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RESUMEN (en español) 

 
Esta tesis trata sobre el análisis y diseño de robots biomédicos y su aplicación a la medicina 
traslacional. Se define un robot biomédico como el conjunto de técnicas provenientes de la 
matemática aplicada, estadística y ciencias de la computación capaces de analizar datos 
biomédicos de alta dimensionalidad, aprender dinámicamente de dichos datos, extraer nuevo 
conocimiento e hipótesis de trabajo, y finalmente realizar predicciones con su incertidumbre 
asociada, cara a la toma de decisiones biomédicas. Se diseñan y analizan diferentes algorit- 
mos de aprendizaje, de reducción de la dimensión y selección de atributos, así como técnicas 
de optimización global, técnicas de agrupamiento no supervisado, clasificación y análisis de 
incertidumbre. Dichas metodologías se aplican a datos a pie de hospital y de expresión génica 
en predicción de fenotipos para optimización del diagnóstico, pronóstico, tratamiento y análisis 
de toxicidades. 

Se muestra que es posible establecer de modo sencillo el poder discriminatorio de las variables 
pronóstico, y que dichos problemas de clasificación se aproximan a un comportamiento 
linealmente separable cuando se reduce la dimensión al conjunto de variables principales que 
definen el alfabeto del problema biomédico y están por tanto relacionadas con su génesis. Se 
analiza la robustez de dichos métodos con respecto a dos fuentes principales de ruido (en los 
datos y en la asignación de clases), así como errores en la modelización dado que se 
desconoce a priori el clasificador perfecto (si existiese). Además se demuestra el impacto en la 
identificación de genes altamente predictivos y de los rutas metabólicas asociadas, de las 
principales técnicas de preprocesado de microarreglos de expresión en la predicción de 
fenotipos. Finalmente se muestra que la metodología de robots biomédicos que se basa en 
técnicas de predicción por consenso, que explotan el espacio de incertidumbre de los 
problemas de predicción asociados, es la manera adecuada de abordar este tipo de problemas 
y por tanto de descubrir nuevo conocimiento. 

 



                                                                
	
	

 

 
RESUMEN (en Inglés) 

 
In this PhD we present the analysis and design of ”Biomedical Robots" and its application to 
translational medicine. A Biomedical Robot is defined as the ensemble of methodologies and 
bioinformatic algorithms, coming from applied mathematics, statistical methods and computer 
science, able to treat different types of very high dimensional data (biomedical big data), to 
learn dynamically, discover new knowledge and working hypothesis, and make predictions with 
their corresponding uncertainty to improve biomedical decision making processes. Different 
learning algorithms, dimension reduction and feature selection techniques were studied and 
analyzed, as well as global optimization, clustering, classification and uncertainty assessment 
algorithms. Those methodologies were applied to clinical data gathered in hospitals and genetic 
expression data to phenotype prediction in order to optimize diagnosis, prognosis, treatment 
and toxicity analysis. 

We demonstrated that is possible to establish the discriminatory power of prognostic variables 
in a simply way, and the corresponding classification problems approximate a linear separable 
behavior when the dimension is reduced to the principal variables that define the alphabet of the 
biomedical problem, and therefore are related to its genesis. We also analyzed the robustness 
of the methodology with respect to two main sources of noise (noise in the data and in the class 
assignment), as well as the modeling errors since the perfect classifier, if there exists, is a priori 
unknown. Moreover, we demonstrated the impact in the identification of high predictive genes 
and, consequently their associated pathways, of the main microarrays preprocessing 
techniques in phenotype prediction. Finally, we showed that the methodology that is based on 
consensus prediction techniques that explores the uncertainty space of the associated 
prediction problems, is the right way of addressing these types of problems and, therefore, 
discovering knowledge and improving medical decision-making. 
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General Setup

This thesis is included in the PhD Programme in Mathematics and Statistics (RD 99/2011)
of the University of Zaragoza, the University of La Laguna, the University of Oviedo, the
University of the Basque Country and the Public University of Navarra. In the elaboration of
the manuscript of this PhD thesis we followed the requirements fixed by Article 26 of the
Regulations of PhD Studies, agreement of June 17 of 2013 (BOPA 146 / 25-VI-2013) about
the nature of the PhD thesis, that literally states: "1. La tesis doctoral consistirá en un trabajo
original de investigación elaborado por el doctorando en cualquier campo del conocimiento.
La tesis debe capacitar al estudiante de doctorado para el trabajo autónomo en el ámbito
de la I+D+i. 2. En su elaboración, habrán de ser tenidas en cuenta las siguientes normas
mínimas: a) La memoria que recoge la labor realizada en la tesis doctoral se redactará
en español. No obstante, la Comisión de Doctorado podrá autorizar su redacción en otro
idioma oficial de la Unión Europea, previo informe de la Comisión Académica del Programa
de Doctorado, y siempre que se garantice que los miembros del Tribunal están en condiciones
de juzgarla. En este caso, la memoria deberá contener el resumen y las conclusiones en
español. En las mismas condiciones, y de acuerdo con el artículo 6.2 de los Estatutos de la
Universidad de Oviedo, la redacción podrá hacerse en lengua asturiana. b) En la cubierta de
la memoria figurará Universidad de Oviedo, junto con el escudo institucional, el nombre del
Programa de Doctorado, el título de la tesis y el nombre del autor. c) Los datos anteriores
aparecerán también en la portada, y en las páginas siguientes figurará la autorización de la
Comisión Académica del Programa de Doctorado, del tutor y del director del trabajo para
la presentación de la tesis."

The main objective of this thesis is to design and build a dynamic tool called "Biomedical
Robots" capable of analyze huge amount of data, generate work hypothesis and discover new
knowledge in the field of biomedicine. This work belongs to the line of research dedicated
to Biomedical Applications, of the research group for Inverse Problems, Optimization
and Learning, directed by Professor Juan Luis Fernández-Martínez from the Mathematics
Department of Oviedo University.
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Since the beginning of my Bachelor’s degree in Computer Science, I knew that Math-
ematics, Computer Science, and Medicine would have a convergence point. Thereby, my
final project in the Artificial Intelligence subject of my Bachelor was to build a Lung cancer
predictor. Lately, during my MSc in Soft Computing and Intelligence Data Analysis, I
designed as a final research project, a genome simulator able of predict the probabilities
of developing a given genetic disease depending on the mutations that are present in the
genome. In the mid of 2012 I started my PhD in Mathematics with the invaluable guidance
of Professors Juan Luis Fernández-Martínez and Oscar Luaces. During almost four years
we walked a hard and long path, full of closed doors and hitting walls, but with simplicity
and tenacity we were able to open all the doors and knock down all the walls. The final
work is presented herein as a result of people with a great enthusiasm and a desire of solving
problems that help to have a better world.

As the present work has a multidisciplinary scope, the main results of this research were
published (or in revision) in international journals of different categories:

• CANCER INFORMATICS. Published. Categories (no cataloguing on Journal Cita-
tion Reports but with a H-index of 18):

– COMPUTATIONAL BIOLOGY

– ONCOLOGY

• CLINICAL AND TRANSLATIONAL ONCOLOGY. Published. Categories: ON-
COLOGY (Q3).

• BIOLOGICAL RESEARCH FOR NURSING. Published. Categories: NURSING
(Q1)

• JOURNAL OF COMPUTATIONAL BIOLOGY. Accepted for publication. Cate-
gories:

– STATISTICS & PROBABILITY (Q1)

– MATHEMATICAL & COMPUTATIONAL BIOLOGY (Q2)

– COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS (Q2)

– BIOTECHNOLOGY & APPLIED MICROBIOLOGY (Q3)

– BIOCHEMICAL RESEARCH METHODS (Q3).

• JOURNAL OF BIOMEDICAL INFORMATICS. Published. Categories:

– COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS (Q1)
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– MEDICAL INFORMATICS (Q2)

• JOURNAL OF GENE MEDICINE. Under review. Categories: ONCOLOGY (Q1).

The selection of these journals represents the multidisciplinary character of this research,
that address problems from applied mathematics and computer science (Mathematical and
Computational Biology and Medical Informatics), to genomics and translational medicine
(Nursing and Oncology).

Additionally, we also presented an oral communication to the International Conference
on Man-Machine Interactions celebrated in Poland on October 6-9 2015. The communication
paper is a chapter of a book edited by Springer.

The core of this thesis are seven manuscripts that are either published or in revision
in international journals. Consequently, the organization of the thesis is based on those
papers, presented them in original form (see appendix) and preceded by an explanation of the
methodology that is used, and the main original results that were achieved, focussing in each
case on some specific topics and concepts used in the research, that needed a more detailed
description. Accordingly the structure of this manuscript is as follows:

• Chapter I. Introduction. In this section we described the problem background, the
main target of the thesis, the steps followed for developing it, and finally a formal
description of both the problem and the methodology that was designed.

• Chapter II. Application to clinical data. This section is devoted to the application of
the methodology to clinical data. We described two research articles related to:

– ”Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia
decision-making problems.”

– ”On the prediction of Hodgkin lymphoma treatment response.”

• Chapter III. Application to genetic data. In this section we applied the methodology
to the analysis of gene expression data. This part is developed in two manuscripts:

– ”Supervised Classification by Filter Methods and Recursive Feature Elimination
Predicts Risk of Radiotherapy-Related Fatigue in Patients with Prostate Cancer.”

– ”Genomic Data Integration in Chronic Lymphocytic Leukemia.”

• Chapter IV. Sensitivity analysis. This research is exposed in two different papers:

– ”Sensitivity analysis of gene ranking methods in phenotype prediction.”
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– ”Impact of microarray preprocessing techniques in unraveling biological path-
ways.”

• Chapters V. Design and application of biomedical robots to phenotype prediction
problems. This is the cornerstone of the dissertation and exposes the methodology that
was designed to address the modeling of biomedical big data in phenotype prediction.

• Chapter VI. Conclusions and future research.

• Appendix A. We included all the publications in the original format in the appendix.

• Appendix B. Concentrations for the Spike-In experiment used in chapter IV.
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Resumen

Esta tesis trata sobre el análisis y diseño de robots biomédicos y su aplicación a la medicina
traslacional. Se define un robot biomédico como el conjunto de técnicas provenientes de
la matemática aplicada, estadística y ciencias de la computación capaces de analizar datos
biomédicos de alta dimensionalidad, aprender dinámicamente de dichos datos, extraer nuevo
conocimiento e hipótesis de trabajo, y finalmente realizar predicciones con su incertidumbre
asociada, cara a la toma de decisiones biomédicas. Se diseñan y analizan diferentes algoritmos
de aprendizaje, de reducción de la dimensión y selección de atributos, así como técnicas de
optimización global, técnicas de agrupamiento no supervisado (clustering), algoritmos de
predicción y clasificación, y análisis de incertidumbre. Dichas metodologías se aplican a
datos a pie de hospital y de expresión génica en predicción de fenotipos para optimización
del diagnóstico, pronóstico, tratamiento y análisis de toxicidades.

Se muestra que es posible establecer de modo sencillo el poder discriminatorio de las
variables pronóstico, y que dichos problemas de clasificación se aproximan a un compor-
tamiento linealmente separable cuando se reduce la dimensión al conjunto de variables
principales que definen el alfabeto del problema biomédico y están por tanto relacionadas con
su génesis. Se analiza la robustez de dichos métodos con respecto a dos fuentes principales
de ruido (en los datos y en la asignación de clases), así como errores en la modelización
dado que se desconoce a priori el clasificador perfecto (si existiese). Además se demuestra
el impacto en la identificación de genes altamente predictivos y de los pathways asociados,
de las principales técnicas de preprocesado de microarreglos de expresión en la predicción
de fenotipos. Finalmente se muestra que la metodología de robots biomédicos que se basa
en técnicas de predicción por consenso, que explotan el espacio de incertidumbre de los
problemas de predicción asociados, es la manera adecuada de abordar este tipo de problemas
y por tanto de descubrir nuevo conocimiento.





Abstract

In this PhD we present the analysis and design of ”Biomedical Robots" and its application to
translational medicine. A Biomedical Robot is defined as the ensemble of methodologies
and bioinformatic algorithms, coming from applied mathematics, statistical methods and
computer science, able to treat different types of very high dimensional data (biomedical
big data), to learn dynamically, discover new knowledge and working hypothesis, and
make predictions with their corresponding uncertainty to improve biomedical decision
making processes. Different learning algorithms, dimension reduction and feature selection
techniques were studied and analyzed, as well as global optimization, clustering, classification
and uncertainty assessment algorithms. Those methodologies were applied to clinical data
gathered in hospitals and genetic expression data to phenotype prediction in order to optimize
diagnosis, prognosis, treatment and toxicity analysis.

We demonstrated that is possible to establish the discriminatory power of prognostic
variables in a simply way, and the corresponding classification problems approximate a linear
separable behavior when the dimension is reduced to the principal variables that define the
alphabet of the biomedical problem, and therefore are related to its genesis. We also analyzed
the robustness of the methodology with respect to two main sources of noise (noise in the data
and in the class assignment), as well as the modeling errors since the perfect classifier, if there
exists, is a priori unknown. Moreover, we demonstrated the impact in the identification of
high predictive genes and, consequently their associated pathways, of the main microarrays
preprocessing techniques in phenotype prediction. Finally, we showed that the methodology
that is based on consensus prediction techniques that explores the uncertainty space of the
associated prediction problems, is the right way of addressing these types of problems and,
therefore, discovering knowledge and improving medical decision-making.
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Chapter 1

Introduction

1.1 Background and state of the art

The advance of high-throughput technologies in the last 20 years, have provided a huge
increase of information that needs to be properly managed. Such advance has impacted in
every single field of science, especially in Medicine. New technologies have allowed to
improve data collection, from research centers to hospitals. Nowadays, medical doctors can
retrieve data from the patient faster. Clinical data, such as electronic health records, clinical
trials or disease registries, are publicly available and can be retrieved in a safer and more
efficient manner. Information technologies allow to make these clinical data available through
biobanks and electronic medical records. For instance, in the Hospital Central de Asturias
the implementation of program Millenium, designed by Cerner corporation for managing the
electronic health record, had an original cost around 17 millions euros. Nevertheless, this
program does not allow to mine this information in order to solve different kind of problems,
such as the estimation of surgical risk (see for instance http://riskcalculator.facs.org/) based on
individual health records and/or analysis of prognostic variables for particular diseases based
on customized data bases that are specifically created by medical experts. These are some
examples about the complexity of extracting information from hospital data and bringing
back the results with a translational approach. In this thesis we provide two examples of the
application of clinical data to the analysis of Hodgkin Lymphoma and Chronic Lymphocytic
Leukemia related problems.

Genomic data has also became a key element in the medical research field. Since the
discovery of the DNA structure in 1953 there have been important developments in the field
of genomics, being a milestone the whole human genome sequencing in 2000. Data related
to DNA sequence, RNA sequence and expression, protein sequence, structure, modification,
and small molecule metabolite structure are available in valuable resources such as Genbank
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(http://www.ncbi.nlm.nih.gov/genbank/), Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/), Protein Data Bank (http:// www.wwpdb.org/), and many others. Such progress
has enabled to set down the genetic basis of a wide range of common diseases, leading to
identification of the genes and biomarkers that might be responsible for the development of
complex diseases. Particularly, it is important to have at disposal methods that allow to break
the bottlenecks for the application of genetics into clinics. In this PhD thesis we present
several examples of the use of genetic information translationally: 1) Radiotherapy-related
fatigue prediction in patients with prostate cancer. 2) Genomic data integration of the main
mutations that impact survival in patients with Chronic Lymphocytic Leukemia. 3) Genetic
analysis of rare and neurodegenerative diseases in the search for orphan drugs and new
therapeutical targets.

Medical doctors and researchers have at disposal high dimensional and heterogeneous
biomedical data that needs to be mined and converted into knowledge to support their decision
making processes. The management of biomedical data currently used in most research
settings are labor intensive and rely upon technologies that have not been designed to handle
such multi-dimensional data. Furthermore, novel molecular-based tools are emerging and
rapidly entering the clinic and creating new paradigm in healthcare. Circulation tumor cells,
nucleic acids and exosomes in blood of cancer patients have received increasing attention as
new diagnostic tools enabling the so called "liquid biopsies", avoiding thus other invasive
methods like tissues biopsies, and obtaining even more information by a simple blood
test (Alix-Panabieres and Pantel, 2013). One of the main challenges is the creation and
delivery of information management platforms capable of adapting different data sources,
supporting workflows, and generating new hypothesis to support decision making processes,
connecting, therefore, the molecular/cellular world with the clinical research providing them
a translational approach.

It is considered that one of the most important revolutions of the 21st century will
be related to the field of translational medicine, defined as the basic research with an
impact over the global healthcare system. Genomic and clinical data resources are now
allowing to consider individual variations, and not simply population averages, leading to
improved diagnosis, prognosis, and treatment. The translational approach of the knowledge
mined within the biomedical data will allow the creation of new medical devices, molecular
diagnostics based in small-scale genetic signatures, small molecule therapeutics, biological
therapeutics, vaccines, and others. Particularly, the analysis of the pharmaco-genomics
(mechanism of actions) and pharmaco-kinetics aspects (minimization of toxicities) of new
drugs, is crucial important in translational medicine and constitute the last step towards what
has been known as personalized medicine and more recently precision medicine.
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Since the birth of modern computer science, biology and computer science have gone hand
to hand, and both areas have influenced each other. On one hand, most of the recent discovery
in biology and especially in genetics, have been made possible thanks to computer science
techniques and algorithms. For instance, the sequencing of the human genome would not have
been possible without high-performance computational facilities (Venter et al., 2001). On the
other hand, biology has influenced the computer science, with the developments of tools such
as Artificial Neural Networks, Swarm Intelligence and/or Genetic Algorithms. Nowadays
computer science based methods and technologies can allow researchers to access and extract
domain knowledge and applying these results to generate and test hypotheses. During the last
10 years, Artificial Intelligence as a part of Applied Mathematics and Computer Science, has
had an important roll in both medical research and translational medicine fields. They provide
through the optimization of diagnosis, treatment, planning, and prediction of prognosis, a
natural way of representing the uncertainties involved in the classical medical procedures.
Clinical and genetic data has became increasingly fundamental, and we must tackle it from
all the possible approaches, in which Applied Mathematics and Computer Science, have an
important role. As the medicine advance towards a more personalized medicine where data
and information have a key role in that progress, we must introduce and adapt the classical
procedures of treating data to the new personalized medicine.

The majority of the research works in the field of translational medicine where it was
applied Artificial Intelligence are related to data mining processes. And most of them, deal
with the goal of analyzing gene expression data coming from gene expression analysis
through hybridization microarrays or RNA sequencing, consisting of thousands of genes for
each patient, with the aim to diagnose (sub)types of diseases and to obtain a prognosis which
may lead to individualized therapeutic decisions.

The published papers are mainly related to oncology, where there is a strong need
for defining individualized therapeutic strategies (Bellazzi et al., 2011). One of the most
important work in this area was that of Golub et al. (1999) where they were able to build a
classification model based on a weighted-voting approach relying on a list of about 50 genes
related to acute myeloid leukemia and acute lymphoblastic leukemia. Another important
work was carried out by Futschik et al. (2003). They used both clinical and microarray data
to build two models for the prediction of diffuse large B-cell lymphoma.

According to PubMed statistics, more than 65000 publications are related to Artificial
Intelligence and Medicine. We can find a wide range of publications, beginning from the
definition of the well-known Perceptron (Rosenblatt, 1958) to a recent publication in where
an artificial intelligence methodology is applied for detecting and characterizing epistasis in
genetic association studies (Moore and Hill, 2015).
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As noted by Eli and Edythe of the Broad Institute for Biomedical Research of Harvard
and MIT: ”We have an historic opportunity and responsibility to transform medicine by
using systematic approaches to dramatically accelerate the understanding and treatment of
disease”. In this PhD we introduce the concept of ”Biomedical Robots” as a methodological
framework for solving any medical problem, independently of the type of data and problem.
Moreover, the Biomedical Robot has not any character of a black-box but the capability of
inferring solutions from data with the medical doctor’s understanding, with the main target
of taking those solutions to the side of hospitals (translational medicine) and research centers,
from the ”bench” to the ”bedside”.

1.2 Objectives

The main purpose of this thesis is to describe, develop and apply the novel concept of
Biomedical Robot. A Biomedical Robot is defined as the ensemble of methodologies
and bioinformatic algorithms, coming from applied mathematics, statistical methods and
computer science, capable to treat different types of very high dimensional data (biomedical
big data), to learn dynamically and make predictions with their corresponding uncertainty.
The techniques involved by the biomedical framework are:

1. Machine Learning, classification problems (supervised and unsupervised), and ensem-
ble learning.

2. Feature selection and model reduction.

3. Global optimization algorithms.

4. Receiver Operator Characteristic (ROC) curves and uncertainty analysis.

Within this framework it is posible to analyze dynamically (as a function of time) any type
of data independently of their dimensionality, discovering knowledge and generating new
medical working hypothesis, and finally supporting medical research and decision making
approaches with its corresponding uncertainty assessment (risk analysis). Generating new
working hypothesis could include for instance the analysis of biomarkers and mechanisms
of action involved in a specific problem or discovering pathways and druggable targets in
phenotype prediction problems. Also, a benefit of this approach could be the design of
intelligent systems to support medical doctors/researchers in the decision making process of
new incoming uncatalogued samples to decide crucial questions related to their diagnosis,
prognosis and treatment optimization before any decision was taken. These techniques can
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help for instance in segmenting patients with respect to drug response based on genetic
signatures, to predict the development of induced toxicities, to predict the surgical risk,
etc. . . , among many different applications that we can imagine. Particularly in the case of
hospital data it is important to be able to filter and interpolate missing data and also to design
classifiers using the most significant medical prognostic variables, and penalizing a given
criterion, for instance the probability of having false positive or negatives.

In the case of genetic data, two different aims are complementary:

1. Finding robust small-scale genetic signatures for personal diagnosis, prognosis and
treatment optimization.

2. Understanding the biological pathways involved in the mechanisms of action of pheno-
type prediction problems corresponding to disease development, treatment response
and development of toxicities.

Given the high underdetermined character of any kind of phenotype prediction problem,
it is not correct to provide a unique gene that is responsible for the disease development.
As these kind of problems are ill-posed (Hadamard, 1902), the correct answer would be to
address the corresponding classification or prediction problem with its uncertainty assessment.
That way, the gene networks, that is, the set of genes that are interrelated, have a high
discriminatory power and work synergistically for the phenotype prediction problem, are the
right solution for assessing the uncertainty. Based on these networks it would be possible to
find the biological pathways that are affected. However, a Biomedical Robot must have a
dynamic character and it must be updated as the level of knowledge of the problem we want
to solve increases. These types of optimization and learning problems are subordinated to the
Non-free-lunch theorem (Wolpert and Macready, 1997), therefore, although the techniques
are common, their applications should be custom designed.

The steps followed to develop this methodology were the following:

1. Developing learning algorithms, dimensionality reduction, global optimization, and
clustering/classification techniques.

2. Application of these methods to different types of biomedical data:

• Clinical data collected in hospitals (immunohistochemical, biochemical, demo-
graphic, . . . ). Which lead us to the following research works:

– Treatment response prediction in patients with Hodgkin Lymphoma. Treat-
ment optimization.
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– Need of chemotherapy prediction and autoimmune disease occurrence pre-
diction in patients with Chronic Lymphocytic Leukemia. Diagnosis and
treatment optimization.

• Genetic data (gene expression). The following researches were developed:

– Toxicity analysis of radiotherapy treatments in patients with prostate cancer.
Treatment optimization.

– Prediction of the main mutations that impact survival in patients with Chronic
Lymphocytic Leukemia. Diagnosis and prognosis optimization.

3. Sensitivity analysis of the methodology, using both synthetic and real data:

• Impact of different kind of noise in phenotype prediction problems.

• Impact of main microarrays preprocessing techniques in the discovering of bio-
logical pathways.

4. Design, development and analysis of biomedical robots and their application to pheno-
type prediction problems.

1.3 Methodology

1.3.1 Problem definition

The first class of problems found in the biomedical field are regression-type problems, that are
typically solved using nonlinear multivariate regression techniques with statistical packages
as SPSS. The problem consists in giving a set of variables x ∈RN parameterizing the samples,
finding the estimator f ∗(x) such as ||ypre −yobs||p is minimum, where

yobs =




y1

y2
...

ym



,ypre =




f ∗(x1)

f ∗(x2)
...

f ∗(xm)




for a given type of regression models, f ∗. This is, for instance, the case of the regression
models that are used to predict survival (Kaplan and Meier, 1958).

In this PhD we adopted the decision of approaching most of the biomedical problems as
supervised classification problems, since we found it is a more versatile way of modeling.
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Besides, the uncertainty related to a classification problem might be lower than the corre-
sponding regression problem, since predicting the unknown class of a sample is generally a
better-posed problem than predicting the value of given decision variable. Nevertheless, to
properly understand the supervised classification problems, we have cast them as general
inverse or parameter identification problem.

A medical problem, posed as a classification problem, consists in a set of patients that
have a given peculiarity, such as a disease condition or treatment response, which is described
by its corresponding class value established by medical experts, who usually want to know
what is causing those peculiarities by comparing them with other types of patients, known as
healthy controls. The classification problem does not need necessarily to be binary, that is, it
could be multi-class.

The first source of uncertainty in a classification problem comes from the fact that the
perfect classifier is usually a priori unknown, that is, no physical relationship is at disposal to
predict the class of the observed data. Accordingly, the classification problem is nonlinear,
since the classifier and the features that serve to achieve an optimum prediction are unknown.
That way, a classification problem can be typically catalogued as a non-linear inverse problem
(Aster et al., 2012). Therefore, as a first step, a given type of classifier (nearest-neighbor,
neural networks, SVM, . . . ) should be built ad-hoc. This can be considered an additionally
source of uncertainty.

Let us imagine that we have at disposal a set of n features (clinical data, genetic expres-
sions, . . . ) for a set of m samples whose classes were provided by medical expert annotations.
This information is typically organized in the matrix E ∈Mm×n(R), usually with m<< n, and
in the class vector cobs ∈ Rm. The classifier, L∗(f) can be formally defined as an application
between the set of features f ∈ M ⊂ Rs and the set of classes C = {c1,c2, ...,cn}:

L∗(f) : f ∈ Rs →C = {c1,c2, ...,cn}. (1.1)

However, not all the features are involved in the inverse problem. Furthermore, when
all the variables parametrizing the samples are considered, the corresponding classification
problem becomes nonlinear separable, that is, it is not possible to define in the feature space
a set of hyperplanes that optimally separates the samples.

Importantly, not all the features provide useful information for the class prediction. These
extraneous features are noisy and can be analytically disruptive. Fortunately, it is possible to
discard irrelevant features, that is, those that do not provide any useful information for the
discrimination, since they introduce ambiguity in the classification. The relevant features
would be defined as the ones that minimize a given target function O(f) related to the class
prediction vector:
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f : O(f̄) = min
f∈RS

O(f), (1.2)

O(f) = ||L∗(f)− cobs||p (1.3)

L∗(f) = (L∗(f1), ...,L∗(fi), ...,L∗(fm)), (1.4)

where cobs is the set of observed classes, p is the norm applied in the distance criterion, L∗(f)
is the set of predicted classes, fi ∈ Rs is the set of features os size s corresponding to sample
i, and L∗(fk) is the classifier prediction for sample k. Otherwise said, the relevant features
would be the ones that allow us to predict the class of new incoming samples. This process
in machine learning is called generalization.

Three different aspects are particularly relevant in the design of the classifier:

1. The effect of modeling errors.

2. The effect of noise in data.

3. The ill-posed character of the classification problem.

1.3.2 The effect of modeling errors

In most biomedical problems the forward problem is unknown, that is, no physical relation-
ship is available relating input and output variables. This translates in classification problems
in the fact that the correct classifier L∗

true is a priori unknown.
Let us imagine that the relationship between features and classes is linear:

L∗
trueftrue = cobs.

If we consider a classifier that has a modeling error δL∗ and it is related to the true classifier
as follows: L∗

p = L∗
true +δL∗. Then we have:

(L∗
p −δL∗)ftrue = cobs

L∗
pftrue = cobs −δL∗ftrue

that is, the classifier L∗
p used in practice to achieve ftrue will need to correct the observed

class cobs by the term δL∗ftrue, which is a priori unknown. Otherwise said, if we solve
L∗

pf = cobs then f ̸= ftrue. Only if ftrue ∈ ker(δL∗) the classifier L∗
p will achieve ftrue from

cobs. Obviously this simple analysis is theoretical but explains the importance of choosing
the ”correct” classifier.
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In this PhD dissertation we decided to use the principle of parsimony, that is, between
the set of all possible classifiers that could be employed we will try to choose the simplest
one. Particularly, we try to avoid the use of wrapper and embedded classifiers, whose
design imposes an additional uncertainty analysis, due to the optimization processes that are
involved.

1.3.3 The effect of noise in data

Biomedical data is notorious for containing noise which has historically contributed to issues
around reproducibility, especially as related to clinical/gene phenotype relationships. Noise
also impedes accurate mechanistic conclusions, for example in the case of genetic data, by
partially falsifying biological pathways. This topic is formally developed in the next section.

There are two main sources of noise:

• First, noise in the feature data that is introduced by the process of data treatment
(preprocessing techniques) and measurement. The observed feature data of a sample,
fobs, can be expressed as the sum of the noiseless data ftrue and the measurement noise
δ f: fobs = ftrue +δ f. Therefore, using a simple Taylor expansion we get:

L∗(fobs) = L∗(ftrue)+δL∗(ftrue) =

= L∗(ftrue)+
s

∑
k=1

∂L∗

∂ fk
(ftrue)δ fk +o(δ f),

where o(δ f) vanishes when the noise term δ f → 0. Therefore, given a classifier L∗(f),
the noise in the feature data involves a modeling error whose first order approximation
is:

δL∗(δ f) =
s

∑
k=1

∂L∗

∂ fk
(ftrue)δ fk

= ∇L∗(ftrue) ·δ f.

Obviously δL∗(δ f)→ 0 when δ f → 0. This analysis is theoretical because ftrue and
δ f are unknown.

• Secondly, noise in the class assignment δc, typically due to an incorrect labeling
of the samples by the medical experts. Therefore the observed class vector can be
expressed as the sum of the true class vector ctrue and the class assignment noise δc:
cobs = ctrue +δc. For instance, sometimes the classification problem is parameterized
as binary when in fact there are more than two classes. Therefore, assigning two
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different classes to the samples will input noise in the classification. In this case,
finding a predictive accuracy lower than 100% would be the expected result, otherwise
the algorithm will find a wrong set of features in order to fit (or explaining) the wrong
class assignment. Obviously this situation is always difficult to detect, since the strategy
that one might expect consists in achieving a perfect classification, and overfitting the
noise. This is not the point of view presented herein.

It is straight forward to show that both kinds of noise (δ f and δc) induce a modeling error
in the classifier. In the case of class assignment noise the cost function writes:

Op(f) = ||L∗(f)− cobs||p =
= ||L∗(f)− ctrue −δc||p =
= ||L∗(f)||p +δL∗(f) = Ot(f)+δL∗(f),

where Op(f), Ot(f) stand respectively for the perturbed and noise-free cost functions, and
δL∗(f) for the modeling error term induced by the noise in the class assignment. For instance,
if the squared Euclidean norm is used to define the cost function, we have:

Op(f) = ||L∗(f)− cobs||22 = ||L∗(f)− ctrue −δc||22 =
= (L∗(f)− ctrue −δc)⊺(L∗(f)− ctrue −δc) =

= ||L∗(f)− cobs||22 −2(L∗(f)− ctrue)⊺δc+δc⊺δc.

Therefore the modeling error is in this case:

δL∗(f) = δc⊺δc−2(L∗(f)− ctrue)⊺δc

and δL∗(f)→ 0 when δc → 0.
In presence of these types of noise the set of features with the highest predictive accuracy

(and therefore the lowest misfit error) will never perfectly coincide with the set(s) of features
that explains the disease (noise-free classification problem). For that reason it is desirable to
look also for other sets of features with lower predictive accuracy than the optimum. Besides,
the classifier L∗ is built ad-hoc and it is just a mathematical abstraction used to discover the
features that are involved in the discrimination problem, but it is not the reality itself. As it
has been shown in section 1.3.2 devoted to the analysis of the modeling errors.
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1.3.4 The ill-posed character of the classification problem

Typically the number of samples is finite due to economic constrains (hundreds of samples)
and the number of prognostic variables (genes or genetic probes) is much higher (hundred of
thousands). The ill-posed character of the classification is due to the high underdetermined
character of the inverse problem involved. This is not always the case when working with
hospital data when the number of variables is usually lower than the number of samples.
However, it is not necessarily the case that these variables would carry enough information
about the decision problem that is going to be solved.

Addressing this analysis as a linear system:

L∗ftrue = cobs, L∗ ∈ Mmxn(R),

the main typologies of these problems would correspond to:

1. Case of genetic data: m << n and ∃ker(L∗) whose dimension is n− rank(L∗) . The
ker(L∗) forms the uncertainty space of the classifier. If the rank(L∗) = m, that is the
samples are independent, the problem is purely underdetermined. Then, the minimum
norm solution applies:

fMN = L∗⊺(L∗L∗⊺)−1cobs.

In this case the principle of parsimony applies since fMN has not component on the
ker(L∗). If rank(L∗) = r <m, the samples are redundant, and the kernel of the classifier
increases its dimension to n− r. In any case the problem is highly underdetermined.

2. Case of the hospital data: m> n and rank(L∗) = r ≤ n. In the case where rank(L∗) =
n, the problem is purely overdetermined, all the prognostic variables will be indepen-
dent predictors, and the least square solution applies:

fLS = (L∗⊺L∗)−1L⊺cobs.

The classifier has a null kernel in this case (L∗ is inyective), but the uncertainty space
still exists. If rank(L∗) < n, then the prognostic variables are dependent and the
problem becomes rank deficient, similar to the rank deficient underdetermined case.

Fernández-Martínez et al. (2012, 2013) analyzed the uncertainty space of linear and
nonlinear inverse and classification problems showing that the topography of the cost function
O(f) in the region of lower misfits (or higher predictive accuracies) correspond to one or
several flat elongated valleys with null gradients, where the high predictive sets of features
reside. This valley is unique and rectilinear if the classification/inverse problem is linear,
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and bends and might be composed of several disconnected basins if the inverse problem
is nonlinear and the classification problem becomes nonlinear separable. Also, if we are
somehow able to define the discriminatory power of the different features, a classification
problem could be interpreted as the Fourier expansion of a signal, that is, there will be
features that provide high accuracy for the classification problem alone (head features),
while others will assist in expanding the high frequency details (helper features) in order
to improve the predictive accuracy. Nevertheless, there is a time when adding more details
to the classifier do not increase its predictive accuracy. The smallest scale signature is the
one that has the least number of highest discriminatory features. This knowledge could be
important for diagnosis and treatment optimization since it allows a fast and cheap data
gathering.

As a result of the foregoing we will need a tool able to manage the underlying uncertainty
of the problem, due to its ill-posed character. Moreover, the tool will must be robust against
the different sources of data noise. Consequently and in response to such challenge, we
developed a methodological framework called Biomedical Robots.

1.3.5 Biomedical robots

We defined a biomedical robot as the ensemble of methodologies and bioinformatics algo-
rithms, derived from applied mathematics, statistics and computer science that are capable
of dynamically analyzing high dimensional data, discovering knowledge, generating new
biomedical working hypothesis, and supporting medical decision making with its correspond-
ing uncertainty assessment. It is important to remark that we are not interested in building
a black-box methodology, but being able of inferring the mechanisms of action that are
involved in the specific biomedical problem.

Figure 1.1 shows a conceptual scheme of how biomedical robots can be generated and
applied for instance to a phenotype prediction problem. From a training data set we built Nr

robots. The robots is in this case are a set of classifiers characterized by their small-scale set
of features f, and their corresponding set of parameters needed to perform the classification
of the incoming samples. These robots will be deduced from the dataset by applying different
supervised feature selection methods and dimensional reduction algorithms. Each robot will
be also characterized by its predictive accuracy according to the classification cost function
O(f) built in a testing dataset. The design of the cost function is important because the sets
of features found might depend on that design. The average error will depend on the type of
experiment (Cross-Validation, Hold-Out with repetitions, . . . ) that we used to define the cost
function.
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Fig. 1.1 Conceptual scheme for the design of biomedical robots.
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This design enables the sampling of the uncertainty space corresponding to the classifica-
tion problem. This can be shown through a simple linear regression problem. Let us suppose
that we have at disposal a set of points {(x1,y1)...(xm,ym)} and we define the linear estimator
y∗(x;m,b) = mx+b. The model parameters (m,b) are found by least squares, solving the
normal equations.

F⊺F

(
bls

mls

)
= F⊺y,

with F = [1,x],F ∈ Mm×2(R). Matrix F⊺F is symmetric, therefore, it admits orthogonal
diagonalization:

F⊺F =V

[
λ1 0
0 λ2

]
V ⊺, λ1 > λ2 > 0.

Besides F can be written using SVD: F =UΣV ⊺. The least square solution is:

(
bls

mls

)
= (F⊺F)−1F⊺y =

=V

(
1/λ1 0

0 1/λ2

)
V ⊺V Σ⊺U⊺y =

=V

(
y1u/

√
λ1

y2u/
√

λ2

)
=

y1u√
λ1

v1 +
y2u√

λ2
v2, (1.5)

where y1u, y2u are the two first coordinates of vector y referred to the orthogonal basis set U
of Rm, and v1, v2 are the eigen vectors of F⊺F .

Two considerations are relevant:

• The conditioning of the normal equations depends on the ratio λ1/λ2 and the region of
linear equivalence of value tol (Fernández-Martínez et al., 2012) referred to the V base
is: (

b−bls)2
V(

tol√
λ1

)2 +

(
m−mls)2

V(
tol√

λ1

)2 = 1.

Therefore, the axis of the maximum uncertainty corresponds to the direction v2 asso-
ciated to the smallest eigenvalue of F⊺F , λ2, and the center of the elipse is the least
squares solution of the linear system. The noise is amplified mainly in the direction
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Fig. 1.2 Uncertainty space in a 2D ill-conditioned linear regression problem.

of v2, perturbing the location of the least squares solution (Fernández-Martínez et al.,
2014a,b).

• Taking into account relationship (1.5) we see that the least squares solution will change
if we consider different bags of the training dataset. These solutions belong to region
of uncertainty of the linear regression problem. The same can be concluded for
the biomedical robots in a specific classification problems. This idea is numerically
illustrated in figure 1.2 for a 2D ill-conditioned linear regression problem where all
the equivalent model parameters are sampled along the maximum uncertainty axis
direction, using different training data bags.

The final decision approach is as follows: given a new incoming sample, each of the
equivalent robots will perform a prediction. A final prediction with its uncertainty assessment
will be given using all these predictions via a consensus strategy such as majority voting.
Ensemble classification and majority vote decisions are based on Condorcet’s jury theorem,
which is a political science theorem about the probability of a given group of individuals
arriving at a correct decision (Ladha, 1992). In the context of biomedical robots and ensemble
learning, it implies that the probability of being correct for a majority of independent voters
is higher than the probability of any of the individual voters, and tends to 1 when the number
of voters (or weak classifiers) tends to infinite. In this case the weak classifiers are any of
the biomedical robots of the ensemble that have a high predictive accuracy. These classifiers
are guaranteed to be independent since they use different high discriminatory set of features,
measured by their corresponding discriminatory power.

More in detail, the algorithm for building a biomedical robot consists in three main steps:
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1. Applying several filter methods to find different lists of high discriminatory features.

2. Establishing the predictive accuracy of these lists of features using a validation cost
function (cross-validation accurcay for instance) via any machine learning classifier
(like a k-Nearest-Neighbor k-NN). This sampling procedure of the prediction uncer-
tainty space aims at obtaining from these lists different biomedical robots with their
corresponding predictive accuracy. For that purpose we can use feature elimination
techniques and/or random sampling methodologies.

3. Selecting robots above a certain predictive accuracy (or below a given error tolerance)
and performing the consensus prediction through a voting system (like majority voting).

According to the definitions stated in (1.1), (1.2), (1.3), and (1.4) we can formally define
a biomedical robot as the set of classifiers:

Ltol = {L∗(fk) : k = 1, ...,m}, (1.6)

whose predictive error (the number of misclassified samples) is lower than a given bound
tol. The prediction problem with uncertainty estimation consists in, giving an incoming
sample snew, applying the set of Biomedical robots Ltol (with predictive accuracy higher than
(100− tol)%) and performing the consensus classification. Supposing that the uncertainty
analysis was correctly performed, this procedure also provides the uncertainty in the class
prediction. For instance if the class vector is composed by n classes, the probability of snew

to belong to class ci is calculated as the number of robots that predicted the sample to belong
to class ci divided by the total number of selected robots in the set Ltol .

1.3.6 Feature selection

Following the two first steps of the algorithm for building a biomedical robot, we present
in this section the methods we applied for filtering and selecting features and, consequently
form essential part of the biomedical robot.

There are different kind of feature selection methods. In the case of filter methods, the
feature selection and the classifier for the prediction are independent (uncoupled). However,
wrapper and embedded techniques are most sophisticated approaches where the selection is
the solution of an optimization problem; therefore selection and classification are coupled.
Wrapper and embedded methods usually involve the use of neural network, support vector
machines, decision trees and global optimization algorithms. Filter methods rank different
features according to different measures of their discriminatory power in phenotype prediction
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problems. Besides, filtering/ranking methods provide clear interpretation, low computational
cost, and the possibility of being applied to both, discrete and continuous variables. However,
other types of filtering/ranking algorithms could be used. A survey about feature selection
methods can be consulted in (Saeys et al., 2007). These algorithms can be easily generalized
for multiclass classification problems. A future work will be devoted to this important subject.
In the present case we did not need to tackle this problem since all the cases were modeled
as binary.

Firstly, features are first ranked according to different filter/ranking methods for binary
classification problems:

• Maximum Fisher’s ratio (Fisher, 1936; Yang and Mao, 2011): The Fisher’s ratio (FR)
of a feature j, in a two-class problem, c1,c2 , is defined as follows:

FR j(c1,c2) =
(µ j1 −µ j2)

2

σ2
j1 +σ2

j2
, (1.7)

where, µ j1, and µ j2 are measures of the center of the distribution (means) of feature j
in classes 1 and 2, and σ2

j1,and σ2
j2 are measures of the dispersion (variance) within

these classes. This method looks for prognostic features that separate the classes
further apart and are very homogeneous within classes (low intra class variance).

• Fold Change (Schena et al., 1996): The Fold Change (FC) of a feature j is defined as
follows:

f c j(c1,c2) = log2
µ j1

µ j2
(1.8)

where, µ j1, and µ j2 are measures of the center of the distribution (means) of feature j
in classes 1 and 2. This method selects features according to their absolute FC value
| f c j(c1,c2)|.

• Minimum class Entropy (Quinlan, 1993; Shannon, 1948): Entropy (EN) is a measure
of the number of specific ways in which a system may be rearranged, and it is often
considered a measure of disorder, or progression towards thermodynamic equilibrium.
In the case of a binary classification problem, the entropy of each feature is defined as
follows:

E j(c1,c2) =−
2

∑
k=1

Nc

∑
j=1

pk jlog2 pk j, (1.9)

where Nc are the number of bins used to describe the probability distribution of feature
j in class k, and pk j is the probability that this feature takes the center class value
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xk j. The algorithm to compute the entropy is based in ordering the features according
to their value and calculating the mismatch to the class vector. A perfect ordering
occurs when the values correspond perfectly to the class vector. Features with higher
ordering (or lower entropy) are therefore the most discriminatory. The algorithm used
for Entropy ranking in this PhD is a simpler modification of this method, and it is
based on the optimum order of prognostic feature with respect to the class vector.

• Maximum Percentile Distance (MPD): This a novel method proposed here in and it
is based on selecting the features with higher distances between the corresponding
cumulative probability functions (percentile array) within each class, defined for feature
j as follows:

d j(c1,c2) =
||ppp j1 − ppp j2||2

max(||ppp j1||2, ||ppp j2||2)
, (1.10)

where ppp ji stands for the percentile vector j in class i, and ||ppp ji||2 its Euclidean norm.
Percentiles vary from 5 to 95 to avoid the possible effect of outliers. This method
can be considered as a generalization of a Mann-Whitney selection test, which is only
based in the median (percentile 50).

• Significance Microarray Analysis (SAM Tusher et al. (2001)): SAM uses as score the
absolute difference between the means in both classes divided by the sum of the total
standard deviation (σT

j ) and a tunable exchangeability factor (σ j0) used to damp the
effect of outliers, that is, genes with very small σT

j that will bring an anomalous score:

SAM j(c1,c2) =
|µ j1 −µ j2|
σT

j +σ j0
. (1.11)

Once the most discriminatory features are determined and ranked in decreasing order by
their discriminatory power, the aim is to determine the shortest (having the smallest number
of features) list of prognostic features with the highest predictive accuracy. The algorithm to
find the minimum-size list of features we chose is the Backwards Feature Elimination (BFE),
which is similar to the Recursive Feature Elimination algorithm proposed by Guyon et al.
(2002). Feature elimination tries to unravel the existence of redundant or irrelevant features
to yield the smallest set of prognostic features that provide the greatest possible classification
accuracy.

The BFE algorithm works as follows:
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1. Beginning by the tail of the ranked list of prognostic features, the algorithm iteratively
generates increasingly shorter lists by eliminating one prognostic feature at a time,
calculating their classification accuracy.

2. Finally, the list with the optimum accuracy and minimum size is therefore selected.

This way of proceeding is based on the following idea: prognostic features with higher
discriminatory ratios span low frequency features of the classification, while features with
lowest discriminatory ratios account for the details in the discrimination (high frequency
features). This method determines the minimum amount of high frequency details that are
needed to optimally discriminate between classes.

For the predictive accuracy estimation, we applied a Leave One Out Cross-Validation
experiment (LOOCV), using the average distance of the reduced set of features to each
training class set. The goal of cross-validation is to estimate how accurately a predictive
model (classifier) will perform in practice. LOOCV involves using a single sample from the
original dataset as the validation data (sample test), and the remaining samples as training
data for each fold until all the samples were predicted. The class assignment is based in a
nearest-neighbor classifier in the reduced base, that is, the class with the minimum distance
in the reduced base to the sample test is assigned to the sample test. As the clinical data has a
heterogeneous character, the Euclidean distance is not always an appropriate metric, since it
works well with continuous attributes. Therefore, the average LOOCV predictive accuracy is
calculated by iterating over all the samples using the Heterogeneous Value Difference Metric
(HVDM) (Wilson and Martinez, 1997). This metric in the case of continuous variables
coincides with the Euclidean distance between the corresponding normalized variables. For
that purpose the weights used to normalize the variables are the inverse of two times the prior
variability (standard deviation) of the prognostic features. These weights serve to scale the
different kinds of measurements into approximately the same range in order to give to each
variable a similar influence on the overall distance measurement. The distance between a
new sample sssnew and the average signature mmm j in class j is:

d(sssnew,mmm j) = ||ω(sssnew −mmm j||2, (1.12)

where ω is a diagonal matrix with ω(k,k) = 1
2σk

, where σk is the standard deviation of the
k-th discriminatory prognostic variable. Although, other more sophisticated classifiers could
be used like SVM (Vapnik, 1995), ELM (Huang et al., 2006) or Proximal algorithms (Parikh
and Boyd, 2013), we decided to use the above explained classifier due to its simplicity and
clear interpretation.
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In this procedure the feature selection method is executed only once using all training
samples before estimating the accuracy by means of a leave-one-out procedure. For each
new sample the classifier computes the average distance to the training samples of each class,
being d1 the average distance to class 1, and d2 the average distance to class 2. Based on
these distances the probability of a new sample sssnew to be in class 1 can be written as:

P(sssnew ∈ c1) =
d2

d1 +d2
. (1.13)

The procedure to decide the class assignment is as follows:

sssnew ∈ c1 ⇐⇒ P(sssnew ∈ c1)> pth = 0.5. (1.14)

Otherwise, sssnew ∈ c2. The threshold probability pth can be considered as a continuous
variable to establish the Receiver Operator Characteristic (ROC) curve for this classifier
(Swets, 1996). Finally, the reduced base might be tested over different randomly chosen
training and testing dataset, and averaging the results over a set of independent simulations.

Although this simple classifier seems to be similar to a nearest neighbor algorithm (k-NN),
it is not obviously the same, since neither the centroid definition of the distributions, nor
the way of adopting the decisions coincide. Notice that in this process, the feature selection
method is executed only once using all training samples, before estimating the accuracy by
means of a leave-one-out procedure. Our goal is to study the effectiveness of feature selection
methods in finding the groups of prognosis variables with higher predictive accuracy. Also, if
the feature selection process was performed each time the classifier was executed (i.e. in each
of the folds of the leave-one-out), different sets of features would be obtained, thus, it would
more difficult to assess the goodness of any concrete group of prognosis features. The only
way will be performing frequency analysis of the selected prognostic variables and applying
BFE to this set of variables ranked by decreasing order of their posterior frequency. Besides,
since the accuracy is established by LOOCV the selected features within each fold of the
LOOCV will not be so different from selecting them using the whole dataset, considering
that the training set of each of fold in a LOOCV is composed by all the samples but one.

Finally, following the steps described in section 1.2 we presented above the results of
applying the developed methods to different types of biomedical data: Clinical and genetic
data. Then we present the sensitivity analysis of the methodology against the main sources
of noise and how is affected by the main preprocessing techniques. Finally, we describe the
results of applying Biomedical Robots to phenotype prediction problems.
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Application to clinical data

2.1 Introduction

Clinical data consists of health records, clinical trials or disease registries. They are usually
retrieved in hospitals or clinics by the specialist. They have an heterogeneity character and
they frequently present different sampling frequency. Namely, they express different values
in different measures with different bounds, and they are not usually available in all the
samples/patients, that is, there are some clinical data that have not been retrieved for some
patients. These heterogeneity makes data preprocessing techniques the clue for solving
the problem. It will be of paramount importance finding the appropriate normalizing and
imputing methods in order to correctly address problems related to clinical data.

Following the steps described in section 1.3.5, ”we developed and applied different
learning, dimensionality reduction, global optimization and classification algorithms to
clinical data gathered in different hospitals”. Firstly, we tackled the prediction of two
decision making problems that are very common on patients with Chronic Lymphocytic
Leukemia: The need of chemotherapy treatment, and the Autoimmune disease occurrence.
This work in collaboration with Cabueñes Hospital (Gijón, Asturias, Spain), was reflected in
a paper called: ”Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia
decision-making problems”. Secondly, in collaboration with eight hospitals in Asturias we
addressed the prediction of the treatment response in patients with Hodgkin Lymphoma. As a
result we published a manuscript titled ”On the prediction of Hodgkin Lymphoma treatment
response”. In both cases we developed and applied the different classification and feature
selection algorithms described in section 1.3.6. In the case of Hodgkin Lymphoma we also
applied optimization techniques that allowed us to improve the classifier, taking into account
the confusion matrix and the ROC curve. The simplicity of these methods in both cases, gave
us the possibility of implementing them in platforms like spreadsheets, as well as, allowing
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an easy understanding for medical doctors. This is the cornerstone of the whole methodology
and the key for taking the results of the research work to the hospital and laboratory side
(translational medicine).

This chapter is structured in three parts. Firstly we present the common methodology
applied in both practical cases: Chronic Lymphocytic Leukemia and Hodgkin Lymphoma.
Secondly we introduce the problems addressed for the Chronic Lymphocytic Leukemia and
present the results and conclusions. Finally, we proceed in the same way with the Hodgkin
Lymphoma case.

2.2 Methodology applied to both practical cases using clin-
ical data

The common methodology applied in both practical cases is composed of three main steps:
(1) Data pre-processing, (2) Feature selection and (3) Risk assessment. Figure 2.1 shows
the flowchart of the methodology. Moreover, an additional step only applied in the case of
Hodgkin Lymphoma, is shown in dashed box. The feature selection step is explained in
detail in section 1.3.6.
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Fig. 2.1 Flow diagram for the prediction model. The methodology is composed of three
steps: 1) Data pre-processing, 2) Feature selection and 3) Risk assessment. ROC-based PSO
classifier optimization step is only applied in the case of Hodgkin Lymphoma. The different
sub steps are also detailed.

2.2.1 Data pre-processing

Data preprocessing is applied to improve the quality of data used for performing feature
selection, prediction and optimization. It includes two main sub steps that can be applied or
not depending on their impact on the prediction:

• Filtering: All the features that had certain number of missing values (sampling fre-
quency) are removed. The filtering cut offs used were 30, 40 and 50%.

• Imputation: This technique consists in interpolating all the missing values using a
Nearest-Neighbor algorithm (Troyanskaya et al., 2001). Given a partially-informed
sample (with missing values) the algorithm finds the closest sample within the set of
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fully-informed samples and gives the values of the missing variables in this closest
sample to the imputed sample. The similarity between samples is measured using
the standard Euclidean dot product in N-dimensional vector spaces, where N is the
number of fully-informed variables. This way of interpolation has the advantage
of not introducing additional outliers that are not originally present in the dataset
before imputation. Although the success of the different imputed algorithms might be
data-driven, imputing the data improved the accuracy in the predictions and did not
alter the prognostic variables that were involved providing shorter lists with higher
discriminatory power.

The imputation algorithm is as follows:

1. Finding the subset S f i of samples (patients) that are fully-informed for all the
control variables.

2. For each patient k that is not fully-informed, finding the set of variables mk(var1 :
varq) that are missed. These variables are interpolated using the values of the
same variables corresponding to the nearest fully-informed patient fk in S f i:

m∗
k(var1 : varq) = m fk(var1 : varq).

3. To measure the similarity between patients we use the cosine criterion induced
by the Euclidean scalar product defined over the set of fully-informed variables
in the current sample (patient):

cos(mk,m j) =
mk ·m j

∥mk∥2∥m j∥2
,

where mk and m j stand for the vectors of fully-informed variables in patients k
and j.

2.2.2 Risk assessment

In the feature selection step (see section 1.3.6), maximizing the predictive accuracy according
to the LOOCV criterion allowed to determine the best reduced base of prognostic variables.
However, it is also important to analyze the confusion matrix, obtained from the set of
predictions of the training set using the LOOCV method. The confusion matrix is composed
by: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).
From the confusion matrix we can calculate different rates that are very useful to understand
the risk in the prediction:
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• True Positive Rate or Sensitivity (TPR): measures the proportion of actual positives
that are correctly predicted as such.

• True Negative Rate or Specificity (SPC): measures the proportion of negatives that are
correctly predicted as such.

• Positive Predicted Value (PPV): is the proportion of positives values that are true
positives.

• False Positive Rate (FPR): fraction of false positives out of the total actual negatives.

• False Negative Rate (FNR): fraction of false negatives out of the total actual positives.

• False Discovery Rate (FDR): fraction of false positives out of the total actual positives.

Based in these rates it is possible to construct a Receiver Operating Characteristic curve (or
ROC curve), which is a graphical plot that illustrates the performance of a binary classifier as
a function of the cut-off probability. This idea allowed us to create a ROC methodology for
this simple distance-based classifier. The curve is created by plotting the TPR against the
FPR or fall-out. A perfect classifier has as ROC curve the step function at the origin. ROC
analysis is related to cost/benefit analysis of diagnosis/prognosis/treatment decision making.
TPR and SPC values are important due to the impact on the patients of the decision taken by
physicians.

The selected attributes are used to provide simple biomedical discriminatory rules for
diagnosis and prognosis since for each classification problem we provide the bounds for the
four groups of the confusion matrix. This knowledge can be used by the physicians in their
decision-making process. Additionally to the LOOCV results, we also performed the mean
accuracy obtained for 100 random holdouts 75/25 (75% for training and 25% for testing).
In any case, and independently of how the predictive accuracy is established, it is crucially
important to understand that there exist different combinations of prognostic variables with
similar predictive accuracy whose knowledge might be useful to understand the genesis of the
problem from a medical point of view. The existence of these different lists is related to the
uncertainty analysis of the solutions in any decision-making problem (Fernández-Martínez
et al., 2012, 2013).

It is possible to optimize the TPR and/or TNR (improving at the same time the overall
predictive accuracy) by optimizing the parameters of the classifier. The idea is to bal-
ance/improve the confusion matrix by optimizing the prior weights assigned by the HVDM
metric to the best reduced-base that has been found applying the LOOCV approach. This
optimization was performed in the Hodgkin Lymphoma problem via a powerful family of
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Particle Swarm Optimizers (PSO, Fernández-Martínez and García Gonzalo (2008); Kennedy
and Eberhart (1995)).

Finally, it is remarkable the simplicity of the methodology of selecting the shortest list of
prognostic variables that could be easily interpreted by medical doctors to perform prognostic
predictions with their corresponding risk assessment. The success of the methodology is not
based on the sophistication of the classifier but on selecting the most discriminatory variables
in each case and building the classifier based on these variables. By selecting the most
important prognostic variables, it has been shown that the classification problem approximates
a linear separable behavior. This is also a novel result since the methodology currently used
(for instance SVM) acts on the opposite direction by transforming the data into an infinite
dimensional feature space where the problem becomes linearly separable. An illustration of
this idea is that a polynomial function of the type f (x,y)= a0+a1x+a2y+a3xy+a4x2+a5y2

becomes an hyperplane in R6 if the terms in xy, x2 and y2 are considered independent
variables.

2.3 Analysis of clinical prognostic variables for Chronic
Lymphocytic Leukemia decision-making problems

In this research work we show how using the methodology explained in section 2.2 and clini-
cal data obtained from a large population of well-studied Chronic Lymphocytic Leukemia
patients (Gonzalez-Rodriguez et al., 2010) can be efficiently applied to address diagnosis
problems in medical practice by capturing the hidden implicit relationships between the clin-
ical variables and the corresponding class of the different patients that have been established
by medical experts. The problems to be addressed are the need of chemotherapy treatment
and the autoimmune disease development, thereby optimizing the treatment and diagnosis.
This work has been published in the ”Journal of Biomedical Informatics” (see Appendix
A.1).

2.3.1 Introduction to Chronic Lymphocytic Leukemia related prob-
lems

Chronic Lymphocytic Leukemia (CLL) is the most common adult Leukemia in western
countries, and it is characterized by the accumulation of malignant B-cells in blood and lym-
phoid organs. The clinical course of CLL is highly heterogeneous since the survival of some
patients is only slightly affected by the disease, whereas other patients have a progressive
disease associated with infectious and autoimmune complications. These progressive patients
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have poor prognosis, but they could benefit from an earlier or more intense chemotherapeutic
treatment. It has been reported that many poor prognostic factors, due to their high cost
and complexity, are not used in most hospitals on regular basis. To overcome this problem
in the clinical practice staging systems using few, simple, cheap and accessible clinical
variables have been popularized. The Rai staging system (Rai et al., 1975) and the Binet
classification (Binet et al., 1981) are useful to predict the prognosis of CLL patients, to
stratify them, and to achieve comparisons for interpreting specific treatment results. Staging
systems stratify subsets of patients who have significant differences in the overall survival
but they fail to identify patients who have a high risk of progression in early stages of the
disease. Additionally, no current prognostic factors exist to predict the development of some
severe complications such as the development of Autoimmune Diseases (AD), or the need
for Chemotherapy Treatment (CT). Consequently, the identification of currently available
clinical variables to assess the medical decisions in these CLL-related diagnosis problems is
a key goal in the management of this disease.

The development of AD or the need of CT is not known at diagnosis. So far, only with
the evolution of the patient during the 5 years follow up, medical doctors can answer these
questions. Therefore, the interest of the methodology previously presented consists of being
able to predict both CLL related problems at diagnosis. Particularly, AD problem was very
hard to predict, and up to our knowledge no previous research was successful to explain this
phenomenon using biochemical variables.

2.3.2 CLL clinical data

The CLL clinical data we managed were a cohort of two hundred sixty-five Caucasians
who were diagnosed in the Cabueñes Hospital (Gijón, Spain) with CLL between 1997
and 2009. The population distribution by gender and age was the following: 154 males
and 111 females, with ages ranging from 42 to 92, and 47 to 94 years old respectively.
Clinical characteristics of patients including time for diagnosis to first treatment, need of
chemotherapy treatment and appearance of autoimmune complications were also taken into
account in this study. Additionally, thirty-six different clinical and biological variables were
measured at diagnosis of the disease. Table 2.1 shows the variables description used in
this study. Some variables reflect the malignant characteristic of leukemia cells; others
measure the immunological characteristics of CLL patients, and some may be associated
with the presence or development of autoimmune complications (autoimmune haemolytic
anemia and immune-thrombocytopenia). Finally, some of the variables are demographic
and biochemical. Most of them have a sampling frequency higher than 80%, however, the
reticulocyte count (RET) and ZAP-70 are the ones that show the lowest sampling frequency.
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Particularly, ZAP-70 is only sampled in 21.9% of the patients (58 out of 265), showing that
this popular CLL prognostic factor is not always available in medical practice. Although
some of these variables were not at disposal at diagnosis (LD for instance), they have been
used for analytical purposes.

2.3.3 CLL results for Chemotherapy treatment

In CLL , there can be some patients that have an indolent disease and they do not require CT.
Other patients who present a progressive disease may require an intense CT. The identification
of those patients at early stages of the disease with a high risk of rapid disease progression
may help to significantly improve their prognosis. Thus, we try to establish the prognostic
variables and criteria to assess the need for CT, assuming that the clinical decisions on the 71
(out of 259, therefore there are 6 missing values since the total cohort is 265) patients that
have received CT were correct.

Using the methodology explained in section 2.2 we found that Fisher’s ratio ranking
method provided the minimum-size set of prognostic variables with the highest accuracy
of 80.3%: B2M, WBC, ALC and MBC. The True Positives (TP) are formed by the group
of patients that need CT (+) and are correctly predicted, and the True Negatives (TN) are
formed by the groups of patients that do not need CT (-) and are correctly predicted. Thus,
False Positives (FP) are the patients that do not need CT (-) and are not correctly predicted
and False Negative (FN) are the patients that need CT (+) and are not correctly predicted.

Figure 2.2 shows the ROC curve and the Recall (or True Positive Rate -TPR) against
Precision (or Positive Predicted Value - PPV) curves for several probability thresholds in the
CT classification problem. The optimum result (pth = 0.47) shows that 63.4% (TPR) of the
patients that need CT and 86.7% (True Negative Rate or Specificity - SPC) of the patients
that do not need CT were correctly predicted. Besides, with that probability threshold we got
a Precision (or Positive Predicted Value - PPV) of 64.3%. Nevertheless, other probability
thresholds could be adopted depending on the Recall/Specificity balance, and therefore on
the PPV as well. The False Discovery Rate (FDR) was 36.62%. The confusion matrix is
shown below:

(
T P FP
FN T N

)
=

(
45 25
26 163

)
(2.1)

CT is recommended in patients with advanced and progressive disease. Thus, the
amount of malignant leukemia cells that it is measured by the different counts of leucocytes;
particularly WBC (White Blood Cells count), ALC (Absolute Lymphocyte Count) and MBC
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Table 2.1 Clinical variables description by group and their corresponding symbols and
sampling frequency (Samp. Freq.). Discrete variables are shown in bold faces.

Group Variable Name Samp. Freq.

B
io

ch
em

ic
al

ALB - Albumin (g/L) 98.49%
ALC - Absolute Lymphocyte Count (cells/microL) 100.00%
ALP - Alkaline phosphatase (U/L) 95.47%
B2M - Beta 2 Microglobulin (mg/L) 93.58%
BU - Bilirubin (mg/dL) 96.23%
CR - Creatinine (mg/dL) 99.62%
GOT - Glutamic-Oxaloacetic Transaminase (U/L) 98.11%
GPT - Glutamic-Pyruvic Transaminase (U/L) 99.25%
HGB - Hemoglobin (g/dL) 100.00%
IgA - Immunoglobulin A (g/L) 96.60%
IgG - Immunoglobulin G (g/L) 96.60%
IgM - Immunoglobulin M (g/L) 96.60%
K - Potasium (mEq/L) 90.94%
LDH - Lactate Dehydrogenase (U/L) 96.98%
MBC - Monoclonal B cell Count (cells/microL) 90.94%
MCV - Mean Corpuscular Volume (fl) 100.00%
NA (mEq/L)- Sodium 90.57%
NCC - Natural killer Cell Count (cells/microL) 90.94%
PLT - Platelets (cells/microL) 100.00%
RET - Reticulocyte count (cells/microL) 75.47%
SNC - Segmented Neutrophils Count (cells/microL) 100.00%
T8C - CD8 T cell Count (cells/microL) 86.42%
TLC - Total Lymphocyte Count, CD8 + CD4 (cells/microL) 96.60%
UA - Uric acid (mg/dL) 97.36%
UR - Urea (mg/dL) 99.25%
WBC - White Blood cells Count (cells/microL) 100.00%

C
L

L
Sp

ec
ifi

c

CD38 - CD38 positive 81.51%
COOMBS - Coombs test 94.34%
LD - Time for duplication of the number of lymphocytes 96.98%
MOR - Morphology 98.49%
MP - Monoclonal Peak 98.87%
NLymph - Number of affected lymph nodes 99.62%
SMG - Splenomegaly 99.62%
ZAP70 - Zeta-chain-associated protein kinase 70 (%) 21.89%

Personal
AGE - Age 100.00%
SEX - Sex 100.00%
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Fig. 2.2 A) ROC curve. B) Sensitivity (or True Positive Rate -TPR) and Precision (or Positive
Predicted Value - PPV) for Chemotherapy Treatment. The optimum result (T PR = 63.4 and
PPV = 64.3) is obtained for pth = 0.47.

(Monoclonal B Cell Count) are key clinical parameters. Nevertheless, these variables are
not currently used to select patients who may benefit from CT. On the other hand, AGE,
B2M and ZAP70 are traditional clinical parameters that have demonstrated their prognostic
importance independently of the clinical stage. Our results also indicated the great prognostic
significance of variables that are mainly related with the characteristics of the immune system
and are not currently used as prognostic markers in this disease.

Table 2.2 shows the median/mean signatures for the 4 groups of the confusion matrix
for the main decision variables found by the methodology. We can observe that there exists
a significant distance between the mean signatures of the TP and TN groups, being the
median/mean signatures in all the decision variables much higher in the TP group. Moreover,
the distance between the median and the mean values of the decision variable distributions is
much higher in the TP and in the FP groups, meaning a higher variability in these groups.
The mean signatures of the FN group (patients that need CT and are incorrectly predicted)
are very close to the mean signatures of the TN group. These patients will never be correctly
predicted according to this classifier.

To understand the ambiguity in the CT prediction, it should be taken into account that the
criteria used to establish the need of CT (Hallek et al., 2008) sometimes have not correlation
with the biological data. The reason is that some patients are diagnosed in early stages
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Table 2.2 Chemotherapy Treatment.

Variables TP TN FP FN
B2M 3.9 / 4.24 2.06 / 2.15 4.37 / 4.58 2.0 / 2.18
WBC (K) 34.1 / 61.8 14.3 / 16.8 18.3 / 28.3 14.2 / 15.5
ALC (K) 24.7 / 47.6 9.0 / 11.2 12.4 / 21.8 8.5 / 10.4
MBC (K) 21.7 / 40.3 6.1 / 8.4 10.1 / 18.4 6.9 / 7.8

This table shows the list of most discriminatory variables with a predictive accuracy of
80.3%. Median and mean values (median/mean) of the prognostic variables for the different
groups of the confusion matrix are also given. Variables with (K) are expressed in kilo units.
Bold faces indicate the highest value for each prognostic variable in the TP and TN groups.
Bounds for the decision correspond to the TP and TN groups.

of the disease when a low burden tumor mass has been detected but they have a very fast
progression which implies the need of CT.

2.3.4 CLL results for Autoimmune Disease development

In CLL, an autoimmune response against red blood cells (known as autoimmune haemolytic
anemia), and an autoimmune response against platelets (known as immune thrombocytopenia)
are severe complication of this disease. To the best of our knowledge no prognostic factors
capable to predict the presence or development of an autoimmune disease in CLL patients
have been currently disclosed. In our cohort only 16 patients (out of 263, therefore there
are 2 missing values since the total cohort is 265) have shown autoimmune disorders. This
classification problem is highly unbalanced, corresponding to the genesis of the disorder.
The classifier has to be able to learn this fact. Some strategies exist to artificially balance
the training data set (Chawla et al., 2002; Estabrooks et al., 2004; He et al., 2008; Liu et al.,
2006; Ting, 2002), but in this case the results did not improve.

The shortest list of prognostic variables with the highest accuracy (97.3%) was found by
the Fisher’s ratio method and includes 13 clinical variables: PLT, RET, ALB, HGB, BU, UR,
MCV, NCC, K, WBC, LDH, ALC and MBC. The True Positives (TP) group is formed in this
case by the patients that present AD (+) and are correctly predicted and True Negatives (TN)
correspond to the patients that do not have AD (-) and are correctly predicted. Similarly, the
False Positives (FP) are the patients that do not have AD (-) and are not correctly predicted
and the False Negatives (FN) correspond to the patients that present AD (+) and are not
correctly predicted.

Figure 2.3 shows the ROC and the Recall (or True Positive Rate -TPR) against Precision
(or Positive Predicted Value - PPV) curves throughout all possible probability thresholds for
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the AD classification problem. The optimum result (pth = 0.5) shows that 62.5% (TPR) of
the patients that have AD and 99.6% (True Negative Rate or Specificity - SPC) of the patients
that do not have AD are correctly predicted. Moreover, over that probability threshold we
get a Precision (or Positive Predicted Value - PPV) of 90.1%. However, other probability
thresholds could be adopted depending on the Recall/Specificity balance, and therefore on
the PPV as well. The False Discovery Rate (FDR) in this case is 9.1%. The confusion matrix
is the following one:

(
T P FP
FN T N

)
=

(
10 1
6 246

)
(2.2)

Fig. 2.3 A) ROC curve. B) Sensitivity (or True Positive Rate -TPR) and Precision (or
Positive Predicted Value - PPV) for Autoimmune Disease occurrence. The optimum result
(T PR = 62.5 and PPV = 90.1) is obtained for pth = 0.5.

Table 2.3 shows the medians and means for the 13 prognostic variables for the 4 groups
of the confusion matrix. The differences between the means in TP and TN groups decrease
with the Fisher’s ratio. Prognostic variables with lower Fisher’s ratios (secondary variables)
also contribute to improve the discrimination. Except for the main variable, PLT, and the
secondary variables HGB and K, the mean and median values are higher in the group with
autoimmune disease (TP). The analysis of the two main prognostic variables shows that
patients that develop AD and are correctly predicted (TP) have much lower medians and
means PLT values (97.7/95.0 Kcells/microL). The normal platelet count lays in the range 150-
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Table 2.3 Autoimmune disease development.

Variables TP TN FP FN
PLT (K) 97.7 / 95.0 191 / 202.2 138 163 /147.2
RET (K) 128.0 / 135.7 67.2 / 69.8 101.3 54.4 /71.8
ALB 42.0 / 40.4 38.0 / 37.4 41.1 39 /39.7
HGB 14.0 / 11.5 14.0 / 13.6 13.6 14 / 13
BU 1.0 / 1.1 1.0 / 0.6 0.6 1.0 /0.76
UR 52.0 / 64.1 43 / 46.7 49 42 /43.7
MCV 93.0 / 98.1 90 / 89.6 88.9 87 /86.7
NCC 966 / 2251 576 / 741 1657 338 /393.4
K 4.0 / 4.09 4.0 / 4.33 4.0 4.0 /4.33
WBC (K) 23.1 / 56.0 15.4 / 24.7 23.6 13.5 /13.9
LDH 360 / 398.1 325 / 343.4 288 333 / 333
ALC (K) 16.1 / 42.2 10.1/ 17.8 18.4 8.5 / 6.7
MBC (K) 10.2 / 36.3 7.3 / 14.2 14.7 5.2 / 4.6

This table shows the list of most discriminatory variables with a predictive accuracy of
97.3%. Median and mean (median/mean) values of the prognostic variables for the different
groups of the confusion matrix are also given. FP is composed only by 1 sample (median
and mean coincides). Variables with (K) are expressed in kilo units. Bold faces indicate the
highest value for each prognostic variable in the TP and TN groups. Bounds for the decision
correspond to the TP and TN groups.

450 Kcells/microL, being the average 237 Kcells/microL in men, and 266 in women. On the
other hand, the reticulocyte count (RET) in the TP group almost doubles (136 Kcells/microL)
the average RET count in patients with no AD (70 Kcells/microL). Median values also show
similar tendencies.

The False Positives (FP group) is composed in this case only by 1 sample, whose signature
is closer for all the 13 variables to the TP group, except for PLT, RET that are somewhere
in between the median/mean values for TP and TN. This fact points out the difficulty of
classifying this sample, and it can be proposed as a ”biological” outlier. On the other hand,
the FN group is composed by 6 samples. The mean PLT count (147 Kcells/microL) of
the FN group lies between the mean value for the TP (95 Kcells/microL) and TN (202.2
Kcells/microL) groups. The RET count is however closer to the TN group showing a tendency
to very low median values (54.4 Kcells/microL).

These results show the importance of variables associated with the characteristics of
platelets and red cells, which are the main targets of the autoimmune haemolytic anemia and
immune thrombocytopenia, such as PLT, HGB, MCV and RET. Other variables depend on
the presence of autoantibodies or products or symptoms derived from the lysis of blood cells
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(BU and LDH). Moreover, some variables associated with the immunological characteristics
of patients, such as NCC, constitute a relevant subset of variables that may predict an
autoimmune disease occurrence. The association of these variables with an autoimmune
disease is not unexpected based on the biology of CLL, but we would like to highlight that
no prognostic factors or system may currently predict the development of an autoimmune
disease in the clinical practice. To the best of our knowledge this is the first description so
far that a group of clinical variables obtained at diagnosis of CLL patients may predict an
occurrence of an autoimmune disease.

2.3.5 Conclusions for CLL related problems

Table 2.4 summarizes the main results found for both classification problems (CT and AD):
the optimum reduced set of features, the LOOCV accuracy, the Hold Out (HO) mean accuracy
over 100 different random simulations using 75% and 25% of samples for training and testing
the Sensitivity or True Positive Rate (TPR), and the Specificity or True Negative Rate (SPC)
statistics.

Table 2.4 Summary of the results.

Problem Variables TPR / SPC LOO Acc. HO-100 Acc.
CT(+) Vs. B2M WBC

63.4% / 86.7% 80.30% 76.10%
No CT (-) ALC MBC

AD (+) PLT RET ALB HGB
62.5% / 99.6% 97.30% 92.80%Vs. BU UR MCV NCC

No AD (-) K WBC LDH ALC MBC
Sensitivity or True Positive Rate (TPR) and Specificity or True Negative Rate (SPC) together
with the mean accuracy (Acc.) for both experiments leave one out (LOO) and 100 repetitions
of a hold-out 75/25 (HO, 75% for training and 25% for testing); and the positive and negative
case description of each problem. Bold face indicates the prognostic variables that have been
discussed in the text.

The results show that the accuracies are rather high and the difference between both
experiments LOOCV and 100 repetitions of a Hold Out (75/25) is quite low, which highlights
the robustness of the methodology. In addition, risk assessment ROC curves are provided for
each problem and show a good balance between False Positives and False Negatives.

From a medical point of view, the methodology allow the identification of clinical
variables obtained at diagnosis of CLL patients, which may predict the development of AD
and the need of CT. These variables were obtained at diagnosis of CLL patients on a regular
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basis, and consequently, their use does not increase the cost or complexity of the diagnosis in
CLL patients.

The need of CT seems to be related to the amount of malignant leukemia cells that
are measured by the different leucocytes counts. Although the results concerning these
prognostic variables (B2M, WBC, ALC and MBC) are well known in other plasma disorders,
this analysis served to conclude that these variables only carry partial information to adopt
this important decision, that most of the times, is taken based on criteria that have not
correlation with the biological data.

To the best of our knowledge this is the first description so far that a group of clinical
variables obtained at diagnosis of CLL patients may predict an occurrence of an AD, which
is a severe and currently unpredictable complication. These results show the importance
of variables associated with the characteristics of platelets, reticulocytes and natural killers
(PLT, RET and NCC), which are the main targets of the autoimmune haemolytic anemia and
immune thrombocytopenia.

Additionally, the methodology focuses on the relevance of some variables, such as the
immunological ones, which may have an important impact on the prognosis of CLL patients,
but they are not currently used by hematologists. This analysis has also shown that the low
sampling frequency of RET and ZAP-70 could be troubling given their predictive significance
in all the problems that have been treated: RET is a key factor for predicting AD, whilst
ZAP-70 seems to be important for predicting the need of CT.

In conclusion,the methodology allow an easy accurate prediction of risk in CLL related
problems. Moreover, it may establish the relevance of clinical variables that are not widely
used as prognostic factor in this disease. The prognostic significance of these variables may
probably reflect the relevance of some clinical aspects of this disease that are more important
for prognosis than it is currently thought.

This methodology can be adapted to different pathologies as it is shown for the case of
Hodgkin Lymphoma.

2.3.6 Additional results for survival analysis

Survival analysis is a branch of the applied mathematics that attempts to answer what
is the proportion of a population that will survive past a certain time and which are the
particular features or characteristics that influence the probability of survival. Particularly
the population can include different sub-cohorts with different survival times. The object
of primary interest is the survival function S(t) = P(T > t) which is the probability that
the death time T exceeds a given time threshold t. Moreofver, in survival studies it is also
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important the force of mortality or hazard function that provides the instantaneous rate of
occurrence of the death.

The Kaplan-Meier estimator (Kaplan and Meier, 1958) can be used to estimate the
survival function from lifetime data. The Kaplan-Meier estimator with a large enough sample
size approaches the true survival function of a population. For a sample of size N of a
population with observed times until death t1 ≤ t2 ≤ ·· · ≤ tN , the Kaplan-Meier estimator of
the survival function is:

S∗(t) = ∏
ti<t

ni −di

ni
,

where ni is the number of survivors prior to time ti (when there is no censoring) and di the
number of deaths at time ti.

Censoring occurs if a patient withdraws from a study, is lost to follow-up, or is alive
without event occurrence at last follow-up. The Kaplan-Meier estimator can be easily adapted
to this case taking ni as the number of survivors minus the number of censored cases. Kaplan-
Meier curves are often used in medical research to measure the fraction of patients living
for a certain amount of time after treatment, or to perform the segmentation of a population
into subpopulations with different survival times. In our case the aim consists in finding
the prognostic variables that better explain the different survival of the CLL population at
different time thresholds: 1, 3 and 5 years.

Logistic regression is usually applied to predict survival times. It was developed by
D.Cox (1958) to estimate the probability of a binary response based on a set of features. The
logistic regression is just a linear regression of the logit of the probability:

logit(pi) = ln
pi

1− pi
= α0 +α1xi1 +α2xi2 + · · ·+αnxin,

where (xi1,xi2, . . . ,xin) are the attribute values of the sample i and pi its (survival) probability,
and α = (α0,α1, . . . ,αn). The logistic regression implies the solution of the linear system of
the kind:




1 x11 x12 . . . x1n

1 x21 x12 . . . x1n
...

1 xm1 xm2 . . . xmn







α1

α2
...

αn




=




logit(p1)

logit(p2)
...

logit(pn)




As any regression problem, logistic regression is ill-posed, that is, there exist different
set of features or attributes providing a similar predictive accuracy. In addition, all the
equivalent features are located for a given error tolerance within the linear hyper-quadric
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(Fernández-Martínez et al., 2012, 2013). Moreover, the ill-condition character of the logistic
regression inverse problem comes from the fact that not all the attributes from the samples
are relevant for the prediction. In diagnosis, it is important not only finding the optimum
prediction of pi, but also learning which are the most predictive discriminatory variables.

We approach this problem as a binary classification problem, that is, given a survival
time threshold (1, 3 or 5 years in this case) we divide the population into two classes:
the ones that survived more than this time threshold, and the ones that did perish before.
Censoring is automatically performed since the individuals that are censored are not taken
into consideration for the analysis.

One-year survival

This is a highly unbalanced problem since only 18 patients died (out of 265) during the first
year. However, the identification of the subset of patients with risk of such severe disease
progression has obviously important clinical consequences. The best prediction was achieved
using the following ranking methods and variables: 1. Entropy (94.3%): LD, CD38, SEX; 2.
Fisher’s ratio (94%): NLymph, MP, MOR and LD; 3. Maximum Percentile Distance (94%):
NLymph, MP, LD and SMG. Particularly, the number of affected lymph nodes (NLymph)
in patients who died during the first year was higher compared with the ones that survived.
Table 2.5 shows a brief description of the selected variables.

Variables Survive Not Survive Description
LD 1.8 1.77 1 - Positive / 2 - Negative

CD38 1.7 1.55 1 - Positive / 2 - Negative
SEX 1.42 1.33 1 - Male / 2 - Female

NLymph 0.64 1.62 0 - 3 affected lymph nodes
MP 1.11 1.38 1 - Positive / 2 - Negative

MOR 1.14 1.27 1 - Typical / 2 - Atypical
SMG 1.84 1.66 1 - Splenomegaly / 2 - No splenomegaly

Table 2.5 Variable Selection for one-year survival. Figures shows mean values.

Three-year survival

The aim, in this case, was to find the most important features that allow a certain patient to
overtake 3-years survival. This is a highly unbalanced problem as well, since the number of
deaths (34) is far from the number of survivors (231). We also show the comparison with
best prognostic variables for 1 and 5-year survival. The shortest subset of features with the
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highest accuracy (93.2%) was found by the Fisher’s ratio method, and it was composed of 8
prognostic variables: B2M, AGE, HGB, ALP, UR, LDH. Table 2.6 shows the median and
the IQR values for the main variables previously commented.

Variables Survive Not Survive
B2M 2.2 / 1.2 3.8 / 4.7
AGE 71 / 12 80 / 16
HGB 14 / 2 12 / 3.5
ALP 64 / 28 80 / 50
UR 43 / 15 53.5 / 18

LDH 321 / 72.7 385 / 129
Table 2.6 Variable Selection for three-year survival. Figures shows Median / Interquartile
range (IQR).

As in the CT problem the most discriminatory prognostic variable is beta-2 microglobulin
(B2M). Higher median values correspond to the patients that according to the classifier will
not survive more than three years. As it was already mentioned, elevated values (>4 mg/L) of
B2M is an indicator of poor survival prognosis for multiple myeloma and lymphoma (Hallek
et al., 1996). In this group we can also observe levels of hemoglobin lower than the normal
HGB range (11-15 g/dL). Also, the median and mean LDH values are abnormally high with
respect to its normal range (105-333 U/L). LDH is a protein linked to tumor initiation and
metabolism, therefore, patients who have abnormally high levels of LDH could develop more
rapidly the disease and die during the first three years.

Figure 2.4 shows the ROC curve and Sensitivity (or True Positive Rate -TPR) against
Specificity (or True Negative Rate -SPC) throughout all possible probability thresholds
for 3-year survival classification problem. The optimum result, obtained for a probability
threshold of 0.48 shows that 99.1% of the patients that survive and 53% of the patients that
do not survive during the first 3 years are correctly predicted. Nevertheless, other probability
thresholds could be adopted depending on the TPR/SPC balance. The FDR in this case (False
Discovery Rate) is 6.5%.
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Fig. 2.4 A) ROC curve. B) Sensitivity (or True Positive Rate - TPR) and Specificity (or
True Negative Rate - SPC) for 3-year survival. The optimum result (TPR = 99.1 and SPC =
53) is obtained for pth = 0.48. Nevertheless, other probability thresholds could be adopted
depending on the TPR/SPC balance.

Five-year survival

For the five-year survival problem the difference between the number of dead and survivors
was lower but still unbalanced (58 dead and 207 survivors). Fisher’s ratio method obtained
the best subset of variables in terms of accuracy (85.6%): AGE, B2M, HGB, ALB, ALP, UR
and LDH. The entropy method also found a group of variables composed of 6 prognostic
variables with similar accuracy (82.3%): B2M, AGE, LDH, GOT, GPT and ALP. Table
2.7 shows the difference between the median and IQR values of those biomarkers. Notice
that variables with very similar median and IQR figures (GOT and GPT) are obtained from
methods that do not take into account neither median nor IQR values (Entropy).
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Variables Survive Not Survive
AGE 71 / 13.5 80 / 11
B2M 2.18 / 2.21 3 / 3.04
HGB 14 / 1.8 12.4 / 2.5
ALB 39 / 5.5 35 / 5
ALP 65 / 27.7 73 / 51
LDH 320 / 72.7 361 / 102
UR 42 / 15 51 / 17

GOT 22 / 6.7 22 / 11
GPT 20 / 8 19 / 13

Table 2.7 Variable selection for five-year survival. Two groups of variables are shown. First,
the main reduced base with the highest accuracy (85.6%) and below, other relevant variables
obtained with Entropy method. Figures shows Median / Interquartile range (IQR).

Overall, the results obtained for prediction of three- and five-years survival coincide. Of
note, some new variables related with the renal or hepatic function, such as UR, GOT, GPT
and ALP, which are not frequently altered in CLL patients also affect their survival. These
variables are affected by co-morbidities of these organs or by the invasion of the kidney
or liver by leukemia cells; and these results suggest that the adequate identification and
treatment of these complications may play a more important role in the survival of CLL
patients than expected.

2.4 On the prediction of Hodgkin Lymphoma treatment
response

In this case the methodology was applied to figure out prognostic variables for Hodgkin
Lymphoma treatment response using the clinical data of a retrospective study of a cohort of
263 caucasians. Besides, in this case the methodology incorporates the weight optimization
of the classifier according to the ROC curve to improve risk assessment in the decision-
making process, that is, to provide a very high predictive accuracy with an optimum balance
between the different rates of the confusion matrix (the true-positive and false-positive rates
defining the corresponding ROC curve). The aim is to find the shortest list of clinical variables
providing the highest predictive accuracy for Hodgkin lymphoma first-line treatment response
(at diagnosis). Therefore, we could use the results to the treatment of Hodgkin Lymphoma
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patients. This work has been published in the journal ”Clinical & Translational Oncology ”
(see Appendix A.2).

2.4.1 Introduction to Hodgkin Lymphoma treatment response

Hodgkin lymphoma (HL) is characterized by the presence of the so-called malignant Reed-
Sternberg cells, surrounded by an inflammatory infiltrate consisting of lymphocytes, neu-
trophils, eosinophils, plasma cells, macrophages and fibroblasts, constituting a model of
interaction of tumor cells with their microenvironment. This kind of cancer is most com-
monly diagnosed in young adults between the ages of 15 and 35 years and in older adults
over 50 years. The cure rate in HL patients is high, but the response along the treatment is
still unpredictable and varies from patient to patient. Besides, a small minority is resistant
or relapses before treatment. Detecting those patients with a poor prognosis at early stages
(diagnosis) could bring improvements in their treatment and prognosis.

There was an international effort to identify the prognostic factors to accurately predict
the development and treatment of HL, mainly in patients with advanced stage. The identified
adverse prognostic factors were: male older than 45 years, stage IV disease, hemoglobin
lower than 10.5 g/dl, lymphocyte count lower than 600/µl (or less than 8%), albumin lower
than 4.0 g/dl and white blood count greater than 15,000/µ l (Hasenclever et al., 1998; Schreck
et al., 2009).

Several research works highlighted the importance of the identification of prognostic
variables to predict patients who will suffer relapse and the adaptation of treatments to
individual risks (Josting, 2010; Provencio et al., 2004; Smolewski et al., 2000; Zander et al.,
2002). Particularly, the result of treatment optimization provoked some criteria modification,
with the disappearance of some factors that were considered to be of poor prognosis and with
the proposal of new ones that allowed establishing groups with differing risks of relapse and
different treatments.

2.4.2 HL clinical data

The HL clinical data we dealt with, belongs to a cohort of 263 Caucasians who were
diagnosed with classical Hodgkin lymphoma in Asturias (Spain) and enrolled in this study
between 2002 and 2012. The treatment response was divided into three categories according
to international standards (Cheson, 2008): 237 of the patients were in Complete Remission
(CR), 17 in Partial Remission (PR) and only in 9 cases the disease progressed without any
relevant change. This last category was named as Progressive Disease (PD). Table 2.8
describes the main characteristics of the patients: age, sex, stage at diagnosis, percentage of
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Table 2.8 Main characteristics of the patients (number of patients / percentage), including
Hasenclever International Prognostic Score (IPS)

Age
Median: 37
Males range: 9-82
Females range: 10-83

Sex
Males: 171 / 65%
Females: 92 / 35%

Stage Stage I: 42 / 16%

at
Stage II: 92 / 35%
Stage III: 82 / 31%

diagnosis Stage IV: 47 / 18%
Early disease: Favourable: 57 / 22%

113 / 43% Desfavourable: 56 / 21%150 / 57%
Advanced disease: IPS ≤ 2: 81 / 31%

150 / 57% IPS > 2: 69 / 26%

early favor- able and early unfavorable and percentage of advanced disease depending on
Hasenclever Prognostic Score.

Progression-free survival (PFS) was calculated from the date of diagnosis to the date of
progression, relapse or death by of any cause. Overall survival (OS) was calculated from
the date of diagnosis to the date of death from any cause or last follow-up. OS and PFS
distribution curves were estimated using the product-limit method of Kaplan-Meier. The
median PFS and OS for the entire group were, respectively, 150 and 160 months. The
probabilities of PFS and OS at 7 years were 57 and 76%, correspondingly.

Thirty-five clinical and biological variables were measured at diagnosis and before treat-
ment. These variables were classified into five groups: biochemical, immunohistochemical,
Hodgkin lymphoma specific, treatment specific and host information. Table 2.9 shows the
description of all these variables, boldfacing those that take discrete predefined values. Most
of the variables had a sampling frequency higher than 90%. However, others were scarcely
sampled, such as CRP(14%), immunoglobulins and Ki67(20%).

2.4.3 ROC-based PSO optimization of the classifier

A it was commented in section 2.2.2 it is possible to optimize the TPR and/or TNR by
optimizing the parameters of the classifier. This optimization was performed via Particle
Swarm Optimization (PSO). PSO is a stochastic evolutionary computation technique used
in optimization, which was initially inspired in the social behavior of individuals (called
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Table 2.9 Clinical variables description by group and their corresponding symbols and
sampling frequency (Samp. Freq.). Discrete variables are shown in bold faces.

B
io

ch
em

ic
al

WBC White Blood cells Count (106/microL)
ALC Absolute Lymphocyte Count (106/microL)
AMC Absolute Monocyte Count(106/microL
AEC Absolute Eosinophil Count(10 6/microL
HGB Hemoglobin (g/dL)
PLT Platelets (103/microL)
ALB Albumin (g/L)
AST Aspartate Aminotransferase (U/L)
ALT Alanine Aminotransferase (U/L)
ALP Alkaline phosphatase (U/L)
CR Creatinine (mg/dL)
LDH Lactate Dehydrogenase (U/L)
ESR Erythrocyte Sedimentation Rate (mm/hour)
CRP C-Reactive Protein (mg/L)
GG Gamma Globulin (g/L)
IgG Immunoglobulin G (g/L)
IgA Immunoglobulin A (g/L)
IgM Immunoglobulin M (g/L)
B2M Beta 2 Microglobulin (mg/L)
Cu Copper (mEq/L)
SF Serum Ferritine (ng/mL)

Inmuno- CD20 B-lymphocyte antigen CD20 test: Positive or Negative
histochemical Ki67 Ki-67 cellular marker for proliferation: Positive or Negative

Tests EBV Ebstein-Barr Virus presence: Positive or Negative

H
L

Sp
ec

ifi
c

OS Overall survival from diagnosis to death (days)
Stage Ann Arbor stagging: I, II , III and IV
SS Signs and Symptoms: fever, weight loss, anomalous night sweats
ALA Affected Lymphs Areas
LMM Large Mediastinal Mass: more than 1/3 of the thoracic diameter
ELI Extraganglionar Involvement
Bulky Mediastinal mass more than 10 cm

Treatment
CHEMO Chemotherapy treatment
RT Radiotherapy treatment

Personal
AGE Age
SEX Sex
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particles) in nature, such as bird flocking and fish schooling. The algorithm consists of the
following:

1. A space of admissible solution M, is defined:

l j ≤ x ji ≤ u j, 1 ≤ j ≤ n, l ≤ i ≤ nsize,

where l j, u j are the lower and upper limits for the j-th coordinate for each optimization
model. In PSO terminology, each model is called a particle, and is represented by a
vector whose length is the number of model parameters of the optimization problem.
Each particle has its own position in the search space. The particle velocity represents
the parameter perturbations needed for these particles to move around in the search
space and explore solutions of the inverse problem.

2. PSO updates the positions, xi(k) and velocities, vi(k) of each particle in the swarm in
each iteration, according to 3 main components:

• The inertia term, which consists of the old velocity of the particle, vi(k), weighted
by a real constant, ω , called inertia.

• The so-called social term, which is the difference between the global best position
found so far in the entire swarm (called g(k)), and the particle’s current position
(xi(k)).

• The so-called cognitive term, which is the difference between the particle’s best
position found so far (called li(k), the local best) and the particle’s current position
(xi(k)):

vi(k+1) = ωvi(k)+φ1(g(k)−xi(k))+φ2(lki −xi(k)),

xi(k+1) = xi(k)+vi(k+1),

φ1 = r1ag,φ2 = r2al,r1,r2 ∈U(0,1),ω,ag,al ∈ R,

r1 and r2 are vectors of random numbers uniformly distributed in (0,1), to weight
the global and local acceleration constants, ag and al . (ω , ag, al) are the PSO
parameters to be tuned in order to achieve convergence. PSO has been chosen for
this purpose because its convergence has been analyzed using stochastic stability
analysis. Consequently, the tuning of the PSO parameters can be done automat-
ically, based on these stability results. Particularly, the RR-PSO (Fernández-
Martínez and García Gonzalo, 2012) and CP-PSO (Fernández-Martínez and
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García Gonzalo, 2009) versions are used due to their higher exploratory proper-
ties that allowed us to escape from local minima.

In this case, the particles xi (model parameters) are the weights of the k-NN distance-
based classifier. These weights were optimized from their prior values given by the HVDM
metric, that is, the inverse of two times the prior variability of the prognostic variables (see
section 1.3.6 for further details), to balance confusion matrix. The cost function was defined
as follows:

c(xi) = ω1FP(xi)+ω2FN(xi)

where ω1 and ω2 serve to weight the relative importance of the false positives and false
negatives depending on xi. If ω1 = ω2 = 1 then both terms have equal importance.

2.4.4 HL results

Treatment response in HL is a difficult prediction problem. Aside from plasma EBV DNA
(Gandhi et al., 2006), there is no predictive biomarker to predict the patient’s response to the
corresponding treatment with a reliable accuracy.

The first modeling decision was to transform the analysis of treatment response into a
binary classification problem (two-class problem) that admits a more reliable and stable
solution than the corresponding value regression problem, that is, it is easier to predict
if a patient is in complete or partial remission than predicting the value of the biological
variables related to this fact. Besides, the prediction in binary classification problems allows
risk assessment through the analysis of the confusion matrix and the Receiving Operating
Characteristic (ROC) curve. The comparison was composed of two main steps. In the
first step (1. CR and PR Vs. PD), we established the differences between patients who
experienced partial or complete remission (CR and PR, positive class) from those in which
the disease progressed without any relevant change (PD, negative class). Then, a second
comparison (2. CR Vs. PR) was used to establish the differences between CR (positive class)
and PR (negative class) patients.

The best result was obtained by filtering out those variables having a sampling frequency
lower than 30%, and imputing the rest. Besides, MPD (Maximum Percentile Distance)
provided the shortest list of variables with the highest predictive accuracy. Table 2.10 shows
the confusion matrix rates (TPR, TNR, FPR, FNR) for both comparisons, together with
the False Discovery Rate (FDR) and the LOOCV predictive accuracy (Acc). No weight
optimization was performed in this case, that is, the weights corresponded to the inverse of
the prior variability of the prognostic variables (see section 1.3.6 for further details of how is
calculated the weights).
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Table 2.11 Mean values of the True Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN), and weights (ωb) for the optimum NN-classifier without weights
optimization.

Comparisons Variables TP TN FP FN ωb
CR and PR (+)

SF 266.4 3288.0 452.4 3231.3 0.0005Vs.
PD (-)
CR (+) SF 249.9 2401.0 405.5 2131 0.0005

Vs. ALT 23.7 18.0 44.2 74.4 0.0092
PR (-) ALP 116.8 376.0 163.5 608.4 0.0017

Signs (+) and (-) represent positive and negatives groups respectively. Bold faces indicate the
highest value for each prognostic variable. Normal bounds for the decision correspond to the
TP and TN groups. ωb are the weights used in the classifier for data variability normalization
(before weight optimization).

Table 2.10 Best results for all the comparisons obtained without weights optimization.

Comparisons Base MPD rate TPR (%) TNR (%) FPR (%) FNR (%) FDR (%) Acc (%)
CR and PR (+)

SF 75.2264 98.43 22.22 77.78 1.57 2.72 95.82Vs.
PD (-)
CR (+) SF 57.7157

97.89 11.76 88.24 2.11 6.07 92.13Vs. ALT 41.3166
PR (-) ALP 38.9228

The algorithm used for all the comparisons was the same: filtering 30% of sampling frequency,
imputing and MPD as feature selection method. Rate is the maximum percentile distance
rate, TPR is the True Positive Rate, TNR is the True Negative Rate, FPR is the False Positive
Rate, FNR is the False Negative Rate and Acc is the final accuracy of the prediction. Signs
(+) and (-) represent respectively positive and negatives groups respectively.

Table 2.11 shows the mean values of the three prognostic variables for the different
groups of the confusion matrix and the weights (ωb) used to define the distance criterion in
the classifier.

Optimization of the weights of the classifier via Particle Swarm Optimization (PSO) was
performed to improve the true negative rate (or Specificity), that is, increasing TNR while
the overall accuracy is also improved (TPR is not affected). Table 2.12 shows the TPR, TNR,
FPR, FNR, FDR and predictive accuracy (Acc) obtained after weight optimization. TN rates
were improved around 10% in comparisons 1, while in comparison 2 TP rate was improved
around 1%. The overall accuracy was improved in all the cases around 1%.
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Table 2.12 Best results for the comparisons obtained after weights optimization.

Comparisons Base MPD rate TPR (%) TNR (%) FPR (%) FNR (%) FDR (%) Acc (%)
CR and PR (+)

SF 75.2264 98.43 33.33 66.67 1.57 2.34 96.1977Vs.
PD (-)
CR (+) SF 57.7157

99.58 11.76 88.24 0.42 5.98 93.7008Vs. ALT 41.3166
PR (-) ALP 38.9228

Rate is the maximum percentile distance rate, TPR is the True Positive Rate, TNR is the True
Negative Rate, FPR is the False Positive Rate, FNR is the False Negative Rate and Acc is the
final accuracy of the prediction. Signs (+) and (-) represent positive and negatives groups
respectively.

Table 2.13 shows the mean values for TP, TN, FP, FN and the optimized weights for
the prognostic variables (ωa). It can be observed that values of the weights increased after
optimization for all the prognostic variables. Therefore, it is possible to improve the quality
of the prediction and minimize risk on the decisions, by optimizing the weights that are
initially provided by the distance criterion.

Table 2.13 Mean values of the true positives, true negatives, false positives and false negatives
and optimized weights ωa of the optimum NN classifier after weight optimization.

Comparisons Variables TP TN FP FN ωa

CR and PR (+)
SF 275.4 2796.7 225.5 2669.5 0.0020Vs.

PD (-)
CR (+) SF 276.7 2401.0 405.5 3330.0 0.0026

Vs. ALT 24.3 18.0 44.2 140.0 0.0663
PR (-) ALP 123.2 376.0 163.5 1059.0 0.0051

Signs (+) and (-) represent the positive and negatives groups, respectively. Boldfaces indicate
the highest value for each prognostic variable. Normal bounds for the decision correspond to
the TP and TN groups.

2.4.5 Conclusions for HL treatment response prediction

Overall, the results of this study show that the combined use of these prognostic variables,
SF, ALT and ALP, in a simple classifier allows predicting first-line treatment response in HL
patients with high accuracy and confirms a close relationship between treatment response in
HL, inflammation, iron overload and liver and bone damage.
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Serum ferritin has been frequently used as a surrogate marker for systemic iron stores,
but may be also elevated in specific circumstances without excess iron stores, such as in
inflammation, correlating closely to the activity of malignant lymphomas. However, to our
knowledge, serum ferritin levels have not been yet related to the treatment response of HL
patients.

Serum activity levels of ALT enzyme are routinely used as a biomarker of liver injury
caused by drug toxicity, infection, alcohol and steatosis. Levels greater than 500 U/L occur
most often in people with hepatic diseases, such as viral hepatitis, ischemic liver injury
(shock liver), toxin-induced liver damage and tumor infiltration of liver.

The alkaline phosphatase test (ALP) is used to detect liver disease or bone disorders. In
conditions affecting the liver, damaged liver cells release increased amounts of ALP into
the blood. In non-Hodgkin lymphomas, ALP is increased in patients with bone marrow
affectation (Kittivorapart and Chinthammitr, 2011), thus reaching stage IV and worse prog-
nosis. However, in a patient with fever of unknown origin (FUO), highly elevated alkaline
phosphatase and normal/slightly elevated serum transaminase levels suggest the possibility
of lymphoma (Brensilver and Kaplan, 1975; Brinckmeyer et al., 1982; Cunha, 2007).

To conclude, detecting those HL patients who do not respond to the treatment at early
stages may help improve their treatment. This study proposed a new prognostic analysis
method, based on mathematical models that identify three simple prognostic variables
currently gathered at diagnosis that may help detect with high accuracy those HL patients
with bad prognosis without any additional cost.



Chapter 3

Application to genetic data

3.1 Introduction

Genetic information is located in the DNA as a sequence of nucleotides. A gen is a part of the
DNA that contains the necessary information for the synthesis of proteins, which is a critical
process in the human body. Genes are not continuous and include both non-coding and
coding regions for synthesis of proteins. The typical samples from the DNA are commonly
extracted from blood, tissues or fluids. Thanks to the the development of high-throughput
technologies for sequencing in genetic and genomic analyses, that sequence of nucleotides
may be stored in a data set within a computer. Moreover, gene expressions can be analyzed
through hybridization microarrays or RNA sequencing, which is a much cheaper way of
analyzing genetic data.

Genetic data, particularly, gene expression data, are commonly used to compare two or
more sets of patients (typically healthy control VS unhealthy patients) in order to figure out
what (genes) is causing those differences. Those comparisons could be used to predict a
certain disease occurrence (diagnosis optimization), to make the difference between two or
more treatments (treatment optimization) or to evaluate the survival of a set of patients (prog-
nosis optimization). These kind of problems will be addressed as the general denomination
of phenotype prediction problems.

Genetic data has a very underdetermined character, since the number of samples/patients
is always much lower than the number of genes. We do not have a unique solution to the
inverse problem, therefore, reduction of dimension algorithms become a key element in the
problem solution.

In this chapter we applied our methodology to address two different problems using gene
expression data. Firstly, we identify and validate a specific gene cluster that is predictive
of fatigue risk in prostate cancer patients treated with radiotherapy. This research work
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was performed in collaboration with the National Institute of Nursing Research, National
Institute of Health, Bethesda, Maryland, USA and Biomodels, LLC, Watertown, MA, USA.
As a result a manuscript named "Supervised Classification by Filter Methods and Recursive
Feature Elimination Predicts Risk of Radiotherapy-Related Fatigue in Patients with Prostate
Cancer" was published in the journal "Cancer Informatics". Secondly we modeled a data
expression microarray related to Chronic Lymphocytic Leukemia, predicting the occurrence
of the main mutations, which are closely related with the survival of the patients. The
results were included in a paper called "Genomic Data Integration in Chronic Lymphocytic
Leukemia" and it is currently under review in the journal "Journal of Gene Medicine".

As a continuation of the research work on the Cancer treatment-related fatigue, we
perform some statistical analysis using the methodology explained herein to a data set
related to mitochondrial activity. The result was a publication named ”Relationship of
Mitochondrial Enzymes to Fatigue Intensity in Men With Prostate Cancer Receiving External
Beam Radiation Therapy” in the journal ”Biological research for nursing” (Filler et al.,
2015).

As in the previous chapter, there are three main parts. Firstly we present the common
methodology applied in both practical cases. Secondly we introduce the cancer related
fatigue prediction problem and present the results and conclusions. Finally, we proceed in
the same way with the Genomic data integration in Chronic Lymphocytic Leukemia.

3.2 Methodology applied to both practical cases using ge-
netic data

The common methodology applied to both cases has three main steps: 1) Obtain the gene
discriminatory power. 2) Select the genes according to the discriminatory power. 3) Create the
correlation networks between the selected genes. Figure 3.1 shows the flowchart describing
these steps.
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Fig. 3.1 Flow diagram for the prediction model. The methodology is composed of 3 steps: 1)
Obtain the gene discriminatory power. 2) Select the genes according to the discriminatory
power. 3) Create the correlation networks between the selected genes.

3.2.1 Gene discriminatory power

It is crucial important to be able to establish the discriminatory power of a gene in phenotype
prediction problems. In section 1.3.6 we have presented the main feature selection methods
for clinical and genetic data. A gene is said to be highly discriminatory if several conditions
are met such as high Fisher’s ratio, high Fold Change, low Entropy, high Percentile distance
and high SAM ratio. In this case we used a combination between Fold Change (FC) and
Fisher’s ratio (FR). We first ranked genes according to their discriminatory power. We
preselect the most differentially expressed genes above a certain absolute FC value and
then we finally rank the genes according to their FR. The reason to first preselect with FC
is because low dispersions in both classes can provide high FR values when in fact the
centers of both distributions in expressions are very close (differences in means very small).
Therefore, by preselecting differentially expressed genes above a certain absolute FC value
we can avoid to have high FR values due to the low dispersions.

The FR values of the ranked prognostic variables draw a curve that could be interpreted
as a singular value of a linear forward operator characterized by a matrix F ∈ Mm×n(R).
F has a singular value decomposition F =UΣV ⊺, where U ∈ Mm×m(R), V ∈ Mn×n(R) are
orthogonal and Σ blocky diagonal. Besides, rank(F) = rank(Σ) = r.
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100.

Something similar can be said with the Fisher’s Ratio curve, that can be interpreted
as a measure of the prior discriminatory power of a gene. In the cancer treatment-related
fatigue prediction problem we showed in figure 3.4 this kind of curve, where genes with
the highest FR were the most important biological ”eigenvectors” for the discrimination.
The posterior discriminatory power is given by the predictive accuracy of the ranked lists of
genes, see for example figure 3.6 for the cancer treatment-related fatigue problem. We can
observe that adding genes with lower discriminatory power as defined by their FR does not
imply an increase of the predictive accuracy, that is, the posterior predictive accuracy is not
monotonous increasing by adding more genes to the discrimination. This is a simple way of
reducing the high underdetermined character of any phenotype prediction problem.

3.2.2 Gene selection

Similarly to what we did with clinical data, we applied a Nearest Neighbor based algorithm
to establish the accuracy of the different ranked sets of genes using Leave-One-Out-Cross-
Validation (LOOCV) experiment. The combination of this procedure with a backwards
feature elimination algorithm produced the shortest list of high discriminatory gene and
served to validate the prognostic value of these gene signatures over the existing dataset by
cross-validation (see section 1.3.6 for further details). This procedure serves to eliminate
redundant or irrelevant genes to yield the most precise set of genes with the greatest predictive
accuracy. The linear separability of the phenotype in the reduced set of genes could be



3.2 Methodology applied to both practical cases using genetic data 53

checked by performing principal component analysis (PCA) of the dataset expressed in this
small-scale signature and projecting these samples in the corresponding 2D PCA space. Then,
the problem approximates a linear separable behavior by reducing the dimension to the list of
most discriminatory genes, if populations can be linearly separated by a given hyper-plane.

3.2.3 Correlation networks

Finally we built correlation networks using the selected genes to understand how the ex-
pression of the most discriminatory genes is controlled in each case. Correlation networks
were generated using the approach presented in Lastra et al. (2011) but with two different
coefficients measuring the dependency between genes:

• Pearson correlation coefficient (Pearson, 1895): It measures the linear correlation of
two random variables.

pi j =
cov(gi,g j)√

σ2
i σ2

j

(3.1)

where cov(gi,g j) is the covariance between the expressions of two genes gi, g j con-
sidered as random variables and σ2

i , σ2
j is the variance of the expression in gene i

and j respectively. pi j is zero when the variables are uncorrelated, that is, linearly
independent, and varies between -1 (total negative correlation between expressions)
and 1 (total positive correlation). This metric is not useful when the relationship
between the variables is nonlinear. Nevertheless, we will show numerically that the
classification problem approximates a linear separable behavior when the dimension is
reduced to the most discriminator variables. Therefore, when the analysis is restricted
to these variables, it makes perfect sense and serves to find the trade-offs between them
(uncertainty of the corresponding prediction problem).

• Normalized Mutual Information (Strehl and Ghosh, 2003): The mutual information
of two random variables is a measure of mutual dependence of both variables. In our
case we have used the normalized mutual information, which is similar to a correlation
coefficient:

NMi j =
I(gi,g j)√

H(gi)H(g j)
(3.2)

where I(gi,g j) is the mutual information content and H(gi) the entropy of gene i
calculated based in the ordering of its expression with respect to the class assignment.
The mutual information I(gi,g j) content is calculated as follows:

I(gi,g j) = H(gi)+H(g j)−H(gi ∪g j)
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being H(gi ∪g j) the joint entropy. The normalized mutual information can be inter-
preted as a correlation coefficient based exclusively in the diversity (entropy) in gi and
g j. It varies between 0 (totally independent) and 1 (totally dependent):

NMi j = 0 ↔ H(gi ∪g j) = H(gi)+H(g j)

Therefore, the normalized mutual information is null when one variable does not
reduce the uncertainty about the knowledge of the other, that is, they are independent
descriptors.

Once we have calculated these coefficients, the Kruskal’s algorithm (Kruskal, 1956)
is used to find the minimum-spanning-tree between the selected genes and building the
correlation network, using as head the gene with the most discriminatory power. Two main
gene categories can be identified in correlation networks: headers, which are the genes
located in the top of the network and have higher discriminatory power, and helpers, which
are the genes in the lower parts of the network that provide high frequency details for the
discrimination. Moreover, correlation networks serve to analyze inter-relationships between
genes, that impact the expression of other genes, and therefore their function. Finally, gene
ontology is performed to cover the altered and disease pathways. For that purpose we used
the GeneAnalytics tool provided by the Weizmann Institute of Science (Stelzer et al., 2009).

3.3 Supervised Classification by Filter Methods and Re-
cursive Feature Elimination Predicts Risk of Radiothe-
rapy - Related Fatigue in Patients with Prostate Can-
cer

In this research work we applied the methodology explained in section 3.2 to a genetic
data obtained from a microarray expression dataset where patients were diagnosed with
non-metastatic prostate cancer and scheduled to receive radiotherapy treatment. In this case
the correlation network step was not performed. The problem were to identify the smallest
subset of genes that predict the cancer treatment-related fatigue before radiotherapy treatment
was carried out. This work was published in the journal "Cancer Informatics" (see Appendix
A.3).



3.3 Supervised Classification by Filter Methods and Recursive Feature Elimination Predicts
Risk of Radiotherapy - Related Fatigue in Patients with Prostate Cancer 55

3.3.1 Introduction to the cancer treatment-related fatigue prediction
problem

Fatigue is the most common, troublesome, and costly side effect of many cancer treatment
regimens. Not only does it impact patients directly, but it also has significant repercussions on
both direct and indirect health economic outcomes (Carlotto et al., 2013). Cancer treatment-
related fatigue (CTRF) is defined as a ”subjective sense of tiredness” that persists over time,
interferes with activities of daily living, and is not relieved by adequate rest (Minton et al.,
2008; Mock, 2003).

CTRF, like other regimen-related toxicities, does not occur in every patient, but rather
in a subpopulation of at-risk individuals. In the context of individualizing care, the ability
to predict CTRF risk has the potential to help guide treatment choices for patients and
providers. However, as it becomes increasingly clear that CTRF is strongly related to a series
of underlying genetically controlled biological events, the utility of identifying a group of
genes that impact patients’ risk of the condition seems compelling. In the current study, we
evaluated our methodology to identify a group of genes that predicted CTRF in men being
irradiated for prostate cancer. This proof-of-concept investigation not only demonstrated
the utility of the analysis, but also confirmed the observation that focal radiation therapy
is capable of inducing gene expression changes in peripheral white blood cell RNA (Sonis
et al., 2007).

In this case we firstly applied the methodology explained in section 3.2 to a training
data in order to identify/select the smallest and most precise set of CTRF-associated genes,
and then check the legitimacy of the predictive accuracy based on the training set with a
validation blind set. The validation was performed as follows:

1. We first considered the most predictive gene cluster, a group consisting of the 14 most
discriminatory genes deduced from the training set. The samples of the training set
expressed in the reduced base and their phenotype information were used to define the
distance of the classifier.

2. Second, the values of these discriminatory genes in the validation samples were read
from the validation dataset. For each sample of the validation set, its predicted class
was established using the k-NN based algorithm explained in 1.3.6, using the 14
different most discriminatory reduced sets of genes that were defined by the training
dataset.

3. The first step was repeated to generate 14 different reduced bases, which yielded 14
different class predictions for each sample in the validation set: 14 different Biomedical
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Robots. The final estimated class was then made by consensus or majority voting
classifiers (see section 1.3.5). A posterior probability was given to the class prediction,
defined as the ratio of the number of votes assigned to the predicted class and the total
number of voters.

3.3.2 CRTF gene expression data

The microarray expression dataset consists of men who were 18 years or older, diagnosed
with non-metastatic prostate cancer with or without a history of prostatectomy, and scheduled
to receive External Beam Radiation Treatment (EBRT) with or without concurrent androgen
deprivation therapy (ADT). A total of 44 men with non-metastatic prostate cancer were
studied, 27 of them were used as training set and 17 as validation blind set.

To assess fatigue in cancer therapy the 13-item Functional Assessment of Cancer Therapy-
Fatigue (FACT-F) score was used. FACT-F is scored from 0-52, the higher the score, the
lower the fatigue symptoms. A greater than three-point decrease in the FACT-F score is
considered to be a minimally important change that is clinically relevant (Yost et al., 2011). To
discretize the phenotypic characterization of the study participants, subjects were categorized
into high-fatigue (HF) or low-fatigue (LF) groups based on their change in FACT-F scores
from baseline to completion of EBRT. HF subjects had a decrease of three or more points
in FACT-F scores, and those who had less than a three-point decrease in FACT-F scores
between both time points were categorized in the LF group. Questionnaires were completed
at baseline (prior to EBRT) and at completion of EBRT (day 38-42 after EBRT initiation).
To avoid extraneous influences on their responses, subjects completed the questionnaires in
an outpatient setting before clinical procedures were provided.

The biological sample collection, RNA extraction, and microarray experiments were
extracted from peripheral blood at baseline and on the last day of EBRT, immediately after
FACT-F was performed.

3.3.3 CRTF results

As presented above through the methodology explained in section 3.2, we try to identify/select
the smallest and most precise set of CTRF-associated genes in a training set and then check
the consistency of the results in a validation blind set. The training model was developed
from the array outputs of 27 subjects; 18 were HF and 9 were LF. Each patient sample
contained 604,258 different probes. The minimum and maximum gene expressions were 21
and 62,088 respectively. As shown in Figure 3.2, it was impossible to visually distinguish
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HF and LF microarray outputs in heat map format using decibels as units of measure (log2
of gene expression).

Fig. 3.2 Data visualization in decibels (log2 of the expression). HF is composed of 18
samples, LF 9 samples and Validation 17 samples.

The similarities between the HF and LF groups in the learning dataset were confirmed
by further histogram analysis of gene expression. Figure 3.3 shows that the corresponding
statistical distributions of gene expressions in both groups were close to lognormal, with the
main differences between both phenotypes occurring around the mode of both histograms
(expressions around 24 and 26).
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Fig. 3.3 Gene expression histograms in log2 scale for the Low Fatigue and High Fatigue
subjects.

A final list of 575 highly discriminatory genes according to expression was noted and
defined by the intersection between those genes that were differentially expressed (located
in the 0.05% and 99.5% tails of the fold-change ratio cumulative distribution) and which
had a FR higher than 0.25 (figure 3.4). Genes with the highest FR were the most important
biological eigenvectors for the discrimination, as it happens, for the Fourier analysis of a
digital signal and its decomposition into different harmonics. In this case, the FR curve
decreases very steeply, in such that only with the first set of genes (14 to 35 genes in this case),
the highest discriminative accuracy of the learning data set can be achieved. Adding genes
with lowest discriminatory power indiscriminately does not improve the LOOCV predictive
accuracy. The BFE method (see section 1.3.6 for further details) is used to determine the
amount of details that is needed.

Additionally, figure 3.5 shows the FC-FR plot for genes in the learning dataset with FC
lower than - 0.52 and higher than 0.67. These values (of gene under- and over-expression)
corresponded, respectively, to the 0.05% and 99.5% tails of the FC distribution. It can be
observed that the highest FR was 2.12, and genes with the highest FC did not coincide with
those exhibiting the highest FR.
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Fig. 3.4 Fisher’s ratio curve for the Low Fatigue-High Fatigue phenotype discrimination.

Fig. 3.5 Fold change-Fisher’s ratio plot of genes in the learning dataset with absolute fold
change greater than 0.52 that corresponds to the 0.005 and 99.5% tails of the fold change
distribution. In this case the Fisher’s ratio plays a similar role than - log(P value) for the
volcano plot analysis (Cui and Churchill, 2003).
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Fig. 3.6 Leave-One-Out-Cross-Validation (LOOCV) learning predictive accuracy of the
first 360 gene sets with the highest discriminatory power. The shortest list with the highest
accuracy (92.6%) contains only the first 14 genes.

Figure 3.6 shows the predictive accuracy curve of the different gene lists, established
using the backward feature elimination algorithm. The shortest list with the highest accuracy
(92.6%) was composed by the first 14 genes with the highest FR. The lists with the first 15,
and 29 to 35 most discriminatory genes also provide the same maximum accuracy. As the
data suggest, continuously adding genes with lower discriminatory power as defined by their
FR failed to increase the accuracy of discrimination.

When a histogram was used to assess the first 360 most discriminatory genes found
by our analysis, we noted a shift of the mode of distribution for the LF patients to higher
expressions (29-210) with respect to the HF case (26-27), suggesting that HF patients show
mostly lower expressions of these genes that we hypothesized were responsible for this
phenotypic discrimination (figure. 3.7). Compared to Figure 3.3, a higher discrimination in
the modes of the LF/HF phenotypes can be observed: the mode of HF samples is shifted to
lowest values (approximately 64 instead of 512).
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Fig. 3.7 Histograms (in log2 scale) for the Low Fatigue (LF) and High Fatigue (HF) patients,
of the first 360 most discriminatory genes.

Figure 3.8 shows the PCA plots (unsupervised method) of the learning dataset expressed
in the base of the most 14 (figure 3.8A) and 35 (figure 3.8B) discriminatory genes having the
highest predictive accuracy. The following can be observed:

• The LF/HF phenotype discrimination became easier to lienearly separate in these
reduced sets of genes, confirming the fact that the classification problem simplifies
when reducing the dimension to the most discriminatory set of genes. Both plots have
a similar structure. The LF samples lie between samples P1A and xrt28A, which is
genetically close to the region of the HF samples.

• Also, sample xrt25A, which belongs to the LF category, is surrounded by HF samples.
This sample might be a biological or behavioral outlier.

• The HF samples lie between samples xrtp2A and 13A. Sample xrt20A also seems to
mark a transition between LF and HF samples toward the west of the plot.
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Fig. 3.8 (A) PCA plot for the learning set in the reduced base of the 14 most discriminatory
genes. (B) PCA plot for the learning set in the reduced base of the 35 most discriminatory
genes. A linear separability with a similar structure can be observed in both cases. Low
Fatigue samples lie between P1A and xrt18A. Xrt25A might be a biological or behavioral
outlier. High Fatigue (HF) samples lie between 13A and xrtp2A. Xrt20A marks the HF limit
towards the west of the plot. Additional data are needed to perfectly delineate this PCA plot.

The algorithm provided 13 successes out of 17 validation samples. Three of the four
misclassified samples belonged to the LF group (false positives, patients were predicted to be
HF) and one to the HF (false negative, patient predicted to be LF). These samples are outliers
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with respect to this classifier, because their expressions in the reduced base of genes are closer
to the HF and LF groups, respectively (Tables 3.1, 3.2, and figure 3.9). Interestingly, the 14
different predictions for these misclassified samples coincide, that is, the probability of these
samples belonging to their predicted class according to the consensus criterion is 1. This fact
also strengthens the argument that these samples are biological or behavioral outliers, that is,
their class assignment based on the change in their FACT-F scores was ambiguous.

Table 3.1 Mean values for the 14 most discriminatory genes.

Learning Validation
HF LF HF LF
114 388 117 401
152 644 143 546
302 1455 326 1569
343 1659 364 1535
185 861 196 841
149 611 127 460
585 128 381 194
243 1182 252 1049
689 111 536 235
160 65 75 126
247 1225 275 1187
223 80 73 171
269 1329 331 1573

1200 281 1083 485
Bold values indicate the highest mean expression values in the learning and validation
datasets for HF and LF classes.
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Table 3.2 Misclassified samples.

S1 (xrt14) S2 (xrt36) S3 (xrt39) S4 (xrt33)
57 129 87 342
78 257 105 492

136 327 201 1354
122 309 183 1514
79 180 125 765
92 126 168 341
42 44 54 946

103 175 184 1045
41 34 49 1430
62 178 258 52
77 234 183 1142
97 286 374 82

146 239 232 1388
162 167 137 2518

Expressions for the 14 most discriminatory probes. Samples S1, S2 and S3 were predicted to
be High Fatigue and S4 to be Low Fatigue. The expression values for S1, S2 and S3 were
closer to the mean expression of the High Fatigue group in the learning phase. Conversely,
the expression values for S4 is closer to the Low Fatigue group. S1, S2 and S3 might define
a new group of Low Fatigue with very small expressions (lower than the corresponding
expressions observed among High Fatigue subjects) in this reduced base of 14 genes.



3.3 Supervised Classification by Filter Methods and Recursive Feature Elimination Predicts
Risk of Radiotherapy - Related Fatigue in Patients with Prostate Cancer 65

Fig. 3.9 High Fatigue (HF)/Low Fatigue (LF) median expression signatures and misclassified
samples at validation. It can be observed that sample xrt33 is closer to LF median signature,
while xrt14, xrt36 and xrt39 are closer to the HF median signature (values for the expressions
are given in tables 2 and 3).

3.3.4 CRTF conclusions

EBRT is a highly utilized treatment option for many forms of cancer. While it is efficacious in
many cases, its toxicity profile is significant and common, but not ubiquitous. Consequently,
the ability to predict toxicities of EBRT has long been of interest. With better understanding
of the pathobiology of radiation injury, using genomics as the basis for toxicity risk prediction
has been the focus of active research.

We proposed that the risk of a complex disease, such as CTRF, could well be more easily
defined by identifying groups of simultaneously expressed, synergistically functioning genes.
Our finding that the gene cluster so identified was able to predict CTRF risk with an accuracy
of > 75% suggests that the approach has validity.

The process of selecting the most predictive cluster of genes revealed informative consid-
erations. The genes with the highest FC did not coincide with those exhibiting the highest FR
because the means of both distributions were different, hence their tails did not overlap. So,
in this method we concluded that FR was a better feature selection method than FC. While,
in the case of FC analysis, noisy genes are typically penalized by the FR selection method
because of an increase of their variance; the noise might be amplified by the FC ratio. Genes
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with the highest FR and FC have the biggest discriminatory power and are assumed to be
involved in the genesis of fatigue.

Interestingly, the histogram analysis of the first 360 genes that most discriminated between
HF and LF subjects was informative in that the shift of the mode of distribution showed lower
expressions of these genes among HF subjects. It seems possible that it is this distributional
shift that ultimately is responsible for discriminating the fatigue phenotype in this population.

We were unable to correctly predict four samples, based on our phenotypic approach,
since the consensus provides the opposite class in all the cases. These classified samples
were close to the border of separation between both fatigue classes (figure 3.8). There are
three possibilities: (1) these samples are behavioral outliers, (2) the phenotypic approach
needs further review and improvement, especially dealing with samples that are bordering the
cut-off scores set for fatigue grouping, and (3) possible use of more sophisticated algorithms
(black box neural networks) to classify the samples may be needed, which could run the risk
of losing the clarity in the interpretation.

We recognize that this study was limited by its small sample size. Nonetheless, the
fact that the analysis was successful in predicting LF/HF in an unrelated population with
reasonable accuracy suggests that increasing the number of subjects in the training population
would likely improve the predictive model’s ability. Nevertheless, this analysis confirms that
it is possible to separate both classes of the LF/HF phenotype by reducing the dimension to
the most discriminatory genes, provided by their FR.

The importance of predicting toxicity or adverse event risk associated with cancer treat-
ment regimens cannot be understated as the clinical implications in personalizing cancer
therapy and prospectively attenuating toxicity risk are significant. Furthermore, this type
of information provides patients and their care-givers more specific knowledge upon which
to make treatment decisions. A future manuscript will be devoted to the gene attribution
analysis of the cancer treatment-related fatigue biomarkers and pathways (in preparation).

3.4 Genomic data integration in Chronic Lymphocytic Leu-
kemia

In this work we applied our methodology explained in section 3.2 using both publicly
available genetic data obtained from a microarray expression dataset and sequencing dataset
to figure out how the main mutations defined by the sequencing data affect gene expression
by finding small-scale signatures to predict those mutations. This work is currently under
review in the "Journal of Gene Medicine" (see Appendix A.4).
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3.4.1 Introduction to Genomic data Integration in Chronic Lympho-
cytic Leukemia

B-cell chronic lymphocytic leukemia (CLL) is a complex heterogeneous disease characterized
by the accumulation of malignant B-cells in blood and lymphoid organs (Rodriguez-Vicente
et al., 2013). Clinical diagnosis of CLL is based on the demonstration of an abnormal
population of B lymphocytes in the blood, bone marrow, or tissues that display an unusual
but characteristic pattern of molecules on the cell surface (CD5 and CD23 clusters of
differentiation).

DNA analysis distinguishes two major types of CLL with different survival times (Ham-
blin et al., 1999). This distinction is based on lymphocyte maturity, as discerned by the
immunoglobulin variable-region heavy chain (IgVH) gene mutation status. High-risk pa-
tients (with poor survival) have an immature cell pattern with few mutations in the IgVH
gene region, whereas low risk patients show considerable mutations in the antibody gene
region indicating mature lymphocytes. Since the determination of the IgVH mutation status
is very labor-intensive and expensive, alternative markers have been investigated to better
prognosticate disease progression.

Gene expression profiles were also used to understand the genesis and progression of
CLL. Subsequently, whole-genome sequencing has identified four major genomic aberrations
in cells that are strongly associated with the disease behavior and prognostically independent
of IgVH mutational status (Döhner et al., 2000). More recently, whole-genome sequencing
identified NOTCH1 and SF3B1 as the most frequently mutated genes that were predictive of
CLL prognosis (Puente et al., 2011).

Given the low incidence of NOTCH1 (9%) and SF3B1 (8%) mutations, it seemed unlikely
to us that CLL progression could be solely ascribed to the two. We therefore sought to identify
shared/synergistic mechanisms among the three most common mutations (IgVH, NOTCH1
and SF3B1) which might better predict and explain disease progression and behavior.

3.4.2 CLL gene expression data

We used a publicly accessible microarray dataset consisting of 48807 probes were derived
from 163 patients with a diagnosis of CLL (Ferreira et al., 2014). The expression data were
originally presented in logarithmic scale (log2) after the corresponding RMA preprocess.
Of the original cohort of 163 patients, 92 had mutated IgVH, which was associated with a
favorable prognosis, while IgVH was not mutated in the remainder (n=71) and prognosticated
an unfavorable outcome. The exome sequencing data is described by Quesada et al. (2012),
who identified 1246 mutations resulting in protein coding changes. Six genes appeared to
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be most frequently mutated (>5%): NOTCH1, SF3B1, NOP16, CHD2, ATM and LRP1B.
Amongst the 163 samples we evaluated, NOTCH1 and SF3B1 mutational status were
determined for 117 patients. Of these, 106 were unmutated for NOTCH1 and 107 were
unmutated for SF3B1.

3.4.3 CLL results

In this research work we applied the methodology described in section 3.2 to elucidate how
the main mutations affect gene expression by finding small-scale signatures to predict the
IgVH, NOTCH1 and SF3B1 mutations (genomic data integration). We subsequently applied
our method to define and understanding the biological pathways and correlation networks that
are involved in the disease development with the potential goal of identifying new druggable
targets.

IgVH mutational status

We determined the best set of genes that discriminates IgVH mutational status based on
microarray expression and the class information defined by the IgVH phenotype using 92
mutated and 71 unmutated samples.

The shortest list with the highest predictive accuracy (93.3%) was composed by 13 first
probes: LPL (2 probes), CRY1, LOC100128252 (2 probes), SPG20 (2 probes), ZBTB20,
NRIP1 (2 probes), ZAP-70, LDOC1 and COBLL1. Table 3.3 shows the list of these genes,
their associated FR, the mean (µ1, µ2) and the standard deviation (σ1, σ2) for each group,
and the LOOCV accuracy (Acc(%)). FR was applied to the log2 of the expressions.

Figure 3.10A shows the Pearson Correlation (PC) network of the most discriminatory
genes of the IgVH mutational status. The Normalized Mutual Information (NMI) correlation
network is shown in figure 3.10B.
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Table 3.3 IgVH mutational status prediction

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%)
LPL 40 70 380 272 4.6 87.1
LPL 26 33 146 102 3.7 86.5
CRY1 62 125 352 298 3.1 90.2
LOC100128252 29 43 224 194 3.0 90.2
LOC100128252 30 42 220 172 3.0 89.6
SPG20 24 35 111 85 2.9 91.4
ZBTB20 1943 505 982 417 2.8 91.4
NRIP1 275 183 63 81 2.7 91.4
SPG20 30 53 148 126 2.6 91.4
ZAP70 103 151 273 140 2.4 92.6
LDOC1 20 19 50 27 2.3 92.6
COBLL1 186 107 85 100 2.3 92.6
NRIP1 85 60 24 24 2.1 93.3

List of the 13 most discriminatory genes list with the highest predictive accuracy (93.3%),
ordered by decreasing Fisher’s ratio. µ1 and σ1 refer respectively to the mean expression and
standard deviation in class 1, (mutated IgVH), and µ2 and σ2 for the unmutated group. FR
(log) stands for the logarithmic Fisher’s ratio.
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Fig. 3.10 Correlation network of the most discriminatory genes for the IgVH mutational
status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized
Mutual information.
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NOTCH1 mutational status

We recognized the challenge of analyzing those genes for which the NOTCH1 mutation
impacted expression given the highly unbalanced sample mix (106 of 117 samples did not
show the NOTCH1 mutation).

The shortest list with the highest predictive accuracy (95.7%) was composed by 60 probes
with FR between 4.6 and 1.4 (see Table 3.4). The first five probes of this list corresponded
to MSI2. Also using the two first probes of MSI2, the NOTCH1 mutation is predicted with
94.9% of accuracy. All MSI2 probes had lower expression in NOTCH1-mutation negative
patients. One probe of the LPL gene appeared in eighth position in this list. Therefore the
incremental accuracy from probe 5 to 60 was minimal (0.8%). That means the genes from
the 6th position to the 60th serve to add high frequency details in the discrimination, as it has
been pointed in our work commented on section 3.3.

Figure 3.11A shows the Pearson Correlation network of the most discriminatory genes of
the NOTCH1 mutation in which three main networks associated to MSI2 through WSB2,
ACSL5 and CNTNAP2 are apparent. The Normalized Mutual Information network (Figure
3.11B) demonstrates a main connection through NCK2.

Table 3.4 NOTCH1 mutational status prediction.

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%)
MSI2 157 74 43 26 4.6 93.2
MSI2 238 123 62 49 4.1 94.9
MSI2 73 25 31 16 3.0 91.5
MSI2 283 149 92 61 2.8 90.6
MSI2 58 19 32 15 2.7 92.3
C10orf137 193 86 392 135 2.4 90.6
LAG3 236 155 77 103 2.4 90.6
LPL 357 250 170 254 2.3 92.3
NCK2 838 219 1560 529 2.2 93.2
CNTNAP2 66 96 667 799 2.1 92.3
ST3GAL1 38 11 85 36 2.1 90.6
CCDC24 109 73 48 44 2.0 92.3
LTK 216 96 103 132 2.0 90.6
FLNB 59 30 33 17 1.9 94.0
ZNF333 38 5 57 16 1.9 92.3
PREPL 190 62 329 108 1.9 93.2
C19orf28 120 37 217 80 1.9 93.2
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Table 3.4 NOTCH1 mutational status prediction.

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%)
C1orf38 365 148 189 109 1.8 91.5
LTK 107 52 52 64 1.8 91.5
SPG20 182 150 71 106 1.8 92.3
SAP30L 74 38 111 32 1.8 94.0
MYST1 248 37 322 60 1.7 93.2
C10orf137 99 41 187 66 1.7 94.9
ATP6V0B 831 198 596 183 1.7 91.5
LPL 130 89 75 99 1.7 92.3
SLC4A7 47 39 150 120 1.7 90.6
LOC100128252 161 126 112 156 1.7 89.7
HNRNPR 57 22 110 48 1.7 89.7
REEP5 41 18 80 39 1.6 90.6
SRSF1 110 60 175 52 1.6 94.0
GNPNAT1 37 8 64 24 1.6 94.0
SHPRH 270 64 383 83 1.6 94.0
CNTNAP2 101 140 804 1105 1.6 94.9
PHF2 119 44 175 60 1.6 92.3
FCRL1 234 180 525 308 1.6 93.2
WSB2 804 329 489 258 1.6 93.2
ATP6V0B 624 145 448 134 1.6 94.9
LYL1 87 31 140 47 1.5 94.9
ACSL5 230 85 332 106 1.5 94.9
STX17 50 21 75 25 1.5 94.0
SPG20 125 98 55 74 1.5 94.0
NHEJ1 29 7 37 8 1.5 94.0
ZNF248 48 25 89 45 1.5 93.2
MPST 55 20 35 10 1.5 93.2
CDK13 69 42 132 75 1.5 93.2
TRMT1 58 17 86 30 1.5 92.3
PI4K2A 224 101 115 84 1.5 93.2
ELOVL5 254 97 504 188 1.5 93.2
FAM30A 588 900 1535 1495 1.5 93.2
PTDSS1 129 21 190 44 1.5 94.0
PLGLB1 74 47 152 103 1.5 94.0
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Table 3.4 NOTCH1 mutational status prediction.

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%)
C5orf53 51 22 125 74 1.5 94.0
PSMD7 608 175 414 141 1.5 94.9
NASP 117 26 176 52 1.5 94.0
ATP6V0B 768 170 566 172 1.5 94.9
WDR36 108 36 164 43 1.4 94.9
LTN1 511 52 645 99 1.4 94.9
GAL3ST3 22 2 19 2 1.4 94.9
PDE7A 102 67 214 120 1.4 94.9
CAPRIN2 1098 345 1511 368 1.4 95.7

List of the 60 most discriminatory genes to predict the NOTCH1 mutation list with the highest
predictive accuracy (95.7%), ordered by decreasing Fisher’s ratio. Class 1 corresponds to
samples with mutated NOTCH1 and class 2 corresponds to those with unmutated NOTCH1.
µ1 and σ1 refer respectively to the mean expression and standard deviation in class 1 (mutated
NOTCH1), and µ2 and σ2 for the unmutated group. FR (log) stands for the logarithmic
Fisher’s ratio.
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Fig. 3.11 Correlation network of the most discriminatory genes for the NOTCH1 mutational
status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized
Mutual information.

SF3B1 mutational status

SF3B1 gene (Splicing Factor 3b, Subunit 1) is located in chromosome 2. Its importance in
CLL has been analyzed by Wan and Wu (2013); Wang et al. (2011). As with NOTCH1, the
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Table 3.5 SF3B1 mutational status prediction.

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%)
RPL32 859 228 513 115 2.6 94.0
KLF8 131 45 59 30 2.4 94.0
PDGFD 85 34 42 20 2.2 95.7
PLAGL1 171 87 336 118 2.2 94.0
KLF3 40 29 239 221 2.2 94.0
UQCC 27 7 41 7 2.1 94.9
HBA1 3650 2978 755 2218 2.1 96.6
CNPY2 206 73 317 70 2.1 97.4
TMC6 322 74 546 155 2.0 97.4
CSNK2B 71 37 141 38 2.0 97.4
PLAGL1 282 135 507 174 2.0 97.4
PIP5K1B 55 32 212 200 1.9 98.3
DGKG 44 16 115 70 1.9 97.4
HBB 12044 6627 2783 5082 1.9 98.3
PLAGL1 138 83 252 92 1.9 98.3
ZNF76 34 8 61 20 1.8 98.3
AMT 48 8 97 41 1.8 97.4
STK38 206 108 368 156 1.8 97.4
HBB 8359 5278 1777 3669 1.8 97.4
ACTR2 3113 266 3789 506 1.8 97.4
GLIPR1 115 107 359 261 1.7 97.4
MAST4 136 89 59 60 1.7 99.1

List of most discriminatory genes (22) to predict the SF3B1 mutation, ordered by decreasing
Fisher’s ratio with an accuracy of 99.1%. Class 1 corresponds to samples with mutated
SF3B1, and class 2 corresponds to those with unmutated SF3B1. µ1 and σ1 refer respectively
to the mean expression and standard deviation in class 1 (mutated SF3B1), while µ2 and σ2
do for the unmutated group. FR (log) stands for the logarithmic Fisher’s ratio.

SF3B1 classification problem was also highly unbalanced, since 107 CLL samples (out of
117) did not show the mutation.

The shortest list with the highest predictive accuracy (99.1%) was composed of 22 probes
with FR’s between 2.6 and 1.7. The most discriminatory gene was RPL32 (table 3.5). Figure
3.12A shows the Pearson Correlation network of the most discriminatory genes of the SF3B1
mutation. In general correlations between discriminatory genes are low. Two main networks
were noted to be associated to the most discriminatory gene RPL32, through YWHAB and
KLF8. Conversely, the correlation network using the Normalized Mutual Information (figure
3.12B) demonstrated a single network associated with CNPY2-STK38.
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Fig. 3.12 Correlation network of the most discriminatory genes for the SF3B1 mutational
status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized
Mutual information.
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Gene intersections for IgVH, NOTCH and SF3B1 mutations

We analyzed the intersection between the most discriminatory genes for IgVH, NOTCH1,
and SF3B1 mutations as defined by FR and FC analyses. We consolidated both lists.
The shortest lists found by FR and FC for each mutation and then performed pairwise
intersections to establish shared genes. Figure 3.13 shows the result for these intersections.
The intersection with the greater number of genes is NOTCH1-SF3B1 (19 genes), followed
by IgVH-NOTCH1 (11 genes) and IgVH-SF3B1 with only 5 genes. Only four genes were
common to all mutations: IGHG1, MYBL1, NRIP1 and RGS13.

Fig. 3.13 Intersection among the most discriminatory genes of the IgVH, NOTCH1 and
SF3B1 mutations. The three main mutations are represented with a rectangle and the most
discriminatory genes are surrounded by ellipses. An edge represents that the gene appears as
most discriminatory for a specific mutation. Genes with three edges (surrounded by a dot
rectangle) are common to these three main mutations.
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3.4.4 CLL conclusions

We showed the genomic data integration in CLL patients, by linking together microarray
expression data and their IgVH, NOTCH1 and SF3B1 mutational status. Our methodological
approach could define hierarchical gene relationships among CLL patients expressing these
3 different mutations and establishing the predictive accuracy of gene clusters relative to
each mutation. Besides, our methodology served to depict the gene clusters that are most
strongly associated with the expression of each selective mutation (networks of synergistically
working genes), and their relationship between mutation expressions with a particular clinical
outcome (survival). The biological significance of the findings for each of the mutational
statuses can be found on the original manuscript (see appendix A).

The aim of this retrospective analysis was to provide a deeper understanding on the effects
of the different mutations in the CLL disease progression, hoping that these findings will be
used clinically in the near future with the development of new drugs. A future verification of
these findings with other independent cohorts could lead to a better design of the therapeutic
targets.

3.4.5 Additional results for NOP16 mutational status

NOP16 is the third mutation by percentage of occurrence (6.84%) in our cohort. Other
authors have identified POT1 as the third most mutated gene using a more restricted dataset
(Ramsay et al., 2013). Besides, NOP16 (NOP16 nucleolar protein) is an interesting target,
since it is transcriptionally regulated by c-Myc, a gene that plays an important role in cell
cycle progression, apoptosis and cellular transformation. Also, NOP16 is upregulated in
breast cancer, being its over-expression associated to poor patient survival (Butt et al., 2008).

The NOP16 mutation has been predicted with an accuracy of 100% using the list of
26 most discriminatory genes provided by the FR (Table 3.6). Interestingly, the predictive
accuracy obtained with only the two first genes of this list (SLC39A4 and WARS) is very
high (97.4%).

Figure 3.14 shows the intersections between the lists of most discriminatory genes
provided by the Fisher’s ratio and fold change lists in each case. The intersections are as
follows:

1. The intersection between NOP16 and NOTCH1 contains 6 genes: IGHG1, IGKC,
IGKV3D-11, PXXDNL, RASF6 and RSG13.

2. The intersection between NOP16 and IgVH contains 4 genes: IGHG1, PXXDNL,
SEPT10 and RSG13.
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Table 3.6 NOP16 mutational status prediction.

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%)
SLC39A4 32 5 48 13 2.5 88.9
WARS 122 63 70 46 1.4 97.4
CORIN 14 1 16 1 1.4 95.7
BRWD1 179 68 121 56 1.4 95.7
KLHL8 207 60 295 73 1.3 94.0
SIRT6 16 2 19 2 1.3 96.6
TCOF1 123 33 160 39 1.3 95.7
DCX 17 2 15 1 1.3 95.7
DSE 29 4 24 3 1.2 94.9
NONO 2685 175 2407 229 1.2 94.9
SLC1A7 20 2 18 3 1.2 96.6
BAD 51 11 65 14 1.2 95.7
SNORA16B 26 6 21 4 1.2 95.7
OR51F1 18 2 16 2 1.2 96.6
C9orf57 17 2 15 2 1.2 97.4
ABHD2 25 4 21 4 1.1 97.4
KIAA0907 871 364 1219 455 1.1 97.4
EDN3 15 1 17 1 1.1 97.4
UNC5B 29 4 25 4 1.1 97.4
OR1J4 18 1 16 2 1.1 97.4
PROZ 22 2 19 4 1.1 98.3
SEMA6A 14 1 15 2 1.1 98.3
MECR 31 10 38 7 1.1 99.1
GNA14 15 1 14 1 1.0 99.1
OPN5 14 1 16 2 1.0 99.1
CYP4Z2P 13 1 15 1 1.0 100.0

List of the 26 most discriminatory genes ordered by decreasing Fisher’s ratio. µ1 and σ1
refer respectively to the mean expression and standard deviation in class 1, (mutated NOP16),
and µ2 and σ2 for the unmutated group. FR (log) stands for the logarithmic Fisher’s ratio,
and Acc is the LOOCV predictive accuracy. The maximum accuracy (100%) is obtained
with the first 26 most discriminatory genes. Also the list composed by the two first genes
(SLC39A4 and WARS) provides a predictive accuracy of 97.4%.
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3. The intersection between NOP16 and SF3B1 also contains 4 genes: IGHG1, IGKC,
RASF6 and RSG13

Therefore, the longest intersection of NOP16 is with NOTCH1 mutation and only two
genes belong to the intersection of the 4 mutations: IGHG1 and RSG13. IGHG1 (Im-
munoglobulin Heavy Constant Gamma 1) has been already related to hypogammaglobuline-
mia and B-cell chronic lymphocytic leukemia. This gene also plays a major role in antigen
binding. RGS13 (Regulator of G-protein signaling 13) encodes a protein that is a member
of the regulator of G protein signaling (RGS) family. Down-regulation of RGS13 has been
observed in mantle cell lymphoma (Islam et al., 2003). In the present case RGS13 is upregu-
lated in the group with mutated NOP16. RGS13 over expression inhibited CXCL12-evoked
Ca(2+) mobilization, Akt phosphorylation and chemotaxis (Bansal et al., 2008). Also it has
been also shown that p53 negatively regulates RGS13 protein expression in immune cells
(Iwaki et al., 2011).



3.4 Genomic data integration in Chronic Lymphocytic Leukemia 81

Fig. 3.14 Intersection among the most discriminatory genes of the IgVH, NOTCH1, SF3B1
and NOP16 mutations. The four mutations are represented with a rectangle and the most
discriminatory genes are surrounded by ellipses. An edge represents that the gene appears
as most discriminatory for a specific mutation. Genes with four edges (surrounded by a dot
rectangle) are common to these four mutations.





Chapter 4

Sensitivity analysis

4.1 Introduction

Hitherto, we have applied our methodology to the main different kind of biomedical data,
showing that we can solve diverse biomedical problems precisely and effectively, and using
limited resources. In this section we check the robustness of the methodology against the
main sources of noise and how the most common biomedical data preprocessing techniques
affect it. We have tested it using genetic data, particularly microarray datasets. The result
of the noise analysis using genetic data could be extended to other types of data since the
noise we manage is present in every type of data regardless of their origin. However, the
preprocessing techniques we managed are common to microarray expression data. We
focused in these preprocessing techniques since they are very well-known and commonly
applied. Preprocessing techniques in clinical data, due to their heterogeneity, is an extensive
topic out of scope in this dissertation. Both works are reflected in two manuscripts: "Sen-
sitivity analysis of gene ranking methods in phenotype prediction" currently under review
in the "Journal of Biomedical Medicine" (see Appendix A.5) and "Impact of microarray
preprocessing techniques in unraveling biological pathways", accepted for publication in the
"Journal of Computational Biology" (see Appendix A.6).

The chapter is structured in two main parts. Firstly we theoretically analyzed the effect of
noise in phenotype prediction problems. Via synthetic modeling, we performed the sensitivity
analysis for the main gene ranking methods applied in our methodology to different types
of noise. We then studied the predictive accuracy of our biomedical robot in synthetic data
and in three different datasets related to cancer, rare and neurodegenerative diseases to better
understand the translational aspects of our findings. Secondly, we analyze the impact of
the main microarray preprocessing techniques on the analysis of biological pathways in the
prediction of cancer treatment-related fatigue performed in section 3.3. We compared the
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Robust Microarray Averaging (RMA) and the Affymetrix’s MAS5 method with the results
that are obtained working with raw data.

4.2 Sensitivity analysis of gene ranking methods in pheno-
type prediction

In this section we first theoretically analyzed the effect of noise in phenotype prediction
problems by casting them into abstract optimization problems. To accomplish this, we first
show that noise in data can be expressed as a modeling error that partially falsifies the set
of discriminatory probes that are phenotype-related, and therefore the biological pathways
that are involved. Secondly, the sensitivity to different kind of noise (in expression and
class assignment) for the following gene ranking methods explained in section 1.3.6: Fold
Change (FC), Fisher’s Ratio (FR), Maximum Percentile Distance (MPD) and Entropy (EN);
compared to well-established Significance Analysis of Microarrays (SAM) is performed
via synthetic microarray modeling. This analysis has shown that in general terms FR is
the most robust method in terms of precision closely followed by SAM. Besides, both
methods provided the smallest subsets of genes with the highest discriminatory power. The
effect of noise increases the number of genetic probes that are needed to slightly improve
the predictive accuracy. This is a very important result concerning parsimony principle.
Therefore, an optimum method to find the biological pathways in translational problems will
consist of ranking the differential expressed genes decreasingly by their corresponding FR.
Additionally, to avoid variable distributions with very low variances but with means/medians
very close which would derive in high FR’s, a first preselection with a low cut off using FC
could be performed, as we will see in section 4.3.

The results of these analyses are confirmed using three different datasets concerning the
study of cancer (Chronic Lymphocytic Leukemia), rare diseases (Inclusion Body Myositis)
and neurodegenerative diseases (Amyotrophic Lateral Sclerosis). We found that FR and
SAM provide the highest predictive accuracies with the smallest number of genes, exploiting
the principle of parsimony. Besides, we show their corresponding biological found with an
expanded list of genes whose discriminatory power has been established via FR. In these
three cases, the effect of viral infections in the corresponding pathways is clear. The results
of this analysis is important to optimize the use of these methods in translational medicine,
particularly in the biological understanding of different diseases and in drug optimization
problems.
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4.2.1 The effect of noise in phenotype prediction

One of the main obstacles in the analysis of genomic data is the absence of a conceptual
model that relates the different probes to the class prediction (phenotype). Therefore, we
need to model these complex relationships. For this reason, similarly what we defined in
section 1.3.1 and equation (1.1), a classifier L∗(g) has to be constructed and it is defined as an
application between the set of genetic signatures g and the set of classes C = {c1,c2, ...,cn}:
in which the phenotype is divided:

L∗(g) : g ∈ Rs →C = {c1,c2, ...,cn}. (4.1)

For this specific problem and following equations (1.2), (1.3) and (1.4) the optimization
problem of finding the subset of genetic signatures g that maximizes the learning accuracy,
giving a subset of samples T (training data set) whose class vector is known, cobs, can be
written as follows:

g : O(ḡ) = min
g∈RS

O(g), (4.2)

O(g) = ||L∗(g)− cobs||p (4.3)

L∗(g) = (L∗(g1), ...,L∗(gi), ...,L∗(gm)), (4.4)

As we explained in chapter 3, one of the main numerical difficulties in learning is the
high dimensionality of the genomic data since the number of monitored probes (or genes) is
much greater than the number of samples (or patients). This fact provokes that the phenotype
prediction in the learning stage will have a very high underdetermined character. Therefore,
several gene lists with similar predictive accuracy might exist. All these high predictive lists
are expected to be involved in the genetic pathways that explain the phenotype. In practice,
the predictive accuracy of a genetic signature, O(g), is performed via cross-validation. This
knowledge could be very important for early diagnosis and treatment optimization.

The presence of noise in the genomic data will impact the classification and obviously the
pathway analysis resulting from this procedure. There are at least two main sources of noise
in phenotype prediction problems as we detailed in section 1.3.3: Noise in the feature data
(gene expression), and noise in class assignment. Consequently the perturbed and noise-free
cost functions, Op(g) and Ot(g) will never achieve their corresponding minima for the same
genetic signatures g. Therefore, the impact of noise in the optimum genetic signature is a fail
in the generalization of new incoming samples. For that reason, it is also desirable to inspect
the genetic signatures having a lower predictive accuracy than the optimum.
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To alleviate the high underdetermined character of genomic-phenotype prediction prob-
lems, feature selection methods are used to reduce the dimensionality of the genetic data. The
problem of determining the genes that separate two (or more) classes corresponding to given
phenotypes has been traditionally been addressed by filter, wrapper and embedded methods
(Saeys et al., 2007). In the case of filter methods, the gene selection and the classifier for
phenotype prediction are independent (uncoupled). Wrapper and embedded techniques are
most sophisticated approaches where the gene selection is the solution of an optimization
problem; therefore selection and classification are coupled. Wrapper and embedded methods
usually involve the use of neural network, support vector machines, decision trees and global
optimization algorithms. Filter methods rank different genes according to different measures
of their discriminatory power in phenotype prediction problems. The fact that wrapper and
embedded methods involve optimization also implies that an uncertainty analysis of the
feature selection problem is involved. For that reason we find that filter methods are more
interesting.

4.2.2 Gene selection ranking methods and noise

To determine the stability and robustness of the mentioned ranking algorithms in mitigating
microarray-generated noise, we compared them using a synthetic dataset and publicly avail-
able datasets associated with Chronic Lymphocytic Leukemia, Inclusion Body Myositis, and
Amyotrophic Lateral Sclerosis. At a translational level, the aim of this analysis is to establish
an optimum way to find the most discriminatory genes in a phenotype prediction and the
biological pathways that are involved.

A variety of analyses have been performed to study the sensitivity of some of these
methods to noise in the expression data (Dinu et al., 2007; Jeffery et al., 2006; Kooperberg
et al., 2002; Larsson et al., 2005). However, so far the robustness against different kind of
noises for all these ranking methods has not been addressed.

For that purpose, we used a synthetic dataset where three different types of noise were
introduced: additive Gaussian noise, lognormal noise and noise in the class assignment. The
Gaussian noise has been introduced through a random number generator following a normal
distribution n j → N(0,rkEt

j) for each gene, being rk the noise level, and Et
j is the noise-free

expression of the gene j. Therefore, the noisy expression corresponding to the gene j would
be:

E p
j = Et

j +n j. (4.5)
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The lognormal noise has been obtained by adding Gaussian noise to the logarithms of the
expression:

ln j = log2s j → N(0,rklog2Et
j). (4.6)

Therefore, the lognormal noise has a scaling effect, since:

log2E p
j = log2Et

j + ln j,

E p
j = s jEt

j. (4.7)

In the case of class assignment noise, a given number of samples are misclassified. The
class assignment and lognormal noises belong to the category of non-Gaussian noise. The
synthetic dataset was built with a predefined number of differentially expressed genes. We
subsequently introduced different levels of noise: 1 to 6% for Gaussian and log-Gaussian
noises and 10 to 40% for the class assignment noise.

To check the performance of the different ranking methods we used the Precision metric:

Precision =
|{DEgenes}∩{Selectedgenes}|

|{Selectedgenes}|
(4.8)

where {DEgenes} is the set of the differentially expressed genes and {Selectedgenes} the set
of genes selected by the ranking algorithm.

4.2.3 The synthetic and diseases datasets

A flow diagram for the methodology used in this paper is shown in figure 4.1. The synthetic
datasets was created to compare the various filtering methods against a known dataset and
then, based on these findings, create a hierarchy which defines the effectiveness of the ranking
methods against different kind of noise and to understand how to find optimally the biological
pathways in disease datasets.

The synthetic dataset was built simulating a real dataset related to Chronic Lymphocytic
Leukemia (see section 3.4.2 for further details) using the OC-plus package available for
The Comprehensive R Archive Network (Pawitan and Ploner, 2015). The original data was
compound of 163 samples and 48807 probes. We have chosen this dataset for building
the synthetic dataset because it has a good sample size and the class is well balanced. The
experiment was set up as follows:
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Fig. 4.1 Flow diagram of the noise analysis methodology

• The class of the synthetic dataset was the same as the one observed for the IgVH status
(Ferreira et al., 2014): 92 samples had mutated IgVH, while in the other 71 samples
IgVH was not mutated.

• The noise-free synthetic data set (expression) was generated using as main parameters
D = 2 and P0 = 0.47 where D is the effect size for differentially expressed genes
expressed in units of the gene-specific standard deviation and P0 is the proportion
of differentially expressed genes. This simulation made 229 genes be differentially
expressed which we will try to recover via the different gene-ranking methods. These
genes are supposed in the synthetic dataset to optimally differentiate the known IgVH
status.

Furthermore, we have modeled different real microarray datasets to confirm these find-
ings:

• B-cell Chronic Lymphocytic Leukemia (CLL) dataset composed by 163 samples and
48807 probes (Ferreira et al., 2014). CLL is a complex and molecular heterogeneous
disease which is the most common adult Leukemia in western countries. DNA analyses
served to distinguish two major types of CLL with different survival times based on
the maturity of the lymphocytes, as discerned by the Immunoglobulin Heavy chain
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Variable-region (IgVH) gene mutation status. 92 samples had the IgVH gene mutated
versus 71 samples with worse prognosis. The aim of this analysis is to find the
pathways that are associated with bad prognosis in CLL patients (see section 3.4.2 for
further details about this dataset).

• Inclusion Body Myositis (IBM): microarray studies (with 22283 probes) were per-
formed on muscle biopsy specimens from 34 patients with inclusion body myositis and
11 samples without neuromuscular disease (Greenberg et al., 2005). IBM is a muscle
disease characterized by chronic, progressive muscle inflammation accompanied by
muscle weakness. The aim of this analysis is to find the pathways that are associated
to the development of IBM with respect to healthy controls.

• Amyotrophic Lateral Sclerosis (ALS) dataset composed by 85 samples (57 samples
are ALS cases and 28 healthy controls) and 54675 probes (Lincecum et al., 2010).
ALS is a fatal neurodegenerative disease characterized by progressive loss of motor
neurons. These authors have shown that the co-stimulatory pathway is upregulated in
the blood of a high percentage of human patients with ALS (56%). The aim of this
analysis is to define the genes that are associated with a diagnosis of ALS, the possible
causes and the biological pathways that are involved.

These datasets are representative of 3 different types of diseases: cancer, rare and
neurodegenerative diseases. Besides, they have a reasonable sample size and a good balance
between both classes in each case. Although all the microarray datasets treated herein are
post processed via the RMA algorithm that performs an estimation and correction of the
noise (Irizarry et al., 2003), noise is still present due to the complexity of the data acquisition.
Because the genes which are differentially expressed in real datasets are unknown, we applied
the methodology explained in section 1.3.6 to select the smallest subset of high discriminatory
probes.

4.2.4 Results using synthetic dataset

In order to compare the performance we calculated the precision for each method, considering
the set of 229 genes that were differentially expressed in the synthetic dataset. Table 4.1
provides the precision for all the ranking methods mentioned above for different noise types
and levels. Table 4.2 shows the LOOCV mean accuracy and the number of selected genes in
each method. What is more, we have also calculated the empirical Cumulative Distribution
Functions (CDF) of the positions of the differentially expressed genes captured by each
method. For the sake of clearness we only used the first 1000 gene positions. A perfect CDF
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would be a straight line reaching the value of 1 at position 229. Figure 4.2, 4.3 and 4.4 shows
these CDF curves for each type of noise and noise level.

Table 4.1 Synthetic modeling precision. Precision for each of the noise types at different
noise levels.

1% 2% 3% 4% 5% 6%

GAUSSIAN

FR 1.00 0.97 0.86 0.72 0.65 0.55
FC 0.64 0.64 0.61 0.56 0.53 0.46
EN 0.85 0.75 0.68 0.55 0.5 0.43
MPD 0.28 0.31 0.32 0.34 0.34 0.34
SAM 0.94 0.91 0.80 0.67 0.60 0.51

LOG-GAUSSIAN

FR 0.84 0.62 0.41 0.26 0.21 0.16
FC 0.60 0.54 0.38 0.27 0.23 0.16
EN 0.67 0.45 0.31 0.18 0.12 0.10
MPD 0.32 0.36 0.28 0.24 0.19 0.14
SAM 0.79 0.57 0.38 0.25 0.20 0.15

10% 15% 20% 25% 30% 35%

CLASS

FR 1.00 1.00 0.99 0.94 0.68 0.40
FC 0.53 0.52 0.41 0.29 0.25 0.16
EN 0.87 0.88 0.82 0.77 0.50 0.32
MPD 0.27 0.26 0.22 0.19 0.18 0.12
SAM 0.94 0.94 0.93 0.88 0.64 0.37
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Table 4.2 Synthetic modeling accuracy. Mean LOOCV predictive accuracy for each of the
noise types at different noise levels.

1% 2% 3% 4% 5% 6%

GAUSSIAN

FR 100.00 / 8 100.00 / 5 100.00 / 6 100.00 / 5 100.00 / 13 100.00 / 8
FC 100.00 / 9 100.00 / 12 100.00 / 12 100.00 / 9 100.00 / 9 100.00 / 12
EN 100.00 / 17 100.00 / 11 100.00 / 8 100.00 / 12 100.00 / 19 100.00 / 28
MPD 100.00 / 21 100.00 / 19 100.00 / 23 100.00 / 17 100.00 / 17 100.00 / 22
SAM 100.00 / 6 100.00 / 5 100.00 / 6 100.00 / 4 100.00 / 14 100.00 / 8

LOG-GAUSSIAN

FR 100.00 / 6 100.00 / 22 100.00 / 47 100.00 / 29 100.00 / 37 100.00 / 88
FC 100.00 / 9 100.00 / 16 100.00 / 48 100.00 / 29 100.00 / 37 100.00 / 119
EN 100.00 / 4 100.00 / 14 100.00 / 24 100.00 / 38 100.00 / 45 100.00 / 132
MPD 100.00 / 22 100.00 / 23 100.00 / 111 100.00 / 37 100.00 / 46 100.00 / 128
SAM 100.00 / 8 100.00 / 18 100.00 / 47 100.00 / 29 100.00 / 28 100.00 / 90

10% 15% 20% 25% 30% 35%

CLASS

FR 90.18 / 3 85.28 / 14 83.44 / 2 76.07 / 4 73.62 / 2 69.94 / 213
FC 90.18 / 10 84.66 / 8 80.98 / 188 76.07 / 52 72.39 / 183 69.94 / 85
EN 90.18 / 25 85.28 / 28 81.60 / 18 75.46 / 2 73.62 / 3 71.17 / 4
MPD 90.80 / 121 85.89 / 180 80.98 / 29 75.46 / 23 71.17 / 33 66.87 / 46
SAM 90.80 / 5 85.28 / 4 83.44 / 2 76.07 / 4 73.62 / 2 69.33 / 5

Fig. 4.2 Empirical Cumulative Distribution Function (CDF) of the positions of the differen-
tially expressed genes in the set of the first 1000 selected genes for Gaussian noise.
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Fig. 4.3 Empirical Cumulative Distribution Function (CDF) of the positions of the differen-
tially expressed genes in the set of the first 1000 selected genes for log-Gaussian noise.

Fig. 4.4 Empirical Cumulative Distribution Function (CDF) of the positions of the differ-
entially expressed genes in the set of the first 1000 selected genes for class assignment
noise.

It can be observed the following:

• The precision decreases for all the methods as the noise level increases (refer to Table
4.1). The FR provides the best precision score for all the noise types and levels. These
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differences decrease very fast with the noise level in the case of lognormal noise.
The precision figures for SAM, in some cases, are very close to FR. In the case of
class assignment noise, FR keeps precision levels up to 90% for 10 to 25% of noise,
showing a very good robustness against this type of noise. This result has an important
translational impact in real datasets to find the biological pathways that are involved in
the disease development.

• The differences in the LOOCV mean accuracy (table 4.2) is not so clear and all methods
provide similar results for the three types of noise at the different levels in the expenses
of increasing the number or probes needed to improve the LOOCV predictive accuracy.
In the case of Gaussian noise, SAM and FR show very similar results obtaining 100%
of predictive accuracy with a much more reduced set of selected probes. Regarding
lognormal noise, entropy seems to be the best for lower level of noises, while SAM and
FR behave better when the noise level increases. FR and SAM are the best methods
with a very little difference between them in the case of class assignment noise. These
conclusions can also be clearly observed in the CDF curves (figures 4.2 to 4.4).

• We have also combined the Gaussian noise and the Log-Gaussian noise with the noise
in the class assignment obtaining similar results. Adding the class assignment noise
to a noisy dataset (for both Gaussian and Log-Gaussian noises) affects much more
in finding the differentially expressed genes since the Precision decreases drastically
(see table 4.3). What is interesting is that the FC seems to work better in terms of
precision for a combination of class assignment and log-Gaussian noise. In terms of
predictive accuracy more genes are needed to have a high predictive accuracy when
class assignment noise is present (see table 4.4). In this case, FR and SAM provide the
best results. Furthermore, it is possible to observe that for high levels of noise we can
achieve high predictive accuracy with null precision at the expenses of adding a lot
of genes to the predictive genetic signature. In this case, the biological pathways are
clearly falsified.

In conclusion, noise in class assignment affects the selection of the important discrimina-
tory genes in phenotype prediction problems more than noise in the expression data. This
result emphasizes the importance in translational medicine of having at disposal a correct
class assignment of the samples, provided by the doctors. Moreover, the methodologies used
for solving the phenotype prediction problems should be accordingly designed, since the
strategy of finding the best result might be in this case suboptimal, because noise impact the
results.
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Table 4.3 Synthetic modeling precision with combined noise

1% / 10% 2% / 15% 3% / 20% 4% / 25% 5% / 30% 6% / 35%
FR 0.97 0.72 0.45 0.16 0.07 0.04

GAUSSIAN FC 0.45 0.39 0.35 0.15 0.11 0.08
& EN 0.82 0.55 0.36 0.10 0.04 0.04

CLASS MPD 0.26 0.26 0.22 0.11 0.09 0.08
SAM 0.91 0.68 0.42 0.16 0.07 0.04
FR 0.71 0.25 0.12 0.06 0.03 0.00

LOG-GAUSSIAN FC 0.46 0.28 0.16 0.08 0.03 0.00
& EN 0.55 0.21 0.11 0.03 0.00 0.00

CLASS MPD 0.25 0.22 0.14 0.07 0.03 0.01
SAM 0.66 0.24 0.12 0.05 0.02 0.00

Precision for Gaussian and Log-Gaussian noises combined with Class assignment noise at
different levels using the synthetic dataset.

Table 4.4 Synthetic modeling accuracy with combined noise

1% / 10% 2% / 15% 3% / 20% 4% / 25% 5% / 30% 6% / 35%
FR 87.12 / 5 82.21 / 10 78.53 / 6 85.28 / 45 95.71 / 197 97.55 / 218

GAUSSIAN FC 84.66 / 11 82.21 / 196 75.46 / 68 70.55 / 6 77.30 / 176 85.89 / 107
& EN 84.66 / 3 81.60 / 171 77.30 / 4 83.44 / 36 93.87 / 212 95.71 / 173

CLASS MPD 85.28 / 130 82.21 / 50 76.07 / 61 66.87 / 17 73.01 / 215 79.14 / 229
SAM 85.89 / 7 81.60 / 8 77.91 / 5 85.28 / 47 95.71 / 228 95.71 / 218
FR 84.66 / 7 88.96 / 226 99.39 / 172 99.39 / 128 100.00 / 79 100.00 / 90

LOG-GAUSSIAN FC 85.28 / 8 85.28 / 205 94.48 / 196 97.55 / 204 100.00 / 109 100.00 / 90
& EN 84.66 / 10 87.12 / 221 99.39 / 226 96.93 / 226 100.00 / 214 99.39 / 224

CLASS MPD 84.66 / 46 83.44 / 190 93.87 / 223 96.32 / 204 100.00 / 148 100.00 / 154
SAM 84.66 / 6 89.57 / 228 99.39 / 167 99.39 / 154 100.00 / 96 100.00 / 67

LOOCV mean accuracy / Number of selected probes for Gaussian and Log-Gaussian noises
combined with Class assignment noise at different levels using the synthetic dataset.

4.2.5 Results using disease datasets

Table 4.5 shows the mean accuracy and number of selected probes for each ranking method
and dataset. For these three datasets we achieved accuracies higher than 90% with a very
small subset of probes.
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Table 4.5 Mean LOOCV accuracy / Number of selected probes for CLL, IBM, and ALS
datasets.

CLL IBM ALS
FR 93.25 / 6 97.06 / 2 94.12 / 12
FC 93.87 / 35 79.41 / 2 87.06 / 254
MPD 93.25 / 7 91.18 / 32 94.12 / 17
EN 94.48 / 99 79.41 / 6 88.24 / 114
SAM 93.87 / 26 97.06 / 1 95.29 / 42

In the case of CLL, the difference between all the methods is very small. The entropy
method achieved 94% of accuracy with 99 probes. However SAM got almost 94% of
accuracy with 26 probes and FR 93% with only 6 probes. High discriminatory genes of the
IgVH phenotype include: LPL, CRY1, LOC100128252, SPG20, ZBTB20, NRIP1, ZAP-
70, LDOC1, COBLL1 and NRIP1. The pathway analysis has revealed the importance of
the Inflammatory Response, the PAK pathway and the ERK signaling super pathway that
includes ERK signaling, ILK signaling, MAPK signaling, Molecular Mechanisms of cancer
and Rho Family GTPases pathway. These pathways control Proliferation, Differentiation,
Survival and Apoptosis. Also, other important pathways found were Allograft Rejection,
the Inflammatory Response Pathway, CD28 Co-stimulation, TNF-alpha/NF-kB Signaling
Pathway, Akt Signaling, PAK Pathway and TNF Signaling. The presence of some of these
pathways opens the hypothesis of viral infection as a cause of CLL.

Regarding the IBM dataset, we found that SAM and FR were able to correctly predict
97% of the samples just with 2 and 1 probes respectively. Differences between SAM and
FR and other methods are remarkable. The list of most discriminatory genes of the IBM
phenotype include: HLA-C, HLA-B, TMSB10, S100A6, HLA-G, STAT1, TIMP1, HLA-F,
IRF9, BID, MLLT11 and PSME2. Note the presence of different HLA-x genes of major
histocompatibility. Particularly, the function of the gene HLA-B would explain alone the
genesis of IBM: ”HLA-B (major histocompatibility complex, class I, B) is a human gene that
provides instructions for making a protein that plays a critical role in the immune system.
HLA-B is part of a family of genes called the human leukocyte antigen (HLA) complex. The
HLA complex helps the immune system to distinguish the body’s own proteins from proteins
made by foreign invaders such as viruses and bacteria”. The analysis of biological pathways
has revealed the importance of viral infections, mainly in IBM patients: Allograft Rejection,
Influenza A, Class I MHC Mediated Antigen Processing and Presentation, Staphylococcus
Aureus Infection, Interferon Signaling, Immune Response IFN Alpha/beta Signaling Pathway,
Phagosome, Tuberculosis, Cell Adhesion Molecules (CAMs), Epstein-Barr Virus Infection,
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and TNF Signaling. We can see several viral infections in this list. It is interesting to remark
that 75% of the cases of viral myositis are due to Staphylococcus Aureus infection (Fayad
et al., 2007).

Finally, in the case of ALS dataset, SAM reached an accuracy of 95% with 42 probes,
while FR and MPD got a 94% with 12 and 17 probes respectively. High discriminatory genes
of the ALS phenotype include: CASP1, ZNF787 and SETD7. The pathway analysis has
revealed the importance of the GPCR Pathway, RhoA Signaling Pathway, EPHB Forward
Signaling, EphrinA-EphR Signaling, EBV LMP1 Signaling, and Regulation of Microtubule
Cytoskeleton. These pathways have different important signaling roles and suggest a possible
link to the Epstein-Barr virus (EBV). The activation of Caspases plays a central role in
cell apoptosis and activates interleukin-1, a cytokine involved in the processes such as
inflammation. Caspases have been also associated to the pathogenesis of Huntington disease.
Obviously, the complete exploitation of these results needs from the analysis of geneticists.

4.2.6 Conclusions for noise analysis

We have experimentally showed that noise in expression data and class assignment partially
falsifies the sets of discriminatory probes in phenotype prediction problems. Via synthetic
modeling we have shown that FR and SAM are the most robust gene selection methods for
different kind of noises. Besides, FR and SAM seem to exploit the parsimony principle,
being able to find the smallest-scale high discriminatory gene signature. Nevertheless, SAM
is much more computationally expensive than FR while the achieved results are similar. We
have also found that noise in class assignment affect the predictive accuracy and the precision
much more than noise in the expression data. Nevertheless, the No-Free-Lunch Theorem in
search and optimization (Wolpert and Macready, 1997) states that all these algorithms are
needed to understand the complex relationships hidden in the genetic datasets. Therefore,
the prior knowledge provided by the doctors is of paramount importance in the search for
solutions of the different diseases. From the translational point of view this analysis shows
the importance of establishing the discriminatory power of the genes in phenotype prediction
problems to correctly find the biological pathways that are involved. To accomplish this
task in the most efficient way possible we suggest ranking the most differentially expressed
genes according to their FR (or SAM ratio). Examples to cancer (CLL), rare (IBM) and
neurodegenerative diseases (ALS) are also outlined in this paper obtaining very interesting
conclusions that might imply an important role of several viral infections.
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4.3 Impact of microarray preprocessing techniques in un-
raveling biological pathways

In this section we analyzed the precision in biological pathways analysis obtained with a raw
dataset and the preprocessed datasets via Robust Multi-array Average (RMA) and Affymetrix
Microarray Suit 5.0 algorithm (MAS5). For that purpose we use a the combination FC-FR
ranking methods as explained in section 3.2, establishing the predictive accuracy via LOOCV
(see section 1.3.6). One of the main complexities of this analysis is having at disposal
synthetic data to perform it as we did with the sensitivity noise analysis. For that reason
we decided to work with international standards, such as, the Affymetrix Latin Square Data
for Expression Algorithm Assessment (Human Genome U133 Data Set Affymetrix (2015)),
where 42 different control genes are spiked-in at known concentrations. This is commonly
known as the Spike-In experiment. As a result, this study has two main parts: A) Analysis of
the precision and accuracy of the ranking methods using a synthetic data set for both raw and
preprocessed datasets. B) Analysis of the accuracy and biological pathways of the selected
genes using the cancer related fatigue raw and preprocessed datasets.

In part A we used the Affymetrix Latin Square Data for Expression Algorithm Assessment.
As we known the genes that are differentially expressed we first rank the genes through the
combination FC-FR and then we analyzed the precision (see equation (4.8)) of the obtained
ranking using raw and preprocessed data. Subsequently, we perform a gene selection to study
the discrimination power of the selected genes in both cases (raw and preprocessed).

In part B we managed the cancer treatment-related fatigue dataset described in section 3.3.
We carried out a similar analysis using both raw and preprocessed microarray data consisting
of 44 men with non-metastatic prostate cancer, where 25 of them coursed high cancer related
fatigue and 19 experimented low cancer related fatigue. We perform a gene selection based
on the same ranking method as for the synthetic dataset and analyzed the biological pathways
derived from the selection using the Gene-Analytics software (Stelzer et al., 2009). We have
also built a correlation network using the Pearson correlation coefficient with the selected
genes (see section 3.2 for further details about how are created the correlation networks). Then
we compare the biological pathways and correlation networks derived from the selection with
raw and preprocessed data. Also an independent validation dataset containing 17 samples is
at disposal that is used to confirm the predictive power of these lists in each case. Obviously,
the genes that are responsible for the disease development are unknown. The purpose of
this analysis is to analyze the impact of the preprocessing techniques in understanding the
biological pathways, keeping in mind the results that were found for the spike-in experiment
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Fig. 4.5 Flow chart of the methodology

where the set of differentially expressed genes is known, and also the a priori knowledge in
the chronic fatigue disease. A flow chart of this methodology is shown in figure 4.5.

4.3.1 Microarrays preprocessing techniques

In this section we provide a brief introduction about the microarray preprocessing techniques
used to unravel the biological pathways in phenotype prediction problems.

Microarrays are manufactured using photo-lithographic techniques to attach hundreds
of thousands of different oligonucleotide sequences on the surface of a glass slide. These
oligonucleotides correspond to known DNA or RNA sequences that are arranged in different
probe sets. Quantification of the levels of transcripts in a sample is performed via hybridiza-
tion to the specific probes and measurement of the expression through fluorescence-based
methods. Generally, raw data contains about 20 pairs of oligonucleotides for each DNA or
RNA target (gene) known as probe set. The first component of these pairs is referred to as
the Perfect Match (PM) probe. Each PM probe is paired with a Mismatch (MM) probe that is
artificially created by changing the middle base with the intention of measuring non-specific
binding. Typically, to define a measure of gene expression, probe intensities are summarized
for each probe set into a single value.



4.3 Impact of microarray preprocessing techniques in unraveling biological pathways 99

Different studies have been performed to analyze the accuracy of these measurements and
to correct the effect of noise in microarrays (Benito et al., 2004; Chen et al., 2011; Scherer,
2009). Two techniques of particular importance are MAS5 (Affymetrix, 2001) and RMA
(Irizarry et al., 2003):

• MAS5: The Affymetrix Microarray Suite 5.0 (MAS5) algorithm uses both PM and
MM probes to summarize gene expression. The MAS5 signal of a probe set i is defined
as the anti-log of the Tuckey’s biweight robust mean (Huber and Ronchetti, 2009) of
the following values:

ui j = log(PMi j −CTi j), j = 1, ...,N (4.9)

where

CTi j =





MMi j if MMi j < PMi j

PMil − ε2 if MMi j > PMi j
, (4.10)

being N de number of probes in the probe set (or gene) i and ε2 a given positive amount
that has to be individually adjusted for each probe set. Therefore, the robust Tuckey’s
mean of a probe set i is defined as:

ui =

N
∑
j=1

ψ(ui j;c)ui j

N
∑
j=1

ψ(ui j;c)
, (4.11)

where

ψ(x;c) =





x
(

1− x2

c2

)2
for |x|< c,

0 for |x|> c.
(4.12)

• RMA: Robust Multiarray Average (RMA), basically consists in three steps:

1. Background correction using the following additive probabilistic model:

PMi j = si j +bgi j, (4.13)

where PMi j is the Perfect Match of the probe j in gene i, si j is the gene signal and
it is supposed to follow an exponential distribution si j ∼ Exp(λi), and bgi j is the
background correction caused by the optical noise and non-specific binding and it
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is supposed to follow a normal distribution bgi j ∼ N(µi,σ2
i ). This identification

problem has three unknown parameters (λi, µi, σi) and N different realizations for
PMi j, and can be typically solved by least squares and the maximum likelihood
estimation.

2. Normalization across all arrays to make all distributions the same. This is
typically performed by quantile normalization, that consists in normalizing the
background corrected array to a common set of quantiles. This process is aimed
at correcting for array biases and avoiding the effect of outliers. This process
provided a set of normalized probe values sni j.

3. Probe set summarizing, where the final expression is calculated separately for
each gene i using the following linear model in log2 scale:

Yi j = µi +αi j + εi j, (4.14)

where Yi j are the background corrected, normalized, log transformed probe
intensities (Yi j = log2(sni j)), µi is the log-expression level for gene i, αi j is the
probe affinity effect of probe j in the gene i, and εi j is the independent identically

distributed error term with zero mean. The probe affinities αi j verifies
N
∑
j=1

α j = 0.

This linear model is solved using the median polish algorithm and provides the
final summarized gene intensity value µi, that is commonly used in phenotype
prediction problems.

4.3.2 Results with the Spike-in experiment

In order to check the precision using both raw and preprocessed data we need a dataset where
we know the genes that are differentially expressed. In such case we used the Affymetrix
Latin Square Data for Expression Algorithm Assessment (Human Genome U133 Data Set)
that consists of 3 technical replicates of 14 separate hybridization of 42 spiked transcripts
in a complex human background at concentrations ranging from 0.125pM to 512pM. The
concentration in the first experiment composed by three replicas is 0, 0.125, 0.25, 0.5, 1, 2, 4,
8, 16, 32, 64, 128, 256, 512pM (the concentrations table can be consulted in appendix B).
Each subsequent experiment and its three replicas rotates the spike-in concentrations by one
group; i.e. experiment 2 and its three replicas begins with 0.125pM and ends at 0pM, on
up to experiment 14 and its three replicas, which begins with 512pM and ends with 256pM.
Further details can be consulted in Affymetrix (2015).
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Table 4.6 Precision on the selection of the differential expressed genes using raw data or
preprocessed data with RMA and MAS5. The data is the Affymetrix Latin Square Data for
Expression Algorithm Assessment. The selection is performed between the first group and
the rest to include all the differences between the spike-in concentrations.

Group comparison RAW RMA MAS5
1 vs 2 7.14 9.52 4.76
1 vs 3 26.19 16.67 16.67
1 vs 4 38.10 11.90 14.29
1 vs 5 28.57 28.57 16.67
1 vs 6 26.19 28.57 28.57
1 vs 7 40.48 26.19 23.81
1 vs 8 35.71 21.43 30.95
1 vs 9 40.48 23.81 23.81
1 vs 10 35.71 19.05 21.43
1 vs 11 38.10 14.29 21.43
1 vs 12 23.81 16.67 9.52
1 vs 13 23.81 23.81 14.29
1 vs 14 7.14 4.76 9.52

Mean Precision 28.57 18.86 18.13

There are 42 differentially expressed probes and we selected the first 42 probes of the
ranking. We compared the first group with the rest of groups to cover all the possible
concentration comparisons. In the first comparison (group 1 Vs. group 2) the difference of
concentration between all the differentially expressed probes was 0.125pM, in the second
comparison (group 1 Vs. group 3) the difference was 0.5, on up to the 12 comparison (group
1 Vs. group 13), which was 256pM. Due to the rotation of the concentrations, the last
comparison (group 1 Vs. 14) had again a difference of 0.125pM in concentration among all
the differentially expressed probes.

Table 4.6 shows the Precision for each comparison using raw, RMA and MAS5 datasets,
showing the mean Precision along the different comparisons. In almost all the comparisons
we got better results in terms of precision working with RAW data than with preprocessed
data. Also, the higher mean precision was obtained with RAW data.

We have also calculated the empirical Cumulative Distribution Functions (CDF) of the
positions of the differentially expressed genes. A perfect CDF would be a straight line
reaching the value of 1 at position 42, which is the number of differentially expressed genes.
These curves serve to visualize how many genes we have to select in order to get all the
differentially expressed genes. Figure 4.6 shows these CDF curves for each comparison
and type of data. As the raw data obviously have more probes (248.152 for raw data and
22.300 for preprocessed data, see Affymetrix (2015)), the positions given by the ranking
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method are divided by a correction factor: C = nR/nP where nR is the number of raw probes
equal to 248.152 and nP is the number of preprocessed probes equal to 22.300. Therefore,
C = 11.13.

Fig. 4.6 Empirical Cumulative Distribution Function (CDF) of the positions of the differen-
tially expressed genes ranked by the FC/FR methods for each comparison and different types
of data.

In this figure the X-axis represents the positions of the probes given by the ranking method
and the Y-axis represents the percentage of differentially expressed genes that were located.
Therefore in the first comparison we were able to find all the of differentially expressed
genes (42) selecting less than 5000 (0.5E4 in the X-axis of the graphic) while working with
preprocessed data we need almost all the probes (2.23E4). In all the comparisons, we were
able to find all the differentially expressed genes selecting rather less number of probes with
raw data than with preprocessed data.

4.3.3 Results for the cancer related fatigue dataset

Table 4.7 shows the LOOCV accuracy of first 50 most discriminatory probes in each case.
The highest predictive accuracy we obtained a 92.59% of accuracy with only the first 3 probes.
However, using RMA and MAS5 we achieved a 100% with 6 and 44 probes respectively.

We managed a raw microarray dataset which have 604,258 probes and the preprocessed
dataset which have 54,675 different probes in both cases, RMA and MAS5. Obviously
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the dimensionality of the raw data set is 11.05 times higher than the preprocessed datasets,
that is, using the raw data, the probe sets have not been summarized in one gene like in
the preprocessed data. For that reason the repetition of a probe in the raw data indicates
the importance of the gene that corresponds to this gene. This is the case of TUBB2A,
HLA-DQA1, TUBB3, HLA-DQB1, and BTNL3. It can be observed that RMA also find
these genes within the most discriminatory set, but not using MAS5.

Additionally, a blind validation of these results has been performed using the set of 17
subjects, independent of the training set, originally used to assess the validity of the learned
predictive model (see section 3.3). The results of this blind validation using raw data was
76.47% accurate, whiles using MAS5 and RMA, the accuracy dropped to 58.82 and 64.7%
respectively. This result is very important and shows that RMA and MAS5 increase the
accuracy in the learning process at the prize of decreasing the accuracy in blind validation.
Therefore, this implies that the biological pathways associated with the predictive genes
found using raw data are more meaningful, and both preprocessing techniques (RMA and
MAS5) highly impact the biological pathway analysis and the corresponding phenotype
prediction problem.

The raw data generated predictive genes associated with pathways mainly related to
pathogenic infections (HLA-DQX genes) and also oligomerization of connexins into connex-
ons (TUBB2A and TUBB3) involved in intercellular signals and metabolic communication
between communicating cells in a tissue (Koval, 2006). These are crucial mechanism in the
development of many human diseases (Kelsell et al., 2001).

The main pathways associated with predictive genes generated by RMA are mitotic
prometaphase (BIRC5, CLIP1, STAG2, TUBB3) that control the nuclear membrane breaking
apart into numerous membrane vesicles, cytoskeleton remodeling neurofilaments (EEPK1,
KRT6A, TUBB2A and TUBB3) and also mitotic meta-phase and ana-phase (BIRC5, CLIP1,
TUBB2A and TUBB3). The beta-tubulin gene family control the tubulin protein super-
family of globular proteins. Beta-tubulins polymerize into micro-tubules which is a major
component of the cytoskeleton formation. Micro-tubules function in many essential cellular
processes, including mitosis. For instance, tubulin-binding drugs serve to kill cancerous cells
by inhibiting micro-tubule dynamics that are required for DNA segregation and cell division.
The main pathways associated with predictive genes generated by MAS5 are GADD45
Pathway, EGFR1 Signaling Pathway, Interferon Type I related to the MAP3KX genes.

We also provide the correlation networks, using the Pearson correlation coefficient metric,
for the 50 most discriminatory genes for each dataset. Figure 4.7, 4.8 and 4.9 shows the
correlation graphs for raw, RMA and MAS5 respectively. In the case of raw data we can
observe one main tree connecting the tubulin genes to the major histocompatibility complex
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gene and other genes that serve to expand the tree. RMA privileges the connection between
the beta-tubuline genes and two probes (241238_at and 1566585_at) whose gene name
is unknown. MAS5 privileges the role of SOCS3. This gene encodes a member of the
STAT-induced STAT inhibitor (SSI), also known as suppressor of cytokine signaling (SOCS),
family. SSI family members are cytokine-inducible negative regulators of cytokine signaling.
The expression of SOCS3 gene is induced by various cytokines, including IL6, IL10, and
interferon (IFN)-gamma (Masuhara et al., 1997; Minamoto et al., 1997).
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Table 4.7 Probe/Gene name and Accuracy (Acc %) of the selected probes for raw data and
preprocessed data with RMA and MAS5

RAW RMA MAS5
Probe/Gene Acc(%) Probe/Gene Acc(%) Probe/Gene Acc(%)

TUBB2A 85.19 TUBB2A 88.89 SOCS3 85.19
HLA-DQA1 96.3 C11orf1 88.89 TMEM194A 92.59
TUBB2A 92.59 PPOX 96.3 1561478_at 92.59
TUBB2A 92.59 TTC23 92.59 CIB3 96.3
TUBB2A 88.89 NRIP3 96.3 ESYT2 92.59
TUBB2A 85.19 SCAMP4 100 ABHD1 92.59
TUBB2A 85.19 HLA-DQA1 100 JTB 92.59
HLA-DQA1 88.89 234253_at 100 1556412_at 92.59
TUBB2A 88.89 223313_s_at 96.3 207371_at 96.3
TUBB2A 88.89 BTNL3 100 LOC100131756 92.59
BTNL3 88.89 YSK4 96.3 CDK6 92.59
TUBB2A 88.89 236963_at 100 ALS2CR8 96.3
HLA-DQA1 92.59 ZCCHC2 100 SEL1L2 96.3
TUBB2A 88.89 DSG3 100 FLJ35220 96.3
TUBB3 88.89 TMEFF2 100 215626_at 96.3
HLA-DQB1 85.19 1566585_at 100 SPAM1 96.3
HLA-DQB1_LOC101060835 85.19 231141_at 100 FTCD 96.3
HLA-DQA1 88.89 SPATA20 100 1570285_at 96.3
IMMP1L 85.19 CSN1S2A 100 216795_at 96.3
BTNL3 85.19 RAB11FIP3 100 MAP3K2 96.3
240231_at 85.19 239587_at 100 MTSS1L 96.3
ZFPL1 85.19 RIMS3 100 GMEB1 96.3
GNRHR2 85.19 234548_at 100 SOCS7 96.3
DR1 88.89 C20orf103 100 GNA12 96.3
DOCK11 88.89 AGR2 100 244274_at 96.3
HLA-DQB1 88.89 SAT1 100 PLP2 96.3
FMR1 88.89 RGS18 100 ATG9B 96.3
ACAP2 85.19 1570044_at 100 1564056_at 96.3
HLA-DQB1 85.19 TUBB3 100 PCCB 96.3
ZEB1_LOC100996668 85.19 HDLBP 100 239370_at 96.3
FLJ32790 85.19 1560087_a_at 100 ANK1 96.3
LOC100505812 88.89 AVL9 100 SCAND2 96.3
DENND4C 88.89 241238_at 100 1564872_at 96.3
PREPL 88.89 PHLDB3 100 SMAD2 96.3
LOC100505812 85.19 PIGK 100 CMTM3 96.3
FAM63B 88.89 F11 100 INSR 96.3
LYSMD3 85.19 C1orf21 100 PSG1 96.3
RP11-727A23.11_OTTHUMG00000183952 85.19 IL9 100 1560169_at 96.3
HIPK3 85.19 229733_s_at 100 MAP3K1 96.3
POLR2J4 85.19 241776_at 100 KCNRG 96.3
PHF17 85.19 WDR27 100 DOCK7 96.3
SP3 85.19 D21S2091E 100 1560995_s_at 96.3
MRGBP 85.19 239632_at 100 WNT5A 96.3
NAP1L1 85.19 HGSNAT 100 1562673_at 100
FAM126A 85.19 242839_at 100 GSK3B 100
EPS15P1 85.19 KCTD4 100 NCKIPSD 100
SMCR8 85.19 MECOM 100 215439_x_at 100
HLA-DQA1_LOC100509457 85.19 LOC257152 100 CDHR3 96.3
ZMYM2 85.19 MLH3 100 PCGEM1 96.3
EIF1AX_LOC101060318 85.19 DDX60 100 GNG13 96.3
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Fig. 4.7 Pearson correlation coefficient minimum-spanning-tree of the 50 first selected probes
using raw data.
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Fig. 4.8 Pearson correlation coefficient minimum-spanning-tree of the 50 first selected probes
using preprocessed data with RMA.
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Fig. 4.9 Pearson correlation coefficient minimum-spanning-tree of the 50 first selected probes
using preprocessed data with RMA.

4.4 Conclusions of the microarrays preprocessing techniques
impact analysis

We analyzed the impact of the main preprocessing microarrays techniques (MAS5 and RMA)
in identifying the biological pathways that are associated with discriminatory genes that can
accurately predict the cancer treatment-related fatigue phenotype. We found that in the case
of the Affymetrix synthetic dataset, the mean precision along all the comparisons was higher
using raw data than using preprocessed data. This difference is even more remarkable in the
CDF curves for all the comparisons. We were able to find all the differentially expressed
genes selecting rather less number of genes with raw data than with preprocessed data.

Regarding the cancer related fatigue dataset, working with RMA and MAS5 datasets we
got better accuracy results than using raw data. However, in the blind validation, working
with raw data allowed us to generalize better than using preprocessed data (RMA and
MAS5). Besides the pathways analysis and the correlation networks were significantly
different between raw, RMA and MAS5. This would explain why some genetic signatures
found in real practice fail to predict unseen samples. Consequently it can be concluded that
interpreting results from predictive gene profiles generated by RMA and MAS5 should be
done with caution. This is an important conclusion with a high translational impact that
should be confirmed in other disease datasets. A retrospective analysis of different cancer
datasets will be performed in future research.



Chapter 5

Design and application of biomedical
robots to phenotype prediction problems

5.1 Introduction

So far we have applied our methodology to different kind of biomedical data, and checked
the robustness of the proposed methods against different kind of noises and the impact
of the main preprocessing techniques in microarray expression data. Now we apply the
methodology, generating several biomedical robots, in order to address a specific biomedical
problem: phenotype prediction in genomics, with the intention of giving a translational
approach.

Despite all of its promises, clinical translation of genomics findings has been tempered
by analytical limitations, the requirement for extensive numbers of subjects, and cost. To
help address these issues and following the scheme 1.1 we have generated different sets of
biomedical robots and applied them to different phenotype prediction problems. In this case,
the difference between the biomedical robots will lie in the ranking algorithms (described
in section 1.3.6) we take for selecting the genes. The final prediction will be performed via
consensus strategy. Obviously there are different ways of designing the biomedical robots,
but all of them must be based in sampling the uncertainty space of any phenotype prediction
problem. A future research will be devoted to explore other designs.

Aside from specifically addressing the interpretation of genomic data, strength of the
method is its ability to synchronously include non-genomic inputs (epigenetics, demographic
variables, etc.) as a component of a comprehensive analysis. For a clinical perspective,
phenotype prediction problem applies to linking a set of genes to a specific disease or
condition. As we do in section 4.2, firstly we performed the sensitivity analysis to noise of
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the different sets of biomedical robots using synthetic microarrays perturbed by different kind
of noises in expression and class assignment. Subsequently, we provide specific applications
of the methodology to the microarray datasets we managed in section 4.2: predicting
IgHV mutation in patients with Chronic Lymphocytic Leukemia, predicting Inclusion Body
Myositis-Polymyositis and predicting Amyotrophic Lateral Sclerosis; inferring the pathways
and the correlation networks in each case.

The result of this research work was a manuscript titled ”Design and application of
biomedical robots to phenotype prediction problems” currently accepted for publication in
the ”Journal of Computational Biology” (see Appendix A.7).

5.2 Noise Sensitivity Analysis of Biomedical Robots

We have generated different synthetic data sets using three types of noise: additive Gaussian
noise, lognormal noise, and noise in class assignment (see section 4.2.2). Then we set up
several biomedical robots using the ranking algorithms we described in section 1.3.6.

Table 5.1 shows the results obtained for the sensitivity analysis. δ represents the level of
noise imputed for each type of noise, Acc the mean LOOCV accuracy, P the Precision (see
equation (4.8)) established using the set of genes constructed with the union of all the genes
found by the robots, and #R the number of robots used in the consensus strategy.

Table 5.1 Noise results

δ (%)
Class Assignation Gaussian Log Gaussian

Acc(%) P #R Acc(%) P #R Acc(%) P #R

1 98.77 1.00 98 100.00 1.00 98 100.00 1.00 98
3 96.93 1.00 98 100.00 1.00 98 100.00 0.74 98
5 94.48 1.00 98 100.00 1.00 98 100.00 0.35 98

10 90.18 1.00 98 100.00 0.60 98 100.00 0.14 10
15 87.12 1.00 3 100.00 0.33 98 99.39 0.05 37
20 80.98 1.00 1 100.00 0.22 11 100.00 0.03 43
25 77.30 1.00 10 99.39 0.13 81 98.77 0.04 98
30 73.62 0.92 43 99.39 0.14 7 100.00 0.03 14

δ the percentage of noise introduced, Acc the mean LOOCV predictive accuracy, P the
precision of the selection using the union of all the genes found by the robots and #R the
number of robots applied in the consensus strategy

The results can be summarized as follows:
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• The Precision P remains stable when noise in class assignment is increased. This
result is very interesting since the biomedical robots are able to find the differentially
expressed genes when the noise in class assignment is introduced. In the case of
Gaussian noise the precision is very high for noise levels less than 5%. The worst
result was obtained when multiplicative noise is added to the expressions. The fact that
the precision gradually decreases when noise in the expression increases, implies that
some of the biological pathways that are inferred might be partially falsified. Therefore,
any filtering step that it is usually performed in the microarray data will have important
consequences with respect to the pathway analysis, as we shown in section 4.3.

• The mean predictive accuracy (Acc) systematically decreases when a higher level of
the noise is added to the class assignment vector, and is very stable when Gaussian and
non-Gaussian noises are added to the expression data, meaning that the biomedical
robots are robust in terms of accuracy with respect to the presence of noise in the
expressions. This result also suggests that noise acts as regularization with respect to
the accuracy in the prediction as it has been theoretically proved by Fernández-Martínez
et al. (2014a,b) in inverse problems. It can be also concluded that if the biomedical
robots are unable to improve the accuracy of the best prediction, the dataset could have
some wrong class assignment that prevents achieving a perfect classification. Other
possibility is that parameterization of the samples is incorrect, that in the present case
would mean that none of the genes that have been measured bring enough information
to achieve a good phenotype discrimination.

5.3 Predicting IgHV mutation with biomedical robots

In this first example we had at disposal a microarray data set consisting of 163 samples
and 48807 probes (see section 3.4.2). The best robot predicted the IgVH mutational status
with 93.25% accuracy using small-scale signature composed by 13 genes: LPL (2 probes),
CRY1, LOC100128252 (2 probes), SPG20 (2 probes), ZBTB20, NRIP1, ZAP-70, LDOC1,
COBLL1 and NRIP1. Although in section 4.2.5 the best result was 94.48% using Entropy
and 99 probes (see table 4.5), we considered a better result the one achieved by the Fisher’s
ratio (93.25%), since it took only 6 probes to perform the prediction.

Table 5.2 shows the results of applying the methodology of biomedical robots to this
problem. In this case the highest prediction accuracy obtained by the set of biomedical
robots equal the accuracy provided by the best robot within the set (93.25%). This happened
with 11 samples that are identified in the PCA space in two dimensions (figure 5.1) using
the genetic signature of these 13 genes. It can be observed how the classification in this
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reduced set of genes approximates a linear separable behavior while using all the genetic
information that we have at disposal the classification is nonlinear. Therefore, as an important
conclusion we can affirm that reducing the dimension to the set of discriminatory genes
helps to linearize the phenotype classification problem. Figure 5.2 also shows the correlation
network, using the Pearson correlation coefficient, of the most discriminatory genes of the
CLL-IgVH mutational status found in this analysis. This analysis will serve us to understand
how the most discriminatory genes regulate the expression of other genes involved in different
biological pathways. The head of graph is the gene that has the highest discriminatory power
LPL. It can be observed one main network associated to ZBTB20. Finally, the pathway
analysis can be consulted in section 4.2.5.
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Fig. 5.1 IgVH classification in CLL: A) Considering all the genes of the microarray, the
classification problem is nonlinear. B) Using the most discriminatory genes (13 probes) the
classification problem approximates a linear separable behavior.
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5.4 Predicting Inclusion Body Myositis and Polymyositis
with Biomedical Robots

Myositis means muscle inflammation, and can be caused by infection, injury, certain
medicines, exercise, and chronic disease. Some of the chronic, or persistent, forms are
idiopathic inflammatory myopathies whose cause is unknown. We have modeled the Inclu-
sion Body Myositis /Polymyositis (IBM/PM) dataset published by Greenberg et al. (2005).
The data consisted in the microarray analysis of 23 patients with IBM, 6 with PM and 11
samples corresponding to healthy controls. The best robot performed the classification of the
IBM+PM vs control obtaining a predictive accuracy of 97.5% using a reduced base with only
17 probes. The genes belonging to the highest predictive small-scale genetic signature are
HLA-C (3 probes), HLA-B (4 probes), TMSB10, S100A6, HLA-G, STAT1, TIMP1, HLA-F,
IRF9, BID, MLLT11 and PSME2. It can be observed the presence of different HLA-x genes
of the major histocompatibility. Particularly the function of the gene HLA-B would explain
alone the genesis of IBM: "HLA-B (major histocompatibility complex, class I, B) is a human
gene that provides instructions for making a protein that plays a critical role in the immune
system. HLA-B is part of a family of genes called the human leukocyte antigen (HLA)
complex. The HLA complex helps the immune system distinguish the body’s own proteins
from proteins made by foreign invaders such as viruses and bacteria".

Table 5.2 shows the results using the biomedical robots methodology. In this case we are
able to hit the 100% of the samples with two robots, improving the results of the best robot.
The analysis of biological pathways has revealed the importance of viral infections, mainly in
IBM patients: Allograft Rejection, Influenza A, Class I MHC Mediated Antigen Processing
and Presentation, Staphylococcus Aureus Infection, Interferon Signaling, Immune Response
IFN Alpha/beta Signaling Pathway, Phagosome, Tuberculosis, Cell Adhesion Molecules
(CAMs), Epstein-Barr Virus Infection, and TNF Signaling. Several viral infections appeared
in this list.

Figure 5.3 shows the correlation network of the most discriminatory genes found in this
analysis. It can be observed the presence of one main dense network involving different
HLA-X genes. Among its related pathways are ERK Signaling and Apoptosis Pathway. GO
annotations related to this gene include calcium ion binding and cysteine-type peptidase
activity.
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Figure 5.4 A) shows the PCA projection for the IBM+PM versus control samples using
the optimum reduced base. It can be observed that the separability is almost perfect and only
one PM sample that is close to the control samples might be misclassified. This graphic also
explains that this basis set is not optimum to perform the classification of IBM vs PM. This
separability can be achieved with 100% accuracy using a reduced base composed by the
following genes: RHOBTB2, MT1P2, FBXL8, HIF3A, C17orf101, RPL12, RBM19, MT1G,
WT1-AS, HEXIM1, NQO2, ENOSF1, ADRM1, EIF5A, CSF2RA, CPLX3 /// LMAN1L,
C10orf95, NFIC, POLR2J2. The main pathways involved in the IBM vs PM phenotype
differentiation can be consulted in 4.2.5. Figure 5.4 B) shows the PCA graphic of the IBM
vs PM classification, and how this separability can be achieved. This methodology can be
extrapolated to the analysis of other rare diseases in the search of orphan drugs. This project
has been named FINISTERRAE and it is under development within the group of inverse
problems, optimization and machine learning of the mathematics department of the university
of Oviedo.
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Table 5.2 CLL, IBM & PM and ALS results

CLL IBM & PM ALS
Acc(%) tol #R Acc(%) tol #R Acc(%) tol #R

92.64 85.89 488 87.50 82.50 223 84.71 83.53 547
92.64 86.50 487 87.50 85.00 159 85.88 84.71 441
92.64 89.57 486 90.00 87.50 138 87.06 85.88 241
92.64 90.18 479 90.00 90.00 71 88.24 87.06 197
92.64 90.80 446 92.50 92.50 32 90.59 88.24 134
92.64 91.41 373 100.00 95.00 2 91.76 89.41 96
93.25 92.02 255 97.50 97.50 1 90.59 90.59 54
93.25 92.64 120 92.94 91.76 32
93.25 93.25 22 95.29 92.94 20

94.12 94.12 10
95.29 95.29 6
96.47 96.47 1

5.5 Predicting Amyotrophic Lateral Sclerosis with Biomed-
ical Robots

Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease that characterized by stiff
muscles, muscle twitching, and gradually worsening weakness. Between 5 and 10% of
the cases are inherited from a relative, and for the rest of cases, the cause is still unknown
(NINDS, 2013). It is a progressive disease that the average survival from onset to death is
three to four years, in which most of them die from a respiratory failure. There is no cure yet.

We reinterpreted the dataset published by Lincecum et al. (2010) consisting of 57 ALS
cases and 28 healthy controls. The best result yields an accuracy of 96.5% with small scale
signature involving the following genes: CASP1, ZNF787 and SETD7. Table 5.2 shows the
results of applying this methodology to this problem. The biomedical robots in this case did
not improve this prediction. The pathway analysis can be consulted in section 4.2.5.

Figure 5.5 shows the correlation network of the most discriminatory genes found in this
analysis. The head of the network is the CASP1 that is connected to MAP2K5, through
ZNF3 and LUC7. MAP2K5 acts as a scaffold for the formation of a pathway that seems
to play a critical role in protecting cells from stress-induced apoptosis, neuronal survival,
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Fig. 5.4 Classification of IBM, PM and Control: A) PCA graphic for IBM+PM versus control
samples. B) PCA graphic for IBM versus PM.
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cardiac development and angiogenesis. Also DCAF8 has been associated to neuropathies.
Figure 5.6 shows the PCA graphic for the ALS vs control samples.
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Fig. 5.6 PCA graphic for ALS versus control samples



Chapter 6

Conclusions and future research

In this dissertation we introduced the novel concept, analysis and design of biomedical
robots, defined as the ensemble of methodologies and bioinformatics algorithms, derived
from applied mathematics, statistics and computer science that are able of dynamically
analyzing high dimensional data, discovering knowledge, generating new biomedical working
hypothesis, and supporting medical decision making with its corresponding uncertainty
assessment. This methodology is based in exploring the uncertainty space of any biomedical
classification problem, and using the structure of the uncertainty space to adopt decisions
and inferring knowledge.

The first complexity that we have to face is that in most of the biomedical problems
there is no physical relationship available relating input and output variables, therefore, the
functional accounting for the forward problem in these cases is a priori unknown. We have
decided to approach them as nonlinear classification problems, since the classifier and the
variables that serve to achieve an optimum prediction are a priori unknown. Due to the
impact of the decisions that are going to be made, we decided to avoid the use of black-box
methodologies that provide solution without the medical doctor’s understanding. Medical
doctors and biomedical researches are interested in both, the final prediction results, and
the different sets of prognostic variables that allowed to optimally solve the corresponding
prediction problem. These sets of prognostic variables belong to the "uncertainty space" of
the prediction problem. Thereby, to approach the nonlinear character of the classification
problem we have decoupled the feature selection problem from the final prediction and risk
analysis assessment. Additionally, we have numerically showed (via Principal Component
Analysis, PCA) that when all the variables parametrizing the samples are considered, the
corresponding classification problem is nonlinear separable, that is, it is not possible to define
in the feature space a set of hyperplanes that optimally separates the samples of each class.
Nevertheless, it is possible to discard irrelevant variables that do not provide any useful
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information for the discrimination, and introduce ambiguity in the classification. We also
proved that when the relevant prognostic variables are correctly selected, the classification
problem approximates a linear separable behavior. This simple approach allows identifying
the behavioral outliers, that are the samples incorrectly classified.

The second complexity we had to face was that due to economic constraints the number
of samples is finite (hundreds of samples) and the number of prognostic variables (genes
or genetic probes) is much higher (hundred of thousands). This fact confers to these prob-
lems an ill-posed character due to their high degree of underdetermination. To reduce the
dimensionality of the feature space we used different filter/ranking methods: Fisher’s Ratio,
Fold Change, Entropy, Maximum Percentile Distance and Significance Microarray Analysis.
These methods served to rank the variables according to their discriminatory power. Besides,
in the case of clinical data the feature data had to be previously imputed to fully take advan-
tage of the strengths of this methodology. The use of a distance-based classifier combined
with iterative feature elimination allowed to determine the small-scale list of ranked prog-
nostic variables for the prediction. These lists are of paramount importance for cheaper and
faster diagnosis, prognosis and treatment optimization. Moreover, using an expanded list
of high discriminatory features, correlation networks (Pearson correlation coefficient and
Normalized Mutual Information) were established using the minimum spanning tree through
the Kruskal algorithm. These correlation networks served to visualize the existing univariate
relationship between the main prognostic variables. In the case of genetic data the correlation
networks can used to classify genes into two main categories: Headers and Helpers. Headers
genes control most of the accuracy in the phenotype prediction, and therefore are those
which are supposed to be highly correlated to the disease progression. Conversely, helper
genes are those that provide high frequency details in the discrimination. The morphology of
these networks (elongated or horizontally very dense) would explain the genetic/molecular
complexity that has to be faced. Additionally, the methodology is completed by the ontology
analysis of the most discriminatory genes through the GeneAnalytics platform and related
software made at disposal by the Weizmann Institute of Science.

Biomedical data is also notorious for containing noise that could affect to the inference
process and the mechanistic conclusions deduced from the analysis. An important part
of this PhD is composed by the sensitivity analysis to noise in both feature selection and
classification problems. For that purpose we formally defined two main sources of noise:
noise in the feature data and in the class assignment. We checked the robustness of the
methods applied in the methodology against these sources of noise, experimentally showing
that noise in expression data and class assignment partially falsifies the sets of discriminatory
probes in phenotype prediction problems, that is, in presence of noise the set of variables
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with the highest predictive accuracy will never perfectly coincide with the set(s) of variables
that explains the disease. Via synthetic modeling we have shown that Fisher’s Ratio and
Significance Analysis of Microrarrays are the most robust gene selection methods, exploiting
the parsimony principle, and being able of finding small-scale high discriminatory gene
signatures. We have also proved that noise in class assignment affect the predictive accuracy
and the precision more than noise in the expression data. Moreover, we showed that the
combination of both types of noise (expression and class assignment) affects drastically the
finding of differentially expressed genes, and therefore, the involved biological pathways.

We showed the importance of establishing the discriminatory power of the genes in
phenotype prediction problems to correctly find the biological pathways that are involved.
Nevertheless, not only noise affects to the unraveling of biological pathways but also the
preprocessing techniques that are commonly employed in genetic expression data to filter
and damping acquisition noise, before their analysis. We evaluated how the most common
genetic expression data preprocessing techniques, RMA and MAS5, impact the finding
of biological pathways associated to phenotype prediction problems. We showed that the
pathways analysis and the correlation networks were significantly different depending if we
used raw or preprocessed data. Through an international well-known synthetic data (spiked-in
experiment), we proved that the mean precision was higher, and we were also able to locate all
the differentially-expressed genes selecting rather less number of genes using raw data instead
of preprocessed data. Besides, RMA provided better results than MAS5 in general terms.
Working with the radiotherapy related fatigue dataset, the performance of preprocessing
techniques are better than working with raw data in training data sets. However, in validation
data, raw datasets allow us to generalize better than using preprocessed data. Besides the
pathways analysis and the correlation networks were significantly different between them.
Consequently, it can be concluded that preprocessed data "falsify" the biological pathway
analysis that is performed in phenotype prediction problems, and interpreting results from
predictive gene profiles generated by RMA and mainly via MAS5 should be done with
caution. This is an important conclusion with a high translational impact that should be
confirmed in other disease datasets and can importantly impact in drug discovery.

The presence of noise combined with the high underdetermined character of the biomed-
ical problems provokes an uncertainty that should be managed properly. Consequently,
it is necessary to sample the ”uncertainty space” looking for other prediction models, us-
ing different set of variables, with lower predictive accuracy than the optimum, and carry
out a final prediction with its uncertainty assessment using all the prediction models via a
consensus strategy. Under all of these circumstances, we presented the biomedical robots
methodology as a simple and robust solution in response to those challenges. We have shown
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the application of this novel concept to 3 different illnesses: Chronic Lymphocytic Leukemia,
Inclusion Body Myositis - Polymyositis and Amyotrophic Lateral Sclerosis, proving that it
is possible to infer at the same time, both, high discriminatory small-scale signatures and
the description of the biological pathways involved. The pathway analyses revealed in the
three cases a possible link to viral infections and served to identify actionable genes and drug
targets. Additionally, the methodology has been also applied and tested to both clinical and
genetic data modeling.

In the case of clinical data we were able to select the optimum prognostic variables
that provide simple biomedical discriminatory rules for diagnosis, prognosis and treatment
optimization for two different problems: Chronic Lymphocytic Leukemia and Hodgkin
Lymphoma. We found that clinical data has an heterogeneity character where variables are
expressed in different measures with different bounds, and they are not usually available in
all the samples. This fact makes clinical data preprocessing techniques the key for finding
a solution. Taking this into account we presented a methodology that consists in three
steps: 1) Data preprocessing, 2) Feature selection and 3) Risk assessment. We provided the
corresponding risk assessment using ROC curves, and improving it optimizing the confusion
matrix given by the classification problem (this ROC optimization was only performed in the
case of Hodgkin Lymphoma).

In the case of Chronic Lymphocytic Leukemia we established the relevance of clinical
variables that are not widely used as prognostic factor for the need of chemotherapy treatment
and autoimmune disease development, optimizing thus both prognosis and treatment. The
need of chemotherapy treatment seems to be related to the amount of malignant leukemia
cells that are measured by the different leucocytes counts. The results of autoimmune
disease development prediction showed the importance of variables associated with the
characteristics of platelets, reticulocytes and natural killers, which are the main targets of the
autoimmune haemolytic anemia and immune thrombocytopenia. The prognostic significance
of the selected variables might probably reflect the relevance of some clinical aspects of this
disease that are more important for prognosis than it is currently thought. These variables are
obtained at diagnosis, and their use would not increase the cost or complexity of the diagnosis
in CLL patients. We also showed an additional results for survival analysis showing that
the selected variables for patients that did not survive during the first year are quite different
from those that survive until the 3rd or 5th year since the diagnosis. Remarkably, results
suggest that the adequate identification and treatment of these complications may play a
more important role in the survival.

Regarding the Hodgkin Lymphoma we detected those patients who do not respond to
the treatment at early stages identifying prognostic variables currently gathered at diagnosis
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that may help to detect, with high accuracy, those patients with bad prognosis without any
additional cost. Thereby we could improve their treatment. The results of this study show
that the combined use of these selected prognostic variables gathered at diagnosis, allows
predicting first-line treatment response with high accuracy and confirms a close relationship
between treatment response, inflammation, iron overload and liver and bone damage.

We have also applied our methodology using genetic data, proving that we were able
to manage the underdetermined character of this type of data. Genetic data has a high
underdetermined character, since the number of samples/patients is always much lower than
the number of genes. We do not have a unique solution to the inverse problem, therefore,
reduction of dimension algorithms become a key element in the problem solution. We applied
our methodology to address two different problems using gene expression data. Firstly, we
identify and validate a specific gene cluster that is predictive of fatigue risk in prostate cancer
patients treated with radiotherapy. Secondly we modeled a data expression microarray related
to Chronic Lymphocytic Leukemia, predicting the occurrence of the main mutations, which
are closely related with the survival of the patients.

In the first case we can predict radiotherapy-related fatigue in men with non-metastatic
prostate cancer, by reducing the dimension to the most discriminatory genes. We proposed
that the risk of a complex disease, such as radiotherapy-related fatigue, could well be more
easily defined by identifying groups of simultaneously expressed, synergistically functioning
genes. Our finding that the gene cluster so identified was able to predict radiotherapy-
related fatigue risk with an accuracy of > 75% suggests that the approach has validity.
Applicability of this novel methodology to detect other treatment-related toxicities in other
cancer populations would be worthwhile to pursue. The importance of predicting toxicity
or adverse event risk associated with cancer treatment regimens cannot be understated
as the clinical implications in personalizing cancer therapy and prospectively attenuating
toxicity risk are significant. Furthermore, this type of information provides patients and their
care-givers more specific knowledge upon which to make treatment decisions.

In the second case we figured out how the main mutations in Chronic Lymphocytic
Leukemia affect gene expression by finding small-scale signatures. Our methodological
approach could define hierarchical gene relationships among patients with Chronic Lympho-
cytic Leukemia expressing the different main mutations (IgHV, NOTCH1 and SF3B1) and
establishing the predictive accuracy of gene clusters relative to each mutation. Besides, our
methodology served to depict the gene clusters that are most strongly associated with the
expression of each selective mutation (networks of synergistically working genes), and their
relationship between mutation expressions with a particular clinical outcome (survival). The
results allowed to define and understand the biological pathways and correlation networks
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that are involved in the disease development with the potential goal of identifying new
druggable targets. We also analyzed the intersection between the most discriminatory genes
for IgVH, NOTCH1, and SF3B1 mutations, showing that only four genes were common to
all mutations: IGHG1, MYBL1, NRIP1 and RGS13. Additionally, we included the analysis
of the next more important mutation: NOP16; showing that the intersection got reduced to 2
genes: IGHG1 and RGS13 when we include NOP16. IGHG1 has been already related to
hypogammaglobulinemia and B-cell chronic lymphocytic leukemia. RGS13 is related to
mantle cell lymphoma.

Finally, the methodology shown in this dissertation is not computationally very expensive,
since all the simulations shown in this research work were done with a personal computer in
real time (several minutes).

Future research will be devoted to:

1. Developing new simpler and faster algorithms that allow us reducing drastically the
dimension when dealing with big data.

2. Applying and exploring new approaches in the consensus strategy.

3. Verification of the findings in the practical cases with other independent cohorts that
could lead to a better design of the therapeutic targets.

4. Developing new preprocessing techniques or improving existing ones that allow a
correct generalization and do not impact in the pathway analysis.

5. Exploring preprocessing techniques in clinical data that become a key element in
solving clinical-related problems.

6. Extending the application of the proposed methodology to other biomedical problems,
such as, the estimation of surgical risk using different types of biomedical data (data
fusion), or the Finisterrae Project that consists in the analysis of rare, neurodegenerative
diseases, and cancer.

7. Exploring other machine learning techniques, such as, extreme learning machines,
proximal algorithms and deep learning, with their uncertainty analysis.

8. Analysis of the genomic aberrations in CLL using the methodology that has been
developed for understanding mutations.

9. Design of fast and cheap methods of early diagnosis for very aggressive cancers (breast,
lung, colorectal, pancreas, etc). Particularly it is important predicting the metastasis or
the recurrence at diagnosis.
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a b s t r a c t

Introduction: Chronic Lymphocytic Leukemia (CLL) is a disease with highly heterogeneous clinical course.
A key goal is the prediction of patients with high risk of disease progression, which could benefit from an
earlier or more intense treatment. In this work we introduce a simple methodology based on machine
learning methods to help physicians in their decision making in different problems related to CLL.
Material and methods: Clinical data belongs to a retrospective study of a cohort of 265 Caucasians who
were diagnosed with CLL between 1997 and 2007 in Hospital Cabueñes (Asturias, Spain). Different
machine learning methods were applied to find the shortest list of most discriminatory prognostic vari-
ables to predict the need of Chemotherapy Treatment and the development of an Autoimmune Disease.
Results: Autoimmune disease occurrence was predicted with very high accuracy (>90%). Autoimmune
disease development is currently an unpredictable severe complication of CLL. Chemotherapy
Treatment has been predicted with a lower accuracy (80%). Risk analysis showed that the number of false
positives and false negatives are well balanced.
Conclusions: Our study highlights the importance of prognostic variables associated with the character-
istics of platelets, reticulocytes and natural killers, which are the main targets of the autoimmune haemo-
lytic anemia and immune thrombocytopenia for autoimmune disease development, and also, the
relevance of some clinical variables related with the immune characteristics of CLL patients that are
not taking into account by current prognostic markers for predicting the need of chemotherapy.
Because of its simplicity, this methodology could be implemented in spreadsheets.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Chronic Lymphocytic Leukemia (CLL) is the most common adult
Leukemia in western countries, and it is characterized by the
accumulation of malignant B-cells in blood and lymphoid organs.
The clinical course of CLL is highly heterogeneous since the survival
of some patients is only slightly affected by the disease, whereas
other patients have a progressive disease associated with infectious
and autoimmune complications. These progressive patients have
poor prognosis, but they could benefit from an earlier or more
intense chemotherapeutic treatment. It has been reported that
many poor prognostic factors (including CD38, ZAP-70,

b2-microglobulin, IgVH mutation status and deletions of 11q23 or
17p53) may help to identify high-risk patients at early stages [1–
6]. Most of these prognostic factors focus on the analysis of the
characteristics of malignant leukemia cells. Additionally, the char-
acteristics of the immune system of CLL patients, such as the num-
ber of CD8 and CD4-T cells at diagnosis, may also predict the
progression of the disease [6]. Nevertheless, due to their high cost
and complexity some of these prognostic factors are not used in
most hospitals on regular basis. To overcome this problem in the
clinical practice staging systems using few, simple, cheap and
accessible clinical variables have been popularized. The Rai staging
system [7] and the Binet classification [8] are useful to predict the
prognosis of CLL patients, to stratify them, and to achieve compar-
isons for interpreting specific treatment results. Staging systems
stratify subsets of patients who have significant differences in the
overall survival but they fail to identify patients who have a high
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risk of progression in early stages of the disease. Additionally, no
current prognostic factors exist to predict the development of some
severe complications such as the development of Autoimmune Dis-
eases (AD), or the need for chemotherapy. Consequently, the iden-
tification of currently available clinical variables to assess the
medical decisions in these CLL-related diagnosis problems is a key
goal in the management of this disease. The development of AD
or the need of CT is not known at diagnosis. So far, only with the
evolution of the patient during the 5 years follow up, medical doc-
tors can answer these questions. Therefore, the interest of the
methodology presented herein consists in being able of predicting
both CLL related problems at diagnosis. Particularly, AD problem
was very hard to predict, and up to our knowledge no previous
research was successful to explain this phenomenon using bio-
chemical variables.

In this paper we show whether machine learning methods and
clinical data obtained from a large population of well-studied CLL
patients [6] can be efficiently applied to address these CLL diagnosis
problems in medical practice by capturing the hidden implicit rela-
tionships between the clinical variables and the corresponding
class of the different patients that have been established bymedical
experts. The use of machine learning techniques [9] in clinical med-
icine [10] and in cancer prediction and prognosis [11] is not new,
and it has the advantage of treating more general prediction prob-
lems than survival analysis (usually treated through the Kaplan–
Meier estimator) as supervised classification problems that admit
more stable solutions than the corresponding regression problems.

The machine learning methodologies that are proposed in this
paper are simple in their design and serve to provide to the physi-
cians a simple and robust decision-making support system. Other
more complex algorithms could be used, but the goal of this work
is to obtain a simple decision rule and not to compare different
learning algorithms. This manuscript is structured in three main
parts. Firstly we provide an exhaustive explanation of the methods.
Secondly, we present the results obtained for the two clinical CLL-
related problems addressed herein: need of Chemotherapy Treat-
ment (CT) and Autoimmune Disease development (AD). Finally,
we provide coherent explanations and discussion of the findings.

2. Material and methods

A cohort of two hundred sixty-five Caucasians who were diag-
nosed in the Cabueñes Hospital (Gijón, Spain) with CLL between
1997 and 2009 were enrolled in this study. The population distri-
bution by gender and age is the following: 154 are males and
111 are females, with ages ranging from 42 to 92, and 47 to
94 years old respectively. Clinical characteristics of patients includ-
ing time for diagnosis to first treatment, need of Chemotherapy
Treatment and appearance of autoimmune complications were
also taken into account in this study. Additionally, thirty-six differ-
ent clinical and biological variables were measured at diagnosis of
the disease. Table 1 shows the variables description used in this
study. Some variables reflect the malignant characteristic of leuke-
mia cells; others measure the immunological characteristics of CLL
patients, and some may be associated with the presence or devel-
opment of autoimmune complications (autoimmune haemolytic
anemia and immune-thrombocytopenia). Finally, some of the vari-
ables are demographic and biochemical. Most of them have a sam-
pling frequency higher than 80%, however, the reticulocyte count
(RET) and ZAP-70 are the ones that show the lowest sampling fre-
quency. Particularly, ZAP-70 is only sampled in 21.9% of the
patients (58 out of 265), showing that this popular CLL prognostic
factor is not always available in medical practice. Although some of
these variables were not at disposal at diagnosis (LD for instance),
they have been used for analysis purposes. We provide the data-
base as supplementary material (see ‘‘CLL.xls”).

The problems to be solved in this manuscript are the prediction
of the need for Chemotherapy Treatment (CT) and the develop-
ment of Autoimmune Disease (AD). Both classification problems
are binary (two class classification problem). In our methodology
we have explored the minimum-size list of prognostic variables
(named as reduced base) having the highest predictive accuracy
using different feature selection methods. The selected prognostic
variables will be subsequently used for diagnosis and prognosis.

Fig. 1 shows the flowchart of the methodology, that includes 4
different steps:

2.1. Data preprocessing

Data preprocessing is applied to improve the quality of data
used for performing feature selection, prediction and optimization.
It includes two main sub steps that can be applied or not depend-
ing on their impact on the prediction:

� Filtering: All the features that were sampled less than a certain
sampling frequency are removed. The filtering cut offs used
were 30%, 40% and 50%.

� Imputation: This technique consists in interpolating all the
missing values using a Nearest-Neighbor algorithm [12]. Given
a partially-informed sample (with missing values) the algo-
rithm finds the closest sample within the set of fully-informed

Table 1
Clinical variables description by group and their corresponding symbols and sampling
frequency (Samp. Freq.). Discrete variables are shown in bold faces.

Group Variable name Samp.
freq. (%)

Biochemical ALB – Albumin (g/L) 98.49
ALC – Absolute Lymphocyte Count (cells/microL) 100.00
ALP – Alkaline phosphatase (U/L) 95.47
B2 M – Beta 2 Microglobulin (mg/L) 93.58
BU – Bilirubin (mg/dL) 96.23
CR – Creatinine (mg/dL) 99.62
GOT – Glutamic-Oxaloacetic Transaminase (U/L) 98.11
GPT – Glutamic-Pyruvic Transaminase (U/L) 99.25
HGB – Hemoglobin (g/dL) 100.00
IgA – Immunoglobulin A (g/L) 96.60
IgG – Immunoglobulin G (g/L) 96.60
IgM – Immunoglobulin M (g/L) 96.60
K – Potasium (mEq/L) 90.94
LDH – Lactate Dehydrogenase (U/L) 96.98
MBC – Monoclonal B cell Count (cells/microL) 90.94
MCV – Mean Corpuscular Volume (fl) 100.00
NA (mEq/L)- Sodium 90.57
NCC – Natural killer Cell Count (cells/microL) 90.94
PLT – Platelets (cells/microL) 100.00
RET – Reticulocyte count (cells/microL) 75.47
SNC – Segmented Neutrophils Count (cells/microL) 100.00
T8C – CD8 T cell Count (cells/microL) 86.42
TLC – Total Lymphocyte Count, CD8 + CD4 (cells/
microL)

96.60

UA – Uric acid (mg/dL) 97.36
UR – Urea (mg/dL) 99.25
WBC – White Blood cells Count (cells/microL) 100.00

CLL Specific CD38 – CD38 positive 81.51
COOMBS – Coombs test 94.34
LD – Time for duplication of the number of
lymphocytes

96.98

MOR – Morphology 98.49
MP – Monoclonal Peak 98.87
NLymph – Number of affected lymph nodes 99.62
SMG – Splenomegaly 99.62
ZAP70 -Zeta-chain-associated protein kinase 70 (%) 21.89

Personal AGE – Age 100.00
SEX – Sex 100.00
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samples and gives the values of the missing variables in this
closest sample to the imputed sample. The similarity between
samples is measured using the standard Euclidean dot product
in N-dimensional vector spaces, where N is the number of fully-
informed variables. This way of interpolation has the advantage
of not introducing additional outliers that are not originally pre-
sent in the dataset before imputation. Although the success of
the different imputed algorithms might be data-driven, imput-
ing the data improved the accuracy in the predictions and did
not alter the prognostic variables that were involved providing
shorter lists with higher discriminatory power.

2.2. Feature selection methods

Maximum Fisher’s ratio [13,14]: The Fisher’s ratio of an attribute
j, in a two-class problem, c1; c2, is defined as follows:

GFRjðc1; c2Þ ¼
ðlj1 � lj2Þ2
r2

j1 þ r2
j2

;

where, lj1; lj2 are measures of the center of the distribution

(means) of gene j in classes 1 and 2, and r2
j1; r2

j2 are measures of
the dispersion (variance) within these classes. This method looks
for prognostic variables that separate the classes further apart and
are very homogeneous within classes (low intra class variance).

Minimum class Entropy [15,16]: Entropy is ameasure of the num-
ber of specific ways in which a system may be rearranged, and it is
often considered ameasure of disorder, or progression toward ther-
modynamic equilibrium. In the case of a binary classification prob-
lem, the entropy of each attribute is defined as follows:

Ejðc1; c2Þ ¼ �
X2
k¼1

XNC

j¼1

pkjlog2pkj;

Fig. 1. Methodology flowchart.
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where NC are the number of bins used to describe the probability
distribution of attribute j in class k, and pkj is the probability that
this attribute takes the center class value xkj: The algorithm to com-
pute the entropy is based in ordering the variables according to
their value and calculating the mismatch to the class vector. A per-
fect ordering occurs when the values correspond perfectly to the
class vector. Variables with higher ordering (or lower entropy) are
therefore the most discriminatory.

Maximum Percentile Distance: This feature selection method
selects the attributes with higher distances between the corre-
sponding cumulative probability functions (percentile array)
within each class, defined for attribute j as follows:

djðc1; c2Þ ¼
kpj1 � pj2k2

max kpj1k2; kpj2k2
� � ;

where pji stands for the percentile vector j in class i, and kpjik2 its
Euclidean norm. Percentiles vary from 5 to 95 to avoid the possible
effect of outliers [17]. This method can be considered as a general-
ization of a Mann–Whitney selection test, which is only based in the
median (percentile 50).

The main reason for choosing these methods is due their clear
interpretation, low computational cost, and the possibility of being
applied to both, discrete and continuous variables. A survey about
FS methods can be consulted in [18].

2.3. Accuracy evaluation

Once the most discriminatory variables are determined and
ranked in decreasing order by their discriminatory power, the
aim is to determine the shortest (having the smallest number of
variables) list of prognostic variables with the highest predictive
accuracy. The algorithm to find the minimum-size list of features
is the Backwards Feature Elimination (BFE), which is similar to
the Recursive Feature Elimination [19]. Feature elimination tries
to unravel the existence of redundant or irrelevant features to yield
the smallest set of prognostic variables that provide the greatest
possible classification accuracy. Redundant features are those that
provide no additional information than the currently selected fea-
tures, while irrelevant features provide no useful information in
any context.

The algorithm of BFE works as follows:

1. Beginning by the tail of the ranked list of prognostic variables,
the algorithm iteratively generates increasingly shorter lists
by eliminating one prognostic variable at a time, calculating
their classification accuracy.

2. Finally, the list with the optimum accuracy and minimum size
is therefore selected.

This way of proceeding is based on the following idea: prognos-
tic variables with higher discriminatory ratios span low frequency
features of the classification, while variables with lowest discrim-
inatory ratios account for the details in the discrimination (high
frequency features). This method determines the minimum
amount of high frequency details that are needed to optimally dis-
criminate between classes.

The predictive accuracy estimation is based on a Leave One Out
Cross-Validation experiment (LOOCV), using the average distance
of the reduced set of features to each training class set. The goal
of cross-validation is to estimate how accurately a predictive
model (classifier) will perform in practice. LOOCV involves using
a single sample from the original dataset as the validation data
(sample test), and the remaining samples as training data. The
class assignment is based in a nearest-neighbor classifier in
the reduced base, that is, the class with the minimum distance in

the reduced base to the sample test is assigned to the sample test.
The average LOOCV predictive accuracy is calculated by iterating
over all the samples using as metric the Euclidean distance
between the corresponding normalized variables. For that purpose
the weights used to normalize the variables are the inverse of two
times the prior variability (standard deviation) of the prognostic
variables. These weights serve to scale the different kinds of mea-
surements into approximately the same range in order to give to
each variable a similar influence on the overall distance measure-
ment. The distance between a new sample snew and the average sig-
nature mj in class j is:

dðsnew;mjÞ ¼ kWðsnew �mjÞk2;

with W is a diagonal matrix with Wðk; kÞ ¼ 1
2stdðvkÞ, where stdðvkÞ is

the standard deviation of the kth discriminatory prognostic variable.
In this procedure the feature selection method is executed only

once using all training samples before estimating the accuracy by
means of a leave-one-out procedure. For each new sample the clas-
sifier computes the average distance to the training samples of
each class, being d1 the average distance to class 1, and d2 the aver-
age distance to class 2.

Based on these distances the probability of a new sample snew to
be in class 1 can be written as:

Pðsnew 2 c1Þ ¼ d2

d1 þ d2
:

The procedure to decide the class assignment is as follows:

snew 2 c1if Pðsnew 2 c1Þ > pth ¼ 0:5:

Otherwise,snew 2 c2. The threshold probability ðpthÞ can be con-
sidered as a continuous variable to establish the Receiver Operator
Characteristic (ROC) curve for this classifier [20]. Finally, the
reduced base might be tested over different randomly chosen
training and testing dataset, and averaging the results over a set
of independent simulations.

Although this simple classifier seems to be similar to a nearest
neighbor algorithm (k-NN), it is not obviously the same, since nei-
ther the centroid definition of the distributions, nor the way of
adopting the decisions coincide. Besides, we have testing k-NN
nearest neighbor classifiers without success. Notice that in this
process, the feature selection method is executed only once using
all training samples, before estimating the accuracy by means of
a leave-one-out procedure. Our goal is to study the effectiveness
of feature selection methods in finding the groups of prognosis
variables with higher predictive accuracy of these two CLL-
related problems. Also, if the attribute selection process was per-
formed each time the classifier was executed (i.e. in each of the
folds of the leave-one-out), different sets of attributes would be
obtained, thus, it would more difficult to assess the goodness of
any concrete group of prognosis variables. The only way will be
performing frequency analysis of the selected prognostic variables
and applying BFE to this set of variables ranked by decreasing order
of their posterior frequency. Besides, since the accuracy is estab-
lished by Leave-One-Out Cross Validation (LOOCV) the selected
attributes within each fold of the LOOCV would not be so different
from selecting them using the whole dataset, considering that the
training set of each of fold in a LOOCV is composed by all the sam-
ples but one. These facts have been confirmed through numerical
experimentation.

2.4. ROC curves and risk assessment

In the previous step, maximizing the predictive accuracy
according to the LOOCV criterion allowed to determine the best
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reduced-base of prognostic variables. However, it is also important
to analyze the structure of the confusion matrix, obtained from the
set of predictions of the training set using the LOOCV method. The
confusion matrix is composed by: True Positives (TP), True Nega-
tives (TN), False Positives (FP) and False Negatives (FN). These con-
cepts depend on how the classification problem is set up. From the
confusion matrix we can calculate different rates that are very use-
ful to understand the risk in the prediction:

� True Positive Rate or Sensitivity (TPR): measures the proportion
of actual positives that are correctly predicted as such.

� True Negative Rate or Specificity (SPC): measures the propor-
tion of negatives that are correctly predicted as such.

� Positive Predicted Value (PPV): is the proportion of positives
values that are true positives.

� False Positive Rate (FPR): fraction of false positives out of the
total actual negatives.

� False Negative Rate (FNR): fraction of false negatives out of the
total actual positives.

� False Discovery Rate (FDR): fraction of false positives out of the
total actual positives.

Based in these rates it is possible to construct a receiver operat-
ing characteristic curve (or ROC curve), which is a graphical plot
that illustrates the performance of a binary classifier as a function
of one parameter (the cut-off probability in this case). The curve is
created by plotting the true positive rate or sensitivity (TPR)
against the false positive rate (FPR) or fall-out. A perfect classifier
has as ROC curve the step function at the origin. ROC analysis is
related to cost/benefit analysis of diagnostic decision making (see
for instance [17]).

The selected attributes are used to provide simple biomedical
discriminatory rules for diagnosis and prognosis since for each
classification problem we provide the bounds for the four groups
of the confusion matrix. This knowledge can be used by the
physicians in their decision-making process. Additionally to the
LOOCV results, we also provide the mean accuracy obtained for
100 random holdouts 75/25 (75% for training and 25% for test-
ing). In any case, and independently of how the predictive accu-
racy is established, it is crucially important to understand that
there exist different combinations of prognostic variables with
similar predictive accuracy whose knowledge might be useful
to understand the genesis of the problem from a medical point
of view. The existence of these different lists is related to the
uncertainty analysis of the solutions in any decision-making
problem [21,22].

Finally, the aim of this paper is not to compare different
machine learning methods, but to introduce a simple methodol-
ogy to select the shortest list of prognostic variables that could
be easily interpreted by medical doctors to perform prognostic
predictions with their corresponding risk assessment. However,
we have compared this distance based nearest-neighbor algo-
rithm to more sophisticated learning methods and the results
did not improve or were clearly worse. The success of the
methodology is not based on the sophistication of the classifier
but on selecting the most discriminatory variables in each case
and building the classifier based on these variables. By doing that
it has been shown that the classification problem becomes
linearly separable [23].

The methodology presented herein is easy to understand, since
we avoid the use of black-box methodologies that provide estima-
tions without MD’s understanding, and has been successfully
applied to predict response to treatment in Hodgkin lymphoma
[17] using clinical data, and also in the prediction of risk of
radiotherapy-related fatigue in prostate cancer patients using high
dimensional expression data [24].

3. Results and discussion

3.1. Chemotherapy Treatment assessment

As it was already mentioned CLL has a highly variable clinical
course. Some patients have an indolent disease and they do not
require CT. Other patients who present a progressive disease may
require an intense CT. The identification of those patients at early
stages of the disease with a high risk of rapid disease progression
may help to significantly improve their prognosis. Thus, we try to
establish the prognostic variables and criteria to assess the need
for CT, assuming that the clinical decisions on the 71 (out of 259,
therefore there are 6 missing values since the total cohort is 265)
patients that have received CT were correct. The criteria for initiat-
ing CT were established in 2008 by the International Workshop on
Chronic Lymphocytic Leukemia [25]. Particularly the presence of
constitutional symptoms, such as, unintentional weight loss of
10% or more within the previous 6 month and significant fatigue
or fevers or night sweats without other evidence of infection.

The Fisher’s ratio method provided the minimum-size set of
prognostic variables with the highest accuracy of 80.3%: B2M,
WBC, ALC and MBC. Fig. 2 shows the ROC curve and the Recall
(or True Positive Rate – TPR) against Precision (or Positive Pre-
dicted Value – PPV) curves for several probability thresholds in
the CT classification problem. The optimum result (pth = 0.47)
shows that 63.4% (TPR) of the patients that need CT and 86.7%
(True Negative Rate or Specificity – SPC) of the patients that do
not need CT were correctly predicted. Besides, with that probabil-
ity threshold we got a Precision (or Positive Predicted Value – PPV)
of 64.3%. Nevertheless, other probability thresholds could be
adopted depending on the Recall/Specificity balance, and therefore
on the PPV as well. The False Discovery Rate (FDR) was 36.62%. The
confusion matrix is shown below:

TP FP

FN TN

� �
¼ 45 25

26 163

� �
:

The True Positives (TP) are formed by the group of patients that
need CT (+) and are correctly predicted, and the True Negatives
(TN) are formed by the groups of patients that do not need CT
(�) and are correctly predicted. Thus, False Positives (FP) are the
patients that do not need CT (�) and are not correctly predicted
and False Negative (FN) are the patients that need CT (+) and are
not correctly predicted.

Besides, we have performed a two sample T-test and a Mann–
Whitney U-test to clarify the differences between the TP and TN
groups in the selected variables. The null hypothesis was rejected
for all the prognostic variables. Therefore their statistical distribu-
tions should be considered to be different and the differences to be
significant (see Appendix).

Additionally the Maximum Percentile Distance method also
found a subset of variables with lower accuracy (78%): MBC, ALC,
ZAP70, WBC and B2M. Moreover, the results using the minimum
class Entropy were quite similar (76.8%): ZAP70, BU, WBC, ALC
and MBC.

CT is recommended in patients with advanced and progressive
disease. Thus, the amount of malignant leukemia cells that it is
measured by the different counts of leucocytes; particularly WBC
(White Blood Cells count), ALC (Absolute Lymphocyte Count) and
MBC (Monoclonal B Cell Count) are key clinical parameters. Never-
theless, these variables are not currently used to select patients
who may benefit from CT. On the other hand, AGE, B2M and
ZAP70 are traditional clinical parameters that have demonstrated
their prognostic importance independently of the clinical stage.
Our results also indicated the great prognostic significance of other
variables that are mainly related with the characteristics of the
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immune system and are not currently used as prognostic markers
in this disease. The fact that the prediction accuracy is barely above
80% means that these variables only contain partial information to
establish the need of CT and/or to incorrect medical decisions that
might input noise in the class assignment.

Table 2 shows the median/mean signatures for the 4 groups of
the confusion matrix for the main decision variables found by this
methodology. We can observe that there exists a significant dis-
tance between the mean signatures of the TP and TN groups, being
the median/mean signatures in all the decision variables much
higher in the TP group. Moreover, the distance between the median
and the mean values of the decision variable distributions is much
higher in the TP and in the FP groups, meaning a higher variability
in these groups:

� The normal value of B2M is less than 2 mg/L [26]. Levels of B2M
can be elevated in multiple myeloma and lymphoma. Besides,
elevated values (>4 mg/L) are known to be an indicator of poor
prognosis and survival [27]. In our case B2M is higher than this
cut-off value (4.24) for the patients in the TP group.

� For the second decision variable, the normal value of WBC in the
blood is 4.5–10.0 Kcells/microL. In our case the patients of the
TN group have a mean WBC value (16.8 Kcells/microL) that
exceeds four times the minimum normal value. Also the
patients in the TP group show even higher mean WBC values
(61.8 Kcells/microL).

� The reference range for the ALC is 4.5–11.0 Kcells/microL. It can
be also observed that the ALC mean value in the TP group
(47.6 Kcells/microL) exceeds 4 times the maximum normal
value.

� Finally, the MBC is also very high (40.3 Kcells/microL) in the TP
group compared to the TN group (8.4 Kcells/microL). The defini-
tion of CLL implies having a rate of CLL-phenotype B-cell lym-
phocytes higher than 5 Kcells/microL.

This analysis shows the typical profile of CLL patients with need
of CT. The same tendencies are observed for the corresponding
median values.

With respect to the analysis of the classification errors, the
mean signatures of the FN group (patients that need CT and are
incorrectly predicted) are very close to the mean signatures of
the TN group. These patients will never be correctly predicted
according to this classifier. The mean and median signatures of
the FP group have the following singularities:

1. The mean B2M value (4.58 mg/L) is even higher than the corre-
sponding B2M mean value in the TP group (4.24 mg/L). The
same is observed for the median values.

2. Their mean WBC, ALC and MBC values are closer to the corre-
spondingmean values of the TN group, exceeding in all the cases
the mean values of the TN group. These differences are smaller
in the case of the median values. These patients could be
detected using only these three variables, not considering the
value of B2M in these patients that is distorting the prediction.

Fig. 2. (A) ROC curve. (B) Sensitivity (or True Positive Rate – TPR) and Precision (or Positive Predicted Value – PPV) for Chemotherapy Treatment. The optimum result
(TPR = 63.4 and PPV = 64.3) is obtained for pth = 0.47.

Table 2
Chemotherapy Treatment. This table shows the list of most discriminatory contin-
uous variables with a predictive accuracy of 80.3%. Median and mean values (median/
mean) of the prognostic variables for the different groups of the confusion matrix are
also given. Variables with (K) are expressed in kilo units. Bold faces indicate the
highest value for each prognostic variable in the TP and TN groups. Bounds for the
decision correspond to the TP and TN groups.

Variables TP (median/mean) TN FP FN

B2M 3.9/4.24 2.06/2.15 4.37/4.58 2.0/2.18
WBC (K) 34.1/61.8 14.3/16.8 18.3/28.3 14.2/15.5
ALC (K) 24.7/47.6 9.0/11.2 12.4/21.8 8.5/10.4
MBC (K) 21.7/40.3 6.1/8.4 10.1/18.4 6.9/7.8
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Furthermore, to understand the ambiguity in the CT prediction,
it should be taken into account that the criteria used to establish
the need of CT [25] sometimes have not correlation with the bio-
logical data. The reason is that some patients are diagnosed in early
stages of the disease when a low burden tumor mass has been
detected but they have a very fast progression which implies the
need of CT.

3.2. Autoimmune disease development

An Autoimmune Disease (AD) occurs when an adaptive immune
response is mounted against self-antigen. In CLL, an autoimmune
response against red blood cells (known as autoimmune haemoly-
tic anemia), and an autoimmune response against platelets (known
as immune thrombocytopenia) are severe complication of this dis-
ease. To the best of our knowledge no prognostic factors capable to
predict the presence or development of an autoimmune disease in
CLL patients have been currently disclosed. In our cohort only 16
patients (out of 263, therefore there are 2 missing values since
the total cohort is 265) have shown autoimmune disorders. There-
fore this classification problem, independently of the data sam-
pling, is intrinsically highly unbalanced.

The shortest list of prognostic variables with the highest accu-
racy (97.3%) was found by the Fisher’s ratio method and includes
13 clinical variables: PLT, RET, ALB, HGB, BU, UR, MCV, NCC, K,
WBC, LDH, ALC and MBC. Furthermore, considering only the first
nine attributes the predictive accuracy was 95.4%. Besides, only
the two first attributes provided a predictive accuracy of 91%.
Fig. 3 shows the ROC and the Recall (or True Positive Rate – TPR)
against Precision (or Positive Predicted Value – PPV) curves
throughout all possible probability thresholds for the AD classifica-
tion problem. The optimum result (pth = 0.5) shows that 62.5%

(TPR) of the patients that have AD and 99.6% (True Negative Rate
or Specificity – SPC) of the patients that do not have AD are cor-
rectly predicted. Moreover, over that probability threshold we
get a Precision (or Positive Predicted Value – PPV) of 90.1%. How-
ever, other probability thresholds could be adopted depending on
the Recall/Specificity balance, and therefore on the PPV as well.
The False Discovery Rate (FDR) in this case is 9.1%. The confusion
matrix is the following one:

TP FP

FN TN

� �
¼ 10 1

6 246

� �
:

The True Positives (TP) group is formed in this case by the
patients that present AD (+) and are correctly predicted and True
Negatives (TN) correspond to the patients that do not have AD
(�) and are correctly predicted. Similarly, the False Positives (FP)
are the patients that do not have AD (�) and are not correctly pre-
dicted and the False Negatives (FN) correspond to the patients that
present AD (+) and are not correctly predicted. As in the previous
section, we have performed the T-test and the Mann–Whitney U-
test to analyze the differences between the TP and TN groups.
The null hypothesis was rejected for all selected variables, except
for K and LDH in the T-test (see Appendix).

Additionally the percentile distance method also found a subset
of variables with 95.1% accuracy composed only by one prognostic
variable: NCC. Entropy method also found a subset of 4 prognostic
variables with 94.3% accuracy: TLC, T8C, NCC and MBC. PLT and
RET, that were ranked in the first positions by the Fisher’s Ratio,
were found by the Entropy method in the fifth and sixth positions
(TLC, T8C, NCC, MBC, RET and PLT), but the accuracy of this final
subset was 93.2%.

PLT and RET appears in the first two positions of the FR list.
They are responsible for most of the discriminatory power of the

Fig. 3. (A) ROC curve. (B) Sensitivity (or True Positive Rate – TPR) and Precision (or Positive Predicted Value – PPV) for Autoimmune Disease occurrence. The optimum result
(TPR = 62.5 and PPV = 90.1) is obtained for pth = 0.5.
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reduced base of features and the rest of variables span high
frequency details in the classification. They also appear in the first
positions of the list using Entropy method. It seems they could
have an important role in the development of an autoimmune dis-
ease. Table 3 shows the medians and means for the 13 prognostic
variables for the 4 groups of the confusion matrix. The differences
between the means in TP and TN groups decrease with the Fisher’s
ratio. Prognostic variables with lower Fisher’s ratios (secondary
variables) also contribute to improve the discrimination. Except
for the main variable, PLT, and the secondary variables HGB and
K, the mean and median values are higher in the group with
autoimmune disease (TP). The analysis of the two main prognostic
variables shows that patients that develop AD and are correctly
predicted (TP) have much lower medians and means PLT values
(97.7/95.0 Kcells/microL). The normal platelet count lays in the
range 150–450 Kcells/microL, being the average 237 Kcells/microL
in men, and 266 in women. On the other hand, the reticulocyte
count (RET) in the TP group almost doubles (136 Kcells/microL)
the average RET count in patients with no AD (70 Kcells/microL).
Median values also show similar tendencies.

The False Positives (FP group) is composed in this case only by 1
sample, whose signature is closer for all the 13 variables to the TP
group, except for PLT, RET that are somewhere in between the
median/mean values for TP and TN. This fact points out the diffi-
culty of classifying this sample, and it can be concluded that it
could be a ’biological’ outlier. On the other hand, the FN group is
composed by 6 samples. The mean PLT count (147 Kcells/microL)
of the FN group lies between the mean value for the TP
(95 Kcells/microL) and TN (202.2 Kcells/microL) groups. The RET
count is however closer to the TN group showing a tendency to
very low median values (54.4 Kcells/microL).

The percentile distance method found a subset of variables with
95.1% accuracy composed only by the Natural killer Cell Count

(NCC). The mean NCC value in the TP group (2251 cells/microL)
is higher than in the TN (741 cells/microL) and FN (393 cells/
microL) groups. Natural killer cells provide rapid responses to
virally infected cells and respond to tumor formation. Therefore,
this result suggests a possible link between AD development, viral
infection and tumor progression. The percentile method also gives
a great importance to IgM due to the higher values in the group of
patients without AD (TN group with a mean of 1.12 g/L) with
respect to the TP group (mean value of 0.36 g/L). This result is
important since IgM is the first antibody to appear in response to
initial exposure to antigens [28] and lower levels of this inmun-
globulin is related to selective immunoglobulin M deficiency,
which in turn is also related with autoimmune disorders like celiac
disease or systemic lupus erythematosus [29].

Overall, these results show the importance of variables associ-
ated with the characteristics of platelets and red cells, which are
the main targets of the autoimmune haemolytic anemia and
immune thrombocytopenia, such as PLT, HGB, MCV and RET. Other
variables depend on the presence of autoantibodies (COOMBS) or
products or symptoms derived from the lysis of blood cells (BU,
LDH and SMG). Moreover, some variables associated with the
immunological characteristics of patients, such as IgM, IgG, IgA,
TLC, NCC and T8C, constitute a relevant subset of variables that
may predict an autoimmune disease occurrence. The association
of these variables with an autoimmune disease is not unexpected
based on the biology of CLL, but we would like to highlight that
no prognostic factors or system may currently predict the develop-
ment of an autoimmune disease in the clinical practice. To the best
of our knowledge this is the first description so far that a group of
clinical variables obtained at diagnosis of CLL patients may predict
an occurrence of an autoimmune disease.

3.3. Summary of the results

Finally, Table 4 summarizes the main results found for both
classification problems (CT and AD): the optimum reduced set of
features, the LOOCV accuracy, the hold out (HO) mean accuracy
over 100 different random simulations using 75% and 25% of sam-
ples for training and testing, the Sensitivity or True Positive Rate
(TPR), and the Specificity or True Negative Rate (SPC) statistics.
TPR and SPC values are important due to the impact on the patients
of the decision taken by physicians.

It is possible to observe that:

1. The median accuracy of the predictions is quite stable with
respect to the LOOCV accuracy.

2. The TPR/SPC statistics are optimally balanced in all the prob-
lems. The TPR/SPC statistics might be the target of a different
optimization for the weights of the linear classifier depending
on the risk that is given by the medical doctors to the False Pos-
itives (FP) and False Negatives (FN) diagnostic in each classifica-
tion problem. This approach has been adopted to predict
response to treatment in Hodgkin Lymphoma [17].

Table 3
Autoimmune disease development. This table shows the list of most discriminatory
continuous variables with a predictive accuracy of 97.3%. Median and mean values of
the prognostic variables for the different groups of the confusion matrix are also
given. FP is composed only by 1 sample (median and mean coincides). Variables with
(K) are expressed in kilo units. Bold faces indicate the highest value for each
prognostic variable in the TP and TN groups. Bounds for the decision correspond to
the TP and TN groups.

Variables TP (median/mean) TN FP FN

PLT (K) 97.7/95.0 191/202.2 138 163 /147.2
RET (K) 128.0/135.7 67.2/69.8 101.3 54.4 /71.8
ALB 42.0/40.4 38.0/37.4 41.1 39 /39.7
HGB 14.0/11.5 14/13.6 13.6 14/13
BU 1.0/1.1 1/0.6 0.6 1.0 /0.76
UR 52.0/64.1 43/46.7 49 42 /43.7
MCV 93. 0/98.1 90/89.6 88.9 87 /86.7
NCC 966/2251 576/741 1657 338 /393.4
K 4.0/4.09 4.0/4.33 4.0 4.0 /4.33
WBC (K) 23.1/56.0 15.4/24.7 23.6 13.5 /13.9
LDH 360/398.1 325/343.4 288 333/333
ALC (K) 16.1/42.2 10.1/ 17.8 18.4 8.5/6.7
MBC (K) 10.2/36.3 7.3/14.2 14.7 5.2/4.6

Table 4
Summary table. Summary table shows the Sensitivity or True Positive Rate (TPR) and Specificity or True Negative Rate (SPC) together with the mean accuracy (Acc.) for both
experiments leave one out (LOO) and 100 repetitions of a hold-out 75/25 (HO, 75% for training and 25% for testing); and the positive and negative case description of each
problem. Bold faces indicate the prognostic variables that have been discussed in the text.

Problem Variables TPR/SPC LOO Acc. HO-100 Acc.

CT(+) vs. No CT (�) B2M WBC ALC MBC 63.4%/86.7% 80.30% 76.10%
AD (+) vs. No AD PLT RET ALB HGB BU UR MCV NCC K WBC LDH ALC MBC 62.5%/99.6% 97.30% 92.80%
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4. Conclusions

Different prognostic factors are presented in this paper to pre-
dict two clinically important classification problems for CLL
patients: Chemotherapy Treatment assessment and autoimmune
disease development.

From the machine learning point of view, working imputed data
produced better results in reliability (accuracy) than working with
raw data. Fisher’s ratio and percentile distance are the feature
selection methods that produced the best biomarkers in terms of
medical interpretability. The minimum-size of variables is estab-
lished using BFE. The class prediction is based on a simple classi-
fier, and its accuracy is determined by LOOCV experiment. The
results show that the accuracies are rather high and the difference
between both experiments LOOCV and 100 repetitions of a Hold
Out (75/25) is quite low, which highlights the robustness of the
methodology. In addition, risk assessment ROC curves are provided
for each problem and show a good balance between False Positives
and False Negatives.

From a medical point of view, machine learning methods allow
the identification of clinical variables obtained at diagnosis of CLL
patients, which may predict the development of AD and the need
of CT. These variables are obtained at diagnosis of CLL patients
on a regular basis, and consequently, their use does not increase
the cost or complexity of the diagnosis in CLL patients. The need
of CT seems to be related to the amount of malignant leukemia
cells that are measured by the different leucocytes counts.

The best prognostic variables to predict the need of CT were
B2M, WBC, ALC and MBC. Although the results concerning these
prognostic variables are well known in other plasma disorders, this
analysis served to conclude that these variables only carry partial
information to adopt this important decision, that most of the
times, is taken based on criteria that have not correlation with
the biological data. To the best of our knowledge this is the first
description so far that a group of clinical variables obtained at diag-
nosis of CLL patients may predict an occurrence of an AD, which is
a severe and currently unpredictable complication of this disease.
These results show the importance of variables associated with
the characteristics of platelets, reticulocytes and natural killers
(PLT, RET and NCC), which are the main targets of the autoimmune
haemolytic anemia and immune thrombocytopenia. Additionally,
machine learning methods focus on the relevance of some vari-
ables, such as the immunological ones, which may have an impor-
tant impact on the prognosis of CLL patients, but they are not
currently used by hematologists. Particularly, this analysis has
shown that the low sampling frequency of RET and ZAP-70 could
be troubling given their predictive significance in all the problems
that have been treated: RET is a key factor for predicting AD, while
ZAP-70 seems to be important for predicting the need of CT.

In conclusion, machine learning methods allow an accurate pre-
diction of risk in CLL related problems. Additionally, they may
establish the relevance of clinical variables that are not widely
used as prognostic factor in this disease. The prognostic signifi-
cance of these variables may probably reflect the relevance of some
clinical aspects of this disease that are more important for progno-
sis than it is currently thought. This bioinformatics system can be
easily applied in medical practice and updated along time through
a simple computer program or excel spreadsheet (see supplemen-
tary material file ‘‘CLL_predictor.xls”).
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C. Chamorro10 • S. Gonzalez11 • A. P. González-Rodrı́guez4
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Abstract
Purpose The cure rate inHodgkin lymphoma is high, but the

response along with treatment is still unpredictable and highly

variable among patients. Detecting those patients who do not
respond to treatment at early stages could bring improvements

in their treatment. This research tries to identify the main

biological prognostic variables currently gathered at diagnosis
and design a simple machine learning methodology to help

physicians improve the treatment response assessment.

Methods We carried out a retrospective analysis of the
response to treatment of a cohort of 263 Caucasians who

were diagnosed with Hodgkin lymphoma in Asturias

(Spain). For that purpose, we used a list of 35 clinical and
biological variables that are currently measured at diag-

nosis before any treatment begins. To establish the list of

most discriminatory prognostic variables for treatment

response, we designed a machine learning approach based
on two different feature selection methods (Fisher’s ratio

and maximum percentile distance) and backwards recur-

sive feature elimination using a nearest-neighbor classifier
(k-NN). The weights of the k-NN classifier were optimized

using different terms of the confusion matrix (true- and

false-positive rates) to minimize risk in the decisions.
Results and conclusions We found that the optimum

strategy to predict treatment response in Hodgkin lym-

phoma consists in solving two different binary classifica-
tion problems, discriminating first if the patient is in

progressive disease; if not, then discerning among com-

plete and partial remission. Serum ferritin turned to be the
most discriminatory variable in predicting treatment re-

sponse, followed by alanine aminotransferase and alkaline

phosphatase. The importance of these prognostic variables
suggests a close relationship between inflammation, iron

overload, liver damage and the extension of the disease.

Keywords Hodgkin lymphoma ! Treatment response !
Machine learning ! Serum ferritin (SF) ! Alanine
aminotransferase (ALT) ! Alkaline phosphatase (ALP)
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Purpose

Lymphoma is the most common blood cancer and com-
prises two types: Hodgkin lymphoma (HL) and non-

Hodgkin lymphoma. HL is characterized by the presence of

the so-called malignant Reed–Sternberg cells, surrounded
by an inflammatory infiltrate consisting of lymphocytes,

neutrophils, eosinophils, plasma cells, macrophages and

fibroblasts, constituting a model of interaction of tumor
cells with their microenvironment. Components of in-

flammatory background are associated with classical HL:

the presence of tumor-infiltrating lymphocytes is a negative
prognostic factor for survival in these patients [1]. This

kind of cancer is most commonly diagnosed in young

adults between the ages of 15 and 35 years and in older
adults over 50 years. The cure rate in HL patients is high,

but the response along the treatment is still unpredictable

and varies from patient to patient. Besides, a small minority
is resistant or relapses before treatment. Detecting those

patients with a poor prognosis at early stages (diagnosis)

could bring improvements in their treatment and prognosis.
There was an international effort to identify the prog-

nostic factors to accurately predict the development and
treatment of HL, mainly in patients with advanced stage.
The adverse prognostic factors identified were: male older
than 45 years, stage IV disease, hemoglobin lower than
10.5 g/dl, lymphocyte count lower than 600/ll (or less than
8 %), albumin lower than 4.0 g/dl and white blood count
greater than 15,000/ll [2, 3]. Other studies also took into
account mixed cellularity or lymphocyte-depleted histolo-
gies, the presence of B symptoms or high erythrocyte
sedimentation rate and bulky disease as adverse prognostic
factors [4, 5]. Moreover, disease extensions measured by
computed tomography (CT) and early response to treat-
ment measured by positron emission tomography (PET)
have demonstrated a powerful prognostic ability [6, 7].

Several research works highlighted the importance of
the identification of prognostic variables to predict patients
who will suffer relapse and the adaptation of treatments to
individual risks [8–11]. Particularly, the result of treatment
optimization provoked some criteria modification, with the
disappearance of some factors that were considered to be of
poor prognosis and with the proposal of new ones that
allowed establishing groups with differing risks of relapse
and different treatments.

In thismanuscript,we inferred prognostic variables forHL

treatment response using clinical data and machine learning

techniques in a retrospective study of a cohort of 263 Cau-
casians. For this purpose, we designed a methodology to find

the shortest list of clinical variables providing the highest

predictive accuracy for Hodgkin lymphoma first-line treat-
ment response (at diagnosis). We found that the best way of

addressing this problem is to proceed in two steps: comparing

first the complete/partial remission hypothesis against pro-

gressive disease hypothesis, and secondly differentiating
between complete and partial remission in case it proceeds.

Serum ferritin (SF) turned to be the most important prog-

nostic variable, achieving cross-validation predictive accu-
racies higher than 90 %. Ferritin concentrations increase

drastically in the presence of an infection or cancer [12]. Our

study also showed the importance of alanine aminotrans-
ferase (ALT) and alkaline phosphatase (ALP). The normal

ranges for these three prognostic factors are provided inTable
S1 (see Supplementary Material). The importance of these

variables in the treatment response suggests a close rela-

tionship to iron overload, liver damage and bone affection.
An adequate staging of newly diagnosed patients using this

methodology will enable optimal treatment planning, which

is particularly important in health care to find an optimum
balance between treatment efficacy and drug toxicity.

Methods

The present research work is a retrospective study of a
cohort of 263 Caucasians who were diagnosed with clas-

sical Hodgkin lymphoma in Asturias (Spain) and enrolled

in this study between 2002 and 2012. This study was ap-
proved by the institutional review boards of the different

hospitals involved and performed in accordance with the

Helsinki Declaration of 1975. Besides, this study was ap-
proved by the Ethics Committee of the Principado de As-

turias (date: 17th of January; Project 6th number 13).

Stagingdefinitions from theGermanHodgkinStudyGroup
(GHSG) were evaluated in this analysis. All patients were

treated with the ABVD (doxorubicin, bleomycin, vinblastine,

dacarbazine) regimen: 125 patients (47 %) received involved
field radiotherapy, 91 with early stage and 34 with advanced

stage disease. Response to therapy was evaluated by physical

and radiographic evaluation, including computed tomography
(CT) and the follow-up of the patients. In the last 5 years, PET

scan was also included to assess treatment response. The

treatment response was divided into three categories accord-
ing to international standards [13]: 237 of the patients were in

complete remission (CR), 17 in partial remission (PR) and

only in 9 cases the disease progressed without any relevant
change. This last category was named as progressive disease

(PD). Table 1 describes the main characteristics of the pa-

tients: age, sex, stage at diagnosis, percentage of early favor-
able and early unfavorable and percentage of advanced

disease depending on Hasenclever Prognostic Score.

Progression-free survival (PFS) was calculated from the
date of diagnosis to the date of progression, relapse or

death by of any cause. Overall survival (OS) was calculated

from the date of diagnosis to the date of death from any
cause or last follow-up. Overall and progression-free
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survival distribution curves were estimated using the pro-

duct-limit method of Kaplan–Meier. The median PFS and
OS for the entire group were, respectively, 150 and

160 months. The probabilities of PFS and OS at 7 years

were 57 and 76 %, correspondingly.
Thirty-five clinical and biological variables were mea-

sured at diagnosis and before treatment. These variables were

classified into five groups: biochemical, immunohisto-
chemical, Hodgkin lymphoma specific, treatment specific

and host information. Table 2 shows the description of all
these variables, boldfacing those that take discrete predefined

values.Most of the variables had a sampling frequency higher

than 90 %. However, others were scarcely sampled, such as
CRP (14 %), immunoglobulins andKi67 (20 %).Theneed of

imputing/filtering those variables has turned out to be a very

important step in the modeling process.
The problem addressed in this manuscript consists in

building an efficient and simple machine methodology to

predict HL first-line treatment response with the highest
predictive accuracy, and at the same time minimizing risk

in the decisions. For that purpose we have used the re-

sponse criteria defined by Cheson et al. [13]. Patients were
divided into three categories: complete remission (CR),

defined as the disappearance of all evidence of disease;

partial remission (PR) defined as regression of measurable
disease and no new sites; and progressive disease (PD)

defined as any new lesion or increase by 50 % of previ-

ously involved sites. Four different classification problems
were performed to find the optimum way of separating

these three classes.

The machine learning methodology is explained in
Appendix 1 (see Supplementary Material) and is composed

of three main steps: (1) pre-processing, (2) feature selection

and (3) k-NN design and risk analysis.

Table 1 Main characteristics of the patients (number of patients/
percentage), including Hasenclever International Prognostic Score
(IPS)

Age

Median: 37

Males range: 9–82

Females range: 10–83

Sex

Males: 171/65 %

Females: 92/35 %

Stage at diagnosis

Stage I: 42/16 %

Stage II: 92/35 %

Stage III: 82/31 %

Stage IV: 47/18 %

Early disease: 113/43 %

Favorable: 57/22 %

Not favorable: 56/21 %

Advanced disease: 150/57 %

IPS B2: 81/31 %

IPS[2: 69/26 %

Table 2 Variable description gathered into five groups

Biochemical

WBC White blood cells count (106/lL)

ALC Absolute lymphocyte count (106/lL)

AMC Absolute monocyte count (106/lL)

AEC Absolute eosinophil count (106/lL)

HGB Hemoglobin (g/dL)

PLT Platelets (103/lL)

ALB Albumin (g/L)

AST Aspartate aminotransferase (U/L)

ALT Alanine aminotransferase (U/L)

ALP Alkaline phosphatase (U/L)

CR Creatinine (mg/dL)

LDH Lactate dehydrogenase (U/L)

ESR Erythrocyte sedimentation rate (mm/h)

CRP C-reactive protein (mg/L)

GG Gamma globulin (g/L)

IgG Immunoglobulin G (g/L)

IgA Immunoglobulin A (g/L)

IgM Immunoglobulin M (g/L)

B2M Beta-2 microglobulin (mg/L)

Cu Copper (mEq/L)

SF Serum ferritin (ng/mL)

Inmuno-histochemical tests

CD20 B-lymphocyte antigen CD20 test: positive or
negative

Ki67 Ki-67 cellular marker for proliferation: positive or
negative

EBV Epstein–Barr virus presence: positive or negative

HL specific

OS Overall survival from diagnosis to death (days)

Stage Ann Arbor staging: I, II, III and IV

SS Signs and symptoms: A 5 no SS, B 5 fever, weight
loss, anomalous night sweats

ALA Affected lymph areas

LMM Large mediastinal mass: more than 1/3 of the
thoracic diameter

ELI Extraganglionar involvement

Bulky Mediastinal mass more than 10 cm

Treatment

CHEMO Chemotherapy treatment

RT Radiotherapy treatment

Personal

AGE Age

SEX Sex

Discrete variables are boldfaced
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Basically, the learning method consists, according to the

parsimony principle, in finding the shortest subset of most
discriminatory clinical variables (also called the reduced base

of prognostic variables) to predict treatment response in HL

patients. The clinical and biological variables are first ranked
according to two different filter methods: Fisher’s ratio (FR)

and maximum percentile distance (MPD). In a second step,

the predictive accuracy of the different ranked lists of prog-
nostic variables is established by leave-one-out-cross-

validation (LOOCV) experiment using a simple k-nearest-
neighbor (k-NN) classifier (Appendix 1 in Supplementary

Material). Thismethodology has been successfully applied to

predict risk of radiotherapy-related fatigue in prostate cancer
patients using high-dimensional expression data [14]. In this

case, the challenge is not related to the dimension of the

dataset, but to the heterogeneous degree of sampling of the
different clinical variables. Besides, in this case the

methodology incorporates the weight optimization of the

k-NN classifier according to the receiver operating charac-
teristic (ROC) curve to improve risk decision-making, that is,

to provide a very high predictive accuracy with an optimum

balance between the different rates of the confusion matrix
(the true-positive and false-positive rates defining the corre-

sponding ROC curve). Figure 1 shows a flow diagram ex-

plaining the methodology.
Finally, wewould like to point out that the aim of thiswork

is not to numerically compare different machine learning

methods, but to introduce simple algorithms to select the
shortest list of prognostic variables that could be easily in-

terpreted by medical doctors, to improve the patient prog-

nostic in HL treatment response, with its corresponding risk
assessment. Particularly, we tried to avoid the use of black

boxes that provide estimations without medical doctors’ un-

derstanding. As a matter of fact, this methodology can be
easily implemented in anyplatform such as a spreadsheet (see

Supplementary Material—HL treatementResponse_Predic-

tor.xls-, and the corresponding explanation provided in Ap-
pendix 2). That said, the classifier that is proposed in this

paper outperformed other more sophisticated classifiers that

are proposed in the machine learning literature, highlighting
the importance of selecting the correct prognostic variables.

Results

Treatment response in HL is a difficult prediction problem.
Aside from plasma EBV DNA [15], there is no predictive

biomarker to predict the patient’s response to the corre-

sponding treatment with a reliable accuracy. This classifi-
cation problem is intrinsically highly unbalanced, mainly

due to the discrete sampling of the samples (number of

patients) and also because a high percentage of the patients
are cured from this kind of malignancy.

The first modeling decision was to transform the ana-

lysis of treatment response into a binary classification
problem (two-class problem) that admits a more reliable

and stable solution than the corresponding value regression

problem, that is, it is easier to predict if a patient is in
complete or partial remission than predicting the value of

the biological variables related to this fact. Besides, the

prediction in binary classification problems allows for risk
assessment through the analysis of the confusion matrix

and the receiving operating characteristic (ROC) curve.

The confusion matrix consists of four different groups: true
positives (TP), true negatives (TN), false positives (FP) and

false negatives (FN), whose definition depends on how the

classification problem has been set up. From the confusion

Fig. 1 Flow diagram for HL treatment response prediction model.
The methodology is composed of three steps: 1 filtering and imputing
data, 2 feature selection and 3 k-NN design and risk analysis. In each
box, the different substeps are also detailed
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matrix, different rates can be calculated to understand the

risk on the prediction:

1. True-positive rate or sensitivity (TPR): measures the

proportion of actual positives that are correctly
predicted as such.

2. True-negative rate or specificity (SPC): measures the

proportionof negatives that are correctly predicted as such.
3. False-positive rate (FPR): fraction of false positives

out of the total actual negatives.

4. False-negative rate (FNR): fraction of false negatives
out of the total actual positives.

5. False discovery rate (FDR): fraction of false positives

out of the total actual positives.

These rates could be used by the physicians in their

decision-making process. A perfect classifier would have
100 % sensitivity and specificity.

The following comparisons were performed:

1. CR vs. PR?PD,

2. CR?PR vs. PD and CR vs. PR,

3. CR vs. PR vs. PD.

Comments for the prognostic variables in comparisons 1

and 3 are given in Appendix 3 (see Supplementary Mate-
rial), since we have obtained worse results. The most

effective comparison was the second one and it was com-

posed of two main steps. In the first step (2.1 CR?PR vs.
PD), we established the differences between patients who

experienced partial or complete remission (CR?PR, posi-

tive class) from those in which the disease progressed
without any relevant change (PD, negative class). Then, a

second comparison (2.2 CR vs. PR) was used to establish

the differences between CR (positive class) and PR
(negative class) patients.

The best result was obtained by filtering out those
variables having a sampling frequency lower than 30 %,

and imputing the rest. Besides, MPD (maximum percentile

distance) provided the shortest list of variables with the
highest predictive accuracy.

Table 3 shows the confusion matrix rates (TPR, TNR,

FPR, FNR) for all the binary classifications (comparisons 1
and 2), together with the false discovery rate (FDR) and the

LOOCV predictive accuracy (ACC). No weight optimiza-

tion was performed in this case, that is, the weights cor-
responded to the inverse of the prior variability of the

prognostic variables (see Appendix 1 Supplementary Ma-

terial). Table 4 shows the mean values of the three prog-
nostic variables for the different groups of the confusion

matrix and the weights (W) used to define the distance

criterion in the nearest-neighbor classifier.

Table 3 Best results for all the comparisons obtained without weight optimization

# Comparisons Base MPD rate TPR (%) TNR (%) FPR (%) FNR (%) FDR (%) Acc (%)

1 CR (?) vs. PR and PD (-) SF 67.2818 97.89 19.23 80.77 2.11 8.30 90.11

GPT 41.0086

2.1 CR and PR (?) vs. PD (-) SF 75.2264 98.43 22.22 77.78 1.57 2.72 95.82

2.2 CR (?) vs. PR (-) SF 57.7157 97.89 11.76 88.24 2.11 6.07 92.13

ALT 41.3166

ALP 38.9228

The algorithm used for all the comparisons was the same: filtering 30 % of sampling frequency, imputing and MPD as feature selection method.
Rate is the maximum percentile distance rate, TPR true-positive rate, TNR true-negative rate, FPR false-positive rate, FNR false-negative rate
and Acc final accuracy of the prediction. Signs (?) and (-) represent the positive and negatives groups, respectively

Table 4 Mean values (for all the comparisons) of the true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), and
weights (xb) for the optimum NN classifier (without weight optimization)

# Comparisons Variables TP TN FP FN xb

1 CR (?) vs. PR and PD (-) SF 246.7 2480.2 391.8 2280.6 0.0005

GPT 23.9 52.0 38.0 65.2 0.0239

2.1 CR and PR (?) vs. PD (-) SF 266.4 3288.0 452.4 3231.3 0.0005

2.2 CR (?) vs. PR (-) SF 249.9 2401.0 405.5 2131 0.0005

ALT 23.7 18.0 44.2 74.4 0.0092

ALP 116.8 376.0 163.5 608.4 0.0017

Signs (?) and (-) represent positive and negatives groups, respectively. Boldfaces indicate the highest value for each prognostic variable. Normal
bounds for the decision correspond to the TP and TN groups. Wb are the weights used in the classifier for data variability normalization (before
weight optimization)
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Comparison 2.1: CR1PR vs. PD

In this comparison serum ferritin was the single selected
prognostic variable (using MPD as feature selection) with a

predictive accuracy of 95.82 %. The SF mean value in the

TN group (3288 ng/mL) was even higher than in the pre-
vious comparison, the SF value in the TP group being

266 ng/mL. Therefore, patients with progressive disease

show a very clear inflammatory behavior as shown by the
SF value at diagnosis. The TPR of this comparison is very

high (98.43 %), and the TNR is higher than in the com-

parison 1 (22.22 %). The TP and FP maximum and mini-
mum SF values are closer to normal SF values (see Table

S1 of Supplementary Material). Conversely, the TN and

FN corresponding SF signatures are extreme values.

Comparison 2.2: CR vs. PR

The best subset of prognostic variables for this case was

found by MPD and was composed of SF, ALT and ALP,
providing 92 % of LOOCV predictive accuracy. The TPR

is very high (97.89 %) and the TNR is quite low (11.76 %),

that is, the difference between partial and complete re-
mission is very hard to tell, and the classifier tends to as-

sign the complete remission class in most of the cases.

There is a big gap between SF mean levels of both TP
(249 ng/mL) and TN (2401 ng/mL) groups. Moreover, FP

(405 ng/mL) and FN (2131 ng/mL) mean SF values are
similar to the mean SF values of the TN and TP groups,

respectively. The same happens with ALP; there is also a

big difference between TP (116.8 U/L) and TN (376 U/L)
values. The mean values in the FP (163.5 U/L) and FN

(608.4 U/L) groups are also close to the TP and TN groups,

which make those samples very difficult to correctly pre-
dict using this k-NN classifier. SF and ALP have higher

mean values in the TN group than in the TP group. How-

ever, in the case of ALT, the mean value in the TP group
(23.7 U/L) is higher than in the TN group (18 U/L).

Moreover, the difference between these two groups is very

low. The ALT mean value in the FN group (74.4 U/L) is

closer to the TP group, instead of being closer to the TN
group, as it should be expected. This is due to the presence

of some PR patients with anomalously large ALT values.

k-NN weight optimization

Optimization of the weights of the k-NN classifier via

Particle Swarm Optimization (PSO) was performed to

improve the true negative rate (or specifity), that is, in-
creasing TNR while the overall accuracy is also improved

(TPR is not affected). Details about PSO are given in
Appendix 1 (see Supplementary Material).

Table 5 shows the TPR, TNR, FPR, FNR, FDR and pre-

dictive accuracy (Acc) obtained after weight optimization.
TN rates were improved around 10 % in comparisons 2.1,

while in comparison 2.2 TP rate was improved around 1 %.

The overall accuracy was improved in all the cases around
1 %. Table 6 shows the mean values for TP, TN, FP, FN and

the optimized weights for the prognostic variables (xa). It

can be observed that values of the weights increased after
optimization for all the prognostic variables. Therefore, it is

possible to improve the quality of the prediction and mini-

mize risk on the decisions, by optimizing the weights that are
initially provided by the distance criterion.

Conclusions

In this paper we presented an optimum strategy to predict
treatment response in HL. Three main discriminatory

prognostic variables were used in this analysis: serum

ferritin, ALT and ALP.
Serum ferritin has been frequently used as a surrogate

marker for systemic iron stores, but may be also elevated in

specific circumstances without excess iron stores, such as
in inflammation, correlating closely to the activity of ma-

lignant lymphomas. Serum ferritin levels have been re-

ported to be elevated in HL patients, in particular in

Table 5 Best results for all the comparisons obtained after weight optimization

# Comparisons Base Rate TPR (%) TNR (%) FPR (%) FNR (%) FDR (%) Acc (%)

1 CR (?) vs. PR and PD (-) SF 67.2818 98.73 23.08 76.92 1.27 7.87 91.2548

GPT 41.0086

2.1 CR and PR (?) vs. PD (-) SF 75.2264 98.43 33.33 66.67 1.57 2.34 96.1977

2.2 CR (?) vs. PR (-) SF 57.7157 99.58 11.76 88.24 0.42 5.98 93.7008

ALT 41.3166

ALP 38.9228

Rate is the maximum percentile distance rate, TPR true-positive rate, TNR true-negative rate, FPR false-positive rate, FNR false-negative rate
and Acc final accuracy of the prediction. Signs (?) and (-) represent the positive and negatives groups, respectively
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advanced stages and during disease progression [16, 17].

Moreover, it has been proposed that the release of IL-6
stimulates the overproduction of hepcidin in the liver,

which correlates with the iron restriction and contributes to

anemia in HL [18]. In addition, the abundant microenvi-
ronment surrounding the neoplastic Hodgkin’s and Reed–

Sternberg cells may contribute to alterations in iron

metabolism [19]. Besides, serum ferritin concentration
closely follows the activity of malignant lymphomas [20].

Another research work [21] has shown that levels of serum
ferritin higher than 500 ng/mL are an important marker for

predicting poor survival outcomes for non-Hodgkin lym-

phoma. Nevertheless, and to our knowledge, serum ferritin
levels have not been yet related to the treatment response

of HL patients.

Serum activity levels of ALT enzyme are routinely used
as a biomarker of liver injury caused by drug toxicity,

infection, alcohol and steatosis. ALT plays a key role in the

intermediary metabolism of glucose and amino acids and
also participates in cellular nitrogen metabolism and liver

gluconeogenesis. This cytosolic enzyme catalyzes the

transfer of the a-amino group from alanine to a-ketoglu-
taric acid. Serum levels of ALT are normally low

(10–40 U/L), but any type of liver cell injury may modestly

increase the ALT levels. Levels greater than 500 U/L occur
most often in people with hepatic diseases, such as viral

hepatitis, ischemic liver injury (shock liver), toxin-induced

liver damage and tumor infiltration of liver. Despite the
association between greatly elevated ALT levels and

hepatocellular diseases, the levels of ALT do not correlate

with the extent of liver cell damage [22].
The alkaline phosphatase test (ALP) is used to detect

liver disease or bone disorders. In conditions affecting the

liver, damaged liver cells release increased amounts of
ALP into the blood. Further, any condition that affects

bone growth or causes increased activity of bone cells can

affect ALP levels in the blood. In non-Hodgkin lym-
phomas, ALP is increased in patients with bone marrow

disorders [23], thus reaching stage IV and worse prognosis.

A recent study suggests that ALP together with gamma-

glutamyl transferase and albumin may define advanced

stages of HL [24]. Moreover, bone affection is also asso-
ciated with a high progression degree (HR: 1.96) [25].

However, in a patient with fever of unknown origin (FUO),

highly elevated alkaline phosphatase and normal/slightly
elevated serum transaminase levels suggest the possibility

of lymphoma [26–28].

Overall, the results of this study show that the combined
use of these prognostic variables, SF, ALT and ALP, in a

simple classifier allows predicting first-line treatment re-
sponse inHL patients with high accuracy and confirms a close

relationship between treatment response inHL, inflammation,

iron overload and liver and bone damage. Particularly, the
combination of feature selection methods (maximum per-

centile distance), risk assessment analysis (ROC curve) and

global optimization (PSO) provides biomarker discovery that
is easily implemented in spreadsheet.

To conclude, detecting those HL patients who do not

respond to the treatment at early stages may help improve
their treatment. This study proposed a new prognostic

analysis method, based on mathematical models that

identify three simple prognostic variables currently gath-
ered at diagnosis that may help detect with high accuracy

those HL patients with bad prognosis without any addi-

tional cost.

Acknowledgments Enrique J. de Andrés was supported by the
Spanish Ministerio de Economı́a y Competitividad (Grant TIN2011-
23558), and the medical analysis was supported by the Fondo de
Investigaciones Sanitarias (Instituto Carlos III-Grant PI12/01280). No
other financial support has been received to perform this retrospective
analysis.

Conflict of interest None.

References

1. Alvaro-Naranjo T, Lejeune M, Salvado-Usach MT, Bosch-Princep R, Reverter-
Branchat G, Jaen-Martinez J, et al. Tumor-infiltrating cells as a prognostic
factor in Hodgkin’s lymphoma: a quantitative tissue microarray study in a large
retrospective cohort of 267 patients. Leuk Lymphoma. 2005;46(11):1581–91.

Table 6 Mean values of the true positives, true negatives, false positives and false negatives and optimized weights (xa) of the optimum NN
classifier after weight optimization, for all the comparisons

# Comparisons Base TP TN FP FN xa

1 CR (?) vs. PR and PD (-) SF 254.7 2309.3 338.6 3007.0 0.0016

GPT 24.4 99.2 23.2 55.3 0.0319

2.1 CR and PR (?) vs. PD (-) SF 275.4 2796.7 225.5 2669.5 0.0020

2.2 CR (?) vs. PR (-) SF 276.7 2401.0 405.5 3330.0 0.0026

ALT 24.3 18.0 44.2 140.0 0.0663

ALP 123.2 376.0 163.5 1059.0 0.0051

Signs (?) and (-) represent the positive and negatives groups, respectively. Boldfaces indicate the highest value for each prognostic variable.
Normal bounds for the decision correspond to the TP and TN groups

Clin Transl Oncol

123



2. Schreck S, Friebel D, Buettner M, Distel L, Grabenbauer G, Young LS, et al.
Prognostic impact of tumour-infiltrating th2 and regulatory t cells in classical
Hodgkin lymphoma. Hematol Oncol. 2009;27(1):31–9.

3. Hasenclever D, Diehl V, Armitage JO, Assouline D, Björkholm M,
Brusamolino E, et al. A prognostic score for advanced Hodgkin’s disease. New
Eng J Med. 1998;339(21):1506–14.

4. Friedman S, Henry-Amar M, Cosset JM, Carde P, Hayat M, Dupouy N, et al.
Evolution of erythrocyte sedimentation rate as predictor of early relapse in
posttherapy early-stage Hodgkin’s disease. J Clin Oncol. 1988;6(4):596–602.

5. Mauch P, Larson D, Osteen R, Silver B, Yeap B, Canellos G, et al. Prognostic
factors for positive surgical staging in patients with Hodgkin’s disease. J Clin
Oncol. 1990;8(2):257–65.

6. Cheson BD. New staging and response criteria for non-Hodgkin lymphoma and
Hodgkin lymphoma. Radiol Clin North Am. 2008;46(2):213–23.

7. Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M,
et al. International validation study for interim pet in abvd-treated, advanced-
stage Hodgkin lymphoma: interpretation criteria and concordance rate among
reviewers. J Nucl Med. 2013;54(5):683–90.

8. Smolewski P, Robak T, Krykowski E, Blasinska-Morawiec M, Niewiadomska H,
PluzanskaA, et al. Prognostic factors inHodgkin’s disease:multivariate analysis of
327 patients from a single institution. Clin Cancer Res. 2000;6(3):1150–60.

9. Zander T, Wiedenmann S, Wolf J. Prognostic factors in Hodgkin’s lymphoma.
Ann Oncol. 2002;13(Suppl 1):67–74.

10. Josting A. Prognostic factors in Hodgkin lymphoma. Expert Rev Hematol.
2010;3(5):583–92.

11. Provencio M, Espana P, Millan I, Yebra M, Sanchez AC, de la Torre A, et al.
Prognostic factors in Hodgkin’s disease. Leuk Lymphoma. 2004;45(6):1133–9.

12. Ong DST, Wang L, Zhu Y, Ho B, Ding JL. The response of ferritin to lps and
acute phase of pseudomonas infection. J Endotoxin Res. 2005;11(5):267–80.

13. Cheson BD. The international harmonization project for response criteria in
lymphoma clinical trials. Hematol Oncol Clin North Am. 2007;21(5):841–54.

14. Saligan L, Fernández-Martı́nez JL, deAndrés-Galiana EJ, Sonis S. Supervised
classification by filter methods and recursive feature elimination predicts risk of
radiotherapy-related fatigue in patients with prostate cancer. Cancer Inform.
2014;13(141–152):12.

15. Gandhi MK, Lambley E, Burrows J, Dua U, Elliott S, Shaw PJ, et al. Plasma
epstein-barr virus (EBV) DNA is a biomarker for EBV-positive Hodgkin’s
lymphoma. Clin Cancer Res. 2006;12(2):460–4.

16. Bezwoda WR, Derman DP, Bothwell TH, Baynes R, Hesdorffer C, MacPhail
AP. Serum ferritin and Hodgkin’s disease. Scand J Haematol. 1985;35:505–10.

17. Dörner MH, Abel U, Fritze D, Manke HG, Drings P. Serum ferritin in relation to
the course of Hodgkin’s disease. Cancer. 1983;52:2308–12.

18. Hohaus S, Massini G, Giachelia M, Vannata B, Bozzoli V, Cuccaro A, et al.
Anemia in Hodgkin’s lymphoma: the role of interleukin-6 and hepcidin. J Clin
Oncol. 2010;28(15):2538–43.

19. Hohaus S, Giachelia M, Cuccaro A, Voso MT, Leone G. Iron in Hodgkin’s
lymphoma. Crit Rev Oncog. 2013;18(5):463–9.

20. Aulbert E, Steffens O. Serum ferritin–a tumor marker in malignant lym-pho-
mas? Onkologie. 1990;13(2):102–8.

21. Yoh KA, Lee HS, Park LC, Lee EM, Shin SH, Park DJ, et al. The prognostic
significance of elevated levels of serum ferritin before chemotherapy in patients
with non-Hodgkin lymphoma. Clin LymphomaMyeloma Leuk. 2014;14(1):43–9.

22. Kaplan MM. Alanine aminotransferase levels: what’s normal? Ann Intern Med.
2002;137(1):49–51.

23. Kittivorapart J, Chinthammitr Y. Incidence and risk factors of bone marrow
involvement by non-Hodgkin lymphoma. J Med Assoc Thai. 2011;94(Suppl
1):S239–45.

24. Jamakovic M, Baljic R. Significance of copper level in serum and routine
laboratory parameters in estimation of outspreading of Hodgkin’s lymphoma.
Med Arch. 2013;67(3):185–7.

25. El-Galaly TC, Hutchings M, Mylam KJ, Brown Pde N, Bukh A, Johnsen HE,
et al. Impact of 18F-fluorodeoxyglucose positron emission tomography/com-
puted tomography staging in newly diagnosed classical Hodgkin lymphoma:
fewer cases with stage I disease and more with skeletal involvement. Leuk
Lymphoma. 2014;55(10):2349–55.

26. Brensilver HL, Kaplan MM. Significance of elevated liver alkaline phosphatase
in serum. Gastroenterology. 1975;68(6):1556–62.

27. Brinckmeyer LM, Skovsgaard T, Thiede T, Vesterager L, Nissen NI. The liver
in Hodgkin’s disease. Clinico-pathological relations. Eur J Cancer Clin Oncol.
1982;18(5):421–8.

28. Cunha BA. Fever of unknown origin (FUO): diagnostic importance of serum
ferritin levels. Scand J Infect Dis. 2007;39(6–7):651–2.

Clin Transl Oncol

123



A.3 Supervised Classification by Filter Methods and Recursive Feature Elimination Predicts
Risk of Radiotherapy - Related Fatigue in Patients with Prostate Cancer 159

A.3 Supervised Classification by Filter Methods and Re-
cursive Feature Elimination Predicts Risk of Radiothe-
rapy - Related Fatigue in Patients with Prostate Can-
cer

Published in the journal Cancer Informatics.
DOI: http://dx.doi.org/10.4137/CIN.S19745

http://dx.doi.org/10.4137/CIN.S19745


141Cancer Informatics 2014:13

Open Access: Full open access to 
this and thousands of other papers at 
http://www.la-press.com.

Cancer  
Informatics

Introduction
Fatigue is the most common, troublesome, and costly side 
effect of many cancer (CA) treatment regimens. Not only 
does it impact patients directly, but it also has significant 
repercussions on both direct and indirect health economic 
outcomes.1 CA treatment-related fatigue (CTRF) is defined 
as a “subjective sense of tiredness” that persists over time, 
interferes with activities of daily living, and is not relieved 
by adequate rest.2,3 The majority of CTRF studies are 

associated with chemotherapy regimens; however, fatigue 
during and after external beam radiation therapy (RT) is 
common, increasing in severity during treatment and persist-
ing after RT has been completed.4 CTRF has been reported 
to be the most distressing symptom reported by patients 
with non-metastatic prostate CA who receive RT with the 
greatest negative impact on daily activity, physical well-being/
function, and relationships with significant others.5 The 
trajectory of CTRF is still being defined. During RT, fatigue 
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Background: Fatigue is a common side effect of cancer (CA) treatment. We used a novel analytical method to identify and validate a specific gene 
cluster that is predictive of fatigue risk in prostate cancer patients (PCP) treated with radiotherapy (RT).
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intensification peaks at midpoint, declines after completion 
of RT,6 and becomes chronic in a subpopulation of patients. 
The pathobiology of CTRF, like other toxicities, is complex 
and is probably attributable to a cascade of events resulting 
in radiation-induced pro-inflammatory cytokine production, 
hypothalamic–pituitary–adrenal (HPA) activation dysfunc-
tion, and neuromuscular function abnormalities.7,8

CTRF, like other regimen-related toxicities, does not 
occur in every patient, but rather in a subpopulation of at-risk 
individuals. In the context of individualizing care, the ability 
to predict CTRF risk has the potential to help guide treat-
ment choices for patients and providers. There have been a 
number of attempts to predict CTRF. For example, one study 
reported that elevated pre-treatment fatigue, anxiety, and a 
specific breast cancer diagnosis (eg, ductal carcinoma in situ, 
invasive lobular carcinoma) predicted CTRF during RT in 
early stage breast cancer.9 Another study found dyspnea, pain, 
lack of appetite, feeling drowsy, feeling sad, and feeling irri-
table to be forecasters of CTRF among hematology–oncology 
patients.10

However, as it becomes increasingly clear that CTRF is 
strongly related to a series of underlying genetically controlled 
biological events, the utility of identifying a group of genes 
that impact patients’ risk of the condition seems compelling. 
We hypothesized that radiation-associated fatigue risk, like 
other regimen-related toxicities, is determined not by a single 
gene, but rather a synergistically functioning group of genes. 
This theory is supported by the finding that clusters of SNPs, 
discovered by Bayesian network analysis, have been reported 
to be associated with CTRF risk in patients being treated with 
cycled chemotherapy for breast and colorectal cancers.11,12 
In the current study, we evaluated an alternative analytical 
method in which genes were identified using a series of hier-
archical filters and nearest-neighbor (NN) analysis to identify 
a group of genes that predicted CTRF in men being irradi-
ated for prostate cancer. This proof-of-concept investigation 
not only demonstrated the utility of the analysis, but also con-
firmed the observation that focal radiation therapy is capable 
of inducing gene expression changes in peripheral white blood 
cell RNA.13

Methods
Patients. This study (NCT00852111) was approved by 

the Institutional Review Board of the National Institutes of 
Health (NIH), Bethesda, Maryland, USA. The study involv-
ing human participants is in compliance with the Declara-
tion of Helsinki. Men who were 18 years or older, diagnosed 
with non-metastatic prostate cancer with or without a his-
tory of prostatectomy, and scheduled to receive EBRT with 
or without concurrent androgen deprivation therapy (ADT), 
were enrolled. Men with progressive disease causing signifi-
cant fatigue, those with psychiatric disease within the past 
five years, uncorrected hypothyroidism and anemia, taking 
sedatives, steroids, and non-steroidal anti-inflammatory 

agents, and those with second malignancies, were 
excluded. Patients were recruited at the Magnuson Clinical 
Research Center, NIH, between May 2009 and September  
2011. Subjects signed written informed consents prior to study 
participation.

Fatigue assessment instruments. Clinical and demo-
graphic data (eg, age, race, stage of prostate cancer, EBRT 
dose, type of EBRT technique used, and laboratory values) 
were obtained from chart review. Questionnaires were com-
pleted at baseline (prior to RT) and at completion of RT (day 
38–42 after EBRT initiation). To avoid extraneous influ-
ences on their responses, subjects completed the question-
naires in an outpatient setting before clinical procedures were 
provided.

The 13-item Functional Assessment of Cancer Therapy–
Fatigue (FACT-F), a frequently used, validated, reliable, 
stand-alone measure of fatigue in cancer therapy with coef-
ficient alphas in the mid-90s, was used.14 FACT-F is scored 
from 0–52, the higher the score, the lower the fatigue symp-
toms. A greater than three-point decrease in the FACT-F 
score is considered to be a minimally important change that 
is clinically relevant.15 To optimize the phenotypic charac-
terization of the study participants, subjects were categorized 
into high-fatigue (HF) or low-fatigue (LF) groups based on 
their change in FACT-F scores from baseline to completion 
of EBRT. HF subjects had a decrease of three or more points 
in FACT-F scores, and those who had less than a three-point 
decrease in FACT-F scores between both time points were 
categorized in the LF group. Depressive symptoms were also 
assessed using the 21-item Hamilton Depression Rating Scale 
(HAM-D), a clinician-administered questionnaire with good 
psychometric properties.16

Biological sample collection, RNA extraction, and 
microarray experiments. Peripheral blood (2.5  mL) was 
collected at baseline and on the last day of RT, immedi-
ately after FACT-F was administered, from each subject 
using PAXgeneTM Blood RNA tubes (Qiagen, Frederick, 
Maryland, USA) containing red blood cell lysis buffer and  
a RNA-stabilizing solution and stored at −80 °C until RNA  
extraction. Total RNA was extracted using the PAXgeneTM 
Blood RNA system (Qiagen, Frederick, Maryland, USA) 
according to manufacturer’s instructions. The quantity of 
total RNA was measured by a spectrophotometer at an opti-
cal density of 260 nm. RNA quality was assessed using the 
RNA 6000 Nano LabChip® on a Bioanalyzer Agilent 2100 
(Agilent Technologies, Palo Alto, CA, USA). RNA purifi-
cation, cDNA and cRNA synthesis, amplification, hybrid-
ization, scanning, and data analyses were conducted by 
one laboratory technician following standard protocols as 
previously described.17 Affymetrix microarray chips (HG-
U133 Plus 2.0, Santa Clara, California, USA) were used 
for gene expression analysis. The Affymetrix HG-U133 
Plus 2.0  microarray chip is comprised of 47,000 tran-
scripts, including 38,000 well-characterized human genes. 
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Affymetrix GeneChip Command Console (AGCC, 3.0 V) 
was used to scan the images for data acquisition. Affymetrix 
raw data were acquired using comparison expression analysis 
of GCOS Software to yield CHP files according to the user 
instructions. Peripheral blood has been previously utilized to 
describe gene expression signature that predicted radiation-
related toxicities.18

Ingenuity Pathway analysis (Ingenuity® Systems, www.
ingenuity.com, Redwood City, California, USA) identi-
fied the functional networks of the differentially expressed 
probe sets from Ingenuity’s Knowledge Base. Right-tailed 
Fisher’s exact test was used to calculate the P-values deter-
mining the probability that each biological function and/or 
disease assigned to these networks is due to chance alone. 
The one-tailed analysis was used to reduce the random 
chances of over-representation of focused genes in the rel-
evant pathways.19

Statistical rationale. Descriptive analyses were used to 
assess the demographic characteristics of the sample. Paired 
t-tests were used to compare fatigue scores and clinical vari-
ables between time points. To facilitate the identification of a 
group of synergistically functioning genes that were associ-
ated with CTRF risk, we used an approach that optimized 
an initial supervised component with a subsequent statistically 
driven hierarchical ranking. Using microarray data from the 
training set of patients for which the presence or absence of 
CRTF was known, we identified the genes that most discrim-
inated between individuals who developed CTRF from those 
who did not. Those genes were then ranked according to their 
discriminatory value (as defined by their Fisher’s ratio [FR]), 
in which the predictive accuracy of the different-ordered 
reduced sets was determined using a backward recursive fea-
ture elimination algorithm (see flow diagram in Fig. 1 below). 
This procedure serves to eliminate redundant or irrelevant 
genes (features) to yield the most precise set of genes with the 
greatest predictive accuracy.

Feature selection (gene ranking). Feature selection 
identified genes with the highest fold change,20,32 fcj(c1,c2), 
and FR,21FRj(c1,c2), using the phenotype information. The 
fold change and the FR for probe j in a binary classification 
problem are defined as follows:
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The following relationship holds:

BLIND Validation

(Reduced Base of Genes)
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Figure 1. Flow diagram for the radiation-related fatigue prediction model. 
The methodology is composed of 4 steps: feature selection, backward 
recursive feature elimination, small-scale separability analysis and blind 
validation.
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where µ µj j1 2−  is the distance between the centers of the 
classes, and σ σ σj

T
j j= +1
2

2
2  is the total variance of the gene 

j in both classes.
The above relationship means that the centers of the dis-
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This last relationship implies that given a gene charac-
terized by its FR, FRj, and fold-change value, fcj, only the 
most discriminatory genes with means µj1, µj2 and dispersions 
σj1,σj2 in both classes are selected by this procedure.

Identification/selection of the smallest and most pre-
cise set of CTRF-associated genes. We used the following 
algorithm to select the smallest and most precise set of dis-
criminatory genes for the LF/HF phenotype:

1.	 Genes identified by feature selection (see above) were 
ranked in decreasing order according to their FR value.

2.	 The predictive accuracy of the different sets was iteratively 
calculated after the sequential elimination of the genes 
with lowest FR. We termed this novel algorithm,  
a modification of the technique described by Guyon et al 
(2002),22 “backward recursive feature elimination.” It 
served to determine the number of helper genes (genes 
with the lowest FR) needed to maximize the Leave-One-
Out-Cross-Validation (LOOCV) predictive accuracy,23 
in a procedure similar to the Fourier decomposition of a 
signal into a sum of harmonics of increasing frequency.24 
Genes with lower FR provide high frequency details for 
the discrimination. This procedure yielded the shortest 
gene set that predicted fatigue risk association with opti-
mum accuracy (most precise). Other sets with similar and 
lower accuracy were also determined by this procedure 
and were of value, because these sets were also considered 
as noise buffers; as the classifier with the highest learning 
accuracy might not be the one that generalizes (predicts 
correctly unseen samples) better. This approach is appro-
priate and is especially helpful in designing small-scale 
signatures that were able to predict HF/LF with a high 
degree of accuracy.

The linear separability of the phenotype in the reduced 
set of genes that is determined in step 2 was checked by per-
forming principal component analysis (PCA) of the learning 
dataset expressed in this small-scale signature and projecting 
these samples in the corresponding 2D PCA space. Then, the 
LF/HF phenotype becomes linearly separable by reducing the 
dimension to the list of most discriminatory genes, if both 
populations (HF and LF) can be linearly separated by a given 
hyper-plane.

3.	 The accuracy estimation was based on the LOOCV 
method, using the average Euclidean distance on the 
reduced set of features to each training class set. The 
goal of cross-validation was to estimate how accurately a 
predictive model (classifier) will perform in practice. 
This procedure, applied to the training dataset, is super-
vised because the phenotype information of the patients 
was needed to establish the predictive accuracy of each 
gene list. LOOCV implies using a single sample from 
the original dataset as the validation data (sample test), 
and the remaining samples as training data. This was 
repeated such that each sample in the dataset was used 
once, as a sample test. Each sample was characterized by 
a vector whose dimension was the number of genes that 
belonged to the reduced base that differentiated between 
HF and LF. The class with the minimum Euclidean dis-
tance was assigned to the sample test (NN classifier),25 
and the average accuracy was calculated by iterating 
over all the samples. For that purpose, all the samples 
were normalized according to their gene variability (each 
attribute or gene separately). In this way, all the genes 
had the same importance in the distance criterion. The 
distance between a sample and a phenotype class could 
have been defined in several ways, but the most robust 
one was using the median distance between the sample 
test and all the samples in the corresponding class.

4.	 The legitimacy of the predictive accuracy based on the 
training set was then tested with the validation set, using 
the above-mentioned predictive model. It is important 
to remark that the application of the prediction model, 
designed in steps 1 to 3, to the validation set was unsu-
pervised. The final decision was made by consensus 
(majority voting) of the predictions made using the lists 
of most discriminatory genes.

Results
Demographic and clinical characteristics. A total of 

44  men with non-metastatic prostate cancer were studied. 
Subjects were primarily Caucasian (67%), had a mean age of 
65.2 ± 6.7 years and were not depressed based on Hamilton 
Depression Scale (1.1 ± 2.2) criteria. All subjects received a 
cumulative radiation dose of at least 68.4 Gy and more than 
90% received a total dose of 75.6 Gy. Most (64%) of the sub-
jects had a Gleason score of 7–8, and 71% had clinical T-stage 
below T3. The Gleason scoring and clinical staging are unique 
systems to classify the extent of the prostatic carcinoma.26,27 
There was no difference between the clinical and demographic 
features of subjects in the training and validation sets. In gen-
eral, CTRF as indicated by a significant decrease in FACT-F  
scores from baseline (45.4  ±  7.2) to completion of EBRT 
(39.4 ± 10.0, P , 0.05) was found. The characteristics of both 
study sets are shown in Table 1.

Training model development. The training model was 
developed from the array outputs of 27 subjects; 18 were HF 
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Table 1. Demographic characteristics of the sample.

Training Validation

High Fatigue
(n = 18)

Low Fatigue
(n = 9)

High Fatigue
(n = 7)

Low Fatigue
(n = 10)

Mean (SD) Range n (%) Mean (SD) Range n (%) Mean (SD) Range n (%) Mean (SD) Range n (%)

Age in Years 64.6 (5.7) 53–73 65.2 (7.0) 55–74 66.7 (5.3) 58–73 66.5(7.0) 53–74

Ethnicity n(%)

  Caucasian 18 (100) 7 (78) 2 (29) 5 (50)

  African-American 2 (22) 4 (57) 4 (40)

 O ther 1 (14) 1 (10)

Clinical T stage 

  T1 (a-c) 4 (22) 2 (22) 2 (29) 2 (20)

  T2 (a-c) 10 (56) 7 (78) 3 (43) 7 (70)

  T3 (a-c) 4 (22) 2 (29) 1 (10)

BMI 30.3 (4.5) 22–37 30.4 (2.7) 26–34 30.4 (6.3) 24–42 31.5 (5.5) 25–40

FACT-F score

  Baseline 43.6 (8.4) 28–52 47.0 (5.6) 36–52 48.9 (5.8) 36–52 42.3 (7.7) 32–51

  Endpoint (day 42) 32.5 (8.1) 20–46 47.4 (4.4) 41–51 39.6 (8.0) 26–48 43.1 (8.1) 31–52

HAM-D score

  Baseline 1.1 (2.2) 0–7 0.6 (0.9) 0–2 0.1 (0.4) 0–1 1.0 (1.3) 0–4

  Endpoint (day 42) 1.8 (2.2) 0–7 0.8 (0.7) 0–2 1.6 (2.2) 0–6 1.6 (1.4) 0–5

Abbreviations: SD, standard deviation; BMI, body mass index; FACT-F, Functional Assessment of Cancer Therapy – Fatigue subscale; HAM-D, Hamilton - 
Depression.
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Figure 2. Data visualization in decibels (log2 of the expression). HF is composed of 18 samples, LF 9 samples and Validation 17 samples. The phenotype 
of the validation samples is not used for learning purposes. The expression varies from 21 to 62.088, that is, a fold change of 11, 53. No filtering is 
performed in the expression data, since the feature selection methods that are used are robust to the presence of outliers. Also, the gene selection is not 
only based on differential expression that might be affected by the presence of noise.

(mean FACT-F change = −11.8 ± 6.8) and 9 were LF (mean 
FACT-F change = 0.8 ± 3.3). Each patient sample contained 
604,258 different probes. The minimum and maximum gene 
expressions were 21 and 62,088, respectively.

As shown in Figure 2, it was impossible to visually dis-
tinguish HF and LF microarray outputs in heat map format 
using decibels as units of measure (log2 of gene expression). 
The similarities between the HF and LF groups in the learning 
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harmonics. In this case, the Fisher’s ratio curve decreases very steeply, in such that only with the first set of genes (14 to 35 genes in this case) can 
the highest discriminative accuracy of the learning data set, can be achieved. Adding genes with lowest discriminatory power indiscriminately does not 
improve the LOOCV predictive accuracy. The backward RFE method is used to determine the amount of details that is needed.

dataset were confirmed by further histogram analysis of gene 
expression. Figure 3 shows that the corresponding statistical 
distributions of gene expressions in both groups were close to 
lognormal, with the main differences between both pheno-
types occurring around the mode of both histograms (expres-
sions around 24 and 26).

A final list of 575 highly discriminatory genes accord-
ing to expression was noted and defined by the intersection  

between those genes that were differentially expressed (located 
in the 0.05% and 99.5% tails of the fold-change ratio cumu-
lative distribution) and which had a FR higher than 0.25 
(Fig. 4).

Additionally, Figure 5 shows the fold change–FR plot 
for genes in the learning dataset with fold change lower 
than −0.52 and higher than 0.67. These values (of gene 
under- and over-expression) corresponded, respectively, to 
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the 0.05% and 99.5% tails of the fold-change distribution. 
It can be observed that the highest FR was 2.12, and that 
genes with the highest fold change did not coincide with 
those exhibiting the highest FR.

Figure  6  shows the predictive accuracy curve of the 
different gene lists, established using the backward fea-
ture elimination algorithm. The shortest list with the high-
est accuracy (92.6%) was composed by the first 14  genes 
with the highest FR. The lists with the first 15, and 29 to 
35 most discriminatory genes also provide the same maximum 

accuracy. As the data suggest, continuously adding genes with 
lower discriminatory power as defined by their FR failed to 
increase the accuracy of discrimination.

When a histogram was used to assess the first 360 most 
discriminatory genes found by our analysis, we noted a shift of 
the mode of distribution for the LF patients to higher expres-
sions (29–210) with respect to the HF case (26–27), suggesting 
that HF patients show mostly lower expressions of these genes 
that we hypothesized were responsible for this phenotypic dis-
crimination (Fig. 7).
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Figure  8  shows the PCA plots (unsupervised method) 
of the learning dataset expressed in the base of the most 14 
(Fig.  8A) and 35 (Fig.  8B) discriminatory genes having the 
highest predictive accuracy. The following can be observed:

1.	 The LF/HF phenotype discrimination became linearly 
separable in these reduced sets of genes, confirming 
the fact that the classification problem simplifies when 
reducing the dimension to the most discriminatory set of 
genes. Both plots have a similar structure.
�The LF samples lie between samples P1A and xrt28A, 
which is genetically close to the region of the HF samples.

2.	 Also, sample xrt25A, which belongs to the LF category, 
is surrounded by HF samples. This sample might be a 
biological or behavioral outlier.

3.	 The HF samples lie between samples xrtp2A and 13A. 
Sample xrt20A also seems to mark a transition between 
LF and HF samples toward the west of the plot.

Interpretative phenomenological analysis. Interpre-
tative phenomenological analysis (IPA) revealed that the 
575 highly discriminatory genes were associated with the 
following canonical pathways: B cell development, autoim-
mune thyroid disease signaling, allograft rejection signaling, 

graft-versus-host disease signaling, and Nur77 signaling in T 
lymphocytes. Further, the differentially expressed genes were 
associated with the following functional networks: cancer 
and neurological disease. Additional IPA was performed on 
the 360 most predictive genes (having a learning predictive 
accuracy higher than 81%), a part of the 575 highly discrimi-
natory genes, and it revealed concordance of pathway attribu-
tions observed in the initial IPA. The top canonical pathways 
of the 360 most predictive genes remained to be related to B 
cell development, but it also revealed other focused pathways 
related to T helper cell differentiation and interferon signal-
ing. The top functional networks of the 360 genes remained 
to be related to cancer, followed by neurological disease and 
psychological disorders, suggesting that the most predictive 
genes are related to behavior experienced by cancer patients.

Validation. Seventeen subjects, independent of the 
training set, were used to assess the validity of the learned 
predictive model. Seven were classified as HF (mean FACT-F  
change  =  −10.6  ± 6.9) and 10 were LF (mean FACT-F 
change = 0.8 ± 2.2) subjects.

The prediction was based on majority voting, as follows:

1.	 We first considered the most predictive gene cluster,  
a group consisting of the 14 most discriminatory genes 



Filter and recursive feature elimination method predicts radiation-related fatigue

149Cancer Informatics 2014:13

deduced from the learning set, and the values of the 
expressions of these genes on both classes (LF and HF) 
represented in the training dataset. The samples of the 
training set expressed in the reduced base and their phe-
notype information were used to define the distance of 
the NN classifier used in this paper.

2.	 Second, the values of these discriminatory genes in the 
validation samples were read from the validation dataset. 
For each sample of the validation set, its predicted class 
was established using the k-NN algorithm, using the 14 
different most discriminatory reduced sets of genes that 
were defined by the learning dataset. For instance, given 
the base composed by three first genes of the 14-size 

reduced set of genes, the k-NN algorithm calculated the 
distance defined in three-dimensional space between 
each validation sample and the samples of the training 
dataset belonging to each phenotype class. The class 
with the minimum distance was then predicted for the 
validation sample. This was repeated for the 14 different 
reduced bases, which yielded 14 different class predic-
tions for each sample in the validation set.

3.	 The final estimated class was then made by consensus or 
majority voting classifiers.28 A posterior probability was 
given to the class prediction, defined as the ratio of the 
number of votes assigned to the predicted class and the 
total number of voters. For example, if a validation sample 
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were predicted to be HF) and one to the HF (false nega-
tive, patient predicted to be LF). These samples are outliers 
with respect to this classifier, because their expressions in the 
reduced base of genes are closer to the HF and LF groups, 
respectively (Tables  2, 3, and Fig.  9). Interestingly, the 14 
different predictions for these misclassified samples coincide, 
that is, the probability of these samples belonging to their 
predicted class according to the consensus criterion is 1. This 
fact also strengthens the argument that these samples are bio-
logical or behavioral outliers, that is, their class assignment 
based on the change in their FACT-F scores was ambiguous.

Discussion
We have described a novel analytical algorithm to predict 
radiation-related fatigue. RT is a highly utilized treatment 
option for many forms of cancer. While it is efficacious in 
many cases, its toxicity profile is significant and common, but 
not ubiquitous. Consequently, the ability to predict toxicities 
of RT has long been of interest. With better understanding 
of the pathobiology of radiation injury, using genomics as 
the basis for toxicity risk prediction has been the focus of 
active research.29 In contrast to the toxicity presented in this 
paper, the primary toxicity phenotypes studied have been 
tissue-centric injuries such as mucositis, dermatitis, and 
pneumonitis and fibrosis.30 And the primary approaches used 
to try to identify predictive relationships between genes or 
SNPs and toxicities have primarily relied on candidate gene or 
genome-wide association analyses. In both cases, the majority 
of investigations have sought to identify one or two genes or 
SNPs associated with the phenotype of interest. The resulting 
lack of consistency of results has been disappointing.31

Our approach differed in that we proposed that the risk 
of a complex disease, such as CTRF, could well be more eas-
ily defined by identifying groups of simultaneously expressed, 
synergistically functioning genes. While this hypothesis is 
supported by studies in which Bayesian network development 
was used to identify SNP clusters predictive of chemotherapy-
related side effects,11–13 we sought to accelerate and simplify 
the analytical process through the use of a novel method in 
which we used a sequence of supervised and learned (unsuper-
vised) “filters” to identify the most predictive cluster of genes 
for CTRF. Our finding that the gene cluster so identified was 
then able to predict CTRF risk with an accuracy of .75% 
suggests that the approach has validity.

The process of selecting the most predictive cluster of 
genes revealed informative considerations. For example, the 
genes with the highest fold change did not coincide with 
those exhibiting the highest FR because the means of both 
distributions were different, hence their tails did not overlap. 
So, in this method we concluded that FR was a better feature 
selection method than fold change. While, in the case of fold-
change analysis, noisy genes are typically penalized by the FR 
selection method because of an increase of their variance; the 
noise might be amplified by the fold-change ratio. Genes with 

Table 2. Mean values for the 14 most discriminatory genes.

HF in  
Learning

LF in  
Learning

HF in  
validation

LF in  
validation

114 388 117 401

152 644 143 546

302 1455 326 1569

343 1659 364 1535

185 861 196 841

149 611 127 460

585 128 381 194

243 1182 252 1049

689 111 536 235

160 65 75 126

247 1225 275 1187

223 80 73 171

269 1329 331 1573

1200 281 1083 485

Notes: Mean values of the 14 most discriminatory genes in the High Fatigue/
Low Fatigue groups in the learning and the validation phases. Observe the 
coherence in values in both phases. Bold values indicate the highest mean 
expression values in the learning and validation datasets for HF and LF classes.

Table 3. Misclassified samples.

S1 (XRT14) S2 (XRT36) S3 (XRT39) S4 (XRT33)

57 129 87 342

78 257 105 492

136 327 201 1354

122 309 183 1514

79 180 125 765

92 126 168 341

42 44 54 946

103 175 184 1045

41 34 49 1430

62 178 258 52

77 234 183 1142

97 286 374 82

146 239 232 1388

162 167 137 2518

Notes: Misclassified samples. Expressions for the 14 most discriminatory 
probes. Samples S1, S2 and S3 were predicted to be High Fatigue and S4 to 
be Low Fatigue. The expression values for S1, S2 and S3 were closer to the 
mean expression of the High Fatigue group in the learning phase. Conversely, 
the expression values for S4 is closer to the Low Fatigue group. S1, S2 and 
S3 might define a new group of Low Fatigue with very small expressions 
(lower than the corresponding expressions observed among High Fatigue 
subjects) in this reduced base of 14 genes.

has 12 predictions in the LF class (and two in the HF class), 
the posterior probability to belong to LF will be 12/14.

The application of this algorithm provided 13 successes 
out of 17 validation samples. Three of the four misclassified 
samples belonged to the LF group (false positives, patients 
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the highest FR and fold change have the biggest discrimina-
tory power and are assumed to be involved in the genesis of 
fatigue.

Interestingly, the histogram analysis of the first 360 genes 
that most discriminated between HF and LF subjects was 
informative in that the shift of the mode of distribution 
showed lower expressions of these genes among HF subjects. 
It seems possible that it is this distributional shift that ulti-
mately is responsible for discriminating the fatigue phenotype 
in this population.

We were unable to correctly predict four samples, based 
on our phenotypic approach, since the consensus provides the 
opposite class in all the cases. These classified samples were 
close to the border of separation between both fatigue classes 
(Fig.  8). There are three possibilities: (1) these samples are 
behavioral outliers, (2) the phenotypic approach needs further 
review and improvement, especially dealing with samples that 
are bordering the cut-off scores set for fatigue grouping, and 
(3) possible use of more sophisticated algorithms (black box 
neural networks) to classify the samples may be needed, which 
could run the risk of losing the clarity in the interpretation.

We recognize that this study was limited by its small 
sample size. Nonetheless, the fact that the analysis was suc-
cessful in predicting LF/HF in an unrelated population with 
reasonable accuracy suggests that increasing the number of 
subjects in the training population would likely improve the 
predictive model’s ability. Nevertheless, this analysis confirms 
that it is possible to separate both classes of the LF/HF phe-
notype by reducing the dimension to the most discriminatory 
genes, provided by their FR.

The importance of predicting toxicity or adverse event 
risk associated with cancer treatment regimens cannot be 

understated as the clinical implications in personalizing cancer 
therapy and prospectively attenuating toxicity risk are signifi-
cant. Furthermore, this type of information provides patients 
and their care-givers more specific knowledge upon which to 
make treatment decisions.

Conclusion
A novel analytical algorithm introduced in this study that 
incorporates fold-change differential analysis, linear dis-
criminant analysis, and a k-NN can predict radiation-related 
fatigue in men with non-metastatic prostate cancer. Appli-
cability of this novel algorithm to detect other treatment-
related toxicities in other cancer populations would be 
worthwhile to pursue.
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Abstract 15 

Background B-cell Chronic Lymphocytic Leukemia (CLL) is a heterogeneous disease and the most common adult 16 

leukemia in western countries. IgVH mutational status distinguishes two major types of CLL, which were associated 17 

with different prognosis and survival. Sequencing identified NOTCH1 and SF3B1 as the two main recurrent 18 

mutations. We described a novel method to elucidate how these mutations affect gene expression by finding small-19 

scale signatures to predict the IgVH, NOTCH1 and SF3B1 mutations. We subsequently defined the biological 20 

pathways and correlation networks that are involved in the disease development with the potential goal of identifying 21 

new druggable targets. 22 

Methods We modeled a microarray data set consisting of 48807 probes derived from 163 subject samples. Using 23 

Fisher’s ratio and Fold-change combined with backwards feature elimination allowed us to identify the minimum 24 

number of genes with the highest predictive mutation power and subsequently applied network and pathway analyses 25 

of these genes to identify their biological roles. 26 

Results The mutational status of the patients was accurately predicted (94 to 99%) using small-scale gene signatures: 27 

13 genes for IgVH, 60 for NOTCH1, and 22 for SF3B1. LPL plays an important role in the case of the IgVH mutation, 28 

while MSI2, LTK, TFEC and CNTAP2 in the NOTCH1 mutation, and RPL32 and PLAGL1 in the SF3B1 mutation. 29 

Four high discriminatory genes (IGHG1, MYBL1, NRIP1 and RGS1) are common to these three mutations. This 30 

analysis suggests an important role of the immune response mechanisms and antigen presentation. 31 

Keywords cancer - leukemia/  hematologic, gene – expression, mathematical modeling, oncology.  32 
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1. Introduction 33 

B-cell chronic lymphocytic leukemia (CLL) is a complex heterogeneous disease 34 

characterized by the accumulation of malignant B-cells in blood and lymphoid organs 35 

[1]. Clinical diagnosis of CLL is based on the demonstration of an abnormal population 36 

of B lymphocytes in the blood, bone marrow, or tissues that display an unusual but 37 

characteristic pattern of molecules on the cell surface (CD5 and CD23 clusters of 38 

differentiation). Rai [2] or the Binet [3] staging systems are currently used to determine 39 

the extent of the disease and are primarily based on a low platelet or red cell counts. 40 

DNA analysis distinguishes two major types of CLL with different survival times [4]. 41 

This distinction is based on lymphocyte maturity, as discerned by the immunoglobulin 42 

variable-region heavy chain (IgVH) gene mutation status [5]. Since the determination of 43 

the IgVH mutation status is very labor-intensive and expensive, alternative markers 44 

have been investigated to better prognosticate disease progression. ZAP-70 became a 45 

very popular surrogate marker of the IgVH mutational status [6-10], and cell membrane 46 

expression of CD38 has been described as a reliable prognostic value for CLL [11]. 47 

Both ZAP-70 and CD38 have been established as good predictors of the IgVH 48 

mutational status [12, 13].  49 

Gene expression profiles were also used to understand the genesis and progression of 50 

CLL. Due to the high dimensionality of the data, on first inspection, both subtypes of 51 

CLL showed quite homogeneous expression profiles irrespective of their IgVH 52 

mutational status [4, 14-16]. This fact has suggested that both CLL types derive from a 53 

common pathogenic pathway. Nevertheless, different subsets of genes specifically 54 

expressed by CLL cells with potential pathogenesis and clinical relevance were 55 

identified [17-21]. 56 
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Subsequently four major genomic aberrations have identified in CLL cells that are 57 

strongly associated with the disease behavior [22]. More recently, NOTCH1 and SF3B1 58 

have been described as the most frequently mutated genes that were predictive of CLL 59 

prognosis [23]. Additionally, disease progression has been associated with a number of 60 

genetic alterations that include cytogenetic abnormalities and specific gene mutations 61 

[23-29] and epigenetic alterations, including aberrant methylation CLL [30]. 62 

Given the low incidence of NOTCH1 (9%) and SF3B1 (8%) mutations, it seemed 63 

unlikely to us that CLL progression could be solely ascribed to the two. We therefore 64 

sought to identify shared/synergistic mechanisms among the three most common 65 

mutations (IgVH, NOTCH1 and SF3B1) which might better predict and explain disease 66 

progression and behavior.  67 

Obviously CLL is a multi-cause disease, and for that reason is so important to integrate 68 

the modelling of different mutations. In the current research we describe a novel method 69 

in which we developed a methodology to elucidate how these mutations affect gene 70 

expression by finding small-scale signatures to predict the IgVH, NOTCH1 and SF3B1 71 

mutations (genomic data integration). We subsequently applied our method to define 72 

and understanding the biological pathways and correlation networks that are involved in 73 

the disease development with the potential goal of identifying new druggable targets. 74 

We can affirm that the integration of microarray data and the main mutational status of 75 

patients attained by CLL is a novel approach to understand the main causes of disease 76 

progression. 77 

 78 

2. Material and methods 79 

2.1. Dataset 80 
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We used a publically accessible dataset (European Bioinformatics Institute 81 

EGAS00001000374) in which microarray results consisting of 48807 probes were 82 

derived from 163 patients with a diagnosis of CLL [31]. The expression data were 83 

originally presented in logarithmic scale (log2) after the corresponding RMA 84 

preprocess. Of the original cohort of 163 patients, 92 had mutated IgVH, which was 85 

associated with a favorable prognosis, while IgVH was not mutated in the remainder 86 

(n=71) and prognosticated an unfavorable outcome. The exome sequencing data is 87 

described by Quesada and colleagues [25], who identified 1246 mutations resulting in 88 

protein coding changes. Six genes appeared to be most frequently mutated (>5%): 89 

NOTCH1, SF3B1, NOP16, CHD2, ATM and LRP1B. Amongst the 163 samples we 90 

evaluated, NOTCH1 and SF3B1 mutational status were determined for 117 patients.  Of 91 

these, 106 were unmutated for NOTCH1 and 107 were unmutated for SF3B1.   92 

These two classification problems are naturally unbalanced, and the designed classifier 93 

has to take this feature into account. It will consider that the modelling has been correct 94 

if the predictive accuracies of the small-scale signatures found are higher than those 95 

provided by the corresponding majority class classifiers. In that case we can affirm that 96 

we are really learning the set of discriminatory genes for these mutations.  97 

These signatures have been validated by cross-validation. For that purpose, the dataset 98 

was divided in two folds according to the different mutations: one fold was used for 99 

training and the other for validation. This process is repeated until the whole dataset is 100 

processed. Besides these results have been confirmed using different holds (75% for 101 

learning and 25% for validation), but in the paper we only present the list of most 102 

discriminatory genes found by Leave-One-Out-Cross-validation.  103 

This methodology has been successfully used to design biomedical robots in phenotype 104 

prediction problems [32]. 105 
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 106 

2.2. Analysis 107 

Factor selection is one of the major challenges of any genotype-based phenotypic 108 

prediction problem is that the analysis is based on a genomic dataset in which the 109 

number of probes far exceeds the number of samples. To directly address this issue we 110 

used a combination of two well-known ranking algorithms: Fisher’s ratio (FR) [33] and 111 

Fold change (FC) [34] (see Appendix for further details). We first ranked genes 112 

according to their discriminatory power (FR or absolute FC value) and then applied a 113 

Nearest Neighbor (k-NN) based algorithm to establish the accuracy of the different 114 

ranked sets of genes using Leave-One-Out-Cross-Validation (LOOCV) modeling. The 115 

combination of this procedure with a backwards feature elimination algorithm produced 116 

the shortest list of high discriminatory gene and served to validate the prognostic value 117 

of these gene signatures over the existing dataset by cross-validation [35 and Figure 1]. 118 

Applying the Pearson correlation coefficient [36] and the Normalized Mutual 119 

Information [37] to the set of highly predictive genes, we then developed two different 120 

kinds of correlation networks as both values are measures of mutual dependence 121 

between random variables (see Appendix  for further details).  In this case they served 122 

to analyze inter-relationships between genes, which impacted both expression, and 123 

function. We then identified the pathways ontology using GeneAnalytics™ [38] to 124 

cover the altered and disease pathways. 125 

3. Results and Disscusion 126 

3.1. IgVH mutational status  127 

We determined the best set of genes that discriminates IgVH mutational status based on 128 

microarray expression and the class information defined by the IgVH phenotype using 129 

92 mutated and 71 unmutated samples. 130 
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- Gene ranking: The shortest list with the highest predictive accuracy (93.3%) was 131 

composed by 13 first probes: LPL (2 probes), CRY1, LOC100128252 (2 probes), 132 

SPG20 (2 probes), ZBTB20, NRIP1 (2 probes), ZAP-70, LDOC1 and COBLL1. Table 1 133 

shows the list of these genes, their associated FR and the mean LOOCV accuracy.  FR 134 

was applied to the log2 of the expressions. Table 2 shows the first 28 genes with the 135 

highest predictive accuracy (93.3%), ordered by decreasing absolute FC (under or over 136 

expressed in logarithmic scale, fc (log)), the mean (µ1, µ2) and the standard deviation (σ1, 137 

σ2) for each group, and the LOOCV accuracy (Acc(%)) in which over expression 138 

implies that the average expression is higher in the mutated group. The gene with the 139 

highest under-expression is LPL, and the gene with the highest over expression is 140 

RSG13.  141 

- Correlation networks: Figure 1A shows the Pearson Correlation (PC) network of 142 

the most discriminatory genes (defined by FR) of IgVH mutational status. The 143 

Normalized Mutual Information (NMI) correlation network is shown in figure 1B.   144 

 145 

3.2. Modeling the NOTCH1 mutation status 146 

It has been demonstrated that NOTCH1 mutation influence survival in CLL patients 147 

[39, 40]. We recognized the challenge analyzing of those genes for which the NOTCH1 148 

mutation impacted expression given the highly unbalanced sample mix (106 of 117 149 

samples did not show the NOTCH1 mutation).  150 

- Gene ranking: The shortest list with the highest predictive accuracy (95.7%) was 151 

composed by 60 probes with FR’s between 4.6 and 1.4 (see Table 3). The first five 152 

probes of this list corresponded to MSI2. Also using the two first probes of MSI2, the 153 

NOTCH1 mutation is predicted with 94.9% of accuracy. All MSI2 probes had lower 154 

expression in NOTCH1-mutation negative patients. One probe of the LPL gene 155 
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appeared in eighth position in this list.  Therefore the incremental accuracy from probe 156 

5 to 60 was minimal (0.8%). That means the genes from the 6
th

 position to the 60
th

 serve 157 

to add high frequency details in the discrimination, as it has been pointed in [35]. All 158 

these genes show a correlation network that is analyzed later in this section. 159 

The FC provided a longer list composed of 126 with the same predictive accuracy than 160 

the FR list (see Table 4) with probes for TFEC and CNTNAP2 being most consistently 161 

differentially expressed. The high variability of these genes in samples with unmutated 162 

NOTCH1 precluded their inclusion among the leaders in the FR list.  163 

-Correlation networks: Figure 2A shows the Pearson Correlation network of the 164 

most discriminatory genes of the NOTCH1 mutation in which three main networks 165 

associated to MSI2 through WSB2, ACSL5 and CNTNAP2 are apparent. The Normalized 166 

Mutual Information network (Figure 2B) demonstrates a main connection through 167 

NCK2.  168 

 169 

3.3. SF3B1 mutation status 170 

SF3B1 gene (Splicing Factor 3b, Subunit 1) is located in chromosome 2. Its 171 

importance in CLL has been analyzed by [26] and [41]. As with NOTCH1, the SF3B1 172 

classification problem was also highly unbalanced, since 107 CLL samples (out of 117) 173 

did not show the mutation.  174 

- Gene ranking: The shortest list with the highest predictive accuracy (99.1%) was 175 

composed of 22 probes with FR’s between 2.6 and 1.7. The most discriminatory gene 176 

was RPL32 (Table 5).  The FC provided a predictive accuracy of 96.6% using the list of 177 

the first 118 genes ranked by absolute FC (Table 6). This accuracy was lower when 178 

compared to the list of 22 most discriminatory genes provided by the FR. Seven 179 

different probes of ANXA4 appeared in this list.  180 
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- Correlation networks: Figure 3A shows the Pearson Correlation network of the 181 

most discriminatory genes of the SF3B1 mutation. In general correlations between 182 

discriminatory genes are low, implying that these genes are independent predictors for 183 

this mutation. Two main networks were noted to be associated to the most 184 

discriminatory gene RPL32, through YWHAB and KLF8. Conversely, the correlation 185 

network using the Normalized Mutual Information (figure 3B) demonstrated a single 186 

network associated with CNPY2-STK38.  187 

 188 

3.4. Gene intersections for IgVH, NOTCH and SF3B1 mutations 189 

We analyzed the intersection between the most discriminatory genes for IgVH, 190 

NOTCH1, and SF3B1 mutations as defined by FR and FC analyses.  We consolidated 191 

both lists for each mutation, and then performed pairwise intersections to establish 192 

shared genes. This would serve to understand which effects might be amplified by these 193 

mutations. Figure 4 shows the result for these intersections. The intersection with the 194 

greater number of genes is NOTCH1-SF3B1 (19 genes), followed by IgVH-NOTCH1 195 

(11 genes) and IgVH-SF3B1 with only 5 genes. Only four genes were common to all 196 

mutations: IGHG1, MYBL1, NRIP1 and RGS13. 197 

 198 

4. Conclusions 199 

In this paper we show the genomic data integration in CLL patients, by linking together 200 

microarray expression data and their IgVH, NOTCH1 and SF3B1 mutational status. The 201 

paper focuses on a novel methodological approach to define hierarchical gene 202 

relationships among CLL patients expressing these 3 different mutations and 203 

establishing the predictive accuracy of gene clusters relative to each mutation. Due to 204 

the high dimensionality of the microarray data with respect to the number of available 205 
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samples, this kind of phenotype prediction problems have a very high underdetermined 206 

character. Therefore, simple and efficient methods are needed to rank genes according 207 

to their discriminatory power and establishing their predictive accuracy. We have used 208 

two well-known filter techniques: Fisher’s ratio and Fold Change. For each mutation 209 

and ranking method we have determined the shortest list of high discriminatory genes 210 

with its corresponding LOOCV predictive accuracy. Using this methodology, we have 211 

predicted the IgVH mutational status and how the NOTCH1 and SF3B1 mutations affect 212 

the expression of different genes and their correlation networks via the Pearson’s and 213 

the Normalized Mutual Information similarity coefficients. In this discussion we also 214 

provide the top ontological pathways that are involved in the disease progression, using 215 

GeneAnalytics™. Correlation networks and canonical pathways provide effective 216 

methodologies to understand the mechanisms that are involved in the disease 217 

progression. This methodology served us to depict the gene clusters that are most 218 

strongly associated with the expression of each selective mutation (networks of 219 

synergistically working genes), and their relationship between mutation expressions 220 

with a particular clinical outcome (survival).  221 

The main conclusions for each of these mutation are the following: 222 

1. IgVH 223 

The IgVH mutational status was predicted with very high accuracy (94%) using a small-224 

scale signature composed of 13 genes. LPL (Lipoprotein Lipase) is the most 225 

discriminatory gene of the list with 2 probes having a FR of 4.6 and 3.7. The predictive 226 

power of the first LPL probe is also very high providing a LOOCV predictive accuracy 227 

of 87.1%. LPL has a lower expression in the patients with mutated IgVH. This fact has 228 

also been pointed out by [20]. These authors also found that high LPL mRNA 229 

expression is associated with shorter treatment-free survival. LPL is a very specific 230 
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biomarker since its activity is low or absent in other blood cells types. Kaderi et al 231 

(2011) [42] noted that LPL was the strongest prognostic factor in comparative analysis 232 

of RNA-based markers in early CLL. The result shown in this paper confirms that LPL 233 

has almost twice discriminatory power than ZAP-70. Several genes of this list have 234 

several probes involved and belong to the list of 24 genes differentially expressed in the 235 

study for the identification and validation of biomarkers of IgVH mutational status using 236 

PCR [43]. Particularly, CRY1, LDOC1, and LPL were overexpressed in IgVH-237 

unmutated compared with IgVH-mutated cases. Conversely, COBLL1 and ZBTB20 238 

were under-expressed.  The analysis of differential expression shows that LPL is also 239 

the second gene with the highest absolute FC (3.24) and it is overexpressed in the group 240 

with unmutated IgVH of worst prognosis. RSG13 is the other gene that is highly under 241 

expressed in the same group. Other high discriminatory genes of the IgVH mutational 242 

status are CRY1, SPG20, ZBTB20, NRIP1 and ZAP-70, confirming previous findings by 243 

other research groups [18-20].   244 

The Pearson Correlation network shows a main branch relating LPL and ZBTB20.  245 

ZBTB20 is a transcription factor that may be involved in hematopoiesis, oncogenesis 246 

and innate immune responses [44]. ZBTB20 and LPL have been shown to predict 247 

survival in B-cell CLL [45]. Diseases associated with ZBTB20 include bone lymphoma. 248 

ZBTB20 expression is increased in hepatocellular carcinoma associated with poor 249 

prognosis [46]. This network also shows connections between LPL and COBLL1, 250 

LDOC1, LOC100128252, KANK2, WSB2 and ANKRD57-SEPT10. Some of these genes 251 

are known to have important roles in CLL and cancer. COBLL1 (Cordon-Bleu Protein-252 

Like 1) is a gen related to actin binding. Actins participate in important processes such 253 

as muscle contraction, cell motility, cell division and cytokinesis, cell signaling, etc. 254 

This gene is down-regulated in CLL groups with poor prognostic [47]. LDOC1 255 
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(Leucine Zipper, Down-Regulated in Cancer 1) has been proposed as a tumor 256 

suppressor gene whose protein product may have an important role in the development 257 

and/or progression of some cancers [48]. It is thought to regulate transcriptional 258 

responses by NF-kappa B that plays a key role in regulating the immune response to 259 

infection. It has been also shown that LDOC1 is differentially expressed in CLL and it 260 

is a good predictor for overall survival in untreated patients [49]. The Normalized 261 

Mutual Information shows two main branches with TBC1D2B and SEPT10. SEPT10 262 

has been associated to B-cell Chronic Lymphocytic Leukemia and Chronic 263 

Lymphocytic Leukemia [50, 51]. GO annotations related to TBC1D2B include 264 

phospholipid binding.  265 

Also, the analysis of the networks for the most differentially expressed genes shows the 266 

importance of the connection RGS13-SPG20. RGS13 encodes a protein of the RGS 267 

family, and it has been associated to mantle cell lymphoma. SPG20 encodes the protein 268 

called Spartin that seems to be related to endocytosis. This gene has been associated to 269 

ZAP70 and LPL as a good prognostic biomarker in CLL survival [18]. Hyper-270 

methylation of SPG20 in early stage CLL has been positively associated with 271 

progression free survival, supporting the fact that epigenetic changes have clinical 272 

impact in CLL [52]. Two different probes of this gene are within the set of 13 most 273 

discriminatory genes. 274 

The Gene-Analytics software has shown that the most important pathways involved are 275 

the Inflammatory Response and the PAK pathways. The main GO biological processes 276 

involved were related to Aging and Vasoconstriction, and the main GO molecular 277 

functions were Cholesterol binding, Antigen Binding, Patched Binding and Nitric-oxide 278 

Synthase Binding. Finally the main compounds that were identified target IGHG1 and 279 

IGKC.  280 
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2. NOTCH1 281 

The NOTCH1 mutation was also predicted with very high accuracy (96%) using a set of 282 

60 most discriminatory genes. MSI2 was the most important gene with 5 probes affected 283 

by this mutation. This gene plays an important role in posttranscriptional gene 284 

regulation and tumorigenesis. MSI1 and MSI2 are cooperatively involved in the 285 

proliferation and maintenance of CNS stem cell populations [53]. Also, their expression 286 

levels in human myeloid leukemia directly correlate with decreased survival in patients, 287 

defining MSI2 as a new prognostic marker and new target for therapy [54]. The 288 

Musashi-Numb pathway can control the differentiation of chronic myeloid leukemia 289 

cells. MSI2 expression is upregulated during human chronic myeloid leukemia 290 

progression and also an early indicator of poorer prognosis [55]. 291 

The analysis of most differentially expressed genes in this mutation showed the 292 

importance of TFEC and CNTNAP2. TFEC (Transcription Factor EC) gene encodes a 293 

member of the microphthalmia (MiT) family. MiT transcription factors play important 294 

role in multiple cellular processes including survival, growth and differentiation.  295 

CNTNAP2 encodes a member of the neurexin family with functions in cell adhesion. 296 

This protein contains epidermal growth factor and laminin G domains. Annotations 297 

related to this gene include enzyme binding and receptor binding. This gene has been 298 

associated to genetic risk prediction for acute myeloid leukemia [56] and is involved in 299 

the genomic abnormalities for this illness [57]. 300 

The Pearson correlation network of the most discriminatory genes shows two main 301 

connections: MSI2-ACSL5 and MSI2-CNTNAP2, while the Normalized Mutual 302 

Information network shows the connections to NCK2, LPL and SPG20.  303 

The FC networks are simpler and show in both cases (PC and NMI) one main 304 

connection between TFEC and NRIP1. NRIP1 encodes a nuclear protein that 305 
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specifically interacts with the hormone-dependent activation domain AF2 of nuclear 306 

receptors and modulates transcriptional activity of the estrogen receptor. This gene has 307 

been shown to have predictive value in CLL together with LPL and ZAP-70 [18]. 308 

The pathways analysis using Gene-Analytics have shown that the main discriminatory 309 

and differentially expressed genes are related to multiple cellular processes, including 310 

survival, growth and differentiation, apoptosis and host defense. The mains super-311 

pathways were the creation of C4 and C2 activators, the FCGR dependent Phagocytosis 312 

and Adipogenesis. The main GO biological processes involve the regulation of 313 

Smoothened Signaling pathway, Immune response, Retina Homeostasis, Positive 314 

regulation of cardiac muscle hypertrophy, Fc-gamma receptor signaling pathway 315 

involved in phagocytosis, Triglyceride Biosynthetic Processes and Neural Tube 316 

formation. The main GO molecular function is Antigen Binding and the compounds 317 

found also target the genes IGHG1 and IGKC. A second type of compounds are retinoid 318 

(APOD, BMP6, NRIP1, PRKCA, RORA, THRB), and valine (FCGR3A, IGKC, LPL, 319 

PRKCA, THRB). 320 

3. SF3B1 321 

Finally, the SF3B1 mutation was predicted with almost 100% accuracy using a list of 322 

the 22 most discriminatory genes, including RPL32, KLF8, PDGFD, three different 323 

probes of PLAGL1 (also named ZAC1) and two different probes of HBB. PLAGL1 324 

encodes a C2H2 zinc finger protein with transactivation and DNA-binding activities and 325 

has been shown to have anti-proliferative properties as a tumor suppressor [58]. HBB 326 

(hemoglobin beta) expression in CLL samples with SF3B1 mutation is almost 6 times 327 

the HBB expression in the unmutated samples. The analysis of most differentially 328 

expressed genes in this mutation showed the importance of ANXA4 with seven different 329 
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probes in this list. ANXA4 (Annexin IV) belongs to the annexin family of calcium-330 

dependent phospholipid binding proteins. 331 

The Pearson network of the most discriminatory genes shows two main networks of 332 

RPL32 with YWHAB and KLF8. YWHAB (Tyrosine 3-Monooxygenase/Tryptophan 5-333 

Monooxygenase Activation Protein, Beta) encodes a protein that has been shown to 334 

interact with RAF1 and CDC25 phosphatases, suggesting that it may play a role in 335 

linking mitogenic signaling and the cell cycle machinery. KLF8 (Kruppel-Like Factor 336 

8) encodes a protein, which is a member of the Sp/KLF family of transcription factors, 337 

and is thought to play an important role in metastasis [59]. Diseases associated with 338 

KLF8 include ovarian epithelial cancer, and mental retardation. 339 

The NMI correlation shows one main network relating RPL32 with CNPY2-STK38. 340 

Related to this last gene are hemoglobin HBA1 and HBB. Also, the analysis of the 341 

networks for the most differentially expressed genes shows the importance of the 342 

connections of ANXA4 with CYBB and FCRL3 (PC network) and one main connection 343 

with ADM (NMI network). 344 

The most important pathways found using Gene-Analytics were NFAT in Immune 345 

Response, ERK signaling, Immune Response of DAP12, Creation of C4 and C2 346 

activators, Inhibitory Action of Lipoxins on Super-Oxide Production in Neutrophils, 347 

HIF-1 alpha transcription factor network, Fc-gamma receptor signaling pathway, PAK 348 

pathway, immune response CCR signaling in eosinophils and GPCR pathway. The main 349 

GO molecular function involved is Oxygen transporter activity and the main GO 350 

biological processes are Oxygen Transport, Innate Immune Response, Fc-gamma 351 

receptor signaling pathway involved in phagocytosis and signal transduction. Finally, 352 

the main compounds found were Thymidine (ADM, CD69, CD72, FOS, HBB, NT5E, 353 
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PF4, PPBP, RNGTT and SMAD3), and also the drugs targeting the genes HBA1 and 354 

HBB concerning the hemoglobin. 355 

Most of the genes affected by the SF3B1 mutation are not known to play a role in CLL. 356 

In these three classification problems the FR always provided the shortest list with 357 

highest discriminatory power whilst FC gave longer lists of genes with lower predictive 358 

accuracy in general terms. Therefore, we can conclude that the most differentially 359 

expressed genes are not the most discriminatory due to the high variability of these 360 

genes in the groups of patients with unmutated NOTCH1 and SF3B1.  361 

Regarding commonalities, NOTCH1 and SF3B1 mutations share a longer list of high 362 

discriminatory genes than with the IgVH mutation. Besides the relationship IgVH-363 

NOTCH1 is stronger than for the SF3B1 mutation. Using an expanded list of high 364 

discriminatory and differentially expressed genes we have shown that these three 365 

mutations share only four genes (IGHG1, MYBL1, NRIP1 and RGS1) that are related to 366 

immune diseases, blood diseases, rare diseases and cancer.  367 

Finally, using GeneAnalytics™ we have identified the main pathways, GO molecular 368 

and biological functions that are involved in each mutation and also the compounds that 369 

are at disposal and the genes that could be targeted. These analyses suggest in the 3 370 

cases an important role of the immune response and antigen presentation. This 371 

methodology could also be applied to analyze the effect of other mutations in CLL and 372 

to understand the genesis of other illnesses with genetic background. The aim of this 373 

retrospective analysis was to provide a deeper understanding on the effects of the 374 

different mutations in the CLL disease progression, hoping that these findings will be 375 

used clinically in the near future with the development of new drugs.  A future 376 

verification of these findings with other independent cohorts could lead to a better 377 

design of the therapeutic targets. 378 
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Tables 584 

Table 1: IgVH mutational status prediction using Fisher’s ratio. 585 

List of the 13 most discriminatory genes list with the highest predictive accuracy 586 

(93.3%), ordered by decreasing Fisher’s ratio. µ1 and σ1 refer respectively to the mean 587 

expression and standard deviation in class 1, (mutated IgVH), and µ2 and σ2 for the 588 

unmutated group. FR (log) stands for the logarithmic Fisher’s ratio. 589 

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%) 

LPL 40 70 380 272 4.6 87.1 

LPL 26 33 146 102 3.7 86.5 

CRY1 62 125 352 298 3.1 90.2 

LOC100128252 29 43 224 194 3.0 90.2 

LOC100128252 30 42 220 172 3.0 89.6 

SPG20 24 35 111 85 2.9 91.4 

ZBTB20 1943 505 982 417 2.8 91.4 

NRIP1 275 183 63 81 2.7 91.4 

SPG20 30 53 148 126 2.6 91.4 

ZAP70 103 151 273 140 2.4 92.6 

LDOC1 20 19 50 27 2.3 92.6 

COBLL1 186 107 85 100 2.3 92.6 

NRIP1 85 60 24 24 2.1 93.3 

 590 

  591 

Page 22 of 41

http://mc.manuscriptcentral.com/jgm-wiley

Journal of Gene Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 2: IgVH mutational status prediction using Fold Change.  592 

List of the 28 most discriminatory genes with the highest predictive accuracy (93.3%), 593 

ordered by decreasing absolute Fold Change. µ1 and σ1 refer respectively to the mean 594 

expression and standard deviation in class 1 (mutated IgVH), while µ2 and σ2 do for the 595 

unmutated group. fc stands for the Fold Change.  596 

Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

RGS13 261 568 22 25 3.6 57.7 

LPL 40 70 380 272 -3.2 86.5 

PXDNL 269 838 29 52 3.2 87.1 

SEPT10 22 50 177 232 -3.0 88.3 

SEPT10 21 46 172 232 -3.0 86.5 

LOC100128252 29 43 224 194 -3.0 89.0 

SEPT10 22 48 158 206 -2.9 85.3 

LOC100128252 30 42 220 172 -2.9 86.5 

KANK2 40 75 258 335 -2.7 87.1 

NPTX1 28 32 168 363 -2.6 85.9 

LMNA 30 54 178 446 -2.6 85.9 

PTCH1 140 163 24 42 2.6 89.0 

IGHG1 162 687 942 1893 -2.5 88.3 

MYBL1 424 526 73 88 2.5 89.6 

PPP1R9A 45 90 260 278 -2.5 90.2 

CRY1 62 125 352 298 -2.5 90.8 

LPL 26 33 146 102 -2.5 92.0 

TFEC 412 580 77 230 2.4 92.6 

PPP1R9A 33 63 171 175 -2.4 92.6 

SPG20 30 53 148 126 -2.3 92.6 

STK32B 32 43 153 301 -2.3 92.6 

ANKRD57 20 28 98 97 -2.3 91.4 

SPG20 24 35 111 85 -2.2 92.0 

ADAM29 205 203 45 97 2.2 92.0 

RBMS3 19 27 84 122 -2.2 91.4 

PPP1R9A 27 36 120 126 -2.2 91.4 

NRIP1 275 183 63 81 2.1 92.6 

PTCH1 115 123 27 33 2.1 93.3 

 597 

  598 
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Table 3: NOTCH1 mutational status prediction using Fisher’s ratio.  599 

List of the 60 most discriminatory genes to predict the NOTCH1 mutation list with the 600 

highest predictive accuracy (95.7%), ordered by decreasing Fisher’s ratio. Class 1 601 

corresponds to samples with mutated NOTCH1 and class 2 corresponds to those with 602 

unmutated NOTCH1. µ1 and σ1 refer respectively to the mean expression and standard 603 

deviation in class 1 (mutated NOTCH1), and µ2 and σ2 for the unmutated group. FR 604 

(log) stands for the logarithmic Fisher’s ratio. 605 

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%) 

MSI2 157 74 43 26 4.6 93.2 

MSI2 238 123 62 49 4.1 94.9 

MSI2 73 25 31 16 3.0 91.5 

MSI2 283 149 92 61 2.8 90.6 

MSI2 58 19 32 15 2.7 92.3 

C10orf137 193 86 392 135 2.4 90.6 

LAG3 236 155 77 103 2.4 90.6 

LPL 357 250 170 254 2.3 92.3 

NCK2 838 219 1560 529 2.2 93.2 

CNTNAP2 66 96 667 799 2.1 92.3 

ST3GAL1 38 11 85 36 2.1 90.6 

CCDC24 109 73 48 44 2.0 92.3 

LTK 216 96 103 132 2.0 90.6 

FLNB 59 30 33 17 1.9 94.0 

ZNF333 38 5 57 16 1.9 92.3 

PREPL 190 62 329 108 1.9 93.2 

C19orf28 120 37 217 80 1.9 93.2 

C1orf38 365 148 189 109 1.8 91.5 

LTK 107 52 52 64 1.8 91.5 

SPG20 182 150 71 106 1.8 92.3 

SAP30L 74 38 111 32 1.8 94.0 

MYST1 248 37 322 60 1.7 93.2 

C10orf137 99 41 187 66 1.7 94.9 

ATP6V0B 831 198 596 183 1.7 91.5 

LPL 130 89 75 99 1.7 92.3 

SLC4A7 47 39 150 120 1.7 90.6 

LOC100128252 161 126 112 156 1.7 89.7 

HNRNPR 57 22 110 48 1.7 89.7 

REEP5 41 18 80 39 1.6 90.6 

SRSF1 110 60 175 52 1.6 94.0 

GNPNAT1 37 8 64 24 1.6 94.0 

SHPRH 270 64 383 83 1.6 94.0 

CNTNAP2 101 140 804 1105 1.6 94.9 

PHF2 119 44 175 60 1.6 92.3 

FCRL1 234 180 525 308 1.6 93.2 

WSB2 804 329 489 258 1.6 93.2 

ATP6V0B 624 145 448 134 1.6 94.9 

LYL1 87 31 140 47 1.5 94.9 

ACSL5 230 85 332 106 1.5 94.9 

STX17 50 21 75 25 1.5 94.0 
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Gene µ1 σ1 µ2 σ2 FR(log) Acc(%) 

SPG20 125 98 55 74 1.5 94.0 

NHEJ1 29 7 37 8 1.5 94.0 

ZNF248 48 25 89 45 1.5 93.2 

MPST 55 20 35 10 1.5 93.2 

CDK13 69 42 132 75 1.5 93.2 

TRMT1 58 17 86 30 1.5 92.3 

PI4K2A 224 101 115 84 1.5 93.2 

ELOVL5 254 97 504 188 1.5 93.2 

FAM30A 588 900 1535 1495 1.5 93.2 

PTDSS1 129 21 190 44 1.5 94.0 

PLGLB1 74 47 152 103 1.5 94.0 

C5orf53 51 22 125 74 1.5 94.0 

PSMD7 608 175 414 141 1.5 94.9 

NASP 117 26 176 52 1.5 94.0 

ATP6V0B 768 170 566 172 1.5 94.9 

WDR36 108 36 164 43 1.4 94.9 

LTN1 511 52 645 99 1.4 94.9 

GAL3ST3 22 2 19 2 1.4 94.9 

PDE7A 102 67 214 120 1.4 94.9 

CAPRIN2 1098 345 1511 368 1.4 95.7 

606 
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Table 4: NOTCH1 mutational status prediction using Fold Change.  607 

List of the most discriminatory genes (126) to predict the NOTCH1 mutation ordered by 608 

decreasing absolute fold change with an accuracy of 95.7%. Class 1 corresponds to 609 

samples with mutated NOTCH1, and class 2 corresponds to those with unmutated 610 

NOTCH1. µ1 and σ1 refer respectively to the mean expression and standard deviation in 611 

class 1 (mutated NOTCH1), whilst µ2 and σ2 do for the unmutated group. fc stands for 612 

the fold change. 613 

Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

TFEC 19
 

4
 

289
 

488
 

-3.9
 

85.5
 

TFEC 15
 

2
 

180
 

331
 

-3.6
 

85.5
 

CNTNAP2 66
 

96
 

667
 

799
 

-3.3
 

82.9
 

RASSF6 15
 

1
 

144
 

352
 

-3.2
 

84.6
 

PXDNL 18
 

3
 

168
 

598
 

-3.2
 

82.1
 

CNTNAP2 101
 

140
 

804
 

1105
 

-3.0
 

79.5
 

DEFA1 272
 

816
 

1866
 

3452
 

-2.8
 

77.8
 

ADAM29 24
 

20
 

156
 

199
 

-2.7
 

76.9
 

NRIP1 31
 

10
 

200
 

187
 

-2.7
 

84.6
 

IGF2BP3 33
 

47
 

186
 

281
 

-2.5
 

88.0
 

MYBL1 47
 

65
 

262
 

407
 

-2.5
 

86.3
 

ZNF208 18
 

6
 

100
 

143
 

-2.5
 

89.7
 

FGL2 67
 

84
 

359
 

422
 

-2.4
 

91.5
 

CLC 29
 

17
 

141
 

184
 

-2.3
 

90.6
 

ZNF208 18
 

4
 

81
 

108
 

-2.2
 

91.5
 

APOD 32
 

34
 

142
 

204
 

-2.1
 

90.6
 

APOD 115
 

139
 

459
 

637
 

-2.0
 

89.7
 

MSI2 238
 

123
 

62
 

49
 

1.9
 

90.6
 

SORL1 58
 

72
 

221
 

415
 

-1.9
 

90.6
 

NRIP1 17
 

2
 

64
 

60
 

-1.9
 

90.6
 

IGKV3D-11 2509
 

5892
 

657
 

2843
 

1.9
 

88.9
 

TCTN1 46
 

31
 

173
 

440
 

-1.9
 

88.0
 

MSI2 157
 

74
 

43
 

26
 

1.9
 

94.0
 

IGJ 299
 

429
 

1079
 

1859
 

-1.9
 

92.3
 

HOMER3 68
 

39
 

239
 

337
 

-1.8
 

91.5
 

RGS13 420
 

808
 

121
 

382
 

1.8
 

92.3
 

TFEC 15
 

1
 

51
 

71
 

-1.8
 

92.3
 

PTCH1 25
 

29
 

86
 

135
 

-1.8
 

93.2
 

FCER1A 27
 

15
 

93
 

145
 

-1.8
 

93.2
 

FCRL2 81
 

85
 

276
 

214
 

-1.8
 

92.3
 

CD9 94
 

118
 

316
 

466
 

-1.7
 

91.5
 

LAIR1 31
 

27
 

105
 

114
 

-1.7
 

92.3
 

IGJ 82
 

106
 

273
 

463
 

-1.7
 

91.5
 

IGKC 1561
 

4218
 

471
 

2074
 

1.7
 

90.6
 

LOC728175 135
 

131
 

41
 

52
 

1.7
 

91.5
 

CD9 78
 

97
 

258
 

379
 

-1.7
 

92.3
 

PRKCA 119
 

132
 

36
 

54
 

1.7
 

92.3
 

TSHZ2 28
 

39
 

92
 

143
 

-1.7
 

92.3
 

FCRL2 650
 

530
 

2102
 

1440
 

-1.7
 

93.2
 

RGS1 1049
 

1956
 

327
 

670
 

1.7
 

91.5
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Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

SLC4A7 47
 

39
 

150
 

120
 

-1.7
 

91.5
 

CD9 89
 

86
 

281
 

433
 

-1.7
 

92.3
 

SORL1 49
 

34
 

153
 

273
 

-1.6
 

92.3
 

THRB 78
 

150
 

25
 

30
 

1.6
 

91.5
 

MSI2 283
 

149
 

92
 

61
 

1.6
 

91.5
 

LAG3 236
 

155
 

77
 

103
 

1.6
 

91.5
 

FCRL3 133
 

125
 

400
 

362
 

-1.6
 

93.2
 

FGL2 64
 

57
 

191
 

193
 

-1.6
 

92.3
 

CNTNAP2 21
 

4
 

62
 

79
 

-1.6
 

92.3
 

FCRL2 342
 

261
 

1018
 

724
 

-1.6
 

93.2
 

ATF5 146
 

152
 

49
 

45
 

1.6
 

92.3
 

IgVH5-78 56
 

46
 

166
 

232
 

-1.6
 

91.5
 

IGHG1 1369
 

2081
 

468
 

1313
 

1.5
 

91.5
 

FCRL2 460
 

334
 

1334
 

872
 

-1.5
 

92.3
 

FCRL5 226
 

185
 

656
 

590
 

-1.5
 

93.2
 

FCGR3A 65
 

76
 

189
 

269
 

-1.5
 

93.2
 

FCRL2 420
 

303
 

1215
 

788
 

-1.5
 

91.5
 

CD9 74
 

70
 

215
 

302
 

-1.5
 

92.3
 

FCRL5 564
 

492
 

1629
 

1333
 

-1.5
 

93.2
 

FCRL2 469
 

323
 

1351
 

877
 

-1.5
 

91.5
 

NBPF3 27
 

19
 

78
 

88
 

-1.5
 

91.5
 

FCRL2 220
 

261
 

629
 

541
 

-1.5
 

90.6
 

CD9 37
 

27
 

106
 

152
 

-1.5
 

90.6
 

FCRL5 266
 

210
 

749
 

628
 

-1.5
 

91.5
 

CD9 151
 

180
 

425
 

595
 

-1.5
 

91.5
 

FCRL2 725
 

482
 

2017
 

1253
 

-1.5
 

92.3
 

FGL2 17
 

7
 

46
 

50
 

-1.5
 

92.3
 

C21orf7 66
 

100
 

178
 

225
 

-1.4
 

92.3
 

FCRL3 1692
 

1627
 

4567
 

3202
 

-1.4
 

92.3
 

FCRL2 739
 

560
 

1992
 

1191
 

-1.4
 

91.5
 

MAP4K4 33
 

16
 

90
 

65
 

-1.4
 

90.6
 

TRIB2 51
 

55
 

135
 

214
 

-1.4
 

89.7
 

EDNRB 326
 

368
 

123
 

280
 

1.4
 

91.5
 

FCRL3 1653
 

1573
 

4376
 

3115
 

-1.4
 

91.5
 

TUBB6 409
 

540
 

156
 

210
 

1.4
 

92.3
 

ATF5 186
 

192
 

71
 

68
 

1.4
 

91.5
 

LOC728175 69
 

67
 

26
 

26
 

1.4
 

92.3
 

FAM30A 588
 

900
 

1535
 

1495
 

-1.4
 

92.3
 

ACSM3 483
 

397
 

185
 

208
 

1.4
 

93.2
 

PYHIN1 262
 

264
 

683
 

447
 

-1.4
 

92.3
 

C1orf38 593
 

309
 

229
 

195
 

1.4
 

88.9
 

MEF2C 286
 

166
 

739
 

393
 

-1.4
 

88.0
 

SPG20 182
 

150
 

71
 

106
 

1.4
 

90.6
 

FCRL5 128
 

98
 

325
 

300
 

-1.3
 

89.7
 

LAIR1 29
 

16
 

75
 

81
 

-1.3
 

89.7
 

PLGLB2 78
 

52
 

198
 

187
 

-1.3
 

89.7
 

TCF7 316
 

337
 

802
 

780
 

-1.3
 

89.7
 

H3F3C 47
 

24
 

119
 

118
 

-1.3
 

89.7
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Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

SLC15A2 53
 

33
 

133
 

107
 

-1.3
 

91.5
 

PLGLB2 88
 

66
 

219
 

136
 

-1.3
 

92.3
 

MEF2C 193
 

107
 

481
 

252
 

-1.3
 

91.5
 

CD24 1070
 

624
 

2656
 

1495
 

-1.3
 

93.2
 

BMP6 26
 

19
 

65
 

60
 

-1.3
 

93.2
 

C5orf53 51
 

22
 

125
 

74
 

-1.3
 

92.3
 

C1orf38 1176
 

588
 

477
 

377
 

1.3
 

90.6
 

SERPINB6 245
 

176
 

100
 

119
 

1.3
 

93.2
 

HIST1H2BD 413
 

362
 

1014
 

1104
 

-1.3
 

90.6
 

RORA 347
 

546
 

142
 

256
 

1.3
 

92.3
 

TUBB6 410
 

630
 

168
 

344
 

1.3
 

91.5
 

C21orf7 207
 

281
 

504
 

587
 

-1.3
 

92.3
 

SESN3 29
 

7
 

70
 

61
 

-1.3
 

92.3
 

SLAMF1 76
 

75
 

185
 

197
 

-1.3
 

92.3
 

ATF5 247
 

251
 

102
 

93
 

1.3
 

90.6
 

MSI2 73
 

25
 

31
 

16
 

1.3
 

92.3
 

FCRL2 2055
 

1421
 

4932
 

2543
 

-1.3
 

92.3
 

FCRL5 1062
 

723
 

2521
 

1444
 

-1.2
 

92.3
 

TCTN1 469
 

238
 

1103
 

1509
 

-1.2
 

93.2
 

PPAPDC1B 474
 

394
 

1113
 

832
 

-1.2
 

93.2
 

ACSM3 839
 

726
 

358
 

424
 

1.2
 

94.0
 

ZADH2 50
 

26
 

118
 

71
 

-1.2
 

93.2
 

MNDA 168
 

139
 

391
 

235
 

-1.2
 

94.0
 

PER1 110
 

102
 

48
 

39
 

1.2
 

93.2
 

CRIP3 55
 

30
 

127
 

104
 

-1.2
 

92.3
 

SERPINB6 224
 

149
 

97
 

108
 

1.2
 

91.5
 

PYHIN1 161
 

150
 

370
 

223
 

-1.2
 

92.3
 

FCRL1 850
 

631
 

1955
 

1048
 

-1.2
 

92.3
 

KCTD7 62
 

37
 

143
 

96
 

-1.2
 

93.2
 

SLC30A1 65
 

60
 

150
 

266
 

-1.2
 

93.2
 

IL15 167
 

176
 

73
 

113
 

1.2
 

93.2
 

SPG20 125
 

98
 

55
 

74
 

1.2
 

92.3
 

HIST1H2AC 132
 

156
 

301
 

367
 

-1.2
 

91.5
 

DNASE1L3 63
 

98
 

28
 

60
 

1.2
 

92.3
 

SERPINB6 341
 

219
 

151
 

164
 

1.2
 

91.5
 

B4GALT2 135
 

95
 

60
 

59
 

1.2
 

94.0
 

KLF7 29
 

12
 

64
 

46
 

-1.2
 

94.0
 

ABCA9 387
 

282
 

172
 

124
 

1.2
 

95.7
 

  614 

  615 
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Table 5: SF3B1 mutational status prediction using Fisher’s ratio.  616 

List of most discriminatory genes (22) to predict the SF3B1 mutation, ordered by 617 

decreasing Fisher’s ratio with an accuracy of 99.1%. Class 1 corresponds to samples 618 

with mutated SF3B1, and class 2 corresponds to those with unmutated SF3B1. µ1 and σ1 619 

refer respectively to the mean expression and standard deviation in class 1 (mutated 620 

SF3B1), while µ2 and σ2 do for the unmutated group. FR (log) stands for the logarithmic 621 

Fisher’s ratio. 622 

Gene µ1 σ1 µ2 σ2 FR(log) Acc(%) 

RPL32 859 228 513 115 2.6 94.0 

KLF8 131 45 59 30 2.4 94.0 

PDGFD 85 34 42 20 2.2 95.7 

PLAGL1 171 87 336 118 2.2 94.0 

KLF3 40 29 239 221 2.2 94.0 

UQCC 27 7 41 7 2.1 94.9 

HBA1 3650 2978 755 2218 2.1 96.6 

CNPY2 206 73 317 70 2.1 97.4 

TMC6 322 74 546 155 2.0 97.4 

CSNK2B 71 37 141 38 2.0 97.4 

PLAGL1 282 135 507 174 2.0 97.4 

PIP5K1B 55 32 212 200 1.9 98.3 

DGKG 44 16 115 70 1.9 97.4 

HBB 12044 6627 2783 5082 1.9 98.3 

PLAGL1 138 83 252 92 1.9 98.3 

ZNF76 34 8 61 20 1.8 98.3 

AMT 48 8 97 41 1.8 97.4 

STK38 206 108 368 156 1.8 97.4 

HBB 8359 5278 1777 3669 1.8 97.4 

ACTR2 3113 266 3789 506 1.8 97.4 

GLIPR1 115 107 359 261 1.7 97.4 

MAST4 136 89 59 60 1.7 99.1 

 623 

  624 
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Table 6: SF3B1 mutational status prediction using Fold Change.  625 

List of the most discriminatory genes (118) to predict the SF3B1 mutation ordered by 626 

decreasing absolute fold change with an accuracy of 96.6%. Class 1 corresponds to 627 

samples with mutated SF3B1, and class 2 corresponds to those with unmutated SF3B1. 628 

µ1 and σ1 refer respectively to the mean expression and standard deviation in class 1 629 

(mutated SF3B1), whilst µ2 and σ2 do for the unmutated group. fc stands for the fold 630 

change. 631 

Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

ANXA4 42
 

19
 

430
 

524
 

-3.3
 

87.2
 

IGHG1 63
 

37
 

599
 

1472
 

-3.3
 

88.0
 

ANXA4 41
 

17
 

333
 

408
 

-3.0
 

85.5
 

ANXA4 55
 

26
 

419
 

498
 

-2.9
 

87.2
 

ANXA4 47
 

17
 

335
 

408
 

-2.8
 

88.9
 

ANKRD36BP2 32
 

31
 

227
 

683
 

-2.8
 

90.6
 

TSPAN13 29
 

17
 

204
 

338
 

-2.8
 

86.3
 

ANXA4 52
 

24
 

364
 

460
 

-2.8
 

87.2
 

ANXA4 44
 

17
 

279
 

343
 

-2.7
 

88.9
 

MYBL1 41
 

36
 

261
 

406
 

-2.7
 

93.2
 

ANXA4 28
 

10
 

173
 

218
 

-2.6
 

91.5
 

KLF3 40
 

29
 

239
 

221
 

-2.6
 

92.3
 

NT5E 17
 

2
 

96
 

210
 

-2.5
 

92.3
 

GNB4 24
 

7
 

130
 

253
 

-2.4
 

90.6
 

TRPV3 198
 

525
 

38
 

67
 

2.4
 

92.3
 

ZNF608 16
 

2
 

82
 

166
 

-2.4
 

91.5
 

RBM20 26
 

25
 

132
 

212
 

-2.3
 

93.2
 

KLRK1 53
 

63
 

266
 

610
 

-2.3
 

93.2
 

CNTNAP2 135
 

188
 

655
 

801
 

-2.3
 

91.5
 

HBA1 3650
 

2978
 

755
 

2218
 

2.3
 

90.6
 

PPP1R9A 22
 

18
 

103
 

145
 

-2.2
 

90.6
 

HBB 8359
 

5278
 

1777
 

3669
 

2.2
 

87.2
 

HTRA3 202
 

409
 

45
 

55
 

2.2
 

88.9
 

KLRK1 51
 

48
 

227
 

512
 

-2.2
 

88.9
 

HBB 12044
 

6627
 

2783
 

5082
 

2.1
 

88.9
 

TUBB6 48
 

42
 

204
 

398
 

-2.1
 

88.9
 

CNTNAP2 189
 

266
 

789
 

1105
 

-2.1
 

88.0
 

TCTN1 42
 

32
 

172
 

438
 

-2.0
 

88.0
 

PTPRK 14
 

1
 

58
 

117
 

-2.0
 

88.9
 

HOMER3 59
 

31
 

239
 

336
 

-2.0
 

88.0
 

PIP5K1B 55
 

32
 

212
 

200
 

-2.0
 

89.7
 

PPP1R9A 39
 

43
 

148
 

227
 

-1.9
 

90.6
 

S100A9 1224
 

2650
 

339
 

591
 

1.9
 

90.6
 

HBB 15100
 

6062
 

4201
 

5929
 

1.8
 

90.6
 

VASH1 39
 

44
 

136
 

161
 

-1.8
 

88.9
 

CD69 166
 

259
 

48
 

56
 

1.8
 

88.9
 

PPP1R9A 21
 

9
 

71
 

99
 

-1.8
 

89.7
 

CD69 362
 

484
 

106
 

153
 

1.8
 

88.9
 

FCRL3 118
 

154
 

399
 

359
 

-1.8
 

89.7
 

MAP3K8 43
 

39
 

145
 

212
 

-1.7
 

91.5
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Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

FOSB 659
 

1112
 

199
 

418
 

1.7
 

91.5
 

RASSF6 362
 

720
 

110
 

274
 

1.7
 

92.3
 

SDPR 51
 

67
 

168
 

308
 

-1.7
 

93.2
 

CYBB 91
 

112
 

295
 

433
 

-1.7
 

93.2
 

PSD3 235
 

211
 

74
 

175
 

1.7
 

93.2
 

ADM 153
 

206
 

48
 

84
 

1.7
 

93.2
 

CD72 148
 

94
 

471
 

297
 

-1.7
 

91.5
 

FOS 928
 

1556
 

292
 

513
 

1.7
 

91.5
 

RAB20 25
 

8
 

80
 

123
 

-1.7
 

91.5
 

IGKC 365
 

1057
 

1151
 

2084
 

-1.7
 

90.6
 

BCL7A 61
 

56
 

193
 

248
 

-1.7
 

92.3
 

GLIPR1 115
 

107
 

359
 

261
 

-1.6
 

93.2
 

SDPR 96
 

160
 

296
 

533
 

-1.6
 

94.9
 

FOS 1105
 

1870
 

360
 

631
 

1.6
 

94.0
 

FCER1A 30
 

16
 

92
 

144
 

-1.6
 

93.2
 

CX3CR1 32
 

14
 

97
 

141
 

-1.6
 

92.3
 

GNG11 60
 

85
 

179
 

322
 

-1.6
 

94.0
 

GLIPR1 127
 

79
 

373
 

246
 

-1.6
 

94.0
 

FCRL3 1498
 

1626
 

4365
 

3100
 

-1.5
 

90.6
 

SLAMF1 64
 

42
 

185
 

196
 

-1.5
 

90.6
 

FCRL3 1565
 

1755
 

4552
 

3186
 

-1.5
 

90.6
 

ADM 163
 

221
 

56
 

102
 

1.5
 

89.7
 

RPL31 803
 

501
 

279
 

140
 

1.5
 

95.7
 

TUBB1 176
 

297
 

505
 

870
 

-1.5
 

95.7
 

BCL7A 20
 

3
 

57
 

77
 

-1.5
 

94.9
 

IGKV1-5 367
 

1058
 

1047
 

2114
 

-1.5
 

94.0
 

HOMER3 17
 

2
 

49
 

80
 

-1.5
 

94.0
 

PLAC8 559
 

386
 

1588
 

1047
 

-1.5
 

94.0
 

BTNL9 201
 

384
 

71
 

300
 

1.5
 

94.0
 

FCRL1 186
 

105
 

527
 

307
 

-1.5
 

94.0
 

CNR1 301
 

362
 

106
 

236
 

1.5
 

94.0
 

CLEC4C 24
 

9
 

69
 

95
 

-1.5
 

94.9
 

FCGBP 51
 

26
 

145
 

209
 

-1.5
 

95.7
 

GLIPR1 189
 

117
 

532
 

361
 

-1.5
 

94.9
 

CYBB 28
 

19
 

80
 

108
 

-1.5
 

94.9
 

CLLU1 449
 

597
 

161
 

355
 

1.5
 

94.9
 

GEN1 77
 

31
 

215
 

374
 

-1.5
 

94.0
 

GAPT 64
 

38
 

177
 

139
 

-1.5
 

94.0
 

PPBP 624
 

1065
 

1730
 

2686
 

-1.5
 

94.9
 

RASSF6 124
 

258
 

45
 

100
 

1.5
 

94.9
 

NRIP1 23
 

17
 

63
 

60
 

-1.5
 

94.9
 

CNTNAP2 22
 

9
 

62
 

78
 

-1.5
 

94.0
 

RGS13 355
 

777
 

130
 

399
 

1.5
 

93.2
 

SIGLEC6 37
 

47
 

100
 

164
 

-1.4
 

92.3
 

GLIPR1 207
 

120
 

554
 

354
 

-1.4
 

94.0
 

SMAD3 51
 

33
 

136
 

198
 

-1.4
 

94.0
 

PRDM1 128
 

201
 

48
 

51
 

1.4
 

94.9
 

NRIP1 73
 

119
 

195
 

187
 

-1.4
 

94.0
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Gene µ1 σ1 µ2 σ2 fc (log) Acc(%) 

RNGTT 981
 

825
 

370
 

627
 

1.4
 

94.0
 

PF4 85
 

114
 

226
 

319
 

-1.4
 

93.2
 

CYB5A 49
 

17
 

130
 

104
 

-1.4
 

93.2
 

FHDC1 52
 

43
 

137
 

148
 

-1.4
 

94.0
 

GLIPR1 168
 

135
 

444
 

292
 

-1.4
 

94.0
 

FCGR3A 71
 

82
 

187
 

268
 

-1.4
 

94.9
 

GLIPR1 346
 

186
 

907
 

595
 

-1.4
 

95.7
 

RNGTT 673
 

558
 

257
 

419
 

1.4
 

94.9
 

CYB5A 62
 

34
 

163
 

135
 

-1.4
 

94.9
 

TCF7 306
 

247
 

798
 

780
 

-1.4
 

95.7
 

GEN1 38
 

8
 

99
 

213
 

-1.4
 

95.7
 

RNGTT 972
 

755
 

374
 

622
 

1.4
 

95.7
 

ITGAX 196
 

217
 

510
 

356
 

-1.4
 

95.7
 

DGKG 44
 

16
 

115
 

70
 

-1.4
 

94.0
 

TCF7 100
 

54
 

259
 

267
 

-1.4
 

94.9
 

RASGRP1 177
 

137
 

455
 

315
 

-1.4
 

94.9
 

SSBP2 44
 

29
 

112
 

87
 

-1.4
 

94.0
 

PDK4 31
 

14
 

78
 

74
 

-1.3
 

92.3
 

KLF3 22
 

4
 

56
 

73
 

-1.3
 

92.3
 

KLF3 27
 

6
 

68
 

56
 

-1.3
 

92.3
 

PF4 107
 

163
 

272
 

399
 

-1.3
 

93.2
 

FGL2 138
 

152
 

349
 

424
 

-1.3
 

92.3
 

IPCEF1 101
 

100
 

40
 

34
 

1.3
 

95.7
 

FCRL1 775
 

460
 

1952
 

1051
 

-1.3
 

95.7
 

FCRL1 642
 

350
 

1610
 

883
 

-1.3
 

95.7
 

FRMD5 58
 

82
 

23
 

14
 

1.3
 

95.7
 

NSUN7 171
 

168
 

69
 

95
 

1.3
 

95.7
 

FCRL2 109
 

75
 

271
 

216
 

-1.3
 

95.7
 

HBM 41
 

31
 

103
 

708
 

-1.3
 

95.7
 

RGS1 871
 

1001
 

351
 

864
 

1.3
 

96.6
 

 632 

  633 
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LIST OF CAPTIONS 634 

 635 

Figure 1: Flow diagram of the analytical procedure. 636 

 637 

Figure 2: Correlation network of the most discriminatory genes for the IgVH mutational 638 

status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized 639 

Mutual information. 640 

 641 

Figure 3: Correlation network of the most discriminatory genes for the NOTCH1 642 

mutational status prediction. A) Using the Pearson correlation coefficient. B) Using the 643 

Normalized Mutual information. 644 

 645 

Figure 4: Correlation network of the most discriminatory genes for the SF3B1 646 

mutational status prediction. A) Using the Pearson correlation coefficient. B) Using the 647 

Normalized Mutual information. 648 

 649 

Figure 5: Intersection among the most discriminatory genes of the IgVH, NOTCH1 and 650 

SF3B1 mutations. The three main mutations are represented with a rectangle and the 651 

most discriminatory genes are surrounded by ellipses. An edge represents that the gene 652 

appears as most discriminatory for a specific mutation. Genes with three edges 653 

(surrounded by a dot rectangle) are common to these three main mutations. 654 

 655 
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Flow diagram of the analytical procedure  
214x184mm (300 x 300 DPI)  
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Correlation network of the most discriminatory genes for the IgVH mutational status prediction: A) Using the 
Pearson correlation coefficient. B) Using the Normalized Mutual information.  
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Correlation network of the most discriminatory genes for the NOTCH1 mutational status prediction. A) Using 
the Pearson correlation coefficient. B) Using the Normalized Mutual information.  
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Correlation network of the most discriminatory genes for the SF3B1 mutational status prediction. A) Using 
the Pearson correlation coefficient. B) Using the Normalized Mutual information.  

 

 

Page 37 of 41

http://mc.manuscriptcentral.com/jgm-wiley

Journal of Gene Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Intersection among the most discriminatory genes of the IgVH, NOTCH1 and SF3B1 mutations. The three 
main mutations are represented with a rectangle and the most discriminatory genes are surrounded by 
ellipses. An edge represents that the gene appears as most discriminatory for a specific mutation. Genes 

with three edges (surrounded by a dot rectangle) are common to these three main mutations.  
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Appendix  

 

1. Gene discriminatory power  

Fisher’s Ratio (FR) uses the class information from the samples to find the set of genes 

that separate the centers of the distribution of both classes, keeping the dispersion in 

each class quite low (homogenous), that is, the method looks for very stable biomarkers. 

For that purpose, the Fisher’s ratio of a gene j, in two-class problem, 1 2,c c , is defined as 

follows: 

( )
2

1 2

1 2 2 2

1 2

( , )
j j

j

j j

FR c c
µ µ

σ σ

−
=

+
, 

where, 1 2,j jµ µ  are measures of the center of the distribution (means or medians) of 

gene j in classes 1 and 2, and 
2 2

1 2,j jσ σ  are measures of the dispersion (variance) within 

these classes. Genes with the highest FR have the biggest discriminatory power of the 

phenotype and are expected to be involved in the genesis of the illness that is analyzed. 

Using the medians instead of the means makes the FR definition more robust to the 

presence of noise. Also FR penalizes noisy genes since their total variance 2 2

1 2j jσ σ+  

increases. 

The Fold Change (FC) of a gene j is defined as follows:  

1

1 2 2

2

( , ) log .
j

j

j

fc c c
µ

µ
=  

This method selects differentially expressed genes according to their absolute FC value,
 

1 2( , )jfc c c . The fact that genes are differentially expressed does not imply that their 

discriminatory power in the phenotype prediction is high since the tails of both 
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distributions might still overlap introducing ambiguity in the discrimination. This 

happens in our case in the unmutated class where the differentially expressed genes 

typically exhibit higher expression variability, with respect to the mutated class, which 

is more homogeneous in expression. 

2. Correlation networks 

The Pearson correlation coefficient ijρ  measures the linear correlation of two random 

variables. The formula for 
ijρ  is:	 

( , )
 ,

( ) ( )

i j

ij

i j

C E E

var E var E
ρ =  

where ( , )i jC E E  is the covariance between the expressions of two genes �� , �� 

considered as random variables and ( )ivar E  is the variance of the expression in gene i. 

ijρ  is zero when the variables are uncorrelated, that is, linearly independent, and varies 

between -1 (negative correlation between expressions) and 1(positive correlation).  

The Mutual Information ����  of two random variables is a measure of mutual 

dependence of both variables. In our case we have used the normalized mutual 

information, which is similar to a correlation coefficient: 

( , )
 ,

( ) ( )

i j

ij

i j

I E E
NM

H E H E
=  

where ( , )i jI E E  is the mutual information content and ( )iH E the entropy of gene i 

calculated based in the ordering of its expression with respect to the class assignment. 

The mutual information �(��, ��) content is calculated as follows: 
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( ) ( ) ( ) ( ), ,
i j i j i j

I E E H E H E H E E= + − U  

being ( )i j
H E EU  the joint entropy. This metric serves can be interpreted how much 

knowing one of these variables reduces uncertainty about the other.  

The normalized mutual information can be interpreted as a correlation coefficient based 

exclusively in the ordering (entropy) in ��  and ��.  Nevertheless it varies between 0 

(totally independent) and 1 (totally dependent): 

( ) ( ) ( )0 .
i j jj ii

H E E HM H E EN = ⇔ = +U  

Therefore, the normalized mutual information is null when one variable does not reduce 

the uncertainty about the other, that is, they are independent descriptors. 
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Abstract  13 
Introduction: It has become clear that noise generated during the assay and analytical processes has the 14 
ability to disrupt accurate interpretation of genomic studies. Not only does such noise impact the 15 
scientific validity and costs of studies, but when assessed in the context of clinically translatable 16 
indications such as phenotyping prediction, it can lead to inaccurate conclusions that could ultimately 17 
impact patients. We applied a sequence of ranking methods to dampen noise associated with microarray 18 
outputs, and then tested the utility of the approach in three disease indications using publically available 19 
datasets. 20 
Materials and Methods: This study was performed in three phases. We first theoretically analyzed the 21 
effect of noise in phenotype prediction problems showing that it can be expressed as a modeling error that 22 
partially falsifies the pathways. Secondly, via synthetic modeling, we performed the sensitivity analysis 23 
for the main gene ranking methods to different types of noise. Finally, we studied the predictive accuracy 24 
of the gene lists provided by these ranking methods in synthetic data and in three different datasets related 25 
to cancer, rare and neurodegenerative diseases to better understand the translational aspects of our 26 
findings. Results and Discussion: In the case of synthetic modelling, we showed that Fisher’s Ratio (FR) 27 
was the most robust gene ranking method in terms of precision for all the types of noise at different 28 
levels. Significance Analysis of Microarrays (SAM) provided slightly lower performance and the rest of 29 
the methods (fold change, entropy and maximum percentile distance) were much less precise and 30 
accurate. The predictive accuracy of the smallest set of high discriminatory probes was similar for all the 31 
methods in the case of Gaussian and Log-Gaussian noise. In the case of class assignment noise, the 32 
predictive accuracy of SAM and FR is higher. Finally, for real datasets (Chronic Lymphocytic Leukemia, 33 
Inclusion Body Myositis and Amyotrophic Lateral Sclerosis) we found that FR and SAM provided the 34 
highest predictive accuracies with the smallest number of genes. Biological pathways were found with an 35 
expanded list of genes whose discriminatory power has been established via FR. Conclusions: We have 36 
shown that noise in expression data and class assignment partially falsifies the sets of discriminatory 37 
probes in phenotype prediction problems. FR and SAM better exploit the principle of parsimony and are 38 
able to find subsets with less number of high discriminatory genes. The predictive accuracy and the 39 
precision are two different metrics to select the important genes, since in the presence of noise the most 40 
predictive genes do not completely coincide with those that are related to the phenotype. Based on the 41 
synthetic results, FR and SAM are recommended to unravel the biological pathways that are involved in 42 
the disease development.  43 
 44 
Keywords Noise analysis, Machine learning, Gene expression, Cancer genomics. 45 
 46 
 47 
1. INTRODUCTION 48 

The revolution in molecular biology and the development of high-throughput 49 

technologies for sequencing in genetic and genomic analyses has generated an 50 

explosion in the amount of genetic data. These technologies, which have been firstly 51 



applied in research, are now increasingly applied in translational medicine. Particularly, 52 

gene expression analysis through hybridization microarrays or RNA sequencing is now 53 

a conventional component in many areas of biomedical research. This kind of 54 

experiments has a very high under-determined character since the number of samples 55 

(patients) is much lower than the number of monitored probes (genes). Therefore, gene-56 

ranking methods are needed to establish the discriminatory power of the genes in the 57 

phenotype prediction. 58 

In this paper we first theoretically analyzed the effect of noise in phenotype prediction 59 

problems by casting them into abstract optimization problems. To accomplish this, we 60 

first show that noise in data can be expressed as a modeling error that partially falsifies 61 

the set of discriminatory probes that are phenotype-related, and therefore the biological 62 

pathways that are involved. Secondly, the sensitivity to different kind of noise (in 63 

expression and class assignment) for the main gene ranking methods (Fold Change, 64 

Fisher’s Ratio, Percentile Distance and Entropy) compared to well-established 65 

Significance Analysis of Microarrays (SAM) [1] is performed via synthetic microarray 66 

modeling. This analysis has shown that in general terms Fisher’s ratio is the most robust 67 

method in terms of precision closely followed by SAM. Besides, both methods provided 68 

the smallest sets with the highest discriminatory power. The effect of noise increases the 69 

number of genetic probes that are needed to slightly improve the predictive accuracy. 70 

Therefore, an optimum method to find the biological pathways in translational problems 71 

will consist of ranking the differential expressed genes decreasingly by their 72 

corresponding Fisher’s ratio. The results of these analyses are confirmed using three 73 

different datasets concerning the study of cancer (Chronic Lymphocytic Leukemia), rare 74 

diseases (Inclusion Body Myositis) and neurodegenerative diseases (Amyotrophic 75 

Lateral Sclerosis). We found that FR and SAM provide the highest predictive accuracies 76 



with the smallest number of genes, exploiting the principle of parsimony. Besides, we 77 

show their corresponding biological found with an expanded list of genes whose 78 

discriminatory power has been established via FR. In these three cases, the effect of 79 

viral infections in the corresponding pathways is clear. We expect that the results of this 80 

analysis will help optimize the use of these methods in translational medicine, 81 

particularly in the biological understanding of different diseases and in drug 82 

optimization problems. 83 

 84 
2. MATERIAL AND METHODS 85 

2.1. The effect of noise in phenotype prediction 86 

One of the main obstacles in the analysis of genomic data is the absence of a conceptual 87 

model that relates the different genes/probes to the class prediction (phenotype). 88 

Machine-learning algorithms are therefore needed to model these complex 89 

relationships. For this reason, a classifier *( )L g  has to be constructed and it is defined as 90 

an application between the set of genetic signatures g  and the set of classes 91 

{ }1 2, , , nC c c c= …  in which the phenotype is divided: 92 

( ) { }*
1 2: , , ,s

nL C c c c∈ → =g g ° K     (1) 93 

In most cases, the classification problem involved is binary.  94 

The machine learning procedure is composed of two stages:  95 

1. The learning process, that consists in giving a subset of samples T (training data 96 

set) whose class vector is known, obsc , finding the subset of genetic signatures g  97 

that maximizes the learning accuracy, that is, the number of samples whose class is 98 

correctly predicted. This can be written as the result of the following optimization 99 

problem:  100 



O g!( ) =min
g∈!s

O g( ),
O g( ) = L*(g)− cobs

p
,

L*(g) = L*(g1),…,L*(gm )( ),
    (2) 101 

where *( )L g  is the set of predicted classes, ig  is the genetic signature 102 

corresponding to the sample i in the training dataset T, and *( ) obs

p
−L g c  stands for 103 

the percentage of corrected predicted classes with respect to the total number of 104 

samples in T. 105 

2. The generalization, that consists in predicting the class of a new sample ( newg ) 106 

whose class is unknown using the genetic signatures that have been found during 107 

the learning process. 108 

One of the main numerical difficulties in learning is the high dimensionality of the 109 

genomic data since the number of monitored probes (or genes) is much greater than the 110 

number of samples (or patients). This fact provokes that the phenotype prediction in the 111 

learning stage will have a very high underdetermined character. Therefore, several gene 112 

lists with similar predictive accuracy might exist. This fact can be easily understood 113 

considering the classification as a parameter identification or inverse problem [2]: the 114 

topography of the cost function ( )O g  in the region of lower misfits (or higher 115 

predictive accuracies) corresponds to flat elongated valleys with null gradients where 116 

the high predictive genetic signatures are located. Obviously, the topography changes if 117 

the space where the optimization is performed (ℝ!) changes. All these high predictive 118 

lists are expected to be involved in the genetic pathways that explain the phenotype. The 119 

smallest-scale signature is the one that has the least number of discriminatory genes.  In 120 

practice, the predictive accuracy of a genetic signature, ( )O g , is performed via cross-121 



validation. This knowledge could be very important for early diagnosis and treatment 122 

optimization. 123 

The presence of noise in the genomic data will impact the classification and obviously 124 

the pathway analysis resulting from this procedure. There are at least two main sources 125 

of noise in phenotype prediction problems:  126 

• Noise in the gene expression induced by the process of measurement. In this 127 

case, the observed genetic expression of a sample, obsg ,	can be expressed as the 128 

sum of the true genetic expression array, trueg , and the measurement noise, :δg 	129 

.obs true δ= +g g g Therefore, using a simple Taylor expansion we get: 130 

*
* * * *

1
( ) ( ) ( ) ( ) ( ) ( ),

s
obs true true true true

k
k k

LL L L L g o
g

δ δ δ
=

∂= + = + +
∂∑g g g g g g           (3)  131 

where ( )o δg vanishes when the noise term .δ →g 0  Obviously, this analysis is 132 

theoretical because trueg  and δ g  are unknown. 133 

• Noise in the class assignment since some samples could be wrongly annotated or 134 

might belong to a different class, not yet discovered. Naming truec 	the true class 135 

assignment array and δc 	the noise in the class assignment, then the observed 136 

class array will be obs true +c = c δc . 137 

In presence of these types of noise, the genetic signature with the highest predictive 138 

score will never perfectly coincide with the genetic signature that explains the disease. 139 

Both types of noises (δ g , δc ) induce a modeling error, ( *( )δL g ), in the classifier 140 

related to the phenotype prediction.  141 

In the case of class assignment noise the cost function writes: 142 



( )
( )

* *

* * *

( ) ( )

( ) ( ) ( ),

p obs true

p p

t

p

O

O

δ

δ δ

= − = − − =

= + = +

g L g c L g c c

L g L g g L g
  (4) 143 

where ( )pO g , ( )tO g  stand respectively for the perturbed and noise-free cost functions, 144 

and *( )δL g  for the modeling error term induced by the noise in the class assignment. 145 

For instance, if the squared Euclidean norm is used to define the cost function, we have: 146 

( )

( ) ( )
( )

2 2* *

2 2

* *

2* *

2

( ) ( )

( ) ( )

( ) 2 ( ) .

p obs true

Ttrue true

Ttrue true T

O δ

δ δ

δ δ δ

= − = − − =

= − − − − =

= − − − +

g L g c L g c c

L g c c L g c c

L g c L g c c c c

  (5) 147 

Therefore the modeling error is: 148 

( )* *( ) 2 ( ) ,
TT trueδ δ δ δ= − −L g c c L g c c   (6) 149 

and *( )δ →L g 0  when δ →c 0 . 150 

What’s more, the classifier, which is constructed ad-hoc and is a priori unknown, 151 

induces modeling errors into the classification. Therefore, the automatic conclusion is 152 

that ( )pO g  and ( )tO g  will never achieve their corresponding minima for the same 153 

genetic signatures ( g ). For that reason, it is also desirable to inspect the genetic 154 

signatures having a lower predictive accuracy than the optimum. 155 

To alleviate the high underdetermined character of genomic-phenotype prediction 156 

problems, feature selection methods are used to reduce the dimensionality of the 157 

genomic data. The problem of determining the genes that separate two (or more) classes 158 

corresponding to given phenotypes has been traditionally been addressed by filter, 159 

wrapper and embedded methods [3]. In the case of filter methods, the gene selection 160 

and the classifier for phenotype prediction are independent (uncoupled). Wrapper and 161 

embedded techniques are most sophisticated approaches where the gene selection is the 162 

solution of an optimization problem; therefore selection and classification are coupled. 163 



Wrapper and embedded methods usually involve the use of neural network, support 164 

vector machines, decision trees and global optimization algorithms. Filter methods rank 165 

different genes according to different measures of their discriminatory power in 166 

phenotype prediction problems.  167 

 168 

2.2. Gene selection ranking methods and noise 169 

To determine the stability and robustness of supervised ranking algorithms in mitigating 170 

microarray-generated noise, we compared  the Fisher’s ratio (FR), Fold Change (FC), 171 

Percentile Distance (PD), Entropy (EN) and SAM (Significance Analysis of 172 

Microarrays) using a synthetic dataset and publically available datasets associated with 173 

B-chronic lymphocytic leukemia, inclusion body myositis, and amyotrophic lateral 174 

sclerosis. At a translational level, the aim of this analysis is to establish an optimum 175 

way to find the most discriminatory genes in a phenotype prediction and the biological 176 

pathways that are involved. 177 

Fisher’s ratio uses class information from the samples to find the set of genes that 178 

separate the centers of the distribution of both classes, keeping the dispersion in each 179 

class quite low (homogenous), that is, the FR method looks for very stable biomarkers 180 

along classes. The FR of a gene j in two-class problem, 1 2,c c , is defined as follows [4]: 181 

( )2

1 2
1 2 2 2

1 2

( , ) j j
j

j j

FR c c
µ µ
σ σ

−
=

+
,     (7) 182 

where, µ j1,µ j2
, are measures of the center of the distribution (means or medians) of the 183 

gene j in classes 1 and 2, and 2 2
1 2,j jσ σ  are measures of the dispersion (variance) within 184 

these classes. As a result, high FR values correspond to high discriminatory genes of the 185 

phenotype and are expected to be involved in the genesis of the illness that is analyzed. 186 

Using the medians instead of means makes the FR definition more robust against noise. 187 



Noisy genes are penalized in gene selection by FR since uncorrelated white noise in the 188 

expression increases the standard deviation, as shown: 189 

p t
j j jE E n= + ,     (8) 190 

where p
jE  is the expression of gene j affected by the noise jn  which is independent of 191 

the true gene expression t
jE . Then:  192 

,

.
j

j

p t
j j n

p true
j j n

µ µ µ

σ σ σ

= +

= +
     (9) 193 

The presence of uncorrelated white noise increases the variance of the expression, 194 

decreasing the FR of the noisiest genes. The genes are therefore penalized in the 195 

selection by FR. 196 

The Fold Change of a gene j is defined as follows: 197 

1
1 2 2

2

( , ) log .j
j

j

fc c c
µ
µ

=      (10) 198 

This method selects differentially expressed genes according to their absolute FC value199 

1 2( , )jfc c c . FC analysis is sensible to noise that obviously affects the mean of the 200 

expression in different ways, generating numerical artifacts of under-expression and 201 

over-expression. Furthermore, the fact that genes are differentially expresses does not 202 

imply that their discriminatory power is high, since the tails of both distributions might 203 

still overlap introducing ambiguity in the discrimination. Due to this fact, the volcano 204 

plot [1, 5, 6] has been introduced, combining a statistical test (p-value) with FC and 205 

enabling for quick visual identification of statistically significant and large-magnitude 206 

changes. Nevertheless, the additional p-value discrimination does not solve the problem 207 

of distribution tails overlapping.  208 



Percentile Distance [7] selects genes with higher distance between the corresponding 209 

cumulative probability functions (percentile array) within each class. The percentile 210 

distance for attribute j is defined as follows: 211 

( )
1 2 2

1 2 ,

1 22 2

( , ) ; 1, ,
max ,

j j
j att

j j

d c c j N
−

= = …
p p

p p
  (11) 212 

where 1 2,j jp p  stand for the percentile vector of the gene j in classes 1 and 2. Percentiles 213 

vary from 5 to 95 (or 10 to 90) to avoid the possible effect of outliers. Variables with 214 

higher percentile distances between the corresponding discrete cumulative probability 215 

functions (percentile array) in each class will be selected. The percentile array takes into 216 

account both, the distance between the centers of the distributions (medians or 217 

percentile 50%), the interquartile range (percentiles 25% and 75%), and also the 218 

distance between the tails of the distributions (percentiles 5-10% and 90-95%).   219 

The Entropy selection method takes into account the ordering mismatch in the 220 

expression of a gene with respect to the class vector for a given phenotype [8, 9]. 221 

Therefore, lower entropies imply in principle bigger discriminatory power. Entropy is 222 

affected by noise to the extent that this affects the ordering of the expression signature 223 

with respect to the one provided by the phenotype class.  224 

Finally, Significance Microarray Analysis (SAM) [1] uses as score the absolute 225 

difference between the means in both classes divided by the sum of the total standard 226 

deviation ( T
jσ ) and a tunable exchangeability factor ( 0jσ ) used to damp the effect of 227 

outliers, that is, genes with very small T
jσ  that will bring an anomalous score: 228 

1 2
1 2

0

( , ) .j j
j T

j j

SAM c c
µ µ
σ σ

−
=

+
    (12) 229 

 230 

A variety of analyses have been performed to study the sensitivity of some of these 231 



methods to noise in the expression data [10-13]. However, so far the robustness against 232 

different kind of noises for all these ranking methods has not been addressed.  233 

For that purpose, we used a synthetic dataset where three different types of noise were 234 

introduced: additive Gaussian noise, lognormal noise and noise in the class assignment. 235 

The Gaussian noise has been introduced through a random number generator following 236 

a normal distribution (0, )t
j k jn N r E→  for each gene, being kr  the noise level, and t

jE  237 

is the noise-free expression of the gene j. Therefore, the noisy expression corresponding 238 

to the gene j would be: 239 

.p t
j j jE E n= +      (13) 240 

The lognormal noise has been obtained by adding Gaussian noise to the logarithms of 241 

the expression:  242 

( )2 2log 0, log t
j j k jln s N r E= → .    (14) 243 

Therefore, the lognormal noise has a scaling effect, since: 244 

2 2log log ,

.

p t
j j j

p t
j j j

E E ln

E s E

= +

=
     (15) 245 

In the case of class assignment noise, a given number of samples are misclassified. The 246 

class assignment and lognormal noises belong to the category of non-Gaussian noise. 247 

The synthetic dataset was built with a predefined number of differentially expressed 248 

genes. We subsequently introduced different levels of noise: 1 to 6% for Gaussian and 249 

log-Gaussian noises and 10 to 40% for the class assignment noise.  250 

To check the performance of the different ranking methods we used the Precision 251 

metric: 252 

{ } { }
{ }

_
Precision

_
,

_
DE genes Selected genes

Selected genes
=

I
   (16) 253 



where { }_DE genes is the set of the differentially expressed genes and 254 

{ }_Selected genes  the set of genes selected by the ranking algorithm.  255 

 256 

2.3 The synthetic and disease datasets 257 

A flow diagram for the methodology used in this paper is shown in figure 1. 258 

The synthetic datasets was created to compare the various filtering methods against a 259 

known dataset and then, based on these findings, create a hierarchy which defines the 260 

effectiveness of the ranking methods against different kind of noise and to understand 261 

how to find optimally the biological pathways in disease datasets.  262 

The synthetic dataset was built simulating a real dataset related to Chronic Lymphocytic 263 

Leukemia (163 samples and 48807 probes) [14] using the OC-plus package available 264 

for The Comprehensive R Archive Network [15]. The original data was compound of 265 

163 samples and 48807 probes. We have chosen this dataset for building the synthetic 266 

dataset because it has a good sample size and the class is well balanced. The experiment 267 

was set up as follows:  268 

1. The class of the synthetic dataset was the same as the one observed for the IgVH 269 

status [14]: 92 vs 71. 270 

2. The noise-free synthetic data set (expression) was generated using as main 271 

parameters 2D = and 0 7,0.4P = where D is the effect size for differentially 272 

expressed genes expressed in units of the gene-specific standard deviation and 0P  273 

is the proportion of differentially expressed genes. This simulation made 229 274 

genes be differentially expressed which we will try to recover via the different 275 

gene-ranking methods. These genes are supposed in the synthetic dataset to 276 

optimally differentiate the known IgVH status. 277 

 278 



Furthermore, we have modeled different real microarray datasets to confirm these 279 

findings: 280 

1. B-cell Chronic Lymphocytic Leukemia (CLL) dataset composed by 163 samples 281 

and 48807 probes [14]. CLL is a complex and molecular heterogeneous disease 282 

which is the most common adult Leukemia in western countries. DNA analyses 283 

served to distinguish two major types of CLL with different survival times based 284 

on the maturity of the lymphocytes, as discerned by the Immunoglobulin Heavy 285 

chain Variable-region (IgVH) gene mutation status. 92 samples had the IgVH 286 

gene mutated versus 71 samples with worse prognosis. The aim of this analysis 287 

is to find the pathways that are associated with bad prognosis in CLL patients. 288 

2. Inclusion Body Myositis (IBM): microarray studies (with 22283 probes) were 289 

performed on muscle biopsy specimens from 34 patients with inclusion body 290 

myositis and 11 samples without neuromuscular disease [16]. IBM is a muscle 291 

disease characterized by chronic, progressive muscle inflammation accompanied 292 

by muscle weakness. The aim of this analysis is to find the pathways that are 293 

associated to the development of IBM with respect to healthy controls. 294 

3. Amyotrophic Lateral Sclerosis (ALS) dataset composed by 85 samples (57 295 

samples are ALS cases and 28 healthy controls) and 54675 probes [17]. ALS is a 296 

fatal neurodegenerative disease characterized by progressive loss of motor 297 

neurons. These authors have shown that the co-stimulatory pathway is 298 

upregulated in the blood of a high percentage of human patients with ALS (56%). 299 

The aim of this analysis is to define the genes that are associated with a diagnosis 300 

of ALS, the possible causes and the biological pathways that are involved. 301 

 302 

These datasets are representative of 3 different types of diseases: cancer, rare and 303 



neurodegenerative diseases. Besides, they have a reasonable sample size and a good 304 

balance between both classes in each case. Although all the microarray datasets treated 305 

herein are post processed via the RMA algorithm that performs an estimation and 306 

correction of the noise [18], noise is still present due to the complexity of the data 307 

acquisition. Because the genes which are differentially expressed in real datasets are 308 

unknown, we have applied the methodology explained in [19] to select the smallest 309 

subset of high discriminatory probes. In summary, the method consists in ranking the 310 

genes according to their discriminatory power, selecting different lists of genes through 311 

Backwards Feature Elimination (BFE) and establishing their predictive accuracy via 312 

Leave-One-Out-Cross-Validation (LOOCV). These datasets have also been modeled 313 

through biomedical robots [20] that exploit the uncertainty space of the classifiers in 314 

phenotype prediction problems. Therefore, this paper is also useful for analyzing the 315 

sensitivity towards noise of the main ranking methods used in the design of biomedical 316 

robots. 317 

 318 

3. RESULTS AND DISCUSSION 319 

a. Synthetic data 320 

In order to compare the performance of each method we calculated the precision for 321 

each method, considering the set of 229 genes that were differentially expressed in the 322 

synthetic dataset. Table 1 provides the precision for all the ranking methods mentioned 323 

above for different noise types and levels. Table 2 shows the LOOCV mean accuracy 324 

and the number of selected genes in each method. What’s more, we have also calculated 325 

the empirical Cumulative Distribution Functions (CDF) of the positions of the 326 

differentially expressed genes captured by each method. For the sake of clearness we 327 

only used the first 1000 gene positions. A perfect CDF would be a straight line reaching 328 



the value of 1 at position 229.  Figure 2, 3 and 4 shows these CDF curves for every type 329 

of noise and noise level. 330 

It can be observed the following: 331 

1. As we expected, the precision decreases for all the methods as the noise level 332 

increases (refer to Table 1). The FR provides the best precision score for all the 333 

noise types and levels. These differences decrease very fast with the noise level 334 

in the case of lognormal noise. The precision figures for SAM, in some cases, 335 

are very close to FR. In the case of class assignment noise FR keeps precision 336 

levels up to 90% for 10 to 25% of noise, showing a very good robustness against 337 

this type of noise (Table 1). This result has an important translational impact in 338 

real datasets to find the biological pathways that are involved in the disease 339 

development. 340 

2. The differences in the LOOCV mean accuracy (table 2) is not so clear and all 341 

methods provide similar results for the three types of noise at the different levels 342 

in the expenses of increasing the number or probes needed to improve the 343 

LOOCV predictive accuracy. In the case of Gaussian noise, SAM and FR show 344 

very similar results obtaining 100% of predictive accuracy with a much more 345 

reduced set of selected probes. Regarding lognormal noise, entropy seems to be 346 

the best for lower level of noises, while SAM and FR behave better when the 347 

noise level increases. FR and SAM are the best methods with a very little 348 

difference between them in the case of class assignment noise. These 349 

conclusions can also be clearly observed in the CDF curves (figures 2 to 4). 350 

We have also combined the Gaussian noise and the Log-Gaussian noise with the 351 

noise in the class assignment obtaining similar results. Adding the class 352 

assignment noise to a noisy dataset (for both Gaussian and Log-Gaussian noises) 353 



affects much more in finding the differentially expressed genes since the 354 

Precision decreases drastically (see supplementary material Table 1). What is 355 

interesting is that the fold change seems to work better in terms of precision for 356 

a combination of class assignment and log-Gaussian noise. In terms of 357 

predictive accuracy more genes are needed to have a high predictive accuracy 358 

when class assignment noise is present (see supplementary material, Table 2). In 359 

this case, FR and SAM provide the best results. Furthermore, it is possible to 360 

observe that for high levels of noise we can achieve high predictive accuracy 361 

with null precision at the expenses of adding a lot of genes to the predictive 362 

genetic signature. In this case, the biological pathways are clearly falsified.  363 

 364 

In conclusion, noise in class assignment affects the selection of the important 365 

discriminatory genes in phenotype prediction problems more than noise in the 366 

expression data. This result emphasizes the importance in translational medicine of 367 

having at disposal a correct class assignment of the samples, provided by the doctors. 368 

 369 

b. Disease datasets  370 

Concerning the real datasets we selected the smallest subset of high discriminatory 371 

probes using the methodology described in [19].  Table 3 shows the mean accuracy and 372 

number of selected probes for each ranking method and dataset. For these three datasets 373 

we achieved accuracies higher than 90% with a very small subset of probes. The 374 

selection was performed via backwards feature elimination and a nearest-neighbor 375 

based algorithm through the LOOCV accuracy [19]. 376 

In the case of CLL, the difference between all the methods is very small. The entropy 377 

method achieved 94% of accuracy with 99 probes. However SAM got almost 94% of 378 



accuracy with 26 probes and FR 93% with only 6 probes. High discriminatory genes of 379 

the IgVH phenotype include: LPL, CRY1, LOC100128252, SPG20, ZBTB20, NRIP1, 380 

ZAP-70, LDOC1, COBLL1 and NRIP1.  381 

The pathway analysis has revealed the importance of the Inflammatory Response, the 382 

PAK pathway and the ERK signaling super pathway that includes ERK signaling, ILK 383 

signaling, MAPK signaling, Molecular Mechanisms of cancer and Rho Family GTPases 384 

pathway. These pathways control Proliferation, Differentiation, Survival and Apoptosis. 385 

Also, other important pathways found were Allograft Rejection, the Inflammatory 386 

Response Pathway, CD28 Co-stimulation, TNF-alpha/NF-kB Signaling Pathway, Akt 387 

Signaling, PAK Pathway and TNF Signaling. The presence of some of these pathways 388 

opens the hypothesis of viral infection as a cause of CLL. Figure 5 shows the 389 

correlation tree between the most discriminatory genes found by FR that provided the 390 

highest precision in synthetic modeling. Note that the most important branch is 391 

associated to the connection LPL/ZBTB 20. 392 

Regarding the IBM dataset, we found that SAM and FR were able to correctly predict 393 

97% of the samples just with 2 and 1 probes respectively. Differences between SAM 394 

and FR and other methods are remarkable. The list of most discriminatory genes of the 395 

IBM phenotype include: HLA-C, HLA-B, TMSB10, S100A6, HLA-G, STAT1, TIMP1, 396 

HLA-F, IRF9, BID, MLLT11 and PSME2. Note the presence of different HLA-x genes 397 

of major histocompatibility. Particularly, the function of the gene HLA-B would explain 398 

alone the genesis of IBM: “HLA-B (major histocompatibility complex, class I, B) is a 399 

human gene that provides instructions for making a protein that plays a critical role in 400 

the immune system. HLA-B is part of a family of genes called the human leukocyte 401 

antigen (HLA) complex. The HLA complex helps the immune system to distinguish the 402 

body’s own proteins from proteins made by foreign invaders such as viruses and 403 



bacteria”. The analysis of biological pathways has revealed the importance of viral 404 

infections, mainly in IBM patients: Allograft Rejection, Influenza A, Class I MHC 405 

Mediated Antigen Processing and Presentation, Staphylococcus Aureus Infection, 406 

Interferon Signaling, Immune Response IFN Alpha/beta Signaling Pathway, 407 

Phagosome, Tuberculosis, Cell Adhesion Molecules (CAMs), Epstein-Barr Virus 408 

Infection, and TNF Signaling. We can see several viral infections in this list. It is 409 

interesting to remark that 75% of the cases of viral myositis are due to Staphylococcus 410 

Aureus infection [21]. Figure 6 shows the correlation tree for the IBM phenotype, 411 

indicating the importance of the major histocompatibility gene family. 412 

Finally, in the case of ALS dataset, SAM reached an accuracy of 95% with 42 probes, 413 

whilst FR and PD got a 94% with 12 and 17 probes respectively.  High discriminatory 414 

genes of the ALS phenotype include: CASP1, ZNF787 and SETD7. The pathway 415 

analysis has revealed the importance of the GPCR Pathway, RhoA Signaling Pathway, 416 

EPHB Forward Signaling, EphrinA-EphR Signaling, EBV LMP1 Signaling, and 417 

Regulation of Microtubule Cytoskeleton. These pathways have different important 418 

signaling roles and suggest a possible link to the Epstein-Barr virus (EBV). Finally 419 

Figure 7 shows the correlation tree between the most discriminatory genes found by FR, 420 

highlighting the link between caspases, zinc finger proteins and the gene NKAP that 421 

encodes a protein that is involved in the activation of the ubiquitous transcription factor 422 

NF-kappaB. The activation of caspases plays a central role in cell apoptosis and 423 

activates interleukin-1, a cytokine involved in the processes such as inflammation. 424 

Caspases have been also associated to the pathogenesis of Huntington disease. 425 

 426 

4. CONCLUSION 427 

We have theoretically showed that noise in expression data and class assignment 428 



partially falsifies the sets of discriminatory probes in phenotype prediction problems. 429 

Via synthetic modeling we have shown that FR and SAM are the most robust gene 430 

selection methods for different kind of noises. Besides, FR and SAM seem to exploit 431 

the parsimony principle and are able to find the smallest-scale high discriminatory gene 432 

signature. Nevertheless, SAM is much more computationally expensive than FR while 433 

the achieved results are similar. We have also found that noise in class assignment 434 

affect the predictive accuracy and the precision much more than noise in the expression 435 

data. Nevertheless, the No-Free-Lunch Theorem in search and optimization [22] states 436 

that all these algorithms are needed to understand the complex relationships hidden in 437 

the genomic datasets. Therefore, the prior knowledge provided by the doctors is of 438 

paramount importance in the search for solutions of the different diseases. From the 439 

translational point of view this analysis shows the importance of establishing the 440 

discriminatory power of the genes in phenotype prediction problems to correctly find 441 

the biological pathways that are involved. To accomplish this task in the most efficient 442 

way possible, suggested in this paper, we suggest ranking the most differentially 443 

expressed genes according to their Fisher’ ratio (or SAM ratio). Examples to cancer 444 

(CLL), rare (IBM) and neurodegenerative diseases (ALS) are also outlined in this paper 445 

obtaining very interesting conclusions that might imply an important role of several 446 

viral infections. 447 
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TABLE CAPTIONS 514 

	
  1% 2% 3% 4% 5% 6% 

GAUSSIAN	

FR 1.00 0.97 0.86 0.72 0.65 0.55 
FC 0.64 0.64 0.61 0.56 0.53 0.46 
EN 0.85 0.75 0.68 0.55 0.5 0.43 
PD 0.28 0.31 0.32 0.34 0.34 0.34 

SAM 0.94 0.91 0.80 0.67 0.60 0.51 

LOG-GAUSSIAN	

FR 0.84 0.62 0.41 0.26 0.21 0.16 
FC 0.60 0.54 0.38 0.27 0.23 0.16 
EN 0.67 0.45 0.31 0.18 0.12 0.10 
PD 0.32 0.36 0.28 0.24 0.19 0.14 

SAM 0.79 0.57 0.38 0.25 0.20 0.15 
		   10% 15% 20% 25% 30% 35% 

CLASS	

FR 1.00 1.00 0.99 0.94 0.68 0.40 
FC 0.53 0.52 0.41 0.29 0.25 0.16 
EN 0.87 0.88 0.82 0.77 0.50 0.32 
PD 0.27 0.26 0.22 0.19 0.18 0.12 

SAM 0.94 0.94 0.93 0.88 0.64 0.37 

Table 1: Synthetic modeling. Precision for each of the noise types at different noise 515 
levels. 516 

  517 



 518 

 
  1% 2% 3% 4% 5% 6% 

GAUSSIAN 

FR 100.00 / 8 100.00 / 5 100.00 / 6 100.00 / 5 100.00 / 13 100.00 / 8 

FC 100.00 / 9 100.00 / 12 100.00 / 12 100.00 / 9 100.00 / 9 100.00 / 12 

EN 100.00 / 17 100.00 / 11 100.00 / 8 100.00 / 12 100.00 / 19 100.00 / 28 

PD 100.00 / 21 100.00 / 19 100.00 / 23 100.00 / 17 100.00 / 17 100.00 / 22 

SAM 100.00 / 6 100.00 / 5 100.00 / 6 100.00 / 4 100.00 / 14 100.00 / 8 

LOG-
GAUSSIAN 

FR 100.00 / 6 100.00 / 22 100.00 / 47 100.00 / 29 100.00 / 37 100.00 / 88 

FC 100.00 / 9 100.00 / 16 100.00 / 48 100.00 / 29 100.00 / 37 100.00 / 119 

EN 100.00 / 4 100.00 / 14 100.00 / 24 100.00 / 38 100.00 / 45 100.00 / 132 

PD 100.00 / 22 100.00 / 23 100.00 / 111 100.00 / 37 100.00 / 46 100.00 / 128 

SAM 100.00 / 8 100.00 / 18 100.00 / 47 100.00 / 29 100.00 / 28 100.00 / 90 
    10% 15% 20% 25% 30% 35% 

CLASS 

FR 90.18 / 3 85.28 / 14 83.44 / 2 76.07 / 4 73.62 / 2 69.94 / 213 

FC 90.18 / 10 84.66 / 8 80.98 / 188 76.07 / 52 72.39 / 183 69.94 / 85 

EN 90.18 / 25 85.28 / 28 81.60 / 18 75.46 / 2 73.62 / 3 71.17 / 4 

PD 90.80 / 121 85.89 / 180 80.98 / 29 75.46 / 23 71.17 / 33 66.87 / 46 

SAM 90.80 / 5 85.28 / 4 83.44 / 2 76.07 / 4 73.62 / 2 69.33 / 5 

Table 2: Synthetic modeling. Mean LOOCV predictive accuracy for each of the noise 519 
types at different noise levels. 520 

  521 



 522 

  CLL IBM ALS 
FR 93.25 / 6 97.06 / 2 94.12 / 12 
FC 93.87 / 35 79.41 / 2 87.06 / 254 
PD 93.25 / 7 91.18 / 32 94.12 / 17 
EN 94.48 / 99 79.41 / 6 88.24 / 114 

SAM 93.87 / 26 97.06 / 1 95.29 / 42 

Table 3. Mean LOOCV accuracy / Number of selected probes for CLL/IBM/ALS 523 
datasets. 524 

 525 
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FIGURE CAPTIONS 527 

 528 
Fig 1 Flow diagram of the methodology shown in this paper. 529 



 530 
 531 
 532 
Fig 2 Empirical Cumulative Distribution Function (CDF) of the positions of the 533 
differentially expressed genes in the set of the first 1000 selected genes for Gaussian 534 
noise. 535 
  536 



 537 

 538 
 539 
 540 
Fig 3 Empirical Cumulative Distribution Function (CDF) of the positions of the 541 
differentially expressed genes in the set of the first 1000 selected genes for log-Gaussian 542 
noise. 543 
  544 



 545 

 546 
 547 
 548 
Fig 4 Empirical Cumulative Distribution Function (CDF) of the positions of the 549 
differentially expressed genes in the set of the first 1000 selected genes for class 550 
assignment noise. 551 
  552 



 553 
 554 

 555 
 556 
 557 
 558 
Fig 5  Correlation tree for CLL using the first 30 most discriminatory genes. 559 
  560 
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 563 
 564 
Fig 6  Correlation tree for IBM using the first 30 most discriminatory genes. 565 
 566 
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 574 
 575 
Fig 7  Correlation tree for ALS using the first 30 most discriminatory genes. 576 
 577 
 578 
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Abstract To better understand the impact of microarray preprocessing normalization
techniques on the analysis of biological pathways in the prediction of chronic fatigue
(CF) following radiation therapy (RT), this study have compared the list of predictive
genes found using the Robust Microarray Averaging (RMA) and the Affymetrix’s
MAS5 method, with the list that is obtained working with raw data (without any pre-
processing). First we modeled the spiked-in dataset where differentially expressed
genes were known and spiked-in at different known concentrations, showing that the
precisions established by different gene ranking methods were higher than working
with raw data. The results obtained from the spiked-in experiment were extrapolated
to the chronic fatigue dataset to run learning and blind validation. RMA and MAS5
provided different sets of discriminatory genes that have a higher predictive accuracy
in the learning phase, but lower predictive accuracy during the blind validation phase,
suggesting that the genetic signatures generated using both preprocessing techniques
cannot be generalizable. The pathways found using the raw dataset described better
what is a priori known for the CF disease. Besides, RMA produced more reliable
pathways than MAS5. Understanding the strengths of these two preprocessing tech-
niques in phenotype prediction is critical for precision medicine. Particularly, this
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2 MICROARRAYS PREPROCESSING TECHNIQUES

manuscript concludes that biological pathways might be better unraveled working
with raw expression data. Moreover, the interpretation of the predictive gene profiles
generated by RMA and MAS5 should be done with caution. This is an important
conclusion with a high translational impact that should be confirmed in other disease
datasets.

Keywords CANCER GENOMICS, DNA arrays, GENE EXPRESSION, GENE
NETWORKS

1 Introduction

Microarray data analysis is used to identify important genes to predict at-risk pheno-
types, understand biologic underpinning of health conditions, and identifying thera-
peutics targets. However, microarray data are notorious for containing noise which
historically contributed to issues around reproducibility, especially as related to gene
/ clinical phenotype relationships (Dinu et al., 2007; Jeffery et al., 2006; Kooper-
berg et al., 2002; Larsson et al., 2005). Further, genomic noise also impedes accurate
mechanistic conclusions by partially falsifying the biological pathways that are in-
volved in the disease development (deAndrés-Galiana et al., 2016). To address this
concern, it is common practice to apply different kinds of preprocessing techniques to
the microarray data in order to amplify the gene signal and limit the noise caused by
experimental factors (Irizarry et al., 2003). Noise might impact the results provided
by the bioinformatics techniques used to identify the most discriminatory genes in
phenotype prediction problems. Due to the high dimension and complexity of mi-
croarray datasets, filtering/ranking methods are often applied as a first step in order
to preselect the set of most discriminatory genes.

In this manuscript we compared the precision of identifying biologically rel-
evant genes obtained from a raw dataset and preprocessed datasets using Robust
Multi-array Average (RMA) and Affymetrix Microarray Suit 5.0 algorithm (MAS5).
For that purpose, we used the most common ranking methods, Fisher’s Ratio (FR)
and Fold Change (FC), to measure their predictive accuracy using a Leave-One-
Out-Cross-validation approach. We first modeled the Affymetrix Latin Square Data
for Expression Algorithm Assessment (Human Genome U133 Data Set Affymetrix
(2015)), where 42 different control genes are spiked-in at known concentrations. This
is commonly known as the Spiked-In experiment. We observed that working with raw
data provided better results than using the RMA and MAS5 preprocessed datasets
to locate the spiked-in genes. To our knowledge this a novel observation that war-
rants confirmations in other diseases datasets. In this study we also present the results
obtained for a radiotherapy-related fatigue dataset in patients with prostate cancer
(Saligan et al., 2014), obtaining some interesting and unexpected conclusions.

2 Microarrays preprocessing techniques

Microarrays are manufactured using photo-lithographic techniques to attach hun-
dreds of thousands of different oligonucleotide sequences on the surface of a glass

2



2 MICROARRAYS PREPROCESSING TECHNIQUES 2.1 MAS5

slide. These oligonucleotides correspond to known DNA or RNA sequences that are
arranged in different probe sets. Quantification of the levels of transcripts in a sample
is performed via hybridization to the specific probes and measurement of the expres-
sion through fluorescence-based methods. Generally, raw data contains about 20 pairs
of oligonucleotides for each DNA or RNA target (gene) known as probe sets. The first
component of these pairs is referred to as the Perfect Match (PM) probe. Each PM
probe is paired with a Mismatch (MM) probe that is artificially created by changing
the middle base with the intention of measuring non-specific binding. Typically, to
define a measure of gene expression, probe intensities are summarized for each probe
set into a single value. Different studies have been performed to analyze the accuracy
of these measurements and to correct the effect of noise in microarrays (Benito et al.,
2004; Chen et al., 2011; Scherer, 2009). Two techniques of particular importance are
RMA (Irizarry et al., 2003) and MAS5 (Affymetrix, 2001), and are analyzed in this
paper.

2.1 MAS5

The Affymetrix Microarray Suite 5.0 (MAS5) algorithm uses both PM and MM
probes to summarize gene expression. The MAS5 signal of a probe set i is defined
as the anti-log of the Tuckey’s biweight robust mean (Huber and Ronchetti, 2009) of
the following values:

ui j = log(PMi j−CTi j), j = 1, ...,N, (1)

where

CTi j =

{
MMi j if MMi j < PMi j,
PMil− ε2 if MMi j > PMi j,

(2)

being N de number of probes in the probe set (or gene) i and ε2 a given positive
amount that has to be individually adjusted for each probe set. Therefore, the robust
Tuckey’s mean of a probe set i is

ui =

N
∑
j=1

ψ(ui j;c)ui j

N
∑
j=1

ψ(ui j;c)
, (3)

where

ψ(x;c) =





x
(

1− x2

c2

)2
for |x|< c,

0 for |x|> c.
(4)
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2.2 RMA 3 MATERIAL AND METHODS

2.2 RMA

Robust Multiarray Average (RMA), basically consists in three steps:

1. Background correction using the following additive probabilistic model:

PMi j = si j +bgi j, (5)

where PMi j is the Perfect Match of the probe j in gene i, si j is the gene signal and
it is supposed to follow an exponential distribution si j ∼ Exp(λi), and bgi j is the
background correction caused by the optical noise and non-specific binding and it
is supposed to follow a normal distribution bgi j ∼ N(µi,σ2

i ). This identification
problem has three unknown parameters (λi, µi, σi) and N different realizations
for PMi j. This problem can be typically solved by least squares and the maximum
likelihood estimation.

2. Normalization across all arrays to make all distributions the same. This task is
performed by quantile normalization, and consists in normalizing the background
corrected array to a common set of quantiles. This process is aimed at correcting
for array biases and avoiding the effect of outliers. This process provided a set of
normalized probe values sni j.

3. Probe set summarizing, where the final expression is calculated separately for
each gene i using the following linear model in log2 scale:

Yi j = µi +αi j + εi j, (6)

where Yi j are the background corrected, normalized, log transformed probe in-
tensities (Yi j = log2(sni j)), µi is the log-expression level for gene i, αi j is the
probe affinity effect of probe j in the gene i, and εi j is the independent identi-
cally distributed error term with zero mean. The probe affinities αi j should verify

N
∑
j=1

α j = 0. This linear model is solved using the median polish algorithm and

provides the final summarized gene intensity value µi, that is commonly used in
phenotype prediction problems.

3 Material and Methods

The methodology shown herein has two main parts: A) Analysis of the precision of
the ranking methods using a synthetic data set for both raw and preprocessed datasets.
B) Analysis of the accuracy of predictive genes by inspecting the biological pathways
for the cancer-related fatigue raw and preprocessed datasets.

In part A, we used the Affymetrix Latin Square Data for Expression Algorithm
Assessment. Knowing the genes that are differentially expressed, we first ranked the
genes according to a combination of Fold Change and Fisher’s ratio and then ana-
lyzed the precision of the generated gene ranking using raw and preprocessed data.
Subsequently, we performed gene selection to study the discrimination power of the
selected genes in both cases (raw and preprocessed). In part B, we used a cancer-
related fatigue data set. In this case, we did not know the differentially expressed
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genes, therefore, we performed gene selection based on the same ranking methods
used in the synthetic dataset, identified the predictive genes, and conducted correla-
tion networks and pathway analysis to understand the biological pathways that are
associated with these selected genes. Then, we compared the biological pathways
and correlation networks associated with the selected genes from the raw and prepro-
cessed data. A flow chart of this methodology is shown in figure 1.

3.1 Ranking methods and gene selection

To alleviate the high under-determined character of the genomic-phenotype predic-
tion problem, filter methods are applied to reduce the dimensionality of the genomic
data to select the most discriminatory genes. Filter methods rank the different genes
according to different measures of their discriminatory power in the phenotype pre-
diction problem. In this study, we analyzed the precision on the selection of the dif-
ferential expressed genes using a combination between the most common and well-
known ranking methods: Fold Change (FC) and Fisher’s ratio (FR). The Precision P
was defined as follows:

P =
|{DE genes}∩{Selected genes}|

|{Selected genes}| , (7)

where DE genes is the set of differentially expressed genes and Selected genes is the
set of selected genes/probes.

We work with binary classification problems, first knowing the gene expression
in the different samples of each class. Our ranking algorithm is a combination of
Fold Change (Schena et al., 1996) and Fisher’s ratio (Fisher, 1936). The algorithm
first preselected the most differentially expressed genes above a certain absolute FC
value and then the preselected genes are ranked according to their FR. The reason to
first preselect with FC is to avoid low dispersions in both classes which could provide
high FR values, when in fact the centers of both distributions in expressions are very
close.

Once we ranked the preselected genes, we identify the most discriminatory genes.
The selection of the most predictive genes, followed the same procedure that was
described in Saligan et al. (2014): the shortest list of genes with the highest predic-
tive accuracy was selected via Backwards Feature Elimination (BFE) and a distance-
based nearest-neighbor classifier. To measure the discriminatory power of the dif-
ferent embedded lists we used the Leave-One-Out Cross-Validation (LOOCV) pre-
dictive accuracy. For comparison purposes, the same procedure is used for raw and
preprocessed data through MAS5 and RMA preprocessing techniques.

3.2 The Spike-in experiment

In order to check the precision of the above described ranking method using both
raw and preprocessed data, we needed a dataset where we know the genes that are
differentially expressed. In such case we used the Affymetrix Latin Square Data for
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Fig. 1 Flow chart of the methodology
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Expression Algorithm Assessment (Human Genome U133 Data Set) that consists
of 3 technical replicates of 14 separate hybridization of 42 spiked transcripts in a
complex human background at concentrations ranging from 0.125pM to 512pM. The
concentrations in the first experiment, composed by three replicas, are 0, 0.125, 0.25,
0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512pM (see supplementary material). Each sub-
sequent experiment and its three replicas rotated the spiked-in concentrations by one
group; i.e. experiment 2 and its three replicas began with 0.125pM and ended at 0pM,
up to experiment 14 and its three replicas, which began with 512pM and ended with
256pM. Further details can be consulted in Affymetrix (2015).

3.3 The cancer related fatigue dataset

The cancer-related fatigue microarray dataset was obtained from men who were 18
years or older, diagnosed with non-metastatic prostate cancer with or without a his-
tory of prostatectomy, and scheduled to receive External Beam Radiation Treatment
(EBRT) with or without concurrent androgen deprivation therapy (ADT). A total of
44 men with non-metastatic prostate cancer were enrolled, in a NIH IRB-approved
study. Data from 27 subjects were used in the training set and data from 17 sub-
jects were included in the validation blind set Saligan et al. (2014). The training set
was from the array outputs of 27 subjects; 18 High Fatigue (HF) and 9 Low Fatigue
subjects, phenoytped using a 3-point decline in fatigue score measured by the Func-
tional Assessment of Cancer Therapy -Fatigue (Cella et al., 2002). We managed a raw
microarray dataset with 604,258 probes and the preprocessed dataset with 54,675 dif-
ferent probes in both cases, using RMA and MAS5 preprocessing techniques.

Once the most discriminatory genes from raw and preprocessed data were se-
lected, pathways analysis was performed using Gene-Analytics software (Stelzer
et al., 2009). Further, we built correlation networks to understand how the expres-
sions of the most discriminatory genes are interrelated. Correlation networks were
generated using Pearson correlation coefficient (Pearson, 1895), and Kruskal’s algo-
rithm (Kruskal, 1956) to find the minimum-spanning-tree.

4 Results and Discussion

4.1 The Spike-In experiment

Using the Affymetrix Latin Square Data for Expression Algorithm Assessment (Hu-
man Genome U133 Data Set) we have checked the Precision of the FC/FR ranking
algorithm described in section 3. There are 42 differentially expressed probes and we
selected the first 42 probes in the ranking. We compared the first group with the rest
of groups to cover all the possible concentration comparisons. In the first comparison
(group 1 Vs. group 2) the difference of concentration between all the differentially
expressed probes was 0.125pM, in the second comparison (group 1 Vs. group 3) the
difference was 0.5pM, on up to the 12 comparisons (group 1 Vs. group 13), which
was 256pM. Due to the rotation of the concentrations, the last comparison (group 1
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Vs. 14) had again a difference of 0.125pM in concentration among all the differen-
tially expressed probes.

Table 2 shows the Precision for each comparison using RAW, RMA and MAS5
datasets, showing the mean Precision along the different comparisons. In almost all
the comparisons we got better results in terms of precision working with RAW data
than with RMA and MAS5 datasets. Also, the higher Mean Precision was obtained
with RAW data.

We have also calculated the empirical Cumulative Distribution Functions (CDF)
of the positions of the differentially expressed genes. A perfect CDF would be a
straight line reaching the value of 1 at position 42, corresponding to the total num-
ber of differentially expressed genes. These curves served to visualize how many
genes we have to select in order to locate all the differentially expressed genes. Fig-
ure 2 shows these CDF curves for each comparison and type of data. As the raw
data obviously have more genes/probes (248,152 for raw data and 22,300 for prepro-
cessed data, see Affymetrix (2015)), the positions given by the ranking method are di-
vided by a correction factor: C = nR/nP where nR is the number of raw probes/genes
equal to 248,152 and nP is the number of preprocessed probes/genes equal to 22,300.
Therefore, C = 11.13, for the spiked-in experiment.

Fig. 2 Empirical Cumulative Distribution Function (CDF) of the positions of the differentially expressed
genes ranked by the FC/FR methods for each comparison and different types of data.

In this figure the X-axis represents the positions of the genes/probes given by
the ranking method and the Y-axis represents the percentage of differentially ex-
pressed genes that were located. Therefore, in the first comparison we were able
to find all the differentially expressed genes (42) selecting less than 5000 (0.5E4 in
the X-axis of the graphic) while working with preprocessed data, we needed almost
all the probes/genes (2.23E4). In all the comparisons, we were able to find all the dif-
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ferentially expressed genes selecting rather less number of genes with raw data than
with preprocessed data.

4.2 The Chronic fatigue dataset

The aim of this study is to find the list of most discriminatory genes that serve to
differentiate between high and low chronic fatigue induced by the radiotherapy in
prostate cancer patients (Saligan et al., 2014). The differences on the selection of
most discriminatory genes using raw and preprocessed data are shown. For the sake
of clarity we are showing the first 50 most discriminatory genes in each case.

Table 3 shows the LOOCV accuracy of first 50 most discriminatory probes/genes
in each case. The highest predictive accuracy we obtained a 92.59% of accuracy with
only the first 3 probes/genes. However, using RMA and MAS5 we achieved a 100%
with 6 and 44 probes/genes respectively. Obviously the dimensionality of the raw
data set is 11.05 times higher than the preprocessed datasets, that is, using the raw
data, the probe sets have not been summarized in one gene like in the preprocessed
data. For that reason the repetition of a probe in the raw data indicates the importance
of the corresponding gene. This is the case of TUBB2A, HLA-DQA1, TUBB3, HLA-
DQB1, and BTNL3. It can be observed that RMA also found these genes within the
most discriminatory set, but not using MAS5.

Additionally, a blind validation of these results has been performed using the
set of 17 subjects, independent of the training set, originally used in Saligan et al.
(2014) to assess the validity of the learned predictive model. The result of this blind
validation using raw data was 76.47% accurate, while using MAS5 and RMA, the
accuracy dropped to 58.82% and 64.7%, respectively. This result is very important
and shows that RMA and MAS5 increase the accuracy in the learning process at
the prize of decreasing the accuracy in blind validation. Therefore, this implies that
the biological pathways associated with the predictive genes found using raw data
are more meaningful, and both preprocessing techniques (RMA and MAS5) highly
impact the biological pathway analysis and the corresponding phenotype prediction
problem.

4.3 Pathway analysis and Correlation networks

In this section we provide the main pathways associated with the discriminatory
genes that can predict the Chronic Fatigue phenotype using raw, RMA and MAS5
datasets. These genes are shown in table 3.

The raw data generated predictive genes associated with pathways mainly re-
lated to pathogenic infections (HLA-DQX genes), as well as pathways associated
with oligomerization of connexins into connexons (TUBB2A and TUBB3) involved
in intercellular signals and metabolic communication (Koval, 2006). These are cru-
cial mechanisms in the development of many human diseases (Kelsell et al., 2001).

The main pathways associated with predictive genes generated by RMA are re-
lated to mitotic prometaphase (BIRC5, CLIP1, STAG2, TUBB3) that controls the nu-
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clear membrane breaking apart into numerous membrane vesicles, cytoskeleton re-
modeling neurofilaments (EEPK1, KRT6A, TUBB2A and TUBB3) and mitotic meta-
phase and ana-phase (BIRC5, CLIP1, TUBB2A and TUBB3). The beta-tubulin gene
family controls the tubulin protein super-family of globular proteins. Beta-tubulins
polymerize into micro-tubules which is a major component of the cytoskeleton for-
mation. Micro-tubules function in many essential cellular processes, including mi-
tosis. For instance, tubulin-binding drugs serve to kill cancerous cells by inhibiting
micro-tubule dynamics that are required for DNA segregation and cell division. The
main pathways associated with predictive genes generated by MAS5 are GADD45
pathway, EGFR1 signaling pathway, and interferon type I related to the MAP3KX
genes (Jordan and Wilson, 2004; McKean et al., 2001).

We also provide the correlation graphs for the 50 most discriminatory genes for
each dataset. Figure 3, 4 and 5 shows the correlation graphs for raw, RMA and MAS5
respectively. In the case of raw data we can observe one main tree connecting the
tubulin genes to the major histocompatibility complex gene and other genes that serve
to expand the tree. RMA privileges the connection between the beta-tubuline genes
and two probes (241238 at and 1566585 at) whose gene name is unknown. MAS5
privileges the role of SOCS3. This gene encodes a member of the STAT-induced STAT
inhibitor (SSI), also known as suppressor of cytokine signaling (SOCS), family. SSI
family members are cytokine-inducible negative regulators of cytokine signaling. The
expression of SOCS3 gene is induced by various cytokines, including IL6, IL10, and
interferon (IFN)-gamma (Masuhara et al., 1997; Minamoto et al., 1997).
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Fig. 3 Pearson correlation coefficient minimum-spanning-tree of the 50 first selected probes using raw
data.
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Fig. 4 Pearson correlation coefficient minimum-spanning-tree of the 50 first selected probes using prepro-
cessed data with RMA.
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Fig. 5 Pearson correlation coefficient minimum-spanning-tree of the 50 first selected probes using prepro-
cessed data with MAS5.

5 Conclusions

We analyzed the impact of the main preprocessing microarrays techniques (MAS5
and RMA) in identifying the biological pathways that are associated with discrim-
inatory genes that can accurately predict the cancer-related fatigue phenotype. For
such purpose we first model a synthetic dataset: the Affymetrix Latin Square Data
for Expression Algorithm Assessment where 42 control genes are spiked-in at known
concentrations; and a real case: radiotherapy-related fatigue dataset (learning and val-
idation) in patients with prostate cancer. We found that in the case of the Affymetrix
synthetic dataset, the mean precision along all the comparisons was higher using
raw data than using preprocessed data. This difference is even more remarkable in
the CDF curves for all the comparisons. We were able to find all the differentially
expressed genes selecting rather less number of genes with raw data than with pre-
processed data.

Regarding the cancer-related fatigue dataset, we evaluated the goodness of the se-
lected genes via Backwards Feature Elimination and a distance-based nearest-neighbor
classifier through the LOOCV predictive accuracy. In addition, we built correlation
networks and performed pathway analysis to understand how the expression of the
most discriminatory genes is biologically relevant. With RMA and MAS5 datasets,
we got better accuracy results in the learning phase, than using RAW data. However,
in the blind validation, working with RAW data allowed us to generalize better than
using preprocessed data (RMA and MAS5). Besides, the pathway analysis and the
correlation networks were significantly different between RAW, RMA and MAS5.
This would explain why some genetic signatures found in real practice fail to predict
unseen samples. Consequently it can be concluded that interpreting results from pre-
dictive gene profiles generated by RMA and MAS5 should be done with caution. This
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TABLES

Table 1 Precision on the selection of the differential expressed genes using raw data or preprocessed data
with RMA and MAS5. The data is the Affymetrix Latin Square Data for Expression Algorithm Assess-
ment. The selection is performed between the first group and the rest to include all the differences between
the spike-in concentrations.

Group comparison RAW RMA MAS5
1 vs 2 7.14 9.52 4.76
1 vs 3 26.19 16.67 16.67
1 vs 4 38.10 11.90 14.29
1 vs 5 28.57 28.57 16.67
1 vs 6 26.19 28.57 28.57
1 vs 7 40.48 26.19 23.81
1 vs 8 35.71 21.43 30.95
1 vs 9 40.48 23.81 23.81

1 vs 10 35.71 19.05 21.43
1 vs 11 38.10 14.29 21.43
1 vs 12 23.81 16.67 9.52
1 vs 13 23.81 23.81 14.29
1 vs 14 7.14 4.76 9.52

Mean Precision 28.57 18.86 18.13
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Table 2 Probe/Gene name and Accuracy (Acc %) of the selected genes/probes for raw data and prepro-
cessed data with RMA and MAS5

RAW RMA MAS5
Probe/Gene Acc(%) Probe/Gene Acc(%) Probe/Gene Acc(%)

TUBB2A 85.19 TUBB2A 88.89 SOCS3 85.19
HLA-DQA1 96.3 C11orf1 88.89 TMEM194A 92.59
TUBB2A 92.59 PPOX 96.3 1561478 at 92.59
TUBB2A 92.59 TTC23 92.59 CIB3 96.3
TUBB2A 88.89 NRIP3 96.3 ESYT2 92.59
TUBB2A 85.19 SCAMP4 100 ABHD1 92.59
TUBB2A 85.19 HLA-DQA1 100 JTB 92.59
HLA-DQA1 88.89 234253 at 100 1556412 at 92.59
TUBB2A 88.89 223313 s at 96.3 207371 at 96.3
TUBB2A 88.89 BTNL3 100 LOC100131756 92.59
BTNL3 88.89 YSK4 96.3 CDK6 92.59
TUBB2A 88.89 236963 at 100 ALS2CR8 96.3
HLA-DQA1 92.59 ZCCHC2 100 SEL1L2 96.3
TUBB2A 88.89 DSG3 100 FLJ35220 96.3
TUBB3 88.89 TMEFF2 100 215626 at 96.3
HLA-DQB1 85.19 1566585 at 100 SPAM1 96.3
HLA-DQB1 LOC101060835 85.19 231141 at 100 FTCD 96.3
HLA-DQA1 88.89 SPATA20 100 1570285 at 96.3
IMMP1L 85.19 CSN1S2A 100 216795 at 96.3
BTNL3 85.19 RAB11FIP3 100 MAP3K2 96.3
240231 at 85.19 239587 at 100 MTSS1L 96.3
ZFPL1 85.19 RIMS3 100 GMEB1 96.3
GNRHR2 85.19 234548 at 100 SOCS7 96.3
DR1 88.89 C20orf103 100 GNA12 96.3
DOCK11 88.89 AGR2 100 244274 at 96.3
HLA-DQB1 88.89 SAT1 100 PLP2 96.3
FMR1 88.89 RGS18 100 ATG9B 96.3
ACAP2 85.19 1570044 at 100 1564056 at 96.3
HLA-DQB1 85.19 TUBB3 100 PCCB 96.3
ZEB1 LOC100996668 85.19 HDLBP 100 239370 at 96.3
FLJ32790 85.19 1560087 a at 100 ANK1 96.3
LOC100505812 88.89 AVL9 100 SCAND2 96.3
DENND4C 88.89 241238 at 100 1564872 at 96.3
PREPL 88.89 PHLDB3 100 SMAD2 96.3
LOC100505812 85.19 PIGK 100 CMTM3 96.3
FAM63B 88.89 F11 100 INSR 96.3
LYSMD3 85.19 C1orf21 100 PSG1 96.3
RP11-727A23.11 OTTHUMG00000183952 85.19 IL9 100 1560169 at 96.3
HIPK3 85.19 229733 s at 100 MAP3K1 96.3
POLR2J4 85.19 241776 at 100 KCNRG 96.3
PHF17 85.19 WDR27 100 DOCK7 96.3
SP3 85.19 D21S2091E 100 1560995 s at 96.3
MRGBP 85.19 239632 at 100 WNT5A 96.3
NAP1L1 85.19 HGSNAT 100 1562673 at 100
FAM126A 85.19 242839 at 100 GSK3B 100
EPS15P1 85.19 KCTD4 100 NCKIPSD 100
SMCR8 85.19 MECOM 100 215439 x at 100
HLA-DQA1 LOC100509457 85.19 LOC257152 100 CDHR3 96.3
ZMYM2 85.19 MLH3 100 PCGEM1 96.3
EIF1AX LOC101060318 85.19 DDX60 100 GNG13 96.3
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Abstract Genomics has been used with varying degrees of success in the context of
drug discovery and in defining mechanisms of action for diseases like cancer, neu-
rodegenerative and rare diseases in the quest for orphan drugs. To improve its utility,
accuracy and cost-effectiveness optimization of analytical methods, especially those
that translate to clinically relevant outcomes is critical. Here we define a novel tool for
genomic analysis termed a biomedical robot in order to improve phenotype predic-
tion, identifying disease pathogenesis and significantly defining therapeutic targets.
Biomedical robot analytics differ from historical methods in that they are based on
melding feature selection methods and ensemble learning techniques. The biomedical
robot mathematically exploits the structure of the uncertainty space of any classifica-
tion problem conceived as an ill-posed optimization problem. Given a classifier, there
exist different equivalent small-scale genetic signatures that provide similar predic-
tive accuracies. We perform the sensitivity analysis to noise of the biomedical robot
concept using synthetic microarrays perturbed by different kind of noises in expres-
sion and class assignment. Finally, we show the application of this concept to the
analysis of different diseases, inferring the pathways and the correlation networks.
The final aim of a biomedical robot is to improve knowledge discovery and provide
decision systems to optimize diagnosis, treatment and prognosis. This analysis shows
that the biomedical robots are robust against different kind of noises and particularly
to a wrong class assignment of the samples. Assessing the uncertainty that is inher-

E.J. deAndés-Galiana
Artificial Intelligence Center, Universidad de Oviedo, Asturias, Spain.
E-mail: eag@aic.uniovi.es

J.L. Fernández-Martı́nez
Mathematics department, Universidad de Oviedo, Asturias, Spain.
Tel.: +34-985103199
Fax: +34-985103354
E-mail: jlfm@uniovi.es

S.T. Sonis
Biomodels, LLC, Watertown, MA, USA.
E-mail: ssonis@biomodels.com



2 THE PHENOTYPE PREDICTION PROBLEM

ent to any phenotype prediction problem is the right way of addressing this kind of
problems.

Keywords Translational genomics · Biomedical robots · Phenotype prediction ·
Uncertainty assessment

1 Introduction

Despite all of its promises, clinical translation of genomics findings has been tem-
pered by analytical limitations, the requirement for extensive numbers of subjects,
and cost. To help address these issues, we have developed a coordinated set of bioin-
formatics algorithms derived from a combination of applied mathematics, statistics
and computer science that are capable of analyzing dynamically (as a function of
time) high dimensional data. Aside from specifically addressing the interpretation
of genomic data, strength of the method is its ability to synchronously include non-
genomic inputs (epigenetics, demographic variables, etc.) as a component of a com-
prehensive analysis. To best describe the concept and potential applications of the
Biomedical Robot, we first present the generic and broadly applicable problem of
phenotype prediction. For a clinical perspective, this problem applies to linking a set
of genes to a specific disease or condition. Second, we describe the design and con-
struction of the biomedical robot, and finally, we provide specific applications of the
methodology to different disease datasets: Chronic Lymphocytic Leukemia (CLL),
Inclusion Body Myositis (IBM)-Polymyositis (PM) and Amyotrophic Lateral Scle-
rosis (ALS).

2 The phenotype prediction problem

The primary objective of phenotype discrimination is to define sets of genes/probes
that optimally differentiate between populations expressing or not expressing a par-
ticular phenotype such as disease risk, drug responsiveness or medication toxicity.
This concept can be useful in identifying biological and molecular pathways differ-
ences between normal and cancer cells, or investigating drug mechanisms of action
for a certain type of disease.

We built a conceptual model that related different genes/probes to class prediction
(phenotype) as a nonlinear classification problem, since the classifier and the genetic
features that serve to achieve an optimum prediction of the phenotype are unknown.
Therefore, as a first step a given type of classifier (nearest-neighbor, neural networks,
support vector machines, etc) should be built ad-hoc to relate the genetic features to
the observed phenotype classes. The classification problem of phenotype discrimi-
nation does not need necessarily to be binary, it could be multi-class. This can be
considered as the first source of uncertainty in the phenotype prediction problem,
since the perfect classifier is a priori unknown.

First we start with a set of expressions of n genes/probes for a set of m samples
whose phenotype classes are defined, usually by medical expert annotation. This in-
formation is typically organized in the expression matrix E ∈Mm×n(R) with m << n
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2 THE PHENOTYPE PREDICTION PROBLEM

and in the class phenotype vector cobs ∈ Rm. The classifier L∗(g) can be formally
defined as an application between the set of genetic features g ∈M ⊂ Rs and the set
of classes C = {c1,c2, ...,cn}:

L∗(g) : g ∈ Rs→C = {c1,c2, ...,cn}. (1)

Importantly, not all the genes/probes provide useful information to the phenotype
prediction inverse problem. These extraneous genes are noisy and can be analytically
disruptive. Fortunately, it is possible to discard irrelevant features, that is, those genes
that do not provide any useful information for the phenotype discrimination, since
these features introduce ambiguity in the classification. The relevant genes would be
defined as the ones that minimize a given target function O(g) related to the class
prediction array:

g : O(ḡ) = min
g∈RS

O(g), (2)

O(g) = ||L∗(g)− cobs||p (3)

L∗(g) = (L∗(g1), ...,L∗(gi), ...,L∗(gm)), (4)

where cobs is the set of observed classes, p is the norm applied in the distance cri-
terion, L∗(g) is the set of predicted classes and gi ∈ RNS

is the genetic signature
corresponding to sample i. Otherwise said, the relevant genes would be the ones that
allow us to predict the phenotype of new incoming samples. Three considerations are
particularly relevant:

– First, several equivalent genetic signatures exist which explain the phenotype
class equally well or having a similar predictive accuracy. This is known as the
ill-posed character of the phenotype classification problem. Thus, we can apply
the parsimony principle to identify small scale signatures by introducing the con-
cept of redundancy. Given a genetic signature g ∈ Rs characterized by its class
predictive accuracy and length s, redundant features (or genes) are those that pro-
vide no additional information than the currently selected features, that is, the
prediction accuracy does not increase by adding these genetic features to g in the
classifier. Interestingly, the fact that the parsimony principle is applied does not
avoid the existence of other equivalent signatures that form the equivalence space
of the phenotype prediction problem.

– Second, the ill-posed character of the classification is due to the high underde-
termined character of the inverse problem involved, since the number of samples
m is much lower than the total number of genetic probes n. Fernández-Martı́nez
et al. (2012, 2013) analyzed the uncertainty space of linear and nonlinear inverse
and classification problems showing that the topography of the cost function O(g)
in the region of lower misfits (or higher predictive accuracies) correspond to one
or several flat elongated valleys with null gradients, where the high predictive
genetic signatures reside. This valley is unique and rectilinear if the classifica-
tion/inverse problem is linear, and bends and might be composed of several dis-
connected basins if the inverse problem is nonlinear and the classification prob-
lem becomes nonlinear separable. Also, if we are somehow able to define the
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3 BIOMEDICAL ROBOTS

discriminatory power of the different genes, a classification problem could be in-
terpreted as the Fourier expansion of a signal, that is, there will be genes that
provide high accuracy for the classification problem alone (head genes), while
others will assist in expanding the high frequency details (helper genes) in or-
der to improve the predictive accuracy. Nevertheless, there is a time when adding
more details to the classifier do not increase its predictive accuracy. The small-
est scale signature is the one that has the least number of highest discriminatory
genes. This knowledge could be important for diagnosis and treatment optimiza-
tion since it allows a fast and cheap genetic data gathering.

– Third, genomic data is notorious for containing noise which has historically con-
tributed to issues around reproducibility, especially as related to gene/clinical phe-
notype relationships. Similarly, genomic noise also impedes accurate mechanis-
tic conclusions by-partially falsifying biological pathways. There are two main
sources of noise:
– First, noise in the genes expressions that is introduced by the process of data

filtering and measurement. The observed genetic expression of a sample, gobs,
can be expressed as then sum of the noiseless expression gtrue and the mea-
surement noise δg: gobs = gtrue +δg.

– Second, noise in the class assignment δc, that is due to an incorrect labeling
of the samples by the experts. Therefore the observed class vector can be ex-
pressed as the sum of the true class vector ctrue and the class assignment noise
δc. For instance, sometimes the classification problem is parameterized as bi-
nary when in fact there are more than two classes. Therefore, assigning two
different classes to the samples will input noise in the classification. In this
case, finding a predictive accuracy lower than 100% would be the expected
result, otherwise the algorithm will find a wrong genetic signature in order
to fit (or explaining) the wrong class assignment. Obviously this situation is
always difficult to detect, since the strategy that is normally followed, con-
sists in achieving a perfect classification. This is not the point of view that is
proposed in this paper.

It is straight forward to show that both kinds of noise induce a modeling error
in the classifier. Therefore, in presence of these types of noise (δg and δc) the
genetic signature with the highest predictive accuracy (and therefore the lowest
misfit error) will never perfectly coincide with the genetic signature(s) that ex-
plains the disease (noise-free phenotype classification problem). For that reason
it is desirable to look also for genetic signatures with lower predictive accuracy
than the optimum. Besides, the classifier L∗ is built ad-hoc and it is just a mathe-
matical abstraction used to discover the genes that are involved in the phenotype
discrimination, but it is not the reality itself.

3 Biomedical robots

A biomedical robot is a set of algorithms derived from applied mathematics, statistics
and computer science that are capable of dynamically analyzing high dimensional
data, discovering knowledge, generating new biomedical working hypothesis, and

4



3 BIOMEDICAL ROBOTS

supporting medical decision making with its corresponding uncertainty assessment.
In this definition the data does not need necessarily to be of the same type, that is,
several types of data could be used for decision-making purposes. In the present case
the data come from microarray differential expression analysis, between individuals
that develop the illness and others that do not.

Generating new working hypothesis in the present case includes the analysis of
biomarkers and mechanisms of action involved in the illness development, and find-
ing existing drugs that could target the main actionable genes. Also, a benefit of
this approach could be the design of intelligent systems to support medical doc-
tors/researchers in the decision making process of new incoming uncatalogued sam-
ples to decide questions relative to their diagnosis, treatment and prognosis before
any decision is taken. These techniques can help for instance in segmenting patients
with respect to response to treatment (deAndrés-Galiana et al., 2015) and also to drug
response, to predict the development of induced toxicities (Saligan et al., 2014), to
infer the possible surgical risk, etc, among many different applications that we can
imagine.

Figure 1 shows a conceptual scheme of the biomedical robot concept. From a
training data set we built Nr robots. The robot is in this case a set of classifiers
characterized by their small scale genetic signatures g and their corresponding set
of parameters needed to perform the classification of the samples. These robots will
be deduced from the dataset by applying different supervised filter feature selection
methods and dimensional reduction algorithms. Each robot will be also character-
ized by its predictive accuracy according to the classification cost function O(g) in
a testing dataset. The design of the cost function is important because the set of ge-
netic signatures found might depend on that design. In this paper we have used a
Leave-One-Out-Cross-Validation (LOOCV) average error because it makes use of
most of the samples that are at disposal, and also mimic the process that we will find
in real practice: predicting the class of a new sample using a set of samples that were
previously observed and annotated by medical experts (training data set).

It is important to remark that we are not interested in building a black-box method-
ology, but also being able of inferring the mechanisms of action and the genetic and
biological pathways that are involved. The final decision approach is as follows: given
a new incoming sample, each of the equivalent robots will perform a prediction. A
final prediction with its uncertainty assessment will be given using all these predic-
tions via a consensus strategy such as majority voting. This approach has been used
by Fernández-Martı́nez and Cernea (2014) in a face recognition problem obtaining
very high stable accuracies. Ensemble classification and majority vote decisions are
based on Condorcet’s jury theorem, which is a political science theorem about the
probability of a given group of individuals arriving at a correct decision. In the con-
text of biomedical robots and ensemble learning, it implies that the probability of
being correct for a majority of independent voters is higher than the probability of
any of the individual voters, and tends to 1 when the number of voters (or weak
classifiers) tends to infinite. In this case the weak classifiers are any of the biomed-
ical robots of the ensemble that have a high predictive accuracy. These classifiers
are guaranteed to be independent since they use different high discriminatory genetic
signatures, measured by their corresponding discriminatory power.
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Fig. 1 Conceptual scheme for the design of biomedical robots.

Several methods exist to assign the discriminatory power of the genes: Fold-
Change (Schena et al., 1996), Fisher’s ratio (Fisher, 1936), Entropy (Shannon, 1948),
Mutual Information (Quinlan, 1993), Significance Analysis of Microarrays (SAM)
(Tusher et al., 2001), percentile distance between statistical distributions (deAndrés-
Galiana et al., 2015), etc. Generally speaking high discriminatory genes are those
that have very different distributions in both classes (in a binary problem) and whose
expression remains quite stable or homogeneous within each class.

The algorithm used in this paper is similar to the one that was introduced in
Saligan et al. (2014) and deAndrés-Galiana et al. (2015) and consists in several steps
(see figure 1):

1. Applying several filter feature selection methods to find different lists of high
discriminatory genes.

2. Establishing the predictive accuracy of these lists of genes using a Leave-One-
Out-Cross-Validation (LOOCV) cost function via a k-Nearest-Neighbor (k-NN)
classifier. Others classifiers could be also used. This sampling procedure of the
phenotype prediction uncertainty space aims at obtaining from these lists different
biomedical robots with their corresponding predictive accuracy. For that purpose
we can use backwards feature elimination and/or random sampling methodolo-
gies.
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3 BIOMEDICAL ROBOTS 3.1 Noise Sensitivity Analysis

3. Selecting robots above a certain predictive accuracy (or below a given error tol-
erance) and performing the consensus prediction through majority voting.

According to the definitions stated in (1), (2), (3), and (4) we can formally define
a biomedical robot as the set of classifiers:

Ltol = {L∗(gk) : k = 1, ...,m}, (5)

whose predictive error (the number of misclassified samples) is lower than a given
bound tol. The phenotype prediction problem with uncertainty estimation consists in,
giving an incoming sample snew, applying the set of Biomedical robots Ltol (with pre-
dictive accuracy higher than (100− tol)%) and performing the consensus classifica-
tion. Following the rules of importance sampling, and supposing that the uncertainty
analysis was correctly performed, then the probability of snew to belong to class ci
is calculated as the number of robots that predicted the sample to belong to class ci
divided by the total number of selected robots in the set Ltol .

In this paper we apply this concept to the analysis of 3 kinds of diseases: Cancer
(CLL), Neurodegenerative (ALS) and Rare diseases (IBM-PM). Although the con-
cept is theoretically correct before applying it to these datasets, we have analyzed its
robustness against different type of noises using synthetic microarrays. This analysis
helped us to extract interesting conclusions regarding the interpretation of the results
obtained for real datasets.

3.1 Noise Sensitivity Analysis

We have generated different synthetic data sets using three types of noise: additive
Gaussian noise, lognormal noise, and noise in class assignment. These last two types
belong to the category of non-Gaussian noise, since they are multiplicative and sys-
tematic random noises. The method consists in building a synthetic dataset with a
predefined number of differentially expressed discriminatory genes, and subsequently
introducing different types of noise, and determining the predictive accuracy (Acc) as
a function of the number of applied robots (#R). The synthetic dataset was built using
the OCplus package available for The Comprehensive R Archive Network (Pawitan
and Ploner, 2015).

Table 1 shows the results obtained for the sensitivity analysis. δ represents the
level of noise imputed for each type of noise, Acc the mean LOOCV accuracy, P the
Precision established using the set of genes constructed with the union of all the genes
found by the robots, and #R the number of robots used in the consensus strategy. The
precision is defined as follows:

precision =
|{DE genes}∩{Selected genes}|

|{Selected genes}| (6)

where {DE genes} stands for the set of the differentially expressed genes that we
introduced in the synthetic dataset and {Selected genes} is the union set of the high
discriminatory genes selected by the different robots. This analysis is very important
since the correlation networks and biological pathways will be established this way.
The results can be summarized as follows:
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Table 1 Noise results. The following information is given: δ the percentage of noise introduced, Acc the
mean LOOCV predictive accuracy, P the precision of the selection using the union of all the genes found
by the robots and #R the number of robots applied in the consensus strategy.

δ (%)
Class Assignation Gaussian Log Gaussian

Acc(%) P #R Acc(%) P #R Acc(%) P #R

1 98.77 1.00 98 100.00 1.00 98 100.00 1.00 98
3 96.93 1.00 98 100.00 1.00 98 100.00 0.74 98
5 94.48 1.00 98 100.00 1.00 98 100.00 0.35 98

10 90.18 1.00 98 100.00 0.60 98 100.00 0.14 10
15 87.12 1.00 3 100.00 0.33 98 99.39 0.05 37
20 80.98 1.00 1 100.00 0.22 11 100.00 0.03 43
25 77.30 1.00 10 99.39 0.13 81 98.77 0.04 98
30 73.62 0.92 43 99.39 0.14 7 100.00 0.03 14

– The Precision P keeps quite stable when noise in class assignment is increased.
This result is very interesting since the biomedical robots are able to find the dif-
ferentially expressed genes when the noise in class assignment is introduced. In
the case of Gaussian noise the precision is very high for noise levels less than 5%.
The worst result was obtained when multiplicative noise is added to the expres-
sions. The fact that the precision gradually decreases when noise in the expression
increases, implies that some of the biological pathways that are inferred might be
partially falsified. Therefore, any filtering step that it is usually performed in the
microarray data will have important consequences with respect to the pathway
analysis. Future research will be devoted to this important subject.

– The mean predictive accuracy (Acc) systematically decreases when a higher level
of the noise is added to the class assignment vector, and is very stable when Gaus-
sian and non-Gaussian noises are added to the expression data, meaning that the
biomedical robots are robust in terms of accuracy with respect to the presence of
noise in the expressions. This result also suggests that noise acts as regularization
with respect to the accuracy in the prediction as it has been theoretically proved
by Fernández-Martı́nez et al. (2014a,b) in inverse problems. It can be also con-
cluded that if the biomedical robots are unable to improve the accuracy of the
best prediction, the dataset must have some wrong class assignment that prevents
achieving a perfect classification. Other possibility is that parameterization of the
samples is incorrect, that in the present case would mean that none of the genes
that have been measured bring enough information to achieve a good phenotype
discrimination.

3.2 Chronic Lymphocytic Leukemia

B-cell Chronic Lymphocytic Leukemia (CLL) is a complex and molecular hetero-
geneous disease, being the most common adult Leukemia in western countries. In
our cohort DNA analyses served to distinguish two major types of CLL with dif-
ferent survival times based on the maturity of the lymphocytes, as discerned by the
Immunoglobulin Heavy chain Variable-region (IgVH) gene mutation status (Ferreira
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3 BIOMEDICAL ROBOTS 3.2 Chronic Lymphocytic Leukemia

et al., 2014). In this first example we had at disposal a microarray data set consisting
of 163 samples and 48807 probes.

The best robot predicted the IgVH mutational status with 93.25% accuracy using
small-scale signature composed by 13 genes: LPL (2 probes), CRY1, LOC100128252
(2 probes), SPG20 (2 probes), ZBTB20, NRIP1, ZAP-70, LDOC1, COBLL1 and
NRIP1.

Table 2 shows the results of applying the methodology of biomedical robots to
this problem. In this case the highest prediction accuracy obtained by the set of
biomedical robots equal the accuracy provided by the best robot (93.25%). This re-
sult implies that some samples are behavioral outliers or might be misclassified. This
happened with 11 samples that are identified in the PCA graphic in two dimensions
(figure 2) using the genetic signature composed of these 13 genes. It can be observed
how the classification in this reduced set of genes becomes almost linearly separa-
ble while using all the genetic information that we have at disposal the classification
is nonlinear. Therefore, as an important conclusion we can affirm that reducing the
dimension to the set of discriminatory genes helps to linearize the phenotype classi-
fication problem.

Table 2 CLL, IBM & PM and ALS results

CLL IBM & PM ALS
Acc(%) tol #R Acc(%) tol #R Acc(%) tol #R

92.64 85.89 488 87.50 82.50 223 84.71 83.53 547
92.64 86.50 487 87.50 85.00 159 85.88 84.71 441
92.64 89.57 486 90.00 87.50 138 87.06 85.88 241
92.64 90.18 479 90.00 90.00 71 88.24 87.06 197
92.64 90.80 446 92.50 92.50 32 90.59 88.24 134
92.64 91.41 373 100.00 95.00 2 91.76 89.41 96
93.25 92.02 255 97.50 97.50 1 90.59 90.59 54
93.25 92.64 120 92.94 91.76 32
93.25 93.25 22 95.29 92.94 20

94.12 94.12 10
95.29 95.29 6
96.47 96.47 1
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Fig. 2 IgVH classification in CLL: A) Considering all the genes of the microarray, the classification prob-
lem is nonlinear. B) Using the most discriminatory genes (13 probes) the classification problem becomes
linearly separable.
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3 BIOMEDICAL ROBOTS 3.2 Chronic Lymphocytic Leukemia

Figure 3 also shows the correlation network of the most discriminatory genes of
the CLL-IgVH mutational status found in this analysis. This is an interesting tool to
understand how the most discriminatory genes regulate the expression of other genes
involved in different biological pathways. The head of graph is the gene that has the
highest discriminatory power LPL. It can be observed one main network associated
to ZBTB20.
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Fig. 3 Correlation network for IgVH mutational status in Chronic Lymphocytic Leukemia.
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3 BIOMEDICAL ROBOTS 3.3 Inclusion Body Myositis and Polymyositis

Finally the pathway analysis deduced from the biomedical robots has revealed
the importance of the ERK signaling super pathway that includes ERK signaling,
ILK signaling, MAPK signaling, Molecular Mechanisms of cancer and Rho Fam-
ily GTPases pathway. These pathways control Proliferation, Differentiation, Survival
and Apoptosis. Also, other important pathways found were Allograft Rejection, the
Inflammatory Response Pathway, CD28 Co-stimulation, TNF-alpha/NF-kB Signal-
ing Pathway, Akt Signaling, PAK Pathway and TNF Signaling. The presence of some
of these pathways suggests viral infection as a possible cause for CLL.

3.3 Inclusion Body Myositis and Polymyositis

Myositis means muscle inflammation, and can be caused by infection, injury, certain
medicines, exercise, and chronic disease. Some of the chronic, or persistent, forms
are idiopathic inflammatory myopathies whose cause is unknown. We have modeled
the Inclusion Body Myositis /Polymyositis (IBM/PM) dataset published by Green-
berg et al. (2005). The data consisted in the microarray analysis of 23 patients with
IBM, 6 with PM and 11 samples corresponding to healthy controls. The best robot
perfomed the classification of the IBM+PM vs control obtaining a predictive accu-
racy of 97.5% using a reduced base with only 17 probes. The genes belonging to
the highest predictive small-scale genetic signature are HLA-C (3 probes), HLA-B (4
probes), TMSB10, S100A6, HLA-G, STAT1, TIMP1, HLA-F, IRF9, BID, MLLT11
and PSME2. It can be observed the presence of different HLA-x genes of the major
histocompatibility. Particularly the function of the gene HLA-B would explain alone
the genesis of IBM: ”HLA-B (major histocompatibility complex, class I, B) is a hu-
man gene that provides instructions for making a protein that plays a critical role in
the immune system. HLA-B is part of a family of genes called the human leukocyte
antigen (HLA) complex. The HLA complex helps the immune system distinguish
the body’s own proteins from proteins made by foreign invaders such as viruses and
bacteria”.

Table 2 shows the results using the biomedical robots methodology. In this case
we are able to hit the 100% of the samples with two robots, improving the results
of the best robot. The analysis of biological pathways has revealed the importance
of viral infections, mainly in IBM patients: Allograft Rejection, Influenza A, Class
I MHC Mediated Antigen Processing and Presentation, Staphylococcus Aureus In-
fection, Interferon Signaling, Immune Response IFN Alpha/beta Signaling Pathway,
Phagosome, Tuberculosis, Cell Adhesion Molecules (CAMs), Epstein-Barr Virus In-
fection, and TNF Signaling. Several viral infections appeared in this list. Interesting,
it has been found that 75% of the cases of viral myosytis are due to Staphylococcus
Aureus infection (Fayad et al., 2007).

Figure 4 shows the correlation network of the most discriminatory genes found
in this analysis. It can be observed the presence of one main dense network involving
different HLA-X genes. Among its related pathways are ERK Signaling and Apop-
tosis Pathway. GO annotations related to this gene include calcium ion binding and
cysteine-type peptidase activity.
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Fig. 4 Correlation network for Inclusion Body Myositis/Polymyositis.
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3 BIOMEDICAL ROBOTS 3.3 Inclusion Body Myositis and Polymyositis

Figure 5 A) shows the PCA projection for the IBM+PM versus control samples
using the optimum reduced base. It can be observed that the separability is almost
perfect and only one PM sample that is close to the control samples might be mis-
classified. This graphic also explains that this basis set is not optimum to perform the
classification of IBM vs PM. This separability can be achieved with 100% accuracy
using a reduced base composed by the following genes: RHOBTB2, MT1P2, FBXL8,
HIF3A, C17orf101, RPL12, RBM19, MT1G, WT1-AS, HEXIM1, NQO2, ENOSF1,
ADRM1, EIF5A, CSF2RA, CPLX3 /// LMAN1L, C10orf95, NFIC, POLR2J2. The
main pathways involved in the IBM vs PM phenotype differentiation is: FOXA1
Transcription Factor Network, O2/CO2 Exchange in Erythrocytes, Methotrexate Path-
way, Drug Induction of Bile Acid Pathway, Bile Secretion and Statin Pathway. Figure
5 B) shows the PCA graphic of the IBM vs PM classification, and how this separa-
bility can be achieved.
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3.3 Inclusion Body Myositis and Polymyositis 3 BIOMEDICAL ROBOTS

Fig. 5 Classification of IBM, PM and Control: A) PCA graphic for IBM+PM versus control samples. B)
PCA graphic for IBM versus PM.
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3 BIOMEDICAL ROBOTS 3.4 Amyotrophic Lateral Sclerosis

3.4 Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease that characterized by
stiff muscles, muscle twitching, and gradually worsening weakness. Between 5 and
10% of the cases are inherited from a relative, and for the rest of cases, the cause
is still unknown (NINDS, 2013). It is a progressive disease that the average survival
from onset to death is three to four years, in which most of them die from a respiratory
failure. There is no cure yet.

We reinterpreted the dataset published by Lincecum et al. (2010) consisting of 57
ALS cases and 28 healthy controls. The best result yields an accuracy of 96.5% with
small scale signature involving the following genes: CASP1, ZNF787 and SETD7.
Table 2 shows the results of applying this methodology to this problem. The biomed-
ical robots in this case did not improve this prediction. The pathway analysis has
revealed the importance of the GPCR Pathway, RhoA Signaling Pathway, EPHB For-
ward Signaling, EphrinA-EphR Signaling, EBV LMP1 Signaling, and Regulation of
Microtubule Cytoskeleton. These pathways have different important signaling roles
and suggest a possible link to the Epstein-Barr virus (EBV).

Figure 6 shows the correlation network of the most discriminatory genes found in
this analysis. The head of the network is the CASP1 that is connected to MAP2K5,
through ZNF3 and LUC7. MAP2K5 acts as a scaffold for the formation of a pathway
that seems to play a critical role in protecting cells from stress-induced apoptosis,
neuronal survival, cardiac development and angiogenesis. Also DCAF8 has been as-
sociated to neuropathies.

Figure 7 shows the PCA graphic for the ALS vs control samples. It can be ob-
served that the accuracy of the classification could be easily improved by discarding
5-6 control samples that lie very close to the border defined by the ALS samples.
Also it can be observed that one ALS sample is clearly a behavioral outlier.
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Fig. 6 Correlation network for Amyotrophic Lateral Sclerosis. Probe names are used when gene names are unknown.

18



3 BIOMEDICAL ROBOTS 3.4 Amyotrophic Lateral Sclerosis

Fig. 7 PCA graphic for ALS versus control samples
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4 Conclusion

In this paper we have introduced the concept of biomedical robots, performing its
sensitivity analysis to different kind of noises, and showing its application to the
analysis of cancer, rare and neurodegenerative diseases. The concept of biomedi-
cal robot is based in exploring the uncertainty space of the phenotype classification
problem involved, and using the structure of the uncertainty space to adopt decisions
and inferring knowledge. The synthetic dataset modeling has shown the robustness
and stability of this methodology, particularly to class assignment noise. The pres-
ence of high noise levels in expressions might falsify the biological pathways that are
inferred. Nevertheless, the predictive accuracy remains very high. Finally, we have
shown the application of this novel concept to 3 different illnesses: CLL, IBM-PM
and ALS, proving that it is possible to infer at the same time, both, high discrimina-
tory small-scale signatures and the description of the biological pathways involved.
We have shown that referring to the set of most discriminatory genes these classifica-
tion problems becomes linearly separable. Generally speaking in the 3 cases no high
class assignment errors have been detected, being CLL the case where more samples
(11) have been found to be behavioral outliers. The pathway analyses revealed in the
three cases a possible link to viral infections and served to identify actionable genes
and drug targets. The methodology shown in this paper is not computationally very
expensive, since all the simulations shown in this paper were done with a personal
computer in real time (several minutes).
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Appendix B

Concentrations in the Spike-In
experiment



Sample	ID ID	Group 203508_at 204563_at
12_13_02_U133A_Mer_Latin_Square_Expt1_R1 1 0 0
12_13_02_U133A_Mer_Latin_Square_Expt1_R2 1 0 0
12_13_02_U133A_Mer_Latin_Square_Expt1_R3 1 0 0
12_13_02_U133A_Mer_Latin_Square_Expt2_R1 2 0.125 0.125
12_13_02_U133A_Mer_Latin_Square_Expt2_R2 2 0.125 0.125
12_13_02_U133A_Mer_Latin_Square_Expt2_R3 2 0.125 0.125
12_13_02_U133A_Mer_Latin_Square_Expt3_R1 3 0.25 0.25
12_13_02_U133A_Mer_Latin_Square_Expt3_R2 3 0.25 0.25
12_13_02_U133A_Mer_Latin_Square_Expt3_R3 3 0.25 0.25
12_13_02_U133A_Mer_Latin_Square_Expt4_R1 4 0.5 0.5
12_13_02_U133A_Mer_Latin_Square_Expt4_R2 4 0.5 0.5
12_13_02_U133A_Mer_Latin_Square_Expt4_R3 4 0.5 0.5
12_13_02_U133A_Mer_Latin_Square_Expt5_R1 5 1 1
12_13_02_U133A_Mer_Latin_Square_Expt5_R2 5 1 1
12_13_02_U133A_Mer_Latin_Square_Expt5_R3 5 1 1
12_13_02_U133A_Mer_Latin_Square_Expt6_R1 6 2 2
12_13_02_U133A_Mer_Latin_Square_Expt6_R2 6 2 2
12_13_02_U133A_Mer_Latin_Square_Expt6_R3 6 2 2
12_13_02_U133A_Mer_Latin_Square_Expt7_R1 7 4 4
12_13_02_U133A_Mer_Latin_Square_Expt7_R2 7 4 4
12_13_02_U133A_Mer_Latin_Square_Expt7_R3 7 4 4
12_13_02_U133A_Mer_Latin_Square_Expt8_R1 8 8 8
12_13_02_U133A_Mer_Latin_Square_Expt8_R2 8 8 8
12_13_02_U133A_Mer_Latin_Square_Expt8_R3 8 8 8
12_13_02_U133A_Mer_Latin_Square_Expt9_R1 9 16 16
12_13_02_U133A_Mer_Latin_Square_Expt9_R2 9 16 16
12_13_02_U133A_Mer_Latin_Square_Expt9_R3 9 16 16
12_13_02_U133A_Mer_Latin_Square_Expt10_R1 10 32 32
12_13_02_U133A_Mer_Latin_Square_Expt10_R2 10 32 32
12_13_02_U133A_Mer_Latin_Square_Expt10_R3 10 32 32
12_13_02_U133A_Mer_Latin_Square_Expt11_R1 11 64 64
12_13_02_U133A_Mer_Latin_Square_Expt11_R2 11 64 64
12_13_02_U133A_Mer_Latin_Square_Expt11_R3 11 64 64
12_13_02_U133A_Mer_Latin_Square_Expt12_R1 12 128 128
12_13_02_U133A_Mer_Latin_Square_Expt12_R2 12 128 128
12_13_02_U133A_Mer_Latin_Square_Expt12_R3 12 128 128
12_13_02_U133A_Mer_Latin_Square_Expt13_R1 13 256 256
12_13_02_U133A_Mer_Latin_Square_Expt13_R2 13 256 256
12_13_02_U133A_Mer_Latin_Square_Expt13_R3 13 256 256
12_13_02_U133A_Mer_Latin_Square_Expt14_R1 14 512 512
12_13_02_U133A_Mer_Latin_Square_Expt14_R2 14 512 512
12_13_02_U133A_Mer_Latin_Square_Expt14_R3 14 512 512



204513_s_at 204205_at 204959_at 207655_s_at 204836_at 205291_at 209795_at
0 0.125 0.125 0.125 0.25 0.25 0.25
0 0.125 0.125 0.125 0.25 0.25 0.25
0 0.125 0.125 0.125 0.25 0.25 0.25

0.125 0.25 0.25 0.25 0.5 0.5 0.5
0.125 0.25 0.25 0.25 0.5 0.5 0.5
0.125 0.25 0.25 0.25 0.5 0.5 0.5
0.25 0.5 0.5 0.5 1 1 1
0.25 0.5 0.5 0.5 1 1 1
0.25 0.5 0.5 0.5 1 1 1
0.5 1 1 1 2 2 2
0.5 1 1 1 2 2 2
0.5 1 1 1 2 2 2
1 2 2 2 4 4 4
1 2 2 2 4 4 4
1 2 2 2 4 4 4
2 4 4 4 8 8 8
2 4 4 4 8 8 8
2 4 4 4 8 8 8
4 8 8 8 16 16 16
4 8 8 8 16 16 16
4 8 8 8 16 16 16
8 16 16 16 32 32 32
8 16 16 16 32 32 32
8 16 16 16 32 32 32
16 32 32 32 64 64 64
16 32 32 32 64 64 64
16 32 32 32 64 64 64
32 64 64 64 128 128 128
32 64 64 64 128 128 128
32 64 64 64 128 128 128
64 128 128 128 256 256 256
64 128 128 128 256 256 256
64 128 128 128 256 256 256

128 256 256 256 512 512 512
128 256 256 256 512 512 512
128 256 256 256 512 512 512
256 512 512 512 0 0 0
256 512 512 512 0 0 0
256 512 512 512 0 0 0
512 0 0 0 0.125 0.125 0.125
512 0 0 0 0.125 0.125 0.125
512 0 0 0 0.125 0.125 0.125



207777_s_at 204912_at 205569_at 207160_at 205692_s_at 212827_at 209606_at
0.5 0.5 0.5 1 1 1 2
0.5 0.5 0.5 1 1 1 2
0.5 0.5 0.5 1 1 1 2
1 1 1 2 2 2 4
1 1 1 2 2 2 4
1 1 1 2 2 2 4
2 2 2 4 4 4 8
2 2 2 4 4 4 8
2 2 2 4 4 4 8
4 4 4 8 8 8 16
4 4 4 8 8 8 16
4 4 4 8 8 8 16
8 8 8 16 16 16 32
8 8 8 16 16 16 32
8 8 8 16 16 16 32
16 16 16 32 32 32 64
16 16 16 32 32 32 64
16 16 16 32 32 32 64
32 32 32 64 64 64 128
32 32 32 64 64 64 128
32 32 32 64 64 64 128
64 64 64 128 128 128 256
64 64 64 128 128 128 256
64 64 64 128 128 128 256

128 128 128 256 256 256 512
128 128 128 256 256 256 512
128 128 128 256 256 256 512
256 256 256 512 512 512 0
256 256 256 512 512 512 0
256 256 256 512 512 512 0
512 512 512 0 0 0 0.125
512 512 512 0 0 0 0.125
512 512 512 0 0 0 0.125

0 0 0 0.125 0.125 0.125 0.25
0 0 0 0.125 0.125 0.125 0.25
0 0 0 0.125 0.125 0.125 0.25

0.125 0.125 0.125 0.25 0.25 0.25 0.5
0.125 0.125 0.125 0.25 0.25 0.25 0.5
0.125 0.125 0.125 0.25 0.25 0.25 0.5
0.25 0.25 0.25 0.5 0.5 0.5 1
0.25 0.25 0.25 0.5 0.5 0.5 1
0.25 0.25 0.25 0.5 0.5 0.5 1



205267_at 204417_at 205398_s_at 209734_at 209354_at 206060_s_at 205790_at
2 2 4 4 4 8 8
2 2 4 4 4 8 8
2 2 4 4 4 8 8
4 4 8 8 8 16 16
4 4 8 8 8 16 16
4 4 8 8 8 16 16
8 8 16 16 16 32 32
8 8 16 16 16 32 32
8 8 16 16 16 32 32
16 16 32 32 32 64 64
16 16 32 32 32 64 64
16 16 32 32 32 64 64
32 32 64 64 64 128 128
32 32 64 64 64 128 128
32 32 64 64 64 128 128
64 64 128 128 128 256 256
64 64 128 128 128 256 256
64 64 128 128 128 256 256

128 128 256 256 256 512 512
128 128 256 256 256 512 512
128 128 256 256 256 512 512
256 256 512 512 512 0 0
256 256 512 512 512 0 0
256 256 512 512 512 0 0
512 512 0 0 0 0.125 0.125
512 512 0 0 0 0.125 0.125
512 512 0 0 0 0.125 0.125

0 0 0.125 0.125 0.125 0.25 0.25
0 0 0.125 0.125 0.125 0.25 0.25
0 0 0.125 0.125 0.125 0.25 0.25

0.125 0.125 0.25 0.25 0.25 0.5 0.5
0.125 0.125 0.25 0.25 0.25 0.5 0.5
0.125 0.125 0.25 0.25 0.25 0.5 0.5
0.25 0.25 0.5 0.5 0.5 1 1
0.25 0.25 0.5 0.5 0.5 1 1
0.25 0.25 0.5 0.5 0.5 1 1
0.5 0.5 1 1 1 2 2
0.5 0.5 1 1 1 2 2
0.5 0.5 1 1 1 2 2
1 1 2 2 2 4 4
1 1 2 2 2 4 4
1 1 2 2 2 4 4
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8 16 16 16 32 32 32
8 16 16 16 32 32 32
8 16 16 16 32 32 32
16 32 32 32 64 64 64
16 32 32 32 64 64 64
16 32 32 32 64 64 64
32 64 64 64 128 128 128
32 64 64 64 128 128 128
32 64 64 64 128 128 128
64 128 128 128 256 256 256
64 128 128 128 256 256 256
64 128 128 128 256 256 256

128 256 256 256 512 512 512
128 256 256 256 512 512 512
128 256 256 256 512 512 512
256 512 512 512 0 0 0
256 512 512 512 0 0 0
256 512 512 512 0 0 0
512 0 0 0 0.125 0.125 0.125
512 0 0 0 0.125 0.125 0.125
512 0 0 0 0.125 0.125 0.125

0 0.125 0.125 0.125 0.25 0.25 0.25
0 0.125 0.125 0.125 0.25 0.25 0.25
0 0.125 0.125 0.125 0.25 0.25 0.25

0.125 0.25 0.25 0.25 0.5 0.5 0.5
0.125 0.25 0.25 0.25 0.5 0.5 0.5
0.125 0.25 0.25 0.25 0.5 0.5 0.5
0.25 0.5 0.5 0.5 1 1 1
0.25 0.5 0.5 0.5 1 1 1
0.25 0.5 0.5 0.5 1 1 1
0.5 1 1 1 2 2 2
0.5 1 1 1 2 2 2
0.5 1 1 1 2 2 2
1 2 2 2 4 4 4
1 2 2 2 4 4 4
1 2 2 2 4 4 4
2 4 4 4 8 8 8
2 4 4 4 8 8 8
2 4 4 4 8 8 8
4 8 8 8 16 16 16
4 8 8 8 16 16 16
4 8 8 8 16 16 16



AFFX-r2-TagA_at AFFX-r2-TagB_at AFFX-r2-TagC_at AFFX-r2-TagD_at AFFX-r2-TagE_at
64 64 64 128 128
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128 128 128 256 256
256 256 256 512 512
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0.125 0.125 0.125 0.25 0.25
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0.25 0.25 0.25 0.5 0.5
0.25 0.25 0.25 0.5 0.5
0.5 0.5 0.5 1 1
0.5 0.5 0.5 1 1
0.5 0.5 0.5 1 1
1 1 1 2 2
1 1 1 2 2
1 1 1 2 2
2 2 2 4 4
2 2 2 4 4
2 2 2 4 4
4 4 4 8 8
4 4 4 8 8
4 4 4 8 8
8 8 8 16 16
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16 16 16 32 32
16 16 16 32 32
16 16 16 32 32
32 32 32 64 64
32 32 32 64 64
32 32 32 64 64
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0.125 0.25 0.25 0.25 0.5
0.125 0.25 0.25 0.25 0.5
0.25 0.5 0.5 0.5 1
0.25 0.5 0.5 0.5 1
0.25 0.5 0.5 0.5 1
0.5 1 1 1 2
0.5 1 1 1 2
0.5 1 1 1 2
1 2 2 2 4
1 2 2 2 4
1 2 2 2 4
2 4 4 4 8
2 4 4 4 8
2 4 4 4 8
4 8 8 8 16
4 8 8 8 16
4 8 8 8 16
8 16 16 16 32
8 16 16 16 32
8 16 16 16 32
16 32 32 32 64
16 32 32 32 64
16 32 32 32 64
32 64 64 64 128
32 64 64 64 128
32 64 64 64 128
64 128 128 128 256
64 128 128 128 256
64 128 128 128 256
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0 0
0 0

0.125 0.125
0.125 0.125
0.125 0.125
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