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RESUMEN (en espafiol)

Esta tesis trata sobre el analisis y disefio de robots biomédicos y su aplicaciéon a la medicina
traslacional. Se define un robot biomédico como el conjunto de técnicas provenientes de la
matematica aplicada, estadistica y ciencias de la computacion capaces de analizar datos
biomédicos de alta dimensionalidad, aprender dinAmicamente de dichos datos, extraer nuevo
conocimiento e hipétesis de trabajo, y finalmente realizar predicciones con su incertidumbre
asociada, cara a la toma de decisiones biomédicas. Se disefian y analizan diferentes algorit-
mos de aprendizaje, de reduccién de la dimension y seleccién de atributos, asi como técnicas
de optimizacion global, técnicas de agrupamiento no supervisado, clasificacion y analisis de
incertidumbre. Dichas metodologias se aplican a datos a pie de hospital y de expresién génica
en prediccion de fenotipos para optimizacion del diagndstico, prondéstico, tratamiento y andlisis
de toxicidades.

Se muestra que es posible establecer de modo sencillo el poder discriminatorio de las variables
prondstico, y que dichos problemas de clasificacibn se aproximan a un comportamiento
linealmente separable cuando se reduce la dimensién al conjunto de variables principales que
definen el alfabeto del problema biomédico y estan por tanto relacionadas con su génesis. Se
analiza la robustez de dichos métodos con respecto a dos fuentes principales de ruido (en los
datos y en la asignacion de clases), asi como errores en la modelizaciéon dado que se
desconoce a priori el clasificador perfecto (si existiese). Ademas se demuestra el impacto en la
identificaciébn de genes altamente predictivos y de los rutas metabdlicas asociadas, de las
principales técnicas de preprocesado de microarreglos de expresion en la prediccion de
fenotipos. Finalmente se muestra que la metodologia de robots biomédicos que se basa en
técnicas de prediccion por consenso, que explotan el espacio de incertidumbre de los
problemas de prediccién asociados, es la manera adecuada de abordar este tipo de problemas
y por tanto de descubrir nuevo conocimiento.




RESUMEN (en Inglés)

In this PhD we present the analysis and design of "Biomedical Robots" and its application to
translational medicine. A Biomedical Robot is defined as the ensemble of methodologies and
bioinformatic algorithms, coming from applied mathematics, statistical methods and computer
science, able to treat different types of very high dimensional data (biomedical big data), to
learn dynamically, discover new knowledge and working hypothesis, and make predictions with
their corresponding uncertainty to improve biomedical decision making processes. Different
learning algorithms, dimension reduction and feature selection techniques were studied and
analyzed, as well as global optimization, clustering, classification and uncertainty assessment
algorithms. Those methodologies were applied to clinical data gathered in hospitals and genetic
expression data to phenotype prediction in order to optimize diagnosis, prognosis, treatment
and toxicity analysis.

We demonstrated that is possible to establish the discriminatory power of prognostic variables
in a simply way, and the corresponding classification problems approximate a linear separable
behavior when the dimension is reduced to the principal variables that define the alphabet of the
biomedical problem, and therefore are related to its genesis. We also analyzed the robustness
of the methodology with respect to two main sources of noise (noise in the data and in the class
assignment), as well as the modeling errors since the perfect classifier, if there exists, is a priori
unknown. Moreover, we demonstrated the impact in the identification of high predictive genes
and, consequently their associated pathways, of the main microarrays preprocessing
techniques in phenotype prediction. Finally, we showed that the methodology that is based on
consensus prediction techniques that explores the uncertainty space of the associated
prediction problems, is the right way of addressing these types of problems and, therefore,
discovering knowledge and improving medical decision-making.
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General Setup

This thesis is included in the PhD Programme in Mathematics and Statistics (RD 99/2011)
of the University of Zaragoza, the University of La Laguna, the University of Oviedo, the
University of the Basque Country and the Public University of Navarra. In the elaboration of
the manuscript of this PhD thesis we followed the requirements fixed by Article 26 of the
Regulations of PhD Studies, agreement of June 17 of 2013 (BOPA 146 / 25-VI1-2013) about
the nature of the PhD thesis, that literally states: "I. La tesis doctoral consistird en un trabajo
original de investigacion elaborado por el doctorando en cualquier campo del conocimiento.
La tesis debe capacitar al estudiante de doctorado para el trabajo autonomo en el admbito
de la I+D+i. 2. En su elaboracion, habrdn de ser tenidas en cuenta las siguientes normas
minimas: a) La memoria que recoge la labor realizada en la tesis doctoral se redactard
en espariol. No obstante, la Comision de Doctorado podrd autorizar su redaccion en otro
idioma oficial de la Union Europea, previo informe de la Comision Académica del Programa
de Doctorado, y siempre que se garantice que los miembros del Tribunal estdn en condiciones
de juzgarla. En este caso, la memoria deberd contener el resumen y las conclusiones en
espaiiol. En las mismas condiciones, y de acuerdo con el articulo 6.2 de los Estatutos de la
Universidad de Oviedo, la redaccion podrd hacerse en lengua asturiana. b) En la cubierta de
la memoria figurard Universidad de Oviedo, junto con el escudo institucional, el nombre del
Programa de Doctorado, el titulo de la tesis y el nombre del autor. c) Los datos anteriores
aparecerdn también en la portada, y en las pdginas siguientes figurard la autorizacion de la
Comision Académica del Programa de Doctorado, del tutor y del director del trabajo para
la presentacion de la tesis."

The main objective of this thesis is to design and build a dynamic tool called "Biomedical
Robots" capable of analyze huge amount of data, generate work hypothesis and discover new
knowledge in the field of biomedicine. This work belongs to the line of research dedicated
to Biomedical Applications, of the research group for Inverse Problems, Optimization
and Learning, directed by Professor Juan Luis Fernandez-Martinez from the Mathematics

Department of Oviedo University.
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Since the beginning of my Bachelor’s degree in Computer Science, I knew that Math-
ematics, Computer Science, and Medicine would have a convergence point. Thereby, my
final project in the Artificial Intelligence subject of my Bachelor was to build a Lung cancer
predictor. Lately, during my MSc in Soft Computing and Intelligence Data Analysis, I
designed as a final research project, a genome simulator able of predict the probabilities
of developing a given genetic disease depending on the mutations that are present in the
genome. In the mid of 2012 I started my PhD in Mathematics with the invaluable guidance
of Professors Juan Luis Ferndndez-Martinez and Oscar Luaces. During almost four years
we walked a hard and long path, full of closed doors and hitting walls, but with simplicity
and tenacity we were able to open all the doors and knock down all the walls. The final
work is presented herein as a result of people with a great enthusiasm and a desire of solving
problems that help to have a better world.

As the present work has a multidisciplinary scope, the main results of this research were

published (or in revision) in international journals of different categories:

* CANCER INFORMATICS. Published. Categories (no cataloguing on Journal Cita-
tion Reports but with a H-index of 18):
— COMPUTATIONAL BIOLOGY
- ONCOLOGY

e CLINICAL AND TRANSLATIONAL ONCOLOGY. Published. Categories: ON-
COLOGY (Q3).

* BIOLOGICAL RESEARCH FOR NURSING. Published. Categories: NURSING
QD
* JOURNAL OF COMPUTATIONAL BIOLOGY. Accepted for publication. Cate-
gories:
— STATISTICS & PROBABILITY (Q1)
— MATHEMATICAL & COMPUTATIONAL BIOLOGY (Q2)
— COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS (Q2)
— BIOTECHNOLOGY & APPLIED MICROBIOLOGY (Q3)
— BIOCHEMICAL RESEARCH METHODS (Q3).

* JOURNAL OF BIOMEDICAL INFORMATICS. Published. Categories:

— COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS (Q1)
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— MEDICAL INFORMATICS (Q2)

* JOURNAL OF GENE MEDICINE. Under review. Categories: ONCOLOGY (Q1).

The selection of these journals represents the multidisciplinary character of this research,
that address problems from applied mathematics and computer science (Mathematical and
Computational Biology and Medical Informatics), to genomics and translational medicine
(Nursing and Oncology).

Additionally, we also presented an oral communication to the International Conference
on Man-Machine Interactions celebrated in Poland on October 6-9 2015. The communication
paper is a chapter of a book edited by Springer.

The core of this thesis are seven manuscripts that are either published or in revision
in international journals. Consequently, the organization of the thesis is based on those
papers, presented them in original form (see appendix) and preceded by an explanation of the
methodology that is used, and the main original results that were achieved, focussing in each
case on some specific topics and concepts used in the research, that needed a more detailed
description. Accordingly the structure of this manuscript is as follows:

* Chapter I. Introduction. In this section we described the problem background, the
main target of the thesis, the steps followed for developing it, and finally a formal
description of both the problem and the methodology that was designed.

 Chapter II. Application to clinical data. This section is devoted to the application of
the methodology to clinical data. We described two research articles related to:

— ”Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia

decision-making problems.”

— ”On the prediction of Hodgkin lymphoma treatment response.”

 Chapter III. Application to genetic data. In this section we applied the methodology

to the analysis of gene expression data. This part is developed in two manuscripts:

— ”Supervised Classification by Filter Methods and Recursive Feature Elimination

Predicts Risk of Radiotherapy-Related Fatigue in Patients with Prostate Cancer.”

— ”Genomic Data Integration in Chronic Lymphocytic Leukemia.”
» Chapter IV. Sensitivity analysis. This research is exposed in two different papers:

— 7Sensitivity analysis of gene ranking methods in phenotype prediction.”
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— “Impact of microarray preprocessing techniques in unraveling biological path-

ways.”

Chapters V. Design and application of biomedical robots to phenotype prediction
problems. This is the cornerstone of the dissertation and exposes the methodology that
was designed to address the modeling of biomedical big data in phenotype prediction.

Chapter VI. Conclusions and future research.
Appendix A. We included all the publications in the original format in the appendix.

Appendix B. Concentrations for the Spike-In experiment used in chapter I'V.
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Resumen

Esta tesis trata sobre el andlisis y disefio de robots biomédicos y su aplicacion a la medicina
traslacional. Se define un robot biomédico como el conjunto de técnicas provenientes de
la matemadtica aplicada, estadistica y ciencias de la computacion capaces de analizar datos
biomédicos de alta dimensionalidad, aprender dindmicamente de dichos datos, extraer nuevo
conocimiento e hipdtesis de trabajo, y finalmente realizar predicciones con su incertidumbre
asociada, cara a la toma de decisiones biomédicas. Se disefian y analizan diferentes algoritmos
de aprendizaje, de reduccion de la dimension y seleccion de atributos, asi como técnicas de
optimizacion global, técnicas de agrupamiento no supervisado (clustering), algoritmos de
prediccion y clasificacion, y andlisis de incertidumbre. Dichas metodologias se aplican a
datos a pie de hospital y de expresion génica en prediccion de fenotipos para optimizacion
del diagnoéstico, prondstico, tratamiento y andlisis de toxicidades.

Se muestra que es posible establecer de modo sencillo el poder discriminatorio de las
variables prondstico, y que dichos problemas de clasificacion se aproximan a un compor-
tamiento linealmente separable cuando se reduce la dimensién al conjunto de variables
principales que definen el alfabeto del problema biomédico y estdn por tanto relacionadas con
su génesis. Se analiza la robustez de dichos métodos con respecto a dos fuentes principales
de ruido (en los datos y en la asignacion de clases), asi como errores en la modelizacién
dado que se desconoce a priori el clasificador perfecto (si existiese). Ademads se demuestra
el impacto en la identificacion de genes altamente predictivos y de los pathways asociados,
de las principales técnicas de preprocesado de microarreglos de expresion en la prediccion
de fenotipos. Finalmente se muestra que la metodologia de robots biomédicos que se basa
en técnicas de predicciOn por consenso, que explotan el espacio de incertidumbre de los
problemas de prediccion asociados, es la manera adecuada de abordar este tipo de problemas

y por tanto de descubrir nuevo conocimiento.






Abstract

In this PhD we present the analysis and design of “Biomedical Robots" and its application to
translational medicine. A Biomedical Robot is defined as the ensemble of methodologies
and bioinformatic algorithms, coming from applied mathematics, statistical methods and
computer science, able to treat different types of very high dimensional data (biomedical
big data), to learn dynamically, discover new knowledge and working hypothesis, and
make predictions with their corresponding uncertainty to improve biomedical decision
making processes. Different learning algorithms, dimension reduction and feature selection
techniques were studied and analyzed, as well as global optimization, clustering, classification
and uncertainty assessment algorithms. Those methodologies were applied to clinical data
gathered in hospitals and genetic expression data to phenotype prediction in order to optimize
diagnosis, prognosis, treatment and toxicity analysis.

We demonstrated that is possible to establish the discriminatory power of prognostic
variables in a simply way, and the corresponding classification problems approximate a linear
separable behavior when the dimension is reduced to the principal variables that define the
alphabet of the biomedical problem, and therefore are related to its genesis. We also analyzed
the robustness of the methodology with respect to two main sources of noise (noise in the data
and in the class assignment), as well as the modeling errors since the perfect classifier, if there
exists, is a priori unknown. Moreover, we demonstrated the impact in the identification of
high predictive genes and, consequently their associated pathways, of the main microarrays
preprocessing techniques in phenotype prediction. Finally, we showed that the methodology
that is based on consensus prediction techniques that explores the uncertainty space of the
associated prediction problems, is the right way of addressing these types of problems and,

therefore, discovering knowledge and improving medical decision-making.
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Chapter 1

Introduction

1.1 Background and state of the art

The advance of high-throughput technologies in the last 20 years, have provided a huge
increase of information that needs to be properly managed. Such advance has impacted in
every single field of science, especially in Medicine. New technologies have allowed to
improve data collection, from research centers to hospitals. Nowadays, medical doctors can
retrieve data from the patient faster. Clinical data, such as electronic health records, clinical
trials or disease registries, are publicly available and can be retrieved in a safer and more
efficient manner. Information technologies allow to make these clinical data available through
biobanks and electronic medical records. For instance, in the Hospital Central de Asturias
the implementation of program Millenium, designed by Cerner corporation for managing the
electronic health record, had an original cost around 17 millions euros. Nevertheless, this
program does not allow to mine this information in order to solve different kind of problems,
such as the estimation of surgical risk (see for instance http://riskcalculator.facs.org/) based on
individual health records and/or analysis of prognostic variables for particular diseases based
on customized data bases that are specifically created by medical experts. These are some
examples about the complexity of extracting information from hospital data and bringing
back the results with a translational approach. In this thesis we provide two examples of the
application of clinical data to the analysis of Hodgkin Lymphoma and Chronic Lymphocytic
Leukemia related problems.

Genomic data has also became a key element in the medical research field. Since the
discovery of the DNA structure in 1953 there have been important developments in the field
of genomics, being a milestone the whole human genome sequencing in 2000. Data related
to DNA sequence, RNA sequence and expression, protein sequence, structure, modification,

and small molecule metabolite structure are available in valuable resources such as Genbank
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(http://www.ncbi.nlm.nih.gov/genbank/), Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/), Protein Data Bank (http:// www.wwpdb.org/), and many others. Such progress
has enabled to set down the genetic basis of a wide range of common diseases, leading to
identification of the genes and biomarkers that might be responsible for the development of
complex diseases. Particularly, it is important to have at disposal methods that allow to break
the bottlenecks for the application of genetics into clinics. In this PhD thesis we present
several examples of the use of genetic information translationally: 1) Radiotherapy-related
fatigue prediction in patients with prostate cancer. 2) Genomic data integration of the main
mutations that impact survival in patients with Chronic Lymphocytic Leukemia. 3) Genetic
analysis of rare and neurodegenerative diseases in the search for orphan drugs and new
therapeutical targets.

Medical doctors and researchers have at disposal high dimensional and heterogeneous
biomedical data that needs to be mined and converted into knowledge to support their decision
making processes. The management of biomedical data currently used in most research
settings are labor intensive and rely upon technologies that have not been designed to handle
such multi-dimensional data. Furthermore, novel molecular-based tools are emerging and
rapidly entering the clinic and creating new paradigm in healthcare. Circulation tumor cells,
nucleic acids and exosomes in blood of cancer patients have received increasing attention as
new diagnostic tools enabling the so called "liquid biopsies", avoiding thus other invasive
methods like tissues biopsies, and obtaining even more information by a simple blood
test (Alix-Panabieres and Pantel, 2013). One of the main challenges is the creation and
delivery of information management platforms capable of adapting different data sources,
supporting workflows, and generating new hypothesis to support decision making processes,
connecting, therefore, the molecular/cellular world with the clinical research providing them
a translational approach.

It is considered that one of the most important revolutions of the 21st century will
be related to the field of translational medicine, defined as the basic research with an
impact over the global healthcare system. Genomic and clinical data resources are now
allowing to consider individual variations, and not simply population averages, leading to
improved diagnosis, prognosis, and treatment. The translational approach of the knowledge
mined within the biomedical data will allow the creation of new medical devices, molecular
diagnostics based in small-scale genetic signatures, small molecule therapeutics, biological
therapeutics, vaccines, and others. Particularly, the analysis of the pharmaco-genomics
(mechanism of actions) and pharmaco-kinetics aspects (minimization of toxicities) of new
drugs, is crucial important in translational medicine and constitute the last step towards what

has been known as personalized medicine and more recently precision medicine.
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Since the birth of modern computer science, biology and computer science have gone hand
to hand, and both areas have influenced each other. On one hand, most of the recent discovery
in biology and especially in genetics, have been made possible thanks to computer science
techniques and algorithms. For instance, the sequencing of the human genome would not have
been possible without high-performance computational facilities (Venter et al., 2001). On the
other hand, biology has influenced the computer science, with the developments of tools such
as Artificial Neural Networks, Swarm Intelligence and/or Genetic Algorithms. Nowadays
computer science based methods and technologies can allow researchers to access and extract
domain knowledge and applying these results to generate and test hypotheses. During the last
10 years, Artificial Intelligence as a part of Applied Mathematics and Computer Science, has
had an important roll in both medical research and translational medicine fields. They provide
through the optimization of diagnosis, treatment, planning, and prediction of prognosis, a
natural way of representing the uncertainties involved in the classical medical procedures.
Clinical and genetic data has became increasingly fundamental, and we must tackle it from
all the possible approaches, in which Applied Mathematics and Computer Science, have an
important role. As the medicine advance towards a more personalized medicine where data
and information have a key role in that progress, we must introduce and adapt the classical
procedures of treating data to the new personalized medicine.

The majority of the research works in the field of translational medicine where it was
applied Artificial Intelligence are related to data mining processes. And most of them, deal
with the goal of analyzing gene expression data coming from gene expression analysis
through hybridization microarrays or RNA sequencing, consisting of thousands of genes for
each patient, with the aim to diagnose (sub)types of diseases and to obtain a prognosis which
may lead to individualized therapeutic decisions.

The published papers are mainly related to oncology, where there is a strong need
for defining individualized therapeutic strategies (Bellazzi et al., 2011). One of the most
important work in this area was that of Golub et al. (1999) where they were able to build a
classification model based on a weighted-voting approach relying on a list of about 50 genes
related to acute myeloid leukemia and acute lymphoblastic leukemia. Another important
work was carried out by Futschik et al. (2003). They used both clinical and microarray data
to build two models for the prediction of diffuse large B-cell lymphoma.

According to PubMed statistics, more than 65000 publications are related to Artificial
Intelligence and Medicine. We can find a wide range of publications, beginning from the
definition of the well-known Perceptron (Rosenblatt, 1958) to a recent publication in where
an artificial intelligence methodology is applied for detecting and characterizing epistasis in

genetic association studies (Moore and Hill, 2015).
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As noted by Eli and Edythe of the Broad Institute for Biomedical Research of Harvard
and MIT: "We have an historic opportunity and responsibility to transform medicine by
using systematic approaches to dramatically accelerate the understanding and treatment of
disease”. In this PhD we introduce the concept of "Biomedical Robots” as a methodological
framework for solving any medical problem, independently of the type of data and problem.
Moreover, the Biomedical Robot has not any character of a black-box but the capability of
inferring solutions from data with the medical doctor’s understanding, with the main target
of taking those solutions to the side of hospitals (translational medicine) and research centers,
from the “bench” to the bedside”.

1.2 Objectives

The main purpose of this thesis is to describe, develop and apply the novel concept of
Biomedical Robot. A Biomedical Robot is defined as the ensemble of methodologies
and bioinformatic algorithms, coming from applied mathematics, statistical methods and
computer science, capable to treat different types of very high dimensional data (biomedical
big data), to learn dynamically and make predictions with their corresponding uncertainty.

The techniques involved by the biomedical framework are:

1. Machine Learning, classification problems (supervised and unsupervised), and ensem-

ble learning.
2. Feature selection and model reduction.
3. Global optimization algorithms.

4. Receiver Operator Characteristic (ROC) curves and uncertainty analysis.

Within this framework it is posible to analyze dynamically (as a function of time) any type
of data independently of their dimensionality, discovering knowledge and generating new
medical working hypothesis, and finally supporting medical research and decision making
approaches with its corresponding uncertainty assessment (risk analysis). Generating new
working hypothesis could include for instance the analysis of biomarkers and mechanisms
of action involved in a specific problem or discovering pathways and druggable targets in
phenotype prediction problems. Also, a benefit of this approach could be the design of
intelligent systems to support medical doctors/researchers in the decision making process of
new incoming uncatalogued samples to decide crucial questions related to their diagnosis,
prognosis and treatment optimization before any decision was taken. These techniques can
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help for instance in segmenting patients with respect to drug response based on genetic
signatures, to predict the development of induced toxicities, to predict the surgical risk,
etc. .., among many different applications that we can imagine. Particularly in the case of
hospital data it is important to be able to filter and interpolate missing data and also to design
classifiers using the most significant medical prognostic variables, and penalizing a given
criterion, for instance the probability of having false positive or negatives.

In the case of genetic data, two different aims are complementary:

1. Finding robust small-scale genetic signatures for personal diagnosis, prognosis and
treatment optimization.

2. Understanding the biological pathways involved in the mechanisms of action of pheno-
type prediction problems corresponding to disease development, treatment response
and development of toxicities.

Given the high underdetermined character of any kind of phenotype prediction problem,
it is not correct to provide a unique gene that is responsible for the disease development.
As these kind of problems are ill-posed (Hadamard, 1902), the correct answer would be to
address the corresponding classification or prediction problem with its uncertainty assessment.
That way, the gene networks, that is, the set of genes that are interrelated, have a high
discriminatory power and work synergistically for the phenotype prediction problem, are the
right solution for assessing the uncertainty. Based on these networks it would be possible to
find the biological pathways that are affected. However, a Biomedical Robot must have a
dynamic character and it must be updated as the level of knowledge of the problem we want
to solve increases. These types of optimization and learning problems are subordinated to the
Non-free-lunch theorem (Wolpert and Macready, 1997), therefore, although the techniques
are common, their applications should be custom designed.

The steps followed to develop this methodology were the following:

1. Developing learning algorithms, dimensionality reduction, global optimization, and
clustering/classification techniques.

2. Application of these methods to different types of biomedical data:

* Clinical data collected in hospitals (immunohistochemical, biochemical, demo-
graphic, ...). Which lead us to the following research works:

— Treatment response prediction in patients with Hodgkin Lymphoma. Treat-
ment optimization.



6 Introduction

— Need of chemotherapy prediction and autoimmune disease occurrence pre-
diction in patients with Chronic Lymphocytic Leukemia. Diagnosis and

treatment optimization.
* Genetic data (gene expression). The following researches were developed:

— Toxicity analysis of radiotherapy treatments in patients with prostate cancer.
Treatment optimization.

— Prediction of the main mutations that impact survival in patients with Chronic

Lymphocytic Leukemia. Diagnosis and prognosis optimization.

3. Sensitivity analysis of the methodology, using both synthetic and real data:

* Impact of different kind of noise in phenotype prediction problems.
* Impact of main microarrays preprocessing techniques in the discovering of bio-

logical pathways.

4. Design, development and analysis of biomedical robots and their application to pheno-

type prediction problems.

1.3 Methodology

1.3.1 Problem definition

The first class of problems found in the biomedical field are regression-type problems, that are
typically solved using nonlinear multivariate regression techniques with statistical packages
as SPSS. The problem consists in giving a set of variables x € RY parameterizing the samples,

finding the estimator f*(x) such as ||y?™ — y°*||,, is minimum, where

Y1 fr(x1)
yobs — }7:2 ,yPre — f <X2)
Ym I (Xm)

for a given type of regression models, f*. This is, for instance, the case of the regression
models that are used to predict survival (Kaplan and Meier, 1958).
In this PhD we adopted the decision of approaching most of the biomedical problems as

supervised classification problems, since we found it is a more versatile way of modeling.
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Besides, the uncertainty related to a classification problem might be lower than the corre-
sponding regression problem, since predicting the unknown class of a sample is generally a
better-posed problem than predicting the value of given decision variable. Nevertheless, to
properly understand the supervised classification problems, we have cast them as general
inverse or parameter identification problem.

A medical problem, posed as a classification problem, consists in a set of patients that
have a given peculiarity, such as a disease condition or treatment response, which is described
by its corresponding class value established by medical experts, who usually want to know
what is causing those peculiarities by comparing them with other types of patients, known as
healthy controls. The classification problem does not need necessarily to be binary, that is, it
could be multi-class.

The first source of uncertainty in a classification problem comes from the fact that the
perfect classifier is usually a priori unknown, that is, no physical relationship is at disposal to
predict the class of the observed data. Accordingly, the classification problem is nonlinear,
since the classifier and the features that serve to achieve an optimum prediction are unknown.
That way, a classification problem can be typically catalogued as a non-linear inverse problem
(Aster et al., 2012). Therefore, as a first step, a given type of classifier (nearest-neighbor,
neural networks, SVM, ...) should be built ad-hoc. This can be considered an additionally
source of uncertainty.

Let us imagine that we have at disposal a set of n features (clinical data, genetic expres-
sions, ...) for a set of m samples whose classes were provided by medical expert annotations.
This information is typically organized in the matrix E € M, ,(R), usually with m << n, and
in the class vector ¢® € R™. The classifier, L*(f) can be formally defined as an application
between the set of features f € M C R® and the set of classes C = {cy,c2,...,cn }:

L*(f):fe RS%C:{Cl,Cz,...,Cn}. (1.1)

However, not all the features are involved in the inverse problem. Furthermore, when
all the variables parametrizing the samples are considered, the corresponding classification
problem becomes nonlinear separable, that is, it is not possible to define in the feature space
a set of hyperplanes that optimally separates the samples.

Importantly, not all the features provide useful information for the class prediction. These
extraneous features are noisy and can be analytically disruptive. Fortunately, it is possible to
discard irrelevant features, that is, those that do not provide any useful information for the
discrimination, since they introduce ambiguity in the classification. The relevant features
would be defined as the ones that minimize a given target function O(f) related to the class

prediction vector:
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f: O(f) = min O(f), (1.2)
feRrS
O(f) = ||IL*(f) — e[|, (1.3)
L*(f) = (L*(f)),....L"(f;),....L" (f)), (1.4)

where ¢ is the set of observed classes, p is the norm applied in the distance criterion, L*(f)
is the set of predicted classes, f; € R’ is the set of features os size s corresponding to sample
i, and L*(fy) is the classifier prediction for sample k. Otherwise said, the relevant features
would be the ones that allow us to predict the class of new incoming samples. This process
in machine learning is called generalization.

Three different aspects are particularly relevant in the design of the classifier:

1. The effect of modeling errors.
2. The effect of noise in data.

3. The ill-posed character of the classification problem.

1.3.2 The effect of modeling errors

In most biomedical problems the forward problem is unknown, that is, no physical relation-
ship is available relating input and output variables. This translates in classification problems
in the fact that the correct classifier L;,,,, is a priori unknown.
Let us imagine that the relationship between features and classes is linear:
L* ftrue o cobs
true - *

If we consider a classifier that has a modeling error §L* and it is related to the true classifier
as follows: Ly, = Ly, + 6L*. Then we have:

(L* . SL*)ftrue — cobs
p
L;;ftrue — cobs — SLifirue

that is, the classifier L, used in practice to achieve f'"#¢ will need to correct the observed
class ¢ by the term SL*f"™¢, which is a priori unknown. Otherwise said, if we solve
Lyf= ¢’ then f # f7“¢. Only if £ € ker(SL*) the classifier L, will achieve "¢ from
¢’ Obviously this simple analysis is theoretical but explains the importance of choosing
the “correct” classifier.



1.3 Methodology 9

In this PhD dissertation we decided to use the principle of parsimony, that is, between
the set of all possible classifiers that could be employed we will try to choose the simplest
one. Particularly, we try to avoid the use of wrapper and embedded classifiers, whose
design imposes an additional uncertainty analysis, due to the optimization processes that are

involved.

1.3.3 The effect of noise in data

Biomedical data is notorious for containing noise which has historically contributed to issues
around reproducibility, especially as related to clinical/gene phenotype relationships. Noise
also impedes accurate mechanistic conclusions, for example in the case of genetic data, by
partially falsifying biological pathways. This topic is formally developed in the next section.

There are two main sources of noise:

* First, noise in the feature data that is introduced by the process of data treatment
(preprocessing techniques) and measurement. The observed feature data of a sample,
f°25_ can be expressed as the sum of the noiseless data f"“¢ and the measurement noise
Sf: fobs = firue 4 §f. Therefore, using a simple Taylor expansion we get:

L* (f()bS) —L* (ftrue) + SL* (ftrue) —

N aL*
— L (fTue 77 (firueys Sf
( )+k;1 afk( ) fk+0( )7

where o(6f) vanishes when the noise term 8f — 0. Therefore, given a classifier L*(f),
the noise in the feature data involves a modeling error whose first order approximation
is:

S 8L*
SLY(56) = Y 2= (#7)5 f
( ) ]; afk ( ) k

= VL*(f™). 5.

Obviously 6L*(6f) — 0 when 6f — 0. This analysis is theoretical because f"*¢ and

of are unknown.

* Secondly, noise in the class assignment dc, typically due to an incorrect labeling
of the samples by the medical experts. Therefore the observed class vector can be
expressed as the sum of the true class vector ¢/ and the class assignment noise dc¢:
cbs = ¢!™e 4 §c. For instance, sometimes the classification problem is parameterized

as binary when in fact there are more than two classes. Therefore, assigning two
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different classes to the samples will input noise in the classification. In this case,
finding a predictive accuracy lower than 100% would be the expected result, otherwise
the algorithm will find a wrong set of features in order to fit (or explaining) the wrong
class assignment. Obviously this situation is always difficult to detect, since the strategy
that one might expect consists in achieving a perfect classification, and overfitting the

noise. This is not the point of view presented herein.

It is straight forward to show that both kinds of noise (6f and dc¢) induce a modeling error

in the classifier. In the case of class assignment noise the cost function writes:

0P () = [IL*(£) — <"l
= [IL*(f) — " = &¢|, =
=IL* ()l p + 6L" () = O'(f) + SL*(F),

where OP(f), O'(f) stand respectively for the perturbed and noise-free cost functions, and
oL*(f) for the modeling error term induced by the noise in the class assignment. For instance,

if the squared Euclidean norm is used to define the cost function, we have:

O (f) = ||L* () —¢*”[[3 = [|L*(£) — ™ — Se[[5 =
( *(f) clrue _ ) ( (f) clrue 50) _
= [IL*(£) — ¢””*| |3 — 2(L*(f) — ") TS c + 8T Se.

Therefore the modeling error is in this case:
SL*(f) = 8¢S —2(L*(f) — ™) ¢

and 6L*(f) — 0 when d¢ — 0.

In presence of these types of noise the set of features with the highest predictive accuracy
(and therefore the lowest misfit error) will never perfectly coincide with the set(s) of features
that explains the disease (noise-free classification problem). For that reason it is desirable to
look also for other sets of features with lower predictive accuracy than the optimum. Besides,
the classifier L* is built ad-hoc and it is just a mathematical abstraction used to discover the
features that are involved in the discrimination problem, but it is not the reality itself. As it

has been shown in section 1.3.2 devoted to the analysis of the modeling errors.
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1.3.4 The ill-posed character of the classification problem

Typically the number of samples is finite due to economic constrains (hundreds of samples)
and the number of prognostic variables (genes or genetic probes) is much higher (hundred of
thousands). The ill-posed character of the classification is due to the high underdetermined
character of the inverse problem involved. This is not always the case when working with
hospital data when the number of variables is usually lower than the number of samples.
However, it is not necessarily the case that these variables would carry enough information
about the decision problem that is going to be solved.

Addressing this analysis as a linear system:

L¥firue — cubs, L* ¢ My (R)7
the main typologies of these problems would correspond to:

1. Case of genetic data: m << n and Jker(L*) whose dimension is n — rank(L*) . The
ker(L*) forms the uncertainty space of the classifier. If the rank(L*) = m, that is the
samples are independent, the problem is purely underdetermined. Then, the minimum
norm solution applies:

fy = LT (L)~ 1o,

In this case the principle of parsimony applies since fy;y has not component on the
ker(L*). If rank(L*) = r < m, the samples are redundant, and the kernel of the classifier

increases its dimension to n — r. In any case the problem is highly underdetermined.

2. Case of the hospital data: m > n and rank(L*) = r < n. In the case where rank(L*) =
n, the problem is purely overdetermined, all the prognostic variables will be indepen-

dent predictors, and the least square solution applies:
fLS _ (L*TL*)—lLTCObS.

The classifier has a null kernel in this case (L* is inyective), but the uncertainty space
still exists. If rank(L*) < n, then the prognostic variables are dependent and the
problem becomes rank deficient, similar to the rank deficient underdetermined case.

Fernandez-Martinez et al. (2012, 2013) analyzed the uncertainty space of linear and
nonlinear inverse and classification problems showing that the topography of the cost function
O(f) in the region of lower misfits (or higher predictive accuracies) correspond to one or
several flat elongated valleys with null gradients, where the high predictive sets of features

reside. This valley is unique and rectilinear if the classification/inverse problem is linear,



12 Introduction

and bends and might be composed of several disconnected basins if the inverse problem
is nonlinear and the classification problem becomes nonlinear separable. Also, if we are
somehow able to define the discriminatory power of the different features, a classification
problem could be interpreted as the Fourier expansion of a signal, that is, there will be
features that provide high accuracy for the classification problem alone (head features),
while others will assist in expanding the high frequency details (helper features) in order
to improve the predictive accuracy. Nevertheless, there is a time when adding more details
to the classifier do not increase its predictive accuracy. The smallest scale signature is the
one that has the least number of highest discriminatory features. This knowledge could be
important for diagnosis and treatment optimization since it allows a fast and cheap data
gathering.

As aresult of the foregoing we will need a tool able to manage the underlying uncertainty
of the problem, due to its ill-posed character. Moreover, the tool will must be robust against
the different sources of data noise. Consequently and in response to such challenge, we

developed a methodological framework called Biomedical Robots.

1.3.5 Biomedical robots

We defined a biomedical robot as the ensemble of methodologies and bioinformatics algo-
rithms, derived from applied mathematics, statistics and computer science that are capable
of dynamically analyzing high dimensional data, discovering knowledge, generating new
biomedical working hypothesis, and supporting medical decision making with its correspond-
ing uncertainty assessment. It is important to remark that we are not interested in building
a black-box methodology, but being able of inferring the mechanisms of action that are
involved in the specific biomedical problem.

Figure 1.1 shows a conceptual scheme of how biomedical robots can be generated and
applied for instance to a phenotype prediction problem. From a training data set we built N,
robots. The robots is in this case are a set of classifiers characterized by their small-scale set
of features f, and their corresponding set of parameters needed to perform the classification
of the incoming samples. These robots will be deduced from the dataset by applying different
supervised feature selection methods and dimensional reduction algorithms. Each robot will
be also characterized by its predictive accuracy according to the classification cost function
O(f) built in a testing dataset. The design of the cost function is important because the sets
of features found might depend on that design. The average error will depend on the type of
experiment (Cross-Validation, Hold-Out with repetitions, . ..) that we used to define the cost

function.
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Biomedical data set
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- Reliability
Predict
PREDICTION 1 vois PREDICTION n
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FINAL PREDICTION
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1.1 Conceptual scheme for the design of biomedical robots.
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This design enables the sampling of the uncertainty space corresponding to the classifica-
tion problem. This can be shown through a simple linear regression problem. Let us suppose
that we have at disposal a set of points {(x1,y1)...(xm, i) } and we define the linear estimator
y*(x;m,b) = mx+ b. The model parameters (m,b) are found by least squares, solving the

bls
T —_FT
FIF( | =FTy,

with F = [1,X|,F € M,,x>(R). Matrix FTF is symmetric, therefore, it admits orthogonal

normal equations.

diagonalization:

MO

FTF=V
A

VT, M > >0.

Besides F' can be written using SVD: F = UXVT. The least square solution is:

bls
is | T (FTF)ilFTy:

m
1M 0
=% VIVETUTy =
( 0 1/h ) y

ylu/ A‘l Yiu You
—y VAL + , 15
( Yo/ VA2 ) VA " \/lzv2 (1)

where y1,, y2, are the two first coordinates of vector y referred to the orthogonal basis set U
of R™, and vy, v, are the eigen vectors of FTF.

Two considerations are relevant:

* The conditioning of the normal equations depends on the ratio A; /A, and the region of
linear equivalence of value rol (Fernandez-Martinez et al., 2012) referred to the V base
is:

(b—b")y |, (m—m")y

() ()

Therefore, the axis of the maximum uncertainty corresponds to the direction v, asso-

ciated to the smallest eigenvalue of FTF, A;, and the center of the elipse is the least

squares solution of the linear system. The noise is amplified mainly in the direction
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Fig. 1.2 Uncertainty space in a 2D ill-conditioned linear regression problem.

of v,, perturbing the location of the least squares solution (Ferndndez-Martinez et al.,
2014a,b).

* Taking into account relationship (1.5) we see that the least squares solution will change
if we consider different bags of the training dataset. These solutions belong to region
of uncertainty of the linear regression problem. The same can be concluded for
the biomedical robots in a specific classification problems. This idea is numerically
illustrated in figure 1.2 for a 2D ill-conditioned linear regression problem where all
the equivalent model parameters are sampled along the maximum uncertainty axis

direction, using different training data bags.

The final decision approach is as follows: given a new incoming sample, each of the
equivalent robots will perform a prediction. A final prediction with its uncertainty assessment
will be given using all these predictions via a consensus strategy such as majority voting.
Ensemble classification and majority vote decisions are based on Condorcet’s jury theorem,
which is a political science theorem about the probability of a given group of individuals
arriving at a correct decision (Ladha, 1992). In the context of biomedical robots and ensemble
learning, it implies that the probability of being correct for a majority of independent voters
is higher than the probability of any of the individual voters, and tends to 1 when the number
of voters (or weak classifiers) tends to infinite. In this case the weak classifiers are any of
the biomedical robots of the ensemble that have a high predictive accuracy. These classifiers
are guaranteed to be independent since they use different high discriminatory set of features,
measured by their corresponding discriminatory power.

More in detail, the algorithm for building a biomedical robot consists in three main steps:



16 Introduction

1. Applying several filter methods to find different lists of high discriminatory features.

2. Establishing the predictive accuracy of these lists of features using a validation cost
function (cross-validation accurcay for instance) via any machine learning classifier
(like a k-Nearest-Neighbor k-NN). This sampling procedure of the prediction uncer-
tainty space aims at obtaining from these lists different biomedical robots with their
corresponding predictive accuracy. For that purpose we can use feature elimination

techniques and/or random sampling methodologies.

3. Selecting robots above a certain predictive accuracy (or below a given error tolerance)

and performing the consensus prediction through a voting system (like majority voting).

According to the definitions stated in (1.1), (1.2), (1.3), and (1.4) we can formally define
a biomedical robot as the set of classifiers:

Ltol:{L*<fk): kzlv'-'am}a (1.6)

whose predictive error (the number of misclassified samples) is lower than a given bound
tol. The prediction problem with uncertainty estimation consists in, giving an incoming
sample S;.,,, applying the set of Biomedical robots L,,; (with predictive accuracy higher than
(100 — tol)%) and performing the consensus classification. Supposing that the uncertainty
analysis was correctly performed, this procedure also provides the uncertainty in the class
prediction. For instance if the class vector is composed by n classes, the probability of s,
to belong to class ¢; is calculated as the number of robots that predicted the sample to belong

to class ¢; divided by the total number of selected robots in the set L.

1.3.6 Feature selection

Following the two first steps of the algorithm for building a biomedical robot, we present
in this section the methods we applied for filtering and selecting features and, consequently
form essential part of the biomedical robot.

There are different kind of feature selection methods. In the case of filter methods, the
feature selection and the classifier for the prediction are independent (uncoupled). However,
wrapper and embedded techniques are most sophisticated approaches where the selection is
the solution of an optimization problem; therefore selection and classification are coupled.
Wrapper and embedded methods usually involve the use of neural network, support vector
machines, decision trees and global optimization algorithms. Filter methods rank different

features according to different measures of their discriminatory power in phenotype prediction
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problems. Besides, filtering/ranking methods provide clear interpretation, low computational
cost, and the possibility of being applied to both, discrete and continuous variables. However,
other types of filtering/ranking algorithms could be used. A survey about feature selection
methods can be consulted in (Saeys et al., 2007). These algorithms can be easily generalized
for multiclass classification problems. A future work will be devoted to this important subject.
In the present case we did not need to tackle this problem since all the cases were modeled
as binary.

Firstly, features are first ranked according to different filter/ranking methods for binary

classification problems:

* Maximum Fisher’s ratio (Fisher, 1936; Yang and Mao, 2011): The Fisher’s ratio (FR)
of a feature j, in a two-class problem, c1,c; , is defined as follows:

)= (1)1 —ujz)z

FRj(c1,c2
J ’ 2 2
0} +0%

, (1.7)
where, 1, and Uj, are measures of the center of the distribution (means) of feature j
in classes 1 and 2, and G ,and 02 i, are measures of the dispersion (variance) within
these classes. This method looks for prognostic features that separate the classes

further apart and are very homogeneous within classes (low intra class variance).

* Fold Change (Schena et al., 1996): The Fold Change (FC) of a feature j is defined as
follows:

fejler,e2) = lOgZNJ1
Ui

(1.8)

where, 1, and > are measures of the center of the distribution (means) of feature j

in classes 1 and 2. This method selects features according to their absolute FC value

|[fejler,ea)l-

* Minimum class Entropy (Quinlan, 1993; Shannon, 1948): Entropy (EN) is a measure
of the number of specific ways in which a system may be rearranged, and it is often
considered a measure of disorder, or progression towards thermodynamic equilibrium.
In the case of a binary classification problem, the entropy of each feature is defined as

follows:

i(c1,02) Z Zpk,logzpk,, (1.9)

where N, are the number of bins used to describe the probability distribution of feature

J in class k, and py; is the probability that this feature takes the center class value
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X j. The algorithm to compute the entropy is based in ordering the features according
to their value and calculating the mismatch to the class vector. A perfect ordering
occurs when the values correspond perfectly to the class vector. Features with higher
ordering (or lower entropy) are therefore the most discriminatory. The algorithm used
for Entropy ranking in this PhD is a simpler modification of this method, and it is

based on the optimum order of prognostic feature with respect to the class vector.

* Maximum Percentile Distance (MPD): This a novel method proposed here in and it
is based on selecting the features with higher distances between the corresponding
cumulative probability functions (percentile array) within each class, defined for feature
Jj as follows:

P _Pj2||2
max(||pjil2,11pj2ll2)”

where p ;; stands for the percentile vector j in class i, and ||p ;;||2 its Euclidean norm.

dj(Cl,CQ) = (1.10)

Percentiles vary from 5 to 95 to avoid the possible effect of outliers. This method
can be considered as a generalization of a Mann-Whitney selection test, which is only
based in the median (percentile 50).

* Significance Microarray Analysis (SAM Tusher et al. (2001)): SAM uses as score the
absolute difference between the means in both classes divided by the sum of the total
standard deviation (GjT) and a tunable exchangeability factor (0jo) used to damp the
effect of outliers, that is, genes with very small G].T that will bring an anomalous score:

= upl

SAM (cy.cy) = HL—H2| 111
i(c1,c2) s — (1.11)

Once the most discriminatory features are determined and ranked in decreasing order by
their discriminatory power, the aim is to determine the shortest (having the smallest number
of features) list of prognostic features with the highest predictive accuracy. The algorithm to
find the minimum-size list of features we chose is the Backwards Feature Elimination (BFE),
which is similar to the Recursive Feature Elimination algorithm proposed by Guyon et al.
(2002). Feature elimination tries to unravel the existence of redundant or irrelevant features
to yield the smallest set of prognostic features that provide the greatest possible classification
accuracy.

The BFE algorithm works as follows:
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1. Beginning by the tail of the ranked list of prognostic features, the algorithm iteratively
generates increasingly shorter lists by eliminating one prognostic feature at a time,

calculating their classification accuracy.
2. Finally, the list with the optimum accuracy and minimum size is therefore selected.

This way of proceeding is based on the following idea: prognostic features with higher
discriminatory ratios span low frequency features of the classification, while features with
lowest discriminatory ratios account for the details in the discrimination (high frequency
features). This method determines the minimum amount of high frequency details that are
needed to optimally discriminate between classes.

For the predictive accuracy estimation, we applied a Leave One Out Cross-Validation
experiment (LOOCYV), using the average distance of the reduced set of features to each
training class set. The goal of cross-validation is to estimate how accurately a predictive
model (classifier) will perform in practice. LOOCYV involves using a single sample from the
original dataset as the validation data (sample test), and the remaining samples as training
data for each fold until all the samples were predicted. The class assignment is based in a
nearest-neighbor classifier in the reduced base, that is, the class with the minimum distance
in the reduced base to the sample test is assigned to the sample test. As the clinical data has a
heterogeneous character, the Euclidean distance is not always an appropriate metric, since it
works well with continuous attributes. Therefore, the average LOOCYV predictive accuracy is
calculated by iterating over all the samples using the Heterogeneous Value Difference Metric
(HVDM) (Wilson and Martinez, 1997). This metric in the case of continuous variables
coincides with the Euclidean distance between the corresponding normalized variables. For
that purpose the weights used to normalize the variables are the inverse of two times the prior
variability (standard deviation) of the prognostic features. These weights serve to scale the
different kinds of measurements into approximately the same range in order to give to each
variable a similar influence on the overall distance measurement. The distance between a

new sample s,,,, and the average signature m; in class j is:

d(sneWamj): Hw(snew_mj||27 (1~12)

where o is a diagonal matrix with w(k,k) = ﬁ, where oy is the standard deviation of the
k-th discriminatory prognostic variable. Although, other more sophisticated classifiers could
be used like SVM (Vapnik, 1995), ELM (Huang et al., 2006) or Proximal algorithms (Parikh
and Boyd, 2013), we decided to use the above explained classifier due to its simplicity and

clear interpretation.
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In this procedure the feature selection method is executed only once using all training
samples before estimating the accuracy by means of a leave-one-out procedure. For each
new sample the classifier computes the average distance to the training samples of each class,
being d; the average distance to class 1, and d; the average distance to class 2. Based on
these distances the probability of a new sample s,,,, to be in class 1 can be written as:

dr
P(Spew € €1) = ditd (1.13)

The procedure to decide the class assignment is as follows:

Snew € €1 <= P(Spew € 1) > ppy =0.5. (1.14)

Otherwise, $,., € c2. The threshold probability p;; can be considered as a continuous
variable to establish the Receiver Operator Characteristic (ROC) curve for this classifier
(Swets, 1996). Finally, the reduced base might be tested over different randomly chosen
training and testing dataset, and averaging the results over a set of independent simulations.

Although this simple classifier seems to be similar to a nearest neighbor algorithm (k-NN),
it is not obviously the same, since neither the centroid definition of the distributions, nor
the way of adopting the decisions coincide. Notice that in this process, the feature selection
method is executed only once using all training samples, before estimating the accuracy by
means of a leave-one-out procedure. Our goal is to study the effectiveness of feature selection
methods in finding the groups of prognosis variables with higher predictive accuracy. Also, if
the feature selection process was performed each time the classifier was executed (i.e. in each
of the folds of the leave-one-out), different sets of features would be obtained, thus, it would
more difficult to assess the goodness of any concrete group of prognosis features. The only
way will be performing frequency analysis of the selected prognostic variables and applying
BFE to this set of variables ranked by decreasing order of their posterior frequency. Besides,
since the accuracy is established by LOOCYV the selected features within each fold of the
LOOCYV will not be so different from selecting them using the whole dataset, considering
that the training set of each of fold in a LOOCYV is composed by all the samples but one.

Finally, following the steps described in section 1.2 we presented above the results of
applying the developed methods to different types of biomedical data: Clinical and genetic
data. Then we present the sensitivity analysis of the methodology against the main sources
of noise and how is affected by the main preprocessing techniques. Finally, we describe the
results of applying Biomedical Robots to phenotype prediction problems.



Chapter 2

Application to clinical data

2.1 Introduction

Clinical data consists of health records, clinical trials or disease registries. They are usually
retrieved in hospitals or clinics by the specialist. They have an heterogeneity character and
they frequently present different sampling frequency. Namely, they express different values
in different measures with different bounds, and they are not usually available in all the
samples/patients, that is, there are some clinical data that have not been retrieved for some
patients. These heterogeneity makes data preprocessing techniques the clue for solving
the problem. It will be of paramount importance finding the appropriate normalizing and
imputing methods in order to correctly address problems related to clinical data.

Following the steps described in section 1.3.5, ”we developed and applied different
learning, dimensionality reduction, global optimization and classification algorithms to
clinical data gathered in different hospitals”. Firstly, we tackled the prediction of two
decision making problems that are very common on patients with Chronic Lymphocytic
Leukemia: The need of chemotherapy treatment, and the Autoimmune disease occurrence.
This work in collaboration with Cabuefies Hospital (Gijon, Asturias, Spain), was reflected in
a paper called: ”Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia
decision-making problems”. Secondly, in collaboration with eight hospitals in Asturias we
addressed the prediction of the treatment response in patients with Hodgkin Lymphoma. As a
result we published a manuscript titled ”On the prediction of Hodgkin Lymphoma treatment
response”. In both cases we developed and applied the different classification and feature
selection algorithms described in section 1.3.6. In the case of Hodgkin Lymphoma we also
applied optimization techniques that allowed us to improve the classifier, taking into account
the confusion matrix and the ROC curve. The simplicity of these methods in both cases, gave

us the possibility of implementing them in platforms like spreadsheets, as well as, allowing
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an easy understanding for medical doctors. This is the cornerstone of the whole methodology
and the key for taking the results of the research work to the hospital and laboratory side
(translational medicine).

This chapter is structured in three parts. Firstly we present the common methodology
applied in both practical cases: Chronic Lymphocytic Leukemia and Hodgkin Lymphoma.
Secondly we introduce the problems addressed for the Chronic Lymphocytic Leukemia and
present the results and conclusions. Finally, we proceed in the same way with the Hodgkin
Lymphoma case.

2.2 Methodology applied to both practical cases using clin-

ical data

The common methodology applied in both practical cases is composed of three main steps:
(1) Data pre-processing, (2) Feature selection and (3) Risk assessment. Figure 2.1 shows
the flowchart of the methodology. Moreover, an additional step only applied in the case of
Hodgkin Lymphoma, is shown in dashed box. The feature selection step is explained in

detail in section 1.3.6.
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Fig. 2.1 Flow diagram for the prediction model. The methodology is composed of three
steps: 1) Data pre-processing, 2) Feature selection and 3) Risk assessment. ROC-based PSO
classifier optimization step is only applied in the case of Hodgkin Lymphoma. The different
sub steps are also detailed.

2.2.1 Data pre-processing

Data preprocessing is applied to improve the quality of data used for performing feature
selection, prediction and optimization. It includes two main sub steps that can be applied or
not depending on their impact on the prediction:

* Filtering: All the features that had certain number of missing values (sampling fre-
quency) are removed. The filtering cut offs used were 30, 40 and 50%.

* Imputation: This technique consists in interpolating all the missing values using a
Nearest-Neighbor algorithm (Troyanskaya et al., 2001). Given a partially-informed

sample (with missing values) the algorithm finds the closest sample within the set of
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fully-informed samples and gives the values of the missing variables in this closest
sample to the imputed sample. The similarity between samples is measured using
the standard Euclidean dot product in N-dimensional vector spaces, where N is the
number of fully-informed variables. This way of interpolation has the advantage
of not introducing additional outliers that are not originally present in the dataset
before imputation. Although the success of the different imputed algorithms might be
data-driven, imputing the data improved the accuracy in the predictions and did not
alter the prognostic variables that were involved providing shorter lists with higher

discriminatory power.

The imputation algorithm is as follows:

1. Finding the subset Sy; of samples (patients) that are fully-informed for all the

control variables.

. For each patient k that is not fully-informed, finding the set of variables my (vary :

vary) that are missed. These variables are interpolated using the values of the

same variables corresponding to the nearest fully-informed patient fi in Sy;:

my (vary : vary) =my (vary : vary).

. To measure the similarity between patients we use the cosine criterion induced

by the Euclidean scalar product defined over the set of fully-informed variables

in the current sample (patient):

(m m ) my; -m j
cos )=
O g2l

where m; and m; stand for the vectors of fully-informed variables in patients k

and j.

2.2.2 Risk assessment

In the feature selection step (see section 1.3.6), maximizing the predictive accuracy according

to the LOOCYV criterion allowed to determine the best reduced base of prognostic variables.

However, it is also important to analyze the confusion matrix, obtained from the set of

predictions of the training set using the LOOCV method. The confusion matrix is composed
by: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).

From the confusion matrix we can calculate different rates that are very useful to understand

the risk in the prediction:



2.2 Methodology applied to both practical cases using clinical data 25

* True Positive Rate or Sensitivity (TPR): measures the proportion of actual positives

that are correctly predicted as such.

» True Negative Rate or Specificity (SPC): measures the proportion of negatives that are

correctly predicted as such.

* Positive Predicted Value (PPV): is the proportion of positives values that are true

positives.
 False Positive Rate (FPR): fraction of false positives out of the total actual negatives.
* False Negative Rate (FNR): fraction of false negatives out of the total actual positives.

* False Discovery Rate (FDR): fraction of false positives out of the total actual positives.

Based in these rates it is possible to construct a Receiver Operating Characteristic curve (or
ROC curve), which is a graphical plot that illustrates the performance of a binary classifier as
a function of the cut-off probability. This idea allowed us to create a ROC methodology for
this simple distance-based classifier. The curve is created by plotting the TPR against the
FPR or fall-out. A perfect classifier has as ROC curve the step function at the origin. ROC
analysis is related to cost/benefit analysis of diagnosis/prognosis/treatment decision making.
TPR and SPC values are important due to the impact on the patients of the decision taken by
physicians.

The selected attributes are used to provide simple biomedical discriminatory rules for
diagnosis and prognosis since for each classification problem we provide the bounds for the
four groups of the confusion matrix. This knowledge can be used by the physicians in their
decision-making process. Additionally to the LOOCYV results, we also performed the mean
accuracy obtained for 100 random holdouts 75/25 (75% for training and 25% for testing).
In any case, and independently of how the predictive accuracy is established, it is crucially
important to understand that there exist different combinations of prognostic variables with
similar predictive accuracy whose knowledge might be useful to understand the genesis of the
problem from a medical point of view. The existence of these different lists is related to the
uncertainty analysis of the solutions in any decision-making problem (Ferndndez-Martinez
et al., 2012, 2013).

It is possible to optimize the TPR and/or TNR (improving at the same time the overall
predictive accuracy) by optimizing the parameters of the classifier. The idea is to bal-
ance/improve the confusion matrix by optimizing the prior weights assigned by the HVDM
metric to the best reduced-base that has been found applying the LOOCYV approach. This

optimization was performed in the Hodgkin Lymphoma problem via a powerful family of
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Particle Swarm Optimizers (PSO, Ferndndez-Martinez and Garcia Gonzalo (2008); Kennedy
and Eberhart (1995)).

Finally, it is remarkable the simplicity of the methodology of selecting the shortest list of
prognostic variables that could be easily interpreted by medical doctors to perform prognostic
predictions with their corresponding risk assessment. The success of the methodology is not
based on the sophistication of the classifier but on selecting the most discriminatory variables
in each case and building the classifier based on these variables. By selecting the most
important prognostic variables, it has been shown that the classification problem approximates
a linear separable behavior. This is also a novel result since the methodology currently used
(for instance SVM) acts on the opposite direction by transforming the data into an infinite
dimensional feature space where the problem becomes linearly separable. An illustration of
this idea is that a polynomial function of the type f(x,y) = ag+aix+asy+azxy +asx* +asy*
becomes an hyperplane in R if the terms in xy, x> and y* are considered independent

variables.

2.3 Analysis of clinical prognostic variables for Chronic

Lymphocytic Leukemia decision-making problems

In this research work we show how using the methodology explained in section 2.2 and clini-
cal data obtained from a large population of well-studied Chronic Lymphocytic Leukemia
patients (Gonzalez-Rodriguez et al., 2010) can be efficiently applied to address diagnosis
problems in medical practice by capturing the hidden implicit relationships between the clin-
ical variables and the corresponding class of the different patients that have been established
by medical experts. The problems to be addressed are the need of chemotherapy treatment
and the autoimmune disease development, thereby optimizing the treatment and diagnosis.
This work has been published in the ”Journal of Biomedical Informatics” (see Appendix
A.l).

2.3.1 Introduction to Chronic Lymphocytic Leukemia related prob-

lems

Chronic Lymphocytic Leukemia (CLL) is the most common adult Leukemia in western
countries, and it is characterized by the accumulation of malignant B-cells in blood and lym-
phoid organs. The clinical course of CLL is highly heterogeneous since the survival of some
patients is only slightly affected by the disease, whereas other patients have a progressive

disease associated with infectious and autoimmune complications. These progressive patients
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have poor prognosis, but they could benefit from an earlier or more intense chemotherapeutic
treatment. It has been reported that many poor prognostic factors, due to their high cost
and complexity, are not used in most hospitals on regular basis. To overcome this problem
in the clinical practice staging systems using few, simple, cheap and accessible clinical
variables have been popularized. The Rai staging system (Rai et al., 1975) and the Binet
classification (Binet et al., 1981) are useful to predict the prognosis of CLL patients, to
stratify them, and to achieve comparisons for interpreting specific treatment results. Staging
systems stratify subsets of patients who have significant differences in the overall survival
but they fail to identify patients who have a high risk of progression in early stages of the
disease. Additionally, no current prognostic factors exist to predict the development of some
severe complications such as the development of Autoimmune Diseases (AD), or the need
for Chemotherapy Treatment (CT). Consequently, the identification of currently available
clinical variables to assess the medical decisions in these CLL-related diagnosis problems is
a key goal in the management of this disease.

The development of AD or the need of CT is not known at diagnosis. So far, only with
the evolution of the patient during the 5 years follow up, medical doctors can answer these
questions. Therefore, the interest of the methodology previously presented consists of being
able to predict both CLL related problems at diagnosis. Particularly, AD problem was very
hard to predict, and up to our knowledge no previous research was successful to explain this

phenomenon using biochemical variables.

2.3.2 CLL clinical data

The CLL clinical data we managed were a cohort of two hundred sixty-five Caucasians
who were diagnosed in the Cabuefies Hospital (Gijon, Spain) with CLL between 1997
and 2009. The population distribution by gender and age was the following: 154 males
and 111 females, with ages ranging from 42 to 92, and 47 to 94 years old respectively.
Clinical characteristics of patients including time for diagnosis to first treatment, need of
chemotherapy treatment and appearance of autoimmune complications were also taken into
account in this study. Additionally, thirty-six different clinical and biological variables were
measured at diagnosis of the disease. Table 2.1 shows the variables description used in
this study. Some variables reflect the malignant characteristic of leukemia cells; others
measure the immunological characteristics of CLL patients, and some may be associated
with the presence or development of autoimmune complications (autoimmune haemolytic
anemia and immune-thrombocytopenia). Finally, some of the variables are demographic
and biochemical. Most of them have a sampling frequency higher than 80%, however, the
reticulocyte count (RET) and ZAP-70 are the ones that show the lowest sampling frequency.
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Particularly, ZAP-70 is only sampled in 21.9% of the patients (58 out of 265), showing that
this popular CLL prognostic factor is not always available in medical practice. Although
some of these variables were not at disposal at diagnosis (LD for instance), they have been
used for analytical purposes.

2.3.3 CLL results for Chemotherapy treatment

In CLL , there can be some patients that have an indolent disease and they do not require CT.
Other patients who present a progressive disease may require an intense CT. The identification
of those patients at early stages of the disease with a high risk of rapid disease progression
may help to significantly improve their prognosis. Thus, we try to establish the prognostic
variables and criteria to assess the need for CT, assuming that the clinical decisions on the 71
(out of 259, therefore there are 6 missing values since the total cohort is 265) patients that
have received CT were correct.

Using the methodology explained in section 2.2 we found that Fisher’s ratio ranking
method provided the minimum-size set of prognostic variables with the highest accuracy
of 80.3%: B2M, WBC, ALC and MBC. The True Positives (TP) are formed by the group
of patients that need CT (+) and are correctly predicted, and the True Negatives (TN) are
formed by the groups of patients that do not need CT (-) and are correctly predicted. Thus,
False Positives (FP) are the patients that do not need CT (-) and are not correctly predicted
and False Negative (FN) are the patients that need CT (+) and are not correctly predicted.

Figure 2.2 shows the ROC curve and the Recall (or True Positive Rate -TPR) against
Precision (or Positive Predicted Value - PPV) curves for several probability thresholds in the
CT classification problem. The optimum result (p;;, = 0.47) shows that 63.4% (TPR) of the
patients that need CT and 86.7% (True Negative Rate or Specificity - SPC) of the patients
that do not need CT were correctly predicted. Besides, with that probability threshold we got
a Precision (or Positive Predicted Value - PPV) of 64.3%. Nevertheless, other probability
thresholds could be adopted depending on the Recall/Specificity balance, and therefore on
the PPV as well. The False Discovery Rate (FDR) was 36.62%. The confusion matrix is

shown below:
TP FP 4 2
= > > (2.1)
FN TN 26 163

CT is recommended in patients with advanced and progressive disease. Thus, the
amount of malignant leukemia cells that it is measured by the different counts of leucocytes;
particularly WBC (White Blood Cells count), ALC (Absolute Lymphocyte Count) and MBC
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Table 2.1 Clinical variables description by group and their corresponding symbols and
sampling frequency (Samp. Freq.). Discrete variables are shown in bold faces.

Group Variable Name Samp. Freq.
ALB - Albumin (g/L) 98.49%
ALC - Absolute Lymphocyte Count (cells/microL) 100.00%
ALP - Alkaline phosphatase (U/L) 95.47%
B2M - Beta 2 Microglobulin (mg/L) 93.58%
BU - Bilirubin (mg/dL) 96.23%
CR - Creatinine (mg/dL) 99.62%
GOT - Glutamic-Oxaloacetic Transaminase (U/L) 98.11%
GPT - Glutamic-Pyruvic Transaminase (U/L) 99.25%
HGB - Hemoglobin (g/dL) 100.00%
IgA - Immunoglobulin A (g/L) 96.60%
_ IgG - Immunoglobulin G (g/L) 96.60%
8 IgM - Immunoglobulin M (g/L) 96.60%
g K - Potasium (mEq/L) 90.94%
§ LDH - Lactate Dehydrogenase (U/L) 96.98%
o MBC - Monoclonal B cell Count (cells/microL) 90.94%
MCYV - Mean Corpuscular Volume (fl) 100.00%
NA (mEq/L)- Sodium 90.57%
NCC - Natural killer Cell Count (cells/microL) 90.94%
PLT - Platelets (cells/microL) 100.00%
RET - Reticulocyte count (cells/microL) 75.47%
SNC - Segmented Neutrophils Count (cells/microL) 100.00%
T8C - CD8 T cell Count (cells/microL) 86.42%
TLC - Total Lymphocyte Count, CD8 + CD4 (cells/microL) 96.60%
UA - Uric acid (mg/dL) 97.36%
UR - Urea (mg/dL) 99.25%
WBC - White Blood cells Count (cells/microL) 100.00%
CD38 - CD38 positive 81.51%
o COOMBS - Coombs test 94.34%
.‘g LD - Time for duplication of the number of lymphocytes 96.98%
2 MOR - Morphology 98.49%
3 MP - Monoclonal Peak 98.87%
d NLymph - Number of affected lymph nodes 99.62%
SMG - Splenomegaly 99.62%
ZAP70 - Zeta-chain-associated protein kinase 70 (%) 21.89%
Personal AGE - Age 100.00%
SEX - Sex 100.00%
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Fig. 2.2 A) ROC curve. B) Sensitivity (or True Positive Rate -TPR) and Precision (or Positive
Predicted Value - PPV) for Chemotherapy Treatment. The optimum result (7PR = 63.4 and
PPV = 64.3) is obtained for p;;, = 0.47.

(Monoclonal B Cell Count) are key clinical parameters. Nevertheless, these variables are
not currently used to select patients who may benefit from CT. On the other hand, AGE,
B2M and ZAP70 are traditional clinical parameters that have demonstrated their prognostic
importance independently of the clinical stage. Our results also indicated the great prognostic
significance of variables that are mainly related with the characteristics of the immune system
and are not currently used as prognostic markers in this disease.

Table 2.2 shows the median/mean signatures for the 4 groups of the confusion matrix
for the main decision variables found by the methodology. We can observe that there exists
a significant distance between the mean signatures of the TP and TN groups, being the
median/mean signatures in all the decision variables much higher in the TP group. Moreover,
the distance between the median and the mean values of the decision variable distributions is
much higher in the TP and in the FP groups, meaning a higher variability in these groups.
The mean signatures of the FN group (patients that need CT and are incorrectly predicted)
are very close to the mean signatures of the TN group. These patients will never be correctly
predicted according to this classifier.

To understand the ambiguity in the CT prediction, it should be taken into account that the
criteria used to establish the need of CT (Hallek et al., 2008) sometimes have not correlation

with the biological data. The reason is that some patients are diagnosed in early stages



2.3 Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia
decision-making problems 31

Table 2.2 Chemotherapy Treatment.

Variables TP TN FP FN

B2M 39/424 206/2.15 437/458 20/2.18

WBC (K) 34.1/61.8 143/16.8 183/283 14.2/15.5

ALC(K) 247/476 9.0/112 124/21.8 85/104

MBC (K) 21.7/40.3 6.1/8.4 10.1/184 69/7.8
This table shows the list of most discriminatory variables with a predictive accuracy of
80.3%. Median and mean values (median/mean) of the prognostic variables for the different
groups of the confusion matrix are also given. Variables with (K) are expressed in kilo units.
Bold faces indicate the highest value for each prognostic variable in the TP and TN groups.
Bounds for the decision correspond to the TP and TN groups.

of the disease when a low burden tumor mass has been detected but they have a very fast

progression which implies the need of CT.

2.3.4 CLL results for Autoimmune Disease development

In CLL, an autoimmune response against red blood cells (known as autoimmune haemolytic
anemia), and an autoimmune response against platelets (known as immune thrombocytopenia)
are severe complication of this disease. To the best of our knowledge no prognostic factors
capable to predict the presence or development of an autoimmune disease in CLL patients
have been currently disclosed. In our cohort only 16 patients (out of 263, therefore there
are 2 missing values since the total cohort is 265) have shown autoimmune disorders. This
classification problem is highly unbalanced, corresponding to the genesis of the disorder.
The classifier has to be able to learn this fact. Some strategies exist to artificially balance
the training data set (Chawla et al., 2002; Estabrooks et al., 2004; He et al., 2008; Liu et al.,
2006; Ting, 2002), but in this case the results did not improve.

The shortest list of prognostic variables with the highest accuracy (97.3%) was found by
the Fisher’s ratio method and includes 13 clinical variables: PLT, RET, ALB, HGB, BU, UR,
MCYV, NCC, K, WBC, LDH, ALC and MBC. The True Positives (TP) group is formed in this
case by the patients that present AD (+) and are correctly predicted and True Negatives (TN)
correspond to the patients that do not have AD (-) and are correctly predicted. Similarly, the
False Positives (FP) are the patients that do not have AD (-) and are not correctly predicted
and the False Negatives (FN) correspond to the patients that present AD (+) and are not
correctly predicted.

Figure 2.3 shows the ROC and the Recall (or True Positive Rate -TPR) against Precision
(or Positive Predicted Value - PPV) curves throughout all possible probability thresholds for
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the AD classification problem. The optimum result (p;;, = 0.5) shows that 62.5% (TPR) of
the patients that have AD and 99.6% (True Negative Rate or Specificity - SPC) of the patients
that do not have AD are correctly predicted. Moreover, over that probability threshold we
get a Precision (or Positive Predicted Value - PPV) of 90.1%. However, other probability
thresholds could be adopted depending on the Recall/Specificity balance, and therefore on
the PPV as well. The False Discovery Rate (FDR) in this case is 9.1%. The confusion matrix

is the following one:
TP FP 10 1
= (2.2)
FN TN 6 246
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Fig. 2.3 A) ROC curve. B) Sensitivity (or True Positive Rate -TPR) and Precision (or
Positive Predicted Value - PPV) for Autoimmune Disease occurrence. The optimum result
(TPR =62.5 and PPV =90.1) is obtained for p;h = 0.5.

Table 2.3 shows the medians and means for the 13 prognostic variables for the 4 groups
of the confusion matrix. The differences between the means in TP and TN groups decrease
with the Fisher’s ratio. Prognostic variables with lower Fisher’s ratios (secondary variables)
also contribute to improve the discrimination. Except for the main variable, PLT, and the
secondary variables HGB and K, the mean and median values are higher in the group with
autoimmune disease (TP). The analysis of the two main prognostic variables shows that
patients that develop AD and are correctly predicted (TP) have much lower medians and
means PLT values (97.7/95.0 Kcells/microL). The normal platelet count lays in the range 150-
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Table 2.3 Autoimmune disease development.

Variables TP TN FP FN

PLT (K) 97.7/95.0 191/202.2 138 163 /147.2
RET (K) 128.0/135.7 67.2/69.8 101.3 54.4/71.8
ALB 42.0/404 38.0/374 41.1 39/39.7
HGB 14.0/11.5 14.0/13.6 136 14/13
BU 1.0/1.1 1.0/0.6 0.6 1.0/0.76
UR 52.0/64.1 43/46.7 49 42 /43.7
MCV 93.0/98.1 90/89.6 88.9 87/86.7
NCC 966 / 2251 576 /741 1657 338/393.4
K 4.0/4.09 4.0/4.33 4.0 4.0/4.33
WBC (K) 23.1/56.0 1547247 23.6 13.5/13.9
LDH 360/ 398.1 325/343.4 288 333/333
ALC(K) 16.1/42.2 10.1/17.8 184 8.5/6.7
MBC (K) 10.2/36.3 7.3/14.2 1477 52/4.6

This table shows the list of most discriminatory variables with a predictive accuracy of
97.3%. Median and mean (median/mean) values of the prognostic variables for the different
groups of the confusion matrix are also given. FP is composed only by 1 sample (median
and mean coincides). Variables with (K) are expressed in kilo units. Bold faces indicate the
highest value for each prognostic variable in the TP and TN groups. Bounds for the decision
correspond to the TP and TN groups.

450 Kcells/microL, being the average 237 Kcells/microL in men, and 266 in women. On the
other hand, the reticulocyte count (RET) in the TP group almost doubles (136 Kcells/microL.)
the average RET count in patients with no AD (70 Kcells/microL). Median values also show
similar tendencies.

The False Positives (FP group) is composed in this case only by 1 sample, whose signature
is closer for all the 13 variables to the TP group, except for PLT, RET that are somewhere
in between the median/mean values for TP and TN. This fact points out the difficulty of
classifying this sample, and it can be proposed as a ”biological” outlier. On the other hand,
the FN group is composed by 6 samples. The mean PLT count (147 Kcells/microL) of
the FN group lies between the mean value for the TP (95 Kcells/microL) and TN (202.2
Kcells/microL) groups. The RET count is however closer to the TN group showing a tendency
to very low median values (54.4 Kcells/microL).

These results show the importance of variables associated with the characteristics of
platelets and red cells, which are the main targets of the autoimmune haemolytic anemia and
immune thrombocytopenia, such as PLT, HGB, MCV and RET. Other variables depend on
the presence of autoantibodies or products or symptoms derived from the lysis of blood cells
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(BU and LDH). Moreover, some variables associated with the immunological characteristics
of patients, such as NCC, constitute a relevant subset of variables that may predict an
autoimmune disease occurrence. The association of these variables with an autoimmune
disease is not unexpected based on the biology of CLL, but we would like to highlight that
no prognostic factors or system may currently predict the development of an autoimmune
disease in the clinical practice. To the best of our knowledge this is the first description so
far that a group of clinical variables obtained at diagnosis of CLL patients may predict an

occurrence of an autoimmune disease.

2.3.5 Conclusions for CLL related problems

Table 2.4 summarizes the main results found for both classification problems (CT and AD):
the optimum reduced set of features, the LOOCYV accuracy, the Hold Out (HO) mean accuracy
over 100 different random simulations using 75% and 25% of samples for training and testing
the Sensitivity or True Positive Rate (TPR), and the Specificity or True Negative Rate (SPC)

statistics.

Table 2.4 Summary of the results.

Problem  Variables TPR / SPC LOO Acc. HO-100 Acc.
CT(+) Vs. B2M WBC
NoCT (-) ALCMBC
AD (+) PLT RET ALB HGB
Vs. BU UR MCV NCC 62.5% 199.6% 97.30% 92.80%
No AD (-) K WBC LDH ALC MBC

Sensitivity or True Positive Rate (TPR) and Specificity or True Negative Rate (SPC) together
with the mean accuracy (Acc.) for both experiments leave one out (LOO) and 100 repetitions
of a hold-out 75/25 (HO, 75% for training and 25% for testing); and the positive and negative
case description of each problem. Bold face indicates the prognostic variables that have been
discussed in the text.

63.4% /86.7% 80.30% 76.10%

The results show that the accuracies are rather high and the difference between both
experiments LOOCYV and 100 repetitions of a Hold Out (75/25) is quite low, which highlights
the robustness of the methodology. In addition, risk assessment ROC curves are provided for
each problem and show a good balance between False Positives and False Negatives.

From a medical point of view, the methodology allow the identification of clinical
variables obtained at diagnosis of CLL patients, which may predict the development of AD
and the need of CT. These variables were obtained at diagnosis of CLL patients on a regular
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basis, and consequently, their use does not increase the cost or complexity of the diagnosis in
CLL patients.

The need of CT seems to be related to the amount of malignant leukemia cells that
are measured by the different leucocytes counts. Although the results concerning these
prognostic variables (B2M, WBC, ALC and MBC) are well known in other plasma disorders,
this analysis served to conclude that these variables only carry partial information to adopt
this important decision, that most of the times, is taken based on criteria that have not
correlation with the biological data.

To the best of our knowledge this is the first description so far that a group of clinical
variables obtained at diagnosis of CLL patients may predict an occurrence of an AD, which
is a severe and currently unpredictable complication. These results show the importance
of variables associated with the characteristics of platelets, reticulocytes and natural killers
(PLT, RET and NCC), which are the main targets of the autoimmune haemolytic anemia and
immune thrombocytopenia.

Additionally, the methodology focuses on the relevance of some variables, such as the
immunological ones, which may have an important impact on the prognosis of CLL patients,
but they are not currently used by hematologists. This analysis has also shown that the low
sampling frequency of RET and ZAP-70 could be troubling given their predictive significance
in all the problems that have been treated: RET is a key factor for predicting AD, whilst
ZAP-70 seems to be important for predicting the need of CT.

In conclusion,the methodology allow an easy accurate prediction of risk in CLL related
problems. Moreover, it may establish the relevance of clinical variables that are not widely
used as prognostic factor in this disease. The prognostic significance of these variables may
probably reflect the relevance of some clinical aspects of this disease that are more important
for prognosis than it is currently thought.

This methodology can be adapted to different pathologies as it is shown for the case of
Hodgkin Lymphoma.

2.3.6 Additional results for survival analysis

Survival analysis is a branch of the applied mathematics that attempts to answer what
is the proportion of a population that will survive past a certain time and which are the
particular features or characteristics that influence the probability of survival. Particularly
the population can include different sub-cohorts with different survival times. The object
of primary interest is the survival function S(¢) = P(T > t) which is the probability that
the death time 7" exceeds a given time threshold . Moreofver, in survival studies it is also
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important the force of mortality or hazard function that provides the instantaneous rate of
occurrence of the death.

The Kaplan-Meier estimator (Kaplan and Meier, 1958) can be used to estimate the
survival function from lifetime data. The Kaplan-Meier estimator with a large enough sample
size approaches the true survival function of a population. For a sample of size N of a
population with observed times until death #; < #, < --- <1y, the Kaplan-Meier estimator of

the survival function is:

n,~—a’,~

s =T,

i<t M

where n; 1s the number of survivors prior to time #; (when there is no censoring) and d; the
number of deaths at time #;.

Censoring occurs if a patient withdraws from a study, is lost to follow-up, or is alive
without event occurrence at last follow-up. The Kaplan-Meier estimator can be easily adapted
to this case taking »; as the number of survivors minus the number of censored cases. Kaplan-
Meier curves are often used in medical research to measure the fraction of patients living
for a certain amount of time after treatment, or to perform the segmentation of a population
into subpopulations with different survival times. In our case the aim consists in finding
the prognostic variables that better explain the different survival of the CLL population at
different time thresholds: 1, 3 and 5 years.

Logistic regression is usually applied to predict survival times. It was developed by
D.Cox (1958) to estimate the probability of a binary response based on a set of features. The
logistic regression is just a linear regression of the logit of the probability:

logit (pi) = In fip, = 0 + 01X + 00X+ -+ =+ O X,
l

where (x;1,Xp,...,Xin) are the attribute values of the sample i and p; its (survival) probability,
and a = (ap, ay,. .., 0,). The logistic regression implies the solution of the linear system of
the kind:

1 x11 x12 ... X1 o logit(pl)

1 x1 x12 ... X (0%) B logil‘(pz)

1 Xp1 X2 oo Xm o, logit(pn)

As any regression problem, logistic regression is ill-posed, that is, there exist different
set of features or attributes providing a similar predictive accuracy. In addition, all the

equivalent features are located for a given error tolerance within the linear hyper-quadric
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(Fernandez-Martinez et al., 2012, 2013). Moreover, the ill-condition character of the logistic
regression inverse problem comes from the fact that not all the attributes from the samples
are relevant for the prediction. In diagnosis, it is important not only finding the optimum
prediction of p;, but also learning which are the most predictive discriminatory variables.
We approach this problem as a binary classification problem, that is, given a survival
time threshold (1, 3 or 5 years in this case) we divide the population into two classes:
the ones that survived more than this time threshold, and the ones that did perish before.
Censoring is automatically performed since the individuals that are censored are not taken

into consideration for the analysis.

One-year survival

This is a highly unbalanced problem since only 18 patients died (out of 265) during the first
year. However, the identification of the subset of patients with risk of such severe disease
progression has obviously important clinical consequences. The best prediction was achieved
using the following ranking methods and variables: 1. Entropy (94.3%): LD, CD38, SEX; 2.
Fisher’s ratio (94%): NLymph, MP, MOR and LD; 3. Maximum Percentile Distance (94%):
NLymph, MP, LD and SMG. Particularly, the number of affected lymph nodes (NLymph)
in patients who died during the first year was higher compared with the ones that survived.

Table 2.5 shows a brief description of the selected variables.

Variables Survive Not Survive Description
LD 1.8 1.77 1 - Positive / 2 - Negative
CD38 1.7 1.55 1 - Positive / 2 - Negative
SEX 1.42 1.33 1 - Male / 2 - Female
NLymph  0.64 1.62 0 - 3 affected lymph nodes
MP 1.11 1.38 1 - Positive / 2 - Negative
MOR 1.14 1.27 1 - Typical / 2 - Atypical
SMG 1.84 1.66 1 - Splenomegaly / 2 - No splenomegaly

Table 2.5 Variable Selection for one-year survival. Figures shows mean values.

Three-year survival

The aim, in this case, was to find the most important features that allow a certain patient to
overtake 3-years survival. This is a highly unbalanced problem as well, since the number of
deaths (34) is far from the number of survivors (231). We also show the comparison with
best prognostic variables for 1 and 5-year survival. The shortest subset of features with the
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highest accuracy (93.2%) was found by the Fisher’s ratio method, and it was composed of 8
prognostic variables: B2M, AGE, HGB, ALP, UR, LDH. Table 2.6 shows the median and
the IQR values for the main variables previously commented.

Variables  Survive  Not Survive
B2M 22/1.2 3.8/4.7
AGE 71712 80/16
HGB 14/2 12/3.5
ALP 64 /28 80/50
UR 43/ 15 53.5/18
LDH 321/727 385/129

Table 2.6 Variable Selection for three-year survival. Figures shows Median / Interquartile
range (IQR).

As in the CT problem the most discriminatory prognostic variable is beta-2 microglobulin
(B2M). Higher median values correspond to the patients that according to the classifier will
not survive more than three years. As it was already mentioned, elevated values (>4 mg/L) of
B2M is an indicator of poor survival prognosis for multiple myeloma and lymphoma (Hallek
et al., 1996). In this group we can also observe levels of hemoglobin lower than the normal
HGB range (11-15 g/dL). Also, the median and mean LDH values are abnormally high with
respect to its normal range (105-333 U/L). LDH is a protein linked to tumor initiation and
metabolism, therefore, patients who have abnormally high levels of LDH could develop more
rapidly the disease and die during the first three years.

Figure 2.4 shows the ROC curve and Sensitivity (or True Positive Rate -TPR) against
Specificity (or True Negative Rate -SPC) throughout all possible probability thresholds
for 3-year survival classification problem. The optimum result, obtained for a probability
threshold of 0.48 shows that 99.1% of the patients that survive and 53% of the patients that
do not survive during the first 3 years are correctly predicted. Nevertheless, other probability
thresholds could be adopted depending on the TPR/SPC balance. The FDR in this case (False
Discovery Rate) is 6.5%.
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Fig. 2.4 A) ROC curve. B) Sensitivity (or True Positive Rate - TPR) and Specificity (or
True Negative Rate - SPC) for 3-year survival. The optimum result (TPR = 99.1 and SPC =
53) is obtained for p;; = 0.48. Nevertheless, other probability thresholds could be adopted
depending on the TPR/SPC balance.

Five-year survival

For the five-year survival problem the difference between the number of dead and survivors
was lower but still unbalanced (58 dead and 207 survivors). Fisher’s ratio method obtained
the best subset of variables in terms of accuracy (85.6%): AGE, B2M, HGB, ALB, ALP, UR
and LDH. The entropy method also found a group of variables composed of 6 prognostic
variables with similar accuracy (82.3%): B2M, AGE, LDH, GOT, GPT and ALP. Table
2.7 shows the difference between the median and IQR values of those biomarkers. Notice
that variables with very similar median and IQR figures (GOT and GPT) are obtained from
methods that do not take into account neither median nor IQR values (Entropy).
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Variables  Survive  Not Survive
AGE 71/13.5 80/11
B2M 2.18/2.21 3/3.04
HGB 14/1.8 12.4/2.5
ALB 39/5.5 35/5
ALP 65/27.7 73 /51
LDH 320/72.7  361/102

UR 42/ 15 51717
GOT 2216.7 22/11
GPT 20/8 19/13

Table 2.7 Variable selection for five-year survival. Two groups of variables are shown. First,
the main reduced base with the highest accuracy (85.6%) and below, other relevant variables
obtained with Entropy method. Figures shows Median / Interquartile range (IQR).

Overall, the results obtained for prediction of three- and five-years survival coincide. Of
note, some new variables related with the renal or hepatic function, such as UR, GOT, GPT
and ALP, which are not frequently altered in CLL patients also affect their survival. These
variables are affected by co-morbidities of these organs or by the invasion of the kidney
or liver by leukemia cells; and these results suggest that the adequate identification and
treatment of these complications may play a more important role in the survival of CLL

patients than expected.

2.4 On the prediction of Hodgkin Lymphoma treatment

response

In this case the methodology was applied to figure out prognostic variables for Hodgkin
Lymphoma treatment response using the clinical data of a retrospective study of a cohort of
263 caucasians. Besides, in this case the methodology incorporates the weight optimization
of the classifier according to the ROC curve to improve risk assessment in the decision-
making process, that is, to provide a very high predictive accuracy with an optimum balance
between the different rates of the confusion matrix (the true-positive and false-positive rates
defining the corresponding ROC curve). The aim is to find the shortest list of clinical variables
providing the highest predictive accuracy for Hodgkin lymphoma first-line treatment response

(at diagnosis). Therefore, we could use the results to the treatment of Hodgkin Lymphoma
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patients. This work has been published in the journal ”Clinical & Translational Oncology ’
(see Appendix A.2).

2.4.1 Introduction to Hodgkin Lymphoma treatment response

Hodgkin lymphoma (HL) is characterized by the presence of the so-called malignant Reed-
Sternberg cells, surrounded by an inflammatory infiltrate consisting of lymphocytes, neu-
trophils, eosinophils, plasma cells, macrophages and fibroblasts, constituting a model of
interaction of tumor cells with their microenvironment. This kind of cancer is most com-
monly diagnosed in young adults between the ages of 15 and 35 years and in older adults
over 50 years. The cure rate in HL patients is high, but the response along the treatment is
still unpredictable and varies from patient to patient. Besides, a small minority is resistant
or relapses before treatment. Detecting those patients with a poor prognosis at early stages
(diagnosis) could bring improvements in their treatment and prognosis.

There was an international effort to identify the prognostic factors to accurately predict
the development and treatment of HL, mainly in patients with advanced stage. The identified
adverse prognostic factors were: male older than 45 years, stage IV disease, hemoglobin
lower than 10.5 g/dl, lymphocyte count lower than 600/l (or less than 8%), albumin lower
than 4.0 g/dl and white blood count greater than 15,000/l (Hasenclever et al., 1998; Schreck
et al., 2009).

Several research works highlighted the importance of the identification of prognostic
variables to predict patients who will suffer relapse and the adaptation of treatments to
individual risks (Josting, 2010; Provencio et al., 2004; Smolewski et al., 2000; Zander et al.,
2002). Particularly, the result of treatment optimization provoked some criteria modification,
with the disappearance of some factors that were considered to be of poor prognosis and with
the proposal of new ones that allowed establishing groups with differing risks of relapse and

different treatments.

2.4.2 HL clinical data

The HL clinical data we dealt with, belongs to a cohort of 263 Caucasians who were
diagnosed with classical Hodgkin lymphoma in Asturias (Spain) and enrolled in this study
between 2002 and 2012. The treatment response was divided into three categories according
to international standards (Cheson, 2008): 237 of the patients were in Complete Remission
(CR), 17 in Partial Remission (PR) and only in 9 cases the disease progressed without any
relevant change. This last category was named as Progressive Disease (PD). Table 2.8

describes the main characteristics of the patients: age, sex, stage at diagnosis, percentage of
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Table 2.8 Main characteristics of the patients (number of patients / percentage), including
Hasenclever International Prognostic Score (IPS)

Median: 37
Age Males range: 9-82
Females range: 10-83
Males: 171/ 65%
Females: 92 /35%
Stage Stage I: 42/ 16%
Stage I1: 92 / 35%

Sex

at Stage II1: 82 / 31%
diagnosis Stage IV: 47/ 18%
Early disease: Favourable: 57/ 22%
113/43% Desfavourable: 56 / 21%150 / 57%

Advanced disease: IPS <2:81/31%
150/ 57% IPS > 2:69/26%

early favor- able and early unfavorable and percentage of advanced disease depending on
Hasenclever Prognostic Score.

Progression-free survival (PFS) was calculated from the date of diagnosis to the date of
progression, relapse or death by of any cause. Overall survival (OS) was calculated from
the date of diagnosis to the date of death from any cause or last follow-up. OS and PFS
distribution curves were estimated using the product-limit method of Kaplan-Meier. The
median PFS and OS for the entire group were, respectively, 150 and 160 months. The
probabilities of PFS and OS at 7 years were 57 and 76%, correspondingly.

Thirty-five clinical and biological variables were measured at diagnosis and before treat-
ment. These variables were classified into five groups: biochemical, immunohistochemical,
Hodgkin lymphoma specific, treatment specific and host information. Table 2.9 shows the
description of all these variables, boldfacing those that take discrete predefined values. Most
of the variables had a sampling frequency higher than 90%. However, others were scarcely
sampled, such as CRP(14%), immunoglobulins and Ki67(20%).

2.4.3 ROC-based PSO optimization of the classifier

A it was commented in section 2.2.2 it is possible to optimize the TPR and/or TNR by
optimizing the parameters of the classifier. This optimization was performed via Particle
Swarm Optimization (PSO). PSO is a stochastic evolutionary computation technique used

in optimization, which was initially inspired in the social behavior of individuals (called
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Table 2.9 Clinical variables description by group and their corresponding symbols and
sampling frequency (Samp. Freq.). Discrete variables are shown in bold faces.

WBC
ALC
AMC
AEC
HGB
PLT
ALB
AST
ALT
ALP
CR
LDH
ESR
CRP
GG
IgG
IgA
IgM
B2M
Cu
SF

Biochemical

White Blood cells Count (106/microL.)
Absolute Lymphocyte Count (106/microL)
Absolute Monocyte Count(106/microL.
Absolute Eosinophil Count(10 6/microL.
Hemoglobin (g/dL)

Platelets (103/microL.)

Albumin (g/L)

Aspartate Aminotransferase (U/L)
Alanine Aminotransferase (U/L)
Alkaline phosphatase (U/L)

Creatinine (mg/dL)

Lactate Dehydrogenase (U/L)
Erythrocyte Sedimentation Rate (mm/hour)
C-Reactive Protein (mg/L)

Gamma Globulin (g/L)

Immunoglobulin G (g/L)
Immunoglobulin A (g/L)
Immunoglobulin M (g/L)

Beta 2 Microglobulin (mg/L)

Copper (mEqg/L)

Serum Ferritine (ng/mL)

Inmuno- CD20
histochemical Ki67

B-lymphocyte antigen CD20 test: Positive or Negative
Ki-67 cellular marker for proliferation: Positive or Negative

Tests EBV Ebstein-Barr Virus presence: Positive or Negative
oS Overall survival from diagnosis to death (days)
2 Stage Ann Arbor stagging: I, I, III and IV
'g SS Signs and Symptoms: fever, weight loss, anomalous night sweats
= ALA Affected Lymphs Areas
= LMM Large Mediastinal Mass: more than 1/3 of the thoracic diameter
= ELI Extraganglionar Involvement
Bulky Mediastinal mass more than 10 cm
Treatment CHEMO Chemotherapy treatment
RT Radiotherapy treatment
AGE Age
Personal SEX Sex
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particles) in nature, such as bird flocking and fish schooling. The algorithm consists of the

following:

1. A space of admissible solution M, is defined:
li<xji<uj, 1<j<n, [<i<ngp,

where [, u; are the lower and upper limits for the j-th coordinate for each optimization
model. In PSO terminology, each model is called a particle, and is represented by a
vector whose length is the number of model parameters of the optimization problem.
Each particle has its own position in the search space. The particle velocity represents
the parameter perturbations needed for these particles to move around in the search

space and explore solutions of the inverse problem.

2. PSO updates the positions, x;(k) and velocities, v;(k) of each particle in the swarm in

each iteration, according to 3 main components:

* The inertia term, which consists of the old velocity of the particle, v;(k), weighted

by a real constant, @, called inertia.

* The so-called social term, which is the difference between the global best position

found so far in the entire swarm (called g(k)), and the particle’s current position
(x;(k)).

* The so-called cognitive term, which is the difference between the particle’s best
position found so far (called 1;(k), the local best) and the particle’s current position

(xi(k)):

vi(k+1) = ovi(k) + 91 (g(k) = xi(k)) + g2(1f —xi(k)),
Xi(k—l— 1) = X,‘(k) —|—Vl'(k—|— 1),
¢1 = rlag7¢2 =nrary,rn € U(07 1)’w7ag7al € R7

r1 and r; are vectors of random numbers uniformly distributed in (0, 1), to weight
the global and local acceleration constants, a, and ;. (®, ag, a;) are the PSO
parameters to be tuned in order to achieve convergence. PSO has been chosen for
this purpose because its convergence has been analyzed using stochastic stability
analysis. Consequently, the tuning of the PSO parameters can be done automat-
ically, based on these stability results. Particularly, the RR-PSO (Fernandez-
Martinez and Garcia Gonzalo, 2012) and CP-PSO (Fernandez-Martinez and
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Garcia Gonzalo, 2009) versions are used due to their higher exploratory proper-

ties that allowed us to escape from local minima.

In this case, the particles x; (model parameters) are the weights of the k-NN distance-
based classifier. These weights were optimized from their prior values given by the HVDM
metric, that is, the inverse of two times the prior variability of the prognostic variables (see
section 1.3.6 for further details), to balance confusion matrix. The cost function was defined
as follows:

c(x;) = 01 FP(x;) + )y FN(x;)

where w; and @, serve to weight the relative importance of the false positives and false

negatives depending on x;. If w; = @, = 1 then both terms have equal importance.

2.4.4 HL results

Treatment response in HL is a difficult prediction problem. Aside from plasma EBV DNA
(Gandhi et al., 20006), there is no predictive biomarker to predict the patient’s response to the
corresponding treatment with a reliable accuracy.

The first modeling decision was to transform the analysis of treatment response into a
binary classification problem (two-class problem) that admits a more reliable and stable
solution than the corresponding value regression problem, that is, it is easier to predict
if a patient is in complete or partial remission than predicting the value of the biological
variables related to this fact. Besides, the prediction in binary classification problems allows
risk assessment through the analysis of the confusion matrix and the Receiving Operating
Characteristic (ROC) curve. The comparison was composed of two main steps. In the
first step (1. CR and PR Vs. PD), we established the differences between patients who
experienced partial or complete remission (CR and PR, positive class) from those in which
the disease progressed without any relevant change (PD, negative class). Then, a second
comparison (2. CR Vs. PR) was used to establish the differences between CR (positive class)
and PR (negative class) patients.

The best result was obtained by filtering out those variables having a sampling frequency
lower than 30%, and imputing the rest. Besides, MPD (Maximum Percentile Distance)
provided the shortest list of variables with the highest predictive accuracy. Table 2.10 shows
the confusion matrix rates (TPR, TNR, FPR, FNR) for both comparisons, together with
the False Discovery Rate (FDR) and the LOOCYV predictive accuracy (Acc). No weight
optimization was performed in this case, that is, the weights corresponded to the inverse of
the prior variability of the prognostic variables (see section 1.3.6 for further details of how is

calculated the weights).
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Table 2.11 Mean values of the True Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN), and weights (wj) for the optimum NN-classifier without weights
optimization.

Comparisons  Variables TP TN FP FN Wy

CR and PR (+)
Vs. SF 266.4 3288.0 4524 3231.3 0.0005
PD (-)
CR (+) SF 2499 2401.0 4055 2131 0.0005
Vs. ALT 23.7 18.0 442 744 0.0092
PR (-) ALP 116.8 376.0 163.5 6084 0.0017

Signs (+) and (-) represent positive and negatives groups respectively. Bold faces indicate the
highest value for each prognostic variable. Normal bounds for the decision correspond to the
TP and TN groups. @y, are the weights used in the classifier for data variability normalization
(before weight optimization).

Table 2.10 Best results for all the comparisons obtained without weights optimization.

Comparisons Base MPDrate TPR (%) TNR (%) FPR (%) FNR (%) FDR (%) Acc (%)

CR and PR (+)
Vs. SF 752264  98.43 2222 77.78 1.57 2.72 95.82
PD (-)

CR (+) SF 577157
Vs. ALT 413166  97.89 11.76 88.24 2.11 6.07 92.13
PR (-) ALP 389228

The algorithm used for all the comparisons was the same: filtering 30% of sampling frequency,
imputing and MPD as feature selection method. Rate is the maximum percentile distance
rate, TPR is the True Positive Rate, TNR is the True Negative Rate, FPR is the False Positive
Rate, FNR is the False Negative Rate and Acc is the final accuracy of the prediction. Signs
(+) and (-) represent respectively positive and negatives groups respectively.

Table 2.11 shows the mean values of the three prognostic variables for the different
groups of the confusion matrix and the weights (@) used to define the distance criterion in
the classifier.

Optimization of the weights of the classifier via Particle Swarm Optimization (PSO) was
performed to improve the true negative rate (or Specificity), that is, increasing TNR while
the overall accuracy is also improved (TPR is not affected). Table 2.12 shows the TPR, TNR,
FPR, FNR, FDR and predictive accuracy (Acc) obtained after weight optimization. TN rates
were improved around 10% in comparisons 1, while in comparison 2 TP rate was improved

around 1%. The overall accuracy was improved in all the cases around 1%.
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Table 2.12 Best results for the comparisons obtained after weights optimization.

Comparisons Base MPDrate TPR (%) TNR (%) FPR (%) FNR (%) FDR (%) Acc (%)

CR and PR (+)
Vs. SF 75.2264 98.43 33.33 66.67 1.57 2.34 96.1977
PD (-)
CR (+) SF 57.7157
Vs. ALT 41.3166 99.58 11.76 88.24 0.42 5.98 93.7008
PR (-) ALP  38.9228

Rate is the maximum percentile distance rate, TPR is the True Positive Rate, TNR is the True
Negative Rate, FPR is the False Positive Rate, FNR is the False Negative Rate and Acc is the
final accuracy of the prediction. Signs (+) and (-) represent positive and negatives groups
respectively.

Table 2.13 shows the mean values for TP, TN, FP, FN and the optimized weights for
the prognostic variables (@,). It can be observed that values of the weights increased after
optimization for all the prognostic variables. Therefore, it is possible to improve the quality
of the prediction and minimize risk on the decisions, by optimizing the weights that are

initially provided by the distance criterion.

Table 2.13 Mean values of the true positives, true negatives, false positives and false negatives
and optimized weights w, of the optimum NN classifier after weight optimization.

Comparisons  Variables TP TN FP FN Wy

CR and PR (+)
Vs. SF 2754 27967 2255 2669.5 0.0020
PD (-)
CR (+) SF 2767 2401.0 405.5 3330.0 0.0026
Vs. ALT 243 180 442 1400 0.0663
PR (-) ALP 1232 3760 163.5 1059.0 0.0051

Signs (+) and (-) represent the positive and negatives groups, respectively. Boldfaces indicate
the highest value for each prognostic variable. Normal bounds for the decision correspond to
the TP and TN groups.

2.4.5 Conclusions for HL treatment response prediction

Overall, the results of this study show that the combined use of these prognostic variables,
SF, ALT and ALP, in a simple classifier allows predicting first-line treatment response in HL
patients with high accuracy and confirms a close relationship between treatment response in
HL, inflammation, iron overload and liver and bone damage.
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Serum ferritin has been frequently used as a surrogate marker for systemic iron stores,
but may be also elevated in specific circumstances without excess iron stores, such as in
inflammation, correlating closely to the activity of malignant lymphomas. However, to our
knowledge, serum ferritin levels have not been yet related to the treatment response of HL
patients.

Serum activity levels of ALT enzyme are routinely used as a biomarker of liver injury
caused by drug toxicity, infection, alcohol and steatosis. Levels greater than 500 U/L occur
most often in people with hepatic diseases, such as viral hepatitis, ischemic liver injury
(shock liver), toxin-induced liver damage and tumor infiltration of liver.

The alkaline phosphatase test (ALP) is used to detect liver disease or bone disorders. In
conditions affecting the liver, damaged liver cells release increased amounts of ALP into
the blood. In non-Hodgkin lymphomas, ALP is increased in patients with bone marrow
affectation (Kittivorapart and Chinthammitr, 2011), thus reaching stage IV and worse prog-
nosis. However, in a patient with fever of unknown origin (FUO), highly elevated alkaline
phosphatase and normal/slightly elevated serum transaminase levels suggest the possibility
of lymphoma (Brensilver and Kaplan, 1975; Brinckmeyer et al., 1982; Cunha, 2007).

To conclude, detecting those HL patients who do not respond to the treatment at early
stages may help improve their treatment. This study proposed a new prognostic analysis
method, based on mathematical models that identify three simple prognostic variables
currently gathered at diagnosis that may help detect with high accuracy those HL patients
with bad prognosis without any additional cost.



Chapter 3

Application to genetic data

3.1 Introduction

Genetic information is located in the DNA as a sequence of nucleotides. A gen is a part of the
DNA that contains the necessary information for the synthesis of proteins, which is a critical
process in the human body. Genes are not continuous and include both non-coding and
coding regions for synthesis of proteins. The typical samples from the DNA are commonly
extracted from blood, tissues or fluids. Thanks to the the development of high-throughput
technologies for sequencing in genetic and genomic analyses, that sequence of nucleotides
may be stored in a data set within a computer. Moreover, gene expressions can be analyzed
through hybridization microarrays or RNA sequencing, which is a much cheaper way of
analyzing genetic data.

Genetic data, particularly, gene expression data, are commonly used to compare two or
more sets of patients (typically healthy control VS unhealthy patients) in order to figure out
what (genes) is causing those differences. Those comparisons could be used to predict a
certain disease occurrence (diagnosis optimization), to make the difference between two or
more treatments (treatment optimization) or to evaluate the survival of a set of patients (prog-
nosis optimization). These kind of problems will be addressed as the general denomination
of phenotype prediction problems.

Genetic data has a very underdetermined character, since the number of samples/patients
is always much lower than the number of genes. We do not have a unique solution to the
inverse problem, therefore, reduction of dimension algorithms become a key element in the
problem solution.

In this chapter we applied our methodology to address two different problems using gene
expression data. Firstly, we identify and validate a specific gene cluster that is predictive

of fatigue risk in prostate cancer patients treated with radiotherapy. This research work
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was performed in collaboration with the National Institute of Nursing Research, National
Institute of Health, Bethesda, Maryland, USA and Biomodels, LLC, Watertown, MA, USA.
As a result a manuscript named "Supervised Classification by Filter Methods and Recursive
Feature Elimination Predicts Risk of Radiotherapy-Related Fatigue in Patients with Prostate
Cancer" was published in the journal "Cancer Informatics". Secondly we modeled a data
expression microarray related to Chronic Lymphocytic Leukemia, predicting the occurrence
of the main mutations, which are closely related with the survival of the patients. The
results were included in a paper called "Genomic Data Integration in Chronic Lymphocytic
Leukemia" and it is currently under review in the journal "Journal of Gene Medicine".

As a continuation of the research work on the Cancer treatment-related fatigue, we
perform some statistical analysis using the methodology explained herein to a data set
related to mitochondrial activity. The result was a publication named “Relationship of
Mitochondrial Enzymes to Fatigue Intensity in Men With Prostate Cancer Receiving External
Beam Radiation Therapy” in the journal ”Biological research for nursing” (Filler et al.,
2015).

As in the previous chapter, there are three main parts. Firstly we present the common
methodology applied in both practical cases. Secondly we introduce the cancer related
fatigue prediction problem and present the results and conclusions. Finally, we proceed in

the same way with the Genomic data integration in Chronic Lymphocytic Leukemia.

3.2 Methodology applied to both practical cases using ge-

netic data

The common methodology applied to both cases has three main steps: 1) Obtain the gene
discriminatory power. 2) Select the genes according to the discriminatory power. 3) Create the
correlation networks between the selected genes. Figure 3.1 shows the flowchart describing

these steps.



3.2 Methodology applied to both practical cases using genetic data 51

GENE DISCRIMINATORY
POWER

- Fold Change
- Fisher's Ratio

l} Ranked genes

GENE SELECTION

- Leave One Out Cross Validation
- Backwards Feature Elimination

0 Selected genes

3

CORRELATION
NETWORKS

- Pearson Correlation Coefficient
- Normalized Mutual Information

Fig. 3.1 Flow diagram for the prediction model. The methodology is composed of 3 steps: 1)
Obtain the gene discriminatory power. 2) Select the genes according to the discriminatory
power. 3) Create the correlation networks between the selected genes.

3.2.1 Gene discriminatory power

It is crucial important to be able to establish the discriminatory power of a gene in phenotype
prediction problems. In section 1.3.6 we have presented the main feature selection methods
for clinical and genetic data. A gene is said to be highly discriminatory if several conditions
are met such as high Fisher’s ratio, high Fold Change, low Entropy, high Percentile distance
and high SAM ratio. In this case we used a combination between Fold Change (FC) and
Fisher’s ratio (FR). We first ranked genes according to their discriminatory power. We
preselect the most differentially expressed genes above a certain absolute FC value and
then we finally rank the genes according to their FR. The reason to first preselect with FC
is because low dispersions in both classes can provide high FR values when in fact the
centers of both distributions in expressions are very close (differences in means very small).
Therefore, by preselecting differentially expressed genes above a certain absolute FC value
we can avoid to have high FR values due to the low dispersions.

The FR values of the ranked prognostic variables draw a curve that could be interpreted
as a singular value of a linear forward operator characterized by a matrix F € M,,;»,(R).
F has a singular value decomposition F = UEXVT, where U € My, u(R), V € My, (R) are
orthogonal and X blocky diagonal. Besides, rank(F) = rank(X) = r.
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Something similar can be said with the Fisher’s Ratio curve, that can be interpreted

100.

as a measure of the prior discriminatory power of a gene. In the cancer treatment-related
fatigue prediction problem we showed in figure 3.4 this kind of curve, where genes with
the highest FR were the most important biological “eigenvectors” for the discrimination.
The posterior discriminatory power is given by the predictive accuracy of the ranked lists of
genes, see for example figure 3.6 for the cancer treatment-related fatigue problem. We can
observe that adding genes with lower discriminatory power as defined by their FR does not
imply an increase of the predictive accuracy, that is, the posterior predictive accuracy is not
monotonous increasing by adding more genes to the discrimination. This is a simple way of

reducing the high underdetermined character of any phenotype prediction problem.

3.2.2 Gene selection

Similarly to what we did with clinical data, we applied a Nearest Neighbor based algorithm
to establish the accuracy of the different ranked sets of genes using Leave-One-Out-Cross-
Validation (LOOCV) experiment. The combination of this procedure with a backwards
feature elimination algorithm produced the shortest list of high discriminatory gene and
served to validate the prognostic value of these gene signatures over the existing dataset by
cross-validation (see section 1.3.6 for further details). This procedure serves to eliminate
redundant or irrelevant genes to yield the most precise set of genes with the greatest predictive
accuracy. The linear separability of the phenotype in the reduced set of genes could be
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checked by performing principal component analysis (PCA) of the dataset expressed in this
small-scale signature and projecting these samples in the corresponding 2D PCA space. Then,
the problem approximates a linear separable behavior by reducing the dimension to the list of
most discriminatory genes, if populations can be linearly separated by a given hyper-plane.

3.2.3 Correlation networks

Finally we built correlation networks using the selected genes to understand how the ex-
pression of the most discriminatory genes is controlled in each case. Correlation networks
were generated using the approach presented in Lastra et al. (2011) but with two different

coefficients measuring the dependency between genes:

* Pearson correlation coefficient (Pearson, 1895): It measures the linear correlation of

two random variables.
cov(gi, ;)

pij =
\/ 0707

where cov(g;, g;) is the covariance between the expressions of two genes g;, g; con-

(3.1)

sidered as random variables and 61-2, GJ2 is the variance of the expression in gene i
and j respectively. p;; is zero when the variables are uncorrelated, that is, linearly
independent, and varies between -1 (total negative correlation between expressions)
and 1 (total positive correlation). This metric is not useful when the relationship
between the variables is nonlinear. Nevertheless, we will show numerically that the
classification problem approximates a linear separable behavior when the dimension is
reduced to the most discriminator variables. Therefore, when the analysis is restricted
to these variables, it makes perfect sense and serves to find the trade-offs between them

(uncertainty of the corresponding prediction problem).

* Normalized Mutual Information (Strehl and Ghosh, 2003): The mutual information
of two random variables is a measure of mutual dependence of both variables. In our
case we have used the normalized mutual information, which is similar to a correlation

coefficient:
1(gi,8))

H(gi)H(g;)

where I(g;,g;) is the mutual information content and H(g;) the entropy of gene i

ij= (3.2)

calculated based in the ordering of its expression with respect to the class assignment.

The mutual information /(g;,g;) content is calculated as follows:

1(gi,gj) =H(gi)+H(gj)—H(giVUg))
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being H(g;Ug;) the joint entropy. The normalized mutual information can be inter-
preted as a correlation coefficient based exclusively in the diversity (entropy) in g; and

gj. It varies between O (totally independent) and 1 (totally dependent):

NM;j =0+ H(g;Ug;) =H(gi)+H(gj)

Therefore, the normalized mutual information is null when one variable does not
reduce the uncertainty about the knowledge of the other, that is, they are independent
descriptors.

Once we have calculated these coefficients, the Kruskal’s algorithm (Kruskal, 1956)
is used to find the minimum-spanning-tree between the selected genes and building the
correlation network, using as head the gene with the most discriminatory power. Two main
gene categories can be identified in correlation networks: headers, which are the genes
located in the top of the network and have higher discriminatory power, and helpers, which
are the genes in the lower parts of the network that provide high frequency details for the
discrimination. Moreover, correlation networks serve to analyze inter-relationships between
genes, that impact the expression of other genes, and therefore their function. Finally, gene
ontology is performed to cover the altered and disease pathways. For that purpose we used
the GeneAnalytics tool provided by the Weizmann Institute of Science (Stelzer et al., 2009).

3.3 Supervised Classification by Filter Methods and Re-
cursive Feature Elimination Predicts Risk of Radiothe-
rapy - Related Fatigue in Patients with Prostate Can-

cer

In this research work we applied the methodology explained in section 3.2 to a genetic
data obtained from a microarray expression dataset where patients were diagnosed with
non-metastatic prostate cancer and scheduled to receive radiotherapy treatment. In this case
the correlation network step was not performed. The problem were to identify the smallest
subset of genes that predict the cancer treatment-related fatigue before radiotherapy treatment
was carried out. This work was published in the journal "Cancer Informatics" (see Appendix
A.3).
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3.3.1 Introduction to the cancer treatment-related fatigue prediction
problem

Fatigue is the most common, troublesome, and costly side effect of many cancer treatment
regimens. Not only does it impact patients directly, but it also has significant repercussions on
both direct and indirect health economic outcomes (Carlotto et al., 2013). Cancer treatment-
related fatigue (CTRF) is defined as a “’subjective sense of tiredness” that persists over time,
interferes with activities of daily living, and is not relieved by adequate rest (Minton et al.,
2008; Mock, 2003).

CTRE, like other regimen-related toxicities, does not occur in every patient, but rather
in a subpopulation of at-risk individuals. In the context of individualizing care, the ability
to predict CTRF risk has the potential to help guide treatment choices for patients and
providers. However, as it becomes increasingly clear that CTRF is strongly related to a series
of underlying genetically controlled biological events, the utility of identifying a group of
genes that impact patients’ risk of the condition seems compelling. In the current study, we
evaluated our methodology to identify a group of genes that predicted CTRF in men being
irradiated for prostate cancer. This proof-of-concept investigation not only demonstrated
the utility of the analysis, but also confirmed the observation that focal radiation therapy
is capable of inducing gene expression changes in peripheral white blood cell RNA (Sonis
et al., 2007).

In this case we firstly applied the methodology explained in section 3.2 to a training
data in order to identify/select the smallest and most precise set of CTRF-associated genes,
and then check the legitimacy of the predictive accuracy based on the training set with a

validation blind set. The validation was performed as follows:

1. We first considered the most predictive gene cluster, a group consisting of the 14 most
discriminatory genes deduced from the training set. The samples of the training set
expressed in the reduced base and their phenotype information were used to define the

distance of the classifier.

2. Second, the values of these discriminatory genes in the validation samples were read
from the validation dataset. For each sample of the validation set, its predicted class
was established using the k-NN based algorithm explained in 1.3.6, using the 14
different most discriminatory reduced sets of genes that were defined by the training
dataset.

3. The first step was repeated to generate 14 different reduced bases, which yielded 14
different class predictions for each sample in the validation set: 14 different Biomedical
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Robots. The final estimated class was then made by consensus or majority voting
classifiers (see section 1.3.5). A posterior probability was given to the class prediction,
defined as the ratio of the number of votes assigned to the predicted class and the total

number of voters.

3.3.2 CRTF gene expression data

The microarray expression dataset consists of men who were 18 years or older, diagnosed
with non-metastatic prostate cancer with or without a history of prostatectomy, and scheduled
to receive External Beam Radiation Treatment (EBRT) with or without concurrent androgen
deprivation therapy (ADT). A total of 44 men with non-metastatic prostate cancer were
studied, 27 of them were used as training set and 17 as validation blind set.

To assess fatigue in cancer therapy the 13-item Functional Assessment of Cancer Therapy-
Fatigue (FACT-F) score was used. FACT-F is scored from 0-52, the higher the score, the
lower the fatigue symptoms. A greater than three-point decrease in the FACT-F score is
considered to be a minimally important change that is clinically relevant (Yost et al., 2011). To
discretize the phenotypic characterization of the study participants, subjects were categorized
into high-fatigue (HF) or low-fatigue (LF) groups based on their change in FACT-F scores
from baseline to completion of EBRT. HF subjects had a decrease of three or more points
in FACT-F scores, and those who had less than a three-point decrease in FACT-F scores
between both time points were categorized in the LF group. Questionnaires were completed
at baseline (prior to EBRT) and at completion of EBRT (day 38-42 after EBRT initiation).
To avoid extraneous influences on their responses, subjects completed the questionnaires in
an outpatient setting before clinical procedures were provided.

The biological sample collection, RNA extraction, and microarray experiments were
extracted from peripheral blood at baseline and on the last day of EBRT, immediately after
FACT-F was performed.

3.3.3 CRTF results

As presented above through the methodology explained in section 3.2, we try to identify/select
the smallest and most precise set of CTRF-associated genes in a training set and then check
the consistency of the results in a validation blind set. The training model was developed
from the array outputs of 27 subjects; 18 were HF and 9 were LF. Each patient sample
contained 604,258 different probes. The minimum and maximum gene expressions were 21

and 62,088 respectively. As shown in Figure 3.2, it was impossible to visually distinguish
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HF and LF microarray outputs in heat map format using decibels as units of measure (log2
of gene expression).

Microarray dataset (learing and validation in log,)

Probes x10°

Fig. 3.2 Data visualization in decibels (log2 of the expression). HF is composed of 18
samples, LF 9 samples and Validation 17 samples.

The similarities between the HF and LF groups in the learning dataset were confirmed
by further histogram analysis of gene expression. Figure 3.3 shows that the corresponding
statistical distributions of gene expressions in both groups were close to lognormal, with the
main differences between both phenotypes occurring around the mode of both histograms
(expressions around 24 and 29).
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Fig. 3.3 Gene expression histograms in log2 scale for the Low Fatigue and High Fatigue
subjects.

A final list of 575 highly discriminatory genes according to expression was noted and
defined by the intersection between those genes that were differentially expressed (located
in the 0.05% and 99.5% tails of the fold-change ratio cumulative distribution) and which
had a FR higher than 0.25 (figure 3.4). Genes with the highest FR were the most important
biological eigenvectors for the discrimination, as it happens, for the Fourier analysis of a
digital signal and its decomposition into different harmonics. In this case, the FR curve
decreases very steeply, in such that only with the first set of genes (14 to 35 genes in this case),
the highest discriminative accuracy of the learning data set can be achieved. Adding genes
with lowest discriminatory power indiscriminately does not improve the LOOCYV predictive
accuracy. The BFE method (see section 1.3.6 for further details) is used to determine the
amount of details that is needed.

Additionally, figure 3.5 shows the FC-FR plot for genes in the learning dataset with FC
lower than - 0.52 and higher than 0.67. These values (of gene under- and over-expression)
corresponded, respectively, to the 0.05% and 99.5% tails of the FC distribution. It can be
observed that the highest FR was 2.12, and genes with the highest FC did not coincide with
those exhibiting the highest FR.
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Fig. 3.4 Fisher’s ratio curve for the Low Fatigue-High Fatigue phenotype discrimination.
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Fig. 3.5 Fold change-Fisher’s ratio plot of genes in the learning dataset with absolute fold
change greater than 0.52 that corresponds to the 0.005 and 99.5% tails of the fold change
distribution. In this case the Fisher’s ratio plays a similar role than - log(P value) for the
volcano plot analysis (Cui and Churchill, 2003).
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Fig. 3.6 Leave-One-Out-Cross-Validation (LOOCYV) learning predictive accuracy of the
first 360 gene sets with the highest discriminatory power. The shortest list with the highest
accuracy (92.6%) contains only the first 14 genes.

Figure 3.6 shows the predictive accuracy curve of the different gene lists, established
using the backward feature elimination algorithm. The shortest list with the highest accuracy
(92.6%) was composed by the first 14 genes with the highest FR. The lists with the first 15,
and 29 to 35 most discriminatory genes also provide the same maximum accuracy. As the
data suggest, continuously adding genes with lower discriminatory power as defined by their
FR failed to increase the accuracy of discrimination.

When a histogram was used to assess the first 360 most discriminatory genes found
by our analysis, we noted a shift of the mode of distribution for the LF patients to higher
expressions (29-210) with respect to the HF case (26-27), suggesting that HF patients show
mostly lower expressions of these genes that we hypothesized were responsible for this
phenotypic discrimination (figure. 3.7). Compared to Figure 3.3, a higher discrimination in
the modes of the LF/HF phenotypes can be observed: the mode of HF samples is shifted to

lowest values (approximately 64 instead of 512).
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Fig. 3.7 Histograms (in log2 scale) for the Low Fatigue (LF) and High Fatigue (HF) patients,
of the first 360 most discriminatory genes.

Figure 3.8 shows the PCA plots (unsupervised method) of the learning dataset expressed
in the base of the most 14 (figure 3.8A) and 35 (figure 3.8B) discriminatory genes having the
highest predictive accuracy. The following can be observed:

* The LF/HF phenotype discrimination became easier to lienearly separate in these
reduced sets of genes, confirming the fact that the classification problem simplifies
when reducing the dimension to the most discriminatory set of genes. Both plots have
a similar structure. The LF samples lie between samples P1A and xrt28A, which is

genetically close to the region of the HF samples.

* Also, sample xrt25A, which belongs to the LF category, is surrounded by HF samples.

This sample might be a biological or behavioral outlier.

* The HF samples lie between samples xrtp2A and 13A. Sample xrt20A also seems to

mark a transition between LF and HF samples toward the west of the plot.
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Fig. 3.8 (A) PCA plot for the learning set in the reduced base of the 14 most discriminatory
genes. (B) PCA plot for the learning set in the reduced base of the 35 most discriminatory
genes. A linear separability with a similar structure can be observed in both cases. Low
Fatigue samples lie between P1A and xrt18A. Xrt25A might be a biological or behavioral
outlier. High Fatigue (HF) samples lie between 13A and xrtp2A. Xrt20A marks the HF limit
towards the west of the plot. Additional data are needed to perfectly delineate this PCA plot.

The algorithm provided 13 successes out of 17 validation samples. Three of the four

misclassified samples belonged to the LF group (false positives, patients were predicted to be

HF) and one to the HF (false negative, patient predicted to be LF). These samples are outliers
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with respect to this classifier, because their expressions in the reduced base of genes are closer
to the HF and LF groups, respectively (Tables 3.1, 3.2, and figure 3.9). Interestingly, the 14
different predictions for these misclassified samples coincide, that is, the probability of these
samples belonging to their predicted class according to the consensus criterion is 1. This fact
also strengthens the argument that these samples are biological or behavioral outliers, that is,

their class assignment based on the change in their FACT-F scores was ambiguous.

Table 3.1 Mean values for the 14 most discriminatory genes.

Learning Validation
HF LF HF LF
114 388 117 401
152 644 143 546
302 1455 326 1569
343 1659 364 1535
185 861 196 841
149 611 127 460
585 128 381 194
243 1182 252 1049
689 111 536 235
160 65 75 126
247 1225 275 1187
223 80 73 171
269 1329 331 1573
1200 281 1083 485

Bold values indicate the highest mean expression values in the learning and validation
datasets for HF and LF classes.
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Table 3.2 Misclassified samples.

ST (xrt1l4) S2 (xrt36) S3 (xrt39) S4 (xrt33)

57 129 87 342
78 257 105 492
136 327 201 1354
122 309 183 1514
79 180 125 765
92 126 168 341
42 44 54 946
103 175 184 1045
41 34 49 1430
62 178 258 52
77 234 183 1142
97 286 374 82
146 239 232 1388
162 167 137 2518

Expressions for the 14 most discriminatory probes. Samples S1, S2 and S3 were predicted to
be High Fatigue and S4 to be Low Fatigue. The expression values for S1, S2 and S3 were
closer to the mean expression of the High Fatigue group in the learning phase. Conversely,
the expression values for S4 is closer to the Low Fatigue group. S1, S2 and S3 might define
a new group of Low Fatigue with very small expressions (lower than the corresponding
expressions observed among High Fatigue subjects) in this reduced base of 14 genes.
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Fig. 3.9 High Fatigue (HF)/Low Fatigue (LF) median expression signatures and misclassified
samples at validation. It can be observed that sample xrt33 is closer to LF median signature,
while xrt14, xrt36 and xrt39 are closer to the HF median signature (values for the expressions
are given in tables 2 and 3).

3.3.4 CRTF conclusions

EBRT is a highly utilized treatment option for many forms of cancer. While it is efficacious in
many cases, its toxicity profile is significant and common, but not ubiquitous. Consequently,
the ability to predict toxicities of EBRT has long been of interest. With better understanding
of the pathobiology of radiation injury, using genomics as the basis for toxicity risk prediction
has been the focus of active research.

We proposed that the risk of a complex disease, such as CTRF, could well be more easily
defined by identifying groups of simultaneously expressed, synergistically functioning genes.
Our finding that the gene cluster so identified was able to predict CTRF risk with an accuracy
of > 75% suggests that the approach has validity.

The process of selecting the most predictive cluster of genes revealed informative consid-
erations. The genes with the highest FC did not coincide with those exhibiting the highest FR
because the means of both distributions were different, hence their tails did not overlap. So,
in this method we concluded that FR was a better feature selection method than FC. While,
in the case of FC analysis, noisy genes are typically penalized by the FR selection method

because of an increase of their variance; the noise might be amplified by the FC ratio. Genes
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with the highest FR and FC have the biggest discriminatory power and are assumed to be
involved in the genesis of fatigue.

Interestingly, the histogram analysis of the first 360 genes that most discriminated between
HF and LF subjects was informative in that the shift of the mode of distribution showed lower
expressions of these genes among HF subjects. It seems possible that it is this distributional
shift that ultimately is responsible for discriminating the fatigue phenotype in this population.

We were unable to correctly predict four samples, based on our phenotypic approach,
since the consensus provides the opposite class in all the cases. These classified samples
were close to the border of separation between both fatigue classes (figure 3.8). There are
three possibilities: (1) these samples are behavioral outliers, (2) the phenotypic approach
needs further review and improvement, especially dealing with samples that are bordering the
cut-off scores set for fatigue grouping, and (3) possible use of more sophisticated algorithms
(black box neural networks) to classify the samples may be needed, which could run the risk
of losing the clarity in the interpretation.

We recognize that this study was limited by its small sample size. Nonetheless, the
fact that the analysis was successful in predicting LF/HF in an unrelated population with
reasonable accuracy suggests that increasing the number of subjects in the training population
would likely improve the predictive model’s ability. Nevertheless, this analysis confirms that
it is possible to separate both classes of the LF/HF phenotype by reducing the dimension to
the most discriminatory genes, provided by their FR.

The importance of predicting toxicity or adverse event risk associated with cancer treat-
ment regimens cannot be understated as the clinical implications in personalizing cancer
therapy and prospectively attenuating toxicity risk are significant. Furthermore, this type
of information provides patients and their care-givers more specific knowledge upon which
to make treatment decisions. A future manuscript will be devoted to the gene attribution
analysis of the cancer treatment-related fatigue biomarkers and pathways (in preparation).

3.4 Genomic data integration in Chronic Lymphocytic Leu-

kemia

In this work we applied our methodology explained in section 3.2 using both publicly
available genetic data obtained from a microarray expression dataset and sequencing dataset
to figure out how the main mutations defined by the sequencing data affect gene expression
by finding small-scale signatures to predict those mutations. This work is currently under

review in the "Journal of Gene Medicine" (see Appendix A.4).
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3.4.1 Introduction to Genomic data Integration in Chronic Lympho-

cytic Leukemia

B-cell chronic lymphocytic leukemia (CLL) is a complex heterogeneous disease characterized
by the accumulation of malignant B-cells in blood and lymphoid organs (Rodriguez-Vicente
et al., 2013). Clinical diagnosis of CLL is based on the demonstration of an abnormal
population of B lymphocytes in the blood, bone marrow, or tissues that display an unusual
but characteristic pattern of molecules on the cell surface (CD5 and CD23 clusters of
differentiation).

DNA analysis distinguishes two major types of CLL with different survival times (Ham-
blin et al., 1999). This distinction is based on lymphocyte maturity, as discerned by the
immunoglobulin variable-region heavy chain (IgVH) gene mutation status. High-risk pa-
tients (with poor survival) have an immature cell pattern with few mutations in the [gVH
gene region, whereas low risk patients show considerable mutations in the antibody gene
region indicating mature lymphocytes. Since the determination of the [gVH mutation status
is very labor-intensive and expensive, alternative markers have been investigated to better
prognosticate disease progression.

Gene expression profiles were also used to understand the genesis and progression of
CLL. Subsequently, whole-genome sequencing has identified four major genomic aberrations
in cells that are strongly associated with the disease behavior and prognostically independent
of IgVH mutational status (Dohner et al., 2000). More recently, whole-genome sequencing
identified NOTCH1 and SF3B1 as the most frequently mutated genes that were predictive of
CLL prognosis (Puente et al., 2011).

Given the low incidence of NOTCHI1 (9%) and SF3B1 (8%) mutations, it seemed unlikely
to us that CLL progression could be solely ascribed to the two. We therefore sought to identify
shared/synergistic mechanisms among the three most common mutations (IgVH, NOTCH1

and SF3B1) which might better predict and explain disease progression and behavior.

3.4.2 CLL gene expression data

We used a publicly accessible microarray dataset consisting of 48807 probes were derived
from 163 patients with a diagnosis of CLL (Ferreira et al., 2014). The expression data were
originally presented in logarithmic scale (log2) after the corresponding RMA preprocess.
Of the original cohort of 163 patients, 92 had mutated IgVH, which was associated with a
favorable prognosis, while [gVH was not mutated in the remainder (n=71) and prognosticated
an unfavorable outcome. The exome sequencing data is described by Quesada et al. (2012),

who identified 1246 mutations resulting in protein coding changes. Six genes appeared to
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be most frequently mutated (>5%): NOTCH1, SF3B1, NOP16, CHD2, ATM and LRP1B.
Amongst the 163 samples we evaluated, NOTCH1 and SF3B1 mutational status were
determined for 117 patients. Of these, 106 were unmutated for NOTCH1 and 107 were
unmutated for SF3B1.

3.4.3 CLL results

In this research work we applied the methodology described in section 3.2 to elucidate how
the main mutations affect gene expression by finding small-scale signatures to predict the
IgVH, NOTCHI1 and SF3B1 mutations (genomic data integration). We subsequently applied
our method to define and understanding the biological pathways and correlation networks that
are involved in the disease development with the potential goal of identifying new druggable

targets.

IgVH mutational status

We determined the best set of genes that discriminates IgVH mutational status based on
microarray expression and the class information defined by the [gVH phenotype using 92
mutated and 71 unmutated samples.

The shortest list with the highest predictive accuracy (93.3%) was composed by 13 first
probes: LPL (2 probes), CRY1, LOC100128252 (2 probes), SPG20 (2 probes), ZBTB20,
NRIP1 (2 probes), ZAP-70, LDOC1 and COBLLI1. Table 3.3 shows the list of these genes,
their associated FR, the mean (u;, t,) and the standard deviation (o7, 07) for each group,
and the LOOCYV accuracy (Acc(%)). FR was applied to the log2 of the expressions.

Figure 3.10A shows the Pearson Correlation (PC) network of the most discriminatory
genes of the IgVH mutational status. The Normalized Mutual Information (NMI) correlation

network is shown in figure 3.10B.
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Table 3.3 IgVH mutational status prediction

Gene U oy Uy o0r FR{og) Acc(%)
LPL 40 70 380 272 4.6 87.1
LPL 26 33 146 102 3.7 86.5
CRY1 62 125 352 298 3.1 90.2
LOC100128252 20 43 224 194 3.0 90.2
LOC100128252 30 42 220 172 3.0 89.6
SPG20 24 35 111 85 2.9 91.4
ZBTB20 1943 505 982 417 2.8 914
NRIP1 275 183 63 81 2.7 914
SPG20 30 53 148 126 2.6 91.4
ZAP70 103 151 273 140 2.4 92.6
LDOCI1 20 19 50 27 2.3 92.6
COBLLI1 186 107 85 100 2.3 92.6
NRIP1 8 60 24 24 2.1 93.3

List of the 13 most discriminatory genes list with the highest predictive accuracy (93.3%),
ordered by decreasing Fisher’s ratio. p; and oy refer respectively to the mean expression and
standard deviation in class 1, (mutated IgVH), and u; and o, for the unmutated group. FR
(log) stands for the logarithmic Fisher’s ratio.
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A) IgHV correlation network using Pearson correlation coefficient
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Fig. 3.10 Correlation network of the most discriminatory genes for the I[gVH mutational

status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized
Mutual information.
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NOTCH1 mutational status

We recognized the challenge of analyzing those genes for which the NOTCH1 mutation
impacted expression given the highly unbalanced sample mix (106 of 117 samples did not
show the NOTCH1 mutation).

The shortest list with the highest predictive accuracy (95.7%) was composed by 60 probes
with FR between 4.6 and 1.4 (see Table 3.4). The first five probes of this list corresponded
to MSI2. Also using the two first probes of MSI2, the NOTCH1 mutation is predicted with
94.9% of accuracy. All MSI2 probes had lower expression in NOTCH1-mutation negative
patients. One probe of the LPL gene appeared in eighth position in this list. Therefore the
incremental accuracy from probe 5 to 60 was minimal (0.8%). That means the genes from
the 6" position to the 60" serve to add high frequency details in the discrimination, as it has
been pointed in our work commented on section 3.3.

Figure 3.11A shows the Pearson Correlation network of the most discriminatory genes of
the NOTCH1 mutation in which three main networks associated to MSI2 through WSB2,
ACSLS5 and CNTNAP?2 are apparent. The Normalized Mutual Information network (Figure

3.11B) demonstrates a main connection through NCK2.

Table 3.4 NOTCH1 mutational status prediction.

Gene U o 173 o> FR(log) Acc(%)
MSI2 157 74 43 26 4.6 93.2
MSI2 238 123 62 49 4.1 94.9
MSI2 73 25 31 16 3.0 91.5
MSI2 283 149 92 61 2.8 90.6
MSI2 58 19 32 15 2.7 92.3
C10o0rf137 193 86 392 135 2.4 90.6
LAG3 236 155 77 103 2.4 90.6
LPL 357 250 170 254 2.3 92.3
NCK2 838 219 1560 529 2.2 93.2
CNTNAP2 66 96 667 799 2.1 92.3
ST3GALI1 38 11 85 36 2.1 90.6
CCDC24 109 73 48 44 2.0 92.3
LTK 216 96 103 132 2.0 90.6
FLNB 59 30 33 17 1.9 94.0
ZNF333 38 5 57 16 1.9 92.3
PREPL 190 62 329 108 1.9 93.2

C19o0rf28 120 37 217 80 1.9 93.2
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Table 3.4 NOTCH1 mutational status prediction.

Gene U o J15) o, FR(log) Acc(%)
Clorf38 365 148 189 109 1.8 91.5
LTK 107 52 52 64 1.8 91.5
SPG20 182 150 71 106 1.8 92.3
SAP30L 74 38 111 32 1.8 94.0
MYSTI1 248 37 322 60 1.7 93.2
C100rf137 99 41 187 66 1.7 94.9
ATP6VOB 831 198 596 183 1.7 91.5
LPL 130 89 75 99 1.7 92.3
SLC4A7 47 39 150 120 1.7 90.6
LOC100128252 161 126 112 156 1.7 89.7
HNRNPR 57 22 110 48 1.7 89.7
REEP5 41 18 80 39 1.6 90.6
SRSF1 110 60 175 52 1.6 94.0
GNPNAT1 37 8 64 24 1.6 94.0
SHPRH 270 64 383 83 1.6 94.0
CNTNAP2 101 140 804 1105 1.6 94.9
PHF2 119 44 175 60 1.6 92.3
FCRL1 234 180 525 308 1.6 93.2
WSB2 804 329 489 258 1.6 93.2
ATP6VOB 624 145 448 134 1.6 94.9
LYL1 87 31 140 47 1.5 94.9
ACSL5 230 85 332 106 1.5 94.9
STX17 50 21 75 25 1.5 94.0
SPG20 125 98 55 74 1.5 94.0
NHEIJ1 29 7 37 8 1.5 94.0
ZNF248 48 25 89 45 1.5 93.2
MPST 55 20 35 10 1.5 93.2
CDK13 69 42 132 75 1.5 93.2
TRMTI1 58 17 86 30 1.5 92.3
PI4K2A 224 101 115 84 1.5 93.2
ELOVL5 254 97 504 188 1.5 93.2
FAM30A 588 900 1535 1495 1.5 93.2
PTDSSI1 129 21 190 44 1.5 94.0
PLGLB1 74 47 152 103 1.5 94.0
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Table 3.4 NOTCH1 mutational status prediction.

Gene U o 15} o, FR(log) Acc(%)
C5orf53 51 22 125 74 1.5 94.0
PSMD7 608 175 414 141 1.5 94.9
NASP 117 26 176 52 1.5 94.0
ATP6VOB 768 170 566 172 1.5 94.9
WDR36 108 36 164 43 1.4 94.9
LTNI1 511 52 645 99 1.4 94.9
GAL3ST3 22 2 19 2 1.4 94.9
PDE7A 102 67 214 120 1.4 94.9
CAPRIN2 1098 345 1511 368 1.4 95.7

List of the 60 most discriminatory genes to predict the NOTCH1 mutation list with the highest
predictive accuracy (95.7%), ordered by decreasing Fisher’s ratio. Class 1 corresponds to
samples with mutated NOTCH1 and class 2 corresponds to those with unmutated NOTCHI.
Uy and oy refer respectively to the mean expression and standard deviation in class 1 (mutated
NOTCHI1), and u; and o, for the unmutated group. FR (log) stands for the logarithmic

Fisher’s ratio.
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A) NOTCHT1 correlation network using Pearson correlation coefficient

B) NOTCH?1 correlation network using Normalized Mutual Information
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Fig. 3.11 Correlation network of the most discriminatory genes for the NOTCH1 mutational
status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized
Mutual information.

SF3B1 mutational status

SF3B1 gene (Splicing Factor 3b, Subunit 1) is located in chromosome 2. Its importance in
CLL has been analyzed by Wan and Wu (2013); Wang et al. (2011). As with NOTCHI, the
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Table 3.5 SF3B1 mutational status prediction.

Gene U O] 153 0> FR(log) Acc(%)
RPL32 859 228 513 115 2.6 94.0
KLF8 131 45 59 30 2.4 94.0
PDGFD 85 34 42 20 2.2 95.7
PLAGLI1 171 87 336 118 2.2 94.0
KLF3 40 29 239 221 2.2 94.0
uQcCcC 27 7 41 7 2.1 94.9
HBA1 3650 2978 755 2218 2.1 96.6
CNPY2 206 73 317 70 2.1 97.4
TMC6 322 74 546 155 2.0 97.4
CSNK2B 71 37 141 38 2.0 97.4
PLAGLI1 282 135 507 174 2.0 97.4
PIP5K1B 55 32 212 200 1.9 98.3
DGKG 44 16 115 70 1.9 97.4
HBB 12044 6627 2783 5082 1.9 98.3
PLAGLI1 138 83 252 92 1.9 98.3
ZNF76 34 8 61 20 1.8 98.3
AMT 48 8 97 41 1.8 97.4
STK38 206 108 368 156 1.8 97.4
HBB 8359 5278 1777 3669 1.8 97.4
ACTR2 3113 266 3789 506 1.8 97.4
GLIPR1 115 107 359 261 1.7 97.4
MAST4 136 89 59 60 1.7 99.1

List of most discriminatory genes (22) to predict the SF3B1 mutation, ordered by decreasing
Fisher’s ratio with an accuracy of 99.1%. Class 1 corresponds to samples with mutated
SF3B1, and class 2 corresponds to those with unmutated SF3B1. u; and o refer respectively
to the mean expression and standard deviation in class 1 (mutated SF3B1), while u, and o>
do for the unmutated group. FR (log) stands for the logarithmic Fisher’s ratio.

SF3B1 classification problem was also highly unbalanced, since 107 CLL samples (out of
117) did not show the mutation.

The shortest list with the highest predictive accuracy (99.1%) was composed of 22 probes
with FR’s between 2.6 and 1.7. The most discriminatory gene was RPL32 (table 3.5). Figure
3.12A shows the Pearson Correlation network of the most discriminatory genes of the SF3B1
mutation. In general correlations between discriminatory genes are low. Two main networks
were noted to be associated to the most discriminatory gene RPL32, through YWHAB and
KLF8. Conversely, the correlation network using the Normalized Mutual Information (figure
3.12B) demonstrated a single network associated with CNPY2-STK38.
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A) SF3B1 correlation network using Pearson correlation coefficient
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Fig. 3.12 Correlation network of the most discriminatory genes for the SF3B1 mutational
status prediction: A) Using the Pearson correlation coefficient. B) Using the Normalized
Mutual information.
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Gene intersections for IgVH, NOTCH and SF3B1 mutations

We analyzed the intersection between the most discriminatory genes for [gVH, NOTCHI1,
and SF3B1 mutations as defined by FR and FC analyses. We consolidated both lists.
The shortest lists found by FR and FC for each mutation and then performed pairwise

intersections to establish shared genes. Figure 3.13 shows the result for these intersections.
The intersection with the greater number of genes is NOTCH1-SF3B1 (19 genes), followed

by IgVH-NOTCHI1 (11 genes) and IgVH-SF3B1 with only 5 genes. Only four genes were
common to all mutations: IGHG1, MYBLI1, NRIP1 and RGS13.
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Fig. 3.13 Intersection among the most discriminatory genes of the IgVH, NOTCHI1 and
SF3B1 mutations. The three main mutations are represented with a rectangle and the most

discriminatory genes are surrounded by ellipses. An edge represents that the gene appears as
most discriminatory for a specific mutation. Genes with three edges (surrounded by a dot

rectangle) are common to these three main mutations.
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3.4.4 CLL conclusions

We showed the genomic data integration in CLL patients, by linking together microarray
expression data and their [gVH, NOTCHI1 and SF3B1 mutational status. Our methodological
approach could define hierarchical gene relationships among CLL patients expressing these
3 different mutations and establishing the predictive accuracy of gene clusters relative to
each mutation. Besides, our methodology served to depict the gene clusters that are most
strongly associated with the expression of each selective mutation (networks of synergistically
working genes), and their relationship between mutation expressions with a particular clinical
outcome (survival). The biological significance of the findings for each of the mutational
statuses can be found on the original manuscript (see appendix A).

The aim of this retrospective analysis was to provide a deeper understanding on the effects
of the different mutations in the CLL disease progression, hoping that these findings will be
used clinically in the near future with the development of new drugs. A future verification of
these findings with other independent cohorts could lead to a better design of the therapeutic

targets.

3.4.5 Additional results for NOP16 mutational status

NOP16 is the third mutation by percentage of occurrence (6.84%) in our cohort. Other
authors have identified POT1 as the third most mutated gene using a more restricted dataset
(Ramsay et al., 2013). Besides, NOP16 (NOP16 nucleolar protein) is an interesting target,
since it is transcriptionally regulated by c-Myc, a gene that plays an important role in cell
cycle progression, apoptosis and cellular transformation. Also, NOP16 is upregulated in
breast cancer, being its over-expression associated to poor patient survival (Butt et al., 2008).

The NOP16 mutation has been predicted with an accuracy of 100% using the list of
26 most discriminatory genes provided by the FR (Table 3.6). Interestingly, the predictive
accuracy obtained with only the two first genes of this list (SLC39A4 and WARS) is very
high (97.4%).

Figure 3.14 shows the intersections between the lists of most discriminatory genes
provided by the Fisher’s ratio and fold change lists in each case. The intersections are as

follows:

1. The intersection between NOP16 and NOTCHI1 contains 6 genes: IGHGI1, IGKC,
IGKV3D-11, PXXDNL, RASF6 and RSG13.

2. The intersection between NOP16 and IgVH contains 4 genes: IGHG1, PXXDNL,
SEPT10 and RSG13.
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Table 3.6 NOP16 mutational status prediction.

Gene U o] U o> FR{og) Acc(%)
SLC39A4 32 5 48 13 2.5 88.9
WARS 122 63 70 46 1.4 97.4
CORIN 14 1 16 1 1.4 95.7
BRWDI1 179 68 121 56 1.4 95.7
KLHLS 207 60 295 73 1.3 94.0
SIRT6 16 2 19 2 1.3 96.6
TCOF1 123 33 160 39 1.3 95.7
DCX 17 2 15 1 1.3 95.7
DSE 29 4 24 3 1.2 94.9
NONO 2685 175 2407 229 1.2 94.9
SLC1A7 20 2 18 3 1.2 96.6
BAD 51 11 65 14 1.2 95.7
SNORA16B 26 6 21 4 1.2 95.7
ORS51F1 18 2 16 2 1.2 96.6
C9orf57 17 2 15 2 1.2 97.4
ABHD?2 25 4 21 4 1.1 97.4
KIAA0907 871 364 1219 455 1.1 97.4
EDN3 15 1 17 1 1.1 97.4
UNCSB 29 4 25 4 1.1 97.4
OR1J4 18 1 16 2 1.1 97.4
PROZ 22 2 19 4 1.1 98.3
SEMAGA 14 1 15 2 1.1 98.3
MECR 31 10 38 7 1.1 99.1
GNA14 15 1 14 1 1.0 99.1
OPN5 14 1 16 2 1.0 99.1
CYP4Z2P 13 1 15 1 1.0 100.0

List of the 26 most discriminatory genes ordered by decreasing Fisher’s ratio. u; and o
refer respectively to the mean expression and standard deviation in class 1, (mutated NOP16),
and U, and o, for the unmutated group. FR (log) stands for the logarithmic Fisher’s ratio,
and Acc is the LOOCYV predictive accuracy. The maximum accuracy (100%) is obtained
with the first 26 most discriminatory genes. Also the list composed by the two first genes
(SLC39A4 and WARS) provides a predictive accuracy of 97.4%.
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3. The intersection between NOP16 and SF3B1 also contains 4 genes: IGHG1, IGKC,
RASF6 and RSG13

Therefore, the longest intersection of NOP16 is with NOTCH1 mutation and only two
genes belong to the intersection of the 4 mutations: IGHG1 and RSG13. IGHGI1 (Im-
munoglobulin Heavy Constant Gamma 1) has been already related to hypogammaglobuline-
mia and B-cell chronic lymphocytic leukemia. This gene also plays a major role in antigen
binding. RGS13 (Regulator of G-protein signaling 13) encodes a protein that is a member
of the regulator of G protein signaling (RGS) family. Down-regulation of RGS13 has been
observed in mantle cell lymphoma (Islam et al., 2003). In the present case RGS13 is upregu-
lated in the group with mutated NOP16. RGS13 over expression inhibited CXCL12-evoked
Ca(2+) mobilization, Akt phosphorylation and chemotaxis (Bansal et al., 2008). Also it has
been also shown that p5S3 negatively regulates RGS13 protein expression in immune cells
(Iwaki et al., 2011).
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Fig. 3.14 Intersection among the most discriminatory genes of the [gVH, NOTCHI1, SF3B1
and NOP16 mutations. The four mutations are represented with a rectangle and the most
discriminatory genes are surrounded by ellipses. An edge represents that the gene appears
as most discriminatory for a specific mutation. Genes with four edges (surrounded by a dot
rectangle) are common to these four mutations.






Chapter 4

Sensitivity analysis

4.1 Introduction

Hitherto, we have applied our methodology to the main different kind of biomedical data,
showing that we can solve diverse biomedical problems precisely and effectively, and using
limited resources. In this section we check the robustness of the methodology against the
main sources of noise and how the most common biomedical data preprocessing techniques
affect it. We have tested it using genetic data, particularly microarray datasets. The result
of the noise analysis using genetic data could be extended to other types of data since the
noise we manage is present in every type of data regardless of their origin. However, the
preprocessing techniques we managed are common to microarray expression data. We
focused in these preprocessing techniques since they are very well-known and commonly
applied. Preprocessing techniques in clinical data, due to their heterogeneity, is an extensive
topic out of scope in this dissertation. Both works are reflected in two manuscripts: "Sen-
sitivity analysis of gene ranking methods in phenotype prediction" currently under review
in the "Journal of Biomedical Medicine" (see Appendix A.5) and "Impact of microarray
preprocessing techniques in unraveling biological pathways", accepted for publication in the
"Journal of Computational Biology" (see Appendix A.6).

The chapter is structured in two main parts. Firstly we theoretically analyzed the effect of
noise in phenotype prediction problems. Via synthetic modeling, we performed the sensitivity
analysis for the main gene ranking methods applied in our methodology to different types
of noise. We then studied the predictive accuracy of our biomedical robot in synthetic data
and in three different datasets related to cancer, rare and neurodegenerative diseases to better
understand the translational aspects of our findings. Secondly, we analyze the impact of
the main microarray preprocessing techniques on the analysis of biological pathways in the

prediction of cancer treatment-related fatigue performed in section 3.3. We compared the
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Robust Microarray Averaging (RMA) and the Affymetrix’s MASS method with the results

that are obtained working with raw data.

4.2 Sensitivity analysis of gene ranking methods in pheno-
type prediction

In this section we first theoretically analyzed the effect of noise in phenotype prediction
problems by casting them into abstract optimization problems. To accomplish this, we first
show that noise in data can be expressed as a modeling error that partially falsifies the set
of discriminatory probes that are phenotype-related, and therefore the biological pathways
that are involved. Secondly, the sensitivity to different kind of noise (in expression and
class assignment) for the following gene ranking methods explained in section 1.3.6: Fold
Change (FC), Fisher’s Ratio (FR), Maximum Percentile Distance (MPD) and Entropy (EN);
compared to well-established Significance Analysis of Microarrays (SAM) is performed
via synthetic microarray modeling. This analysis has shown that in general terms FR is
the most robust method in terms of precision closely followed by SAM. Besides, both
methods provided the smallest subsets of genes with the highest discriminatory power. The
effect of noise increases the number of genetic probes that are needed to slightly improve
the predictive accuracy. This is a very important result concerning parsimony principle.
Therefore, an optimum method to find the biological pathways in translational problems will
consist of ranking the differential expressed genes decreasingly by their corresponding FR.
Additionally, to avoid variable distributions with very low variances but with means/medians
very close which would derive in high FR’s, a first preselection with a low cut off using FC
could be performed, as we will see in section 4.3.

The results of these analyses are confirmed using three different datasets concerning the
study of cancer (Chronic Lymphocytic Leukemia), rare diseases (Inclusion Body Myositis)
and neurodegenerative diseases (Amyotrophic Lateral Sclerosis). We found that FR and
SAM provide the highest predictive accuracies with the smallest number of genes, exploiting
the principle of parsimony. Besides, we show their corresponding biological found with an
expanded list of genes whose discriminatory power has been established via FR. In these
three cases, the effect of viral infections in the corresponding pathways is clear. The results
of this analysis is important to optimize the use of these methods in translational medicine,
particularly in the biological understanding of different diseases and in drug optimization

problems.
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4.2.1 The effect of noise in phenotype prediction

One of the main obstacles in the analysis of genomic data is the absence of a conceptual
model that relates the different probes to the class prediction (phenotype). Therefore, we
need to model these complex relationships. For this reason, similarly what we defined in
section 1.3.1 and equation (1.1), a classifier L*(g) has to be constructed and it is defined as an
application between the set of genetic signatures g and the set of classes C = {cy,¢2,...,cn }:

in which the phenotype is divided:

L*(g):gERS—>C={cl,c2,...,cn}. 4.1)

For this specific problem and following equations (1.2), (1.3) and (1.4) the optimization
problem of finding the subset of genetic signatures g that maximizes the learning accuracy,
giving a subset of samples T (training data set) whose class vector is known, ¢°”*, can be

written as follows:

g:0(g) = min O(g), (4.2)
gcRS
O(g) = [|IL*(g) — ™|, 4.3)
L*(g) = (L"(g1),---.L"(&),-...L" (gm)), (4.4)

As we explained in chapter 3, one of the main numerical difficulties in learning is the
high dimensionality of the genomic data since the number of monitored probes (or genes) is
much greater than the number of samples (or patients). This fact provokes that the phenotype
prediction in the learning stage will have a very high underdetermined character. Therefore,
several gene lists with similar predictive accuracy might exist. All these high predictive lists
are expected to be involved in the genetic pathways that explain the phenotype. In practice,
the predictive accuracy of a genetic signature, O(g), is performed via cross-validation. This
knowledge could be very important for early diagnosis and treatment optimization.

The presence of noise in the genomic data will impact the classification and obviously the
pathway analysis resulting from this procedure. There are at least two main sources of noise
in phenotype prediction problems as we detailed in section 1.3.3: Noise in the feature data
(gene expression), and noise in class assignment. Consequently the perturbed and noise-free
cost functions, OP(g) and O’ (g) will never achieve their corresponding minima for the same
genetic signatures g. Therefore, the impact of noise in the optimum genetic signature is a fail
in the generalization of new incoming samples. For that reason, it is also desirable to inspect

the genetic signatures having a lower predictive accuracy than the optimum.
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To alleviate the high underdetermined character of genomic-phenotype prediction prob-
lems, feature selection methods are used to reduce the dimensionality of the genetic data. The
problem of determining the genes that separate two (or more) classes corresponding to given
phenotypes has been traditionally been addressed by filter, wrapper and embedded methods
(Saeys et al., 2007). In the case of filter methods, the gene selection and the classifier for
phenotype prediction are independent (uncoupled). Wrapper and embedded techniques are
most sophisticated approaches where the gene selection is the solution of an optimization
problem; therefore selection and classification are coupled. Wrapper and embedded methods
usually involve the use of neural network, support vector machines, decision trees and global
optimization algorithms. Filter methods rank different genes according to different measures
of their discriminatory power in phenotype prediction problems. The fact that wrapper and
embedded methods involve optimization also implies that an uncertainty analysis of the
feature selection problem is involved. For that reason we find that filter methods are more

interesting.

4.2.2 Gene selection ranking methods and noise

To determine the stability and robustness of the mentioned ranking algorithms in mitigating
microarray-generated noise, we compared them using a synthetic dataset and publicly avail-
able datasets associated with Chronic Lymphocytic Leukemia, Inclusion Body Myositis, and
Amyotrophic Lateral Sclerosis. At a translational level, the aim of this analysis is to establish
an optimum way to find the most discriminatory genes in a phenotype prediction and the
biological pathways that are involved.

A variety of analyses have been performed to study the sensitivity of some of these
methods to noise in the expression data (Dinu et al., 2007; Jeffery et al., 2006; Kooperberg
et al., 2002; Larsson et al., 2005). However, so far the robustness against different kind of
noises for all these ranking methods has not been addressed.

For that purpose, we used a synthetic dataset where three different types of noise were
introduced: additive Gaussian noise, lognormal noise and noise in the class assignment. The
Gaussian noise has been introduced through a random number generator following a normal
distribution n; — N(0, rkEj.) for each gene, being ry the noise level, and E ; is the noise-free
expression of the gene j. Therefore, the noisy expression corresponding to the gene j would
be:

EV = E!4n;. (45)
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The lognormal noise has been obtained by adding Gaussian noise to the logarithms of the

expression:

an = longj — N(O, rklong;-). (46)

Therefore, the lognormal noise has a scaling effect, since:
long§7 = lngE; +In;,

Ef = sE}. (4.7)

In the case of class assignment noise, a given number of samples are misclassified. The
class assignment and lognormal noises belong to the category of non-Gaussian noise. The
synthetic dataset was built with a predefined number of differentially expressed genes. We
subsequently introduced different levels of noise: 1 to 6% for Gaussian and log-Gaussian
noises and 10 to 40% for the class assignment noise.

To check the performance of the different ranking methods we used the Precision metric:

[{DEjgenes } N {Selectedgenes }|
|{Selectedgenes }|

Precision = (4.8)

where {DE.;} is the set of the differentially expressed genes and {Selectedgenes } the set
of genes selected by the ranking algorithm.

4.2.3 The synthetic and diseases datasets

A flow diagram for the methodology used in this paper is shown in figure 4.1. The synthetic
datasets was created to compare the various filtering methods against a known dataset and
then, based on these findings, create a hierarchy which defines the effectiveness of the ranking
methods against different kind of noise and to understand how to find optimally the biological
pathways in disease datasets.

The synthetic dataset was built simulating a real dataset related to Chronic Lymphocytic
Leukemia (see section 3.4.2 for further details) using the OC-plus package available for
The Comprehensive R Archive Network (Pawitan and Ploner, 2015). The original data was
compound of 163 samples and 48807 probes. We have chosen this dataset for building
the synthetic dataset because it has a good sample size and the class is well balanced. The

experiment was set up as follows:



88 Sensitivity analysis

Theoretical analysis
of the impact of noise
in gene selection

¥

Synthetic Modeling

\ 4

Synthetic Data _ Cuss sssrmon

noise

¥

Sensitivity analysis
for ranking methods:
FC, FR, EN, MPD,
and SAM

A 4

Application to
disease dalasels

Inference of
biological pathways
and correlation
netwarks

Fig. 4.1 Flow diagram of the noise analysis methodology

* The class of the synthetic dataset was the same as the one observed for the IgVH status
(Ferreira et al., 2014): 92 samples had mutated IgVH, while in the other 71 samples
IgVH was not mutated.

* The noise-free synthetic data set (expression) was generated using as main parameters
D =72 and Py = 0.47 where D is the effect size for differentially expressed genes
expressed in units of the gene-specific standard deviation and Fy is the proportion
of differentially expressed genes. This simulation made 229 genes be differentially
expressed which we will try to recover via the different gene-ranking methods. These
genes are supposed in the synthetic dataset to optimally differentiate the known IgVH
status.

Furthermore, we have modeled different real microarray datasets to confirm these find-
ings:

* B-cell Chronic Lymphocytic Leukemia (CLL) dataset composed by 163 samples and
48807 probes (Ferreira et al., 2014). CLL is a complex and molecular heterogeneous
disease which is the most common adult Leukemia in western countries. DNA analyses
served to distinguish two major types of CLL with different survival times based on

the maturity of the lymphocytes, as discerned by the Immunoglobulin Heavy chain
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Variable-region (IgVH) gene mutation status. 92 samples had the IgVH gene mutated
versus 71 samples with worse prognosis. The aim of this analysis is to find the
pathways that are associated with bad prognosis in CLL patients (see section 3.4.2 for
further details about this dataset).

* Inclusion Body Myositis (IBM): microarray studies (with 22283 probes) were per-
formed on muscle biopsy specimens from 34 patients with inclusion body myositis and
11 samples without neuromuscular disease (Greenberg et al., 2005). IBM is a muscle
disease characterized by chronic, progressive muscle inflammation accompanied by
muscle weakness. The aim of this analysis is to find the pathways that are associated
to the development of IBM with respect to healthy controls.

* Amyotrophic Lateral Sclerosis (ALS) dataset composed by 85 samples (57 samples
are ALS cases and 28 healthy controls) and 54675 probes (Lincecum et al., 2010).
ALS is a fatal neurodegenerative disease characterized by progressive loss of motor
neurons. These authors have shown that the co-stimulatory pathway is upregulated in
the blood of a high percentage of human patients with ALS (56%). The aim of this
analysis is to define the genes that are associated with a diagnosis of ALS, the possible
causes and the biological pathways that are involved.

These datasets are representative of 3 different types of diseases: cancer, rare and
neurodegenerative diseases. Besides, they have a reasonable sample size and a good balance
between both classes in each case. Although all the microarray datasets treated herein are
post processed via the RMA algorithm that performs an estimation and correction of the
noise (Irizarry et al., 2003), noise is still present due to the complexity of the data acquisition.
Because the genes which are differentially expressed in real datasets are unknown, we applied
the methodology explained in section 1.3.6 to select the smallest subset of high discriminatory

probes.

4.2.4 Results using synthetic dataset

In order to compare the performance we calculated the precision for each method, considering
the set of 229 genes that were differentially expressed in the synthetic dataset. Table 4.1
provides the precision for all the ranking methods mentioned above for different noise types
and levels. Table 4.2 shows the LOOCV mean accuracy and the number of selected genes in
each method. What is more, we have also calculated the empirical Cumulative Distribution
Functions (CDF) of the positions of the differentially expressed genes captured by each
method. For the sake of clearness we only used the first 1000 gene positions. A perfect CDF
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would be a straight line reaching the value of 1 at position 229. Figure 4.2, 4.3 and 4.4 shows

these CDF curves for each type of noise and noise level.

Table 4.1 Synthetic modeling precision. Precision for each of the noise types at different
noise levels.

1% 2% 3% 4% 5% 6%
FR 1.00 097 0.86 0.72 0.65 0.55
FC 0.64 064 0.61 056 053 046
GAUSSIAN EN 0.85 075 0.68 055 05 043
MPD 0.28 031 032 034 034 0.34
SAM 094 091 0.80 0.67 0.60 0.51
FR 084 0.62 041 026 021 0.16
FC 0.60 054 038 0.27 023 0.16
LOG-GAUSSIAN | EN 0.67 045 031 0.18 0.12 0.10
MPD 032 036 028 024 0.19 0.14
SAM 0.79 0.57 038 025 0.20 0.15

10% 15% 20% 25% 30% 35%
FR 1.00 1.00 0.99 094 0.68 0.40
FC 0.53 052 041 029 025 0.16
CLASS EN 0.87 088 0.82 0.77 0.50 0.32
MPD 0.27 0.26 022 0.19 0.18 0.12
SAM 094 094 093 0.88 0.64 0.37
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Table 4.2 Synthetic modeling accuracy. Mean LOOCYV predictive accuracy for each of the

noise types at different noise levels.

1% 2% 3% 4% 5% 6%
FR 100.00/8 100.00/5 100.00/ 6 100.00/5 100.00/13  100.00/8
FC 100.00/9 100.00/12  100.00/ 12 100.00/9 100.00/9 100.00/ 12
GAUSSIAN EN 100.00/17  100.00/11  100.00/8 100.00/12  100.00/19  100.00 /28
MPD 100.00/21 100.00/19  100.00/23 100.00/17  100.00/17  100.00 /22
SAM  100.00/6 100.00/5 100.00/ 6 100.00/ 4 100.00/ 14 100.00/8
FR 100.00/ 6 100.00/22  100.00 / 47 100.00/29 100.00/37  100.00/88
FC 100.00/9 100.00/16  100.00/48 100.00/29  100.00/37  100.00/ 119
LOG-GAUSSIAN | EN 100.00/4 100.00/14  100.00 /24 100.00/38  100.00/45  100.00/132
MPD  100.00/22 100.00/23 100.00/111  100.00/37 100.00/46  100.00/ 128
SAM  100.00/8 100.00/18  100.00 / 47 100.00/29  100.00/28  100.00/90
10% 15% 20% 25% 30% 35%
FR 90.18/3 85.28/14 83.44/2 76.07 /4 73.62/2 69.94 /213
FC 90.18 /10 84.66/8 80.98 /188 76.07 /52 72.39/183  69.94/85
CLASS EN 90.18 /25 85.28 /28 81.60/18 75.46/2 73.62/3 711774
MPD 90.80/121 85.89/180  80.98/29 75.46 /23 71.17/733 66.87 /46
SAM  90.80/5 85.28/4 83.44/2 76.07 /4 73.62/2 69.33/5
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Fig. 4.2 Empirical Cumulative Distribution Function (CDF) of the positions of the differen-
tially expressed genes in the set of the first 1000 selected genes for Gaussian noise.
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entially expressed genes in the set of the first 1000 selected genes for class assignment

noise.

It can be observed the following:

* The precision decreases for all the methods as the noise level increases (refer to Table

4.1). The FR provides the best precision score for all the noise types and levels. These
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differences decrease very fast with the noise level in the case of lognormal noise.
The precision figures for SAM, in some cases, are very close to FR. In the case of
class assignment noise, FR keeps precision levels up to 90% for 10 to 25% of noise,
showing a very good robustness against this type of noise. This result has an important
translational impact in real datasets to find the biological pathways that are involved in

the disease development.

* The differences in the LOOCYV mean accuracy (table 4.2) is not so clear and all methods
provide similar results for the three types of noise at the different levels in the expenses
of increasing the number or probes needed to improve the LOOCYV predictive accuracy.
In the case of Gaussian noise, SAM and FR show very similar results obtaining 100%
of predictive accuracy with a much more reduced set of selected probes. Regarding
lognormal noise, entropy seems to be the best for lower level of noises, while SAM and
FR behave better when the noise level increases. FR and SAM are the best methods
with a very little difference between them in the case of class assignment noise. These
conclusions can also be clearly observed in the CDF curves (figures 4.2 to 4.4).

* We have also combined the Gaussian noise and the Log-Gaussian noise with the noise
in the class assignment obtaining similar results. Adding the class assignment noise
to a noisy dataset (for both Gaussian and Log-Gaussian noises) affects much more
in finding the differentially expressed genes since the Precision decreases drastically
(see table 4.3). What is interesting is that the FC seems to work better in terms of
precision for a combination of class assignment and log-Gaussian noise. In terms of
predictive accuracy more genes are needed to have a high predictive accuracy when
class assignment noise is present (see table 4.4). In this case, FR and SAM provide the
best results. Furthermore, it is possible to observe that for high levels of noise we can
achieve high predictive accuracy with null precision at the expenses of adding a lot
of genes to the predictive genetic signature. In this case, the biological pathways are
clearly falsified.

In conclusion, noise in class assignment affects the selection of the important discrimina-
tory genes in phenotype prediction problems more than noise in the expression data. This
result emphasizes the importance in translational medicine of having at disposal a correct
class assignment of the samples, provided by the doctors. Moreover, the methodologies used
for solving the phenotype prediction problems should be accordingly designed, since the
strategy of finding the best result might be in this case suboptimal, because noise impact the

results.
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Table 4.3 Synthetic modeling precision with combined noise

1% /10% 2% /115%  3%/20% 4% /25% 5% /30% 6% /35%
FR 0.97 0.72 0.45 0.16 0.07 0.04
GAUSSIAN FC 0.45 0.39 0.35 0.15 0.11 0.08
& EN 0.82 0.55 0.36 0.10 0.04 0.04
CLASS MPD 0.26 0.26 0.22 0.11 0.09 0.08
SAM 091 0.68 0.42 0.16 0.07 0.04
FR 0.71 0.25 0.12 0.06 0.03 0.00
LOG-GAUSSIAN | FC 0.46 0.28 0.16 0.08 0.03 0.00
& EN 0.55 0.21 0.11 0.03 0.00 0.00
CLASS MPD 0.25 0.22 0.14 0.07 0.03 0.01
SAM  0.66 0.24 0.12 0.05 0.02 0.00

Precision for Gaussian and Log-Gaussian noises combined with Class assignment noise at
different levels using the synthetic dataset.

Table 4.4 Synthetic modeling accuracy with combined noise

1% / 10% 2% / 15% 3% 120% 4% 1 25% 5% 1 30% 6% / 35%
FR 87.12/5 82.21/10 78.53/6 85.28 /45 95.71/197 97.55/218
GAUSSIAN FC 84.66/ 11 82.21/196 75.46/68 70.55/6 77.30/176 85.89/107
& EN 84.66/3 81.60/171 77.30/4 83.44 /36 93.87/212 95.71/173
CLASS MPD 85.28/130 82.21/50 76.07 /61 66.87 /17 73.01/215 79.14 1229
SAM  85.89/7 81.60/8 77191/5 85.28 /47 95.71 /228 95.71/218
FR 84.66/7 88.96/226 99.39/172 99.39/128 100.00/79 100.00/ 90
LOG-GAUSSIAN | FC 85.28/8 85.28/205 94.48/196 97.55/204 100.00/109  100.00/90
& EN 84.66/ 10 87.12/221  99.39/226  96.93/226 100.00/214  99.39/224
CLASS MPD  84.66 /46 83.44/190 93.87/223 96.32/204 100.00/148  100.00/ 154
SAM  84.66/6 89.57/228 99.39/167 99.39/154  100.00 /96 100.00 / 67

LOOCYV mean accuracy / Number of selected probes for Gaussian and Log-Gaussian noises
combined with Class assignment noise at different levels using the synthetic dataset.

4.2.5 Results using disease datasets

Table 4.5 shows the mean accuracy and number of selected probes for each ranking method
and dataset. For these three datasets we achieved accuracies higher than 90% with a very

small subset of probes.
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Table 4.5 Mean LOOCYV accuracy / Number of selected probes for CLL, IBM, and ALS
datasets.

CLL IBM ALS
FR 9325/6 97.06/2 94.12/12
FC 93.87/35 79.41/2 87.06/254
MPD 9325/7 91.18/32 94.12/17
EN 94.48/99 7941/6 88.24/114
SAM 93.87/26 97.06/1 95.29/42

In the case of CLL, the difference between all the methods is very small. The entropy
method achieved 94% of accuracy with 99 probes. However SAM got almost 94% of
accuracy with 26 probes and FR 93% with only 6 probes. High discriminatory genes of the
IgVH phenotype include: LPL, CRY1, LOC100128252, SPG20, ZBTB20, NRIP1, ZAP-
70, LDOCI, COBLL1 and NRIP1. The pathway analysis has revealed the importance of
the Inflammatory Response, the PAK pathway and the ERK signaling super pathway that
includes ERK signaling, ILK signaling, MAPK signaling, Molecular Mechanisms of cancer
and Rho Family GTPases pathway. These pathways control Proliferation, Differentiation,
Survival and Apoptosis. Also, other important pathways found were Allograft Rejection,
the Inflammatory Response Pathway, CD28 Co-stimulation, TNF-alpha/NF-kB Signaling
Pathway, Akt Signaling, PAK Pathway and TNF Signaling. The presence of some of these
pathways opens the hypothesis of viral infection as a cause of CLL.

Regarding the IBM dataset, we found that SAM and FR were able to correctly predict
97% of the samples just with 2 and 1 probes respectively. Differences between SAM and
FR and other methods are remarkable. The list of most discriminatory genes of the IBM
phenotype include: HLA-C, HLA-B, TMSB10, S100A6, HLA-G, STAT1, TIMP1, HLA-F,
IRF9, BID, MLLT11 and PSME2. Note the presence of different HLA-x genes of major
histocompatibility. Particularly, the function of the gene HLA-B would explain alone the
genesis of IBM: "HLA-B (major histocompatibility complex, class I, B) is a human gene that
provides instructions for making a protein that plays a critical role in the immune system.
HLA-B is part of a family of genes called the human leukocyte antigen (HLA) complex. The
HLA complex helps the immune system to distinguish the body’s own proteins from proteins
made by foreign invaders such as viruses and bacteria”. The analysis of biological pathways
has revealed the importance of viral infections, mainly in IBM patients: Allograft Rejection,
Influenza A, Class I MHC Mediated Antigen Processing and Presentation, Staphylococcus
Aureus Infection, Interferon Signaling, Immune Response IFN Alpha/beta Signaling Pathway,
Phagosome, Tuberculosis, Cell Adhesion Molecules (CAMs), Epstein-Barr Virus Infection,
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and TNF Signaling. We can see several viral infections in this list. It is interesting to remark
that 75% of the cases of viral myositis are due to Staphylococcus Aureus infection (Fayad
et al., 2007).

Finally, in the case of ALS dataset, SAM reached an accuracy of 95% with 42 probes,
while FR and MPD got a 94% with 12 and 17 probes respectively. High discriminatory genes
of the ALS phenotype include: CASP1, ZNF787 and SETD7. The pathway analysis has
revealed the importance of the GPCR Pathway, RhoA Signaling Pathway, EPHB Forward
Signaling, EphrinA-EphR Signaling, EBV LMP1 Signaling, and Regulation of Microtubule
Cytoskeleton. These pathways have different important signaling roles and suggest a possible
link to the Epstein-Barr virus (EBV). The activation of Caspases plays a central role in
cell apoptosis and activates interleukin-1, a cytokine involved in the processes such as
inflammation. Caspases have been also associated to the pathogenesis of Huntington disease.
Obviously, the complete exploitation of these results needs from the analysis of geneticists.

4.2.6 Conclusions for noise analysis

We have experimentally showed that noise in expression data and class assignment partially
falsifies the sets of discriminatory probes in phenotype prediction problems. Via synthetic
modeling we have shown that FR and SAM are the most robust gene selection methods for
different kind of noises. Besides, FR and SAM seem to exploit the parsimony principle,
being able to find the smallest-scale high discriminatory gene signature. Nevertheless, SAM
is much more computationally expensive than FR while the achieved results are similar. We
have also found that noise in class assignment affect the predictive accuracy and the precision
much more than noise in the expression data. Nevertheless, the No-Free-Lunch Theorem in
search and optimization (Wolpert and Macready, 1997) states that all these algorithms are
needed to understand the complex relationships hidden in the genetic datasets. Therefore,
the prior knowledge provided by the doctors is of paramount importance in the search for
solutions of the different diseases. From the translational point of view this analysis shows
the importance of establishing the discriminatory power of the genes in phenotype prediction
problems to correctly find the biological pathways that are involved. To accomplish this
task in the most efficient way possible we suggest ranking the most differentially expressed
genes according to their FR (or SAM ratio). Examples to cancer (CLL), rare (IBM) and
neurodegenerative diseases (ALS) are also outlined in this paper obtaining very interesting

conclusions that might imply an important role of several viral infections.
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4.3 Impact of microarray preprocessing techniques in un-

raveling biological pathways

In this section we analyzed the precision in biological pathways analysis obtained with a raw
dataset and the preprocessed datasets via Robust Multi-array Average (RMA) and Affymetrix
Microarray Suit 5.0 algorithm (MASS). For that purpose we use a the combination FC-FR
ranking methods as explained in section 3.2, establishing the predictive accuracy via LOOCV
(see section 1.3.6). One of the main complexities of this analysis is having at disposal
synthetic data to perform it as we did with the sensitivity noise analysis. For that reason
we decided to work with international standards, such as, the Affymetrix Latin Square Data
for Expression Algorithm Assessment (Human Genome U133 Data Set Affymetrix (2015)),
where 42 different control genes are spiked-in at known concentrations. This is commonly
known as the Spike-In experiment. As a result, this study has two main parts: A) Analysis of
the precision and accuracy of the ranking methods using a synthetic data set for both raw and
preprocessed datasets. B) Analysis of the accuracy and biological pathways of the selected
genes using the cancer related fatigue raw and preprocessed datasets.

In part A we used the Affymetrix Latin Square Data for Expression Algorithm Assessment.
As we known the genes that are differentially expressed we first rank the genes through the
combination FC-FR and then we analyzed the precision (see equation (4.8)) of the obtained
ranking using raw and preprocessed data. Subsequently, we perform a gene selection to study
the discrimination power of the selected genes in both cases (raw and preprocessed).

In part B we managed the cancer treatment-related fatigue dataset described in section 3.3.
We carried out a similar analysis using both raw and preprocessed microarray data consisting
of 44 men with non-metastatic prostate cancer, where 25 of them coursed high cancer related
fatigue and 19 experimented low cancer related fatigue. We perform a gene selection based
on the same ranking method as for the synthetic dataset and analyzed the biological pathways
derived from the selection using the Gene-Analytics software (Stelzer et al., 2009). We have
also built a correlation network using the Pearson correlation coefficient with the selected
genes (see section 3.2 for further details about how are created the correlation networks). Then
we compare the biological pathways and correlation networks derived from the selection with
raw and preprocessed data. Also an independent validation dataset containing 17 samples is
at disposal that is used to confirm the predictive power of these lists in each case. Obviously,
the genes that are responsible for the disease development are unknown. The purpose of
this analysis is to analyze the impact of the preprocessing techniques in understanding the

biological pathways, keeping in mind the results that were found for the spike-in experiment
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Fig. 4.5 Flow chart of the methodology

where the set of differentially expressed genes is known, and also the a priori knowledge in

the chronic fatigue disease. A flow chart of this methodology is shown in figure 4.5.

4.3.1 Microarrays preprocessing techniques

In this section we provide a brief introduction about the microarray preprocessing techniques
used to unravel the biological pathways in phenotype prediction problems.

Microarrays are manufactured using photo-lithographic techniques to attach hundreds
of thousands of different oligonucleotide sequences on the surface of a glass slide. These
oligonucleotides correspond to known DNA or RNA sequences that are arranged in different
probe sets. Quantification of the levels of transcripts in a sample is performed via hybridiza-
tion to the specific probes and measurement of the expression through fluorescence-based
methods. Generally, raw data contains about 20 pairs of oligonucleotides for each DNA or
RNA target (gene) known as probe set. The first component of these pairs is referred to as
the Perfect Match (PM) probe. Each PM probe is paired with a Mismatch (MM) probe that is
artificially created by changing the middle base with the intention of measuring non-specific
binding. Typically, to define a measure of gene expression, probe intensities are summarized

for each probe set into a single value.
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Different studies have been performed to analyze the accuracy of these measurements and

to correct the effect of noise in microarrays (Benito et al., 2004; Chen et al., 2011; Scherer,
2009). Two techniques of particular importance are MASS (Affymetrix, 2001) and RMA
(Irizarry et al., 2003):

MASS: The Affymetrix Microarray Suite 5.0 (MASS5) algorithm uses both PM and
MM probes to summarize gene expression. The MASS signal of a probe set i is defined
as the anti-log of the Tuckey’s biweight robust mean (Huber and Ronchetti, 2009) of

the following values:

u,‘jZZOg(PMij_CTij)a Jj=1..N (4.9)

where

MM;; if MM;; < PMij
CTL;; = , (4.10)
PM; —¢€* if MMij > PM;;
being N de number of probes in the probe set (or gene) i and €2 a given positive amount
that has to be individually adjusted for each probe set. Therefore, the robust Tuckey’s
mean of a probe set i is defined as:

N
Y y(uijsc)uij
= , (4.11)
L y(uijsc)
j=1
where
2 2
x (1 — "—2> for |x| < c,
y(x;c) = ¢ (4.12)
0 for |x| > c.
RMA: Robust Multiarray Average (RMA), basically consists in three steps:
1. Background correction using the following additive probabilistic model:
PM;; = s;j + bgij, (4.13)

where PM;; is the Perfect Match of the probe j in gene i, s;; is the gene signal and
it is supposed to follow an exponential distribution s;; ~ Exp(4;), and bg;; is the

background correction caused by the optical noise and non-specific binding and it
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is supposed to follow a normal distribution bg;; ~ N(y;, Giz). This identification
problem has three