Recall and F1 when k = 2 are worse. Note that the shape of this parcel

is a bit irregular and the zone of cultivable land is not connected so the difficulty in detecting

borders is higher.

Fig. 5.12 shows the Precision, Recall and F1 for the clustering with the different bands for

parcel 2. In this case k = 2 because the highest values associated to each band are obtained

when k = 2 and then all of them decreases. The best F1 is obtained for B5. Note that B5 is the

band obtaining the highest CH values (see Fig. 5.9).
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Figure 5.10: Performance of different bands for clustering the land parcel 3

Finally, Fig. 5.13 shows the Precision, Recall and F1 for the clustering with the different

bands for parcel 3. In this case k = 2 represents again the number of clusters obtaining the

highest CH values and for this reason Fig. 5.13 represents the performance of the clustering

when k = 2 across the different bands. Note that the bands reaching the highest CH (B3, B6

and B7) also obtain the highest Precision, Recall and F1.
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Figure 5.11: Metrics related with the automatic delimitation of the land parcel 1. Band 2 (Blue)
seems to be a good estimator to cluster correctly cultivable land
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Figure 5.12: Metrics related with the automatic delimitation of the land parcel 2. Band 5 (NIR)
seems to be a good estimator to cluster correctly cultivable land
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Figure 5.13: Metrics related with the automatic delimitation of the land parcel 3. Band 7
(SWIR2) seems to be a good estimator to cluster correctly cultivable land
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Chapter 6

IDENTIFICATION OF

AGRICULTURAL MANAGEMENT

ZONES WITH UNSUPERVISED

LEARNING ALGORTIHMS

Other important task in PA entails the appropriate management of the inherent variability of

soil and crops, resulting in an increase of economic benefits and a reduction of environmental

impact. However, site-specific treatments require maps of the soil variability to identify areas of

land that share similar properties. Although the tacit knowledge of the farmer about crops and

soil could be a starting point for MZs identification, other systematic approaches are required.

In order to produce these maps of MZs, it is proposed a cost-efficient method that combines

clustering algorithms with publicly available satellite imagery. The method does not require

exploring the parcels with any special equipment neither taking soil samples for laboratory

analysis.

The proposed method was tested in a case study for three vineyard parcels with topographical

dissimilarities. The study compares different spectral and thermal bands from the Landsat 8

satellite as well as vegetation and moisture indices to determine which one produces the best

clustering. The experimental results were evaluated according to a previous study at this location

for the delimitation of MZs.

As it is shown in Section 6.2.3 the results seem promising for identification of agricultural

management zones. The findings suggest that thermal bands produce better clustering than

those based on the NDVI index.

The Chapter is organized as follows. Section 6.1 explains the tasks involving the methodology

proposed in this work for the automatic identification of MZs. Section 6.2 focuses on the results

of the method applied to the case of study.
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Figure 6.1: Tasks involving the proposed method for the MZs identification based on clustering
remote-sensed spectral and thermal infrared data from satellite.

6.1 Management zone identification methodology

This Section describes the methodology proposed for MZ identification by means of clustering

algorithms using thermal and multispectral imagery from satellite as input. The proposed

method considers two scenarios or use cases. The first one (Case a) considers the number k of

MZs as unknown and then the method looks for the optimum (feature, k) pair according to

cluster quality. The second one (Case b) identifies the best feature for a specific number of MZs,

fixed by an agronomist expert. The method involves the following tasks (see Fig. 6.1):

1. Data collection, transformation and dataset generation.

(a) Multispectral and thermal imagery acquisition by downloading the satellite data prod-

ucts corresponding to the region under study.

(b) Data extraction by processing the imagery files. The raw values of the spectral and

thermal bands are obtained after this step.

(c) Calculation of vegetation and moisture indices from raw values of thermal and mul-

tispectral bands.

(d) Data normalisation and dataset generation.
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2. Clustering and MZ identification. In this step the performance of each feature (bands and

indices) in detecting MZs is tested using a clustering algorithm.

(a) Case a. No previous information about the number of MZs k.

i. PAM algorithm execution for each feature of the dataset and for each k clusters

from k = 3 to k = 20.

ii. Selection of the pair (feature, k) providing the best clusters according to the

quality indices.

(b) Case b. The number of MZs k is known in advance.

i. PAM algorithm execution for each feature of the dataset and k clusters.

ii. Selection of the feature providing the best clusters according to the quality

indices.

3. Clustering validation if possible.

The following subsections describe each step of the process in detail.

6.1.1 Data collection, transformation and dataset generation

The method for the automatic identification of MZs requires the following tasks in order to

produce the dataset used as clustering algorithm input.

Multispectral and thermal imagery acquisition

The clustering process considers surface reflectivity and thermal infrared data corresponding to

the region of study during a period of time of at least three years to allow reflectivity patterns

in the sample. Landsat 8 and Sentinel-2 are well-known examples of satellites that provide

multispectral imagery publicly available (see Section 3.1) and covering almost the entire surface

of the Earth.

In the case of Sentinel-2, the MultiSpectral Instrument (MSI) collects 13 spectral bands

between latitudes 56◦ south and 84◦ north with a revisit time of ten days (or five days when op-

erating the second Sentinel-2). It provides high resolution imagery, from 10 to 60 meters, and its

spectrum range from visible and the near infrared to the shortwave infrared. The data products

are available in GeoTIFF format at the Sentinels Scientific Data Hub (https://scihub.esa.int/)

Data extraction

In this task GeoTIFF files are processed, getting the raw values of the layers corresponding to

the spatial data points of the region under study. To that end, there are analysis and processing

tools such as the Sentinel-2 Toolbox (https://sentinel.esa.int/web/sentinel/toolboxes) that also

supports third party data as, for instance, MODIS and Landsat. Other common approaches are

the use of scripts in Python or R. In this work, R scripts were used (see Section A.2).
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6.1.2 Data normalisation and dataset generation

From the previously extracted information, a dataset is generated with the format explained on

Section 5.1.1 with the exception of the class of each data point, which is not considered because

is the class to predict.

6.1.3 Clustering and management zone identification

Once the data are processed, the MZ identification is obtained using clustering algorithms as

described Section 2.1.3. As it was stated previously, the MZs identification method proposed

here relays on a clustering algorithm. Specifically, the partition clustering algorithm PAM is

applied. Other cluster algorithms such as K-means were tested, but the experimental results

were not as good as those obtained with PAM.

Regarding the selection of k, the number of clusters, in the case of the identification of

MZs will be the number of MZs. This number, as we aforementioned and the beginning of this

section, may be establish by the technical expert on agriculture (Case b) or, if it is not possible,

it may be estimated (Case a). This subsection studies how to estimate k when no input from

agriculture experts about the number of MZs is provided.

Initially, the top-5 indices in Milligan and Cooper study (Milligan and Cooper, 1985) were

considered, including Silhouette coefficient (Rousseeuw, 1987) and Calinski-Harabasz index

(Caliński and Harabasz, 1974). However there were no significant differences among the op-

timum values of k experimentally provided by these indexes. Hence, it was selected one of them

taking into account the computational cost. Specifically, the Silhouette coefficient was selected

to validate the clustering as described in Algorithm 2.1.4 of Section 2.1.4.

As a brief remainder, the Silhouette coefficient is based on the comparison of cluster tightness

and separation. It shows which objects lie well within their cluster and which ones are merely

somewhere in between clusters. The average silhouette width provides an evaluation of the

clustering validity and can be used to select an “appropriate” number of clusters.

For selecting the optimum k according to the Silhouette coefficient, is followed the procedure

6.1.4 Clustering validation

When it is possible to compare the clusters obtained from the clustering algorithm to some other

previously defined, the performance of our method can be measured through a confusion matrix

and the metrics described in Section 2.1.6.

In many situations, it is possible to take advantage of some valuable information, as for

example the provided by agro-meteorological stations or the real land delimitation. If agro-

meteorological stations are available in each representative zone, it is possible to use their geolo-

cation to identify the extension of each MZ using a Voronoi partition (Voronöı, 1908) and then

compare the results of the tessellation with the results of the clustering by means of a confusion

matrix (Kohavi and Provost, 1998).
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6.2 Results of identification of agricultural management zones

In this section it is evaluated which feature (satellite band or vegetation index) better identifies

MZs for the vineyards of Terras Gauda considered for the study case (see Section 1.3).

6.2.1 Data collection, transformation and dataset generation

The satellite data were obtained from EarthExplorer downloading the OLI and TIRS data

products of Landsat 8 for the region of the vineyards of Terras Gauda. The data collected

correspond to April 2013 to September 2015.

To process, extract and transform the data from the GeoTIFF files, it was followed the

process described on Appendix A.2 and a dataset was generated with the structure explained

on Table 5.1.

6.2.2 Clustering and management zone identification

PAM algorithm was ran for each plot and feature of the dataset, as described in Subsection

6.1.3. A different land clustering is obtained depending on the feature used as input. Regarding

the number of clusters, no previous information about the number of MZs is considered (Case

a).

According to the quality index, the Silhouette, the thermal infrared bands B10 and B11

produce the best clusters for the three vineyard plots (see Fig.6.2 and Fig.6.3). However, the

behaviour of these two bands decreases more sharply (with regard to the number of clusters) in

Plot 3 than in the other two.

On the other hand, the vegetation and moisture indices for the three parcels do not reach

the quality of the clusters produced by B10 and B11 bands. In particular, NDVI does not show

any quality improvement compared to the other features. Fig.6.4 shows the performance of land

delimitation when B10 and B11 and NVDI (which is the most used index in this framework).

It is easy to check that the clustering produced by both bands clearly outperforms the obtained

with NVDI.

Regarding the selection of the pair (feature, k), Fig.6.4 shows peaks corresponding to

(NDV I, 4), (B10, 4), (B10, 8) and (B10, 10) for Plot 1. Band 11 has also peaks values for

k = 4, 8 and both bands have the maximum value in k = 8. Taking this value of k, the cluster

distribution generated by B10 and B11 is similar as it is shown in Fig 6.5 (top part).

The quality indices of the thermal bands for Plot 2 (see figure at middle of Fig.6.4) have it

maximum value for k = 15 whilst for NDVI the maximum is reached when k = 7. Other peaks

correspond to (B10, 9) and (B11, 6). Regarding the MZs delineation for k = 15, Fig.6.5 (bottom

left part) shows different cluster distribution for B11 and for B12 with the exception of the MZs

labelled as 12 to 15.

Finally, for Plot 3, Fig.6.4 (bottom part) shows higher quality values for (NDV I, 4), (B10, 5)

and (B11, 4). Considering the thermal bands, although the band B10 considers one MZ more

than the B11, Fig.6.5 (bottom right part) shows that the delineations of the MZs are similar to
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Figure 6.2: Silhouette index for Plot 1 (top) and for Plot 2 (bottom). Each graph represents
the behaviour of the clustering associated to each band and vegetation index when the number
of clusters ranges from 3 to 20. Thermal infrared bands B10 and B11 produce clusters with
better quality than the other ones
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Figure 6.3: The silhouette index for Plot 3 shows that Thermal infrared bands B10 and B11
produce clusters with better quality than those from spectral bands and vegetation indices.

each other.

6.2.3 Validation of management zones

In order to verify the results for the MZ delimitation (called MGC) it is considered a manual

zone identification in the Terras Gauda’s vineyard where zones are identified with the aim of

deploying a station in each zone. Each station would be able to register the temperature of the

air, the relative humidity and the hours of leaf wetness. The total number of stations and their

location are based on the experience and knowledge of the technical director of Terras Gauda

(this MZs delimitation is called MGTG from now on).

Thus, the number of MZs proposed by MGC method for each plot is compared to the

total number of stations provided by MGTG delimitation for the same plot. Second, the MZs

delimitation for each plot is obtained by means of the clustering of thermal bands B10 and B11,

considering k the number of stations. Finally, the geographic delimitation of the MZs provided

by the thermal bands (MGC) and the delimitation of the MZs provided by Terras Gauda expert

MGTG are compared by means of a confusion matrix (Kohavi and Provost, 1998). To address

such comparison, from the geolocation of the agro-meteorological stations the delineation of each

MZ is obtained by means of a Voronoi partition (Voronöı, 1908).

103



6. IDENTIFICATION OF AGRICULTURAL MANAGEMENT ZONES WITH
UNSUPERVISED LEARNING ALGORTIHMS

Figure 6.4: Value of Silhouette for Plot 1 (top), Plot 2 (middle) and Plot 3 (bottom). X axis
represents the number of clusters 3 to 20. Y axis contains the value of Silhouette index.

Validation of the number of management zones

Fig.6.6 shows the comparison between MGC and MGTG. MGC method identifies 8 MZs whilst

the number of stations considered with MGTG is 15, approximately one station per each 1.5
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hectares. The increase in this number of stations can be associated with the high incidence of

the Plasmopara viticola disease and the need of more stations for the early detection of diseases

in strategic locations.

Regarding Plot 2, the number of stations considered in MGTG is 10 but MGC clustering

method identifies 15 MZs. Fig.6.8 shows that the MZs obtained by MGTG are also identified by

MGC clustering method. However, in some cases, MGC is able to recognize two or three MZs

meanwhile MGTG considers only one.

Finally, the number MZs estimated for Plot 3, (B10, 5) and (B11, 4) with MGC is close to

the 6 stations considered by MGTG.

Validation of the geographic delimitation

As it was previously mentioned, the clustering produced by MGC and MGTG is compared. On

the one hand, we considered the geographic delimitation of the MZs proposed by the clustering

method (MGC), taking k as the number of the stations. On the other hand, the MZ delimitation

from the Voronoi partition based on the geolocation of the stations (MGTG). Fig.6.7, Fig.6.8

and Fig.6.9 respectively show the Voronoi tessellation for plots 1, 2 and 3, including the MZ

delimitation generated byMGC . In order to compare the results of the tessellation (MGTG) with

the results of the clustering (MGC) the confusion matrix and Precision, Recall and Accuracy

are computed (see Subsection 6.2.3).

Fig.6.10 shows the box plots with the metrics related to the three parcels considered in this

study. The results show high values for Accuracy with medians above the 87% for both thermal

bands. Precision has the values concentrated around the 60% and 80% and Recall around the

70%.

In general, the medians of the metrics for B10 and B11 are around the same values for all

the plots with the exception of the precision in Plot 3, a 5% higher for B10.
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Figure 6.5: Clustering and MZs distribution. Each spatial data point is labelled according the
number of the cluster to which it belongs. Plot 1 (top) considering: (a) band B10 with k=8, (b)
band B11 with k=8; Plot 2 (middle left) considering: (a) band B10 with k=15, (b) band B11
with k=15; Plot 3 (middle right) considering: (a) band B10 with k=5, (b) band B11 with k=4.
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Figure 6.6: Number of MZs comparing the outcome of the clustering method with a previous
delimitation based on a study for the deployment of an agro-meteorological network. X axis
represents the number of plot while Y axis contains the number of MZs.

Figure 6.7: The clustering delimitation of Parcel 1 for 15 MZs and considering the band B10
(left) and the band 11 (right) has a spatial distribution similar to the one obtained with the
Voronoi tessellation (middle)
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Figure 6.8: The clustering delimitation of Parcel 2 for 10 MZ considering the band B10 (left)
and the band 11 (right) has a spatial distribution similar to the one obtained with the Voronoi
tessellation (middle)

Figure 6.9: The clustering delimitation of Parcel 3 for 6 MZ considering the band B10 (left)
and the band 11 (right) has a spatial distribution similar to the one obtained with the Voronoi
tessellation (middle)
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Figure 6.10: Accuracy, Precision, Recall and F1 of the MZs obtained using MC with thermal
bands B10 and B11
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Chapter 7

APPLYING SUPERVISED

LEARNING ALGORITHMS TO

GRAPEVINE YIELD

FORECASTING

Early and very early grape yield prediction allows winegrowers to make decisions such as those

concerning logistics and consider alternative grape providers in order to maintain the expected

wine production. Yield prediction is also valuable as an indicator for the quality of the final

product, managed by means of agricultural practices for controlling the vigour of the vines.

However, the procedure for the estimation of grape production is often a time-consuming method

that requires counting the number of inflorescences or the number of bunches per vine (Murisier

et al., 1986) and also requires to estimate the average weight of the bunches. On the other hand,

the results of this kind of methods strongly depends on the randomness and representativeness of

the samples (Wulfsohn et al., 2012) regarding the in-field variability. Hence, more time-efficient

methods are required to obtain early grape yield predictions.

This Chapter studies models of grape yield forecasting based on SML algorithms, consid-

ering heterogeneous data sources such as soil analysis, meteorological variables associated to

phenological stages (Baggiolini, 1952; Eichhorn et al., 1977), satellite imagery, crop production

and viticultural climatic indices (Tonietto and Carbonneau, 2004). The work is conducted by

means of a case of study based on 10 years of data from the plots of Terras Gauda.

The experimental results show soil composition, in particular the content of potassium (K),

as one of the most important variables, in addition to satellite data collected in the phenological

stages: flowering begins and berries begin to soften.

The Chapter is organized as follows. Section 7.1 explains the data sources used for the

prediction model of the study case and summarize basic statistics of the data. Section 7.2 explain

the techniques used in this work for modelling yield grape prediction. Finally, Section 7.3 exposes
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the results of the case of study and shows the model obtained and the regression equations

associated to each node are shown in order to apply the yield forecasting.

7.1 Drawing computationally manageable data

One of the first steps in decision support processes and data analysis is processing the data to

be used. In this case were acquired heterogeneous data sources for a period of ten years, from

2004 to 2015, inclusive:

• Soil analysis of the MZs (see Section 7.1.1)

• Phenological stages of the vines (see Section 7.1.2)

• Meteorological variables (see Section 7.1.3)

• Bioclimatic indices (see Section 7.1.4)

• Satellite imagery (see Section 7.1.5)

• Crop production (see Section 7.1.6)

With these data sources it is studied a model for grape yield forecast as described on Sec-

tion 7.2. The following Sections review the aforementioned data sources.

7.1.1 Soil analysis

Data were drawn from soil analysis regarding the chemical composition of the soil for the MZs

included on the plots of the case of study. Table 7.2 shows statistics regarding the data used in

this case of study.

P (mg/kg) K (mg/kg) Mg (cmol/kg) Ca (cmol/kg) pH Water Org. Matter (%)

Minimum 0.00 0.07 0.22 1.70 4.70 0.00

Maximum 590.00 0.85 4.52 14.51 8.36 11.40

1. Quartile 20.12 0.43 0.96 6.01 5.62 5.47

3. Quartile 32.00 0.56 1.91 8.32 6.12 7.80

Mean 32.56 0.49 1.57 7.23 5.89 6.62

Median 26.00 0.49 1.50 7.23 5.89 6.62

Stdev 42.34 0.12 0.76 2.13 0.40 1.76

Table 7.1: Basic statistics for the variables related with the composition of the soil. Years 2004
to 2015
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7.1.2 Phenological stages of the grapevine

The phenological stages describes the developmental stages of the grapevine (see Section3.3.5).

This case of study considers the dates of the following ones according to the codification of

Coombe (1995):

• Stage 19. Flowering begins.

• Stage 23. Full bloom.

• Stage 32. Beginning of bunch closure.

Table 7.2 shows the statistical data related with the phenological stages 19, 23 and 32; and

harvesting begins. The values of these variables are expressed on the number of days past from

the 1st of January.

Stage 19 (days) Stage 23 (days) Stage 32 (days) Harvesting begins (days)

Minimum 4.80 137.00 190.00 248.00

Maximum 175.00 179.00 210.00 287.00

1. Quartile 134.00 139.00 199.50 259.50

3. Quartile 147.00 154.00 202.00 266.00

Mean 143.76 150.48 200.22 263.64

Median 142.00 148.00 200.22 264.00

Stdev 13.23 11.07 4.78 8.81

Table 7.2: Basic statistics for the variables related with the phenological stages of the vine.
Years 2004 to 2015

7.1.3 Meteorological variables

The public agro-meteorological station located at Terras Gauda was used for generate the me-

teorological dataset. In particular, the variables enumerated on Appendix B.1 were considered.

A total of twenty two meteorological variables were acquired for the harvesting begins and

the dates of the phenological stages 19, 23 and 32; as well as for a seven-day time window

centred on each one of these dates for each variable, as the average value of the time window for

each variable. For instance, if stage 19 on the year 2014 was on May 21th, the period of time

considered for the calculation of the average of the variables was from May 18th to May 24th,

three days before and after the considered date.

The variables were named as follows. A1 . . . A22 and E1 . . . E22 for the meteorological

variables associated to the dates of the stage 19 and for the seven-day window centred on those

dates, respectively. The same information associated to the stage 23 is on variables B1 . . . B22 y

F1 . . . F23. The variables for the stage 32 are C1 . . . C22 y G1 . . . G22 and for harvesting begins

D1 . . . D22 y H1 . . . H22.
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Tables 7.3, 7.4 and 7.5 show the statistical the meteorological variables associated to the

dates of the considered phenological stages.

Variable Minimum Maximum 1. Quartile 3. Quartile Mean Median Stdev

A1 12.50 20.90 15.55 18.40 16.90 16.70 2.11

A2 17.90 30.40 20.55 26.00 23.29 23.00 3.65

A3 6.00 13.50 9.60 13.10 11.00 11.90 2.21

A4 43.70 89.00 59.00 84.00 73.94 78.00 14.29

A5 0.00 71.00 0.00 24.00 18.47 6.80 22.08

A6 66.00 99.00 83.00 99.00 91.33 98.00 12.21

A7 21.00 68.00 38.00 63.00 50.37 49.00 13.83

A8 6.90 12.40 10.22 11.30 10.22 10.22 1.52

A9 16.20 20.70 16.60 20.40 18.55 19.10 1.74

A10 16.40 21.00 19.28 19.50 19.28 19.28 1.04

A11 1.37 6.37 2.20 3.53 3.02 3.02 1.28

A12 0.00 7.20 0.00 0.00 1.10 0.00 2.33

A13 17.03 28.44 17.86 21.13 21.13 21.13 2.99

A14 4.70 12.40 10.65 12.10 10.65 10.65 1.95

A15 1160.00 2993.00 1722.00 2835.00 2148.69 2025.00 564.04

A16 19.00 321.00 155.43 188.00 155.43 155.43 70.73

A17 0.10 156.20 30.10 55.59 55.59 55.59 40.92

A18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A19 31.90 84.10 73.40 83.80 73.40 73.40 13.57

A20 −1.00 315.00 0.00 315.00 167.62 180.00 130.22

A21 −6.90 1.60 −6.90 −4.89 −4.89 −4.89 2.16

A22 3.60 6.90 5.93 6.90 5.93 5.93 0.85

Table 7.3: Basic statistics for meteorological data associated to the phenological stage 19 (Flow-
ering begins) Years 2004 to 2015

7.1.4 Bioclimatic indices

This case of study includes the following viticultural climatic indices which are calculated for

each year as described in Section 3.2.5.

• Average temperature for the active period of vegetation.

• Average of maximum and minimum temperatures for the active period of vegetation.

• Frosts (FD) calculated as the number of days of the year with average temperature below

0◦

• Number of days with maximum temperature above 25◦ and above 30◦ (ND25, ND30).
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Variable Minimum Maximum 1. Quartile 3. Quartile Mean Median Stdev

B1 11.70 23.90 14.60 19.10 17.17 17.30 3.38
B2 16.30 30.90 18.05 27.45 22.87 22.30 5.02
B3 7.20 18.60 11.30 13.15 12.28 12.60 2.76
B4 46.00 95.00 76.00 83.00 77.01 79.00 12.87
B5 0.00 77.00 0.00 12.20 19.24 6.70 26.76
B6 80.00 99.00 96.00 99.00 94.02 97.00 7.26
B7 19.00 78.00 47.50 61.00 54.28 55.00 14.72
B8 8.10 14.50 12.40 14.20 12.40 12.40 1.74
B9 15.90 22.50 17.80 21.30 19.38 19.40 1.93
B10 12.60 20.90 18.19 18.70 18.19 18.19 1.92
B11 1.12 6.37 2.48 4.37 3.41 3.13 1.56
B12 0.00 11.20 0.00 0.20 1.86 0.00 4.02
B13 19.66 40.61 29.80 30.31 29.80 29.80 5.84
B14 4.50 12.40 8.68 9.10 8.68 8.68 1.75
B15 836.00 3035.00 1521.00 2230.00 1901.59 2042.00 614.45
B16 143.00 318.00 196.00 203.12 203.12 203.12 39.67
B17 0.10 178.20 72.40 92.40 76.72 76.72 44.93
B18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B19 30.70 83.70 58.75 63.00 58.75 58.75 11.85
B20 −1.00 315.00 0.00 202.50 120.03 180.00 121.01
B21 −7.30 7.40 −4.10 −0.60 −0.60 −0.60 4.04
B22 2.80 7.30 4.90 4.91 4.91 4.91 0.97

Table 7.4: Basic statistics for meteorological data associated to the phenological stage 23 (Full
bloom). Years 2004 to 2015

• Active Thermal Integral.

• Thermal Index of Winkle is the sum of effective daily mean temperatures, calculated from

the monthly average temperatures multiplied by days of each month during the growing

season from April to October.

• Heliothermic product.

• Heliothermic index (P).

• Huglin index of helio-thermal aptitude.

• Average temperature on April, May, June and July (Tapril, Tmay, Tjune, Tjuly ).

• Average rainfall (mm) on April, May, June and July (Llapril, Llmay, Lljunw, Lljuly).

• Total annual rainfall.

• Annual rainfall for the active period of vegetation.

• Maximum rainfall (Pmax).

Table 7.6 shows the statistics of these data for the ten years considered in this study.
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Variable Minimum Maximum 1. Quartile 3. Quartile Mean Median Stdev

C1 15.40 22.40 19.00 19.90 19.27 19.27 1.59
C2 20.20 31.90 25.30 27.55 25.71 25.71 2.91
C3 10.10 16.80 12.60 13.40 13.38 13.38 1.69
C4 70.70 95.00 77.00 81.55 81.55 81.00 6.98
C5 3.70 61.00 9.15 37.00 24.45 24.45 17.06
C6 98.00 99.00 98.77 99.00 98.77 99.00 0.36
C7 40.00 84.00 49.00 55.55 55.55 55.00 12.06
C8 14.20 15.90 14.97 14.97 14.97 14.97 0.37
C9 19.10 25.30 22.36 23.40 22.36 22.36 1.53
C10 20.70 22.00 21.33 21.33 21.33 21.33 0.27
C11 1.51 5.29 2.45 2.87 2.72 2.72 0.91
C12 0.00 14.00 0.00 1.57 1.57 0.00 3.80
C13 17.75 24.70 21.90 21.90 21.90 21.90 1.52
C14 10.90 12.20 11.70 11.70 11.70 11.70 0.29
C15 691.00 2872.00 1935.00 2648.00 1953.98 1953.98 634.18
C16 192.00 315.00 272.92 272.92 272.92 272.92 29.04
C17 0.10 200.00 37.30 58.77 58.77 58.77 47.67
C18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C19 73.00 83.60 79.90 79.90 79.90 79.90 2.48
C20 −1.00 180.00 0.00 180.00 99.55 99.55 77.53
C21 −6.40 −5.60 −6.03 −6.03 −6.03 −6.03 0.17
C22 5.60 6.40 6.03 6.03 6.03 6.03 0.17

Table 7.5: Basic statistics for meteorological data associated to the phenological stage 32 (Berries
begin to soften) Years 2004 to 2015

7.1.5 Satellite imagery

Satellite imagery from MODIS (see Section 3.1) was download and processed for the plots of

Terras Gauda considering the same seven-day temporal window, as explained on Section 7.1.3,

centred on the dates of the phenological stages 19, 23 and 32. In particular, the MOD09GQ data

products from 2004 to 2015 were downloaded and processed following the procedures described

on Section A.1 in order to generate a dataset with the reflectivity values of band 1, band 2 and

NDVI (see Section 3.3.6)

Tables 7.7, 7.8 and 7.9 show the basic statistics for the dataset on each phenological stage.

7.1.6 Crop production

Regarding the historical records of yield for the varieties of grapevines considered from 2004 to

2015: Albariño, Caiño, Loureiro and Treixadura; Table 7.10 shows the basic statical data and

Figure7.1 shows the sum of kg/Ha for each year and variety.
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Variable Minimum Maximum 1. Quartile 3. Quartile Mean Median Stdev

GSTavg 15.69 17.47 15.91 17.00 16.47 16.43 0.60
GSTmax 20.74 23.52 21.38 22.75 22.01 21.91 0.82
GSTmin 10.86 12.74 11.21 11.99 11.59 11.59 0.53
FD 2.00 16.00 5.00 9.00 8.23 8.00 3.94
ND25 9.00 29.00 13.00 21.00 17.39 15.00 6.00
ND30 7.00 27.00 7.50 21.00 14.75 14.00 7.30
ATI 3358.64 3738.84 3404.11 3639.63 3525.75 3516.00 128.32
WI 1218.64 1598.84 1264.12 1499.63 1385.75 1376.00 128.32
H 0.00 1484.50 0.00 1426.10 596.13 0.00 697.40
PH 0.00 2.34 0.00 1.98 0.85 0.00 1.00
IH 1829.10 2322.85 1921.88 2198.39 2057.08 2041.26 157.46
Tapril 10.72 16.79 12.93 14.37 13.47 13.51 1.54
Llapril 44.40 252.40 79.20 140.80 120.19 120.40 56.42
Tmay 13.89 18.05 15.24 16.00 15.62 15.35 1.12
Llmay 28.80 194.80 67.60 122.00 95.76 100.20 45.50
Tjune 16.93 20.08 18.07 18.79 18.52 18.28 0.83
Lljune 9.80 134.40 22.30 68.00 53.37 50.00 38.63
Tjuly 17.94 21.54 18.87 20.44 19.78 20.10 1.05
Lljuly 5.20 99.60 13.90 53.50 34.89 31.20 28.43
Taugust 18.49 21.59 19.01 21.31 19.96 19.66 1.11
Llaugust 3.60 104.40 13.10 66.20 43.51 45.20 32.76
P 3461.07 8124.53 4270.30 7355.91 5542.52 4965.43 1521.59
Pannual 621.20 1972.00 1078.00 1775.80 1346.15 1313.20 383.41
Pgs 293.40 683.40 381.60 610.80 480.37 476.20 116.32
Pmax 37.40 117.80 59.60 91.40 73.29 82.60 22.34

Table 7.6: Basic statistics for the viticultural climatic indices. Years 2004 to 2015

Statistic reflb01.STG19 reflb02.STG19 NDVI.STG19

Minimum 487.58 2518.10 0.12
Maximum 6198.57 6589.14 0.72
1. Quartile 1203.95 3207.48 0.29
3. Quartile 2990.61 3973.01 0.59
Mean 2175.12 3779.65 0.45
Median 1777.21 3474.31 0.48
Stdev 1446.28 891.04 0.16

Table 7.7: Basic statistics for MODIS reflectivity and NDVI associated with the stage 19 (Flow-
ering begins) Years 2004 to 2015

7.2 Modelling yield forecasting

The model tree technique is based on combining decision trees with linear regression functions

at the leaves. Among these learners, M5 builds multivariate linear tree-based models, produc-

ing a classification based on piecewise linear functions (Quinlan et al., 1992). This predictive

mechanism is added in this work to classical statistical procedures in order to characterize the
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Statistic reflb01.STG23 reflb02.STG23 NDVI.STG23

Minimum 781.62 2821.31 0.03
Maximum 6825.93 7210.63 0.64
1. Quartile 1780.41 3659.75 0.26
3. Quartile 3910.86 5118.07 0.50
Mean 3074.38 4460.54 0.37
Median 2351.57 4104.43 0.40
Stdev 1734.81 1130.50 0.16

Table 7.8: Basic statistics for MODIS reflectivity and NDVI associated with the stage 23 (Full
bloom) Years 2004 to 2015

Statistic reflb01.STG32 reflb02.STG32 NDVI.STG32

Minimum 464.07 2381.25 0.19
Maximum 5497.00 6422.43 0.73
1. Quartile 2014.27 3726.46 0.43
3. Quartile 2290.43 3995.52 0.50
Mean 2239.36 3949.06 0.46
Median 2239.36 3949.06 0.46
Stdev 1083.20 725.23 0.12

Table 7.9: Basic statistics for MODIS reflectivity and NDVI associated with the stage 32 (Be-
ginning of bunch closure) Years 2004 to 2015

Surface (Ha) Variety Kg/plot Yield (Kg/Ha)

Min. : 0.1000 Albariño : 228 Min. : 252.4 Min. : 486
1st Qu.: 0.3436 Caiño blanco: 51 1st Qu.: 1961.4 1st Qu.: 3867
Median : 0.9000 Loureiro : 72 Median : 5832.0 Median : 6685
Mean : 1.5773 Treixadura : 48 Mean : 9691.9 Mean : 7697
3rd Qu.: 2.1300 3rd Qu.: 14640.5 3rd Qu.: 9766
Max. : 12.0000 Max. : 55159.0 Max. :32260

Table 7.10: Basic statistics for the variables related with the yield, including the surface
(hectares) of the plots and the grapevine variety. Years 2004 to 2015

variables involved and to identify the most important factors affecting production. There are

several techniques to predict numeric values instead of just a label. Standard regression imposes

a linear relation on data so it is not quite powerful. On the other hand, Neural Networks, SVR

or lazy classifiers can be quite powerful but their interpretability is low. The solution proposed

in this case of study represents a trade-off between interpretability and performance.

Regression trees, have been demonstrated as suitable methods to crop yield prediction. The

most common algorithms to build regression trees are CART (Breiman et al., 2001), M5 (Quinlan

et al., 1992) and M5-Prime (Wang and Witten, 1996). The strategy to construct the tree is

similar in all of them (ElGibreen and Aksoy, 2015).
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Figure 7.1: Grapevine production of Terras Gauda for the years 2004 to 2015

According to the results obtained in Gonzalez-Sanchez et al. (2014), M5-prime is the more

suitable modelling tool for yield crop prediction with regard to accuracy metrics. What is more,

it is more interpretable than other ML techniques, such as KNN. Thus, M5-Prime is the method

selected in this work to predict grape production. This algorithm was already explained on

Section 2.1.1

As production predictive tasks require the learned model to predict a numeric value associ-

ated with a variable rather than the class to which the example belongs, model regression trees

are proposed. Hence, this work checks the effectiveness of ML techniques in order to determine

variables affecting and classify vineyards according to production.

7.3 Results

The grape yield prediction for each parcel was obtained using the M5-Prime method. Other

methods were also used as SVM machines or artificial NNs. However, the results obtained were

far worse than the obtained with M5-Prime, regarding both efficiency and efficacy, and also

decreasing interpretability. These preliminary results are consistent with previous works which

state that M5-Prime is more suitable for yield prediction than other methods.

The experiments are conducted using the RWeka Package (https://cran.r-

project.org/web/packages/RWeka), using M5-Prime function with the standard configuration,

i.e., with pruning, smoothing and 4 being the minimum number of examples per node. It was

used bootstrap resampling (see Section 2.1.6). In aggregate, the results reduce the effects of
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random selection. The experiments performed here were repeated 100 times.

The accuracy of this method is studied in terms of the error in predicting production ac-

cording to the following formula:

abs(
∑
i

Ppredictedi −
∑
i

Preali)∑
Preali

(7.1)

7.3.1 Feature selection

Taking into account that the number of variables considered in this case of study is 236 (see

Section 7.1), it was studied which ones are mostly representatives for the variability of the

production. On the other hand, it is also valuable to study which kind of variables affect yield

production. Hence, the input variables were grouped for this study and feature selection process

was done considering the following groups:

• Grape variety (G01.VARI)

• Soil composition (G02.SOIL)

• Viticultural climatic indices (G03.VITI)

• Meteorological variables for the date of phenological stage 19 (G04.METE.STG19)

• Meteorological variables for the date of phenological stage 23 (G05.METE.STG23)

• Meteorological variables for the date of phenological stage 32 (G06.METE.STG32)

• Meteorological variables for seven-day time window centred on stage 19

(G07.METE.STG19.7DAYS)

• Meteorological variables for seven-day time window centred on stage 23

(G08.METE.STG23.7DAYS)

• Meteorological variables for seven-day time window centred on stage 32

(G09.METE.STG32.7DAYS)

• Satellite variables for seven-day time window centred on stages 19, 23 and 32 (G10.SATE)

7.3.2 Experimental results for combinations of input variables

This Section shows the results of the experiments considering the following combinations of the

aforementioned groups of variables for training the model:

• All variables

• Grape variety + Each one of the other groups.

• Grape variety + Any combination of 2 other groups.
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Fig. 7.2 summarizes the results showing the errors obtained in yield forecasting using all

the variables (grey line), considering only one of the aforementioned groups (pink line), and

considering 2 groups (red line). It should be noted that Fig. 7.2 shows the minimum yearly

error which means that it the error obtained with the best combination of variables. These

combinations are shown on Table 7.11.

Figure 7.2: Minimum yearly error considering the best combination of variables

Year Best combination Best combination
1 attribute group 2 attribute groups

2004 G05.METE.STG23 G02.SOIL - G08.METE.STG23.7DAYS
2005 G10.SATE G02.SOIL - G03.VITI
2006 G07.METE.STG19.7DAYS G02.SOIL - G04.METE.STG19
2007 G07.METE.STG19.7DAYS G02.SOIL - G09.METE.STG32.7DAYS
2008 G04.METE.STG19 G03.VITI - G05.METE.STG23
2009 G08.METE.STG23.7DAYS G02.SOIL - G05.METE.STG23
2010 G09.METE.STG32.7DAYS G02.SOIL - G09.METE.STG32.7DAYS
2011 G04.METE.STG19 G04.METE.STG19 - G07.METE.STG19.7DAYS
2012 G10.SATE G10.SATE - G06.METE.STG32
2013 G08.METE.STG23.7DAYS G07.METE.STG19.7DAYS - G08.METE.STG23.7DAYS
2014 G03.VITI G10.SATE - G03.VITI
2015 G04.METE.STG19 G04.METE.STG19 - G05.METE.STG23

Table 7.11: Combinations of groups of attributes that minimizes the error of the yield forecasting

The results show that the combination of two groups of attributes reduces the errors on the

predictions. However, Fig. 7.3 indicates that the local minimum of each year is not extrapolable

as it shown for the combination of two groups of attributes that drives to the minimum and

maximum local error by year, and also in the combination which minimizes the total error.

This “optimal” combination corresponds to soil composition (G02.SOIL) with satellite imagery

(G10.SATE).
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Figure 7.3: Comparative of local minimum, local maximum and averaged minimum for the best
combinations of groups of attributes

7.3.3 Forecasting model considering grape variety, soil composition and satel-

lite data

Fig. 7.4 shows the forecasting model considering the grape variety, the soil composition and the

satellite attributes like independent variables. The textual mode of the M5 pruned model is the

following:

K <= 0.445 :

| Ca <= 5.535 :

| | P <= 16.5 : LM1 (30/20.586\%)

| | P > 16.5 :

| | | pHWater <= 6.025 : LM2 (14/30.883\%)

| | | pHWater > 6.025 : LM3 (4/12.094\%)

| Ca > 5.535 :

| | refl_b01.STG19 <= 1880.357 :

| | | refl_b02.STG19 <= 3193.357 : LM4 (23/27.49\%)

| | | refl_b02.STG19 > 3193.357 : LM5 (25/43.656\%)

| | refl_b01.STG19 > 1880.357 : LM6 (22/42.92\%)

K > 0.445 :
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| NDVI.STG19 <= 0.425 :

| | AlbarinoVariety <= 0.5 :

| | | refl_b02.STG19 <= 3847.029 : LM7 (11/80.375\%)

| | | refl_b02.STG19 > 3847.029 :

| | | | O.M. <= 8.385 :

| | | | | LoureiroVariety <= 0.5 : LM8 (17/32.729\%)

| | | | | LoureiroVariety > 0.5 : LM9 (14/31.025\%)

| | | | O.M. > 8.385 : LM10 (8/26.362\%)

| | AlbarinoVariety > 0.5 :

| | | refl_b02.STG32 <= 2929.583 : LM11 (12/10.365\%)

| | | refl_b02.STG32 > 2929.583 :

| | | | refl_b01.STG32 <= 2191.929 :

| | | | | O.M. <= 8.335 : LM12 (18/30.544\%)

| | | | | O.M. > 8.335 : LM13 (7/8.645\%)

| | | | refl_b01.STG32 > 2191.929 : LM14 (13/17.623\%)

| NDVI.STG19 > 0.425 :

| | refl_b01.STG19 <= 1138.071 : LM15 (41/62.007\%)

| | refl_b01.STG19 > 1138.071 :

| | | AlbarinoVariety <= 0.5 :

| | | | O.M. <= 8.16 :

| | | | | LoureiroVariety <= 0.5 : LM16 (34/51.002\%)

| | | | | LoureiroVariety > 0.5 :

| | | | | | refl_b02.STG19 <= 3431.214 : LM17 (14/35.616\%)

| | | | | | refl_b02.STG19 > 3431.214 : LM18 (9/51.131\%)

| | | | O.M. > 8.16 : LM19 (15/62.266\%)

| | | AlbarinoVariety > 0.5 : LM20 (68/78.835\%)

The tree shows that the most relevant variable for the discrimination of the groups is the

content of potassium (K). The value of discretization of this variable is 0.45, very close to the

mean. However, the content of Magnesium (Mg) is the only variable related with soil composition

which does not discriminate any group. It is also noticed that the grapes varieties of Albariño

and Loureiro show a different behaviour.

Regarding the satellite data, those associated to the phenological stages 19 (Flowering begins)

and 32 (Beginning of bunch closure), are the most important satellite variables used in the

partition.

The coefficient of correlation obtained with this combination of groups of attributes is 0.84.

See Appendix B for the regression equations associated to each node in order to apply the yield

forecasting.
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Chapter 8

CONCLUSIONS AND FUTURE

WORK

This work studies and develops models for smart agro-services related with the automatic cul-

tivable land delimitation, the automatic identification of homogeneous land zones and the fore-

casting of grapevine production.

The use of satellite imagery for automatic land delimitation requires high spatial resolution.

However, in general, the higher the spatial resolution, the lower the temporal one. Consider-

ing this fact, it was studied how the temporal resolution affects the results of the automatic

delimitation of land using satellite reflectivity and clustering algorithms (see Chapter 4). The

experimental results obtained on the case of study show that satellite imagery with lower tem-

poral resolution, as Landsat 8 has, does not affect land delimitation. Actually, the lower the

resolution, the more compact the clusters of land. This work opens future lines of research as

to study fusion techniques with satellite imagery of different temporal and spatial resolutions in

order to improve the clustering of the land.

Regarding automatic cultivable land detection with supervised machine learning (see Sec-

tion 5.1), it was studied the performance of five different SML methods in the task of arable land

determination for a real case study. The results show evidence that selecting the most relevant

attributes with CFS lead to classifiers that are both efficient and effective, with values of the

area under the ROC curve that are above 0.95 in most cases. In particular, C5.0 seems a good

choice since it performs constantly well both with and without feature selection. Future work

is intended to extend this study in order to classify the type of crop based on satellite imagery

and supervised machine learning.

Automatic cultivable land detection was also studied using unsupervised machine learning

algorithms (see Section 5.3) and a methodology for mapping cultivable land was proposed. The

experimental results show the great potential of this method for cultivable land monitoring

from remote-sensed multispectral imagery. The methodology could be used for cultivable land

monitoring from remote-sensed multispectral imagery, for instance regarding the census of agri-
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cultural land or assisting in the process of checking the use of agricultural aids provided by

governments. Future work is focused on developing feature selection techniques to improve the

clustering as well as exploring different clustering approaches.

Concerning to the identification of management zones, in Section 6.1 is proposed a cost-

efficient method for mapping MZs that combines clustering algorithms with publicly available

satellite imagery. The method does not require exploring the parcels with any special equipment

or taking samples of the soil for laboratory analysis. The results show that thermal infrared

and spectral data remotely sensed by satellite instruments have great potential for land cluster-

ing. The findings also indicate that NDVI, the vegetation index usually considered for decision

making with regard to the delimitation of MZs, produces clusters with a quality significantly

lower than the ones obtained with thermal bands. Future work will involve the inclusion of

topographical characteristics and biophysical features as data input for the clustering algorithm

in order to study the improvement of the identification of MZs.

Regarding early grape yield prediction, Chapter 7 studies models of grape yield forecasting

based on SML algorithms, considering heterogeneous data sources such as soil analysis, me-

teorological variables associated to phenological stages, satellite imagery, crop production and

viticultural climatic indices. The experimental results show soil composition, in particular the

content of potassium (K), as one of the most important variables, in addition to satellite data

collected in the phenological stages: flowering begins and berries begin to soften.

Summing up, the potential of smart agro-services for providing solutions for planning and

decision-making processes in the agricultural and environmental domains is high. Opening a

scientific opportunity in this field to continue with the study and development of robust ML

models relaying on heterogeneous data sources, that could help to improve the sustainable

agriculture model in a eco-friendly context.
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Appendix A

Downloading and processing satellite

imagery

A.1 Procesing MODIS data products

The MODIS instrument is available on the Terra and Aqua satellites covering the surface of the

Earth every 1 or 2 days. As mentioned in Section 3.1.1, MODIS produces several data products

related with the agriculture.

A.1.1 Downloading MODIS data products

MODIS data products are freely available for downloading from several sites like the LP DAAC

or (http://e4ftl01.cr.usgs.gov/MOLT). It also can be found at the following FTP sites:

• ftp://nrt1.modaps.eosdis.nasa.gov

• ftp://nrt2.modaps.eosdis.nasa.gov.

The MODIS data products follow a naming convention which includes the name of the

product, the dates of acquisition and production and the tile identifier of the region of the Earth.

This tile identifier consist on a horizontal and vertical coordinates which correspond to the tile

of the grid that divides the Earth in adjacent non-overlapping tiles that are approximately 10

degrees square (at the equator). It is called the MODIS Sinusoidal Tiling System.

For example, the file name MOD09GQ.A2015063.h18v03.005.2015069183737.hdf corre-

sponds to the MOD09GQ data product for the region 18H, 3V and the day March the 4th

of 2015:

• MOD09GQ - Product Short Name

• A2015063 - Julian Date of Acquisition (A-YYYYDDD)

• h18v03 - Tile Identifier (horizontalXXverticalYY)
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• 005 - Collection Version

• 2015069183737 - Julian Date of Production (YYYYDDDHHMMSS)

• hdf - Data Format (HDF-EOS)

A.1.2 Processing MODIS data products

The data products MOD09GQ and MOD09GA are stored in HDF files which contain the raw

values of the reflectivity bands (see Table A.1) for a specific tile and period of time.

The objective of the process, is to extract the values of each band stored on the HDF, for

each pixel of the image, generating a dataset with the results. Thus, the process will transforms

the data of each band into a GeoTIFF file. The process can also consider a specific region of

the tail and extract only the values of that region.

Once the data products associated to the region of interest and the period of time considered

are downloaded, the raw values are extracted.

A.1.3 Calculation of vegetation and moisture indices from MODIS data prod-

ucts

Using MODIS MYD09GQ data product it can be obtained the following vegetation indices

with a spatial resolution of 500m. See Table A.1 for the description of the bands and the

correspondences with the indices defined on Section 3.3.6

• NDVI

• NDVI.SCALED [0..255]

MODIS Description Data product

B1 Red MYD09GQ, MYD09GA
B2 Near-Infrared (NIR) MYD09GQ, MYD09GA
B3 Blue MYD09GA
B4 Green MYD09GA
B6 Short Wavelength Infrared (SWIR) 1 MYD09GA
B7 SWIR 2 MYD09GA

Table A.1: Description of MODIS bands for data products MYD09GQ and MYD09GA

From MODIS MYD09GA it can be obtained NDVI, NDVI.scaled and the following vegeta-

tion and moisture indices with a spatial resolution of 250m.:

• EVI

• NDI7

• SIWSI
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• SWIRR

• MSI

• GVMI

A.2 Processing Landsat 8 data products

OLI and TIRS data products are delivered as compressed files with as many GeoTIFF files as

bands are included in the data product. Each GeoTIFF file contains an scene of a specific region

of the Earth and each pixel has a value. For instance, for band 2 pixels contain the visible blue

colour. Table A.2 shows the bands included in each Landsat 8 data product.

Bands Description Wavelength (micrometers) Resolution (meters)

Band 1 Coastal aerosol 0.43 - 0.45 30

Band 2 Blue 0.45 - 0.51 30

Band 3 Green 0.53 - 0.59 30

Band 4 Red 0.64 - 0.67 30

Band 5 Near Infrared (NIR) 0.85 - 0.88 30

Band 6 SWIR 1 1.57 - 1.65 30

Band 7 SWIR 2 2.11 - 2.29 30

Band 8 Panchromatic 0.50 - 0.68 15

Band 9 Cirrus 1.36 - 1.38 30

Band 10 Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)

Band 11 Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30)

Table A.2: Description of OLI and TIRS bands

The ZIP files also include a GeoTIFF for the Quality Assurance band and a metadata file

associated to the data product. This metadata file contains information to calculate:

• Radiance Top of Atmosphere (TOA):

Lλ = ML ∗Qcal +AL, (A.1)

where:

– Lλ is the TOA spectral radiance measured on Watts / (m2 * srad * µm)

– ML is the multiplicative scale factor for an specific band. This factor is provided in

the variable RADIANCE MULT BAND x included on the metadata file, where x

is the number of the band.
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– AL is the additive scale factor corresponding to the variable

RADIANCE ADD BAND x included on the metadata file, where x is the

number of the band.

– Qcal is the quantified standard product calibrated with the values of the DN pixel.

This value is for each one of the bands of the image.

• Brightness temperature:

T =
K2

ln(K1
Lλ

+ 1)
, (A.2)

where:

– T is the at-satellite brightness temperature measured in degrees kelvin (K)

Lλ is the TOA spectral radiance

– K1 is the conversion constant specific for the thermal bands. Corresponds to the value

of the variable K1 CONSTANT BAND x included on the metadata file, where x

is the number of the band (10 or 11)

– K2 is the conversion constant specific for the thermal bands. Corresponds to the value

of the variable K2 CONSTANT BAND x included on the metadata file, where x

is the number of the band (10 or 11)

• Reflectance TOA with angular correction:

ρλ =
MρQcal +Aρ
sin(θSE)

, (A.3)

where:

– ρλ is the TOA planetary reflectance.

– θSE is the local sun elevation angle in degrees provided in the metadata

SUN ELEV ATION .

– Mρ is the multiplicative scale factor for an specific band. It is provided in the variable

REFLECTANCE MULT BAND x included on the metadata file, where x is the

number of the band.

– Aρ is the additive scale factor corresponding to the variable

REFLECTANCE ADD BAND x included on the metadata file, where x is

the number of the band.

– Qcal is the quantified standard product calibrated with the values of the DN pixel.

This value is for each one of the bands of the image.

Once the Landsat 8 data products are downloaded for a specific date interval and geographi-

cal area, for instance via the web portal EarthExplorer (http://earthexplorer.usgs.gov/) the raw

values of each pixel for each band of the image can be extracted.

150



A. Downloading and processing satellite imagery

A.2.1 Calculation of vegetation and moisture indices from Operational Land

Imager data products

From the OLI data product it is possible to calculate the following vegetation and moisture

indices according to Table A.2 and the indices defined on Section 3.3.6

• NDVI

• NDVI.SCALED [0..255]

• EVI

• NDI7

• SIWSI

• SWIRR

• MSI

• GVMI

A.2.2 LST8 package

LST8 is an R package developed by the author and published on GitHub

(https://github.com/rbarango/LST8) under a open-source license.

The package relies on the LST8 function that processes Level 1 GeoTIFF Data Product of

Landsat 8 satellite retrieving OLI & TIRS raw values and calculating: reflectance TOA, radiance

TOA and brightness temperature.

The function considers as input (1) the folder where the GEOTIF data products are stored

taking into account that each data product must be decompress in one folder and (2) a ge-

ometry object corresponding to the geographical zone to retrieve the data from (for instance a

SpatialPolygonsDataFrame)

The output of this function is a CSV file including the spatial data points of the extent

with the raw data of the OLI (Band B8 panchromatic is not included) and TIRS bands and

their corresponding reflectance and radiance TOA values for the spectral bands and, for thermal

bands, their brightness temperature. The name of the CSV file is LST8 startDate endDate.

This function has dependences on rgdal, raster and sp R packages. It should be noticed that

the function does not download the data products. The data products should be downloaded

before running the function, for instance from (http://earthexplorer.usgs.gov/)

The structure of the CSV file generated by the function is the following:

• x: Coordinate x of the data point in the CRS of the data product

• y: Coordinate y of the data point in the CRS of the data product crs proj: CRS projection

string of the data product
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• date: Year + Day number of the year in the format YYYYddd

• 30 B1: OLI band 1

• 30 B2: OLI band 2

• 30 B3: OLI band 3

• 30 B4: OLI band 4

• 30 B5: OLI band 5

• 30 B6: OLI band 6

• 30 B7: OLI band 7

• 30 B9: OLI band 9

• 30 B10: TIRS band 10

• 30 B11: TIRS band 11

• 30 QA: Quality indicator of the measures

• 30 B1 RADIANCE: RADIANCE (TOA) for band 1

• 30 B1 REFLECTANCE: REFLECTANCE (TOA) for band 1

• 30 B2 RADIANCE: RADIANCE (TOA) for band 2

• 30 B2 REFLECTANCE: REFLECTANCE (TOA) for band 2

• 30 B3 RADIANCE: RADIANCE (TOA) for band 3

• 30 B3 REFLECTANCE: REFLECTANCE (TOA) for band 3

• 30 B4 RADIANCE: RADIANCE (TOA) for band 4

• 30 B4 REFLECTANCE: REFLECTANCE (TOA) for band 4

• 30 B5 RADIANCE: RADIANCE (TOA) for band 5

• 30 B5 REFLECTANCE: REFLECTANCE (TOA) for band 5

• 30 B6 RADIANCE: RADIANCE (TOA) for band 6

• 30 B6 REFLECTANCE: REFLECTANCE (TOA) for band 6

• 30 B7 RADIANCE: RADIANCE (TOA) for band 7

• 30 B7 REFLECTANCE: REFLECTANCE (TOA) for band 7

• 30 B9 RADIANCE: RADIANCE (TOA) for band 9
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• 30 B9 REFLECTANCE: REFLECTANCE (TOA) for band 9

• 30 B10 TEMPERATURE: BRIGHTNESS TEMPERATURE (TOA) for band 11

• 30 B11 TEMPERATURE: BRIGHTNESS TEMPERATURE (TOA) for band 12

A.2.3 Example of use of LST8 package

The following code corresponds to an example of script in R testing the use of package:

# Loading package dependencies

require(sp)

require(rgdal)

require(raster)

require(devtools)

# Installing LST8 package from GitHub

install_github("rbarango/LST8")

require(LST8)

# Loading polygons for retrieving REFLECTANCE, RADIANCE

# and BRIGHTNESS TEMPERATURE

shapesTG = load("shapesTG.RData")

# Executing the function

# As input the location of the GeoTIFF files from Landsat 8

# and the target geometry

getLST8(dir="../Documents/LST8/", geometry=shapesTG)

A.3 R scripts related with MODIS data extraction and calcu-

lation of vegetation indices

The functions for processing and extracting the MODIS data products MOD09GQ and

MYD09GA are published on Github under an open-source license:

• getMOD09GQ (https://github.com/rbarango/MODIS/getMOD09GQ.R)

• getMYD09GA (https://github.com/rbarango/MODIS/getMYD09GA.R)

Also it was published a function for the calculation of vegetation and moisture indices from

MYD09GA: getVI MYD09GA (https://github.com/rbarango/MODIS/getVI MYD09GA.R)
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A.3.1 Function getMOD09GQ

The function getMOD09GQ extracts daily Tile Surface Reflectance Bands 1-

2 product, spatial resolution: 250 m, for a particular extent and date interval

(https://lpdaac.usgs.gov/products/modis products table/mod09gq)

It requires access to GDAL commands, for instance via the following command providing

the right path to GDAL in your system:

Sys.setenv(PATH="$PATH:/Library/Frameworks/GDAL.framework/Programs")

The function requires the following parameters:

• targetPoints. JSON with the coordinates of the bounding box for the target zone:

– ULx X coordinate of the upper-left corner

– ULy Y coordinate of the upper-left corner

– URx X coordinate of the upper-right corner

– URy Y coordinate of the upper-right corner

– LRx X coordinate of the lower-right corner

– LRy Y coordinate of the lower-right corner

– LLx X coordinate of the lower-left corner

– LLy Y coordinate of the lower-left corner

• CRSString Coordinate reference system. CRS string of the targetPoints. Default =

”+proj=utm +zone=29”

• startDate A string with the start date. Default=Sys.Date()-2. Format: yyyy/mm/dd

• endDate A string with the end date. Default = Sys.Date()-2. Format: yyyy/mm/dd

The function returns a JSON with the reflectivity values: x, y, date, refl b01, refl b02,

QC 250m

Example of use

getMOD09GQ({\"ULx\":516750,\"ULy\":4644000,\"URx\":517750,\"URy\":4644000,

\"LRx\":517750,\"LRy\":4642750,\"LLx\":516750,\"LLy\":4642750}",

startDate = "2016/01/01", endDate = "2016/01/03")

A.3.2 Function getMYD09GA

The function getMYD09GA extracts daily Tile Surface Reflectance Bands 1-

7, spatial resolution: 500/1000m, for a particular extent and date interval

(https://lpdaac.usgs.gov/products/modis products table/myd09ga)

The function requires access to GDAL commands, for instance via the following command

providing the right path to GDAL in your system:
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Sys.setenv(PATH="$PATH:/Library/Frameworks/GDAL.framework/Programs")

The function requires the same parameters described for the getMYD09GA function (see

Section ?? and returns a JSON with the following reflectivity values:

x, y, date, refl_b01, refl_b02, refl_b03, refl_b04, refl_b05, refl_b06, refl_b07, QC_250m

Example of use of getMYD09GA

getMYD09GA({\"ULx\":516750,\"ULy\":4644000,\"URx\":517750,\"URy\":4644000,

\"LRx\":517750,\"LRy\":4642750,\"LLx\":516750,\"LLy\":4642750}",

startDate = "2016/01/01", endDate = "2016/01/03")

A.3.3 Function getVI MYD09GA

Function to calculate vegetation and moisture indices from the reflectivity values of bands 1 to

7 of the MOD09GA dataproduct. It requires the following parameters:

• Band1: a list of reflectivity values from MOD09GA band 1

• Band2: a list of reflectivity values from MOD09GA band 2

• Band3: a list of reflectivity values from MOD09GA band 3

• Band4: a list of reflectivity values from MOD09GA band 4

• Band5: a list of reflectivity values from MOD09GA band 5

• Band6: a list of reflectivity values from MOD09GA band 6

• Band7: a list of reflectivity values from MOD09GA band 7

The function returns a data frame with the following indices:

• NDVI

• NDVI.SCALED [0..255]

• EVI

• NDWI

• NDI7

• SIWSI

• SWIRR

• SRWI

• MSI 1

• MSI 2

• GVMI
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A.3.4 NDVI calculation from MOD09GQ

The following function calculates the NDVI and NDVI scaled from the reflectivity bands 1 and 2

of MOD09GQ dataproduct, returning a data frame with the NDVI and NDVI.SCALED [0..255]

values.

The parameters of the function are the following:

• band1: a list of reflectivity values from MOD09GQ band 1

• band2: a list of reflectivity values from MOD09GQ band 2

The R script implementation is the following:

getNDVI_MOD09GQ <- function(band1, band2){

ndvi <- (band2 - band1) / (band2 + band1)

ndvi.scaled <- (ndvi+1)*127

df <- data.frame(ndvi=ndvi, ndvi.scaled=ndvi.scaled)

names(df) <- c("NDVI","NDVI.SCALED")

return(df)

}
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Appendix B

Meteorological features and

regression equations for yield

forecasting

B.1 List of meteorological features considered for yield predic-

tion

The following type of observations are collected by Meteogalicia with the agro-meteorological

station As Eiras. The station is located at O Rosal, Pontevedra, Spain (41.94◦ latitude, −8.79◦

longitude) at an elevation of 52m.

1. Average temperature of the air (◦C)

2. Max. temperature of the air(◦C)

3. Min. temperature of the air (◦C)

4. Average relative humidity (%)

5. Max. relative humidity (%)

6. Min. relative humidity (%)

7. Foliar humidity (h)

8. Rain temperature (◦C)

9. Soil temperature (◦C)

10. Air temperature (◦C)

11. Wind speed (km/h)
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12. Rainfall (l/m2)

13. Wind gusts (km/h)

14. Sunshine hours (h)

15. Daily global irradiation (10kJ/(m2.day))

16. Wind gusts direction (degrees)

17. Soil humidity (m3/m3)

18. Hours of cold temperature (h)

19. Insolation (%)

20. Wind direction (degrees)

21. Hours of light (h)

22. Evapotranspiration of reference (L/m2)

B.2 Regression equations for yield forecasting

LM num: 1

.outcome =

259.5716 * AlbarinoVariety

+ 1890.137 * LoureiroVariety

+ 466.9527 * TreixaduraVariety

- 1.849 * P

+ 2503.9048 * K

+ 625.1787 * Mg

+ 44.9976 * Ca

+ 1112.4852 * pHWater

- 76.5733 * M.O.

- 0.5054 * refl_b01.STG19

+ 0.4181 * refl_b02.STG19

+ 2720.4307 * NDVI.STG19

+ 0.1766 * refl_b01.STG23

+ 0.247 * refl_b02.STG23

+ 4389.7688 * NDVI.STG23

- 0.1327 * refl_b02.STG32

- 1714.8408 * NDVI.STG32

- 7976.5896

LM num: 2
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.outcome =

259.5716 * AlbarinoVariety

+ 1890.137 * LoureiroVariety

+ 466.9527 * TreixaduraVariety

- 1.849 * P

+ 5408.749 * K

+ 794.1707 * Mg

+ 44.9976 * Ca

+ 494.2108 * pHWater

- 266.7401 * M.O.

- 0.3514 * refl_b01.STG19

+ 0.4181 * refl_b02.STG19

+ 2720.4307 * NDVI.STG19

+ 0.1766 * refl_b01.STG23

+ 0.247 * refl_b02.STG23

+ 4389.7688 * NDVI.STG23

- 0.1327 * refl_b02.STG32

- 1714.8408 * NDVI.STG32

- 3500.8108

LM num: 3

.outcome =

657.167 * AlbarinoVariety

+ 1890.137 * LoureiroVariety

+ 466.9527 * TreixaduraVariety

- 1.849 * P

+ 6937.6144 * K

+ 794.1707 * Mg

+ 44.9976 * Ca

+ 494.2108 * pHWater

- 366.8279 * M.O.

- 0.3514 * refl_b01.STG19

+ 0.4181 * refl_b02.STG19

+ 2720.4307 * NDVI.STG19

+ 0.1766 * refl_b01.STG23

+ 0.247 * refl_b02.STG23

+ 4389.7688 * NDVI.STG23

- 0.1327 * refl_b02.STG32

- 1714.8408 * NDVI.STG32

- 3151.7216
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LM num: 4

.outcome =

192.3884 * AlbarinoVariety

+ 5549.4594 * LoureiroVariety

+ 466.9527 * TreixaduraVariety

- 8.7231 * P

+ 3944.5745 * K

+ 265.6116 * Mg

- 30.6798 * Ca

- 295.0018 * M.O.

- 0.1337 * refl_b01.STG19

+ 1.8806 * refl_b02.STG19

+ 4379.1378 * NDVI.STG19

+ 0.1766 * refl_b01.STG23

+ 0.1462 * refl_b02.STG23

+ 4425.6046 * NDVI.STG23

+ 0.1496 * refl_b01.STG32

- 0.1327 * refl_b02.STG32

- 1714.8408 * NDVI.STG32

- 4324.9393

LM num: 5

.outcome =

192.3884 * AlbarinoVariety

+ 7116.4475 * LoureiroVariety

+ 466.9527 * TreixaduraVariety

- 24.0734 * P

+ 3852.6808 * K

+ 265.6116 * Mg

- 26.8959 * Ca

- 288.0211 * M.O.

- 0.1337 * refl_b01.STG19

+ 1.8217 * refl_b02.STG19

+ 4379.1378 * NDVI.STG19

+ 0.1766 * refl_b01.STG23

+ 0.1462 * refl_b02.STG23

+ 4425.6046 * NDVI.STG23

+ 0.1496 * refl_b01.STG32

- 0.1327 * refl_b02.STG32

- 1714.8408 * NDVI.STG32

- 2776.7653
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LM num: 6

.outcome =

192.3884 * AlbarinoVariety

+ 3422.726 * LoureiroVariety

+ 466.9527 * TreixaduraVariety

- 8.1269 * P

+ 2106.7004 * K

+ 368.6906 * Mg

+ 44.9976 * Ca

- 224.6963 * M.O.

- 0.1337 * refl_b01.STG19

+ 0.9035 * refl_b02.STG19

+ 5797.4729 * NDVI.STG19

+ 0.1766 * refl_b01.STG23

+ 0.1462 * refl_b02.STG23

+ 4958.8916 * NDVI.STG23

+ 0.2547 * refl_b01.STG32

- 0.1327 * refl_b02.STG32

- 1714.8408 * NDVI.STG32

- 3143.971

LM num: 7

.outcome =

-271.7469 * AlbarinoVariety

+ 2494.0767 * LoureiroVariety

+ 3124.8175 * TreixaduraVariety

+ 13.2208 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 2192.0811 * pHWater

+ 320.005 * M.O.

- 0.7967 * refl_b01.STG19

+ 2.8169 * refl_b02.STG19

+ 2791.3134 * NDVI.STG19

- 0.3435 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 3113.284 * NDVI.STG23

+ 0.7701 * refl_b01.STG32

- 1.1499 * refl_b02.STG32

- 635.7881 * NDVI.STG32
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- 18922.3577

LM num: 8

.outcome =

-271.7469 * AlbarinoVariety

+ 2980.4495 * LoureiroVariety

+ 2959.5654 * TreixaduraVariety

- 2.5103 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 2335.9251 * pHWater

+ 257.8772 * M.O.

- 0.7967 * refl_b01.STG19

+ 2.2222 * refl_b02.STG19

+ 2791.3134 * NDVI.STG19

+ 0.0469 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 4305.464 * NDVI.STG23

+ 0.7701 * refl_b01.STG32

- 1.1499 * refl_b02.STG32

- 635.7881 * NDVI.STG32

- 17141.9845

LM num: 9

.outcome =

-271.7469 * AlbarinoVariety

+ 3032.9943 * LoureiroVariety

+ 2959.5654 * TreixaduraVariety

- 4.1376 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 2335.9251 * pHWater

+ 257.8772 * M.O.

- 0.7967 * refl_b01.STG19

+ 2.2222 * refl_b02.STG19

+ 2791.3134 * NDVI.STG19

+ 0.059 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 4428.793 * NDVI.STG23

+ 0.7701 * refl_b01.STG32

- 1.1499 * refl_b02.STG32
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- 635.7881 * NDVI.STG32

- 16607.8255

LM num: 10

.outcome =

-271.7469 * AlbarinoVariety

+ 2983.7935 * LoureiroVariety

+ 4925.0619 * TreixaduraVariety

+ 13.2208 * P

+ 1296.5386 * K

+ 341.9429 * Mg

+ 140.0604 * Ca

+ 3211.0296 * pHWater

+ 361.6778 * M.O.

- 0.7967 * refl_b01.STG19

+ 2.2222 * refl_b02.STG19

+ 2791.3134 * NDVI.STG19

- 0.0702 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 3113.284 * NDVI.STG23

+ 0.7701 * refl_b01.STG32

- 1.1499 * refl_b02.STG32

- 635.7881 * NDVI.STG32

- 22252.3621

LM num: 11

.outcome =

-271.7469 * AlbarinoVariety

+ 1466.4612 * LoureiroVariety

+ 1744.6079 * TreixaduraVariety

+ 58.9354 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 2239.9206 * pHWater

- 0.7967 * refl_b01.STG19

+ 1.67 * refl_b02.STG19

- 1573.624 * NDVI.STG19

- 0.0496 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 3113.284 * NDVI.STG23

+ 0.7701 * refl_b01.STG32

163



B. Meteorological features and regression equations for yield forecasting

- 1.1499 * refl_b02.STG32

+ 1441.294 * NDVI.STG32

- 14318.6034

LM num: 12

.outcome =

-271.7469 * AlbarinoVariety

+ 1466.4612 * LoureiroVariety

+ 1744.6079 * TreixaduraVariety

+ 56.079 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 3051.8794 * pHWater

- 70.8351 * M.O.

- 0.7967 * refl_b01.STG19

+ 1.67 * refl_b02.STG19

+ 567.666 * NDVI.STG19

+ 0.0648 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 3113.284 * NDVI.STG23

+ 1.3043 * refl_b01.STG32

- 2.2705 * refl_b02.STG32

+ 422.3481 * NDVI.STG32

- 14775.9228

LM num: 13

.outcome =

-271.7469 * AlbarinoVariety

+ 1466.4612 * LoureiroVariety

+ 1744.6079 * TreixaduraVariety

+ 56.079 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 2742.9288 * pHWater

- 106.2526 * M.O.

- 0.7967 * refl_b01.STG19

+ 1.67 * refl_b02.STG19

+ 567.666 * NDVI.STG19

+ 0.0648 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 3113.284 * NDVI.STG23
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+ 1.6109 * refl_b01.STG32

- 2.4447 * refl_b02.STG32

+ 422.3481 * NDVI.STG32

- 12814.7864

LM num: 14

.outcome =

-271.7469 * AlbarinoVariety

+ 1466.4612 * LoureiroVariety

+ 1744.6079 * TreixaduraVariety

+ 84.2158 * P

+ 1296.5386 * K

+ 140.0604 * Ca

+ 2596.5497 * pHWater

- 0.0793 * refl_b01.STG19

+ 1.67 * refl_b02.STG19

+ 567.666 * NDVI.STG19

+ 0.0648 * refl_b01.STG23

- 0.0639 * refl_b02.STG23

+ 3113.284 * NDVI.STG23

+ 1.1088 * refl_b01.STG32

- 2.2532 * refl_b02.STG32

+ 422.3481 * NDVI.STG32

- 16423.198

LM num: 15

.outcome =

-2669.979 * AlbarinoVariety

+ 1808.6665 * LoureiroVariety

+ 592.5172 * TreixaduraVariety

- 2.1252 * P

+ 2905.1114 * K

+ 57.27 * Ca

- 507.2806 * pHWater

+ 1.1145 * refl_b01.STG19

+ 1.0964 * refl_b02.STG19

+ 1884.8598 * NDVI.STG19

+ 0.425 * refl_b01.STG23

+ 0.1987 * refl_b02.STG23

+ 3790.9026 * NDVI.STG23

+ 0.5894 * refl_b01.STG32
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- 0.8095 * refl_b02.STG32

+ 664.4926 * NDVI.STG32

+ 1196.1389

LM num: 16

.outcome =

-408.5472 * AlbarinoVariety

+ 3640.5276 * LoureiroVariety

+ 592.5172 * TreixaduraVariety

- 6.7392 * P

+ 6617.3858 * K

+ 57.27 * Ca

- 183.2756 * pHWater

+ 173.1614 * M.O.

+ 1.5593 * refl_b01.STG19

+ 2.0087 * refl_b02.STG19

+ 4463.9743 * NDVI.STG19

+ 0.9811 * refl_b01.STG23

+ 0.0309 * refl_b02.STG23

+ 2199.3766 * NDVI.STG23

+ 3.2996 * refl_b01.STG32

- 3.8656 * refl_b02.STG32

+ 7879.468 * NDVI.STG32

- 5468.0753

LM num: 17

.outcome =

-408.5472 * AlbarinoVariety

+ 3912.3216 * LoureiroVariety

+ 592.5172 * TreixaduraVariety

- 14.533 * P

- 185.3004 * K

+ 57.27 * Ca

- 183.2756 * pHWater

+ 173.1614 * M.O.

+ 7.1825 * refl_b01.STG19

+ 1.1773 * refl_b02.STG19

+ 5983.576 * NDVI.STG19

+ 1.2246 * refl_b01.STG23

+ 0.0309 * refl_b02.STG23

+ 2199.3766 * NDVI.STG23
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+ 1.9967 * refl_b01.STG32

- 1.7653 * refl_b02.STG32

- 358.5315 * NDVI.STG32

- 8801.3738

LM num: 18

.outcome =

-408.5472 * AlbarinoVariety

+ 3912.3216 * LoureiroVariety

+ 592.5172 * TreixaduraVariety

- 15.8784 * P

+ 1842.3785 * K

+ 57.27 * Ca

- 183.2756 * pHWater

+ 173.1614 * M.O.

+ 4.6891 * refl_b01.STG19

+ 1.0041 * refl_b02.STG19

+ 5983.576 * NDVI.STG19

+ 1.0149 * refl_b01.STG23

+ 0.0309 * refl_b02.STG23

+ 2199.3766 * NDVI.STG23

+ 1.9967 * refl_b01.STG32

- 1.7653 * refl_b02.STG32

+ 3537.1431 * NDVI.STG32

- 6011.6979

LM num: 19

.outcome =

-408.5472 * AlbarinoVariety

+ 3921.0097 * LoureiroVariety

+ 592.5172 * TreixaduraVariety

- 2.1252 * P

+ 57639.183 * K

- 222.0549 * Ca

- 183.2756 * pHWater

+ 415.5873 * M.O.

+ 1.0659 * refl_b01.STG19

+ 2.0087 * refl_b02.STG19

- 785.5589 * NDVI.STG19

+ 0.8686 * refl_b01.STG23

+ 0.0309 * refl_b02.STG23
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+ 2199.3766 * NDVI.STG23

+ 0.6802 * refl_b01.STG32

- 0.9773 * refl_b02.STG32

+ 6067.6546 * NDVI.STG32

- 30707.6441

LM num: 20

.outcome =

-420.8601 * AlbarinoVariety

+ 1868.0503 * LoureiroVariety

+ 592.5172 * TreixaduraVariety

- 2.1252 * P

+ 3638.6707 * K

+ 57.27 * Ca

- 183.2756 * pHWater

- 4.7948 * refl_b01.STG19

+ 9.1932 * refl_b02.STG19

- 26501.6593 * NDVI.STG19

+ 0.515 * refl_b01.STG23

+ 1.0114 * refl_b02.STG23

+ 2199.3766 * NDVI.STG23

+ 1.2213 * refl_b01.STG32

- 1.0041 * refl_b02.STG32

+ 6406.2639 * NDVI.STG32

- 10552.5871
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